]. S. Bibliographie1, G. Aji, R. Horn, . Mceliece-]-s, R. Aji et al., On the convergence of iterative decoding on graphs with a single cycle The generalized distributive law Information Theory Information geometry of Boltzmann machines Spin-glass models of neural networks Local and global properties in networks of processors, Proceedings of the IEEE International Symposium on Information Theory Proceedings of the twelfth annual ACM symposium on Theory of computing , STOC '80 Arnold, E. Castillo, and J.-M. Sarabia. Conditionally specified distributions, pp.325-343260, 1980.

L. Bahl, J. Cocke, F. Jelinek, J. Raviv, and R. Baxter, Optimal decoding of linear codes for minimizing symbol error rate (corresp.) Information Theory Exactly solved models in statistical mechanics, Théorie des graphes et ses applications, volume II of Collection Universitaire des Mathématiques. Dunod, pp.284-287, 1967.

H. A. Bethe, Statistical Theory of Superlattices, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.150, issue.871, pp.552-575, 1935.
DOI : 10.1098/rspa.1935.0122

D. Bickson, Gaussian Belief Propagation: Theory and Application, 12] J. Bilmes. On soft evidence in bayesian networks, 2004.

S. Boyd and L. Vandenberghe, Convex optimization, 2004.

P. Brémaud, Markov chains: Gibbs fields, Monte Carlo simulation and queues, 1999.
DOI : 10.1007/978-1-4757-3124-8

H. Chan and A. Darwiche, On the revision of probabilistic beliefs using uncertain evidence, Artificial Intelligence, vol.163, issue.1, pp.67-90, 2005.
DOI : 10.1016/j.artint.2004.09.005

F. C. Chang, Inversion of a perturbed matrix, Applied Mathematics Letters, vol.19, issue.2, pp.169-173, 2006.
DOI : 10.1016/j.aml.2005.04.004

V. Chernyak and M. Chertkov, Loop Calculus and Belief Propagation for q-ary Alphabet: Loop Tower, 2007 IEEE International Symposium on Information Theory, pp.316-320, 2007.
DOI : 10.1109/ISIT.2007.4557245

M. Chertkov and V. Y. Chernyak, Loop series for discrete statistical models on graphs, Journal of Statistical Mechanics: Theory and Experiment, vol.2006, issue.06, 2006.
DOI : 10.1088/1742-5468/2006/06/P06009

C. Chow and C. Liu, Approximating discrete probability distributions with dependence trees. Information Theory, IEEE Transactions on, vol.14, issue.3, pp.462-467, 1968.

D. Chowdhury, L. Santen, and A. Schadschneider, Statistical physics of vehicular traffic and some related systems, Physics Reports, vol.329, issue.4-6, pp.199-329, 2000.
DOI : 10.1016/S0370-1573(99)00117-9

R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter, Probabilistic networks and expert systems: Exact computational methods for Bayesian networks, 2007.

E. Cramer, Conditional Iterative Proportional Fitting for Gaussian Distributions, Journal of Multivariate Analysis, vol.65, issue.2, pp.261-276, 1998.
DOI : 10.1006/jmva.1998.1739

J. Darroch and D. Ratcliff, Generalized iterative scaling for log-linear models. The annals of mathematical statistics, pp.1470-1480, 1972.
DOI : 10.1214/aoms/1177692379

URL : http://projecteuclid.org/download/pdf_1/euclid.aoms/1177692379

A. De-la-fortelle, J. Lasgouttes, and C. Furtlehner, Statistical physics algorithms for traffic reconstruction, ERCIM News, vol.67, pp.34-35, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00115998

A. Dempster, N. Laird, and D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society. Series B (Methodological), pp.1-38, 1977.

P. Diaconis and D. Strook, Geometric Bounds for Eigenvalues of Markov Chains, The Annals of Applied Probability, vol.1, issue.1, pp.36-61, 1991.
DOI : 10.1214/aoap/1177005980

A. Doucet, N. De-freitas, and N. Gordon, An introduction to sequential Monte Carlo methods. Sequential Monte Carlo methods in practice, 2001.

F. Eaton and Z. Ghahramani, Choosing a variable to clamp: Approximate inference using conditioned Belief Propagation, Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, pp.145-152, 2009.

