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Résumé

Depuis quelques années, avec l'émergence de larges bases d'images commeGoogle
Street View, la capacité à traiter massivement et automatiquement des données, sou-
vent très contaminées par les faux positifs et massivement ambiguës, devient un enjeu
stratégique notamment pour la gestion de patrimoine et le diagnostic de l'état de façades
de bâtiment.

Sur le plan scienti�que, ce souci est propre à faire avancer l'état de l'art dans des
problèmes fondamentaux de vision par ordinateur. Notamment, nous traitons dans cette
thèse les problèmes suivants: la mise en correspondance robuste, algorithmiquement
ef�cace de caractéristiques visuelles et l'analyse d'images de façades par grammaire.
L'enjeu est de développer des méthodes qui doivent également être adaptées à des
problèmes de grande échelle.

Tout d'abord, nous proposons une formalisation mathématique de la cohérence
géométrique qui joue un rôle essentiel pour une mise en correspondance robuste de
caractéristiques visuelles. À partir de cette formalisation, nous en dérivons un algo-
rithme de mise en correspondance qui est algorithmiquement ef�cace, précise et robuste
aux données fortement contaminées et massivement ambiguës. Expérimentalement,
l'algorithme proposé se révèle bien adapté à des problèmes de mise en correspondance
d'objets déformés, et à des problèmes de mise en correspondance précise à grande échelle
pour la calibration de caméras.

En s'appuyant sur notre algorithme de mise en correspondance, nous en dérivons
ensuite une méthode de recherche d'éléments répétés, comme les fenêtres. Celle-ci
s'avère expérimentalement très ef�cace et robuste face à des conditions dif�ciles comme
la grande variabilité photométrique des éléments répétés et les occlusions. De plus, elle
fait également peu d'hallucinations.

En�n, nous proposons des contributions méthodologiques qui exploitent ef�cacement
les résultats de détections d'éléments répétés pour l'analyse de façades par grammaire,
qui devient substantiellement plus précise et robuste.

Mots-clefs

vision par ordinateur; analyse d'images; façades; grammaires; segmentation sémantique;
détection d'objets; mise en correspondance; caractéristiques visuelles; éléments répétés;
ambiguïté massive; contamination; faux positifs; cohérence géométrique; contrainte
d'ordre 4; cohérence af�ne locale; représentation hiérarchique.
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Abstract

For a few years, with the emergence of large image database such asGoogle Street
View, designing ef�cient, scalable, robust and accurate strategies have now become a
critical issue to process very large data, which are also massively contaminated by false
positives and massively ambiguous. Indeed, this is of particular interest for property
management and diagnosing the health of building façades.

Scienti�cally speaking, this issue puts into question the current state-of-the-art meth-
ods in fundamental computer vision problems. More particularly, we address the following
problems: (1) robust and scalable feature correspondence and (2) façade image parsing.

First, we propose a mathematical formalization of the geometry consistency which
plays a key role for a robust feature correspondence. From such a formalization, we derive
a novel match propagation method. Our method is experimentally shown to be robust,
ef�cient, scalable and accurate for highly contaminated and massively ambiguous sets of
correspondences. Our experiments show that our method performs well in deformable
object matching and large-scale and accurate matching problem instances arising in
camera calibration.

We build a novel repetitive pattern search upon our feature correspondence method.
Our pattern search method is shown to be effective for accurate window localization and
robust to the potentially great appearance variability of repeated patterns and occlusions.
Furthermore, our pattern search method makes very few hallucinations.

Finally, we propose methodological contributions that exploit our repeated pattern
detection results, which results in a substantially more robust and more accurate façade
image parsing.

Keywords

computer vision; image analysis; façades; grammars; semantic segmentation; object
detection; feature correspondence; repeated visual patterns; massive ambiguity; out-
lier; geometry consistency; 4th order constraint; local af�ne consistency; hierarchical
representation.
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Chapter 1

Introduction (French)

Financé par le Centre Technique et Scienti�que du Bâtiment (CSTB), cette thèse s'inscrit
dans une volonté de développer des méthodologies permettant de lier automatiquement
l'aspect extérieur d'un bâtiment et ses caractéristiques énergétiques. À terme, de simples
prises de vues à partir de la rue permettraient de classer les bâtiments suivant divers
typologies, par exemple, par âge, par type de matériaux utilisés, repérant ainsi les besoins
les plus criants en réhabilitation énergétique.

Face à ces objectifs ambitieux, nous limitons toutefois cette thèse à la détection
automatique d'éléments simples et répétés d'une façade de bâtiment, comme, par exemple,
les fenêtres. En effet, il faut insister sur le fait que détecter des éléments de façades
répétés, comme par exemple, les fenêtres, constitue déjà en lui-même un dé�. Une
fois mises au point, de telles méthodes de détection, à la fois ef�caces et robustes,
permettra ensuite d'obtenir une analyse de façades par grammaire avec une �abilité
substantiellement accrue.

D'autre part, si les méthodes robustes permettant de localiser précisément les fenêtres
sont des outils précieux pour l'analyse de scènes urbaines, l'analyse d'images de façades
de bâtiments par grammaire reste indispensable pour obtenir le pourcentage de surface
vitrée, qui est un indicateur précieux pour les spécialistes du bâtiment. En effet, le
pourcentage de surface vitrée constitue un paramètre clé pour évaluer les performances
thermales d'un bâtiment.

Sur le plan socio-économique, les techniques developpées auront également des
retombées concrètes puisque l'analyse automatisée de façades permettra, entre autres, de
rationaliser la gestion de patrimoine en identi�ant automatiquement les zones urbaines
nécessitant une réhabilitation énergétique. Une telle connaissances est particulièrement
stratégique pour les collectivités territoriales soucieux de l'état de leur parc.

Sur le plan scienti�que, cette problématique soulève des dé�s propres à faire avancer
l'état de l'art en vision par ordinateur. Depuis quelques années, avec l'émergence de très
larges bases d'images urbaines commeGoogle Street View, la conception de méthodes à
la fois précises, ef�caces, robustes et algorithmiquement ef�caces et adaptées pour des
problèmes de grande dimension revêt une importance cruciale pour traiter massivement
les données.
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En particulier, une grande partie de ces données peuvent être traitée par mise en corre-
spondence d'éléments répétées au moyen de mise en correspondance de caractéristiques
visuelles et la segmentation de façades. Cependant, la mise en correspondance d'éléments
répétées devient dif�cile à cause de la contamination massive par des correspondances
aberrantes et de l'ambiguïté massive, en grande partie due à la répétition d'éléments
similaires. Concernant la tâche de segmentation de façades, le dé� principal reste de
minimiser les étiquetages de pixels à cause des indices visuelles souvent peu discriminants.
Le but de cette thèse est de mettre au point une méthode pour la mise en correspondance
robuste avec des ensembles de correspondances particulièrement contaminée et ambigus.
On pourra ensuite en dériver une méthode robustes pour la détection d'objets répétés,
comme les fenêtres. En conséquence, les détections de fenêtres, �ables, fournies par le
détecteur permettra d'améliorer substantiellement la segmentation et l'analyse de façades
par grammaire, et ainsi de calculer le pourcentage de surface vitrée sur une façade de
bâtiment.

Contents
1.1 Le Problème de Mise en Correspondance de Caractéristiques Vi-

suelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Les Approches par Comparaison Photométrique . . . . . . . . . 4

1.1.2 Nécessité de la Cohérence Géométrique . . . . . . . . . . . . . 4

1.2 La Détection d'Objets Répétés pour l'Analyse des Images par Gram-
maire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Étiquetage Erronné Dues aux Informations Bas-Niveau en Seg-
mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Informations Haut-Niveau Fournies par un Détecteur d'Élements
Répétitifs Robuste . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions de la Thèse . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Le Problème de Mise en Correspondance de Caractéris-
tiques Visuelles

Le problème de mise en correspondance entre des ensembles de caractéristiques vi-
suelles est omniprésent en vision par ordinateur, comme en témoigne son historique
particulièrement riche dans la littérature. Il apparaît dans de nombreuses applications
comme

� le suivi de caractéristiques visuelles dans les vidéos, étudié par exemple dans les
travaux de SHI and TOMASI (1994) et de B IRCHFIELD(2007),

� l'assemblage cohérent et “sans heurts” de photographies pour la construction de
panorama, comme présenté par exemple dans les travaux deBROWN and LOWE

(2007),

2
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� la stéréovision multi-vues, en particulier la calibration de caméras à partir de pho-
tographies touristiques pour la reconstruction 3D numérique de lieux touristiques
très fréquentés (voir notamment les travaux de SNAVELYet al. (2008)) et la fusion
de données 3D (voir par exemple les travaux de PRITCHETTet al. (1998)),

� la détection et reconnaissance d'object (voir par exemple les travaux deBERGet al.
(2005)),

� la classi�cation d'images (voir par exemple les travaux de LAZEBNIKet al. (2006))
ou la recherche dans des bases d'images (voir par exemple les travaux deSCHMID

and MOHR (1997)).

Dans les situations où les ensembles de correspondances sont très ambigus, par
exemple, lorsque des objets similaires apparaissent de nombreuses fois, comme les
fenêtres sur une façade, ou quand les scènes sont peu texturées, ce qui est courant au
niveau des façades, une mise en correspondance robuste de caractéristiques visuelles
passe nécessairement, par exemple, par l'utilisation de la cohérence géométrique des
positions des caractéristiques.

Notons que le problème de mise en correspondances de caractéristiques visuelles
est assez large et la pertinence d'une méthode de mise en correspondance dépend non
seulement de la tâche considérée parmi celles énumérées plus haut. De plus, la pertinence
d'une méthode particulière peut également dépendre du type de caractéristique visuelle
considérée, à savoir, entre autres:

� les points d'intérêts comme les coins, qui peuvent être détectés par exemple par la
méthode de HARRISand STEPHENS(1988);

� les morceaux de lignes, dontGROMPONE VONGIOI et al. (2010) en présentent un
détecteur performant;

� les bords, détectés par exemple les méthodes deMARR and HILDRETH (1980) ou
de CANNY (1986), ou encore les contours d'objets, utilisés par exemple dans les
travaux de GRAUMAN and DARRELL(2004);

� les points échantillonnés sur les contours d'objets, utilisés par exemple dans les
travaux de BELONGIEet al. (2002) et de BERGet al. (2005);

� les régions localement invariantes (blob), en particulier les extréma locaux de
différence de Gaussiennes (DoG) ( WEICKERTet al. 1999; LINDEBERG1991; LOWE

2004), les régions covariantes af�nes (M IKOLAJCZYKet al. 2005) et les régions
extrémales maximisant un critère de stabilité (MSER) (M ATAS et al. 2002).

Dans cette thèse, nous portons plus particulièrement notre attention sur la mise en
correspondance de régions localement invariantes.

3
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1.1.1 Les Approches par Comparaison Photométrique

L'explosion combinatoire est le dé� qui apparaît naturellement dans les problèmes de mise
en correspondance. De fait, concevoir des méthodes applicables à des problèmes de mise
en correspondance à grande échelle est d'une importance cruciale. D'une part, le nombre
de correspondances possibles est quadratique en le nombre de caractéristiques. D'autre
part, exiger, en outre, la cohérence géométrique dans la mise en correspondance multiplie
le nombre de combinaisons possibles qui dépend du nombre de régions cohérentes et est
principalement responsable de l'explosion combinatoire.

Une première approche pour maîtriser cette combinatoire est de concevoir un descrip-
teur pour un type de caractéristique donné et une mesure de similarité pour comparer
les descripteurs associés à chaque caractéristique visuelle. Une telle stratégie permet
alors d'éliminer un certain nombre de faux positifs, autrement dit des correspondances
aberrantes (outliers, en anglais). Il en résulte alors un ensemble de correspondances,
non seulement signi�cativement réduit, mais aussi présentant une contamination moin-
dre par les correspondances aberrantes. Ceci permet ensuite d'obtenir un problème de
correspondance à la fois soluble informatiquement et plus facile à résoudre.

En particulier, les régions localement invariantes peuvent être décrites de facon
robutes, par exemple, avec SIFT (LOWE 2004). D'autres descripteurs concurrents, plus
ef�caces à calculer, sont également proposés comme SURF (BAY et al. 2008), DAISY (TOLA

et al. 2010). Tous les descripteurs mentionnnés possèdent une remarquable robustesse
par rapport aux changements de point de vue, contraste, rotation, changements d'échelle
et à diverses conditions de �ou et compression d'images. En quelques années, les régions
localement invariantes sont devenues omniprésentes dans les approches modernes de
vision par ordinateur. En particulier, ils constituent un ingrédient bas-niveau fondamental
dans toutes les applications de vision mentionnées précédemment.

Notons que les autres types de caractéristiques comme les morceaux de lignes, bords
ou contours, mentionnés précédemment, sont plus dif�ciles à décrire de façon robuste
et de fait, semble moins utilisés. D'une part, ils ne possèdenta priori pas de propriétés
d'invariance locale évidentes comme l'invariance au changement de point de vue. D'autre
part, la conception de descripteurs contextuels ou photométriques spéci�ques semble
moins explorée ou peu évidente bien qu'il en existe déjà (voir, par exemple, les travaux
de BELONGIEet al. (2002) et de WANG et al. (2009)). Toutefois, l'intérêt de ces carac-
téristiques ne doit pas être minimisé car elles sont en général plus parcimonieuses et plus
pertinentes. En effet, la calibration de caméra devient particulièrement dif�cile pour des
scènes urbaines, qui contiennent, entre autres, des fenêtres : ces dernières ont une très
grande variabilité photométrique à cause leur surface spéculaire.

1.1.2 Nécessité de la Cohérence Géométrique

En général pour des situations simples, comme des situations où les scènes présentent
une richesse texturelle et peu de répétitions de motifs visuels, les comparaisons pho-
tométriques permettent alors de produire un ensemble de correspondances très peu
contaminées par des correspondances aberrantes.
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De plus, les approches de type “sac-de-caractéristiques” (bag-of-featuresen anglais),
peuvent être employées pour améliorer la robustesse des descripteurs par rapport au
variation intra-classe, robustesse nécessaire notamment pour la catégorisation d'images
et pour la recherche dans les bases d'images (voir par exemple les travaux deLAZEBNIK

et al. (2006)).
Or, les situations simples sont souvent éloignées de la réalité et les comparaisons pho-

tométriques ne suf�sent plus à produire des ensembles de correspondances suf�samment
propres.

Dans les situations où changements de point de vue ou de contraste entre les images
sont forts, les comparaisons entre descripteur n'est plus en mesure de garantir une
certaine robustesse.

D'autre part, l'ambiguïté dans la mise en correspondance survient lorsque les images
présente beaucoup de répétitions de texture ou de motifs visuels, auquel cas la comparai-
son photométrique seule ne peut pas résoudre l'ambiguïté. Ainsi, il peut en résulter de
nombreuses correspondances qui paraissent correcte du point de vuelocal et purement
photométrique, mais en réalité fausse en terme de cohérence globale.

Garantir la cohérence géométrique des correspondances semble être le seul moyen
d'éliminer ef�cacement les trop nombreuses correspondances aberrantes. Ainsi, pour
améliorer la robustesse de la mise en correspondance, la cohérence géométrique peut
être garantie à trois niveaux d'échelle croissant, à savoir

� à l'échelle locale d'une caractéristique visuelle donnée,

� à l'échelle du voisinage contenant des caractéristiques visuelles proches de la
caractéristique visuelle donnée,

� à l'échelle d'une plus large région de caractéristiques visuelles.

A�n de préserver la �uidité de ce chapitre, nous reverrons dans un chapitre ultérieur
(Chapitre 3) l'état de l'art sur la mise en correpondance robuste de caractéristiques
visuelles préservant la cohérence géométrique.

1.2 La Détection d'Objets Répétés pour l'Analyse des Images
par Grammaire

La segmentation d'images et l'analyse d'images par grammaire sont des problèmes clés
pour la compréhension des image.

La segmentation d'images cherche à retrouver des segments d'images par groupement
de pixels d'images. L'intérêt de la segmentation est qu'elle simpli�e la représentation
d'une image, facilitant ainsi l'interprétation sémantique de l'image.

L'analyse d'images par grammaire fait plus que de la segmentation. Elle cherche à
fournir une représentation hiérarchique d'une image étant donné une grammaire. La
littérature sur l'analyse d'images par grammaire est particulièrement vaste et nous nous
contentons de pointer le lecteur vers l'étude deZHU and MUMFORD(2006). Ici, nous nous
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intéressons en particulier à l'analyse de façades. En particulier, nous cherchons à retrouver
et à paramétriser la structure hiérarchique d'un bâtiment, par exemple, dénombrer le
nombre d'étages, déterminer la taille et position de chaque étage, localiser les fenêtres
dans chaque étage et ainsi de suite. Notons que les travaux deTEBOUL et al. (2010);
TEBOULet al. (2011) démontrent la robustesse de l'analyse de façades par grammaire
pour la tâche de segmentation de façades.

1.2.1 Étiquetage Erronné Dues aux Informations Bas-Niveau en Segmenta-
tion

En segmentation, l'étiquetage erronné des pixels provient surtout du fait que l'information
a priori élémentaires, de bas-niveau, �nissent par avoir des limites, comme les contours
ou la couleur. Dans les cas simples, de telles informations suf�sent à segmenter les images
de manière satisfaisante. Or, en général, plusieurs problèmes apparaissent au sein d'une
image. En particulier, les variations d'illuminations et la présence d'occlusions partielles
ou complètes apparaissent fréquemment au sein d'une image de façade (TEBOUL2010;
TEBOULet al. 2010; TEBOULet al. 2011). De plus, les lignes peuvent devenir dif�cilement
détectables car leur saillance peut être amoindrie au niveau des zones très illuminées de
la façades (TEBOUL2010; TEBOULet al. 2010; TEBOULet al. 2011).

Quand les variations d'illumination apparaissent au sein d'une image, les approches
par comparaison photométrique simples comme la corrélation croisée normalisée, ne
permettent plus d'étiqueter correctement certaines parties de l'image. Par exemple, dans
les images de façade, les façades sont souvent plus illuminées au niveau du dernier étage
qu'au niveau du rez-de-chaussée (TEBOUL2010; TEBOULet al. 2010; TEBOULet al. 2011).
En particulier, les pixels correspondant au mur, dans la partie supérieure de l'image,
peuvent devenir aussi brillant que le ciel. Ainsi, les méthodes naïves de segmentation
peuvent étiqueter à tort les pixels `mur' comme étant des pixels de `ciel'.

Des informations a priori plus robustes peuvent être mises au point pour mieux guider
la segmentation comme par exemple:

� la mise au point de descripteurs photométriques plus puissants (MALIK et al. 1999;
BREIMAN and SCHAPIRE2001; LOWE 2004; TOLA et al. 2010; SHOTTON et al. 2008)

� l'apprentissage d'un nouveau descripteur hybride à partir d'une combinaison de
plusieurs descripteurs différents (CHENG et al. 2011)

� l'utilisation jointe de plusieurs informations géométriques simples comme les con-
tours (CANNY 1986), les lignes (GROMPONE VONGIOI et al. 2010), les cartes de
gradient (KASSet al. 1988; COOTESet al. 1995).

1.2.2 Informations Haut-Niveau Fournies par un Détecteur d'Élements Répéti-
tifs Robuste

L'analyse de façade par grammaire peut être plus précise et robuste si l'on utilise des
informations a priori de haut-niveau. En particulier, on peut penser à la détection de
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fenêtres, ce qui aide grandement à retrouver la composition d'un bâtiment. Les détections
de fenêtres peuvent être fournies par des méthodes de reconnaissance d'objet comme
VIOLA and JONES(2004); B LASCHKOand LAMPERT(2008).

Cependant, les méthodes de reconnaissance d'objets (VIOLA and JONES2004; BLASCHKO

and LAMPERT2008) sont d'une certaine manière générique. Ils n'exploitent pas le fait
que les éléments peuvent se répéter au sein d'une image, comme les fenêtres sur la
façade d'un bâtiment. Dans ce cas, il arrive qu'ils font souvent des détections erronnées,
c'est-à-dire, les éléments recherchées ne sont pas détectés ou sont hallucinées ou ne sont
pas localisées correctement. Comme ces méthodes ont souvent un paramètre réglable
qui favorise soit la précision ou le rappel, il est ici préférable de régler les détecteurs de
telle façon que les fenêtres détectées soient précisément localisées sans se soucier de
savoir si des fenêtres ont été manquées. Elles pourront être retrouvées en détectant des
caractéristiques visuelles et en mettant en correspondance les caractéristiques visuelles
sur les fenêtres avec les autres caractéristiques visuelles sur le reste de l'image. Les
fenêtres alors retrouvées constituent alors des informations très précieuses et robustes
pour l'analyse de façades par grammaire.

D'autres caractéristiques visuelles peuvent être utilisées pour améliorer la précision de
l'analyse de façades. En particulier, les lignes sont particulièrement utiles pour l'analyse
d'environnement urbain. L'utilisation jointe de ces informations permet alors d'obtenir
une analyse précise de façades.

Notons qu'il est possible également de construire des informations haut-niveau par
aggrégation successive comme dans les travaux deSHI and MALIK (2000) et DELONG

et al. (2012).

1.3 Contributions de la Thèse

Dans un premier temps, nous revoyons les méthodes existantes pour la mise en correspon-
deance de caractéristiques visuelles, tout en mentionnant les forces et faiblesses respec-
tives de chaque méthode dans le Chapitre 3. Puis, cette thèse développe principalement
quatre contributions apportées dans les domaines suivants: la mise en correspondance de
caractéristiques visuelles et l'analyse grammaticale descendante des façades de bâtiments.
Nous exposons ces contributions, selon l'organisation de ce manuscrit.

� Le Chapitre 4 revisite minutieusement la répétabilité et la précision moyenne des
détecteurs de caractéristiques visuelles. Nous proposons une formalisation mathé-
matique de ces notions. Nous formalisons complètement la notion de cohérence
géométrique à partir d'une contrainte locale d'ordre 4 entre des correspondances
voisines. La cohérence géométrique est garantie à trois niveaux d'échelle comme
mentionné dans le dernier paragraphe de la Sous-Section 2.1.2. En outre, notre for-
malisation de cohérence géométrique permet de traiter la mise en correspondance
d'objets modérément déformés.

� S'appuyant sur la cohérence géométrique exposée dans le Chapitre 4, le Chapitre 5
propose un algorithme ef�cace de propagation de correspondances locales. Notre
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méthode de propagation diffère des autres méthodes de propagation dans la mesure
où elle se base sur des contraintes locales d'ordre4 impliquant une cohérence
mutuelle entre correspondances locales voisines. Dans le Chapitre 6, nous dé-
montrons expérimentalement que l'algorithme proposé est plus ef�cace que les
méthodes existantes, et qu'il est adapté aux problèmes de mise en correspondance
de grande échelle, tout en résolvant les correspondances ambigües ef�cacement.
Notamment, nous le verrons dans la mise en correspondance d'objet déformés et la
mise en correspondance précise pour la calibration de caméras.

� Le Chapitre 7 présente une méthode de recherche d'éléments répétés qui s'appuie
sur notre méthode de mise en correspondance. Cette méthode de recherche
d'éléments répétés nécessite en entrée un “archétype” visuel, puis elle retrouve tous
les modèles visuels similaires à cet archétype, de façon récursive, en faisant une
exploration en largeur. Nous démontrons expérimentalement que notre méthode
de recherche d'éléments répétés obtient des résultats supérieurs à l'état de l'art
notamment pour la localisation précise de fenêtres dans les bases d'imageseTrims
(KOR�C and FÖRSTNER2009) et de l'École Centrale Paris(TEBOUL2010).

� Le Chapitre 8 présente deux techniques pour l'analyse de façades. Elles exploitent
ef�cacement nos résultats de détection de fenêtres obtenues par notre méthode de
recherche d'éléments répétés. La première contribution consiste à combiner nos
résultats de détection de fenêtres et les résultats d'une segmentation sémantique
pixellique médiocre. Cette combinaison produit alors des informations substantielle-
ment améliorée. Ces informations serviront alors à mieux évaluer la qualité de la
structure hiérarichique proposée pour la façade. Deuxièmement, nous proposons
de combiner nos résultats de détections de fenêtres et les résultats de détections
de lignes pour mieux guider l'analyse grammaticale de façade. Sur le plan de
l'optimisation, cette contribution améliore substantiellement la vitesse de conver-
gence, précision de l'analyse, et elle limite les dérives entre la solution obtenue et
l'optimum global.

Les deux premières contributions sont apportées dans le domaine de la mise en
correspondance de caractéristiques visuelles. Elles sont à la fois théoriques et expéri-
mentales et s'avèrent être déterminantes pour une bonne cohérence géométrique. Ainsi,
une propagation de correspondances locales, basée sur des contraintes d'ordre4 entre
correspondances locales voisines, se révèlent particulièrement ef�cace.

La troisième contribution est apportée dans le domaine de la reconnaissance d'objet,
qui constitue une étape possible pour améliorer l'analyse de façades. S'appuyant directe-
ment sur notre méthode de propagation de correspondances locales, ces contributions
permettent alors de fournir des informations de plus haut-niveau, par exemple, des
détections de fenêtres, très précieuses pour l'analyse de façades.

En combinant nos détections de fenêtres avec d'informationsa priori existantes, nous
améliorons l'état de l'art dans l'analyse de façades par grammaire.
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1.4 Publications
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In 11th Asian Conference on Computer Vision (ACCV 2012), Daejeon, Korea,
November 2012.

� High-Level Bottom-Up Cues for Top-Down Parsing of Facade Images.
DAVID OK, MATEUSZKOZINSKI, RENAUD MARLET, NIKOS PARAGIOS.
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alization and Transmission (3DIMPVT 2012), Zürich, Switzerland, October 2012.
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Chapter 2

Introduction

This thesis is �nancially supported by the Centre Technique et Scienti�que du Bâtiment
(CSTB) and is part of CSTB's will to develop methodologies that establish links between
a building exterior appearance and its speci�c energetic features. One of the CSTB's
objective is to classify buildings from an analysis of simple street photographs, also taking
into account speci�c criteria such as age or construction materials. Hence, this would
enable to automatically diagnose urban zones needing energetic rehabilitation.

Because this objective is rather ambitious, the scope of the thesis is limited to the
design of methods which automatically detect simple yet relevant façade elements such
as windows. Indeed, robustly detecting repeated façade elements, such as windows,
already constitutes a challenging problem. As illustrated in this thesis, the development
of such robust methods then leads to a much more reliable parsing of façade images.

Besides, while methods for accurately localizing windows are valuable tools for urban
scene analysis, façade image parsing are still needed to obtain the percentage of window
area in the building façade, which is a precious data for building specialists. Indeed, the
percentage of glass area is a key parameter for assessing the thermal performance of
buildings.

Socio-economically speaking, these techniques would then help to rationalize the
property management by automatically identifying urban zones that needs energetic
rehabilitation. Such a knowledge is particularly helpful for territorial collectivities.

Scienti�cally speaking, the issue of energetic rehabilitation puts into question the
performance of existing computer vision methods. Indeed, for a few years, with the
emergence of large image database such asGoogle Street View, designing ef�cient, scalable,
robust and accurate methods have now become of crucial importance to process very
large urban-related data. In particular, a large part of urban-related data can be processed
through (1) repeated pattern detection using feature correspondence and (2) façade
image segmentation. However, repeated pattern detection via feature correspondence is
made dif�cult because of massive contamination by false correspondences and massive
ambiguity, which is due to the repetition of patterns in a large part. Regarding façade
image segmentation, the main challenge is to minimize the pixel mislabeling because of
weak low-level visual cues.
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The goal of the thesis is to devise a robust method for feature correspondence that
speci�cally deals with massively contaminated and ambiguous sets of correspondences.
Then, an ef�cient detector of repeated patterns, such as windows can then be derived
from such method. In turn, the window detection provided by the detector greatly helps
façade segmentation and parsing, thus allowing to estimate of percentage of glass area in
the building building.
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2.1 Feature Correspondence Problem . . . . . . . . . . . . . . . . . . . . 12
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2.1 Feature Correspondence Problem

Establishing correspondences between sets of visual features is a fundamental problem in
computer vision. It has been well studied as it arises in many vision tasks such

� feature tracking as addressed in SHI and TOMASI (1994); B IRCHFIELD(2007),

� seamless consistent image stitching for panorama construction as studied inBROWN

and LOWE (2007),

� multiple view geometry, more particularly camera calibration from touristic pho-
tographs arising in digital 3D reconstruction of highly frequented touristic places
(see for exampleSNAVELYet al. (2008)) and wide-baseline stereo fusion (see for
example PRITCHETTet al. (1998)),

� object detection as addressed, for example, in BERGet al. (2005);

� shape matching as addressed, for example, inLEORDEANUand HEBERT(2005);
ZHENG and DOERMANN (2006);

� image classi�cation (see for example LAZEBNIKet al. (2006)) or retrieval (see for
example SCHMID and MOHR (1997)).

In ambiguous settings, e.g., when similar objects occur several times, like windows
on a facade, or when distinctive textures are lacking, which is common in façades,
establishing correspondences between sets of visual features needs to be made more
robust, e.g., by using the geometric consistency of feature location.
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Note that the feature correspondence is a rather large vision problem and the relevance
of a matching method usually depends on the task which are among those mentioned
above. Besides, its relevance may also depend of the type of visual features, which
include, but are not limited to:

� simple interest points such as corners which can be detected withHARRIS and
STEPHENS(1988)' famous corner detector;

� line segments, of which GROMPONE VONGIOI et al. (2010) present a reliable
detector;

� edges, which can be detected for example withMARR and HILDRETH (1980)'s
detector or CANNY (1986)'s, or object contours, which are used in GRAUMAN and
DARRELL(2004);

� sampled contour points, which are used in BELONGIEet al. (2002); BERG et al.
(2005);

� locally invariant regions or blobs, such as local extrema of difference of gaussians
(LINDEBERG1991; LOWE 2004), af�ne covariant regions ( M IKOLAJCZYKet al. 2005)
and maximally stable extremal regions (MATAS et al. 2002).

