*. Le-milieu-de-culture-est-constitué-de, D. Sérum-de-veau-foetal, +. Svf-)-décomplémenté-et-filtré, /. 1%-pénicilline, +. Streptomycine et al., VCH Verlagsgesellschaft mbH Quantum dots in biology and medicine The fluorescent toolbox for assessing protein location and function Conversion of red fluorescent protein into a bright blue probe Imaging intracellular fluorescent proteins at nanometer resolution Ultra-high resolution imaging by fluorescence photoactivation localization microscopy Use of the Fluorescent Timer DsRED-E5 as Reporter to Monitor Dynamics of Gene Activity in Plants Method of obtaining optical sectioning by using structured light in a conventional microscope Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, Physica E Science Chemistry & biology Science Biophysical journal Plant Physiology Optics letters Journal of Microscopy, vol.25, issue.198 2, pp.1-12, 1997.

M. G. Gustafsson, Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution, Proceedings of the National Academy of Sciences, vol.102, issue.37, pp.13081-13087, 2005.
DOI : 10.1073/pnas.0406877102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201569

S. Hell and E. H. Stelzer, Properties of a 4Pi confocal fluorescence microscope, Journal of the Optical Society of America A, vol.9, issue.12, p.2159, 1992.
DOI : 10.1364/JOSAA.9.002159

M. G. Gustafsson, D. A. Agard, and J. W. Sedat, I5M: 3D widefield light microscopy with better than 100 nm axial resolution, Journal of Microscopy, vol.195, issue.1, pp.10-16, 1999.
DOI : 10.1046/j.1365-2818.1999.00576.x

M. G. Gustafsson, <title>Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses</title>, Three-Dimensional Microscopy: Image Acquisition and Processing II, pp.147-156, 1995.
DOI : 10.1117/12.205334

S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Optics Letters, vol.19, issue.11, pp.780-782, 1994.
DOI : 10.1364/OL.19.000780

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, A compact STED microscope providing 3D nanoscale resolution, Journal of Microscopy, vol.4, issue.1, pp.35-43, 2009.
DOI : 10.1111/j.1365-2818.2009.03188.x

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner et al., Spherical nanosized focal spot unravels the interior of cells, Nature Methods, vol.70, issue.6, pp.539-544, 2008.
DOI : 10.1038/nmeth.1214

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs et al., Nanoscale resolution in GFP-based microscopy, Nature Methods, vol.2, issue.9, pp.721-723, 2006.
DOI : 10.1038/nmeth922

M. Edidin, Near-Field Scanning Optical Microscopy, a Siren Call to Biology, Traffic, vol.74, issue.1, pp.797-803, 2001.
DOI : 10.1034/j.1600-0854.2001.21108.x

T. J. Gould, J. R. Myers, and J. Bewersdorf, Total internal reflection STED microscopy, Optics Express, vol.19, issue.14, pp.13351-13358, 2011.
DOI : 10.1364/OE.19.013351

H. Shroff, Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes, Proceedings of the National Academy of Sciences, vol.104, issue.51, pp.20308-20321, 2007.
DOI : 10.1073/pnas.0710517105

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, Forbidden Light Detection from Single Molecules, Analytical Chemistry, vol.72, issue.9, pp.2117-2140, 2000.
DOI : 10.1021/ac991358k

E. Fort and S. Grésillon, Surface enhanced fluorescence, Journal of Physics D: Applied Physics, vol.41, issue.1, p.13001, 2008.
DOI : 10.1088/0022-3727/41/1/013001

D. Axelrod, Total internal reflection fluorescence microscopy in cell biology, Traffic, issue.2, pp.764-774, 2001.

T. Ruckstuhl and S. Seeger, Confocal total-internal-reflection fluorescence microscopy with a high-aperture parabolic mirror lens, Applied Optics, vol.42, issue.16, pp.3277-3283, 2003.
DOI : 10.1364/AO.42.003277

T. Ruckstuhl and D. Verdes, Supercritical angle fluorescence (SAF) microscopy, Optics Express, vol.12, issue.18, pp.4246-54, 2004.
DOI : 10.1364/OPEX.12.004246

E. Auksorius, Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging, Optics Letters, vol.33, issue.2, p.113, 2008.
DOI : 10.1364/OL.33.000113

P. Blandin, Time-gated total internal reflection fluorescence microscopy with a supercontinuum excitation source, Applied Optics, vol.48, issue.3, pp.553-559, 2009.
DOI : 10.1364/AO.48.000553

URL : https://hal.archives-ouvertes.fr/hal-00533147

F. Festy, S. M. Ameer-beg, T. Ng, and K. Suhling, Imaging proteins in vivo using fluorescence lifetime microscopy, Molecular BioSystems, vol.124, issue.2/3, pp.381-91, 2007.
DOI : 10.1039/b617204k

