J. Dalibard and P. Grangier, Introduction à la théorie des orbitales moléculaires, Catalogue des cours de l’Ecole Polytechnique, pp.21-40, 2010.

S. Astier, Conversion photovoltaïque : du rayonnement solaire à la cellule, p.935

J. C. Muller, Electricité photovoltaïque : filières et marchés, pp.579-581

J. Kessler, Technologies photovoltaïques en couches minces, 2008.

A. A. Rockett, The future of energy ??? Photovoltaics, Current Opinion in Solid State and Materials Science, vol.14, issue.6, pp.117-122, 2010.
DOI : 10.1016/j.cossms.2010.09.003

A. Ricaud, Modules photovoltaïques : aspects technico-économiques, p.941

L. L. Kazmerski, Solar photovoltaics R&D at the tipping point: A 2005 technology overview, Journal of Electron Spectroscopy and Related Phenomena, vol.150, issue.2-3, pp.105-135, 2006.
DOI : 10.1016/j.elspec.2005.09.004

A. Luque and A. Marti, The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept, Advanced Materials, vol.93, issue.2, pp.160-174, 2010.
DOI : 10.1002/adma.200902388

A. J. Nozik, Multiple exciton generation in semiconductor quantum dots, Chemical Physics Letters, vol.457, issue.1-3, pp.3-11, 2008.
DOI : 10.1016/j.cplett.2008.03.094

H. Marko, Développement de dispositifs photovoltaïques à base de CIGSe à grande bande interdite, Thèse, pp.6-47, 2010.

T. Minemoto, H. Hori, and H. Takakaura, Light soaking effect on photocurrent collection in (Zn, Mg)O / Cu(In,Ga)Se 2 solar cells, pp.6-11, 2009.

T. Heiser and P. Levêque, Matériaux nano-structurés pour les cellules photovoltaïques organiques, p.205

Y. J. Kang, K. Lim, S. Jung, D. G. Kim, J. K. Kim et al., Spray-coated ZnO electron transport layer for air-stable inverted organic solar cells, Solar Energy Materials and Solar Cells, vol.96, pp.137-140
DOI : 10.1016/j.solmat.2011.09.045

J. Pettersson, C. Platzer-björkman, and M. Edoff, O buffer layers, Progress in Photovoltaics: Research and Applications, vol.72, issue.9, pp.460-469, 2009.
DOI : 10.1103/PhysRevB.72.035215

A. Kaushal and D. Kaur, Effect of Mg content on structural, electrical and optical properties of Zn1???xMgxO nanocomposite thin films, Solar Energy Materials and Solar Cells, vol.93, issue.2, pp.193-198, 2009.
DOI : 10.1016/j.solmat.2008.09.039

G. Aka, C. Du-solide, and A. Partie, Les solides cristallisés : du modèle ionique au solide iono-covalent, cours Ecole Nationale Supérieure de Chimie de Paris, Mgcomposition induced effects on the physical behavior of sprayed Zn 1-x Mg x O films, pp.1275-1278, 2009.

J. W. Bae, S. W. Lee, and G. Y. Yeom, Doped-Fluorine on Electrical and Optical Properties of Tin Oxide Films Grown by Ozone-Assisted Thermal CVD, Journal of The Electrochemical Society, vol.154, issue.1, pp.34-37, 2007.
DOI : 10.1149/1.2382346

K. Tonooka, T. W. Chiu, and N. Kikuchi, Preparation of transparent conductive TiO2:Nb thin films by pulsed laser deposition, Applied Surface Science, vol.255, issue.24, pp.9695-9698, 2009.
DOI : 10.1016/j.apsusc.2009.04.056

J. Y. Seto, The electrical properties of polycrystalline silicon films, Journal of Applied Physics, vol.46, issue.12, p.5247, 1975.
DOI : 10.1063/1.321593

E. Elangovan and K. Ramamurthi, A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films, Applied Surface Science, vol.249, issue.1-4, pp.183-196, 2005.
DOI : 10.1016/j.apsusc.2004.11.074

G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics, vol.47, issue.9, 1976.
DOI : 10.1063/1.323240

F. Severac, Jonctions ultra-minces p + /n pour MOS « ultimes » : étude de l’impact des défauts cristallins sur la mobilité et l’activation du bore, Thèse, 2009.

