.Bbi*B#mi2/ +Hmbi2 'BM; H;Q ' Bi?Kb Qp2"
+QKTmiBI\/I;TH i7Q‘K
Jii?B2m .m mi

hQ +Bi2 i?Bb p2 bBQM,

Jii?B2m .m miX .Bbi'B#mi2/ +Hmbi2 BM; H;Q Bi?Kb Qp2° +HQm/ +Ql
hiHO0+QK S "Bbh2+?- kyRkX 1M;HBb?X LLh, kyRklLahyy88 X i2H@yy

> G A/, i2ZH@yyd99de3
2iiTbh,ffT bi2HX "+?Bp2b@Qmp2 i2bX7 fi2H@yyd
am#KBii2/ QM 9 CmM kyR9

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

Algorithmes de classi®cation r!partis

sur le cloud

Directeur de th!se : Fabrice ROSSI
Co-encadrement de la th!se : Joann"s VERMOREL

Jury

M. Ludovic DENOYER , Ma'"tre de conf#rences, Universit# Paris VI Examinateur
M. Frid!ric MAGOULES , Professeur, Ecole Centrale Paris Rapporteur
M. Laurent PAUTET , Professeur, T#l#com ParisTech Examinateur
M. Fabrice ROSSI, Professeur, Universit# Paris | Directeur de thlse
M. Michel VERLEYSEN , Professeur, Universit# catholique de Louvain Rapporteur
M. Joann"s VERMOREL , Fondateur de la soci#t# Lokad Examinateur
M. Djamal ZEGHLACHE , Professeur, T#l#com SudParis Examinateur

TELECOM ParisTech
#cole de I'Institut T#l#com - membre de ParisTech

e worker begins a connection
with the QueueStorage and
degueues a message

Failure
windows

Figure 4.1: Multiple scenarii of message processing that impact the BlobStorage

message is re-queued after some timespan and another worker will process the
same message, resulting in a second updating operation being performed on the
same data stored in the BlobStorage.

Technically, this issue derives from the fact there is no direct mechanism to bind
the message consumption and deletion with the message processing made by the
worker so that one of these two events cannot happen without the other. The
absence of this coupling leads to failure windows between the end of the data
update and the message deletion in which the message is delivered and processed
more than once. This scenario is illustrated in Figure 4.1.

Because of this 2at-least-once® design, what Helland refers to as the recipient
entity (which is the BlobStorage entity that may be subject to multiple updates)
must be designed so that the repeated processing of a single message does not lead
to a state for this entity which would be different from the one which could have
been expected with a single processing. In practice, lots of message processing
of our cloud applications are intrinsically idempotent. In particular, provided
the processing is a deterministic function of the input message and that neither
the entities that may be used nor the internal worker state may be modi®ed, the
message processing is idempotent. Among the tasks that suit this pattern, the most
widespread case is the design of a work- ow in which each message processing
is a deterministic function of its input and each entity stored in the permanent
storage igead-only i.e. it is not modi®ed once it has been created and written

o

%/I/D\F
[SR N

4 b gh Ll

|:| worker

push blob into

pings the storage

— 5 untill it finds the

given blob, then
downloads it

Mapper 3

blobstorage

Map result
(prototypes)
Partial reduce
result (prototypes)
Final reduce result
(prototypes)

Figure 5.3: Time to execute the Reduce phase per unit of meraBg§Af + Turite)
in 10 ’sec;Byte in function of the number of communicating units.

the frictions introduced by our two-step design. Finally, the whole process is
sometimes behaving much worse than expected (see the ddtkefl10). The

caseM = 110 has been re-launched 1 hour later, obtaining the value 4.85. Figure
5.3 sums up the table and shows that aggregated bandwidth bounds are not hit
beforel00hundred processing units are used. Before this threshold, the quantity
2Tiead + Ture remains constant.

5.5.3 Experimental settings

In the following experiments, Batch K-Means are run on synthetic data. As
explained in the introduction to this chapter, the Batch K-Means wall time de-
pends on the data size but not on the actual data values, except for the number of
iterations to convergence. Thus, the synthetic nature of the data has no impact
on the conclusion that we draw. Besides, the synthetic nature of our data has
allowed us to easily modify parameters such as the dimerstonhighlight

some results. The synthetic data are generated uniformly in the unit hypercube
using the following settings: the dimensidns set to1000and the number of
clustersK is set to1l00Q The number of points in the total data set depends
on the experiment. For speed-up experiments, the total data set is composed of
500 000data points (for a total size of 4 GBytes) that are evenly split among the
multiple processing units. For scale-up experiments, the data set total number of
points grows with the number of processing units in the scale-up experiments.