P. J. Verveer and P. I. Bastiaens, Quantitative microscopy and systems biology: seeing the whole picture, Histochemistry and Cell Biology, vol.315, issue.5, pp.833-876, 2008.
DOI : 10.1007/s00418-008-0517-5

J. A. Levitt, D. R. Matthews, S. M. Ameer-beg, and K. Suhling, Fluorescence lifetime and polarization-resolved imaging in cell biology, Current Opinion in Biotechnology, vol.20, issue.1, pp.28-36, 2009.
DOI : 10.1016/j.copbio.2009.01.004

T. Nakabayashi, H. Wang, M. Kinjo, and N. Ohta, Application of fluorescence lifetime imaging of enhanced green fluorescent protein to intracellular pH measurements, Photochemical & Photobiological Sciences, vol.90, issue.6
DOI : 10.1039/b800391b

C. Tregidgo, J. A. Levitt, and K. Suhling, Effect of refractive index on the fluorescence lifetime of green fluorescent protein, Journal of Biomedical Optics, vol.13, issue.3, p.31218, 2008.
DOI : 10.1117/1.2937212

N. P. Galletly, Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin, British Journal of Dermatology, vol.81, issue.1, pp.152-61, 2008.
DOI : 10.1088/1367-2630/6/1/180

H. Wallrabe and A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy, Current Opinion in Biotechnology, vol.16, issue.1, pp.19-27, 2005.
DOI : 10.1016/j.copbio.2004.12.002

S. E. Webb, A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning, Review of Scientific Instruments, vol.73, issue.4, p.1898, 2002.
DOI : 10.1063/1.1458061

W. Becker, Advanced time-correlated single photon counting techniques, 2005.
DOI : 10.1007/3-540-28882-1

I. Bugiel, K. Konig, and H. Wabnitz, Investigation of cells by Fluorescence Laser Scaning Microscopy with Subnanosecond Time Resolution, Lasers in the Life Sciences, pp.47-53, 1989.

E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods, Journal of Biomedical Optics, vol.8, issue.3, pp.381-90, 2003.
DOI : 10.1117/1.1586704

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, 128 Single-Photon Imager with on-Chip Column-Level 10b Time-to-Digital Converter Array Capable of 97ps Resolution, 2008 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp.44-594, 2008.
DOI : 10.1109/ISSCC.2008.4523048/mm1

D. M. Grant, High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events, Optics Express, vol.15, issue.24, pp.15656-73, 2007.
DOI : 10.1364/OE.15.015656

A. Deniset-besseau, Imagerie 3D résolue en temps pour l'aide au diagnostic médical: développement d'un système de microsccopie de fluorescence multipoints sous excitation à deux photons, 2008.

K. Dowling, 2-D fluorescence lifetime imaging using a time-gated image intensifier, Optics Communications, vol.135, issue.1-3, pp.27-31, 1997.
DOI : 10.1016/S0030-4018(96)00618-9

S. E. Webb, Development and Application of Widefield Fluorescence Lifetime Imaging, 2003.

A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, High frame rate fluorescence lifetime imaging, Journal of Physics D: Applied Physics, vol.36, issue.14, pp.1655-1662, 2003.
DOI : 10.1088/0022-3727/36/14/301

R. V. Krishnan, H. Saitoh, H. Terada, V. E. Centonze, and B. Herman, Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera, Review of Scientific Instruments, vol.74, issue.5, p.2714, 2003.
DOI : 10.1063/1.1569410

E. Gaviola, Ein Fluorometer. Apparat zur Messung von Fluoreszenzabklingungszeiten, Zeitschrift f??r Physik, vol.42, issue.11-12, pp.853-861, 1927.
DOI : 10.1007/BF01776683

R. Cubeddu, D. Comelli, C. D-'andrea, P. Taroni, and G. Valentini, Time-resolved fluorescence imaging in biology and medicine, Journal of Physics D: Applied Physics, vol.35, issue.9, pp.61-76, 2002.
DOI : 10.1088/0022-3727/35/9/201

P. C. Schneider and R. M. Clegg, Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications, Review of Scientific Instruments, vol.68, issue.11, p.4107, 1997.
DOI : 10.1063/1.1148354

G. T. Kennedy, Fluorescence lifetime imaging using light emitting diodes, Journal of Physics D: Applied Physics, vol.41, issue.9, 2008.
DOI : 10.1117/12.701088

T. W. Gadella-jr, T. M. Jovin, and R. M. Clegg, Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale, Biophysical Chemistry, vol.48, issue.2, pp.221-239, 1993.
DOI : 10.1016/0301-4622(93)85012-7