In the thesis, we focus our attention on the correspondence problem between sets of
locally invariant regions.

2.1.1 Photometric Comparison-Based Approaches

The feature correspondence problem is by nature a challenging combinatorial problem.
Devising scalable robust methods is therefore of crucial importance. Indeed, on the
one hand, the number of possible correspondences quadratically in the number of
visual features. On the other hand, requiring in addition geometric consistency in
the feature correspondence multiplies the combinations depending on the number of
correspondences in the consistent regions and is mainly responsible for considering a
daunting combinatorial space.

A natural way to avoid such combinatorial explosion is to exploit the appearance cues
when possible. Usually, a feature descriptor is devised for a given kind of feature and
a similarity measure to compare these descriptors. Such a method can then be used in
order to eliminate a large number of false positives, i.e., outliers. The resulting set of
correspondences is much smaller and much less contaminated by outliers, making the
correspondence problem not only computationally more tractable but also easier to solve.

In particular, locally invariant regions can be described very robustly, e.g., with SIFT
(LOWE 2004). Alternatively, more computationally ef�cient descriptors such as SURF (BAY

et al. 2008), DAISY (TOLA et al. 2010) have been proposed. These above-mentioned
descriptors remain remarkably invariant under a variety of settings such as viewpoint
changes, illumination changes, rotation and scale changes, blur, image compression.

13
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Note that previously mentioned kinds of features other than locally invariant regions
(in particular line segments and contours) are not easy to describe robustly and thus seems
less employed. This is partly because they do not enjoy obvious invariant properties such
as relative invariance to viewpoint changes. Nevertheless, their relevance are not to be
downplayed as they are generally sparser and are potentially much more relevant visual
cues than locally invariant regions. For example, camera calibration becomes notoriously
challenging in urban scenes containing, among others, windows which typically have
a challenging appearance variability because of its specular surface. For such speci�c
problem, line segments are indeed more relevant than locally invariant regions. Let us
however cite BELONGIEet al. (2002) and WANG et al. (2009), that propose contextual
signatures or photometric descriptors for such features.

2.1.2 Geometry Consistency

Photometric comparison-based approaches are suf�cient in simple settings but, in any
case, geometric consistency remains essential. In simple settings, e.g., scenes that are
well-textured and present few repetitions, photometric comparison approaches alone
produces very good set of correspondences, i.e., the set is very little contaminated by
outliers. Additionally, bag-of-features approaches can be used to build invariance of these
descriptors to intra-class variation for image categorization and retrieval purposes (see
for example LAZEBNIKet al. (2006)). However, the photometric descriptor becomes less
reliable in many dif�cult real-life settings, in which case the number of false positives
potentially becomes overwhelming. For instance, such settings corresponds to situations
where viewpoint changes or illumination variations between image pairs are too important
for the photometric descriptor.

Second, ambiguity also occurs when, for example, correspondences must be estab-
lished between images picturing a scene with numerous repetitive patterns. Then, feature
detectors produce a number of similar features, in which case photometric comparison
alone cannot disambiguate correspondences. Therefore, many correspondences may look
correct from a local and purely photometricstandpoint, but are actually false in terms of
global consistency.

In these cases, in which ambiguous correspondences and outliers are too many,
geometric consistency becomes critical to ef�ciently guide the correspondence task and
can be enforced at three levels, i.e., in increasing order

� at the local scale of a given feature correspondence,

� at the “vicinity” of a given feature correspondence, which contains “close” feature
correspondences,

� at the level of a whole “region” of correspondences.

We shall specify the meanings of each level of geometric consistency in this thesis.
To avoid breaking the �ow of this chapter, we will thoroughly review in Chapter 3

existing methods for feature correspondence.
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2.2 Pattern Detection For Façade Image Parsing

Image segmentation and parsing are key problems in image understanding.
Image segmentation aims at perceivinglow-levelgrouping and organization as it forms

image segments by grouping image pixels. The bene�t of image segmentation is that it
simpli�es the representation of an image, facilitating its semantic interpretation.

Image parsing does more than just image segmentation as it additionally tries to
retrieve the hierarchical structure of an image by means of image grammars. The
literature on image parsing is vast and we just refer the reader toZHU and MUMFORD

(2006)'s survey. Here, as we speci�cally focus on façade image parsing, one wants
to retrieve and parameterize the hierarchical structure of a building, e.g., number of
�oors, height, position of each �oor, windows in each �oor and so on. Note that, as
demonstrated in TEBOUL et al. (2010); TEBOUL et al. (2011), image grammars are a
powerful top-down information that signi�cantly robusti�es the segmentation of façade
images.

2.2.1 Mislabeling in Segmentation and Weak Low-Level Cues

In image segmentation, the pixel mislabeling is often due to elementary low-level cues,
e.g., contours, colors, which eventually becomes weak in dif�cult cases. In simple cases,
such visual cues suf�ce to satisfactorily segment images. However, various issues generally
occur within a single image. Namely, illumination variations and partial or complete
occlusions frequently occur within a façade image (TEBOUL2010; TEBOULet al. 2010;
TEBOULet al. 2011). Besides, edges may become harder to detect as their saliency may
vanish in highly illuminated parts of the façade in the image ( TEBOUL2010; TEBOULet al.
2010; TEBOULet al. 2011).

When illumination variations occur within an image, simple photometric similarity
approaches, such as normalized cross-correlation of local patches, become unable to
correctly label some parts of the image. For example, in façade images, façades are
often more illuminated at the top than at the bottom ( TEBOUL2010; TEBOULet al. 2010;
TEBOUL et al. 2011). In particular, `wall' pixels on the top of the image may become
as bright as the sky. Thus, naive segmentation methods may wrongly label upper `wall'
pixels as `sky' pixels.

More robust cues can be designed to ef�ciently guide the segmentation task. They
include

� designing more discriminative feature space (MALIK et al. 1999; BREIMAN and
SCHAPIRE2001; LOWE 2004; TOLA et al. 2010; SHOTTON et al. 2008),

� learning a new feature space obtained by combining multiple feature spaces (CHENG

et al. 2011)

� or jointly using basic geometric cues such as contours (CANNY 1986), line segments
(GROMPONE VONGIOI et al. 2010), gradient map ( KASSet al. 1988; COOTESet al.
1995).
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2.2.2 High-Level Bottom Cues Provided by a Robust Pattern Detector.

Façade image parsing can be made more accurate and robust if we use high-level bottom-
up cues. In particular, one can think of window detection, which will greatly helps to
retrieve the compositional structure of the building. Window detection can be provided
by object recognition methods such asVIOLA and JONES(2004); BLASCHKOand LAMPERT

(2008).
However, the object recognition methods (VIOLA and JONES2004; BLASCHKOand

LAMPERT2008) are somehow “generic”. They do not exploit the fact that patterns can
be repeated within an image, like windows in a building façade. In this case, they
make erroneous detection, i.e., miss objects, hallucinate objects, or do not localize them
properly. Since these methods have parameter to favor either precision or recall, it is here
preferable to tune them in such a way that all found windows are accurately localized at
the cost of missing many windows. Then retrieving undetected windows can be done by
detecting robust visual features and by establishing correspondences between features on
windows and other features on the rest of the image. The detected windows constitute
very valuable and robust high-level bottom-up cues for façade image parsing.

Other visual features can be used to enhance the accuracy of image representation. In
particular, line features are valuable visual cues for analyzing man-made environments.
As a result, the joint use of all these cues ef�ciently yields very precise façade image
parsing.

Note that higher level information can be also built in a bottom-up fashion to enforce
appearance cues: see for example SHI and MALIK (2000) and D ELONGet al. (2012).

2.3 Contributions of the Thesis

After reviewing state-of-the-art feature correspondence methods and pointing out their
respective strengths and weaknesses in Chapter 3, this thesis brings four main contribu-
tions to the �elds of feature correspondence and façade parsing. We now review them,
following the organization of the manuscript.

� Chapter 4 thoroughly revisits the expected repeatability and precision of feature
detectors, and a formalization on such performance measures is given. Then it
completely formalizes the geometry-consistent correspondence problem as a4th -
order local consistency between neighboring matches. The geometric consistency
is enforced at three levels as mentioned in Subsection 2.1.2. Furthermore, such a
formulation is able to take into account reasonable object deformation as opposed
to just rigid scenes.

� Chapter 5 derives an ef�cient match propagation algorithm from such formulation.
It departs from other match propagation methods as it completely formalizes the
propagation procedure based on high-order local af�ne consistencies. In Chapter 6,
our algorithm is shown experimentally to be more ef�cient than existing methods
in deformable object matching and calibration. It scales to large correspondence
problems while ef�ciently handling ambiguity.
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2.4. Publications

� Chapter 7 presents a repetitive pattern search algorithm based on our match
propagation method. Provided that a model object (on which features are detected)
is given, our pattern search method recursively searches for similar objects in
breadth-�rst search. It is shown to achieve state-of-the-art window localization
results on the eTrimsdatasets (KOR�C and FÖRSTNER2009) and the École Centrale
Parisdatasets (TEBOUL2010).

� Chapter 8 presents two techniques for ef�ciently combining our detection results
from our pattern search methods in the façade parsing. The �rst contribution
consists in combining our detection results with the bottom-up information obtained
from pixel-wise classi�cation. Such combination results in a signi�cantly better
bottom-up merit information, which is used to evaluate the quality of a façade
parsing. The second contribution leads to (1) a better guiding of the façade parsing
process in terms of precision and convergence speed, and (2) a limitation of the
convergence deviation in terms of parsing results. This is ef�ciently achieved by
combining our detection results and additional line detections.

The �rst two contributions are brought to the �eld of feature correspondence problems,
with applications in particular to deformable object matching and camera calibration.
They are theoretical and experimental contributions that demonstrates the ef�ciency of
our geometric consistent formulation. These contributions advocate for our 4th-order
match propagation algorithm.

The third contributions is brought to the �eld of object recognition, which is also a
�rst step to improve façade parsing. Directly relying on our match propagation method,
they provide reliable high-level bottom-up cues that turn out to be particularly valuable
for image parsing. Combining our window detection with other bottom-up cues, we
achieve state-of-the-art results on façade image parsing.

2.4 Publications

This work has lead to the following publications.

� Ef�cient and Scalable 4th-order Match Propagation.
DAVID OK, RENAUD MARLET, JEAN-YVES AUDIBERT.
In 11th Asian Conference on Computer Vision (ACCV 2012), Daejeon, Korea,
November 2012.

� High-Level Bottom-Up Cues for Top-Down Parsing of Facade Images.
DAVID OK, MATEUSZKOZINSKI, RENAUD MARLET, NIKOS PARAGIOS.
In 2nd Joint 3DIM/3DPVT Conference on 3D Imaging, Modeling, Processing, Visu-
alization and Transmission (3DIMPVT 2012), Zürich, Switzerland, October 2012.
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Chapter 3

Existing Approaches for
Geometry-Consistent Matching

Establishing correspondences between sets of visual features arises in many vision tasks,
e.g., object matching, structure-from-motion and pattern detection. In many cases,
distinctive feature descriptors and simple photometric comparison approaches (LOWE

2004) successfully produce a reasonably good set of matches with respect to the task
requirements, i.e., they are large enough to carry meaningful information and with
a large enough proportion of inliers, i.e., correct correspondences. But in ambiguous
settings, e.g., when similar objects occur several times (e.g., windows on a facade, rocks
in a landscape) or when distinctive textures are lacking, these matching strategies may
fail and jeopardize the whole task. Yet, more robust correspondences can be found
using the geometric consistency of feature location. In this chapter, we review existing
geometry-consistent approaches. They roughly fall into three main categories:

� model-based consistency methods,

� match propagation methods,

� combinatorial optimization approaches.

To help the reader, we summarize the state-of-the-art in Table 3.1.

In hard settings (many
outliers, many ambiguities)

Model-
Based

Combinatorial
Standard Match

Propagation
Our

Method

Scalable ++++ + ++++
Accurate ++++ + + +++

Outlier-resistant + ++ + +++
Deformation-resistant +++ ++ ++

Ef�cient for multiple models + (+) + +++

Table 3.1: Strengths and weaknesses of state-of-the-art approaches.
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3.1 Model-Based Consistent Methods

What we call model-based consistency methods includes RANSAC-based methods (FIS-
CHLER and BOLLES1981) and the Hough transform method ( DUDA and HART 1972;
BROWN and LOWE 2002). These two methods are not strictly exclusive methods as they
can be used in conjunction as in BROWN and LOWE (2002)'s work.

They enjoy a great popularity in the vision community as their simplicity of imple-
mentation is undeniably unbeatable, at least in their basic form. They are extremely
well suited for parametric model �tting. As far as feature correspondence is concerned,
parametric models are essentially af�nity, homography, fundamental or essential matrix.
They are fast and robust if the noise in the data can be estimated and if the percentage of
inliers among the set of candidate correspondences is of order 10% or greater.

In what follows, we recall the features of RANSAC-based methods and the Hough
transform. Then we explain in which kinds of correspondence problem they become less
suited for.

3.1.1 RANSAC and Variants

RANSAC-based methods are iterative methods that consist in estimating a parametric
model from sampled elemental subsets.

RANSAC basically proceeds as described in Algorithm 3.1.
Since the work of FISCHLERand BOLLES(1981), continuous improvements have been

proposed. In general, RANSAC variants have higher breakdown points thanFISCHLER

and BOLLES(1981)' standard method, i.e., they are more resistant to higher outlier rates.
Without claiming to be exhaustive, let us list some most notable variants of RANSAC.

� Early RANSAC variants such as LMedS (ROUSSEEUW1984) and MINPRAN (STEW-
ART 1995) maximize some likelihood criterion instead of the number of inliers,
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3.1. Model-Based Consistent Methods

Algorithm 3.1 RANSAC algorithm

1: Initialize the parameter of the current best model as the null model.
2: Set the current best support count to0. // The support is de�ned in the loop.
3: repeat
4: draw a sample of correspondences withminimal cardinality
5: estimate the parameters of the candidate model from the sample
6: // Support = number of correspondences �tting with the candidate model
7: count the support
8: if the model has greater support than the current best onethen
9: update the current best model and the current best support

10: end if
11: until the maximum number of iterations is reached
12: return the current best model

which makes them more robust to higher contamination rates. In addition, in
contrast to standard RANSAC, they do not require a user threshold that decides
whether a data point is an inlier. Indeed, they are noise-adaptive, meaning that
they try to estimate the noise scale automatically.

� Along the same line of research,TORR and ZISSERMAN(2000) propose a RANSAC
variant called MLESAC. This variant proposes two modi�cations in the standard
RANSAC. First, it maximizes a likelihood function instead of maximizing the number
of inliers. Second, it uses a more robust cost function than the standard least squares,
which leads to better accuracy in the model estimation.

� CHUM et al. (2003) propose LO-RANSAC. Namely, this variant re�nes the model
parameter via a local optimization, which is performed when a drawn sample has
the current best support. As a result, the number of sampling is decreased and the
model accuracy is improved.

� Better sampling strategies have been proposed to increase the chance of drawing
good samples as in NAPSAC (MYATT et al. 2002), ORSA (MOISAN and STIVAL 2004),
PROSAC (CHUM and MATAS 2005), BetaSAC (MÉLERet al. 2010) and GroupSAC
(NI et al. 2009). Other variants such as DEGENSAC (CHUM and MATAS 2005)
or QDEGSAC (FRAHM and POLLEFEYS2006) speci�cally deal with degenerate or
quasi-degenerate elemental subsets to improve the sampling as well.

� Many more recent variants also estimate the noise scale automatically and adap-
tively, such as ASSC (WANG and SUTER 2004), RECON (RAGURAM and FRAHM

2011), ORSA (MOISAN and STIVAL 2004).

� Other RANSAC variants, such as the projection based M-estimator (M ITTAL et al.
2011), propose to deal with possibly heteroscedastic noise, i.e., a Gaussian noise
with varying standard deviation,
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3.1.2 The Hough Transform

The Hough transform (DUDA and HART 1972) is a popular voting method, which estimates
the sought parameter vector by ef�ciently pruning the parameter space. It basically
proceeds as follows.

First, the parameter space needs to be quantized into well-parameterizedbins, i.e.,
a multidimensional interval, such that the set of bins is a partition of the parametric
space. The multidimensional array of bins is called anaccumulator. The voting procedure
consists in looping over the set of data points. At each iteration, an accumulator bin
gets a new vote each time a data point falls into it. Once the loop has terminated, bins
corresponding to local maxima are identi�ed. Let us recall some practical remarks.

Parameterization of the parameter space.

First, a careful one-to-one parameterization of the space is needed to apply the Hough
transform. In the line �tting example, the best parameterization is the pair consisting of
(1) the distance between the line and the origin and (2) the orientation angle of the line.

Trade-off between accuracy, ef�ciency and identi�ability.

Second, the Hough accumulator becomes more and more memory-intensive as the
dimensionality of the parameter space increases. An adaptive coarse-to-�ne strategy has
been proposed to resolve this issue (ILLINGWORTHand KITTLER 1987).

In presence of noise, the bin size should be chosen carefully. The Hough transform
should be able to identify locally maximal bins if they have a signi�cantly more votes
than neighboring bins. When bins are too �ne, and because of the noise, data points
corresponding to the optimal parameter may fall into neighboring bins instead of falling
into the correct bin. As a result, the locally optimal parameter may be more dif�cult to
pin down.

Hough clustering as a �ltering step.

As far as feature correspondence is concerned, the Hough transform can be used in
conjunction with RANSAC to remove spurious correspondences (BROWN and LOWE

2002). By doing so, the set of correspondences is much less contaminated and this
facilitates model estimation for RANSAC-based methods.

The idea is to group together feature correspondences that are roughly consistent by
coarse af�nities. The clustering is done with a Hough transform with a coarse-binned
accumulator. Each homography can be estimated in each bin through a RANSAC �ltering.

3.1.3 Situations In Which These Methods Are Less Suited For.

Very strong contamination ratio.

While these parametric model-consistency approaches are gold standard methods in
multiple-view geometry, they become much less suited for pattern detection and ambigu-
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3.2. Combinatorial Approaches

ous feature matching, where true correspondences can be less than 5%. In this case,
RANSAC-based methods may take as long as an exhaustive search to eventually �nd the
best elemental subset. As for the Hough transform, the voting results may not identify
conclusively local maxima, which are hard to identify in such settings.

Local af�ne homographies with strong variations.

An alternative is to estimate locally af�ne homographies to explain local correspondences.
In PRITCHETTet al. (1998) and BROWN and LOWE (2002), correspondences are explained
by a number of independent homographies, i.e., disjoint planar facets. There is no
relation among homographies other than looking for a totally new homography at the
periphery of a previous one, which is inappropriate for curved surfaces and deformations.
On the contrary, we argue that a continuous chaining of af�ne consistent matches is
needed to cope with curved surfaces and deformations. Second, when deformation is too
signi�cant, the quality of a locally af�ne model is hard to evaluate because the model
support depends on the knowledge of the noise. And the noise varies a lot even locally
because of the deformation.

Deformable object matching with the thin plate spline model.

It is possible to globally model deformable object matching with thin plate splines as
in CHUI and RANGARAJAN(2003). The term “thin plate spline” refers to a physical analogy
involving the bending of a thin sheet of metal. By using the thin plate spline model,
correct correspondences are assumed to be explained by a smooth function� : R2 ! R2

which is supported by a number of correct correspondences. However, if we are to use
RANSAC to choose the correspondences supporting� , we are still clueless about setting
the right threshold on deformation variations, because it may vary from a point to another.
Instead, an energy formulation as proposed inCHUI and RANGARAJAN(2003) is more
appropriate.

Another objection against the thin plate model is that the function � is actually not
globally smooth, it is piecewise smooth and has discontinuities. For example, urban
scenes typically usually contains square or angular building façades, which makes the
thin plate spline model appropriate only locally.

3.2 Combinatorial Approaches

In combinatorial approaches, the correspondence problem is usually cast as an NP-hard
constrained assignment problem. Global optimality is usually hard to guarantee but a
local optimum is very satisfactory in practice and is obtained by using ef�cient heuristics
and approximations.

The assignment problem takes the following general form. LetX = f x i gm
i =1 and

Y = f yagn
a=1 be two sets of visual features, between which correspondences are to

be established1. The goal is to �nd an assignment matrix Z = ( zia ) 2 f 0; 1gm� n that

1For consistency,i and j are indices reserved forX , and a and b reserved for Y.
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minimizes some cost functionJ subject to some constraintsC, i.e.

minimize
Z2f 0;1gm � n

J (X ; Y; Z)

subject to C(Z)

(3.1)

The matrix component zia is 1 if and only if feature x i corresponds to featureya and is 0
otherwise.

Generally, J takes the form of

� a linear function in Z in the linear assignment problem,

� a quadratic polynomial for graph matching problems, registration problems,

� a polynomial of order 3 at least for general hypergraph matching problems.

3.2.1 Appropriateness of combinatorial approaches

Some combinatorial approaches have been applied in very speci�c multiple view geometry
problems and point registration problems. See for exampleMACIELand COSTEIRA(2003);
CHERTOKand KELLER(2010). However, as far as multiple view geometry problems are
concerned and especially since the work ofLOWE (2004), they can hardly claim to be as
competitive as RANSAC-based methods from a strictly computational point of view. In
theory and practice, they do not scale as well as RANSAC in terms of memory space and
computational complexity.

Provided the correspondence problem is of reasonable size, their robustness make
them well suited (1) when, as explained in Section 3.1, parametric model-consistent
methods are not and (2) for object recognition or categorization with strong intra-
class variation and with articulated parts. See for example DUCHENNE et al. (2009);
LEORDEANUet al. (2009).

Combinatorial approaches include:

� Maciel and Costeira's approach based on a concave programming formulation
(M ACIEL and COSTEIRA2003),

� a graph matching formulation as can be found in LEORDEANUand HEBERT(2005),

� hypergraph matching formulations which are more robust and expressive than
graph matching formulation (Z ASSand SHASHUA 2008; DUCHENNEet al. 2009).

Graph and hypergraph matching seem to be the most popular combinatorial approaches
and we choose to only review them.

3.2.2 Outlier-Aware Strategies in Graph Matching

Several outlier-aware strategies have been attempted in graph and hypergraph matching
approaches.
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3.3. Match Propagation Methods

Some approaches such asZHENG and DOERMANN (2004)'s work use a threshold on
the computed match con�dence, but the con�dence value is relative and cannot be easily
associated to a geometric, understandable measure, leaving the user clueless for setting a
sensible threshold value.

Dummy points can be added to attract outliers as used inGOLD and RANGARAJAN

(1996); BERG et al. (2005); ZHENG and DOERMANN (2006); CHO et al. (2010). A
correspondence containing a dummy point is considered an outlier. However, introducing
dummy points introduces supplementary degrees of freedom. For example, inGOLD

and RANGARAJAN(1996), we need to set a score for every correspondence involving
dummy points and the user is left clueless for setting a sensible score for correspondences
involving dummy points.

Alternatively, ZASS and SHASHUA (2008) proposes a convex formulation in which
the outliers are determined automatically and rigorously. However, because it makes
strong assumptions, it experimentally underperforms state-of-the-art methods such as
DUCHENNEet al. (2009); C HO et al. (2010) in handling the outliers.

3.2.3 Scalability issue.

Finally, scalability is an issue in graph matching approaches and this is especially true for
hypergraph matching. Recently, research has been now focusing on this question as far
as graph matching is concerned (seeCHO and LEE (2012)). However, more particularly,
in hypergraph matching, the algorithmic complexity still remains prohibitive: given n
points, time O(nd logn) has been reported for d-order potentials and after a number
of approximations (see for example DUCHENNEet al. (2011)). Hypergraph matching
approaches hardly scale to thousands of interest points, which would correspond to huge
(gigabytes) af�nity tensors, even after sparsi�cation.

3.3 Match Propagation Methods

Unlike combinatorial approaches, propagation methods do not have obvious principled
formulation. Yet, they scale much better than combinatorial approaches and enjoy better
empirical performance.

They include LHUILLIER and QUAN (2002)'s, KANNALA et al. (2008)'s, FERRARIet al.
(2004)'s and CHO et al. (2009)'s work. Basically, they solve many local correspondence
problems through simultaneous match propagation. Different seeds are grown and adapt
to local af�ne transformations. However, these approaches basically exploit second-order
constraints and heavily depend on the af�ne shape adaptation (M IKOLAJCZYKet al. 2005).
They are thus not or poorly applicable to features that are not af�ne-covariant, such
as DoG-SIFT features (LOWE 2004). Moreover, as shown by our experiments, af�ne
shape determination is not very precise and shape adaptation can thus be signi�cantly
noisy. Even if optimized during propagation as in FERRARIet al. (2004), af�ne shapes
lack robustness as we will see in camera calibration experiments in Chapter 6. Some
approaches such asKANNALA et al. (2008) and FERRARIet al. (2004) also require the
images to be available, as opposed to only working on the set of abstract feature points.

27



CHAPTER 3. EXISTING APPROACHES FORGEOMETRY-CONSISTENT MATCHING

In addition, these methods cope with a reasonable amount of matching ambiguity, but fail
to limit false detection when the set of possible correspondences is strongly contaminated
by outliers.

3.3.1 Our Method

Our method also belongs to the category of match propagation methods. It tries to
overcome the above drawbacks. It is a simple but careful adaptation of the match
propagation principle to 4th-order geometric constraints (feature quadruple matching).
Our framework explains a set of matches by a continuous network of locally-similar
af�nities which are determined from neighboring matches rather than by the af�ne shape
of a single match.

We will show in Chapters 4 and 6 that our approach enjoys many good properties.
It works on any kind of feature point (not only af�ne-covariant), and different types
of features can even be freely mixed for denser, more uniform or more precise corre-
spondences. Besides, it does not require the image pixels after detection, contrary to
most propagation based methods. Although it has no global view of all correspondences
(contrary to non-approximating hypergraph matchers), it produces very reliable matches.
It can tell inliers from outliers and is robust to high outlier contamination rates. It adapts
to scenes that have to be explained by different, separate models as well as by continuous
model deformation. Last, it scales to hundreds of thousands of matches, both in time and
space.

3.3.2 Differences Between our Work and Existing Propagation Methods

As it will be seen in Chapters 4 and 5, our approach uses known ideas for matching under
af�nity constraint (M IKOLAJCZYKet al. 2005).

Yet, despite a possible feeling of déjà-vu, we consider it includes original ingredients
and, as a whole, provides a unique blend. First, let us highlight the differences as follows.
Our propagation is based onlocal af�nities like KANNALA et al. (2008), FERRARIet al.
(2004), C HO et al. (2009), but not on

� pixel adjacencyas in LHUILLIER and QUAN (2002) and CECH et al. (2011),

� �ow as in LHUILLIER and QUAN (2002),

� similitude transformation as in HACOHEN et al. (2011).

Our af�nities are computed from match triples (any kind of feature points, possibly in
combination), but not necessarily from

� af�ne correspondencesas in the works of FERRARIet al. (2004); C HO et al. (2009),

� 2nd moment matrix plus gradient orientationas in KANNALA et al. (2008),

� patch transformationsas in the works of LHUILLIER and QUAN (2002); HACOHEN

et al. (2011).
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3.3. Match Propagation Methods

Our af�nity constraint is 4th -order and sensitive to feature scale, but not

� 2nd-order as in the works of LEORDEANUand HEBERT(2005); CHOI and KWEON

(2009); C HO et al. (2010),

� 3rd -order as in CHERTOKand KELLER(2010) and photometricas in (DUCHENNEet al.
2011),

� 4th -order reduced to pointsas in the works of ZASSand SHASHUA (2008); CHERTOK

and KELLER(2010).

Now, the following points advocates for our match propagation approach.

� For precision and robustness, each point of our growing regions selects nearby
scale-consistent candidates; each candidate (best �rst) then looks for a nearby
consistent triple in the region.

� It is simpler that the expansion-contraction phases of (FERRARIet al. 2004).

� Our propagation is isotropic, image-order insensitive, scale-invariant and adapts to
detection density like CHO et al. (2009), contrary to �xed-size grid in model image
FERRARIet al. (2004), �xed-size pixel neighborhood as in the works of KANNALA

et al. (2008); LHUILLIER and QUAN (2002); CECH et al. (2011) or reference image
as in HACOHEN et al. (2011).

� We are purely based on features, likeCHO et al. (2009)'s method, rather than
photometric similarity. We do not require images (pixels) after feature detection,
unlike the works of KANNALA et al. (2008); FERRARIet al. (2004); LHUILLIER and
QUAN (2002); CECH et al. (2011); HACOHEN et al. (2011), nor a regular �ow of
images as inCECH et al. (2011) or epipolarly recti�ed image pairs as in CECH et al.
(2011).