"##$%"&01&,%123+1&+,&45#& 1% ()#*&+,&(

——+,-./-0123"45--675" ==8"9"($"!"

" s ——gg S ——gg g
——grgm " —o—grgrnm”
o NG & o o s e sa e o

()&t & &I&

Figure 5.4: Charts of speedup performance curves for our cloud Batch K-Means
implementation with different data set size. For a given $izdhe speedup
grows with the number of processing units uiil , then the speedup slowly
decreases.

values ofM to determine the effective optimal valukek,; for a givenN .

N M et M Wall Time Sequential | Effective Theoretical
theoretic time| Speedup| Speedup% MT)
Exp. 1| 62500 27 28 264 2798 10.6 9.34
Exp. 2 | 125000| 45 45 306 5597 18.29 14.84
Exp. 3| 250000| 78 71 384 11194 29.15 23.55
Exp. 4 | 500000 95 112 521 22388 43.0 37.40

Table 5.3: Comparison between the effective optimal number of processing units
M. and the theoretical optimal number of processing uMitsfor different
data set size.

As expected, one can see thég; (N) andT"™" + T5°™™ do not grow as fast

asN . Between the experiment 1 and the experimeiN 4s multiplied by 8. Our
theoretical model anticipates thisit,;, should grow accordingly bg*=3 = 4.
Indeed,M; grows from 27 to 95 (that is a 3.51 ratio). In the same way, our
model anticipates that the execution wall time should grow®y= 2. Indeed,

the execution wall time grows from 264 seconds to 521 seconds. Figure 5.4
provides the detailed experiment results of the speedup obtained for multiple
values ofN andM .

I"##$%"&01&,%123+18&+,&45#& 1% ()#*&+,&(

e

3 /
=\° &" /
¢ S
% %!"
" -
== ()*+,-+."*/++.0/"
#" —12+3,+4567"*/++.0/'

1" #I" $" %!" & gl
"W ()#* &+ &(-""#*.&/&

Figure 5.5: Charts of speedup performance curves for our cloud Batch K-Means
implementation with different number of processing units. For each valiv,of

the value ofN is set accordingly so that the processing units are heavy loaded
with data and computations. When the number of processing units grows, the
communication costs increase and the spread between the obtained speedup and
the theoretical optimal speedup increases.

For our last experiment, we aim to achieve the nominal highest value possible
for speedup. As explained in Subsection 5.3.5, for a ®xed number of mappers
M, the best achievable speedup is obtained by ®lling the RAM of each machine
with data so each machine is in charge of a heavy computation load. While the
previous table and Figure 5.4 show how the speedup growsNv{iisingM (N)
mappers), Figure 5.5 shows how the speedup growsMitlusing the highest
value of N that do not oversize the RAM of our VM). For this experiment, we set

K =1000, d = 1000, and seiN in such a way that each mappers is given 50,000
data pointdN = M 50;000%. The results are reported in Figure 5.5.

Overall, the obtained performances are satisfactory and the predictive model
provides reasonable estimates of the execution wall time and of the optimal
number of processing units that need to be used. While there is room for im-

4. The value oh = 50; 000corresponds to 400 MBytes in RAM, while the RAM of a small
role instance is supposed to be 1.75GBytes. In theory, we could have therefore loaded much more
our instances. In practice, when we run this experiment in 2010, the VM crashed when we used
higher values fon

Figure 6.1: Plots of the six basic culiscspline functions with ten uniform knots:
Xo=0;:::;X=9(n=3, =10).

As mentioned earlier, B-spline is a vector of the linear span of the ba3ic
splines. Thus, 8 -spline takes the form, for any2 [Xo; X 1 1],

Xn!Z

b(x) = | pib (x); (6.3)

i=0

wheref p, gi:!on! 22 R ' " 1 are referred to as the control points or de Boor points.
Figure 6.2 shows a cubic (i.en,= 3) B-spline. The graph illustrates the natural
smoothness of such functions. In the sequel, we consider only Bubplines
and uniform knotsxo =0;:::;Xx 1= | 1with 6.