J. Tellinghuisen, P. M. Goodwln, W. P. Ambrose, J. C. Martin, and R. A. Kellert, Analysis of fluorescence lifetime data for single Rhodamine molecules in flowing sample streams, Analytical Chemistry, vol.66, issue.1, pp.64-72, 1994.
DOI : 10.1021/ac00073a013

A. Rück, F. Dolp, R. Steiner, C. Steinmetz, B. Einem et al., SLIM for multispectral FRET imaging, Multiphoton Microscopy in the Biomedical Sciences VIII, 2008.
DOI : 10.1117/12.761660

W. Becker, A. Bergmann, and C. Biskup, Multispectral fluorescence lifetime imaging by TCSPC, Microscopy Research and Technique, vol.26, issue.5, pp.403-409, 2007.
DOI : 10.1002/jemt.20432

C. Spriet, Correlated fluorescence lifetime and spectral measurements in living cells, Microscopy research and technique, pp.85-94, 2007.
DOI : 10.1002/jemt.20385

URL : https://hal.archives-ouvertes.fr/hal-00338876

G. I. Redford and R. M. Clegg, Polar Plot Representation for Frequency-Domain Analysis of Fluorescence Lifetimes, Journal of Fluorescence, vol.12, issue.2, pp.805-820, 2005.
DOI : 10.1007/s10895-005-2990-8

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, The Phasor Approach to Fluorescence Lifetime Imaging Analysis, Biophysical Journal, vol.94, issue.2, pp.14-20, 2008.
DOI : 10.1529/biophysj.107.120154

S. Padilla-parra, N. Audugé, M. Coppey-moisan, and M. Tramier, Quantitative FRET Analysis by Fast Acquisition Time Domain FLIM at High Spatial Resolution in Living Cells, Biophysical Journal, vol.95, issue.6, pp.2976-88, 2008.
DOI : 10.1529/biophysj.108.131276

URL : https://hal.archives-ouvertes.fr/hal-00289731

S. Padilla-parra, N. Audugé, H. Lalucque, J. Mevel, M. Coppey-moisan et al., Quantitative Comparison of Different Fluorescent Protein Couples for Fast FRET-FLIM Acquisition, Biophysical Journal, vol.97, issue.8, pp.2368-76, 2009.
DOI : 10.1016/j.bpj.2009.07.044

URL : https://hal.archives-ouvertes.fr/hal-00441625

T. Forster, Energiewanderung und Fluoreszenz, Die Naturwissenschaften, vol.37, issue.502, pp.166-175, 1946.
DOI : 10.1007/BF00585226

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Second, Kluwer Academic /Plenum publishers, 1999.

R. M. Clegg, Fluorescence resonance energy transfer, Fluorescence Imaging Spectroscopy and Microscopy, pp.179-252, 1996.
DOI : 10.1016/0958-1669(95)80016-6

M. Tramier, Picosecond-Hetero-FRET Microscopy to Probe Protein-Protein Interactions in Live Cells, Biophysical Journal, vol.83, issue.6, pp.3570-3577, 2002.
DOI : 10.1016/S0006-3495(02)75357-5

M. A. Rizzo, G. Springer, K. Segawa, W. R. Zipfel, and D. W. Piston, Optimization of Pairings and Detection Conditions for Measurement of FRET between Cyan and Yellow Fluorescent Proteins, Microscopy and Microanalysis, vol.3, issue.03, pp.238-54, 2006.
DOI : 10.1002/andp.19484370105

Y. Gu, W. L. Di, D. P. Kelsell, and D. Zicha, Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing, Journal of Microscopy, vol.215, issue.2, pp.162-73, 2004.
DOI : 10.1111/j.0022-2720.2004.01365.x

P. I. Bastiaens and T. M. Jovin, Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labeled protein kinase C beta I., Proceedings of the National Academy of Sciences, vol.93, issue.16, pp.8407-8419, 1996.
DOI : 10.1073/pnas.93.16.8407

Z. Xia and J. Rao, Biosensing and imaging based on bioluminescence resonance energy transfer, Current Opinion in Biotechnology, vol.20, issue.1, pp.37-44, 2009.
DOI : 10.1016/j.copbio.2009.01.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680468

M. So, C. Xu, A. M. Loening, S. S. Gambhir, and J. Rao, Self-illuminating quantum dot conjugates for in vivo imaging, Nature Biotechnology, vol.99, issue.3, pp.339-382, 2006.
DOI : 10.1038/nbt1188

S. Angers, Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET), Proceedings of the National Academy of Sciences, vol.97, issue.7, pp.3684-3693, 2000.
DOI : 10.1073/pnas.060590697

K. D. Pfleger and K. A. Eidne, Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET), Nature Methods, vol.173, issue.3, pp.165-174, 2006.
DOI : 10.1038/nmeth841

T. K. Kerppola, Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells, Nature Protocols, vol.3, issue.3, pp.1278-86, 2006.
DOI : 10.1038/nprot.2006.201

P. Schwille and E. Haustein, Fluorescence Correlation Spectroscopy. An Introduction to its Concepts and Applications, Spectroscopy, vol.94, issue.3, pp.1-33, 2009.