I. Horcas, R. Fernández, J. M. Gómez-rodríguez, J. Colchero, J. Gómez-herrero et al., : A software for scanning probe microscopy and a tool for nanotechnology, Review of Scientific Instruments, vol.78, issue.1, p.13705, 2007.
DOI : 10.1063/1.2432410

H. Nishinaka, Y. Kamada, N. Kameyama, and S. Fujita, Growth characteristics of single-crystalline ZnMgO layers by ultrasonic spray assisted mist CVD technique, physica status solidi (b), vol.34, issue.6, pp.1460-1463, 2010.
DOI : 10.1002/pssb.200983247

K. T. Reddy, P. Prathap, N. Revathi, A. S. Reddy, and R. W. Miles, Mg-composition induced effects on the physical behavior of sprayed Zn1???xMgxO films, Thin Solid Films, vol.518, issue.4, pp.1275-1278, 2009.
DOI : 10.1016/j.tsf.2009.04.071

V. G. Bessergenev, E. N. Ivanova, Y. A. Kovalevskaya, S. A. Gromilov, V. N. Kirichenko et al., Optical and structural proper tees of ZnS and ZnS:Mn films prepared by CVD method, Materials Research Bulletin, vol.30, issue.11, pp.1393-1400, 1995.
DOI : 10.1016/0025-5408(95)00150-6

N. H. Tran, R. N. Lamb, and G. L. Mar, Single source chemical vapour deposition of zinc sulphide thin films film composition and structure, Colloids and Surface A: Physicochemical and Engineering Aspects155, pp.93-100, 1999.

J. J. Thiart, V. Hlavacek, and H. J. Viljoen, Simulation of the growth of CVD films, Chemical Engineering Science, vol.50, issue.21, 1995.
DOI : 10.1016/0009-2509(95)00201-F

D. S. Dandy and J. Yun, Momentum and Thermal Boundary-layer Thickness in a Stagnation Flow Chemical Vapor Deposition Reactor, Journal of Materials Research, vol.82, issue.04, p.4, 1996.
DOI : 10.1017/S0022112060000335

T. S. Cheng and M. C. Hsiao, Numerical investigations of geometric effects on flow and thermal fields in a horizontal CVD reactor, Journal of Crystal Growth, vol.310, issue.12, pp.3097-3106, 2008.
DOI : 10.1016/j.jcrysgro.2008.03.007

J. Garnier, Elaboration de couches minces d’oxydes transparent conducteurs par spray CVD assisté par radiation infrarouge pour applications photovoltaïques, Thèse, Arts & Métiers ParisTech (ENSAM), 2009.

D. Perednis and L. J. Gauckler, Thin Film Deposition Using Spray Pyrolysis, Journal of Electroceramics, vol.340, issue.1?2, pp.103-111, 2005.
DOI : 10.1007/s10832-005-0870-x

T. Belmonte, Dépôts chimiques à partir d’une phase gazeuse, pp.660-662

A. Maisels, F. E. Kruis, and H. Fissan, Determination of Coagulation Coefficients and Aggregation Kinetics for Charged Aerosols, Journal of Colloid and Interface Science, vol.255, issue.2, pp.332-340, 2002.
DOI : 10.1006/jcis.2002.8657

M. W. Reeks and D. Hall, Kinetics model for particle suspension in turbulent flow, Journal of Applied Physics, vol.21, pp.574-589, 2001.

Y. I. Yalamov, B. V. Derjaguin, and V. S. Galoian, Theory of thermophoresis of volatile aerosol particles and droplets of solution, Journal of Colloid and Interface Science, vol.37, p.4, 1971.

W. Li and E. J. Davis, The effects of gas and particle properties on thermophoresis, Journal of Aerosol Science, vol.26, issue.7, pp.7-1085, 1995.
DOI : 10.1016/0021-8502(95)00048-H

L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, Thermophoresis of particles in a heated boundary layer, Journal of Fluid Mechanics, vol.65, issue.04, pp.737-758, 1980.
DOI : 10.1063/1.1702330

M. M. Williams, A model for the transport of vapour, gas and aerosol droplets through tubes and cracks, Progress in Nuclear Energy 30, pp.333-416, 1996.
DOI : 10.1016/0149-1970(95)00101-8

A. N. Vorob’ev, Y. E. Egorov, Y. N. Makarov, A. I. Zhmakin, A. O. Galyukov et al., Modeling of silicon carbide chemical vapor deposition in a vertical reactor, Materials Science and Engineering, pp.61-62, 1999.