These characteristics are crucial for robustness and precision for the dif�cult scenes we
address.
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Chapter 4

Geometry Consistency in Feature
Correspondence

As previously mentioned in Chapter 2, the geometry consistency of the feature correspon-
dence can be enforced at three levels. The lowest level for geometry consistency is at
the level of a single feature match. Namely, if (x; y) is a good feature match, the image
around feature x should be similar to the image around feature y. This photometric
criterion translates into features having “close enough” descriptors. The next two higher
level of geometry consistency are (1) at the level of the “vicinity” of a feature match
and (2) at the level of a whole geometry-consistent “region”, as previously mentioned in
Chapter 2. In this chapter, we propose a formalization of the geometric consistency at
these two higher levels.
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Notations To begin with, we �rst lay down some notations that will be useful in the rest
of the chapter. Let X and Y be two sets of features which are respectively extracted from
two images, and let M � X � Y be a given set of possible matches. In the following, we
denote a match bym = ( x; y). It is typically a pair of features whose descriptors are close,
or close enough compared to other close descriptors. Note thatM may include numerous
ambiguities, i.e., any number of matchesm with the same feature x or y. M can even be
X � Y . We denote by� a geometric (feature) mapping that maps any point x in image 1
to a point y = � (x) in image 2. We also call a set of matchesR � M a region. Such a
term will appear natural for our geometry-consistent formulation.

4.1 Information of Locally Invariant Regions

Before moving to the geometry consistency formulation, we will review the common
information carried by locally invariant regions. Besides, the sets of features and matches
that we consider can freely mix detectors and descriptors of different kinds, e.g., Harris-
af�ne or Hessian-af�ne regions ( M IKOLAJCZYKand SCHMID 2002), DoG+SIFT blobs and
descriptors (LOWE 2004), MSER regions (MATAS et al. 2002). But a meaningful match
can only involve a detector-descriptor pair of the same kind.

For each kind f of feature (a detector-descriptor pair), and each feature x of kind f ,
we assume that the following information is available:

� the position x 2 R2 of feature x in the associated image, which we note by abold
font change for readability;

� the shapeSx , which represents the possibly anisotropicscale of featurex and is
de�ned by

Sx
def=

�
x0 2 R2

�
� (x0� x )T � � 1

x (x0� x ) � 1
	

(4.1)

where � x 2 R2� 2 is a scale matrix (also a positive de�nite matrix), typically
provided by the detector;

� the orientation vector ox , typically provided by the descriptor;

� the feature descriptor vx .

Note that, while af�ne-covariant keypoint scales are elliptic, e.g., with a Harris-af�ne
detector, others such as DoG scales are isotropic, i.e., circular as shown in Figure 4.1.
Examples of elliptic feature scales are shown in Figure 4.2. Let us make a few comments
about the scale matrix. In terms of dimensional analysis, the scale matrix� x corresponds
to the square of a length. From a statistical point of view, the scale matrix � x can
be viewed as a covariance matrix of a Gaussian distribution. In the image processing
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4.1. Information of Locally Invariant Regions
Information of feature x

Information of feature x:

! SIFT descriptorvx

(green square bins)
! Circular shapeSx

(in yellow)
! centered in x
! oriented by orien-

tation vector ox

(small yellow line)

Figure 4.1: DoG+SIFT feature information. Credits: http://www.vlfeat.org/
overview/sift.html .

literature, the scale matrix corresponds to the inverse of the second moment matrix
which characterizes the local shape around featurex (see for exampleLINDEBERGand
GÅRDING (1997), M IKOLAJCZYKand SCHMID (2002), M IKOLAJCZYKand SCHMID (2004),
M IKOLAJCZYKet al. (2005)).

Let us also comment on the orientation vectorox , which orients the elliptic shape Sx

in a photometrically invariant manner as illustrated in Figure 4.5. It must not be confused
with the orientation of the ellipse axes with respect to the x-axis. It is de�ned from the
dominant gradient direction around x. Additionally, it must be stressed that ox does not
necessarily correspond to the dominant gradient direction in a general af�ne scale space.
However, it is the case only in an isotropic scale space.

The feature descriptor abstracts the image aroundx, also at some appropriate scale
and some appropriate orientation, for comparison with other detected features. In
particular, the SIFT descriptor corresponds to a concatenation of histograms of local
gradients on a patch at some appropriate size and scale and centered on the feature
position as illustrated in Figures 4.1 and 4.3.

Finally, we introduce a relative scale-sensitive distanceto x, which we de�ne from the
scale matrix � x as follows

dx (x0) def= ( x0� x )T � � 1
x (x0� x ): (4.2)

This distance, which is also termed asMahalanobis distance, will be useful in our geometry
consistency formulation. Because the� x is a positive de�nite matrix, level sets of dx take
the form of ellipses. We illustrate an anisotropic scale-sensitive distancedx in Figure 4.4.
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Figure 4.2: Different elliptic features. Credits: M IKOLAJCZYKet al. (2005).
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Figure 4.3: The SIFT descriptor. Credits: LOWE (2004).

Figure 4.4: We illustrate here a feature point x, its orientation ox and its level sets
de�ned by dx , which are ellipses because the scale matrix� x is a positive de�nite matrix.
The level set

�
x0 2 R2 : dx (x0) = 1

	
is represented by the black thick ellipse, while other

elliptic level sets are in gray color.

4.2 First Level of Consistency: Photometric Consistency

We now elaborate on the �rst level of geometry consistency, which is the photometric
consistency at the level of a single feature match. More speci�cally, when(x; y) is a good
feature match, the image around featurex should be similar to the image around feature y.
This photometric criterion translates into features having “close enough” descriptors. As
image patches around featurex and y have different scales and orientations and may be
seen under different viewpoint changes,normalizing the image patches is necessary to
accurately compare them. It then makes sense to have “close enough” descriptors.
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The normalizing transform T x of feature x is the af�nity that maps the oriented shape
(Sx ; ox ) to a zero-centered unit disk. The af�nity T x is of crucial importance to robustly
describe the photometric appearance of shapeSx in an af�ne-invariant manner. Typically,
T x is determined from the joint detection and description of feature x. Indeed, only the
shapeSx of feature x is known at the detection step. Then,ox and vx are determined at
the photometric description step, which follows the detection step.

Staying on the level of ideas, we recall that the description of featurex in a locally
af�ne invariant manner with, say, SIFT, is roughly processed as follows.

� The area around featurex is convolved with an appropriate anisotropicGaussian
kernel, based on the scale matrix� x . There are two effects that results from a
such convolution. On the one hand, �ne details of the patch are suppressed in
an anisotropicmanner. On the other hand, the feature shapeSx is made circular.
Indeed, these effects are desirable for a proper af�ne-invariant feature comparison.

� Histograms of local gradients are computed from the the convolved patch (with
scale� x and are then used to determine several dominant gradient orientations
(see for exampleLOWE (2004) for details). Note that, when more than one domi-
nant gradient orientations are found, the feature x is duplicated and are oriented
differently according to these different gradient orientations.

� The convolved patch is rescaled into a zero-centered unit disk. The zero-centered
unit disk is described with the SIFT descriptor vx in a rotation invariant manner,
using the dominant gradient orientation. Finally, the ellipse orientation ox is
deduced from the dominant gradient orientation.

The normalizing transform T x can be computed explicitly from the scale matrix � x

and the orientation ox as detailed in Appendix B. See in particular Algorithm B.1, which
summarizes the computation of T x .

Note that M IKOLAJCZYKand SCHMID (2004) present an algorithm which adapts
iteratively the shape � x of feature x at position x to the image in a locally af�ne invariant
manner. The convergence of the shape adaptation process yields a good estimate of shape
Sx in the end. As a result, such process improves the robustness of descriptor to viewpoint
changes. It ensures that if featurex corresponds toy, then descriptor vx should be very
close to vy , as illustrated in Figure 4.5.

Furthermore, if � is a mapping that geometrically relates image1 to image 2, a correct
match (x; y) provides an af�ne approximation of � around the corresponding positions
(x; y ), i.e., for all x0 close to x,

� (x0) � T yT � 1
x (x0) (4.3)

Nevertheless, let us remark that corresponding circular shapes from DoG+SIFT matches
will give very coarse approximation of � around their corresponding position, because
they provide only similarity-based approximation around their corresponding positions.
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Figure 4.5: Af�ne invariant photometric comparison with normalizing transform. Here
we show the least ambiguous match in this image pair. Looking closely, we notice that
the “l” letter is slightly deformed in the left normalized patch with respect to the one
in the right normalized patch, because, here, the local transform around the patch is
actually projective than af�ne and the magazine is slightly curved. Best viewed using
magni�cation.

4.3 Local Geometric Consistency Under Af�nity Constraint

Standard matching procedures usually only rely on descriptor agreement, which is a
local, point-wise property. Global consistency checks, if any, are deferred to the consumer
of the matches. However, although most match consumers can cope with a certain
proportion of outliers, many cannot properly deal with a large amount of ambiguous
matches. As a result, ambiguous matches are often systematically discarded, which, in
some circumstances, may greatly impoverish the set of remaining matches. Furthermore,
even if we suppress ambiguous matches, the remaining unambiguous matches cannot be
guaranteed to be inliers anyway.

It must be noted that such a coarse reduction of the number of matches does not
smoothly degrade the quality of the overall process that exploits matches. Section 6.1
presents an example in 3D calibration where, in this case, only half of 60 cameras can be
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calibrated, whereas all 60 are calibrated based on the output of our algorithm.
Yet, feature information, besides descriptors, provides the ground for assessing the

geometric consistency of a set of features. Ifx and y match, and if � is a local af�nity
relating image 1 around x to image 2 then:

� the position � (x) should be close toy , taking scale into account;

� shape� (Sx ) should be close to shapeSy ;

� and orientation � (ox ) should be close to orientation oy .

Symmetrically, this should also be true of (y; x) for the inverse af�nity � � 1. Note that
“being close” hinges on the speci�c characteristics of the kind of feature as we will see
next.

This section also aims at identifying the most discriminative information carried by
local features and to what extent they can ef�ciently weed out outliers in the assessment
of geometric consistency.

For the rest of the thesis, since we build upon Section 4.1, we formally de�ne a feature
and its transform by a geometric mapping � as follows.

De�nition 1 (Feature de�nition and transformed feature) .

� A featurex is de�ned by the quadruple(x; Sx ; ox ; vx ), which is respectively composed
of the geometric centerx, feature shapeSx , orientation ox and descriptorvx (see
Section 4.1).

� The transform of a featurex by a geometric mapping� : R2 ! R2 is the feature
denoted as� (x) and de�ned by

� (x)
def
= ( � (x); � (Sx ); � (ox ); vx ) (4.4)

Note that the descriptor vx is assumed invariant by the transform � in Equation (4.4).
Notice that we also omit the feature kind f in the de�nition because, as stated in
Section 4.1, we only consider matches(x; y) where features x and y are of the same
kind f .

4.3.1 Expected Repeatability Scores of Feature Detector

We assume that each detector for a feature kindf comes with its associated repeatability
expectations, that depend, e.g., on the detector precision and parameters or on the
maximum expected change in images (viewpoint, illumination, etc.).

Based on this knowledge, we can test position, shape and orientation consistency
between two features � (x) and y. Let Pf be the predicate that tests such local consistency.

Informally, (x1; S1; o1; v1) and (x2; S2; o2; v2) are consistent according toPf iff shape S1

at position x1 and shapeS2 at position x2 are considered to coincide enough to possibly
correspond to the samef -feature, and so are orientationso1 and o2.
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Figure 4.6: Overlapping ellipses� (Sx ) and Sy .

Standard de�nitions for this include a threshold on the distance between the positions,
possibly taking scale into account based on� (Sx ) and/or Sy . Joint with a threshold
on the Jaccard distance between shapes� (Sx ) and Sy , it is used to estimate detector
repeatability ( M IKOLAJCZYKand SCHMID 2002). It can be combined with an orientation
angle difference threshold.

Recall that the Jaccard distance, denoted asJ , is a metric which measures the
dissimilarity between two sets in terms of similarity and diversity. Here, in particular,
given two shapesS; S0 � R2 , the Jaccard distanceJ is de�ned by

J (S; S0) = 1 �
area(S \ S 0)
area(S [ S 0)

(4.5)

In M IKOLAJCZYKet al. (2005)'s work, the Jaccard distance is used to evaluate detec-
tor's repeatability and accuracy in planar scenes. Namely, when a matchm = ( x; y)
is considered to be an inlier with respect to some ground truth homography � , i.e.
k� (x) � yk2 � 1:5 pixels, then shapes� (Sx ) and Sy should normally differ very little in
terms of Jaccard distance. Instead, we apply the Jaccard distance to any matchm = ( x; y).
� (Sx ) and Sy are not required to have almost similar centers.

Figure 4.6 illustrates the Jaccard distance between shapes� (Sx ) and Sy . Given that
shapes are here elliptic, the intersection area of overlapping shapes can be computed in
analytic form. The computation is delicate and detailed in Appendix A.

A typical threshold value for the Jaccard distance is0:4 as de�ned in M IKOLAJCZYK

et al. (2005). However, because local af�ne approximation are not very accurate, this
threshold can be loosened, e.g., to0:6. This prevents the unwanted, premature rejection
of possible matches.
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De�nition 2 (Repeatability-Precision PredicatePf of Feature Kind f ).
Let f be a kind of feature. We assume that the following information are known:

� the expected precision of position� p,

� the expected precision of shape� s and

� the expected precision of orientation angle� o.

Then predicatePf is a function which tests, for any pair of features(x1; x2) of kind f ,
position, shape and orientation consistency simultaneously and it is de�ned by:

Pf (x1; x2)
def
= ( max( dx1 (x2); dx2 (x1)) < � p )

^ ( J (Sx1 ; Sx2 ) < � s ) (4.6)

^ ( ox1 :ox2 > cos(� o) )

4.3.2 Determining Repeatability Predicates for Each Feature Kind

We propose to empirically determine predicatesPf for each feature kind f . First, we
discuss the relevance of the training datasets and how we should set predicates, given
the possible weaknesses of such datasets. Second, we detail our experimental settings
and the evaluation of detectors for different feature kinds f 2 F where

F def= f DoG+SIFT; Harris-Af�ne+SIFT ; Hessian-Af�ne+SIFT ; MSER+SIFTg

Third, we discuss the expected repeatability and precision of detectorsPf and how we
choose to setPf .

Choice of training datasets

We propose to learn predicatePf from M IKOLAJCZYKet al. (2005)'s datasets for each
considered feature kind f . These datasets are standard in computer vision and are
constantly reused to evaluate the repeatability and precision of detectors and descriptors
against a wide range of settings.

Note however that M IKOLAJCZYKet al. (2005)'s datasets only provides a repeatabil-
ity/accuracy framework that relies on rigid projective transforms: images are related by a
single homography. The learnt predicatePf , as described below, can be fairly reliable
as long as the correspondence problem involves a rigid object or at least partially rigid
object.

Regarding the matching of an object that has undergone very non-rigid deformation
in an other image, it is hard to deem if the learnt Pf is suf�ciently tolerant for such
deformations. For this reason, it is actually reasonable to set more permissive thresholds
� p, � s and � o than those estimated from MIKOLAJCZYKet al. (2005)'s datasets.

In the following, M IKOLAJCZYKet al. (2005)'s datasets are denoted by

D def= f Bark; Boat; Graf�ti ; Wall; Trees; Bikes; Leuven; UBCg:
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Each of them consists of6 images. For each datasetd 2 D and for each image index

p 2 P def= f 2; 3; : : : 6g;

a ground truth homography � d;p is provided for the image pair (1; p) of dataset d for
p 2 P .

The datasets evaluate the robustness of detectors and descriptors with respect to

1. increasing rotation and scale changes (Bark and Boat),

2. increasing viewpoint changes (Graf�ti and Wall),

3. increasing blur (Treesand Bikes),

4. increasing illumination changes (Leuven) and

5. increasing JPEG compression (UBC).

Experimental settings

For each dataset ofM IKOLAJCZYKet al. (2005), and each considered feature kind f , we
extract all possible features with the default parameters of the detectors. All features are
described with the SIFT descriptor.

It must be emphasized that the default parameters of detectors are usually such that
detected features are as numerous as possible. Some works on feature correspondence
tune empirically detectors in order to get results that favor their approach whereas we do
not do so.

For each considered feature kindf , for each datasetd 2 D , for each image pair p 2 P ,
we match a set of initial feature matches M f;d;p by matching SIFT descriptors using our
extended versionof Lowe's criterion (LOWE 2004), de�ned as a distrust scorein Section 5.2
of Chapter 5. Speci�cally, we collect all matches such that their distrust score is less than
1:2. Such a value enables to consider ambiguous matches whereasM IKOLAJCZYKet al.
(2005) discards them all by using much lower threshold values in f 0:6; 0:8g. We refer
the reader to Section 5.2 for details regarding the distrust score. We compute subsets of
correspondencesM f;d;p;i � M f;d;p de�ned by

M f;d;p;i
def= f (x; y) 2 M f;d;p j k� d;p(x) � yk2 2 [� i ; � i +1 ]g ;

where
� i 2 � def= f 0; 1:5; 5; 10g (values are in pixels.)

Note that matches in M f;d;p; 1 are considered inliers in MIKOLAJCZYKet al. (2005).
For each correspondence(x; y) 2 M f;d;p;i , we compute the projected shape� (Sx ) and

orientation � (ox ) as detailed in Appendix C where� = � d;p. We then compute the Jaccard
distance J (� (Sx ); Sy) and the cosine� (ox ):oy to get statistics about detector-descriptor
accuracy. Namely, for each subset of correspondencesM f;d;p;i , we compute:
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Feature kind Mean overlap precision � S Mean angle precision � o

DoG + SIFT 0:48 59�

Harris-Af�ne + SIFT 0:34 12�

Hessian-Af�ne + SIFT 0:21 10�

MSER + SIFT 0:19 11:5�

Table 4.1: Mean overlap precision error and orientation precision error evaluated from
likely correct matches in Mikolajczyk's datasets.

� the minimum Jaccard distance/angle difference value,

� the maximum Jaccard distance/angle difference value,

� the mean Jaccard distance/angle difference value,

� the median Jaccard distance/angle difference value,

� the standard deviation value of the Jaccard distance/angle difference.

Analysis of the repeatability and accuracy of feature detector

All our reported experiments involve feature points with known scales (DoG, Harris-Af�ne,
Hessian-Af�ne and MSER, all described with SIFT).

Experiments are summarized in Table 4.1. However, Table 4.1 actually carries too
poor information as we will see that learning Pf is more complex than it actually seems.

Detailed experiments are reported in Appendix D. From the results, the median and
mean value appears to be the most exploitable indicators and are often very similar.
However, we preferably use the median value as it localizes well the half of “good”
collected values of Jaccard distance or angle differences. Let us respectively denote the
median Jaccard distance and the median angle difference by

eJ (f; d; p; i ) def= median
(x;y )2M f;d;p;i

J (� (Sx ); Sy)

eA(f; d; p; i ) def= median
(x;y )2M f;d;p;i

arccos(� (ox ):oy):

Looking at the results, we observe that the most discriminative feature information
is clearly the feature shape. In the following, let us �x a feature kind f and a datasetd.
First, we see that the curve of the functionsp 7! eJ (f; d; p; i ) are either coarsely constant
or linear for i 2 f 1; : : : j� jg. This means the Jaccard distance are relatively stable across
image pairs ((1; p))p2P and for each interval [� i ; � i +1 ]. Note that an increasing index p
means that the matching setting (e.g., viewpoint changes, zoom+rotation, etc.) becomes
increasingly dif�cult. We see that the Jaccard distance degrades consistently linearly
for viewpoint changes or remains coarsely constant. Second, ifj 2 f 2; : : : ; j� j � 1g,
the difference function p 7! eJ (f; d; p; j ) � eJ (f; d; p; 1) becomes dramatically larger and
is quite constant. In each datasetd and each image pair p, as index i increases, the
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median Jaccard distance consistently becomes dramatically larger, which con�rms that
the discriminative power of feature shape.

In Appendix D, using DoG+SIFT features, the setM f;d;p; 1 can be reliably distinguished
from the sets (M f;d;p;i ) i 6=1 , which are considered outliers in M IKOLAJCZYKet al. (2005)
as the difference eJ (f; d; p; i ) � eJ (f; d; p; 1) is positive and signi�cantly large for i 6= 1 .

However, with af�ne-covariant features, it is consistently hard to distinguish M f;d;p; 1

and M f;d;p; 2 as the difference eJ (f; d; p; 2) � eJ (f; d; p; 1) is often very small. Fortunately,
these two sets can be discriminated much more easily from the sets(M f;d;p;i ) i � 3.

Conversely, we do not observe such results with the median angle difference and
they turn out to be unhelpful in the assessment of geometry consistency. In Appendix D,
except for DoG+SIFT features whose orientations are con�rmed to be quite inaccurate,
the angle differences eA(f; d; p; j ) � eA (f; d; p; 1) are often very low for j 2 f 2; : : : ; j� j � 1g.

Therefore, from this perspective, these results seems to clearly favor DoG+SIFT
features over af�ne-covariant features for matching in camera calibration task. Indeed,
the gap eJ f;d;p; 2 � eJ f,d,p,1 is suf�ciently large for j � 2 for only f = DoG+SIFT. It is then
easy to set a threshold on the Jaccard distance to reject matchesm =2 M DoG+SIFT;d;p;1

during the assessment of geometry consistency. Note that if we are only concerned in
object recognition, the confusion betweenM f;d;p; 1 and M f;d;p; 2 is not a serious problem
if we are to use af�ne-covariant features.

To have a better overview, we factor the results in Appendix D by computing the
averaged median over all datasetsd 2 D . Speci�cally, we compute

eJ (f; p; i ) =
1

jDj

X

d2D

eJ (f; d; p; i )

Finally, for each considered feature kind f , we plot the functions eJ (f; p; i ) for i 2
f 1; : : : ; j� j � 1g in function of the image pairs p 2 P . The plotted functions as shown
in Figures 4.7 and 4.8 con�rm our analysis made above and they will help to trade off
between accuracy and recall.

Choice of Parameters

Figures 4.7 and 4.8 show functions eJ (f; p; i ) for considered feature kind f and index
i 2 f 1; : : : ; j� j � 1g. More importantly, they are relevant as they are quite stable and
well-separated even though the image pair (1; p) increases, i.e., when the viewpoint
changes, illuminations changes, zoom and rotation and so becomes increasingly dif�cult.

Unfortunately this is not the case for eA (f; p; i ).
Now, regarding shape and orientation consistency, we choose for simplicity to use

constants � s = 0 :4 and � o = 60 � in all our experiments for all four kinds of features.
Indeed, such permissive thresholds are required for DoG+SIFT, whose shape and orienta-
tion are not very precise, and given that Pf should be able to cope with nonrigid object
deformation.

These constants are not the most optimal ones according to Figures 4.7 and 4.8 but
they discriminate well set M DoG+SIFT;d;p;1 w.r.t. (M DoG+SIFT;d;p;i ) i 6=1 . As for feature kinds
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(a) Mean of median Jaccard distancep 7! eJ (f; p; i )
for DoG+SIFT matches

(b) Mean of median angle difference p 7! eA (f; p; i ) for
DoG+SIFT matches

(c) Mean of median Jaccard distancep 7! eJ (f; p; i )
for Harris-Af�ne+SIFT matches

(d) Mean of median angle difference p 7! eA (f; p; i ) for
Harris-Af�ne+SIFT matches

Figure 4.7: Plots of functions p 7! eJ (f; p; i ) and p 7! eA (f; p; i ) are shown for feature
kind f 2 f DoG+SIFT; Harris-Af�ne+SIFT g.
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(a) Mean of median Jaccard distancep 7! eJ (f; p; i )
for Hessian-Af�ne+SIFT matches

(b) Mean of median angle difference p 7! eA (f; p; i ) for
Hessian-Af�ne+SIFT matches

(c) Mean of median Jaccard distancep 7! eJ (f; p; i )
for MSER+SIFT matches

(d) Mean of median angle difference p 7! eA (f; p; i ) for
MSER+SIFT matches

Figure 4.8: Plots of functions p 7! eJ (f; p; i ) and p 7! eA (f; p; i ) are shown for feature
kind f 2 f Hessian-Af�ne+SIFT ; MSER+SIFTg.
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f other than DoG+SIFT, they make a good separation between sets(M f;d;p;i )1� i � 2 and
(M f;d;p;i ) i> 2. Furthermore, they are shown to be practically suf�cient in camera calibra-
tion, deformable matching and pattern localization as we will see later in Chapters 6
and 7.

Alternatively, better constants can be chosen for each speci�c feature kindf . For

example, given the empirical stability of eJ (f; p; i ), it makes sense to choose

� S =
1

2jPj

X

p2P ;i 2f 1;2g

eJ (f; p; i )

� o =
1

2jPj

X

p2P ;i 2f 1;2g

eA (f; p; i )

4.3.3 Position, Shape and Orientation Consistency

Building upon predicate Pf as de�ned in De�nition 2, we introduce a predicate P� which
checks if an f -match (x; y) is geometrically consistent in terms of position, shape and
orientation with respect to a local af�nity � . As it is built upon predicate Pf , once
again, we emphasize that predicateP� takes into account the expected repeatability and
precision of the feature detector-descriptor f .

De�nition 3 (Predicate P� for Position, Shape and Orientation Consistency).
PredicateP� that assesses the consistency of a matchm = ( x; y) under an af�nity constraint
� is de�ned as

P� (x; y)
def
= Pf (� (x); y)) ^ Pf (x; � � 1(y)) : (4.7)

In words, the predicate stating that a given f -match m = ( x; y) is position-, shape- and
orientation- consistent w.r.t. af�nity � holds iff Pf holds both for (� (x); y) and (x; � � 1(y)) .

4.4 De�nitions for Higher Levels of Geometry Consistency

This section introduces several de�nitions and a terminology for both our geometry
consistent formulation and our match propagation method presented in Chapter 5. These
de�nitions gravitates around two fundamental components on which our geometry
consistent formulation is �rmly grounded. Namely, we de�ne precisely (1) the notion of
neighboring matches and (2) the notion of region boundary. They will also play a key
role in our match propagation method.

4.4.1 Pairwise Scale-Sensitive Consistency Score Function.

Let us �rst introduce a relative scale-sensitive consistency score as follows. Given a match
m = ( x; y) in M , the consistency score of a matchm0 = ( x0; y0) 6= m with respect to m is
the quantity de�ned by

� m (m0) def=
min(dx (x0); dy(y 0))
max(dx (x0); dy(y 0))

2 [0; 1] (4.8)
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This score is motivated by the following observation. If two matches m = ( x; y) and
m = ( x0; y0) are inliers, then it is expected that their scale-sensitive distancedx (x0) and
dy(y 0) are very similar. In particular, such similarity is ef�ciently translated by the fact
that the ratio between these distances should be close to1, which is what � m expresses.
Because themin and max functions are involved in the de�nition, the score � m is bounded
in [0; 1] and it increases as the geometric scale-sensitive consistency gets better. Once
again, note that consistency score for DoG features cannot be expected to be very high,
especially in signi�cant viewpoint changes, because their circular shapes can only account
for isotropic scale changes as opposed to af�ne-covariant features.

Since the scale-distance consistency score� m is de�ned relatively to match m, we
introduce a symmetrised scale-sensitive score which additionally is more robust. It is
de�ned as follows

8(m; m0) 2 M � M ; � (m; m0) def= min
�
� m (m0); � m0(m)

�
2 [0; 1] (4.9)

4.4.2 Match Neighborhood Function

Before de�ning the notion of match neighborhood, let us �rst introduce the nearest
neighbor function de�ned on a set of features.

De�nition 4 (K Nearest Neighbor Function).
Let X be a set of features andK > 0 be a positive integer. The neighbor function
N X

K : X ! 2X maps anyx 2 X to the setN X
K (x) of featuresx0 2 X n f xg such that

position x0 is among theK nearest neighbors of positionx with respect to the Euclidean
distance.

Now, based on these previous de�nitions, we introduce the match neighborhood
function as follows.

De�nition 5 (Match Neighborhood Function) .
Let K be a positive integer and� 0 be a real positive2 [0; 1[ a. The match neighborhood
function NK;� 0 : M ! 2M maps any potential matchm = ( x; y) 2 M to the set of potential
matchesm0 = ( x0; y0) 2 M de�ned as follows

NK;� 0 (m) =
�

m0 2 M n f mg

�
�
�
�

�
x0 2 N X

K (x) _ y0 2 N Y
K (y)

�
^

� (m; m0) � � 0

�
(4.10)

a� 0 may also depend on the type of featuref used.

Note that NK;� 0 is de�ned on feature pairs, not on single features. Put into words, a
match m0 = ( x0; y0) is a neighbor of m = ( x; y) if and only if either x0 is among the
K nearest neighbors ofx or y0 is among the K nearest neighbors ofy, and the pair of
matches(m; m0) is suf�ciently consistent.

The match neighborhood NK;� 0 (m) is controlled by two parameters K and � 0. These
parameters play an important role in the match propagation, which will be presented later.
If K is too small and/or � 0 is close to1, NK;� 0 (m) will have a small cardinality, causing a
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premature termination of the match propagation. Conversely, if K is too large and/or
� 0 is too small, the match neighborhood NK;� 0 (m) of m does not have a geometrically
sound meaning anymore.

Because the match neighborhood functionNK;� 0 is not symmetric, we construct a
symmetrised version as follows

bNK;� 0 (m) def= NK;� 0 (m) [
�

m0 j m 2 N K;� 0 (m0)
	

(4.11)

As a result, this ensures that

8(m; m0) 2 M ; m 2 bNK;� 0 (m) () m0 2 bNK;� 0 (m0) (4.12)

However, this is mostly of theoretical interest. As illustrated in our experiments in
Subsection 5.8.1 in Chapter 5, usingNK;� 0 as opposed to bNK;� 0 yields almost as good
results while being signi�cantly faster.

Let us conclude this subsection with an important remark. Note that our K nearest
neighbor function in De�nition 4 does use the Euclideandistance instead of the scale-
sensitive distancedx . The main good reason that advocates such choice is the following.