6.3.2 B-splines mixtures random generators

Let us now describe the random generators used throughout the experiments
described in Chapters 6 and 7. Each of these vector-valued generators is based
onG (G 1) B-spline functions which, from now on, will be referred to as

the centers of the mixture. We also want these centers 2not to be too close to
each other®. To do so, we have chosen our centers with (nearly) orthogonal
coef®cientg;'s appearing in equatio(6.3). In the next paragraph, we explain

the construction of such coef®cients.

Forg=0;:::;G! landi =0;:::; ! 5 lettheuy;'s be reals, drawn inde-
pendently from the standard uniform distribution on the open intéfydl). The

vectorsff py:ig; =!05g§=!01 are de®ned as block-wise orthogonal vectors computed

Figure 6.2: Plot of a cubiB -spline, a linear combination of the ba&esplines
plotted in Figure 6.1

by applying a revised Gram-Schmidt procedure onGheectorsf ug;g,.,” (see

for instance Greub ind1]). Let us keep in mind that the Gram-Schmidt algorithm
is well de®ned if the number of vectors, h&gis lower than or equal to the di-
mension of the vector space which is equal to4. In all our experiment settings,
we will haveG > | 4. Therefore, we divide ouB vectorsff ug;g,, 95" into
subgroups of ! 4vectors. To each group, we apply a block-wise Gram-Schmidt
procedure. All thes vectors thus obtained are then normalized to a common

valuesc > 0 and are then referred to ti@vectorsff py;g2° 05"

Foranyg 2 f1;:::;G! 1g, letB4 be theB-spline de®ned by equati@6.3)

with the control points pg;igiio5 chosen as explained in the paragraph above. Let
us not forget that in our context, the data cannot be functions but only sampled
functions. Consequently, the centers of the distribution are the fundigas

only observed through thatdimensional vectord. 1) B, where

By = fBg(i(! 1)=dgry:
de®ned below. As shown in Figure 6.3, the orthogonal property of the coef®cients

makes them 2not too close to each other®, as requested.

We are in a position to de®ne the distribution simulated byRSevalued ran-
dom generator. Lel be a uniform random variable over the set of integers

2| 4 for covariance matrix, where> 0 andly stands for thal d identity
matrix. Our random generators simulate the law ofdkiidmensional random

Figure 6.3: Plot of four splines centers with orthogonal coef®ci@is::: ;B4
whereG = 1500, d = 1500, =50, sc=10.

variableZ, de®ned by
Z=Bn+ "™ (6.4)

Figure 6.4 shows two independent realizations of the random vaZatdé®ned
by equation (6.4), the sampled functional data used in our experiments.

Figure 6.4: Plot of two independent realizations of the random varialle®ned
by equation (6.4)B1;::: ;B4 whereG = 1500,d = 1500, =50, sc= 10.

6.4 Discussing parallelization schemes of the VQ
algorithm

This section is devoted to the analysis of some practical parallelization schemes
for the DVQ algorithm. Indeed, the practical parallelization of the VQ procedure
is not straightforward. For example, let us remark that, if two different prototypes

2T

37

TN

4T

Wl —

Wl —
1

Lw' +w? + wd + w)
w', w?, w

3wt = qsrd

L' + w? + wd 4+ w?)

w', w?, w

3t = qerd

(w + w? + w? + w?)

3

3 + w4)

Figure 6.6: Charts of performance curves for iteratigh$) with different
numbers of computing entitied1 = 1;2;10. The three charts correspond to
different values of which is the integer that characterizes the frequency of the
averaging phase (= 1;10;100.

4 4 + L wi=w! =w? =w? = w!
1 T 2 T 3 T 4 T
JAv I 1 Ajr 1 Ajr Ay 1
srd srd 1 2 3 4
WS W A(Hrd_ Ajsr = Ajsr — Ajr
w', w?, wd wt =ws"
1 *\ 2 T 3 4
ATAQT Ar%‘h AT%ZT ATﬁzT
srd__ . srd _ A1 —_ A2 _ A3 _ A4
wrT= w AL o, = AL = AT 5 = A7,
wh,w?,w?, wt = wT
1 T 2 T 3 T 4 T
AZT%ST AQT%BT AQT‘)ST A27~>37
T T T T srd _ . srd 1 2 3 4
w PR ws - Adrgr =A% g — A5 3 — DY 5,
whw? w?, wt = s
1 T 2 T 3 T 4 T
A37a47 A37~>4r AgT‘)‘lT A37~>47
a7 — apsrd _ AL _ A2 _ A3 A4
wro=w Adrsar = B3 ar — A ur — D5y
wt, w2, wd wt = psrd
A 4 v

Figure 6.8: Charts of performance curves for iterati@40) with different
numbers of computing entitied) = 1;2;10. The three charts correspond to
different values of (=1;10; 100.