D. Vigolo, G. Brambilla, and R. Piazza, Thermophoresis of microemulsion droplets: Size dependence of the Soret effect, Physical Review E, vol.75, issue.4, p.40401, 2007.
DOI : 10.1103/PhysRevE.75.040401

M. Arias-zugasti and D. E. Rosner, Thermophoretically modified aerosol Brownian coagulation, Thermophoretically modified aerosol Brownian coagulation, p.21401, 2011.
DOI : 10.1103/PhysRevE.84.021401

E. Ruckenstein, Can phoretic motions be treated as interfacial tension gradient driven phenomena?, Journal of Colloid and Interface Science, vol.83, issue.1, 1981.
DOI : 10.1016/0021-9797(81)90011-4

H. W. Suh, G. Y. Kim, Y. S. Jung, W. K. Choi, and D. Byun, Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis, Journal of Applied Physics, vol.97, issue.4, p.44305, 2005.
DOI : 10.1063/1.1849825

J. Pettersson, C. Platzer-björekman, and M. Edoff, O buffer layers, Progress in Photovoltaics: Research and Applications, vol.72, issue.9, pp.460-469, 2009.
DOI : 10.1103/PhysRevB.72.035215

H. Nishinaka, Y. Kamada, N. Kameyama, and S. Fujita, Growth characteristics of single-crystalline ZnMgO layers by ultrasonic spray assisted mist CVD technique, physica status solidi (b), vol.34, issue.6, pp.1460-1463, 2010.
DOI : 10.1002/pssb.200983247

M. Sahal, B. Marí, M. Mollar, and F. J. Manjan, Zn1-xMgxO thin films deposited by spray pyrolysis, physica status solidi (c), vol.7, issue.9, pp.2306-2310, 2010.
DOI : 10.1002/pssc.200983751

Z. Z. Zhang, D. Z. Shen, J. Y. Zhang, C. X. Chan, Y. M. Lu et al., The growth of single cubic phase ZnS thin films on silica glass by plasma-assisted metalorganic chemical vapor deposition, Thin Solid Films, vol.513, issue.1-2, pp.114-117, 2006.
DOI : 10.1016/j.tsf.2006.01.054

B. Asenjo, A. M. Chaparro, M. T. Gutiérrez, J. Herrero, and J. Klaer, Study of CuInS2/ZnS/ZnO solar cells, with chemically deposited ZnS buffer layers from acidic solutions, Solar Energy Materials and Solar Cells, vol.92, issue.3, pp.302-306, 2008.
DOI : 10.1016/j.solmat.2007.09.005

R. Sahraei, G. Motedayen-aval, and A. Goudarzi, Compositional, structural, and optical study of nanocrystalline ZnS thin films prepared by a new chemical bath deposition route, Journal of Alloys and Compounds, vol.466, issue.1-2, pp.488-492, 2008.
DOI : 10.1016/j.jallcom.2007.11.127

J. Garnier, Elaboration de couches minces d’oxydes transparent conducteurs par spray CVD assisté par radiation infrarouge pour applications photovoltaïques, Thèse, Arts & Métiers ParisTech (ENSAM), 2009.

P. Amato and . Maddalena, Structural, optical, and electrical characterization of ZnO and Al-doped-ZnO thin films deposited by MOCVD, Chem. Vap. Deposition, vol.15, pp.327-333, 2009.

P. C. Yao, S. T. Hang, M. J. Wu, and W. T. Hsiao, Effects of post-deposition heat treatment on the microstructure and properties of Al-doped ZnO thin films prepared by aqueous phase deposition, Thin Solid Films, vol.520, issue.7, pp.2846-2854, 2012.
DOI : 10.1016/j.tsf.2011.11.045

T. W. Heo, K. Y. Kim, and . Kim, Transparent conductive ZnO:Al films grown by atomic layer deposition for Si-wire-based solar cells, Current Applied Physics, vol.12, pp.273-279, 2012.

A. Illiberi, B. Kniknie, J. Van-deelen, H. L. Steijvers, D. Habets et al., Industrial high-rate (&#x223C;14 nm/s) deposition of low resistive and transparent ZnO<inf>x</inf>:Al films on glass, 2011 37th IEEE Photovoltaic Specialists Conference, pp.1955-1959, 2011.
DOI : 10.1109/PVSC.2011.6186688

X. R. Deng, H. Deng, M. Wei, and J. J. Chen, Preparation of highly transparent conductive Al-doped ZnO thin films and annealing effects on properties, Journal of Materials Science: Materials in Electronics, vol.78, issue.2, pp.413-417, 2012.
DOI : 10.1007/s10854-011-0482-y

A. Mosbah and M. S. Aida, Influence of deposition temperature on structural, optical and electrical properties of sputtered Al doped ZnO thin films, Journal of Alloys and Compounds, vol.515, pp.149-153, 2012.
DOI : 10.1016/j.jallcom.2011.11.113

J. U. Saha and . Khan, Effect of Al doping on structural, electrical, optical and photoluminescence properties of nano-structural ZnO thin films, J. Mater. Sci. Technol, vol.28, issue.4, pp.329-335, 2012.