A too strong anisotropy of distancedx would force a dx -based neighborhood to be
arbitrarily thin and long, which does not make sense to evaluate a local af�nity around
x from a such neighborhood. Because our propagation method will be based on the
estimation of the local af�nity around x from match triples in NK;� 0 (x), these triples must
be “nondegenerate”, i.e., basically not aligned (we specify this notion later in Section 5.3
of Chapter 5). For this, it is better to use the Euclidean distance than an anisotropic
distance. More speci�cally, if the anisotropy of distance dx is very strong, then the set
N X

K (x) of features are such that positionsx0 are almost aligned. As a result, this will
harm the quality of the local af�nity we try to estimate around x. Such anisotropy does
arise commonly with MSER features.

However, the scale-sensitive distance is used to de�ne a pairwise scale-sensitive
consistency which is expressed by score� and used in the de�nition of NK;� 0 .

Finally, note that the scale-sensitive distancedx depends of feature x, which also
raises nontrivial implementation issues regarding ef�cient point query search.

4.5 Second Level of Consistency: A Fourth Order Constraint
for Neighborhood Af�ne-Consistency

We recall that the feature correspondence problem relies on two kinds of assumptions.

1. If (x; y) is a good match, the image around x should be similar to the image
around y. This photometric criterion translates into features having “close enough”
descriptors.

2. Given a set of good matches(x i ; yi )1� i � n , the relative position of feature x i w.r.t.
other features (x j ) j 6= i is expected to be similar to the relative position of yi w.r.t.
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other features (yj ) j 6= i . This criterion is mainly geometric, i.e., based on the relative
coordinates of the features. But it also has an indirect, photometric �avor as the
feature shapes and orientations also have to agree when relatingx i and yi in the
context of (x j ; yj ) j 6= i , not just the position.

We have elaborated on the �rst assumption in Section 4.2. The second assumption
only holds locally. In particular, by letting mi = ( x i ; yi ) for 1 � i � n, the relative
agreement of mi should hold at least for some of the matches

(mj ) j 6= i = bNK;� 0 (mi )

de�ned in Equation (4.11) (see also De�nition 5).
Furthermore, in the second assumption, a set of consistent matches(x i ; yi )1� i � n can

be de�ned as a set of matches locally related by a local homography (M IKOLAJCZYKand
SCHMID 2002) to relate image neighborhoods. In practice, if image neighborhoods are
related by a locally smooth mapping � , it is suf�cient to approximate it with an af�nity.
This makes sense because an af�ne approximation is a �rst-order Taylor approximation
of � . In the end, such an approximation is not only computationally ef�cient but also
little affects the quality of the results.

A way to construct a good estimate of the local af�nity around a correspondence mi

is to pick a triple of correct matches in the potential match neighborhood bNK;� 0 (mi ).
The estimate of the local af�nity is then determined from the corresponding position
(x i ; y i )1� i � 3. We also stress that searching in the match neighborhoodbNK;� 0 (mi ) will
encourage choosingclosematches(mi )1� i � 3 to m in the triple construction so that the
estimated local af�nity remains physically meaningful.

Here, we make an important assumption: a correct matchmi is consistent w.r.t. at
least one local af�nity de�ned from a triple of correct matches (ma(i ) ; mb(i ) ; mc(i ) ) in
bNK;� 0 (mi )3. As the phrasing is rather tedious and long, we will shorten it by just saying:

“mi is consistent w.r.t. at least one triple (ma(i ) ; mb(i ) ; mc(i ) )”.
Note that a single matchmi can be consistent w.r.t. many almost similar local af�nities.

This is the case when the feature mapping is projective and also when the matching
involves curved surfaces. This means that a matchmi can be potentially consistent w.r.t.
many triples of matches

�
ma(i ) ; mb(i ) ; mc(i )

�
.

The goal of this section is to formalize what it means for a match mi to be consistent
w.r.t. to a triple

�
ma(i ) ; mb(i ) ; mc(i )

�
.

4.5.1 Local Af�ne-Consistency within a Match Neighborhood

We �rst introduce the following notation. Let (mi )1� i � 3 = ( x i ; yi )1� i � 3 be a triple of
matches. We de�ne the associated af�nity A((mi )1� i � 3) by the unique af�nity � that
mapsx i in image 1 to y i in image 2 for i = 1 ; 2; 3, i.e.,

� = A ((mi )1� i � 3) () 8 i 2 J1; 3K; � (x i ) = y i (4.13)

Note that the af�nity A((mi )1� i � 3) associated to a triple of matches(mi )1� i � 3 only makes
sense if the positions(x i ; y i ) are not degenerate, i.e., if the points are not aligned, and
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Sx1

Sx2

Sx3

Sx4

� � 1(Sy4 )

Sy1

Sy2

Sy3

Sy4 � (Sx4 )

� = A(m1; m2; m3)

Figure 4.9: Af�ne consistency of match m4 w.r.t. � = A(m1; m2; m3). The agreement
between orientations is also taken into account but is not represented here for readability.

more generally if the triangles corresponding to the feature triples in both images do not
have too sharp angles (we specify minimum angle values later in Section 5.3 of Chapter 5).
As stated earlier, triples are searched in some match neighborhoodbNK;� 0 (m) and this
is why we argued that using the Euclidean distance instead of a relative scale-sensitive
distance dx in De�nition 4 does a better job to avoid choosing nondegenerate triples (see
end of Subsection 4.4.2). Note also that, although we use the term triple, the match
order is not relevant. A triple is actually a set with 3 elements, hence with no repetition
(3 different matches).

Now, we de�ne the consistency of a given match m w.r.t. a triple (mi )1� i � 3 2
bNK;� 0 (m)3 as follows.

De�nition 6 (Af�ne Consistency of a Match with respect to a Match Triple) .
We say thatm is af�ne-consistent with matches(mi )1� i � 3 iff (mi )1� i � 3 is not degenerate
and P� (m) holds for � = A((mi )1� i � 3).

Figure 4.9 illustrates this concept.

As stated previously, we will de�ne a consistent region not by a single local af�nity
but possibly by many local af�nities. This particular setting provides a valuable �exibility
allowing a region to adapt to substantial non-af�ne transformations. Later, our results will
show that our approach is also applicable to deformable object matching (cf. Section 6.2).

4.5.2 Local Af�ne-Consistent Quadruples of Matches

In this subsection, we move to the central notion that �rmly grounds our geometry
consistent formulation as well as our match propagation method. Namely, we de�ne an
af�ne-consistent quadruple of matches as follows.
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De�nition 7 (Af�ne-Consistent Quadruple) .
A quadruple of matchesq = ( mi )1� i � 4 is af�ne-consistent iff

� 9 i 2 1� i � 4; 8j 2 f 1; : : : ; 4g; j 6= i ) mj 2 N K;� 0 (mi ).

� for all 1 � i � 4, mi is af�ne-consistent with(mj )1� j � 4;j 6= i .

For brevity, let us use the following notations:

� we denote byA� ( q) the predicate that checks if the quadrupleq of matches satis�es
such property.

� Letting m be a match andt be a triple of matches, we write equivalently

A� ( q) = A� ( m; t ) ;

where we de�ne the quadrupleq asq = f mg [ t.

As for triples, the match order in a quadruple is not relevant. It is actually a set of
cardinality 4.

We stress the importance of the two conditions in the local consistency. The �rst
condition ensures that the geometric consistency makes sense only locally, i.e., within a
small neighborhood of matches. Note that we useNK;� 0 instead of bNK;� 0 in De�nition 7.
This is mainly becauseNK;� 0 is more practical and bNK;� 0 is mainly of theoretical interest.
In any case, if the �rst condition applies, then, by construction of bNK;� 0 , we have

8(i; j ) 2 f 1; : : : ; 4g; j 6= i ) mj 2 bNK;� 0 (mi ):

The second condition enforces the robustness of the geometric consistency.
Af�ne-consistent quadruples provide a solid ground to de�ne what we call a consistent

region in the next section. We will see that they provide good �exibility and robustness so
that consistent regions are allowed to have a moderate amount of nonrigid deformation
e.g., in object matching: when we want to match different views of some curved magazine
which has undergone a moderate folding, a single region should cover the largest surface
of the deformed magazine across different views, not just small almost rigid fragments.

4.6 Third Level of Consistency: Region Af�ne-Consistency

Three geometric ideas motivate our formulation of the region af�ne consistency. They
are as follows.

1. A region R is geometrically consistent if the locally af�ne consistency holds for
any match m 2 R, i.e., for any match m 2 R, there exists a triple of matchest in
bNK;� 0 (m) \ R for which A� ( m; t ) holds.

2. But this is just a suf�cient condition. The union of two independent but geometry-
consistent regions would then also be geometry-consistent. We are actually inter-
ested in “homogeneous” consistency. More precisely, a regionR is viewed as asingle

51



CHAPTER 4. GEOMETRY CONSISTENCY INFEATURE CORRESPONDENCE

connected componentof matches, i.e., for any different pair of matches (m; m0) 2 R2,
there exists a chain(m1;i ; m2;i ; m3;i ; m4;i )1� i � n of af�ne-consistent quadruples from
m to m0 such that m = m1;1, m4;n = m0 and m4;i = m1;i +1 for 1 � i < n .

3. In most 3D scenes, feature displacements are not homogeneous but related to
the speci�c depths (and re�exion properties) of the observed objects. This is
also the case when objects move. Geometric consistency is thus only expected in
independent image regions, i.e., separate sets of features, not on a single region
covering the whole image.

To begin with, let us bring a few more notations and de�nitions. De�ne the set of
explanatory triples of a match m as

T (m) def=
n

t 2 bNK;� 0 (m)3 j A� ( m; t )
o

: (4.14)

Then, we extend the de�nition to a region R � M as follows

T (R) def=
[

m2 R

T (m) (4.15)

Going back to af�ne-consistent quadruples, we de�ne several sets of af�ne-consistent
quadruples to m by reusing these de�nitions:

Q(m) def= ff mg [ t j t 2 T (m)g

Q(X ) def=
[

m2 X

Q(m)

(4.16)

(4.17)

We now state some trivial observations that will be useful in later proofs.

Lemma 1. If X and Y be two sets of matches such thatX � Y , then

T (X ) � T (Y ) (4.18)
[

t2T (X )

t �
[

t2T (Y )

t (4.19)

The proofs are easy and left to the reader.

4.6.1 Region Af�ne-Consistency and Explanatory Networks

We now formalize the region af�ne-consistency with the de�nitions introduced in the last
section. Given a matchm, we can retrieve explanatory triples t 2 T (m) of m. Then, the
set of explanatory triples of a triple t = ( m1; m2; m3) are the set of triples that explains at
least one of the matchmi in the triple t, i.e.,

T (t) = T (m1) [ T (m2) [ T (m3)
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Now, going further by induction, we can somehow recover a “tree”, more precisely, a
network of ancestor triples that indirectly explain match m. Namely, for that purpose,
we introduce the set of “ancestor triples” at depth n that directly or indirectly explain a
given match m.

T 1(m) def= T (m)

8n 2 N; T n+1 (m) def= T (
[

t2T n (m)

t)

(4.20)

(4.21)

where
[

t2T n (m)

t is a region, i.e., the set of matches used inT n (m). We also observe that

8(i; j ) 2 N?2; i < j ) T i (m) � T j (m) (4.22)

The rationale behind such inductive de�nition is that it lets us catch a glimpse of the
region growing idea. Thus, we de�ne the explanatory network of a match m as

E(m) def=
[

n2 N?

T n (m): (4.23)

According to the ideas sketched up previously, we �nally de�ne an af�ne-consistent
region as follows.

De�nition 8 (Af�ne-Consistent Region) .
A regionR is af�ne-consistent iff we have the generative property:

 
\

m2 R

E(m)

!

\ R3 6= ; (4.24)

For convenience, we denote the predicate checking for a given regionR that Equation (4.24)
holds byA�( R).

Equation (4.24) means that the restricted explanatory networks (E(m) \ R3)m2 R all have
in common one triple t at least. If we consider such a triple t = ( m1; m2; m3), t can be
used directly or indirectly explains any m 2 R, i.e., there always exists a chain of af�ne-
consistent quadruples that joinsm1 to any m 2 R. This is why region R can begrown
from such a triple t of matches by successive chaining of af�ne-consistent quadruples.
Finally, let us also observe thatjRj � 4.

4.6.2 Maximal Af�ne-Consistent Region and Region Growing

In De�nition 8, a region R is af�ne-consistent if it can be generated from an af�ne-
consistent quadruple q. With the last property of the region af�ne-consistency, some
region growing procedure can be indeed retrieved.

Namely, the match propagation process will operate on theboundary @Rof a consis-
tent region R. It is de�ned as follows.
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De�nition 9 (Region Boundary).
The boundary@Rof a regionR is the set of neighbors of matches inR, excludingR itself,
i.e.,

@R
def
=

n
m0 2 M n R

�
�
� 9m 2 R; m0 2 bNK;� 0 (m)

o
(4.25)

def
=

 
[

m2 R

bNK;� 0 (m)

!

n R (4.26)

The rationale behind this de�nition is that our match propagation seeks to grow the
current region R iteratively by adding “consistent” matches in the boundary @R. Eventu-
ally, the region R becomes “maximal” when our match propagation method cannot add
anymore “consistent” match in the boundary @R. We will specify the notions in quotes in
the next sections.

De�nition 10 (Region Growing).
De�ne the af�ne-consistent boundary@A� R of R as the subset of matchesm of @Rsuch that
there exists a triple of matchest 2 R3 that explainsm, i.e.,

@A� R =
�

m 2 @Rj T (m) \ R3 6= ;
	

(4.27)

= f m 2 @Rj 9t 2 T (m); t � Rg (4.28)

= f m 2 @Rj 9q 2 Q (m); q n m � Rg (4.29)

Then, the region growing is a mappingG de�ned

G : 2M ! 2M

R 7! R [ @A� R (4.30)

Let us also state an important property.

Proposition 1. If R be an af�ne-consistent region, thenG(R) is also af�ne-consistent.

Proof. Let R be an af�ne-consistent region. We assume that@A� R 6= ; , otherwise region
G(R) = R is af�ne-consistent.

Let us show that. 0

@
\

m2 G(R)

E(m)

1

A \ G(R)3 6= ;

We have the following hypotheses
 

\

m2 R

E(m)

!

\ R3 6= ; (R is af�ne-consistent) (4.31)

G(R) = R [ @A� R (by de�nition of function G) (4.32)
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Let t0 be a triple in

 
\

m2 R

E(m)

!

\ R3. Thus, t0 2 G(R)3 becauseR � G(R) (cf.

Equation (4.32)). Now, �x m 2 @A� R. It remains to show that t0 2 E(m). Therefore,
T (m) \ R3 6= ; and let t be a triple in T (m) \ R3. As t is also a set of three distinct
matchesm0 in R. Now we observe that

8m0 2 t; T (m0) � T 2(m): (4.33)

Thus, by induction, it is easy to show that

8n 2 N?; T n (m0) � T n+1 (m) (we prove this at the end.) (4.34)

Consequently,E(m0) � E (m), because of the de�nition of the network of explanatory
triples E. But by de�nition of t0, we observe that t0 2 E(m0). This holds for any m0 2 t
and therefore t0 2 E(m). That means t0 2 E(m) for both any m 2 @A� R and for any
m 2 R, by hypothesis, which concludes the proof.

To fully terminate the proof, we prove Proposition (4.34) by induction. First, let us
notice that Proposition (4.34) holds for n = 1 , since it corresponds to Equation (4.33).
Suppose now that Proposition (4.34) holds for somen 2 N?, let us show it still holds for
n + 1 . For this, denote

X = T n (m0) and Y = T n+1 (m):

Proposition (4.34) holds for n, which means X � Y . Then, with Property (4.19), we
observe that

T (
[

t2 X

t) = T (
[

t2 Y

t)

which is, by de�nition

T n+1 (m0) = T n+2 (m)

This concludes the proof by induction.

Now, using the notation G � G � : : : G| {z }
n times

= Gn for successive function composition and

letting G0 = Id , we have for any af�ne consistent region R

8i; j 2 N� ; i < j ) Gi (R) � Gj (R) (4.35)

G1 (R) def= lim
n!1

Gn (R) =
1[

n=0

Gn (R) � M (4.36)

8n 2 N; jG0(R)j +
n� 1X

i =1

j@A� Gi (R)j = jGn (R)j (4.37)
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4.6.3 Maximal Af�ne-Consistent Region and Properties

As the feature correspondence problem seeks to �nd the maximum number of matches,
it is natural to look for maximal af�ne-consistent regions, which we formally de�ne as
follows.

De�nition 11 (Maximal Af�ne-Consistent Region) .
We say that an af�ne-consistent regionR is maximal if and only if

8R0 � M ; A�( R0) ^ (R � R0) ) R = R0 (4.38)

Necessary condition. The following proposition states a practical necessary condition
in the maximality of an af�ne-consistent region R.

Proposition 2. For any af�ne-consistent regionR � M , if R is maximal then

@A� R = ; : (4.39)

Proof. Let R be a maximal af�ne-consistent region. Let us suppose that@A� R 6= ; .
Since@A� R � M n R, R is strictly included in G(R), which is also an af�ne-consistent
region because of Proposition 1. However, this is impossible because it contradicts the
maximality of R.

Let us also observe that an empty af�ne-consistent boundary is equivalent to the
following standpoints.

@A� R = ; (4.40)

() R = G(R) (4.41)

() 8 m 2 @R;8t 2 T (m) \ R3; : A� ( m; t ) (4.42)

The equivalences are easily checked from the de�nitions of the af�ne-consistent boundary
and of the function G.

Besides, the necessary condition (4.39) naturally leads to try constructing maximal
af�ne consistent region by growing an af�ne-consistent region R = G1 (t) from a seed
triple t (cf. Chapter 5.). Empirically, ensuring that @A� R = ; produces a quasi-maximal
af�ne-consistent region R as our experiments will show in Section 5.8.1 of Chapter 5 and
in Chapter 6.

Suf�cient condition? Actually, the necessary condition (4.39) is not suf�cient to ensure
maximality of the af�ne-consistent region. To see that, let R1 and R2 be two af�ne-
consistent regions. Let us suppose thatR1 and R2 are such that

� R1 and R2 are quadruples,

� the af�ne-consistent boundaries @A� R1 and @A� R2 are empty,

� their intersection R1 \ R2 is non-empty and is a match singletonR1 \ R2 = f mg.
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We will show that R1 and R2 are not maximal by showing that the union R1 [ R2 is also
an af�ne-consistent region. Let us write for i 2 f 1; 2g,

Ri = f ai ; bi ; ci ; mg:

Let us show t1 = f a1; b1; c1g 2 E(m) for all m0 2 R1 [ R2. Indeed, we observe the
following facts.

� t1 2 T (m) � E (m) becauseR1 is an af�ne-consistent quadruple.

� For any m0 2 R1 n f mg, t1 2 T 2(m0) � E (m0). Indeed, let us just show this, for
example when m0 = a1. Then the triple

ta1

def= f b1; c1; mg 2 T (a1):

Therefore, ast1 2 T (m),
t1 2 T 2(a1) � E (a1);

by using Equation (4.21) and observing that m 2 ta1 .

� For any m0 2 R2 n f mg, t1 2 T 2(m0) � E (m0). We reuse the same technique as
above. Let us show this, for example whenm0 = a2. Then the triple

ta2

def= f b2; c2; mg 2 T (a2):

Therefore, ast1 2 T (m),
t1 2 T 2(a2) � E (a2):

� Finally, t1 2 R3
1 � (R1 [ R2)3. Therefore, the following holds

0

@
\

m02 R1 [ R2

E(m0)

1

A \ (R1 [ R2)3 6= ; :

R1 \ R2 is thus af�ne-consistent by de�nition.

As a result, we have shown thatR1 [ R2 is af�ne-consistent.

4.7 Problem Formulation

The con�dence in the matches of a maximal af�ne-consistent region is related to the
region cardinality. The larger the cardinality, the more likely correct the region is.
Generally, a maximal af�ne-consistent region with large cardinality also has a large
spatial extent. However, correct matches can be in maximal af�ne-consistent regions of
small size, e.g., because feature displacements are not homogeneous but related to the
speci�c depths, or they are occluded image parts. But we found it to be quite rare in
our experiments. Therefore, we choose to eliminate small regions by using an absolute
threshold on their cardinality.

We can now state our feature matching problem (in its �rst variant) as follows:
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Problem Formulation:
Find the maximum number of matches inM that are in af�ne-consistent regions of
suf�cient size.

This comes down to �nding maximal af�ne-consistent regions of suf�cient size. And
algorithmically, we have seen that maximal af�ne-consistent regions can be generated
from seed triples.

Ambiguity Freedom. Different tasks have different requirements regarding match am-
biguity. For instance, whereas repeated pattern detection overtly calls for ambiguous
matches, scene tracks used for estimating camera calibration parameters require unam-
biguous matches. We can de�ne other variants of our feature matching problem that
additionally require ambiguity-freedom.

In particular, in matching for camera calibration, a second variant consists in �nding
the largest number of maximally consistent regions that are ambiguity-free, because the
goal is to resolve the ambiguity globally, i.e., a feature x in image 1 can only be matched
to one y in image 2. On the contrary, for pattern matching, a third variant of the problem
only requires that each region of this set of regions be ambiguity-free, without imposing
global uniqueness. The problem formulation is well-suited for pattern detection, e.g.
window detection tasks.

More formally,

� a match (x; y) is unambiguous inM iff for all (x0; y0) 2 M n f (x; y)g, x 6= x0 and
y 6= y0;

� a region R is ambiguity-freeiff for any match m 2 R, m is unambiguous in R n f mg,
i.e., equivalently, iff for any two matches (x; y) and (x0; y0) in R, then x 6= x0 and
y 6= y0;

� and a set of regionsR is ambiguity-freeiff R is ambiguity-free for all R 2 R .
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Chapter 5

Sequential Fourth Order Match
Propagation

Due to the highly combinatorial nature of the optimization problem described in Chap-
ter 4, we propose an approximate algorithm and a set of heuristics that ef�ciently �nds a
large number of matches in M that are in maximal af�ne-consistent regions of suf�cient
size, possibly ambiguity-free. Although consistent regions grown with our approximate
algorithm cannot be guaranteed to be maximal, our experiments show that our algorithm
still yields nearly maximal af�ne-consistent regions. (cf. Chapter 6). We �rst describe the
general structure of the algorithm, and then develop pruning heuristics.
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5.1 Single Match Propagation Algorithm

The algorithm follows a region growing scheme. Given an initial region consisting of a
triple of potential matches, we iteratively add more matches into the region provided they
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Algorithm 5.1 Region growing from a seed matchm1.

1: procedure GROWREGION(m1; K; � 0)
2: t  ConstructTriple(m1; K; � 0) // cf. algo 5.3
3: R  t // Initialize R with seed
4: @R 

[

m2 t

�
bNK;� 0 (m) n R

�
// Initialize region boundary

5: keep @Rsorted by increasing distrust score
6: while @R6= ; do // Loop while the region boundary@Ris not empty
7: @A� R  ;
8: // Lines 8-11 is detailed in Algorithm 5.2
9: for each (m; t ) 2 @R� R3 do

10: if A�( m; t ) then
11: @A� R  @A� R [ f mg
12: end if
13: end for
14: // Check if region R terminated its growth
15: if @A� R = ; then
16: break // Leave the loop to return the regionR
17: end if
18: // Grow R
19: R  R [ @A� R
20: // Update the region boundary@R
21: for m 2 @A� R do
22: @R @Rn f mg

23: @R @R[
�

bNK;� 0 (m) n R
�

24: end for
25: end while
26: return R // R is maximal af�ne-consistent
27: end procedure

are geometrically consistent with some triple of matches already in the region. When no
more match can be added, the region is considered as valid iff it is large enough. More
regions can be grown by re-running the algorithm on the remaining potential matches.
See algorithm 5.1 for details.

Besides, if unambiguity is required, any match(x; y) is checked for ambiguity before
being added to a growing region R (line 19 of Algorithm 5.1). If there already is a match
(x; y0) or (x0; y) in R, then (x; y) is removed from the remaining potential matches and
associated toR, but without contributing to jRj.

The key ingredients of the algorithm are additional heuristics for growing the regions,
that prevent a combinatorial explosion and only explore a limited number of pertinent
cases, most likely matches being tried �rst. They enable a selective evaluation of concis-
tency checks, in particular the shape consistency which can be computationally intensive.
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5.2. Ordering and Limiting Potential Matches.

They are presented in the following.

5.2 Ordering and Limiting Potential Matches.

Matches (x; y) are ordered by increasing distrust score, de�ned as follows. LetD be
a distance in the descriptor space, e.g., Euclidean distance for SIFT. For a descriptor
vx 2 VX , let vy1 ; vy2 2 VY be respectively its nearest neighbor (1-NN) and its second
nearest neighbor (2-NN). The distrust score (or Lowe score (LOWE 2004)) of match
m = ( x; y) is de�ned as

L X !Y (x; y) =
D(vx ; vy1 )
D (vx ; v 2

y)
� 1 (5.1)

The smaller the scoreL X !Y (m) is, the less ambiguous matchm is. Usually, a set of
reliable matches is obtained with matchesm such that L X !Y (m) � `. Typically, ` ranges
in [0:6; 0:8]. However, doing so discards ambiguous matches. To avoid it, the distrust
score is extended as follows:

L X !Y (x; y) =

8
<

:

D (v x ;v y )
D (v x ;v y2 ) � 1 if vy = vy1

D (v x ;v y )
D (v x ;v y1 ) � 1 if vy 6= vy1

(5.2)

It quanti�es an ambiguous match (x; y) by the relative proximity of vy with respect to its
1-NN. We actually use the symmetric distrust score de�ned as

L(m) = min
�

L X !Y (m) ; L Y!X (m)
�

: (5.3)

Note that using max rather than min would delay too much the analysis of 1-to-many
ambiguities. In our work, M is the set of matchesm such that L (m) � `, where ` can
be greater than 1. Consequently,M is much more ubiquitous than with the usual Lowe
criterion, for a better support of repetitive patterns.

The distrust score is illustrated in �g. 5.1.
With this score, ambiguous matches tend to be ordered after unambiguous matches.

Moreover, the search may be ef�ciently pruned by putting an upper bound on distrust.
Ambiguous matches with larger distrust are excluded right from the start and are never
considered for seeding or growing a region. They thus do not appear in the �nal selection
of matchesR. The resulting match ordering and �ltering is used to always select the best
match candidates �rst, either for constructing a region seed, i.e., a match quadruple, or
for growing a region. (Also, because of the greedy strategy, we only consider matches
that are not currently assigned to a region.)

5.3 Local Search for Region Growing

When trying to grow a region R with a match m = ( x; y) 2 @R(line 8 of Algorithm 5.1),
we look for speci�c triple of matches (m0; m00; m000) 2 (N̂K;� 0 (m) \ R)3 such that the
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Figure 5.1: Illustration of the distrust score L . Nearest neighbors f vyi g
5
i =2 in Y to

vx lie in the annulus with center vx , inner radius r1 = D(vx ; vy1 ) and outer radius
r2 = `:D (vx ; vy1 ). As a reminder: L (x; y1) � 1 and 1 � L (x; y i ) � ` for i � 2.

Algorithm 5.2 Exhaustive Local Search for Region Growing.

1: procedure LOCALSEARCH(R; @R)
2: keep @Rsorted by increasing distrust score
3: for match m = ( x; y) 2 @Rdo
4: for triple t 2 ( bNK;� 0 (m) \ R)3 do
5: if t sati�es Equations (5.4) and (5.5) and A�( m; t ) then
6: return (m; t )
7: end if
8: end for
9: end for

10: return ;
11: end procedure

triangles (x0; x00; x000) and (y 0; y 00; y 000) are such that

�
x0 6= x006= x0006= x0

y0 6= y006= y0006= y0 ; (5.4)

and that their two most acute angles (�; � ) satisfy the following conditions:

�
� < �;

� > � 1 ; � > � 2
(5.5)

The nondegeneracy conditions in Equations (5.4) and (5.5) ensures that the local af�nity
around match m can be properly estimated. We call such match triple(m0; m00; m000)
nondegenerate. We empirically set in all our experiments � 1 > 15� and � 2 > 25� .
Speci�cally, line 7 of algorithm 5.1 actually calls algorithm 5.2 to iterate over all triples
of matches that provides af�ne consistency to candidate matchm.
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5.4. Sidedness Constraint

Figure 5.2: Geometric consistency with respect to sidedness constraints.

5.4 Sidedness Constraint

Optionally, we can also introduce a sidedness constraint that, experimentally, is very
ef�cient in pruning the search and more ef�cient than the one in F ERRARIet al. (2004).

The general idea is that if m1 = ( x1; y1) and m2 = ( x2; y2) are good matches, then the
directed lines ��!x1x2 and ��!y1y2 should de�ne corresponding half spaces. More formally,
given two points u; v 2 R2, the half space on the left of �!uv is E(u; v ) = f w 2 R2 j
det(v � u; w � u) > 0g. A match (x; y) is side-consistentw.r.t. matches (x1; y1); (x2; y2)
iff x 2 E(x1; x2) , y 2 E(y1; y2). When evaluating a match candidatem for growing a
region R, m can be excluded if there arem1; m2 2 R such that m is not side-consistent
w.r.t. matches m1; m2.

For robustness, the sidedness consistency applies only to matches(x; y) such that x
(resp. y ) is not to close to line ��!x1x2 (resp. ��!y1y2). This prevents spurious match rejections
caused by non-af�ne transformations or due to the imprecision of feature localization.
For ef�ciency, we limit consistency checks for a region R = ( x i ; yi )1� i � n to the contour
edges of the convex hulls associated respectively to(x i )1� i � n and (y i )1� i � n . We also
impose that at any step of the region growing, the contour vertices of the convex hull of
the points already matched in X should correspond to the contour vertices of the convex
hull of the points already matched in Y. Fig. 5.2 illustrates these two points.