J. Mertz, C. Xu, and W. W. Webb, Single-molecule detection by two-photon-excited fluorescence, Optics Letters, vol.20, issue.24, p.2532, 1995.
DOI : 10.1364/OL.20.002532

S. A. Kim, K. G. Heinze, and P. Schwille, Fluorescence correlation spectroscopy in living cells, Nature Methods, vol.60, issue.11, pp.963-73, 2007.
DOI : 10.1038/nmeth1104

A. J. García-sáez and P. Schwille, Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions, pp.116-138, 2008.

T. Weidemann, M. Wachsmuth, M. Tewes, K. Rippe, and J. Langowski, Analysis of Ligand Binding by Two-Colour Fluorescence Cross-Correlation Spectroscopy, Single Molecules, vol.10, issue.1, pp.49-61, 2002.
DOI : 10.1002/1438-5171(200204)3:1<49::AID-SIMO49>3.0.CO;2-T

E. Margeat, The human estrogen receptor ?? dimer binds a single SRC-1 coactivator molecule with an affinity dictated by agonist structure11Edited by K. Yamamoto, Journal of Molecular Biology, vol.306, issue.3, pp.433-475, 2001.
DOI : 10.1006/jmbi.2000.4418

M. Kinjo and R. Rigler, Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy, Nucleic Acids Research, vol.23, issue.10, pp.1795-1799, 1995.
DOI : 10.1093/nar/23.10.1795

A. Pramanik and R. Rigler, Ligand-Receptor Interactions in the Membrane of Cultured Cells Monitored by Fluorescence Correlation Spectroscopy, Biological Chemistry, vol.382, issue.3, pp.371-379, 2001.
DOI : 10.1515/BC.2001.045

C. Marquer, Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis, The FASEB Journal, vol.25, issue.4, pp.1-11, 2011.
DOI : 10.1096/fj.10-168633

P. Schwille, F. J. Meyer-almes, and R. Rigler, Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution, Biophysical Journal, vol.72, issue.4, pp.1878-86, 1997.
DOI : 10.1016/S0006-3495(97)78833-7

P. Liu, Investigation of the Dimerization of Proteins from the Epidermal Growth Factor Receptor Family by Single Wavelength Fluorescence Cross-Correlation Spectroscopy, Biophysical Journal, vol.93, issue.2, pp.684-98, 2007.
DOI : 10.1529/biophysj.106.102087

K. Saito, I. Wada, M. Tamura, and M. Kinjo, Direct detection of caspase-3 activation in single live cells by cross-correlation analysis, Biochemical and Biophysical Research Communications, vol.324, issue.2, pp.849-54, 2004.
DOI : 10.1016/j.bbrc.2004.09.126

D. Magde, E. Elson, and W. W. Webb, Thermodynamic Fluctuations in a Reacting System???Measurement by Fluorescence Correlation Spectroscopy, Physical Review Letters, vol.29, issue.11, pp.705-708, 1972.
DOI : 10.1103/PhysRevLett.29.705

K. Bacia, S. A. Kim, and P. Schwille, Fluorescence cross-correlation spectroscopy in living cells, Nature Methods, vol.72, issue.2, pp.83-92, 2006.
DOI : 10.1038/nmeth822

K. G. Heinze, A. Koltermann, and P. Schwille, Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis, Proceedings of the National Academy of Sciences, vol.97, issue.19, pp.10377-82, 2000.
DOI : 10.1073/pnas.180317197

L. C. Hwang and T. Wohland, Dual-Color Fluorescence Cross-Correlation Spectroscopy Using Single Laser Wavelength Excitation, ChemPhysChem, vol.5, issue.4, pp.549-51, 2004.
DOI : 10.1002/cphc.200301057

T. Kogure, S. Karasawa, T. Araki, K. Saito, M. Kinjo et al., A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy, Nature Biotechnology, vol.388, issue.5, pp.577-81, 2006.
DOI : 10.1038/nbt1207

Y. Ohsugi, K. Saito, M. Tamura, and M. Kinjo, Lateral Mobility of Membrane-Binding Proteins in Living Cells Measured by Total Internal Reflection Fluorescence Correlation Spectroscopy, Biophysical Journal, vol.91, issue.9, pp.3456-64, 2006.
DOI : 10.1529/biophysj.105.074625