W. T. Seeber, M. O. Abou-helal, S. Barth, D. Beil, T. Höche et al., Transparent semiconducting ZnO:Al thin films prepared by spray pyrolysis, Materials Science in Semiconductor Processing, vol.2, issue.1, pp.45-55, 1999.
DOI : 10.1016/S1369-8001(99)00007-4

J. H. Lee and B. O. Park, Characteristics of Al-doped ZnO thin films obtained by ultrasonic spray pyrolysis: effects of Al doping and an annealing treatment, Materials Science and Engineering: B, vol.106, issue.3, pp.242-245, 2003.
DOI : 10.1016/j.mseb.2003.09.040

. Tiwari, Spray-deposited Al-doped ZnO transparent contacts for CdTe solar cells, Solar Energy Materials & Solar Cells, vol.101, pp.283-288, 2012.

C. Y. Tsay, K. S. Fan, and C. M. Lei, Synthesis and characterization of sol???gel derived gallium-doped zinc oxide thin films, Journal of Alloys and Compounds, vol.512, issue.1, pp.216-222, 2012.
DOI : 10.1016/j.jallcom.2011.09.066

P. K. Nayak, J. Yang, J. Kim, S. Chung, J. Jeong et al., Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes, Journal of Physics D: Applied Physics, vol.42, issue.3, p.35102, 2009.
DOI : 10.1088/0022-3727/42/3/035102

S. D. Shinde, A. V. Deshmukh, S. K. Date, V. G. Sathe, and K. P. Adhi, Effect of Ga doping on micro/structural, electrical and optical properties of pulsed laser deposited ZnO thin films, Thin Solid Films, vol.520, issue.4, pp.1212-1217, 2011.
DOI : 10.1016/j.tsf.2011.06.094

Z. Z. Li, Z. Z. Chen, W. Huang, S. H. Chang, and X. M. Ma, The transparence comparison of Ga- and Al-doped ZnO thin films, Applied Surface Science, vol.257, issue.20, pp.8486-8489, 2011.
DOI : 10.1016/j.apsusc.2011.04.138

K. Haga, P. S. Wijesena, and H. Watanabe, Group III impurity doped ZnO films prepared by atmospheric pressure chemical???vapor deposition using zinc acetylacetonate and oxygen, Applied Surface Science, vol.169, issue.170, pp.504-507, 2001.
DOI : 10.1016/S0169-4332(00)00747-9

Z. Z. You and G. J. Hua, Electrical, optical and microstructural properties of transparent conducting GZO thin films deposited by magnetron sputtering, Journal of Alloys and Compounds, vol.530, pp.11-17, 2012.
DOI : 10.1016/j.jallcom.2012.03.078

K. Saito, Y. Hiratsuka, A. Omata, H. Makino, S. Kishimoto et al., Atomic layer deposition and characterization of Ga-doped ZnO thin films, Superlattices and Microstructures, vol.42, issue.1-6, pp.172-175, 2007.
DOI : 10.1016/j.spmi.2007.04.041

H. Makino, Y. Sato, N. Yamamoto, and T. Yamamoto, Changes in electrical and optical properties of polycrystalline Ga-doped ZnO thin films due to thermal desorption of zinc, Thin Solid Films, vol.520, issue.5, pp.1407-1410, 2011.
DOI : 10.1016/j.tsf.2011.10.039

A. Tiburcio-silver, A. Sanchez-juarez, and A. Avila-garcia, Properties of gallium-doped ZnO deposited onto glass by spray pyrolysis, Solar Energy Materials and Solar Cells, vol.55, issue.1-2, pp.3-10, 1998.
DOI : 10.1016/S0927-0248(98)00040-3

H. Gómez, M. De-la, and L. Olvera, Ga-doped ZnO thin films: Effect of deposition temperature, dopant concentration, and vacuum-thermal treatment on the electrical, optical, structural and morphological properties, Materials Science and Engineering: B, vol.134, issue.1, pp.20-26, 2006.
DOI : 10.1016/j.mseb.2006.07.039

S. S. Shinde, P. S. Shinde, Y. W. Oh, D. Haranath, C. H. Bhosale et al., Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films, Applied Surface Science, vol.258, issue.24, pp.9969-9976, 2012.
DOI : 10.1016/j.apsusc.2012.06.058

T. Prasada-rao, M. C. Santhosh, and . Kumar, Physical properties of Ga-doped ZnO thin films by spray pyrolysis, Journal of Alloys and Compounds, vol.506, issue.2, pp.788-793, 2010.
DOI : 10.1016/j.jallcom.2010.07.071