The sidedness-checking procedure inFERRARIet al. (2004) operates over all pairs of
matches in a given regionR, and thus performs O(jRj2) line checks. Our sidedness check
operates only on the perimeter of R, rather than the whole area. The number of line
checks is thus linear in the number of vertices on the contour of the convex hull, which is
in practice O(

p
jRj).
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Algorithm 5.3 Triple construction from seed match m1.

1: procedure CONSTRUCTTRIPLE(m1; K; � 0)
2: t  ;
3: pick match m2 2 bNK;� 0 (m1) n f m1g with the best distrust score.

4: C  
�

bNK;� 0 (m1) [ bNK;� 0 (m2)
�

n f m1; m2g

5: sort C by increasing distrust score
6: for m3 2 C do
7: t  (m1; m2; m3)
8: if triple t satis�es Equations (5.4) and (5.5) then
9: return t

10: end if
11: end for
12: return ;
13: end procedure

5.5 Multiple Match Propagations Run Sequentially

Until now we have focused on the growth of a single region, we now describe our strategy
to �nd all the maximal af�ne-consistent regions. First, to avoid a costly combinatorial
search for the search of initial match triple, we propose to use Algorithm 5.3 to build
an af�ne-consistent triple that is likely to be a good seed as follows. Given a matchm1,
matchesm2 and m3 are in the neighborhood of m1 such that they have the lowest distrust
score and the triple (m1; m2; m3) is nondegnerate. This simple strategy turns out to be a
very powerful heuristics in practice. In particular, even when dealing with challenging
viewpoint change, this heuristic search still �nds very good triples from which a maximal
af�ne-consistent region can be grown.

Then we propose Algorithm 5.4 to grow multiple regions. Essentially, Algorithm 5.4
sequentially tries to grow sequentially from most reliable seed matches. If a regionR has
grown successfully, then we �lter out all matches in the region R so that they are not
used as potential seed matches. Hence, we avoid re-growing the same regionR and try
to grow other regions instead.

5.6 Ef�cient Approximate Algorithms

In the previous sections, we have presented algorithms that implements our match propa-
gation procedure. However these are not ef�cient because both (1) the exhaustive local
search of af�ne-consistent quadruple in Algorithm 5.2, and (2) the match neighborhood
function bNK;� 0 are computationally expensive.

As a result, let us see that Algorithm 5.3 becomes Algorithm 5.6, which basically just
replaces the computationally expensive symmetric match neighborhood bNK;� 0 by the
cheaper nonsymmetric oneNK;� 0 .

Next, we will thus propose two robust and ef�cient approximating algorithms in the
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Algorithm 5.4 Multiple region growing.

1: procedure GROWMULTIPLEREGIONS(M ; N; �; K; � 0)
2: R  ; // Initialize set of maximal af�ne-consistent regions
3: for n = 1 ; : : : ; N do
4: Select the next best matchm 2 M such that m =2

[

R2R

R.

5: R  GROWREGION(m; K; � 0) // cf. Algorithm 5.1
6: if jRj > � then // Add region R if it has reached critical cardinal size.
7: R  R [ R
8: end if
9: end for

10: return R
11: end procedure

following.

5.6.1 Approximate Local Search

The LOCALSEARCH in Algorithm 5.2 is in the worst case O(K 3) because a brute-force
search is used to �nd an af�ne-consistent quadruple. In practice, it is computationally
costly. Its computational burden can be reduced signi�cantly by approximating Algo-
rithm 5.2 by Algorithm 5.7 with little performance degradation. In particular, for a given
m 2 @R, Algorithm 5.7 does not enumerate all possible valid triple t 2 T (m) \ R3, it
only picks one nondegenerate triple t 2 ( bNK;� 0 (m) \ R)3 and we check if the predicate
A�( m; t ) holds for this triple t only, otherwise the local search of triple is stopped. It is
still O(K 3) in the worst case but much more ef�cient in practice than the brute-force
search of Algorithm 5.2.

Another consequence of using an approximate search in Algorithm 5.7 is that the
maximality of the grown region will not be guaranteed anymore with Algorithm 5.1.

Besides, grown regions using Algorithm 5.1 can then overlap and we have to merge
regions in such a case. Speci�cally, letR and R0be two af�ne-consistent regions obtained
with Algorithm 5.5. If they have a common a triple t 2 T (m) for some m 2 R� R0 such
that

t 2 (R \ R0)3; (5.6)

then R and R0 are merged.
To accomodate region overlaps, Algorithm 5.1 and Algorithm 5.4 are replaced by

Algorithm 5.5 and Algorithm 5.9. In the following, we give a brief algorithmic idea to take
into account region overlaps. Let us consider a set of grown regions(Ri )1� i � N and then
a region RN +1 is being grown. As described in Algorithm 5.5, wheneverRN +1 overlaps
with a Ri during its growth in the sense of Equation (5.6), then we only add matches

m 2 @Rn

 
I[

i =1

Ri

!

(I is the set of indicesi such that R overlaps with Ri ) when the region
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boundary update and the set of overlapping indicesI is updated with Algorithm 5.8.
When RN +1 has terminated its growth, it is merged with the concerned (Ri ) i 2 I as

described in Algorithm 5.9.
In summary, the algorithms presented previously are still implementable but practi-

cally inef�cient and we consequently use Algorithms 5.5, 5.6, 5.8, 5.7 and 5.9 instead.
We also observe that Algorithms 5.5 is partially parallelizable, leading to signi�cant
computational speed-up in practice.

5.6.2 Choice of Match Neighborhood Function

We will now see that the match neighborhood function bNK;� 0 remains the main computa-
tional bottleneck in the algorithm although the computation of bNK;� 0 (m) is performed
once only when we update the region boundary @R(see Algorithm 5.5).

By construction, the match neighborhood function bNK;� 0 enjoys the property of being
symmetric, i.e. m 2 bNK;� 0 (m0) () m0 2 bNK;� 0 (m), contrary to the nonsymmetric
match neighborhood function NK;� 0 . However, bNK;� 0 requires that every NK;� 0 (m) are
computed �rst before we try to grow regions using Algorithm 5.4. In practice, the match
neighborhood function bNK;� 0 is found to be computationally prohibitive, when the set
of matchesM becomes very large and ambiguous. Indeed, it is more advantageous to
avoid computing match neighborhood NK;� 0 (m) for spurious matchesm 2 M as they
will not be used in the match propagation anyway. Therefore, computing NK;� (m) on the
�y and memorizing it in a cache is practically more ef�cient and it is observed that M is
very contaminated and ambiguous in practice.

We will see experimentally, that using the match neighborhood function NK;� 0 instead
of bNK;� 0 does not degrade the matching performance.

5.7 Implementation

Data structures To make the match propagation simple, we adopt the following imple-
mentation. A region R and a region boundary @Rare basically ordered sets of match
indices based on a red-black tree data structure. This makes insertion, removal and
searching ef�cient. These operations have a logarithmic costO(jRj) with respect to the
region size jRj or boundary size j@Rj.

Match Neighborhood Query Implementation The computation of match neighbor-
hood NK;� 0 relies on fast point query search using2D-trees, which are respectively built
from the point location of sets of features X in image 1 and sets of featuresY in image 2.
We maintain two tables of matchesTX and TY . They are respectively tables for which
we retrieve for a given position x or y all corresponding matches (x; :) and (:; y) in
constant time. The construction of such tables is respectively done inO(jX j log(jX j )) and
O(jYj log(jYj )) , using a quick sort.

In the following, let us analyze the complexity with respect to matches (x; :) only as
the reasoning is symmetric. The computation ofN X

K (x) (cf. De�nition 4) are respectively
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O(K jX j logjX j ). For each featurex0 2 N X
K (x), we collect matches(x0; :) which are at

most K � B where B denotes the maximum degree of matching ambiguity. The query
costsO(K (jX j logjX j + B )) . Taking also into consideration matches(:; y), we have the
query costs in total O(NK;� 0 (m)) = O(K (jX j logjX j + jYj logjYj + B ))

Introducing

F def= max( jX j ; jYj );

we have

O(NK;� 0 (m)) = O(K (F logF + B ))

Note that we can estimateB = O(jMj =F).
We deliberately not give a complexity analysis of Algorithm 5.5 because the worst

case scales very badly with respect toM and F , but corresponds to a situation that never
happens in practice. We prefer to provide experimental evidence on the scalability of our
method.

5.8 Experimental Validation

5.8.1 Choice of Match Neighborhood

We choose to validate the choice of match neighborhood on only one dataset ofM IKOLA-
JCZYKet al. (2005) which is Wall for all features

f 2 F = f DoG+SIFT; Harris-Af�ne+SIFT ; Hessian-Af�ne+SIFT ; MSER+SIFTg:

This dataset is representative enough of the results we obtained on the other datasets
and tests the matching against increasing viewpoint changes. In addition, the dataset has
a lot of repeated structures, which adds up to the challenge.

Computation of Initial Matches

As in Section 4.3 in Chapter 4, we detected all possible features without tuning detectors.
However, for each image pair (1; p) we choose to compute smaller sets of matchesM p

de�ned by

M p
def= f m j L (m) � 1g:

whereas Section 4.3 collects all matchesm such that L (m) � 1:2. Then we identify sets
of inliers

I p;i = f (x; y) j kH px � yk2 � " i g;

where H p is the ground truth homography for image pair (1; p) and " i 2 f 1:5; 5g (in
pixels) for i 2 f 1; 2g.

67



CHAPTER 5. SEQUENTIAL FOURTH ORDER MATCH PROPAGATION

Evaluation of the Method with Multiple Neighborhoods

We run our method by attempting N = 1000 region growing and a region R is considered
valid if jRj � 7. Denoting the set of regions returned by our method by R, the matchesm
found by our method are those that satisfy 9R 2 R ; m 2 R.

As we evaluate our method for different kinds of match neighborhood, We denote
such set of matches found by our methodI 0

W ;K;� 0
where W is a neighborhood function

choosen betweenfN :;:(:); bN :;:(:)g (nonsymmetric and symmetric neighborhood functions)
and (K; � 0) is a pair of parameter choosen in the list f (80; 0:5); (200; 0:3)g.

We evaluate the performance of our match propagation in terms of precision rate and
recall rate for each image pair (1; p) for p 2 f 2; : : : 6g. We recall that:

� the precision rate Pp;i; W ;K;� 0 is the percentage of inliers found by our method with
respect to the the total number of matches found by our method, i.e.,

Pp;i; W ;K;� 0 =
jI 0

W ;K;� 0
\ I p;i j

jI 0
W ;K;� 0

j

� the recall rate Rp;i; W ;K;� 0 is the percentage of inliers returned by our method with
respect to the total number of inliers, i.e.,

Rp;i; W ;K;� 0 =
jI 0

W ;K;� 0
\ I p;i j

jI W ;K;� 0 j

We show in Figures 5.3, 5.4, 5.5 and 5.6 plots of precision rate functionp 7! Pp;i; W ;K;� 0

and recall rate function p 7! Rp;i; W ;K;� 0 which are function of the image pair (1; p). We
recall that an increasing index p indicates the dif�culty of the viewpoint change.

Analysis of the results

We can draw the following conclusions.

Robustness and ef�ciency of match neighborhoods computed on-the-�y. Figures
5.3, 5.4, 5.5 and 5.6 clearly show that there are practically no performance difference
between NK;� 0 and bNK;� 0 for all chosen pair (K; � 0) and for all image pairs (1; p). Thus,
the practical choice of neighborhood NK;� 0 is legitimately justi�ed, which enables to
compute on-the-�y match neighborhoods.

Smaller and more consistent neighborhoods is generally better. The results shows
a smaller and more consistent neighborhoods, hereN80;0:5 and bN80;0:5 has practically as
good performance as much larger and less consistent neighborhoods, hereN200;0:3 and
bN200;0:3, in terms of precision and recall at least for image pairs((1; p))2� p� 4. Notice that

the pair (1; 4) corresponds to the median level of dif�culty in the matching setting. Larger
and less consistent neighborhoods always improve the recall rate especially on the most
dif�cult image pairs ((1; p))5� p� 6. However, the performance in terms of precision is less
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(a) Precision rate with DoG+SIFT matches. (b) Recall rate with DoG+SIFT matches.

(c) Precision rate with Harris-Af�ne+SIFT matches. (d) Recall rate with Harris-Af�ne+SIFT matches.

Figure 5.3: Precision rate and recall rate with all match neighborhoods and (K; � 0) 2
f (80; 0:5); (200; 0:3)g w.r.t. I p;1 = f (x; y) j kH px � yk2 � "1 = 1 :5g on the Wall dataset.

stable as it either degrades in half of the cases or improves in half of the cases. In practice,
we choose(K; � 0) = (80 ; 0:5). Indeed, �rst, the associated precision rate is better than
with the pair (K; � 0) = (200 ; 0:3) for all image pairs (1; p) except the most dif�cult one
(1; 6). Second, the recall rate is lower but the difference of recall rate is not signi�cant for
all image pair (1; p) except the most dif�cult one (1; 6). To conclude, such choice is in
practice bene�c as smaller and more consistent neighborhoods are signi�cantly faster to
compute, which in turn signi�cantly speeds up the match propagation.

The match propagation is precise. Third, if we compare the precision rate in Fig-
ures 5.3, 5.4 to precision rates in in Figures 5.3, 5.4. We see that precision rates
Pp;2;W ;K;� 0 are much higher than Pp;1;W ;K;� 0 . This means that many matches(x; y) found
by our method are such that their reprojection errors kHx � yk ranges within 5 pixels.
This con�rms that the quality of estimation of local af�nities is rather precise. On the
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(a) Precision rate with Hessian-Af�ne+SIFT
matches.

(b) Recall rate with Hessian-Af�ne+SIFT matches.

(c) Precision rate with MSER+SIFT matches. (d) Recall rate with MSER+SIFT matches.

Figure 5.4: Precision rate and recall rate with all match neighborhoods and (K; � 0) 2
f (80; 0:5); (200; 0:3)g w.r.t. I p;1 = f (x; y) j kH px � yk2 � "1 = 1 :5g on the Wall dataset.

other hand, it can be argued that the image pairs are not really related by a homography
since the wall is not perfectly planar in the dataset.

5.8.2 Triple of Matches vs Single Match

Our match propagation method does not rely very much on the quality of the af�ne
shape adaptation proposed by MIKOLAJCZYKand SCHMID (2004) as shape adaptation is
not as precise as expected. Indeed, we evaluate the interest of match triples(m; m0; m00)
to construct accurate and robust af�nities vs resorting to single matches m = ( x; y),
using the shapes(Sx ; Sy) and orientation (ox ; oy). Recall that only the af�ne transform
estimated from a single match (x; y ) is computed with Equation (4.3).

Experiments with M IKOLAJCZYKet al. (2005)'s dataset demonstrate that our region
growing process performs consistently and signi�cantly better when af�nities � are

70



5.8. Experimental Validation

(a) Precision rate with DoG+SIFT matches. (b) Recall rate with DoG+SIFT matches.

(c) Precision rate with Harris-Af�ne+SIFT matches. (d) Recall rate with Harris-Af�ne+SIFT matches.

Figure 5.5: Precision rate and recall rate with all match neighborhoods and (K; � 0) 2
f (80; 0:5); (200; 0:3)g w.r.t. I p;2 = f (x; y) j kH px � yk2 � "2 = 5g on the Wall dataset.

estimated with match triples. Each dataset consists of6 images. For each dataset and for
a given kind of feature f , we extract all feature points of type f . We match image1 to
images2–6. Initial f -matches are obtained and ranked with Lowe's criterion. The distrust
threshold is set to ` = 1 . On average, our region growing deals with 7; 000 to 28; 000
f -matches with an outlier proportion of at least 75%. We compare the performance of
our region growing in terms of precision and recall for both variants: triples and single
matches (cf. Figure 5.7).

In Figure 5.7, precision rates clearly bene�ts from af�nities computed with match
triples, as opposed to single matches. Besides, this is not at the expense of recall rates,
that are comparable in the two approaches. We give two explanations for why precision
rates for triples are consistently better. First, orientation estimation is often unstable;
it remains sensitive to illuminations changes, blurring and compression. Second, local
af�nities estimated from the shape of DoG features are unsurprisingly inaccurate and
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(a) Precision rate with Hessian-Af�ne+SIFT
matches.

(b) Recall rate with Hessian-Af�ne+SIFT matches.

(c) Precision rate with MSER+SIFT matches. (d) Recall rate with MSER+SIFT matches.

Figure 5.6: Precision rate and recall rate with all match neighborhoods and (K; � 0) 2
f (80; 0:5); (200; 0:3)g w.r.t. I p;2 = f (x; y) j kH px � yk2 � "2 = 5g on the Wall dataset.

consequently produces worse precision rates in general. Even when elliptic features are
used, af�nities estimated from triples still produce much better results in many cases.

5.8.3 Empirical Evidence of Scalability

Our experiments show that our empirical complexity analysis is less than quadratic inN
in practice, as illustrated in Table 5.1 on M IKOLAJCZYKet al. (2005)'s dataset. It is
better, e.g., than DUCHENNEet al. (2011)'s tensor-based matching, which would be here
O(N 3 logN ) or O(N 4 logN ), or CHO et al. (2009)'s agglomerative clustering, which is at
least O(jMj 2).
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jMj 3,000 10,000 30,000 100,000
DoG 2,676 0.21 s 5,342 0.42 s 7,027 0.70 s 7,027 1.36 s
MSER 1,585 0.84 s 2,283 1.11 s 2,283 1.46 s 2,283 1.83 s
Hessian-Af�ne 2,190 1.71 s 5,054 3.02 s 5,922 3.35 s 5,922 3.99 s
Harris-Af�ne 2,178 1.59 s 6,250 3.62 s 10,273 3.58 s 10,623 4.01 s

Table 5.1: For a given number jMj of potential matches, number N of corresponding
features and average running time, on all image pairs ofM IKOLAJCZYKet al. (2005)'s
dataset.

A few words on the used heuristics.

Our algorithm is based on three heuristics:

� Considering most likely matches �rst. This is common to many computer vision
algorithms. What is speci�c here is our original extension of the Lowe score to
accommodate ambiguous matches.

� Considering only close matches (K nearest, to construct an af�ne-consistent quadru-
ple). This strategy is also frequent for pruning unlikely con�gurations. It is used,
e.g., in [9]. Others use a �xed-size neighborhood [14].

� Assuming little local transformation (sidedness constraint to prune region growing).
This is standard too. The speci�c topological �lter we use here (with improvements)
is also used in FERRARIet al. (2004).

Note that considering for growing a region R only matches that are among theK
nearest of some match in R is not really a heuristic but a consistency constraint to ensure
that growing a region is local, otherwise it makes little sense. While relying on heuristics
is indeed undesirable, we consider that our use is moderate (compare, e.g., toFERRARI

et al. (2004)) and not uncommon.
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Algorithm 5.5 Practical region growing from a seed match m1 using nonsymmetric
neighborhood NK;� 0 , with overlapping test using Equation (5.6).

1: procedure GROWREGION(m1; K; � 0; R = ( Ri )1� i � N ) // R is a set of
af�ne-consistent regions

2: I  ; // Indices i 2 I such thatR overlaps withRi 2 R
3: t  CONSTRUCTTRIPLE(m1; K; � 0) // cf. Algorithm 5.6
4: R  t // Initialize R with seed
5: // NK;� 0 (m) are computed on-the-�y and memorized in a cache
6: @R 

[

m2 t

(NK;� 0 (m) n R)

7: keep @Rsorted by increasing distrust score
8: while @R6= ; do
9: @A� R  ;

10: // We denote (mi )1� i �j @Rj
def
= @Rand let (t i )1� i j@Rj be a set of triples

11: for i 2 f 1; : : : ; j@Rjg do
12: t i  FINDNONDEGENERATETRIPLE(m; R; @R) // cf Algorithm 5.7
13: end for
14: // Check if quadruple (mi ; t i ) is af�ne-consistenti 2 f 1; : : : ; j@Rjg
15: for i 2 f 1; : : : ; j@Rjg do
16: if (t i 6= ; ) ^ A�( mi ; t i ) then
17: @A� R  @A� R [ f mi g
18: I  I [ FINDOVERLAP((mi ; t i ); R) // cf Algorithm 5.8
19: end if
20: end for
21: // Update region R
22: R  R [ @A� R
23: // Update region boundary @Rand ensure that matches in overlapping
24: // regions Ri are excluded
25: for m 2 @A� R do
26: @R @Rn f mg

27: @R @R[

 

NK;� 0 (m) n

 

R [
[

i 2 I

Ri

!!

28: end for
29: end while
30: return (R; I )
31: end procedure
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Algorithm 5.6 Triple construction from seed match m1 using nonsymmetric neighborhood
NK;� 0 .

1: procedure CONSTRUCTTRIPLE(m1; K; � 0)
2: t  ;
3: Pick match m2 2 N K;� 0 (m1) n f m1g with the best distrust score.
4: C  (NK;� 0 (m1) [ N K;� 0 (m2)) n f m1; m2g
5: sort C by increasing distrust score
6: for m3 2 C do
7: t  (m1; m2; m3)
8: if triple t satis�es Equations (5.4) and (5.5) then
9: return t

10: end if
11: end for
12: return ;
13: end procedure

Algorithm 5.7 Approximate local search of triples using nonsymmetric Neighborhood
NK;� 0 .

1: procedure FINDNONDEGENERATETRIPLE(m; R; @R)
2: for match m = ( x; y) 2 @Rdo
3: for triple t 2 (NK;� 0 (m) \ R)3 do
4: if t sati�es Equation (5.4) and (5.5) then
5: return t
6: end if
7: end for
8: end for
9: return ;

10: end procedure

Algorithm 5.8 Check if quadruple q overlaps with set of af�ne-consistent regions
(Ri )1� i � N

1: procedure FINDOVERLAP(q;(Ri )1� i � N )
2: I  ;
3: for i 2 f 1; : : : ; N g do // Check for overlap with existingRi

4: if 9t 2 q3 \ Ri such that t satis�es Equation (5.6) then
5: I  I [ f i g
6: end if
7: end for
8: return I
9: end procedure
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Algorithm 5.9 Multiple region growing using nonsymmetric neighborhood NK;� 0 with
region merging.

1: procedure GROWMULTIPLEREGIONS(M ; N; �; K; � 0)
2: R  ;
3: for n = 1 ; : : : ; N do
4: Select the next best matchm 2 M such that m =2

[

R2R

R.

5: (R; I )  GROWREGION(m; K; � 0; R ) // cf. Algorithm 5.5
6: if I 6= ; then
7: Merge all regions (Ri ) i 2 I that overlaps with R // cf. Equation (5.6)
8: else
9: if jRj > � then

10: R  R [ f Rg
11: end if
12: end if
13: end for
14: return R
15: end procedure
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Figure 5.7: Precision (%) and recall (%) of region growing on M IKOLAJCZYKet al. (2005)'s
dataset (pair 1-3). Green: precision rates with match triples, Red: precision rates with
single matches.Cyan: recall rates with match triples, Magenta: recall rates with single
matches.
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Chapter 6

Matching Results with Fourth Order
Match Propagation

In this chapter, we evaluate our method on several vision tasks and compare favorably
w.r.t. the state-of-the-art. We use the same parameters forall our experiments, which
indicates the stability of our method. The region growing parameters de�ned in Chapter 4
are set asK = 80 and � 0 = 0 :5. The thresholds values set in predicatePf can be found in
Subsection 4.3.2 of Chapter 4. A regionR is deemed valid iff jRj � 7. In the reported
experiments, we processed on averageN = 5000 points per image (sometimes tens
of thousands) and 15 matches per point, i.e., jMj = 75000 on average. The number
of matches per point, up to 650 in our examples, depends on the ambiguity of the
descriptor value. A complete region-growing trial can take up to 2 seconds, for a very
large and dense region. For deformable object matching and calibration, we performed
1000attempts to grow regions; for pattern detection, all possible seeds were explored.

Other experiments are described in Chapter 7.
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6.1 Camera calibration

We tested a calibration task using Bundler (SNAVELYet al. 2008) as a black-box calibration
system taking as input a set of matches. We used two pathological datasets described
below: Books(31 images) and Mars (60 images). These sets of images are dif�cult to
calibrate due to numerous ambiguities arising from repeated patterns.
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Methods #Cameras Matching time

Ours 20=31 60 mn
LOWE (2004) 5=31 5 mn
CHO et al. (2009) 7=31 2880mn
FERRARIet al. (2004) 2=31 540mn

Table 6.1: Calibration of the Booksdataset with Harris-Af�ne+SIFT features.

Methods #Cameras MSRE #Tracks

Ours 30=31 2:92� 10� 1 4; 875
LOWE (2004) 5 � 20=31 2:46� 10� 1 2; 574
CHO et al. (2009) N/A N/A N/A
FERRARIet al. (2004) N/A N/A N/A

Table 6.2: Calibration of the Booksdataset with DoG+SIFT features. Concurrent methods
(CHO et al. 2009; FERRARIet al. 2004) are not applicable here because they need elliptic
features whereas DoG+SIFT features are circular.

We report (1) the number of calibrated cameras, (2) the mean squared reprojection
error (MSRE) of 3D points in images (in pixels), (3) the number of consistent scene
tracks used for the estimation of camera parameters. (A scene track is a connected set of
matching keypoints across multiple images and is deemed inconsistent if it contains more
than one keypoint in the same image.)

6.1.1 Books Dataset

In the Booksdataset shown in Figure 6.1, matching ambiguities arises from the uniform
background and the chair, as well as the repeated letters on the covers. Calibration
results with Harris-Af�ne+SIFT features show that we calibrate many more cameras than
FERRARIet al. (2004)'s method, CHO et al. (2009)'s method, and a baseline consisting in
a Lowe criterion (L OWE 2004).

We �rst use Harris-Af�ne features. The best Lowe threshold (here ` = 0 :8) leads to
the calibration of only 5 cameras out of 31. Our method matches all possible image pairs
(465) in one hour without parallelization. FERRARIet al. (2004)'s method takes over
9 hours and only matches60 image pairs. CHO et al. (2009)'s method takes more than two
days to complete (because it is MATLAB-based whereas other method are implemented
in C++). The results are shown in Tables 6.1. Unlike FERRARIet al. (2004)'s method and
CHO et al. (2009)'s, our matching algorithm provide a signi�cant improvement over the
baseline with Harris-Af�ne+SIFT features. Next, we used DoG+SIFT features, for which
FERRARIet al. (2004)'s method and CHO et al. (2009)'s are not applicable because they
need elliptic features whereas DoG+SIFT features are circular. As shown in Table 6.2,
�ltering correspondences with RANSAC calibrates5 to 20 cameras. Our method performs
signi�cantly better as our method calibrates 30 cameras over31.

Figure 6.2, 6.3a and 6.3b respectively shows the resulting 3D point cloud obtained
with Bundler ( SNAVELYet al. 2008), the 3D mesh reconstruction and textured reconstruc-
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Figure 6.1: The 31 images of theBooksdataset.
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tion obtained from VU et al. (2012)'s 3D reconstruction pipeline. Note that the calibration
and the 3D reconstruction shown in these �gures are obtained from DoG+SIFT features.

Figure 6.2: 3D point cloud resulting from the calibration of the Booksdataset with
DoG+SIFT features.
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Methods # Cameras MSRE # Tracks

Ours 60=60 5:00� 10� 2 75; 966

LOWE (2004) ( ` = 0 :3) 22=60 2:00 � 10� 2 3; 266
LOWE (2004) ( ` = 0 :4) 30=60 3:13� 10� 2 5; 598
LOWE (2004) ( ` = 0 :5) 33=60 47:50� 10� 2 1; 131
LOWE (2004) ( ` = 0 :6) 28=60 5:68� 10� 2 6; 378
LOWE (2004) ( ` = 0 :7) 28=60 6:47� 10� 2 6; 533
LOWE (2004) ( ` = 0 :8) 28=60 8:27� 10� 2 6; 667
LOWE (2004) ( ` = 0 :9) 28=60 8:84� 10� 2 6; 564

Table 6.3: Some images of theMars dataset and calibration results.

6.1.2 Mars Dataset

The 60 images in theMars dataset picture the Martian landscape. They were acquired by
the rovers Spirit and Opportunity1. Some are shown in Figure 6.4.

With Mars (cf. Table 6.3), the landscape is very �at and the numerous rocks create
ambiguous matches. Yet all60 cameras are calibrated successfully with our method (with
DoG+SIFT features), contrary to Lowe's criterion (LOWE 2004), which only leads to the
calibration of half of the cameras. The mean squared reprojection error (MSRE, in pixels)
of 3D points in images and the number of consistent scene tracks used for the estimation
of camera parameters also compare favorably.

As reported in Table 6.3, all 60 cameras were calibrated successfully with our method.
This is a signi�cant improvement over the standard use of Bundler, which is only able to
calibrate about half of the scene.

We show in Figure 6.5a and 6.5b the point clouds respectively obtained from (1)
matches obtained with Lowe's criterion (LOWE 2004) and RANSAC (FISCHLERand BOLLES

1981) and (2) matches obtained with our method. Note that with the matching with
Lowe's criterion and RANSAC, the calibration is unable to reconstruct the left part of
the landscape whereas our method is able to reconstruct it completely. Moreover, for
calibrated cameras in both cases, the right side of the loop is more complete with our
method and the point cloud is much more dense.