2T

4T

wsTd

A

— w! = w?
.
srd 1
- AO*}T

2 3 4
7A[]~>‘r - A(J~>7' - A()*)7—

_osrd _ AL
=w JAC S,

2 3 4
7A27—~>3r - A?‘rﬂ:‘)‘r - A27~>37

Figure 6.10: Charts of performance curves for iterati@$1) with different
numbers of computing entitied) = 1;2;10. The three charts correspond to
different values of (=1;10; 100.

Figure 7.4: Normalized quantization curves with= 1 2; 4; 8; 16. Our cloud
DAVQ algorithm has good scalability properties upMo= 8 instances of the
ProcessService. Troubles appear with= 16 because the ReduceService is
overloaded.

7.3.2 Speedup with a 2-layer Reduce

The performance curve withl = 16 of Figure 7.4, shows an unsatisfactory situ-
ation where the algorithm implementation does not provide better quantization
results than the sequential VQ algorithm. Actually, the troubles arise from the
fact that the ReduceService is overloadethdeed, too many ProcessService

3. The Lokad.Cloud framework provides a web application that provides monitoring tools,
including a rough pro®ling system and real time analysis of queues length, which helped us to

Figure 7.5: Normalized quantization curves with = 8; 16; 32, 64 instances

of ProcessService and with an extra layer for the so called 2reducing task®.
Our cloud DAVQ algorithm has good scalability properties for the quantization
performance up ttd = 32. However, the algorithm behaves badly when the
number of computing instances is raisedvto= 64.

Figure 7.6: Overview of the reducing procedures with two layers:
the PartialReduceService and the FinalReduceService.

values ofM , namelyM = 1;2; 4; 8 for the ®rst case ard = 8; 16, 32, 64 for
the second one. The curves appear linear, which proves that the algorithms behave
well. The slopes of the multiple curves, characteristic of the processing ability

Figure 7.7: These charts plot the number of points processed as time goes by.
The top chart shows the curves associatedito= 1;2;4;8 with one layer

for the reducing task whereas at the bottom a second layer is added and

8; 16, 32 64.

Figure 7.8: This chart plots the number of points processed in a given time
span 8600seconds) for different values ™ (M = 1;2;4;8;16,32, 64). The
reducing task is composed of one layer Mr = 1;2;4 and two layers for

M = 8;16,32 64. We can observe a linear scalability in terms of point processed
by the system up tM = 64 computing instances.

plementations with the sequential VQ iterations. In this experiment, the constant
value of the learning raté = 10' ? is made comparable to the corresponding
learning rate of Batch K-Means when seen as a gradient descent algorithm (see
Bottou and Bengio in32]). We have not made any optimization of the learning
rate, which is therefore probably not optimal.

Figure 7.9 shows the curves of the clustering performance for the two procedures
which are in competition. We report there on three experiments with various
sizes of data setsM (M = 8; 16; 32). The quantization curve of the cloud Batch
K-Means corresponds to a step function. Indeed, the reference version used for
the Batch K-Means evaluations is the version built during the synchronization
phase and is modi®ed only there. We can see that our cloud DAVQ algorithm
clearly outperforms the cloud Batch K-Means. In all casé¢s<8;16; 32) the

VQ algorithm takes less time to reach a similar quantization level. Therefore,
this implementation seems to be a competitor to existing solutions for large scale
clustering jobs, thanks to its scalability and its mathematical performance.

The following tables reformulate the results provided in Figure 7.9. For each
value of M, we provide the amount of time spent by the DAVQ procedure to
obtain the same quantization loss levels than the ones obtained for the four ®rst
iterations of Batch K-Means. One can notice that in these experiments, for a given

Figure 7.9: These charts report on the competition between our cloud DAVQ
algorithm and the cloud Batch K-Means. The graphs show the empirical distortion
of the algorithm over the time. The empirical distortion is computed using the
shared version for our cloud DAVQ algorithm while it is computed during the
synchronization phase (all mappers receiving the same prototypes) for the cloud
Batch K-Means. In these experiments the cloud DAVQ algorithm outperforms the
cloud Batch K-Means: the same quantization level is obtained within a shorter
period.