D. M. Jameson, J. A. Ross, and J. P. Albanesi, Fluorescence fluctuation spectroscopy: ushering in a new age of enlightenment for cellular dynamics, Biophysical Reviews, vol.102, issue.3, pp.105-118, 2009.
DOI : 10.1007/s12551-009-0013-8

M. Tramier and M. Coppey-moisan, Fluorescence Anisotropy Imaging Microscopy for Homo-FRET in Living Cells, Methods Cell Biol, vol.85, pp.395-414, 2008.
DOI : 10.1016/S0091-679X(08)85017-0

URL : https://hal.archives-ouvertes.fr/hal-00205079

M. A. Rizzo and D. W. Piston, High-Contrast Imaging of Fluorescent Protein FRET by Fluorescence Polarization Microscopy, Biophysical Journal, vol.88, issue.2, pp.14-20, 2005.
DOI : 10.1529/biophysj.104.055442

Y. Chen, J. D. Müller, P. T. So, and E. Gratton, The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy, Biophysical Journal, vol.77, issue.1, pp.553-67, 1999.
DOI : 10.1016/S0006-3495(99)76912-2

Y. Chen, L. Wei, and J. D. Müller, Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy, Proceedings of the National Academy of Sciences, vol.100, issue.26, pp.15492-15499, 2003.
DOI : 10.1073/pnas.2533045100

K. Bacia and P. Schwille, A dynamic view of cellular processes by in vivo fluorescence autoand cross-correlation spectroscopy, pp.74-85, 2003.

Y. Chen, M. Tekmen, L. Hillesheim, J. Skinner, B. Wu et al., Dual-Color Photon-Counting Histogram, Biophysical Journal, vol.88, issue.3, pp.2177-92, 2005.
DOI : 10.1529/biophysj.104.048413

L. N. Hillesheim, Y. Chen, and J. D. Müller, Dual-Color Photon Counting Histogram Analysis of mRFP1 and EGFP in Living Cells, Biophysical Journal, vol.91, issue.11, pp.4273-84, 2006.
DOI : 10.1529/biophysj.106.085845

D. Toomre and D. J. Manstein, Lighting up the cell surface with evanescent wave microscopy, Trends in cell biology, pp.298-303, 2001.
DOI : 10.1016/S0962-8924(01)02027-X

M. Oheim and F. Schapper, Non-linear evanescent-field imaging, Journal of Physics D: Applied Physics, vol.38, issue.10, pp.185-197, 2005.
DOI : 10.1088/0022-3727/38/10/R01

D. Axelrod, Cell-substrate contacts illuminated by total internal reflection fluorescence, The Journal of Cell Biology, vol.89, issue.1, pp.141-145, 1981.
DOI : 10.1083/jcb.89.1.141

J. R. Abney, B. A. Scalettar, and N. L. Thompson, Evanescent interference patterns for fluorescence microscopy, Biophysical Journal, vol.61, issue.2, pp.542-52, 1992.
DOI : 10.1016/S0006-3495(92)81858-1

URL : http://doi.org/10.1016/s0006-3495(92)81858-1

L. Józefowski, J. Fiutowski, T. Kawalec, and H. Rubahn, Direct measurement of the evanescent-wave polarization state, Journal of the Optical Society of America B, vol.24, issue.3, p.624, 2007.
DOI : 10.1364/JOSAB.24.000624

D. Axelrod, T. P. Burghardt, and N. L. Thompson, Total Internal Reflection Fluorescence, Annual Review of Biophysics and Bioengineering, vol.13, issue.1, pp.247-68, 1984.
DOI : 10.1146/annurev.bb.13.060184.001335

T. Vo-dinh and B. R. Masters, Biomedical Photonics Handbook, Journal of Biomedical Optics, vol.9, issue.5, p.1110, 2004.
DOI : 10.1117/1.1776177

M. Van-'t-hoff, V. De-sars, and M. Oheim, A programmable light engine for quantitative single molecule TIRF and HILO imaging, Optics Express, vol.16, issue.22, pp.18495-504, 2008.
DOI : 10.1364/OE.16.018495

P. Blandin, Développement instrumental pour la microscopie de fluorescence résolue en temps: applications biomédicales, 2008.