Our implementation has actually been used in the calibration an 3D reconstruction
chain of the winners of the PRoVisG Mars 3D Challenge 2011, from which this dataset is
extracted.

For this dataset, all 1770 possible image pairs are considered in3:5 hours using
parallelization on a 8-core CPU Xeon 2.8GHz machine.

Figures 6.5b, 6.6 and 6.7 respectively shows the resulting 3D point cloud obtained
with our feature matches and Bundler (SNAVELYet al. 2008), the 3D mesh reconstruction
and textured reconstruction obtained from VU et al. (2012)'s 3D reconstruction pipeline.
Note that the calibration and 3D reconstruction shown in these �gures are obtained from

1PRoVisG Mars 3D Challenge,http://cmp.felk.cvut.cz/mars/
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(a) With Lowe's criterion (L OWE 2004). (b) With our method.

Figure 6.5: 3D point cloud resulting from the calibration of the Mars dataset with DoG
features.

Figure 6.6: 3D mesh reconstruction of theMars dataset after matching with our method
and using VU et al. (2012)'s 3D reconstruction pipeline.
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Figure 6.7: Close up on the 3D textured reconstruction of theMars dataset after matching
with our method and using V U et al. (2012)'s 3D reconstruction pipeline.

DoG features.

6.2 Deformable Object Matching

We evaluated our method on deformable object matching using the ETHZ Toys dataset
(40 images of 9 models, and 23 test images), testing each model image against each
test image. We compared withFERRARIet al. (2004), KANNALA et al. (2008) and CHO

et al. (2009), as reported in their papers. For a fair comparison, we used MSER+SIFT
and Harris-Af�ne+SIFT features, like CHO et al. (2009). Note that, in addition to these
af�ne-covariant features, KANNALA et al. (2008) and FERRARIet al. (2004) use color
information and dense photometric information, which we do not use.

Performance is reported in the ROC curve in Figure 6.8a, which depicts the detection
rate versus false positive rate, letting a detection threshold vary. (An object is considered
as detected if the number of produced matches, summed over all its model views, exceeds
this threshold.) Our method outperforms others, except for high false positive rate. This
makes our method attractive for object matching tasks that tolerate only few wrong
detections.

We performed a second experiment with the same dataset and the same parameters
as CHO et al. (2009), but only considering Harris-Af�ne+SIFT features, which are
reported to be among the most ambiguous af�ne-covariant features (M IKOLAJCZYKet
al. 2005). Figure 6.8b con�rms that our method is less prone to false detection, as it
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(a) With Harris-Af�ne+SIFT and MSER+SIFT fea-
tures.

(b) With Harris-Af�ne+SIFT features only.

Figure 6.8: ROC curves on the ETHZ Toys dataset.

outperforms Cho et al.'s method both for low and high false positive rates.
The ETHZ Toys dataset can be found and downloaded from theCALVIN RESEARCH

GROUP (2004)'s homepage. We show in Figures 6.9, 6.10, 6.11 and 6.12 the results
that we obtained on the 23 test images, which contain43 objects in total. The names in
italic such asAll refer to the image �le names in the dataset. In the illustrations, we use
different colors to reference each model object, as summarized in Table 6.4.

Color Model object Color Model object
Red Blonde Green Car
Blue Guard Magenta Leo

Yellow Michelle Orange Ovo
Dark Green Suchard Lavender Blue Xmas

Table 6.4: Reference color for each model object.

Our results are shown for Harris-Af�ne and MSER interest points. For each image
pair, we obtained matches such that their distrust score is less thaǹ = 1 :1, whereasCHO

et al. (2009) use a much more restricted set of matches, i.e., such that their distrust score
is less than` = 0 :9.

We can see that the results are visually very clean. The consistency of matches actually
goes beyond the mere recognition of objects. As already pointed out in the paper, region
af�ne-consistency does not assume a single af�nity but many. And this network of locally
similar af�nity is �exible enough to adapt to substantial non-af�ne transformations, as
occurs with deformable objects.
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(a) LeoHidden (b) LeoSleeps

(c) MichelleBentA (d) MichelleBentB

(e) MichelleBentC (f) MichelleBentD

Figure 6.11: Detection in ETHZ test images (3/4). Colors are de�ned in Table 6.4.
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Methods Accuracy
TM (DUCHENNEet al. 2011) a � 0:80 for N f � 20

a � 0:05 for N f � 30
SIFT (LOWE 2004) + 0:75 � a � 0:85 for N f � 200
TM (DUCHENNEet al. 2011)
Our method 0:95 � a for N f � 200

Table 6.5: Compared accurracya with 3rd-order hypergraph (TM).

6.3 Comparison with Hypergraph Matching Methods

We also compared with a tensor-based, 3rd-order hypergraph matching method (TM)
(DUCHENNEet al. 2011), with image 1 and 4 of the graf�ti dataset used inM IKOLAJCZYKet
al. (2005), where the ground truth homography H is known. DoG features were detected
and described with the SIFT descriptor. We evaluated the accuracy, i.e., the proportion
of actually correct matches among produced ones, as a function of the numberN f of
features to match. Because TM does not handle very well outliers, we only experimented
various feature sets such that:jX j = jYj = N f and there is a bijection betweenX and Y
such that for each x 2 X , there is a unique y 2 Y satisfying kHx � yk � 5 pixels, and
likewise when permuting X and Y. Results are presented in Table 6.5.

The combined use of 1st-order SIFT descriptors and 3rd-order af�nities (SIFT+TM)
improves the poor result of TM, but our method performs much better.

To conclude this section, let us also note that the experiments withDUCHENNEet al.
(2011)'s tensor-based matching cannot be very large scale, because it does not scale well
in space and computation time. Indeed, its complexity is O(N 3 logN ) or O(N 4 logN ),
which is well re�ected in practice. When N f > 500, using DUCHENNEet al. (2011)'s
MATLAB implementation, the needed af�nity tensor already occupies several gigabytes
of memory and is computed in order of several minutes before even starting the global
optimization process. On the contrary, our method is much more memory friendly and
faster, especially our method only needs to compute on-the-�y match neighborhoods.
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Chapter 7

Repetitive Pattern Search
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7.1 Recursive Breadth-First Search Algorithm

Our feature matching algorithm can easily be turned into a pattern matcher. Given a
object model M 0 de�ned by a geometric region I 0 in some input image I , the goal is to
retrieve all objects that are similar to M 0 in some imageJ (possibly equal to I ), i.e., to
�nd image regions in J that are similar to I 0. We consider the case whereI 0 is de�ned as
the interior of a polygon P0.

For this, we de�ne X0 as the set of features inside polygonP0 in I and Y as the
set of features in J not in X0 (in case J = I ). We then grow regions of M � X 0 � Y
as described above, allowing ambiguity onX0, which we formalize in Section 4.7 of
Chapter 4. The resulting set of regionsR = ( Ri )1� i � n corresponds to as many discovered
pattern instances. The image region inJ corresponding to a set of matchesRi can be
retrieved by assuming local af�nity transformations from I to J . More formally, given
a vertex u 2 R2 of polygon P0 in I and assuming that Ri is of suf�cient cardinality,
let x1; x2; x3 be the geometrically closest 3 features (also nonaligned) inI such that
there are matches(mj )1� j � 3 = ( x j ; yj )1� j � 3 2 Ri . Then the corresponding polygon
vertex in image J is A(m1; m2; m3)(u). The polygon Pi formed by its vertices de�nes an
image region J i of J that delineates the matched object instanceM i . This is detailed in
Algorithm 7.1.
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Algorithm 7.1 Generic Pattern Search
Require:

� Nmin : minimum number of matches between the pattern and an instance

� pmin : minimum percentage of matches between the pattern and an instance

1: procedure FINDSIMILARPATTERNS(P0; I; J )
2: P  ; // Initialize result
3: I 0  subimage of I delineated by polygon P0

4: X  features detected inI 0

5: Y  features detected inJ
6: M  feature matches between imagesI 0 and J
7: Sort M by decreasing con�dence
8: while M 6= ; do
9: Get the best matchm from M // Get good seed

10: R  GROWREGION(m; K; � 0) // Cf. Algorithm 5.5
11: if jRj > max(Nmin ; pmin :jX j ) then // If region R is large enough
12: Estimate transform T from matches in R // T is a homography or af�nity
13: P  T(P0) // Estimate new pattern P
14: if 8P0 2 P ; P \ P0 = ; then // If there is no overlap with a previous pattern
15: P  P [ f Pg // Remember P in result
16: end if
17: M  M n R // Stop exploring matches inR, keepingM sorted
18: end if
19: end while
20: return P
21: end procedure

When working on a single image, i.e., when J = I , Algorithm 7.1 is to be run with
arguments (P0; I; I n I 0) where I 0 is the subimage ofI delineated by polygon P0.

More pattern instances can be found by removing features inR from Y and reusing
recursively image regions(J i )1� i � n as new input patterns, until no new pattern instance is
found. To reduce the risk of pattern drifting, recursive pattern search has to be performed
in a breadth-�rst search as detailed in Algorithm 7.2.

7.2 Accurate Pattern Localization: Window Detection

7.2.1 Related Work and Challenges

We experimented with pattern detection, looking for windows in building facades. Al-
though this problem has already been attacked inLEE and NEVATIA (2004), ALI et al.
(2007), HAUGEARDet al. (2009) and RECKYand LEBERL(2010), accuratelocalization
has not been addressed adequately: they do not really quantify the performance of their
methods regarding the localization or segmentation in terms of pixellic precision.
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Algorithm 7.2 Generic Breadth-First Pattern Search
Require:

� P: set of initial polygons that delineate patterns of interest

� Nmin : minimum number of matches between the pattern and an instance

� pmin : minimum percentage of matches between the pattern and an instance

1: procedure BREADTHFIRSTPATTERNSEARCH(P; I )
2: Enqueue all polygonsP in P in a queue Q
3: while Q 6= ; do
4: Dequeue the �rst polygon P from Q
5: P0  FINDSIMILARPATTERNS(P; I ).
6: Remove all polygons inP0 that overlap with any polygon in P.
7: P  P [ P 0

8: Enqueue all polygons ofP0 in Q
9: end while

10: Return P
11: end procedure

Note that pattern detection has been extensively studied and we refer the reader toLIU

et al. (2010)'s exhaustive survey for details. In pattern detection, structural regularity
or symmetry are commonly assumed (LIU et al. 2010). However, they are not always
appropriate because windows are not necessary laid out according a grid-like structure.
For example, buildings often have their windows laid out according to a more complex
structure than a grid. We can �nd such examples of buildings in the eTRIMSdataset (KOR�C

and FÖRSTNER2009). For this reason, this makes our method complementary to most of
the methods surveyed in (LIU et al. 2010).

To circumvent the challenges posed by the existence of complex structures, one can
just resort to object detection, in particular based on learning techniques, such as the
cascade classi�er (VIOLA and JONES2004). However, these methods are not perfect and
still make errors, i.e., miss objects, hallucinate objects, or do not localize them properly.
One or several parameters may usually be tuned to favor precision or recall. Moreover,
they are trained to recognize a wide variety of object instances. They do not exploit the
fact that, in some circumstances, only similar object instances appear in the image, like
windows on a given single facade. A hypothesis of these methods is that all detected
objects are independent one from another (as long as they do not overlap).

Here, we propose to use such a detector only to �nd few but very likely object
occurrences, tuning the detector for precision. We then use these accurate detections
as problem-speci�c models and rely on a robust pattern search procedure to look for
similar instances of these models in the image. For more robustness, to improve recall,
this procedure is repeated recursively on the new detections (resulting from the pattern
search) until there are no more detections.

Eventually, window localization poses more challenges because of the wide range
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of appearance variety, the lack of texture, and the illumination variations. Unrecti�ed
images adds up to these challenges. Windows are then related by homographies or
af�nities: they may vary in size and shape, and it is dif�cult to detect small windows
with almost no texture. Still, in recti�ed images, windows on the same facade often have
two or three different widths, depending on the size or use of the corresponding rooms.
However, although stretched horizontally, all windows on the facade “look alike”. Also
for older structures, including Haussmanian buildings, bottom �oors have higher ceilings
and higher windows than top �oors, to compensate for the lesser illumination. But here
again the window appearance is only stretched, vertically. Our pattern search procedure
will prove well suited to accomodate these different situations.

In the end, selecting just a few best candidates of windows instances in a facade
and then searching for their repeated occurrences yields more accurate detections than
looking for many instances of any kind of windows. The search is then indeed more
robust as well as specialized for a speci�c kind of window that is pertinent for the given
facade.

7.2.2 Method

To apply our repetitive pattern search, DoG, Harris-Af�ne and MSER features are extracted
in each image and described by the SIFT descriptor. We only keep matches whose distrust
score (cf. Section 5.2) is less than1:2, i.e., matches within 20% of the best match
(descriptor-wise). Note that in our experiments, the outlier contamination rate, with such
a distrust score, can reach98% of about 500,000 feature matches. Note that it is normally
be beyond what most RANSAC variants can handle. Several transformations are to be
sought here, one for each instance of the model. RANSAC thus has to be iterated after a
�rst instance is found, to �nd other ones, or a variant of RANSAC looking simultaneously
for several models has to be used (see, for example, ZULIANI et al. (2005)).

A few window are indicated in the images by means of bounding boxes or polygons.
The dimensions of the bounding box of the pattern windows are dilated by 50% before
search, to include a little environmental information, and shrunk back when instances
are found to estimate the window region accurately. Indeed, including environmental
information is important mostly because glass material in windows hardly has any
meaningful textural information. And very often, enviromental information often plays
an essential role in the feature correspondence task as illustrated in Figure 7.1. Thus,
we actually use Algorithm 7.3 instead of Algorithm 7.1. Indeed, because of the dilation,
adjacent dilated bounded boxes can overlap with each other contrary to original bounding
boxes, which can cause rejection to many correctly detected windows.

We actually consider two task variants, as presented below.

Semi-Automatic Window Localization Task. The �rst task is the semi-automatic win-
dow localization task, in which a human operator indicate a few windows (on the order
of 10%). It has the advantage of being adapted for both recti�ed and unrecti�ed images
containing building façades.
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Figure 7.1: We illustrate the importance of including environmental information in
window detection. The red bounding box is the polygon delinating the window model
and the yellow one is the dilated bounding polygon. Here, a matched window is found
indeed mostly because a lot of features on the ornemental elements at the top of the
windows were matched successfully. Matched features (inblue color) on the balcony
at the bottom of the window would not have been suf�cient to reliably detect such a
window.

Automatic Window Localization Task. For the second, fully automatic task, we trained
a cascade classi�er (CC) ( VIOLA and JONES2004; ALI et al. 2007) to recognize windows.
Its best detections are used as seeds for our pattern search (RG) as in task 1. To get the
best compromise between false positive rate (FPR) and true positive rate (TPR) while
training, we empirically set the minimum hit rate threshold to 0:9 and the maximum false
alarm rate threshold to 0:1. Moreover, when performing as a detector,CCis tuned by a
detection parameter threshold � CC that balances TPR and FPR: as� CC increases, TPR
and FPR decrease (cf. table 7.1). More details about CC's training step can be found in
Section E.1 of Appendix E.
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Algorithm 7.3 Window Pattern Search
Require:

� Nmin : minimum number of matches between the pattern and an instance

� pmin : minimum percentage of matches between the pattern and an instance

1: procedure FINDSIMILARWINDOWS(P0; I )
2: P  ;
3: Dilate P0 by 50% // Include environmental information for windows
4: I 0  subimage of I delineated by polygon P0

5: F  features detected inI
6: M  matches in F 2 between I 0 and (I n I 0)
7: Sort M by decreasing con�dence
8: while M 6= ; do
9: Get the best matchm from M

10: R  GROWREGION(m; K; � 0) // Cf. Algorithm 5.5
11: if jRj > N min then
12: Estimate transform T from matches in R
13: P  T(P0)
14: Shrink P by 50% // Get the polygon correctly delineating the window
15: if 8P0 2 P ; P \ P0 = ; then // If there is no overlap with a previous pattern
16: P  P [ f Pg // Remember P in result
17: end if
18: M  M n R // Stop exploring matches inR, keepingM sorted
19: end if
20: end while
21: return P
22: end procedure

7.2.3 Experimental Settings and Performance Measurement

Datasets

We used for evaluation theECP CVPR 2010dataset (20 training images and 10 test images)
and ECP Benchmark 2011datasets (104 test images) (TEBOUL2010), that picture recti�ed
buildings, as well as the eTRIMSdataset (60 test images) (KOR�C and FÖRSTNER2009).
Whereas the ECP datasets only picture recti�ed images of Haussmannian buildings,
the eTRIMSdataset contains nonrecti�ed images of very different architectural and
building styles. Out of the 60 images in the eTRIMSdataset, we only considered those
having at least 6 windows, which corresponds to 45 images. As ground truth windows
were sometimes erroneous or not delineated similarly (i.e., with the same de�nition)
in all datasets, we �rst corrected and normalized the annotations, more particularly
in the eTRIMSdataset. We also constructed a recti�ed version of theeTRIMSdataset
for comparison purposes. This image recti�cation was performed by hand (and eye).
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Finally, we manually indicated seed windows for the �rst task, delineating 1 to 4 windows
depending on the appearance variability.

Evaluation Method

For each method and for each image, we compute the

confusion matrix =
�

TPR FNR
FPR TNR

�
:

where the true positive rate (TPR), false negative rate (FNR), false positive rate (FPR)
and the true negative rate (TNR) are de�ned as follows:

� TPR is the percentage ofwindow pixels correctly labeled aswindow,

� FNR is the percentage ofwindow pixels incorrectly labeled asnon-window,

� FPR is the percentage ofnon-window pixels incorrectly labeled aswindow,

� TNR is the percentage ofnon-window pixels correctly labeled asnon-window.

For each dataset, methods are then compared in terms of mean true positive rate
(TPR), mean false negative rate (FNR), mean false negative rate (FPR), mean true
negative rate (TNR) over all images. This corresponds to the

mean confusion matrix =
�

TPR FNR
FPR TNR

�
:

Concurrent Methods

We compare our method (RG) with two others. The �rst one ( RL) is TEBOULet al. (2011)'s
grammar-based method (cf. Chapter 8), that we ran on images of the ECP datasets using
appropriate grammars (cf. Table 7.1) as provided by the authors. RLonly works with
recti�ed images. The second method is the cascade classi�er (CC) ( VIOLA and JONES

2004), for various detection thresholds � CC . Methods are compared in terms of mean
confusion matrix. A method is deemed good if the confusion matrix is close to the identity.

7.2.4 Results

Recti�ed Case

In the recti�ed case, windows are simply related by translation. Tables 7.1 and 7.2
summarize our results. Detection examples are shown in Figure 7.2. More detection
results on the ECP datasets can be found in Appendix E. In all datasets, forFPRless
than 10%, RGoutperforms other methods in terms of TPRand signi�cantly improves the
initial TPRof CC, by 12 points at least. RGalso hardly increasesFPRfrom CC, at most by
3 points. Unsurprisingly, looking for windows that are speci�c to the facade is better than
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Methods TPR FNR FPR TNR

manual + RG 80% 20% 3:5% 96:5%
CC (� CC = 20) + RG 76% 26% 6% 94%
CC (� CC = 30) + RG 71% 29% 5% 95%

CC (� CC = 5 ) 77% 23% 14:5% 85:5%
CC (� CC = 10) 70% 30% 9% 91%
CC (� CC = 20) 64% 36% 6% 94%
CC (� CC = 30) 56:5% 43:5% 4:5% 95:5%

RL (bin-hue) 68:5% 31:5% 12:5% 87:5%
RL (bin-rf) 51:5% 43:5% 35:5% 64:5%

RL (4-color-rf) 25:5% 75:5% 12% 88%

RL (haussm-rf) 67% 33% 6:5% 93:5%

Table 7.1: Results averaging the performance onECP CVPR2010and ECP Benchmark
2011 datasets.manual+RG and CC+RGdenote our method run using bounding boxes
provided respectively by hand and byCC. For RL, we used 3 shape grammars:binary
(bin), 4-color, and Haussmannian(haussm). hueand rf are different probability priors for
façade segmentation when parsing with the shape grammars.

looking for many instances of any kind of windows. Finally, RGdoes even better if initial
bounding boxes are provided manually.

Note that, because texture are generally lacking ineTrims images, windows have
generally very few detected features in them. Still, RGobtains a goodTPRespecially for
the semi-automatic window detection task. In any case, Tables 7.1 and 7.2 show thatRG
always maintains a very low FPR for theeTrimsdataset.

Regarding concurrent methods,CCachieves a goodTPR of 77% with a threshold
� CC = 5%, but at the cost of a high FPRof 14:5% in the ECP datasets.RLonly achieves
a TPRof 67%but has a goodFPRof 6:5% by using a Haussmanniangrammar (haussm)
and a random forest-based reward (rf ). However, the performance of all these concurrent
methods dramatically drops on the eTrimsdataset.

Non-recti�ed Case

In the non-recti�ed case, windows are related by homographies or af�nities. This is more
challenging as windows may vary in size and shape, and it is dif�cult to detect small
windows with almost no texture. RL is not applicable in this setting, and CCprovides
too coarse detections. We thus only consider bounding quadrilaterals that are provided
manually.

Results are reported in Table 7.3. TPRloses4 points w.r.t. the recti�ed case. This
slight degradation is chie�y due to estimation errors of the geometric transformation
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Methods TPR FNR FPR TNR

manual + RG 75% 25% 4% 96%
CC (� CC = 5 ) + RG 60% 40% 7% 93%

CC (� CC = 5 ) 46% 54% 4% 96%

RL (bin-hue) 27% 73% 11% 89%
RL (bin-rf) 27% 73% 23% 77%

RL (4-color-rf) 29% 71% 13% 87%

Table 7.2: Results on theeTRIMSdataset with (manually) recti�ed images. See caption
of Table 7.1 for details about RL.

Methods Dice score TPR FNR FPR TNR

manual+RG 0:77 71% 29% 2% 98%

Table 7.3: Results on theeTRIMSdataset with non-rectifed images. Bounding quadrilater-
als are provided manually.

between the matched patterns. Shift and size errors between the geometric region of
the detected pattern and the estimated image region also accumulates. Still, our method
achieves a very lowFPR of 2%.

Excerpts of our results on theeTRIMSdataset (KOR�C and FÖRSTNER2009) are shown
in Figures 7.3 and 7.4. As we can see in Figures 7.3 and 7.4, the robustness of our pattern
detection in the non-recti�ed case shows that a preliminary recti�cation (often de�ned
manually and to be repeated for each different facade plane in a given image) is not
absolutely necessary.
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(a) initial monge_40 (b) initial monge_45 (c) initial monge_50

(d) result monge_40 (e) result monge_45 (f) result monge_50

�
86 14
4 96

�

(g) monge_40

�
77 23
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81 19
3 97

�

(i) monge_50

Figure 7.2: Three window detection results. Figures 7.2a, 7.2b and 7.2c show the
window seeds and Figures 7.2d, 7.2e and 7.2f show the results with our feature matching
approach. Figures 7.2g, 7.2h and 7.2i are the resulting confusion matrices.
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Figure 7.3: Window detection results on the eTRIMS dataset (1/2): input quadrilaterals,
detections on recti�ed images, and detections on non-recti�ed images.
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Figure 7.4: Window detection results on the eTRIMS dataset (2/2): input quadrilaterals,
detections on recti�ed images, and detections on non-recti�ed images.
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Chapter 8

High-Level Bottom-Up Cues for Fast
and Robust Façade Parsing

In this last chapter, we address the problem of better parsing images of building facades.
The goal is to segment images, assigning to the resulting regions semantic labels that
correspond to the basic architectural elements. We assume a top-down parsing framework
based on a 2D shape grammar that encodes a prior knowledge on the possible composition
of facades. The algorithm explores the space of feasible solutions by generating possible
con�gurations of the facade and comparing them to the input data by means of a local,
pixel- or patch-based classi�er. We propose new bottom-up cues for the algorithm, both
for the evaluation of a candidate parse and for guiding the exploration of the space of
feasible solutions. The method that we propose bene�ts from detection-based information
and leverages on the similar appearance of elements that repeat in a given facade.
Experiments performed on standard datasets show that this use of more discriminative
bottom-up cues improves the convergence in comparison to state-of-the-art algorithms,
and giving better results in terms of precision and recall, as well as computation time and
performance deviation.
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CHAPTER 8. H IGH-LEVEL BOTTOM-UP CUES FORFAST AND ROBUST FAÇADE PARSING

8.1 Introduction

Image segmentation remains a generic, and in a large part, unsolved problem in computer
vision. For many instances of this problem we are not restricted to using the information
contained in the image alone. We may also resort to prior knowledge of the likely
compositions of objects present in the scenes. Shape grammars are a concept that
encodes such prior knowledge and is used for image segmentation. In the framework of
shape grammars, segmentation amounts to assigning semantic labels to image regions
and is known under the name of image parsing(ZHU and MUMFORD 2006).

Applications involving images of highly structured scenes are likely to bene�t most
from the development of image grammars. One such �eld, which has been drawing
increasing attention recently, is facade parsing (ALEGREand DELLAERT2004; MÜLLER

et al. 2006; MÜLLERet al. 2007; BARINOVA et al. 2010; TEBOULet al. 2010; TEBOULet al.
2011). The goal of facade parsing is to automatically provide a hierarchical decomposition
of a building facade into its constituent elements, given an image of the facade. Facade
parsing has a variety of applications, including urban planning, thermal performance
assessment of existing structures and reconstruction of models of existing buildings for
games and simulators.

Amongst the most successful solutions to the problem of facade parsing are the top-
down parsers proposed by Teboul et al. (TEBOULet al. 2010; TEBOULet al. 2011). They
draw from the idea of split grammars for architectural modeling ( MÜLLERet al. 2006),
where a variety of building models can be generated from a single grammar. The process
is analogous to string or sentence derivation in formal and natural language processing.
The goal of parsing here is to perform the derivation in such a manner that the resulting
model corresponds to the input image. The top-down parsers have proven to be ef�cient
in this task.

However, the robustness of this approach is dependent on the quality of the bottom-up
information used for comparing the candidate models with the input image. Such infor-
mation can be degraded because of challenging lighting conditions, facade appearance
variation, or occlusions. This sensitivity is partly due to the fact that the underlying merit
function is based on low-level, pixel- or patch-based information, as proposed inTEBOUL

et al. (2011). Besides, because of the high complexity of the problem space and due to
the randomized nature of the approach, a good data-driven exploration of the solution
space is crucial to simultaneously limit signi�cant performance deviation in the parsing,
and achieve fast convergence rate. But again, exploration presented inTEBOUL et al.
(2011) is only based on pixels or patches.

To address the above issues, we propose a modi�ed algorithm for top-down facade
parsing that bene�ts from higher level and more robust abstractions, as provided by
object detectors and geometric primitives. Namely, we integrate an object detector into
TEBOULet al. (2011)'s existing framework, in this case a window detector. For this, we
use our robust pattern search method described in Chapter 7, exploiting the fact that
architectural elements present in a particular facade frequently share similar appearance.
Additionally, to improve the convergence properties of the method, we guide the parser
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with the window detections and line segment cues. As a result, the parser not only better
locates facade elements but also prunes the solution space much more selectively.

8.2 Related Work

The idea of representing the image contents in a hierarchical and semantized manner
can be traced back to OHTA et al. (1978)'s and OHTA et al. (1979)'s work. However, the
practical applications of grammars to image interpretation or segmentation are attributed
to more recent works (see, for example,HAN and ZHU (2009), WANG et al. (2006), JIN

and GEMAN (2006) and A HUJA and TODOROVIC(2008)).
In the litterature, the hierarchical and regular structure of man-made objects is

explored to mainly improve segmentation or detection results (WANG et al. 2006; JIN

and GEMAN 2006; AHUJA and TODOROVIC2008). We focus on �exible grammars that
allow the user to encode speci�c knowledge of the domain in the form of production rules
that constrain the space of feasible solutions. The grammar-based image interpretation
paradigm is thoroughly reviewed in ZHU and MUMFORD (2006)'s survey. A good example
of this approach is HAN and ZHU (2009)'s rectangle-based grammar, in which the prior
knowledge is represented by means of an and/or graph. The terminal symbols are
rectangles and the production rules combine them into rows, columns or grids, and
allow for rectangle nesting. This case illustrates one of the dif�culty of the problem: the
number of terminals in the solution is unknown. The greedy algorithm presented in the
chapter copes well with this dif�culty. However, since there is no semantic interpretation
associated with the rectangles, there is no sensible way of deciding which of any two
candidate parse trees is better.

The use of grammar-based facade parsing has been inspired by the successful appli-
cation of split grammars for generating virtual urban environments (see, for example,
(MÜLLERet al. 2006)). The key to success is to encode in the grammar basic constraints
on the generated objects: the principles of adjacency, non-overlap and snaplines. A
number of research work have been aimed at applying the grammar principles for re-
trieving building models from images ( TEBOULet al. 2010; TEBOULet al. 2011; MATHIAS

et al. 2011; RIEMENSCHNEIDERet al. 2012; SIMON et al. 2011). In their work, Teboul
et al. present an application of a 2D binary split grammar for parsing recti�ed facade
images (TEBOULet al. 2010; TEBOULet al. 2011; SIMON et al. 2011). The method can
accommodate several classes of terminal symbols and has been shown to be robust to
partial occlusions and relatively �exible to variable facade appearance (TEBOUL et al.
2011). However, the algorithm suffers from a number of shortcomings. For example,
they rely on bottom-up gradient cues, which can hardly cope with common challenges in
urban photographs, such as noise, occlusion, illumination changesYANG et al. (2012)'s
work focuses on the application of rank-1 matrix approximation for facade parsing. A
binary classi�er of window color is applied to the facade image. The image is divided into
rectangular regions. The algorithm attempts to �t an irregular grid of windows to each of
these regions. This is performed by approximating the output of the classi�er by a rank-1
matrix. The main drawback of the algorithm is the constraint of two-class (window
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and wall) facades and the lack of �exibility in de�ning the grammar. MATHIAS et al.
(2011) propose to use MÜLLERet al. (2006)'s grammar and generate the building while
estimating the attributes of the applied grammar rules from the input images and a 3D
point cloud. While the general idea seems attractive, the algorithm has not been shown
to perform well with more than two classes of terminal symbols and accommodates only
a small subset of rules of the original grammar (MATHIAS et al. 2011).