K. T. Reddy, H. Gopalaswamy, P. J. Reddy, and R. W. Miles, Effect of gallium incorporation on the physical properties of ZnO films grown by spray pyrolysis, Journal of Crystal Growth, vol.210, issue.4, pp.516-520, 2000.
DOI : 10.1016/S0022-0248(99)00868-4

J. P. Kim, J. S. Bae, T. E. Hong, M. S. Won, J. H. Yoon et al., Optical and electrical properties of ZnO films, codoped with Al and Ga deposited at room temperature by an RF sputtering method, Thin Solid Films, vol.518, issue.22, pp.6179-6183, 2010.
DOI : 10.1016/j.tsf.2010.04.050

J. Kang, H. W. Kim, and C. Lee, Electrical resistivity and transmittance properties of Al-and Ga-codoped ZnO thin films, Journal of the Korean Physical Society, vol.56, issue.2, pp.576-579, 2010.

J. H. Kang, D. W. Kim, J. H. Kim, Y. S. Lim, M. H. Lee et al., Improved thermal stability of ZnO transparent conducting films with a ZnO overlayer, Improved thermal stability of ZnO transparent conducting films with a ZnO overlayer, pp.6840-6843, 2011.
DOI : 10.1016/j.tsf.2011.01.211

. Zhao, Development of natively textured surface hydrogenated Ga-doped ZnO- TCO thin films for solar cells via magnetron sputtering, Applied surface Science, vol.258, pp.9005-9010, 2012.

P. Prathap, N. Revathi, A. S. Reddy, Y. P. Subbaiah, and K. T. Reddy, Synthesis of conducting Zn 1-x Mg x O:Al layers by spray pyrolysis for photovoltaic application, Thin Solid Films, vol.511, issue.21, pp.7592-7595, 2011.

K. Yoshino, M. Oshima, Y. Takemoto, S. Oyama, and M. Yoneta, Optical and electrical characterization of In-doped ZnMgO films grown by spray pyrolysis method, physica status solidi (c), vol.6, issue.5, pp.1120-1123, 2009.
DOI : 10.1002/pssc.200881140

I. B. Duan, X. R. Zhao, J. M. Liu, W. C. Geng, H. Y. Xie et al., Effect of annealing ambient on the structural, optical and electrical properties of (Mg,Al)-codoped ZnO thin films, Physica Scripta, vol.85, issue.3, p.35709, 2012.
DOI : 10.1088/0031-8949/85/03/035709

K. Maejima, H. Shibata, H. Tampo, K. Matsubara, and S. Niki, Characterization of Zn1???xMgxO transparent conducting thin films fabricated by multi-cathode RF-magnetron sputtering, Thin Solid Films, vol.518, issue.11, pp.2949-2952, 2010.
DOI : 10.1016/j.tsf.2009.09.196

S. Park, S. J. Tark, J. S. Lee, H. Lim, and D. Kim, Effects of intrinsic ZnO buffer layer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode, Solar Energy Materials and Solar Cells, vol.93, issue.6-7, pp.1020-1023, 2009.
DOI : 10.1016/j.solmat.2008.11.033

H. Saarenpää, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices, Solar Energy Materials and Solar Cells, vol.94, issue.8, pp.1379-1383, 2010.
DOI : 10.1016/j.solmat.2010.04.006

J. H. Park, K. J. Ahn, K. Park, S. I. Na, and H. K. Kim, An Al-doped ZnO electrode grown by highly efficient cylindrical rotating magnetron sputtering for low cost organic photovoltaics, Journal of Physics D: Applied Physics, vol.43, issue.11, p.115101, 2010.
DOI : 10.1088/0022-3727/43/11/115101

T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov et al., Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer, Organic Electronics, vol.12, issue.9, pp.1539-1543, 2011.
DOI : 10.1016/j.orgel.2011.05.027

A. De-sio, K. Chakanga, O. Sergeev, K. Von-maydell, J. Parisi et al., ITO-free inverted polymer solar cells with ZnO:Al cathodes and stable top anodes, ITO-free inverted polymer solar cells with ZnO:Al cathodes and stable anodes, pp.52-56, 2012.
DOI : 10.1016/j.solmat.2011.10.015

Y. J. Kang, K. Lim, S. Jung, D. G. Kim, J. K. Kim et al., Spray-coated ZnO electron transport layer for air-stable inverted organic solar cells, Solar Energy Materials and Solar Cells, vol.96, pp.137-140, 2012.
DOI : 10.1016/j.solmat.2011.09.045