E. H. Hellen, D. Axelrod, and A. Arbor, Fluorescence emission at dielectric and metal-film interfaces, Journal of the Optical Society of America B, vol.4, issue.3, pp.337-350, 1987.
DOI : 10.1364/JOSAB.4.000337

Y. and G. Houssen, Plasmonique appliquée à l'ingénierie des processus de fluorescence en biophotonique, 2009.

A. L. Mattheyses and D. Axelrod, Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence, Journal of Biomedical Optics, vol.11, issue.1, p.14006, 2006.
DOI : 10.1117/1.2161018

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, vol.424, issue.6950, pp.824-854, 2003.
DOI : 10.1038/nature01937

URL : https://hal.archives-ouvertes.fr/hal-00472360

R. Carminati, Cours de l'Institut d'Optique: Microscopies de champ proche. Concept de l'optique de champ proche, 2008.

H. Choumane, Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays, Applied Physics Letters, vol.87, issue.3, p.31102, 2005.
DOI : 10.1063/1.1999018

URL : https://hal.archives-ouvertes.fr/hal-00879036

J. Enderlein and T. , The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection, Optics Express, vol.13, issue.22, p.8855, 2005.
DOI : 10.1364/OPEX.13.008855

I. Gryczynski, Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission, Analytical Biochemistry, vol.324, issue.2, pp.170-182, 2004.
DOI : 10.1016/j.ab.2003.09.036

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, In Situ Fluorescent Protein Imaging with Metal Film-Enhanced Total Internal Reflection Microscopy, Biophysical Journal, vol.90, issue.12, pp.4662-71, 2006.
DOI : 10.1529/biophysj.105.079442

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, Application of Surface Plasmon Coupled Emission to Study of Muscle, Biophysical Journal, vol.91, issue.7, pp.2626-2661, 2006.
DOI : 10.1529/biophysj.106.088369

N. I. Cade, G. Fruhwirth, S. J. Archibald, T. Ng, and D. Richards, A Cellular Screening Assay Using Analysis of Metal-Modified Fluorescence Lifetime, Biophysical Journal, vol.98, issue.11, pp.2752-2759, 2010.
DOI : 10.1016/j.bpj.2010.03.016

E. L. Moal, E. Fort, S. Lévêque-fort, F. P. Cordelières, M. Fontaine-aupart et al., Enhanced Fluorescence Cell Imaging with Metal-Coated Slides, Biophysical Journal, vol.92, issue.6, pp.2150-61, 2007.
DOI : 10.1529/biophysj.106.096750

A. Wimo and M. Prince, World Alzheimer Report 2010 The Global Economic Impact of Dementia, 2010.

. Inserm, Site Inserm/ Neuroscienes, sciences cognitives, neurologie, psychiatrie/ Alzheimer

M. D. Inserm, Alzheimer enjeux scientifiques, médicaux et sociaux, 2007.

R. Sherrington, Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease, Nature, vol.375, issue.6534, pp.754-760, 1995.
DOI : 10.1038/375754a0

W. J. Strittmatter, Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease., Proceedings of the National Academy of Sciences, vol.90, issue.5, pp.1977-1981, 1993.
DOI : 10.1073/pnas.90.5.1977

L. Fratiglioni, S. Paillard-borg, and B. Winblad, An active and socially integrated lifestyle in late life might protect against dementia, The Lancet Neurology, vol.3, issue.6, pp.343-53, 2004.
DOI : 10.1016/S1474-4422(04)00767-7

T. Mori, Mice, Journal of Neuropathology & Experimental Neurology, vol.60, issue.8, pp.778-785, 2001.
DOI : 10.1093/jnen/60.8.778

URL : https://hal.archives-ouvertes.fr/in2p3-00708450

T. C. Dickson, H. L. Saunders, and J. C. Vickers, Relationship between apolipoprotein E and the amyloid deposits and dystrophic neurites of Alzheimer's disease, Neuropathology and Applied Neurobiology, vol.38, issue.6, pp.483-491, 1997.
DOI : 10.1016/0304-3940(92)90444-C

C. Duyckaerts, B. Delatour, and M. Potier, Classification and basic pathology of Alzheimer disease, Acta Neuropathologica, vol.14, issue.2, pp.5-36, 2009.
DOI : 10.1007/s00401-009-0532-1

O. M. Andersen and T. E. Willnow, Lipoprotein receptors in Alzheimer's disease, Trends in Neurosciences, vol.29, issue.12, pp.687-94, 2006.
DOI : 10.1016/j.tins.2006.09.002

G. Bu, Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy, Nature Reviews Neuroscience, vol.60, issue.5, pp.333-377, 2009.
DOI : 10.1007/s12035-008-8017-0

W. J. Strittmatter, Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease., Proceedings of the National Academy of Sciences, vol.90, issue.17, pp.8098-102, 1993.
DOI : 10.1073/pnas.90.17.8098

H. Xiong, Cholesterol retention in Alzheimer's brain is responsible for high ??- and ??-secretase activities and A?? production, Neurobiology of Disease, vol.29, issue.3, pp.422-459, 2008.
DOI : 10.1016/j.nbd.2007.10.005