8.3 Grammar-Based Parsing

A shape grammar (STINY 1975; ZHU and MUMFORD2006) is a formalism to represent
a structured collection of shapes. The symbols of the grammar are basic shapes, and
the production rules transform one con�guration of basic shapes into another. The split
grammars (TEBOULet al. 2010; MÜLLERet al. 2006) are context-free shape grammars,
where the production rules split the non-terminal basic shape on the left-hand side of
the production rule along one dimension at a time. This simpli�cation decreases the
dimensionality of the space of parameters of a single production rule while preserving
the expressive power of the grammar. This makes split grammars particularly suitable for
modeling building facades.

The following part of this section gives a brief overview of 2D split grammars for
facade modeling. The reader is referred toTEBOULet al. (2010) and TEBOULet al. (2011)
for more details.

8.3.1 Split Grammars

The grammar dealt with in this chapter operates on rectangles as basic shapes. Each
production rule splits a rectangle along the horizontal or vertical dimension into a number
of new rectangles. In the case of building grammars, the terminal basic shapes represent
architectural elements, like windows and wall tiles, and the production rules encode
the possible spatial compositions of these elements. Generating from the grammar, one
obtains schematic images of building facades (TEBOULet al. 2010; MÜLLERet al. 2006).

Formally, a 2D split grammar G is a context-free grammar(N ; T ; R; S) where N is a
�nite set of non-terminal basic shapes f N1; : : : ; Nm g, T is a �nite set of terminal basic
shapesf t1; : : : ; tng, R is a �nite set of rules f r1; : : : ; r l g and S 2 N is the starting shape
(axiom).

Terminal and non-terminal symbols of the grammar are called basic shapes. They have
a semantic type from a �nite subset C, (e.g., window, balcony or �oor), and a bounding
box. The vector of attributes of a basic shape of typec at position (x; y) with width w and
height h is denoted as(c; x; y; w; h). (Note that x and y denote here pixel coordinates in
the image, not features.)

A rule r : A ! B1B2 : : : Bk splits a single non-terminal basic shapeA along a selected
dimension into a sequence of basic shapes(B i )1� i � k . For example, a vertical split rule
decomposes a basic shape into multiple chunks of basic shapes along they axis. The
grammar can be transformed into Chomsky Normal Form, so that each rule applies at
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Figure 8.1: Top-down construction of a derivation tree. Top: the input image with the
overlaid symbols. Bottom: the derivation tree under construction.

most one split to the processed basic shape. This reduces the number of continuous
attributes of a production rule to one.

The generation process starts by applying a production rule to the axiom and continues
applying production rules to the non-terminal basic shapes until there are only terminals
in the derived con�guration. The application of a rule requires the selection of the
rule and the determination of its attributes, i.e., the number and positions of the splits.
Generation is thus a sequence of decisions. It constructs aderivation tree. The root of
the tree is the axiom S and all the nodes correspond to basic shapes, with terminal basic
shapes at the leaves. An operation on a non-terminal node is performed by attaching to it
the children nodes. Figure 8.1 illustrates the �rst two steps of a derivation process for an
exemplary split grammar.

The idea of parsing is to construct a derivation tree corresponding to a given con�gu-
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ration of terminal shapes. It can be performed in a top-down or bottom-up fashion. In
the �rst case, the derivation tree is constructed starting from the axiom; in the second
case, the leaves of the tree are instantiated �rst and combined recursively.

In many practical facade parsing applications, the input data consists of a recti�ed
facade image. The goal is to segment the image into a con�guration of semantically
meaningful regions that is allowed by the grammar. The grammar presented inTEBOUL

et al. (2011) represents the Haussmannian architecture of the XIXth century buildings
in Paris. The set of terminals includes sky, roof, shop, door, window, wall and balcony
areas. As inTEBOULet al. (2011), choosing a relevant split grammar is an issue we do
not address. We assume the split grammar is known and written beforehand.

8.3.2 Reinforcement Learning for Top-Down Parsing

To assess the quality of a derivation tree, a pixel-wise merit function is computed �rst.
The merit function m(x; y; c) 2 [0; 1] estimates the likelihood that a pixel at (x; y) is of
semantic type c. In TEBOUL et al. (2011), a random forest (RF) classi�er is used to
estimate m. The parser's goal is to �nd a derivation tree T that maximizes the cumulated
reward, de�ned over all the terminals and the input image as:

X

t

M (t). M (t) is the

reward for a single terminal t = ( c; x; y; w; h) and cumulates the reward over all pixels
covered by the terminal:

M (t) =
x+ wX

x0= x

y+ hX

y0= y

m(x0; y0; c) : (8.1)

The task is dif�cult because the effect of decisions taken on the non-terminal nodes
is not known until the terminal nodes are instantiated. In TEBOUL et al. (2011), the
problem is formulated in terms of a Markov Decision Process. The parser acts as an agent
constructing a derivation tree. Such tree has a states = ( T; N ) which consists of the tree
T under construction and the next non-terminal node N to be processed.

Speaking in terms of reinforcement learning language, the parser learns a policy
function � (s; a), which is the probability of “choosing action a” in state s. Using the
terminology of grammar parsing, “action a” merely corresponds to “rule attribute a”, e.g.,
if the next non-terminal shape/node

N = ( c; x; y; w; h)

has to be processed with a horizontal split rule, then the rule attribute a is nothing more
than a parameter

0 � a � w

that splits the shapeN into two child shapes/nodes

N1 = ( c; x; y; a; h) and N2 = ( c; x + � x ; y; w � a; h):

By repeatedly simulating derivation trees with the current policy function � (s; a), the
parser updates at each iteration� (s; a) according to the history of cumulated rewards,
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which are determined when derivation trees are complete. Denoting the current best
optimal attribute by a� and the prior distribution of rule attributes by P(ajs), the policy
function takes the form

� (s; a) = (1 � " )� (a; a� ) + "P (ajs); (8.2)

where � is the Kronecker delta and" is a parameter of the algorithm. Speci�cally, the
policy function either chooses with probability 1 � " the best rule attribute a� , learnt
“from experience”, or draws another rule attribute a from the prior distribution P(ajs)
with probability " .

After a number of iterations, � (s; a) converges to the optimal policy function, which in
turn can generate a derivation tree yielding the highest reward. In order to speed up the
convergence, a data-driven version of the algorithm is used, whereP(ajs) is determined
from the bottom-up cues. The prior distribution P(ajs) for split locations is generated
by marginalizing the horizontal and vertical gradient magnitudes along the y and x
directions of the image.

8.3.3 Improved Bottom-up Cues for Façade Parsing

The algorithm proposed by TEBOULet al. (2011) only utilizes local, pixel- or patch-based
information. In particular, this is the case of the merit function, which lacks robustness.
Such a limitation is signi�cant in the case of buildings, because of possibly high variations
of facade color and lighting conditions of image acquisition. Within the framework, it
is also not possible to bene�t from the fact that in a single image, elements of the same
type may share similar appearance; e.g., the pixel classi�er inTEBOULet al. (2011) looks
for any kind of window at any position. It does not reinforce the speci�c similarity of
windows and window surroundings in a given façade. Besides, the random nature of the
Q-learning algorithm used in TEBOULet al. (2011) results in signi�cant result variations
from run to run. In the following part of this chapter we propose modi�cations to the
algorithm to address these drawbacks.

Instead of constraining the bottom-up information to a local, low-level merit function,
we propose to also use an object detector and a robust pattern search method (cf.
Chapter 7). Our algorithm may thus exploit the repetition of speci�c instances of
architectural elements within the facade. To better guide the parsing, we also design
discriminative distributions of parsing actions using object detection and line segment
cues. As a result, the parser not only better locates elements but also prunes the solution
space much more selectively.

In the rest of the chapter, we describe how we construct our improved merit function,
the new distribution for split positions from the results of our repetitive pattern search
obtained in Chapter 7. Then we provide and discuss experimental results.

8.4 Enhanced Merit Function

We propose a new, more robust and more accurate merit function, which combines the
local, low-level (pixel- or patch-based) information with standalone, high-level object
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detection. We interpret a detector for a classd as a pixel classi�er wd(x; y), the value of
which is 1 if (x; y) is a pixel belonging to the detected object and0 otherwise. Not all
semantic categories can have a sensible detector in practice. For instance, a classi�er
can be trained to detect windows or doors, but it is much harder to practically and
reliably detect walls or roofs. Moreover, although the semantic types of terminals have
no intersection in this kind of grammar, actual detectors can locate objects that overlap
several semantic types of the grammar. For example, a general window model for
detection can encompass in the grammar both window-only areas and cast iron balconies
in front of windows. We thus make a difference between the semantic classesC of the
grammar and the semantic classesD of the detectors, and de�ne c(d) as the classes ofC
that have an intersection with classd 2 D . In case we have several detectors, for classes
in D , we de�ne

c(D) def=
[

d2 D

c(d): (8.3)

The improved merit function m+ gives con�dence to the high-level detectors over the
underlying, low-level merit: in case of a detection at a given pixel, it zeroes the merit of
undetected classes, and the merit is renormalized. More formally, let

Dx;y
def= f d 2 D j wd(x; y) = 1 g (8.4)

be the set of detected classes at pixel(x; y). We de�ne

m+ (x; y; c) def= m(x; y; c) if Dx;y = ; ; (8.5)

i.e., it is unchanged where there are no detection. Otherwise, ifDx;y 6= ; , then m+ (x; y; c)
is de�ned as

m+ (x; y; c) def=

8
>><

>>:

m(x; y; c)
X

c02 c(D x;y )

m(x; y; c0)
if c 2 c(Dx;y )

0 otherwise.

(8.6)

In our experiments we trained a general window detector that also localizes windows
with a cast iron balcony in the foreground. We thus have D = f whole-window g and

c(D) = f window ; balconyg:

Figure 8.2 illustrates the improved merit function. We display

m� (x; y; c) def= arg max
c

m(x; y; c)

with different colors for different classes (and likewise for m�
+ ) as well as an image illus-

trating wwhole-window with patches of the original image in places where whole windows
have been detected.
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� =

m� (x; y) wwhole-window (x; y) m�
+ (x; y)

Figure 8.2: Classi�cation based on the local merit function (left) vs the higher-level merit
function (right). The result of the window detection is presented in the middle.

8.5 Enhanced Distribution of Split Positions

Our last contribution is the design of more discriminative distributions of parsing actions
P(ajs) for the policy function � (s; a). The most critical parsing action is the choice of the
split position that decomposes a basic shape in the optimal manner. We consider two
distributions for the split positions: one for horizontal splits and one for vertical splits.
In TEBOUL et al. (2011), these distributions are obtained by accumulating gradients
in the image along the x and y axes. However, these marginal distributions are noisy
because of the harmful accumulation of gradients not corresponding to objects of interest,
but resulting from shadows, texture or small architectural details. We propose another
approach, based on marginalizing the distribution of line segments detected in the
image. As illustrated by our experiments, these higher-level abstractions are better split
indicators.

We �rst detect line segments L in the image. (In our experiments we use GROMPONE

VON GIOI et al. (2010)'s line segment detector.) Let v(y) be the distribution of vertical
split positions. We denote by [al ; bl ] the projection of a segment l 2 L on the vertical axis,
and by � l its angle with respect to horizontality. The value of the distribution at height y
is computed as follows:

v(y) = C
X

l2 L

1y2 [al ;bl ] exp(�
tan2 � l

2� 2 ) ; (8.7)

where � is a parameter of the distribution and C is a normalization constant. The
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Gradient-based Detection-based

Figure 8.3: The gradient-based vs the detection-based distribution of split positions.

de�nition is symmetrical for horizontal splits. For our experiments we set � = 0 :06, which
roughly leads to a segment contribution of 1

3 for a segment with a 5� angle, whereas
a perfectly axis-aligned segment contributes for1. To reduce computation time, line
segments with an angle beyond a threshold (around10� for the given � value) can be
discarded right after detection.

In the same manner, we build a normalized histogram of the contours of the detected
objects. The two distributions are summed and the resulting histogram is normalized,
yielding the �nal distribution of applicable split positions. The major bene�t of this
approach is that the exploration of the solution space is signi�cantly pruned and the splits
are attracted to optimal positions. The parser avoids being stuck in local minima and the
temporal standard deviation of the energy decreases over time faster than for the original
algorithm (see Figures 8.3 and 8.4).

8.6 Experimental Validation on Façade Parsing

Our experimental validation is based on the ECP Benchmark 2011datasets (TEBOUL

2010), that picture recti�ed Haussmanian buildings annoted with 7 semantic classes: sky,
roof, wall, window, balcony, shop, door. We have shown in Chapter 7 that our window
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pattern search obtained good window localization results on the ECP CVPR 2010and ECP
Benchmark 2011datasets (TEBOUL2010).

To evaluate our approach, we ran the modi�ed shape grammar parser on the test
set of the ECP Benchmark 2011 dataset1 (104 images). The window detector we used
is CC(� = 20)+PS, that experimentally performs best (see Table 7.1). We compare this
parser against the original one, presented inTEBOULet al. (2011). In each case we run
the parsers once. The results are evaluated with use of the ground truth annotations
accompanying the dataset.

We present the results of the comparison in the form of the confusion matrices. The
detection rate of building elements corresponds to the diagonal entry of the matrix (see
TEBOULet al. (2011) for details). Table 8.1 shows the ef�ciency of our two contributions
separately. Consistent improvement of the results over the whole range of classes is
visible already even for the partial contributions of the re�ned merit function and the new
distribution of split positions separately. The improvement is ampli�ed when we combine
the two modi�cations into our �nal algorithm (bottom-right matrix). In particular, the
window detection improves from 60% to 85% while most other rates are improved or
preserved. Our algorithm also shows better convergence properties than the original
one. In Figure 8.4 we show that the proposed algorithm converges faster, attains better
values of the reward function and is less prone to deviate from the optimal solution. A
few actual results are illustrated in Figure 8.5. More results can be found in Appendix F,
which compares TEBOULet al. (2011) and our approach.

1This dataset mustnot be confused with the ECP CVPR 2010 datasetwhich consists of10 test images only.
Hence the numbers differ from what is reported in TEBOULet al. (2011).
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Figure 8.5: Examples of images for which our parser outperforms the original one (best
viewed using magni�cation). Odd rows: results of original parser ( TEBOULet al. 2011).
Even rows: our modi�ed parser.
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Chapter 9

Conclusion and Perspectives

In this chapter, we would like to summarize the main contributions of the thesis.
In Chapter 4, we have proposed a mathematical formalization of the geometry

consistency which is enforced at two levels, namely, at the level of the vicinity of a
feature match, and at the level of a whole geometry-consistent region. Our 4th-order
constraint constitutes the key stone in our geometry consistent formulation. Indeed, this
constraint is used to the notion of af�ne consistent region and rigorously linked with a
match propagation scheme. In addition, we provide an extensive study of the feature
detector-descriptor repeatability to know how to assess the geometry consistency at the
local scale of a feature.

In Chapter 5, from our geometric formulation, we have then derived a match propaga-
tion method that enforces photometric and geometric consistency. We validated the choice
of parameters that controls our match propagation. Our method has been evaluated in
terms of precision and empirical evidence of scalability are provided. As demonstrated
on a wide range of experiments in Chapter 6, it is ef�cient, scalable, accurate and robust,
even in the presence of high ambiguity, improving over other existing methods.

Besides, our algorithm is well suited for repeated pattern detection as it can be used as
a standalone algorithm for detecting multiple object instances in images (cf. Chapter 7).
Our pattern detector is shown to signi�cantly outperforms existing methods in accurate
window localization in a façade. In such situation, the algorithm can be viewed as an
adaptive detector that adjusts to the speci�c appearance of the repeated object.

In turn, the pattern detection results prove to be extremely valuable cues for façade
image parsing. We show in Chapter 8 how to ef�ciently exploit such high-level bottom-up
cues to enhance top-down facade parsing. It is based on the parser presented inTEBOUL

et al. (2011) and carries two signi�cant contributions with respect to the original version:
the use of robust and adaptive object detectors to better estimate the merit function
used by the parser, and the use of detected objects as well as line segments to better
determine split positions, which effectively guides the reinforcement learning algorithm
and speeds up its convergence. The signi�cant performance improvements that we
observe experimentally demonstrate the importance of high-level bottom-up cues in
top-down parsing.
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Let us conclude this thesis with perspectives. In particular, there is still room for im-
provements in our feature correspondence method, which actually constitutes the central
piece of the thesis. This mainly concerns our 4th-order constraint, which formulates a
position-, shape- and orientation- consistency under a local af�nity constraint.

� While being extremely robust, it is still challenging to get round the enumeration
issue involved in our match propagation method. In our implementation, we do not
try to enumerate all possible quadruples. Finding one good quadruple is suf�cient to
propagate matches. This is what our implementation does, but it does not guarantee
that it always �nds a good quadruple when there is one. It would be interesting to
design a principled and ef�cient method which selects good quadruples without
resorting to brute-force enumeration.

� Finally, our 4th-order constraint depends on learnt thresholds. These thresholds
varies from one speci�c feature detector to another, each feature detector coming
with speci�c precision and repeatability. The relevance of the learnt thresholds are
very dependent of the training images. We recall that we usedM IKOLAJCZYKet al.
(2005)'s datasets to learn these thresholds. However, as explained in Chapter 4,
these datasets evaluate the feature detector on rigid scenes only. This is actually a
very limited baseline and we actually use more permissive threshold values than
those found by learning.

Besides, these thresholds are �xed once for all. Fortunately, this does not prevent
from obtaining good results in deformable object matching. Perhaps thresholds
should also depend on the strength of local deformation for better matching de-
formed objects.

� To conclude, it would be interesting to investigate an equivalent energy formulation
which is practical to solve.
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Chapter 10

Conclusion et Perspectives (French)

A�n de conclure, nous récapitulons encore une fois les contributions de cette thèse.
Dans le Chapitre 4, nous avons proposé une formalisation mathématique de la co-

hérence géométrique à deux niveaux d'échelle, à savoir, d'une part au niveau du voisinage
d'une correspondance locale et d'autre part au niveau d'une région géométriquement
cohérente, notre contrainte d'ordre 4 constituant la base d'une telle formalisation math-
ématique. En effet, cette contrainte est utilisée pour de�nir la notion de région af�ne-
cohérente et rigoureusement liée à un processus de croissance de régions. De plus, nous
fournissons une étude détaillée sur la répétabilité de détecteurs-descripteurs a�n de
savoir comment évaluer la cohérence géométrique à l'échelle locale d'une caractéristique
visuelle.

Dans le Chapitre 5, à partir de la formulation de cohérence géométrique, nous en
avons dérivé une méthode de propagation de correspondances qui assurent à la fois
cohérence photométrique et géométrique. Notre méthode a été évaluée en terme de
précision et nous avons mis en évidence sa capacité à passer à l'échelle de manière
empirique. Comme démontré dans un large éventail d'expériences dans le Chapitre 6,
notre méthode s'avère algorithmiquement ef�cace, adaptée à des problèmes de grande
dimension, précise et robuste pour des ensembles de correspondances très contaminées
et massivement ambiguës, améliorant ainsi l'état de l'art.

Par ailleurs, notre algorithme peut être réadapté comme un algorithme de détection
d'éléments répétés dans les images (cf. Chapter 7). Nous démontrons que notre détecteur
d'éléments répétés fait mieux que les méthodes existantes dans la localisation précise de
fenêtres sur une façade. D'une certaine manière, l'algorithme peut être vu comme un
détecteur adaptatif qui s'ajuste à l'apparence spéci�que de l'élément répété.

Ensuite, les résultats de détection de modèles visuels répétés s'avèrent être des
informations particulièrement précieuses pour l'analyse d'images de façades. Nous
montrons dans le Chapitre 8 comment exploiter ces informations pour l'analyse de façades.
En se basant sur le parseur deTEBOULet al. (2011), nous proposons deux contributions:
l'utilisation de détecteurs robustes et adaptatifs pour produire une meilleure information
a priori , qui servira ensuite à évaluer la représentation proposée par le parseur; la
combinaison des résultats de détections d'objets répétés et des lignes pour analyser mieux
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et plus vite la structure des façades pendant la phase d'optimisation. Des améliorations
très nettes ont été obtenues dans l'analyse des façades, ce qui souligne bien l'importance
des informations haut-niveau.

En�n concluons cette thèse par des perspectives. En particulier, notre méthode de mise
en correspondance, qui constitue de fait la principale contribution de cette thèse, peut
encore béné�cier d'améliorations notables. Notamment, nous portons notre attention sur
notre contrainte d'ordre, qui exprime la cohérence entre les positions, les formes et les
orientations correspondantes sous contrainte d'une transformation localement af�ne.

� Bien qu'elle s'avère très robuste, notre contrainte d'ordre 4 ainsi conçue reste un
ingrédient coûteux au niveau de l'ef�cacité algorithmique. Contourner le problème
d'énumération de quadruplets reste un problème ouvert. Dans notre implémenta-
tion, nous n'essayons pas d'énumérer tous les quadruplets possibles. Nous nous
contentons d'en trouver un bon mais notre algorithme ne garantit pas de trouver
systématiquement un bon quadruplet s'il en existe un. Il serait intéressant de
concevoir une méthode rigoureuse et ef�cace pour sélection des bons triplets sans
avoir recours à une énumération par force brute.

� En�n, notre contrainte d'ordre 4 dépend de seuils appris. Ces seuils varient d'un
détecteur de caractéristiques visuelles à un autre, chaque détecteur possédant
leur répétabilité et précision qui leur est propre. La pertinence des seuils appris
dépendent toutefois du choix des images d'entraînement. Rappelons que nous
avons utilisé les jeux de données deM IKOLAJCZYKet al. (2005) pour apprendre ces
seuils. Toutefois, comme expliqué dans le Chapitre 4, ces jeux de données évaluent
le détecteur sur des scènes rigides seulement. De fait, la pertinence des seuils en est
amoindrie et nous avons �xé des seuils beaucoup plus permissifs que ceux appris à
la phase d'apprentissage.

Bien que ces seuils sont �xés une fois pour toutes, nous avons pu malgré tout
obtenir de très bons résultats pour mettre en correspondance des objets déformés.
Mais peut-être les seuils doivent également dépendre de la force de déformation
locale pour mieux mettre en correspondance les objets déformés.

� En�n, trouver une formulation énergétique pratique et équivalente à notre formula-
tion reste une piste de recherche intéressante.
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Chapter A

Ellipse Intersections

EBERLY(2008) provides a comprehensive study on the computation of ellipses intersection,
namely the computation of its area and its intersection points. This is a non-trivial
geometric problem. We complementEBERLY(2008)'s study with some additional technical
details about the area computation of two intersecting ellipses.

A.1 Origin-Centered Axis-Aligned Ellipses

Let E be an ellipse with semi-major axisa and semi-minor axis b. Let us �rst suppose that
E is centered at the origin and is axis-aligned oriented, i.e., such that the axisa is along
the x-axis and the axisb along the y-axis. Then the equation of ellipseE is

x2

a2 +
y2

b2 = 1 (A.1)

A.1.1 Ellipse Area

By using symmetry property of the ellipse, the area of ellipseE is 4 times the upper
quadrant area of the ellipse, i.e.

area(E) = 4
Z a

0
y(x) dx = 4b

Z a

0

r

1 �
x2

a2 dx = �ab (A.2)

The integral is the limit of the Riemann sum as illustrated in Figure A.1.

Let us detail the computation. We use theC1-diffeomorphism change of variable
x
a = sin � which is valid for [0; a] ! [0; �= 2]. (A C1-diffeomorphism is an invertible
differentiable function with continuous derivative.)
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Figure A.1: Riemann sum approximating the upper quadrant area of the ellipse.

Differentiating, dx = a cos(� ) d� , and hence,

area(E) = 4 ab
Z �= 2

0
cos2(� ) d�

= 4ab
Z �= 2

0

1 + cos(2� )
2

d�

= 4ab
�

x
2

+
sin(2� )

4

� �= 2

0

= �ab:

A.1.2 Area of an Elliptical Sector

In this part, we review the computation of the area of an ellipse sector. It has already
been covered in EBERLY(2008) but computation details are omitted in E BERLY(2008).

The elliptic sector area is delimited in polar coordinates by [� 1; � 2] (with � 1 < � 2) as
illustrated in Figure A.2. Using polar coordinates, it equals to the following nonnegative
integral

A(� 1; � 2) =
1
2

Z � 2

� 1

r 2 d� : (A.3)

The change of variable in polar coordinates isx = r cos� and y = r sin � and, thus

with Equation (A.1),
r 2 cos2(� )

a2 +
r 2 sin2(� )

b2 = 1 , therefore r 2 =
a2b2

b2 cos2(� ) + a2 sin2(� )
.
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Figure A.2: The ellipse sector delimited by the polar angles(� 1; � 2) is colored in blue

Plugging the formula of r in the integral,

A(� 1; � 2) =
a2b2

2

Z � 1

� 0

d�
b2 cos2(� ) + a2 sin2(� )

(A.4)

Now, the integrand d�
b2 cos2 (� )+ a2 sin2 (� )

is invariant by the transformation � 7! � + � , i.e.,

d�
b2 cos2(� ) + a2 sin2(� )

=
d(� + � )

b2 cos2(� + � ) + a2 sin2(� + � )
:

According to Bioche's rule, a relevant change of variable is theC1-diffeomorphism change
of variable t = tan( � ) which is valid for ] � �= 2; �= 2[! ] � 1 ; 1 [. Let us �rst rewrite

A(� 1; � 2) =
a2b2

2

Z � 2

� 1

d�
b2 cos2(� ) + a2 sin2(� )

=
a2b2

2

Z � 2

� 1

d�
cos2 (� )

b2 + a2 tan2(� )

= ��a2b2

2

Z � 2

� 1

d�
cos2 (� )

��a2(b=a)2 + tan 2(� ))
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Differentiating t = tan � , dt = d�
cos2 (� ) , thus

A(� 1; � 2) =
b2

2

Z tan � 2

tan � 1

dt
(b=a)2 + t2

=
b�2

2

ha

�b
arctan

� a
b

t
�i tan � 2

tan � 1

=
ab
2

h
arctan

� a
b

t
�i tan � 2

tan � 1

=
ab
2

�
arctan

� a
b

tan � 2

�
� arctan

� a
b

tan � 1

��

Hence,

A(� 1; � 2) =
ab
2

�
arctan

� a
b

tan � 2

�
� arctan

� a
b

tan � 1

��
(A.5)

Warning: The integral is properly de�ned for (� 1; � 2) 2 ] � �= 2; �= 2[. But, using sym-
metry properties of the ellipse, we can easily retrieve the elliptical sector for any
(� 1; � 2) 2 ] � �; � [.

Alternatively, EBERLY(2008) provides a more convenient antiderivative because it is
de�ned in ] � �; � ] as follows

F (� ) =
ab
2

�
� � arctan

�
(b� a) sin 2�

(b+ a) + ( b� a) cos 2�

��
: (A.6)

Hence, the elliptic sector area equals to the followingnonnegativequantity

8(� 1; � 2) 2 ] � �; � ]; A(� 1; � 2) = jF (� 2) � F (� 1)j : (A.7)

A.1.3 Area Bounded by a Line Segment and an Elliptical Arc

We are interested in computing the elliptic portion by a line segment and the elliptical
arc (� 1; � 2) such that

j� 2 � � 1j � �

This condition is important as a such elliptic portion always corresponds to the blue elliptic
portion in Figure A.3. Let us denote the area of such portion byB (� 1; � 2). Geometrically,
we see that, if j� 2 � � 1j � � , then

B (� 1; � 2) = area(sector(� 1; � 2)) � area(triangle(� 1; � 2))

= A(� 1; � 2) �
1
2

jx2y1 � x1y2j

where (x i ; yi ) = ( r i cos� i ; r i sin � i ) and r i =
ab

p
b2 cos2(� i ) + a2 sin2(� i )

for i = f 1; 2g.
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Figure A.3: The ellipse sector bounded by a line segment and the elliptical arc(� 1; � 2) is
colored in blue.

Note that the other portion corresponding to the red one in Figure A.3 has an area
which equals to �ab � B (� 1; � 2) � B (� 1; � 2) if j� 2 � � 1j � � .