M. Simons, P. Keller, B. De-strooper, K. Beyreuther, C. G. Dotti et al., Cholesterol depletion inhibits the generation of ??-amyloid in hippocampal neurons, Proceedings of the National Academy of Sciences, vol.95, issue.11, pp.6460-6464, 1998.
DOI : 10.1073/pnas.95.11.6460

A. Schneider, Flotillin-Dependent Clustering of the Amyloid Precursor Protein Regulates Its Endocytosis and Amyloidogenic Processing in Neurons, Journal of Neuroscience, vol.28, issue.11, pp.2874-82, 2008.
DOI : 10.1523/JNEUROSCI.5345-07.2008

A. Subtil, I. Gaidarov, K. Kobylarz, M. A. Lampson, J. H. Keen et al., Acute cholesterol depletion inhibits clathrin-coated pit budding, Proceedings of the National Academy of Sciences, vol.96, issue.12, pp.6775-80, 1999.
DOI : 10.1073/pnas.96.12.6775

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC21991

C. A. Arnim, Impact of cholesterol level upon APP and BACE proximity and APP cleavage, Biochemical and biophysical research communications, pp.207-219, 2008.
DOI : 10.1016/j.bbrc.2008.03.047

J. Cossec, Clathrin-dependent APP endocytosis and A?? secretion are highly sensitive to the level of plasma membrane cholesterol, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1801, issue.8, pp.846-52, 2010.
DOI : 10.1016/j.bbalip.2010.05.010

D. A. Brown and E. London, FUNCTIONS OF LIPID RAFTS IN BIOLOGICAL MEMBRANES, Annual Review of Cell and Developmental Biology, vol.14, issue.1, pp.111-147, 1998.
DOI : 10.1146/annurev.cellbio.14.1.111

D. Lingwood and K. Simons, Lipid Rafts As a Membrane-Organizing Principle, Science, vol.327, issue.5961, pp.46-50, 2010.
DOI : 10.1126/science.1174621

L. Rajendran and K. Simons, Lipid rafts and membrane dynamics, Journal of Cell Science, vol.118, issue.6, pp.1099-102, 2005.
DOI : 10.1242/jcs.01681

J. A. Allen, R. A. Halverson-tamboli, and M. M. Rasenick, Lipid raft microdomains and neurotransmitter signalling, Nature Reviews Neuroscience, vol.276, issue.2, pp.128-168, 2007.
DOI : 10.1038/nrn2059

A. Pralle, Sphingolipid???Cholesterol Rafts Diffuse as Small Entities in the Plasma Membrane of Mammalian Cells, The Journal of Cell Biology, vol.174, issue.5, pp.997-1008, 2000.
DOI : 10.1016/0092-8674(84)90188-0

J. Cossec, C. Marquer, M. Panchal, A. N. Lazar, C. Duyckaerts et al., Cholesterol changes in Alzheimer's disease: methods of analysis and impact on the formation of enlarged endosomes, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1801, issue.8, pp.839-884, 2010.
DOI : 10.1016/j.bbalip.2010.03.010

L. Rajendran, Efficient Inhibition of the Alzheimer's Disease ??-Secretase by Membrane Targeting, Science, vol.320, issue.5875, pp.520-523, 2008.
DOI : 10.1126/science.1156609

M. O. Grimm, Regulation of cholesterol and sphingomyelin metabolism by amyloid-?? and presenilin, Nature Cell Biology, vol.23, issue.11, pp.1118-1141, 2005.
DOI : 10.1038/ncb1313

S. Scheuermann, Homodimerization of Amyloid Precursor Protein and Its Implication in the Amyloidogenic Pathway of Alzheimer's Disease, Journal of Biological Chemistry, vol.276, issue.36, pp.33923-33929, 2001.
DOI : 10.1074/jbc.M105410200

L. Richter, Amyloid beta 42 peptide (A??42)-lowering compounds directly bind to A?? and interfere with amyloid precursor protein (APP) transmembrane dimerization, Proceedings of the National Academy of Sciences, vol.107, issue.33, pp.14597-14602, 2010.
DOI : 10.1073/pnas.1003026107

L. Munter, GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of A??42, The EMBO Journal, vol.279, issue.6, pp.1702-1714, 2007.
DOI : 10.1038/sj.emboj.7601616

S. Eggert, B. Midthune, B. Cottrell, and E. H. Koo, Induced Dimerization of the Amyloid Precursor Protein Leads to Decreased Amyloid-?? Protein Production, Journal of Biological Chemistry, vol.284, issue.42, pp.28943-52, 2009.
DOI : 10.1074/jbc.M109.038646

P. Kienlen-campard, Amyloidogenic Processing but Not Amyloid Precursor Protein (APP) Intracellular C-terminal Domain Production Requires a Precisely Oriented APP Dimer Assembled by Transmembrane GXXXG Motifs, Journal of Biological Chemistry, vol.283, issue.12, pp.7733-7744, 2008.
DOI : 10.1074/jbc.M707142200

S. S. Vogel, C. Thaler, P. S. Blank, and S. V. Koushik, Time Resolved Fluorescence Anisotropy, in FLIM microscopy in Biology and Medicine, vol.90, issue.22, pp.245-288, 2008.

J. Siegel, Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore, Review of Scientific Instruments, vol.74, issue.1, pp.182-192, 2003.
DOI : 10.1063/1.1519934

A. H. Clayton, Q. S. Hanley, D. J. Arndt-jovin, V. Subramaniam, and T. M. Jovin, Dynamic Fluorescence Anisotropy Imaging Microscopy inthe Frequency Domain (rFLIM), Biophysical Journal, vol.83, issue.3, pp.1631-1680, 2002.
DOI : 10.1016/S0006-3495(02)73932-5

URL : http://doi.org/10.1016/s0006-3495(02)73932-5

D. S. Lidke, Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET), Biochemical Society Transactions, vol.31, issue.5, pp.1020-1027, 2003.
DOI : 10.1042/bst0311020

I. Gautier, Homo-FRET Microscopy in Living Cells to Measure Monomer-Dimer Transition of GFP-Tagged Proteins, Biophysical Journal, vol.80, issue.6, pp.3000-3008, 2001.
DOI : 10.1016/S0006-3495(01)76265-0

K. Suhling, D. M. Davis, and D. Phillips, The Influence of Solvent Viscosity on the Fluorescence Decay and Time-Resolved Anisotropy of Green Fluorescent Protein, Journal of Fluorescence, vol.12, issue.1, pp.91-95, 2002.
DOI : 10.1023/A:1015323606154

C. Thaler, S. V. Koushik, H. L. Puhl, P. S. Blank, and S. S. Vogel, Structural rearrangement of CaMKII? catalytic domains encodes activation, pp.6369-6374, 2009.

E. K. Yeow and A. H. Clayton, Enumeration of Oligomerization States of Membrane Proteins in Living Cells by Homo-FRET Spectroscopy and Microscopy: Theory and Application, Biophysical Journal, vol.92, issue.9, pp.3098-104, 2007.
DOI : 10.1529/biophysj.106.099424

A. N. Bader, Homo-FRET Imaging as a Tool to Quantify Protein and Lipid Clustering, ChemPhysChem, vol.107, issue.3, pp.475-83, 2011.
DOI : 10.1002/cphc.201000801

C. Marquer, Influence of MT7 toxin on the oligomerization state of the M1 muscarinic receptor1, Biology of the Cell, vol.274, issue.7, pp.409-429, 2010.
DOI : 10.1042/BC20090171

URL : https://hal.archives-ouvertes.fr/hal-00856094

D. Axelrod, Chapter 12 Fluorescence Polarization Microscopy, Methods in Cell Biology, pp.333-352, 1989.
DOI : 10.1016/S0091-679X(08)60985-1

W. Becker, The bh TCSPC Handbook, 2008.

M. Koshioka, K. Sasaki, and H. Masuhara, Time-Dependent Fluorescence Depolarization Analysis in Three-Dimensional Microspectroscopy, Applied Spectroscopy, vol.49, issue.2, pp.224-228, 1995.
DOI : 10.1366/0003702953963652

K. Suhling, Time-resolved fluorescence anisotropy imaging applied to live cells, Optics Letters, vol.29, issue.6, pp.584-590, 2004.
DOI : 10.1364/OL.29.000584

URL : http://hdl.handle.net/10261/53498

K. Yum, S. Na, Y. Xiang, N. Wang, and M. Yu, Mechanochemical Delivery and Dynamic Tracking of Fluorescent Quantum Dots in the Cytoplasm and Nucleus of Living Cells, Nano Letters, vol.9, issue.5, pp.2193-2201, 2009.
DOI : 10.1021/nl901047u

T. A. Smith, M. L. Gee, C. A. Scholes, C. D. Geddes, and J. R. Lakowicz, Time-Resolved Evanescent Wave-Induced Fluorescence Anisotropy Measurements, Reviews in Fluorescence, pp.245-270, 2005.
DOI : 10.1007/0-387-23690-2_11

A. N. Bader, E. G. Hofman, P. M. Van-bergen-en-henegouwen, and H. C. Gerritsen, Imaging of protein cluster sizes by means of confocal time-gated fluorescence anisotropy microscopy, Optics Express, vol.15, issue.11, pp.6934-6945, 2007.
DOI : 10.1364/OE.15.006934