To summarize, our portion of interest, illustrated by the blue elliptic portion in
Figure A.3, has an area which equals to

8(� 1; � 2) 2 ] � �; � ]; B (� 1; � 2) =

8
><

>:

A(� 1; � 2) �
1
2

jx2y1 � x1y2j if j� 2 � � 1j � �

�ab � A(� 1; � 2) +
1
2

jx2y1 � x1y2j otherwise
:

(A.8)

A.2 General Ellipse Parameterization

The previous sections has provided the basis for area of intersecting ellipses. However,
ellipses are neither centered at the origin nor aligned with the axes of the reference
frame in general. Therefore, an ellipseE is entirely de�ned by the following geometric
information

� a center xE,

� axis radii (aE; bE),

� an orientation � E, i.e., the oriented angle between thex-axis and the axis of radius
aE.
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or more concisely by the pair (xE; � E) where the positive de�nite matrix � E 2 S ++
2 is

such that
� E = R ED ER T

E (A.9)

where R E is a rotation matrix de�ned as

R E
def=

�
cos� E � sin � E

sin � E cos� E

�

and D E is the diagonal matrix de�ned as

D E
def=

�
1=a2

E 0
0 1=b2

E

�

Note that Equation (A.9) is the singular value decomposition of � E if the axis radii
satisfy aE < bE. Using these information, ellipse E can be parameterized by the following
equation:

(x � xE)T � E(x � xE) = 1 (A.10)

Or
xT A Ex + bT

Ex + cE = 0

with A E = � E, bE = 2 � ExE and cE = xT
E � ExE � 1. Denoting xT = [ x; y], ellipse E can

be de�ned algebraically as

E(x; y) = e1x2 + e2xy + e3y2 + e4x + e5y + e6 = 0 ; (A.11)

where A E =
�

e1 e2=2
e2=2 e3

�
, bT

E = [ e4; e5] and cE = e6. This algebraic form is the

convenient one that we will use in order to compute the intersection points of two
intersecting ellipses.

A.3 Intersection Points of Two Ellipses

In this section, we sketch the computation of the intersection points. Our presentation
slightly differs from E BERLY(2008). First, let (Ei )1� i � 2 be two ellipses de�ned as

(x; y) 2 Ei () E i (x; y) = ei 1x2 + ei 2xy + ei 3y2 + ei 4x + ei 5y + ei 6 = 0 (A.12)

The intersection points of ellipses(Ei )1� i � 2 satisfy Equation (A.12) for i 2 f 1; 2g, i.e., the
following equation system holds for intersection points

�
E1(x; y) = 0
E2(x; y) = 0

(A.13)

Now, let us rewrite E i (x; y) as a quadratic polynomial in x, i.e.

E i (x; y) = ei 1x2 + ( ei 2y + ei 4)x + ( ei 3y2 + ei 5y + ei 6) = 0 (A.14)
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For convenience, we de�ne

p0(y) = e13y2 + e15y + e16 q0(y) = e23y2 + e25y + e26 (A.15)

p1(y) = e12y + e14 q1(y) = e22y + e24 (A.16)

p2(y) = e11 q2(y) = e21 (A.17)

Using the notations above, we observe thatx can be computed as follows

(A:13) ()
�

p2(y)x2 + p1(y)x + p0(y) = 0
q2(y)x2 + q1(y)x + q0(y) = 0

=)
�

q2(y) �
�
p2(y)x2 + p1(y)x + p0(y)

�
= 0 � q2(y)

p2(y) �
�
q2(y)x2 + q1(y)x + q0(y)

�
= 0 � p2(y)

Then subtracting the �rst equation from the second equation, we get

x =
p0(y)q2(y) � p2(y)q0(y)
p1(y)q2(y) � p2(y)q1(y)

: (A.18)

Furthermore, Equation System (A.13) is equivalent to the following augmented equation
system 8

>><

>>:

E1(x; y) = 0
x � E1(x; y) = 0

E2(x; y) = 0
x � E2(x; y) = 0

; (A.19)

which is equivalent to
2

6
6
4

p0(y) p1(y) p2(y) 0
0 p0(y) p1(y) p2(y)

q0(y) q1(y) q2(y) 0
0 q0(y) q1(y) q2(y)

3

7
7
5

| {z }
B (y)

2

6
6
4

1
x
x2

x3

3

7
7
5 =

2

6
6
4

0
0
0
0

3

7
7
5 (A.20)

We recognize a linear system in the vector[1; x; x 2; x3]T . More particularly, [1; x; x 2; x3]T

is in the nullspace of B (y), which then must have a zero determinant. Note that all the
equations systems areequivalent, so Equation System (A.13) holds if and only if the
determinant of B (y) is zero. Letting the resultant be

R = ( p0q2 � p2q0)2 � (p0q1 � p1q0) (p1q2 � p2q1) ; (A.21)

Equation System (A.13) is equivalent to the following quartic equation in y.

det(B (y)) = R(y) = 0 ; (A.22)

This quartic equation can be solved either by SVD from the characteristic polynomial
of the companion matrix. The SVD is computed either from a direct method or from
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Jacobi's iterative and numerically stable method. Instead we compute the roots with
Ferrari's method. While it is a tedious method, it has the advantage of being direct. Also,
we experimentally observe Ferrari's method can sometimes be numerically inaccurate in
particular situations, e.g., one of the ellipse is quasi-degenerate. Therefore, some tuning
may be required for numerical accuracy.

Using any polynomial solver, we get the4 roots (yi )1� i � 4 of the quartic polynomial R
and only keep those that are real. Finally (x i )1� i � 4 are deduced from Equation (A.18).

A.4 Intersection Area of Two Ellipses

Our presentation is different from EBERLY(2008) and details are added. In the rest of the
section, we consider two ellipses(Ei )1� i � 2 and we respectively denote

� the axes of ellipseEi by (ai ; bi ), the ellipse center byx i , the orientation by � i , and
the direction vectors of axis ai and bi by

u i
def=

�
cos(� i )
sin(� i )

�
v i

def=
�
� sin(� i )
cos(� i )

�
(A.23)

� the area of the elliptic portion bounded a line segment and an arc for ellipse Ei by
B i ,

� the number of intersection points by L ,

� the intersection points by p i for i 2 J1; LK, sorted in a counter-clockwise order, i.e.

8i 2 J1; L � 1K; \
�
[1; 0]T ; p i

�
< \

�
[1; 0]T ; p i +1

�
(A.24)

where \ (:; :) denotes the angle between two vectors in the planeR2.

� the polar angles of points (p i )1� i � L with respect to ellipses E1 and E2 by (� i )1� i � 2

and ( i )1� i � 2, i.e.

8i 2 J1; LK; � i
def= \ (u1; p i � x1) (A.25)

8i 2 J1; LK;  i
def= \ (u2; p i � x2) (A.26)

A.4.1 Retrieving the polar angles

To retrieve the polar angles, we need to place ourselves in the reference frame(x i ; u i ; v i ),
where x i is the origin of the reference frame and u i and v i are the direction vectors
determining the ellipse orientation. Using the convenient atan2 function giving values
ranging in ] � �; � ], we have

� i = atan2 ( hp i � x1; v1i ; hp i � x1; u1i )

 i = atan2 ( hp i � x2; v2i ; hp i � x2; u2i )

(A.27)

(A.28)
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Figure A.4: Cases where there is zero or one intersection point.

A.4.2 0 or 1 intersection point

Either one ellipse is contained in the other or there are separated as illustrated in
Figure A.4. An ellipse, sayE1, is contained in the other E2 if and only if its center
satis�es E2(x1) < 0. In that case, the area of the intersection is just the area of ellipseE1.
Otherwise, if there is no containment, the intersection area is zero. In summary,

area(E1 \ E 2) =

8
<

:

�a 1b1 if E2(x1) < 0
�a 2b2 if E1(x2) < 0
0 otherwise

(A.29)
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Figure A.5: Cases where there are two intersection points.

A.4.3 2 intersection points

We will not detail the case when Polynomial (A.22) have 2 roots with multiplicity 2. This
still corresponds to the case where there are two intersection points. But because of the
root multiplicities, one ellipse is contained in the other one and then Formula (A.29)
gives the correct intersection area.

Otherwise, we have to consider two cases as illustrated in Figure A.5, whichEBERLY

(2008) apparently forgot to consider. Namely, the cases correspond to whether the center
of ellipses E1 and E2 are on the same side or on opposite side with respect to the line
(p1; p2).

Denoting a unit normal of the line going across the intersection points (p1; p2) by n
(cf. Figure A.5). If the ellipse centers x1 and x2 are on opposite side with respect to the
line (p1; p2), i.e., hn; x1 � p1i � h n; x2 � p1i < 0; then

area(E1 \ E 2) = B1(� 1; � 2) + B2( 1;  2) (A.30)

If they are on the same side with respect to the line(p1; p2), i.e., hn; x1 � p1i � h n; x2 �
p1i > 0, then

area(E1 \E 2) =

8
<

:

(�a 1b1 � B1(� 1; � 2)) + B2( 1;  2) if jhn; x1 � p1ij � jh n; x2 � p1ij

B1(� 1; � 2) + ( �a 2b2 � B2( 1;  2)) otherwise:
(A.31)

Note that the condition jhn; x1 � p1ij � jh n; x2 � p1ij in Equation (A.31) just expresses the
fact that the distance of ellipse centerx1 to the line (p1; p2) is smaller than the distance
of ellipse center x2 to the line (p1; p2).
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Figure A.6: Cases where there are three of four intersection points.

A.4.4 3 and 4 intersection points

These cases are rather easy to handle. Indeed, we see geometrically from Figure A.6,

area(E1 \ E 2) =
LX

i =1

min (B1(� i ; � i +1 ); B2( i ;  i +1 ))
| {z }

smallest of elliptic portion area

+
1
2

LX

i =1

jdet (p i ; p i +1 )j

| {z }
area of polygon (p 1 ;p 2 ;:::;p L )

(A.32)

with � L +1 = � 1,  L +1 =  1 and pL +1 = p1.
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Chapter B

Normalizing Transform of a Feature

Let us remark the following proposition which relates the normalizing transform T x to
the feature shape� x .

Proposition 3. Let L be an invertible linear transformation inR2 whose matrix is denoted
by L . For any point x in the zero-centered unit circle inR2, its transformed point byL is in
the ellipse de�ned by

�
z 2 R2jzT (L T ) � 1L � 1z = 1

	

Proof. Fix a point
�
cos(t)
sin(t)

�
of the unit circle in R2. We write its transformed point by L as

�
u
v

�
= L

�
cos(t)
sin(t)

�
:

SinceL is invertible

L � 1
�
u
v

�
=

�
cos(t)
sin(t)

�

The squared Euclidean norm of the equality yields

�
u v

�
(L � 1)T L � 1

�
u
v

�
=

�
cos(t) sin(t)

�
�
cos(t)
sin(t)

�
= 1

We recognize the equation of an ellipse, which concludes the proof of proposition 3.

Consider the shape matrix� x . Recall that � x de�nes the elliptic shape Sx . We want
to retrieve the transformation L x that satis�es

� x = ( L � 1
x )T L � 1

x : (B.1)

Observe from the QR factorizationL x = QR that L x can be decomposed uniquely
in two speci�c transformations Q and R , which have the following geometric interpre-
tations. The upper triangular matrix R expresses a combination of shear and scaling
transforms. The orthonormal matrix Q expresses a rotation. This geometric interpretation
is illustrated in Figure B.1.
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Figure B.1: Geometric interpretation of the QR factorization of linear transform matrix
L x .

Unless L x involves no rotation, L x is an upper triangular matrix. Then, because
Equation (B.1) is a Cholesky decomposition, L x can be identi�ed by unicity of the
Cholesky decomposition.

In general, L x is not upper triangular. Orientations ox of elliptic shape � x are
provided from feature detectors. Recall that, as far as the SIFT descriptor is concerned,
ox corresponds to a dominant local gradient orientation.

Thus, introducing � x
def= \

��
1
0

�
; ox

�
, we have Q =

�
cos(� x ) � sin(� x )
sin(� x ) cos(� x )

�
and ex-

panding Equation (B.1) yields

� x = ( L � 1
x )T L � 1

x

= Q(R � 1)T R � 1QT sinceQT = Q � 1

QT � xQ = ( R � 1)T R � 1

We recognize the Cholesky decomposition of matrixQT � xQ which is the rotated ellipse
as shown in Figure B.1, in which caseL x can be determined completely.

Finally, the af�nity that maps the zero-centered unit circle to ellipse Sx is of the form,
in homogeneous coordinates

T x =
�
L x x
0T

2 1

�
: (B.2)

Algorithm B.1 summarizes how to compute T x .
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Algorithm B.1 Computation of the normalizing transform T x of feature x

1: procedure COMPUTENORMALIZEDTRANSFORMOF(x)

2: � x := atan2
��

ox ;
�
0
1

��
;
�

ox ;
�
1
0

���

3: Q :=
�
cos(� x ) � sin(� x )
sin(� x ) cos(� x )

�

4: M := Cholesky(QT � xQ)
5: // M is a lower triangular matrix such that MM T = QT � xQ
6: R := ( M T ) � 1

7: L := QR

8: return T x :=
�

L x
0T

2 1

�

9: end procedure
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Chapter C

Homography and Local Af�ne
Approximation

C.1 Local Af�ne Approximation

In the projective space, a homography� is expressed as a matrix inR3� 3

H def=

2

4
h1;1 h1;2 h1;3

h2;1 h2;2 h2;3

h3;1 h3;2 h3;3

3

5 def=

2

4
hT

1
hT

2
hT

3

3

5

where h i = [ hi; 1; hi; 2; hi; 3]T for i = f 1; 2; 3g.
For any point x 2 R2, we denote its normalized projective coordinates by X , i.e.

X = [ x; 1]T 2 R3. Then, we have

� (x) =
1

hT
3 X

�
hT

1 X
hT

2 X

�
:

Using a �rst-order Taylor expansion of � around x0, we have

� (x) =
x ! x 0

� (x0) + � 0(x0)T (x � x0) + o(jjx � x0jj ):

We recognize that the �rst-order Taylor approximation is the local af�nity A x 0 that
approximates � around x0

A x 0 (x) = � (x0) + � 0(x0)T (x � x0) (C.1)

Note that J� (x0) = � 0(x0)T is the Jacobian matrix of � about x0 and equals to

J� (x0) = � 0(x0)T =
1

(hT
3 X 0)2

�
hT

1;1:2(hT
3 X 0) � hT

3;1:2(hT
1 X 0)

hT
2;1:2(hT

3 X 0) � hT
3;1:2(hT

2 X 0)

�
2 R2� 2

where we denote h i; 1:2 = [ hi; 1; hi; 2]T for i = 1 ; : : : ; 3.
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C.2 Projection of a Feature by a Homography

Let us remark that a homography � does not transform an ellipse into an ellipse in
general, while an af�nity does. This is why we use the local af�ne approximation A x of
� about x to approximate the geometric information of the projected feature � (x). For
any elliptic feature x, its projection � (x) is approximated as follows.

� Its position � (x) is expressed as in the above section.

� Its shape� (Sx ) is approximatedas

� (Sx ) �
n

x0 2 R2
�
�
�(x0� � (x))T � � (x)

�
x0� � (x)

� T � 1
o

(C.2)

where
� � (x) = J� (x) � 1 � x (J� (x) � 1)T 2 R2� 2 (C.3)

� Its orientation vector � (ox ) is approximatedas

� (ox ) �
T x (x + ox ) � � (x)

jjT x (x + ox ) � � (x)jj2
(C.4)
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Chapter D

Repeatability Study of Feature
Detector-Descriptor

D.1 Generating the results on repeatability and precision of
detectors

In Section 4.3 of Chapter 4, we described and conducted an extensive study on repeata-
bility of feature detector-descriptor.

D.1.1 Brief Reminder of the Used Datasets

We recall that M IKOLAJCZYKet al. (2005)'s datasets are denoted by

D def= f Bark; Boat; Graf�ti ; Wall; Trees; Bikes; Leuven; UBCg:

Each of them consists of6 images. For each datasetd 2 D and for each image index

p 2 P def= f 2; 3; : : : 6g;

a ground truth homography � d;p is provided for the image pair (1; p) of dataset d for
p 2 P . The datasets evaluate the robustness of detectors and descriptors with respect to

1. increasing rotation and scale changes (Bark and Boat),

2. increasing viewpoint changes (Graf�ti and Wall),

3. increasing blur (Treesand Bikes),

4. increasing illumination changes (Leuven) and

5. increasing JPEG compression (UBC).

The tested featuresf are

f 2 F def= f DoG+SIFT; Harris-Af�ne+SIFT ; Hessian-Af�ne+SIFT ; MSER+SIFTg
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D.1.2 Brief Reminder of the Generated Data

We recall that, for each feature kind f 2 F , for each datasetd 2 D , for each image pair
(1; p), we compute several sets of matches(M f;d;p;i )1� i j� j� 1. For each set of matches
M f;d;p;i , we compute the following statistics: minimum, maximum, mean, median,
standard deviation values for the Jaccard distance and the angle difference.

Because the data is massive, we show in Figures D.1 and D.2 examples of data we
get for only one representative dataset, namely,Graf�ti which evaluates the detector-
descriptor precision and repeatability against increasing viewpoint changes) and only for
feature kind f 2 f DoG+SIFT; Harris-Af�ne+SIFT g.

D.2 Factoring the results

As said in Section 4.3, we see from the results that the median and mean value appears
to be the most exploitable indicators and are often very similar. However, we preferably
use the median value as it localizes well the half of “good” collected values of Jaccard
distance or angle differences.

We show plots of functionsp 7! eJ (f; d; p; i ) in Figures D.3, D.4, D.5, D.6, D.7, D.8, D.9,
and D.10.
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(a) Jaccard distance for matchesm = ( x; y ) such
that k� (x ) � y k2 2 [0; 1:5] pixels

(b) Angle difference (degrees) for matches m =
(x; y ) such that k� (x ) � y k2 2 [0; 1:5] pixels

(c) Jaccard distance for matchesm = ( x; y ) such
that k� (x ) � y k2 2 [1:5; 5] pixels

(d) Angle difference (degrees) for matches m =
(x; y ) such that k� (x ) � y k2 2 [1:5; 5] pixels

(e) Jaccard distance for matchesm = ( x; y ) such
that k� (x ) � y k2 2 [5; 10] pixels

(f) Angle difference (degrees) for matches m =
(x; y ) such that k� (x ) � y k2 2 [5; 10] pixels

Figure D.1: Statistics of sets of matchesM f;d;p;i for Graf�ti dataset with DoG+SIFT
matches.

149



APPENDIX D. REPEATABILITY STUDY OF FEATURE DETECTOR-DESCRIPTOR

(a) Jaccard distance for matchesm = ( x; y ) such
that k� (x ) � y k2 2 [0; 1:5] pixels

(b) Angle difference (degrees) for matches m =
(x; y ) such that k� (x ) � y k2 2 [0; 1:5] pixels

(c) Jaccard distance for matchesm = ( x; y ) such
that k� (x ) � y k2 2 [1:5; 5] pixels

(d) Angle difference (degrees) for matches m =
(x; y ) such that k� (x ) � y k2 2 [1:5; 5] pixels

(e) Jaccard distance for matchesm = ( x; y ) such
that k� (x ) � y k2 2 [5; 10] pixels

(f) Angle difference (degrees) for matches m =
(x; y ) such that k� (x ) � y k2 2 [5; 10] pixels

Figure D.2: Statistics of sets of matchesM f;d;p;i for Graf�ti dataset with Harris-
Af�ne+SIFT matches.
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(a) Median Jaccard distance for DoG+SIFT
matches.

(b) Median angle differences (in degrees)
for DoG+SIFT matches.

(c) Median Jaccard distance for Harris-
Af�ne+SIFT matches.

(d) Median angle differences (in degrees)
for Harris-Af�ne+SIFT matches.

(e) Median Jaccard distance for Hessian-
Af�ne+SIFT matches.

(f) Median angle differences (in degrees)
for Hessian-Af�ne+SIFT matches.

(g) Median Jaccard distance for
MSER+SIFT matches.

(h) Median angle differences (in degrees)
for MSER+SIFT matches.

Figure D.4: Median values for Boat dataset.
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(a) Median Jaccard distance for DoG+SIFT
matches.

(b) Median angle differences (in degrees)
for DoG+SIFT matches.

(c) Median Jaccard distance for Harris-
Af�ne+SIFT matches.

(d) Median angle differences (in degrees)
for Harris-Af�ne+SIFT matches.

(e) Median Jaccard distance for Hessian-
Af�ne+SIFT matches.

(f) Median angle differences (in degrees)
for Hessian-Af�ne+SIFT matches.

(g) Median Jaccard distance for
MSER+SIFT matches.

(h) Median angle differences (in degrees)
for MSER+SIFT matches.

Figure D.5: Median values for Bikesdataset.
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(a) Median Jaccard distance for DoG+SIFT
matches.

(b) Median angle differences (in degrees)
for DoG+SIFT matches.

(c) Median Jaccard distance for Harris-
Af�ne+SIFT matches.

(d) Median angle differences (in degrees)
for Harris-Af�ne+SIFT matches.

(e) Median Jaccard distance for Hessian-
Af�ne+SIFT matches.

(f) Median angle differences (in degrees)
for Hessian-Af�ne+SIFT matches.

(g) Median Jaccard distance for
MSER+SIFT matches.

(h) Median angle differences (in degrees)
for MSER+SIFT matches.

Figure D.6: Median values for Graf�ti dataset.
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(a) Median Jaccard distance for DoG+SIFT
matches.

(b) Median angle differences (in degrees)
for DoG+SIFT matches.

(c) Median Jaccard distance for Harris-
Af�ne+SIFT matches.

(d) Median angle differences (in degrees)
for Harris-Af�ne+SIFT matches.

(e) Median Jaccard distance for Hessian-
Af�ne+SIFT matches.

(f) Median angle differences (in degrees)
for Hessian-Af�ne+SIFT matches.

(g) Median Jaccard distance for
MSER+SIFT matches.

(h) Median angle differences (in degrees)
for MSER+SIFT matches.

Figure D.7: Median values for Leuvendataset.
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(a) Median Jaccard distance for DoG+SIFT
matches.

(b) Median angle differences (in degrees)
for DoG+SIFT matches.

(c) Median Jaccard distance for Harris-
Af�ne+SIFT matches.

(d) Median angle differences (in degrees)
for Harris-Af�ne+SIFT matches.

(e) Median Jaccard distance for Hessian-
Af�ne+SIFT matches.

(f) Median angle differences (in degrees)
for Hessian-Af�ne+SIFT matches.

(g) Median Jaccard distance for
MSER+SIFT matches.

(h) Median angle differences (in degrees)
for MSER+SIFT matches.

Figure D.8: Median values for Treesdataset.
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D.2. Factoring the results

(a) Median Jaccard distance for DoG+SIFT
matches.

(b) Median angle differences (in degrees)
for DoG+SIFT matches.

(c) Median Jaccard distance for Harris-
Af�ne+SIFT matches.

(d) Median angle differences (in degrees)
for Harris-Af�ne+SIFT matches.

(e) Median Jaccard distance for Hessian-
Af�ne+SIFT matches.

(f) Median angle differences (in degrees)
for Hessian-Af�ne+SIFT matches.

(g) Median Jaccard distance for
MSER+SIFT matches.

(h) Median angle differences (in degrees)
for MSER+SIFT matches.

Figure D.9: Median values for UBCdataset.
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Chapter E

Accurate Window Localization

E.1 Ecole Centrale Paris Datasets

The École Centrale Parisdatasets (TEBOUL2010) consist of recti�ed images of Haussman
buildings, with pixel labelings. Speci�cally, there are two datasets. The �rst one is ECP
CVPR 2010, which consists of20 training images and 10 test images, and the second one
ECP Benchmark 2011, consisting of 104test images.

We observed that, in these datasets, window parts that are partly occluded by wrought
iron balconies (more or less the lower half of the window area) were completely labeled as
balconies. This was inconvenient for one of our applications, related to energy saving, that
requires the automatic computation of the percentage of glass area. We thus procedurally
relabeled all pixels of these parts as being both windowand balcony pixels.

Besides, in theECP CVPR 2010dataset, the ground truth is de�ned by hand, with
an acceptable precision (with respect to what architects consider as a window). On the
contrary, the ground truth of the ECP Benchmark 2011dataset is generated procedurally
with a shape grammar. This resulted in reasonnably good pixel labelings for façades
windows (i.e., windows surrounded by stone walls), whereas roof windows (i.e., windows
surrounded by zinc plates) were inaccurately and unreliably located. The reason probably
is that roof windows are often not in the plane of the façades. As a result, image
recti�cation does not position them aligned with other façade windows, which the
shape grammar did not properly handle. Because there were too many errors for roof
windows in the ground truth, we decided to exclude them from our evaluation on the
ECP Benchmark 2011; only façades windows were taken into account for this dataset.

We would like to emphasize that it is extremely important not to overlook the
false positive rate for accurate window localization, especially in the perspective of
accurately estimating the thermal performance of buildings. Table E.1 gives a few orders
of magnitudes to help interpret the false positive rate.

The cascade classi�er (CC) ( VIOLA and JONES2004) has been trained on the 20 train-
ing images of the ECP CVPR 2010dataset. Positive examples are image patches taken
from the ground truth. Note that in case, there is a balcony part at the bottom of the
window, the positive example also contains the balcony part. On the other hand, negative
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Object type Typical size Pixel area Presence ratio w.r.t to image size

Image 300� 550 156; 000 100%
One window 25� 50 1; 250 0:8%
All windows 24 windows 30; 000 19:2%
Everything but windows . 126; 000 80:8%

FPR = 3% � 3 windows 3; 780 2%
FPR = 10% � 12:5 windows 12; 600 8%
FPR = 20% � 20 windows 25; 200 16%
FPR = 30% � 30 windows 37; 800 24%

Table E.1: Approximate reference interpretation of �gures for the ECPdatasets.

examples are randomly generated patches in training images such that they overlap little
with true windows. We set the training parameters as follows. We recall that we only care
about CC's precision rate and not its recall rate. Thus, the minimum hit rate threshold
is set to 0:9, and the maximum false alarm rate threshold to 0:1 in order to achieve this
goal.

CC is then used on test images of the 2010 and 2011 datasets. Figures E.1a and E.1b
shows the performance of the cascade classi�er as a function of the detection threshold
� CC as well as its ROC curve. We see that CC's performance is practically the same on
these two datasets as they both contain only photographs of Haussman buildings in the
Monge street in Paris, which were acquired with the same quality and size.

We separate the results obtained with the two datasets. They are detailed in tables
E.2 and E.3.

Figures E.2, E.3, E.3 provide excerpts of window detection results obtained with our
method. As we rely on robust feature points, we are relatively insensitive to illumination
variations. We are also robust to partial occlusion with plants on balconies. Shutters, on
the contrary, can sometimes cause a few missed detections.
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E.1. Ecole Centrale Paris Datasets

(a) ROC curve of the cascade classi�er (CC).

(b) Mean TPR, FNR, FPR, TNR curves as a function of the classi�er threshold� CC .

Figure E.1: Performance of the cascade classi�er (VIOLA and JONES2004) on window
detection. 161
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Methods TPR FNR FPR TNR

manual + RG 81% 19% 3% 97%
CC� CC = 20 + RG 75% 25% 6% 94%
CC� CC = 30 + RG 72% 28% 5% 95%

CC� CC = 5 75% 25% 13% 87%
CC� CC = 10 67% 33% 8% 92%
CC� CC = 20 63% 37% 5% 95%
CC� CC = 30 56% 44% 4% 96%

RL (bin-hue) 72% 28% 10% 90%
RL (bin-rf) 47% 53% 38% 62%

RL (4-color-rf) 24% 76% 13% 87%

RL (haussm-rf) 70% 30% 7% 93%

Table E.2: Results summary on theECP CVPR 2010. manual+RG and CC+RG denote our
method run using bounding boxes provided respectively by hand and by CC. For RL, we
used 3 shape grammars: binary (bin), 4-color, and Haussmannian (haussm). hue and
rf are different probability priors for façade segmentation when parsing with the shape
grammars.

Methods TPR FNR FPR TNR

manual+RG 79% 21% 4% 96%
CC� CC = 20 + RG 73% 23% 6% 94%
CC� CC = 30 + RG 70% 30% 5% 95%

CC� CC = 5 79% 21% 16% 84%
CC� CC = 10 73% 27% 10% 90%
CC� CC = 20 65% 35% 7% 93%
CC� CC = 30 57% 43% 5% 95%

RL (bin-hue) 65% 35% 15% 85%
RL (bin-rf) 38% 62% 33% 67%

RL (4-color-rf) 27% 73% 11% 89%

RL (hauss-rf) 64% 36% 6% 94%

Table E.3: Results summary on theECP Benchmark 2011. See caption of Table E.2 for
details.
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E.1. Ecole Centrale Paris Datasets

Figure E.2: Window detection results on the ECP CVPR 2010dataset. The �rst row shows
the input quadrilaterals and the second row shows the window detection results.
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Figure E.3: Window detection results on the ECP Benchmark 2011dataset. The odd rows
show the input quadrilaterals and the even rows show the window detection results.
(1/2)
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Chapter F

Facade Parsing Results

In this material we provide the results of the parsing experiments described in Section 8.6
of Chapter 8.

Figures F.1,F.2,. . . F.9 display the semantic segmentation produced our modi�ed
parser, overlaid on the input images. In each �gure the �rst and the fourth rows present
the original images, the second and the �fth rows present the results of the algorithm by
Teboul et al. and the third and the sixth rows present the results of our algorithm. The
color codes for the symbols are as follows:

color semantics class

light blue sky
dark blue roof
yellow wall
green shop
orange door
red window
violet balcony
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Figure F.1: The results of the parsing algorithm on the ECP Benchmark 2011dataset.
(1/9)
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Figure F.2: The results of the parsing algorithm on the ECP Benchmark 2011dataset.
(2/9)
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Figure F.3: The results of the parsing algorithm on the ECP Benchmark 2011dataset.
(3/9)
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Figure F.4: The results of the parsing algorithm on the ECP Benchmark 2011dataset.
(4/9)
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Figure F.5: The results of the parsing algorithm on the ECP Benchmark 2011dataset.
(5/9)
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Figure F.7: The results of the parsing algorithm on the ECP Benchmark 2011dataset.
(7/9)
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Figure F.8: The results of the parsing algorithm on the ECP Benchmark 2011dataset.
(8/9)
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