G. Elidan and C. Cario, Nonparanormal Belief Propagation (NPNBP), Advances in Neural Information Processing Systems 25, pp.908-916, 2012.

J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.9, issue.3, pp.432-441, 2008.
DOI : 10.1093/biostatistics/kxm045

C. Furtlehner, A. De-la-fortelle, and J. Lasgouttes, Belief Propagation algorithm for a traffic prediction system based on probe vehicles, Research Report, vol.5807, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00070217

C. Furtlehner, Y. Han, J. Lasgouttes, and V. Martin, Pairwise MRF Calibration by Perturbation of the Bethe Reference Point, Research Report, vol.8059
URL : https://hal.archives-ouvertes.fr/hal-00743334

C. Furtlehner, Y. Han, J. Lasgouttes, V. Martin, F. Marchal et al., Spatial and temporal analysis of traffic states on large scale networks, 13th International IEEE Conference on Intelligent Transportation Systems, pp.1215-1220, 2010.
DOI : 10.1109/ITSC.2010.5625175

URL : https://hal.archives-ouvertes.fr/hal-00527481

C. Furtlehner, J. Lasgouttes, and A. Auger, Learning multiple Belief Propagation fixed points for real time inference. Physica A: Statistical Mechanics and its Applications, pp.149-163, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00371372

C. Furtlehner, J. Lasgouttes, A. De, and L. Fortelle, Belief Propagation and Bethe approximation for traffic prediction, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00136657

C. Furtlehner, J. Lasgouttes, and A. De-la-fortelle, A Belief Propagation Approach to Traffic Prediction using Probe Vehicles, 2007 IEEE Intelligent Transportation Systems Conference, pp.1022-1027, 2007.
DOI : 10.1109/ITSC.2007.4357716

URL : https://hal.archives-ouvertes.fr/hal-00175627

A. Gelman and T. Speed, Corrigendum: Characterizing a joint probability distribution by conditionals, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.61, issue.2, pp.185-188, 1993.
DOI : 10.1111/1467-9868.00189

H. Georgii, Gibbs Measures and Phase Transitions. de Gruyter, 39] W. Gilks. Markov chain Monte Carlo. Encyclopedia of Biostatistics, 1988.

V. Gómez, J. Mooij, and H. J. Kappen, Truncating the loop series expansion for Belief Propagation, The Journal of Machine Learning Research, vol.8, pp.1987-2016, 2007.

P. R. Halmos, Finite-Dimensional Vector Space, 1974.
DOI : 10.1007/978-1-4612-6387-6

J. M. Hammersley and P. Clifford, Markov field on finite graphs and lattices, 1971.

D. J. Hartfiel, System behavior in quotient systems, Applied Mathematics and Computation, vol.81, issue.1, pp.31-48, 1997.
DOI : 10.1016/0096-3003(95)00300-2

R. Herbrich, Minimising the Kullback?Leibler divergence, 2005.

J. Herrera, D. Work, R. Herring, X. Ban, Q. Jacobson et al., Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment, Transportation Research Part C: Emerging Technologies, vol.18, issue.4, pp.568-583, 2010.
DOI : 10.1016/j.trc.2009.10.006

T. Heskes, Stable fixed points of loopy Belief Propagation are minima of the Bethe free energy, Advances in Neural Information Processing Systems, 2003.

T. Heskes, On the Uniqueness of Loopy Belief Propagation Fixed Points, Neural Computation, vol.50, issue.11, pp.2379-2413, 2004.
DOI : 10.1162/08997660260028674

J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the national academy of sciences, pp.2554-2558, 1982.

T. Hunter, R. Herring, P. Abbeel, and A. Bayen, Path and travel time inference from GPS probe vehicle data, NIPS Analyzing Networks and Learning with Graphs, 2009.

A. Ihler, J. I. Fischer, and A. Willsky, Loopy Belief Propagation: Convergence and effects of message errors, The Journal of Machine Learning Research, vol.6, pp.905-936, 2005.

E. T. Jaynes, Prior probabilities. Systems Science and Cybernetics, IEEE Transactions on, vol.4, issue.3, pp.227-241, 1968.

E. T. Jaynes, Probability Theory: The Logic of, Science, vol.1, 2003.
DOI : 10.1017/CBO9780511790423

F. V. Jensen, An Introduction to Bayesian Networks, 1996.

D. Karger and N. Srebro, Learning markov networks: Maximum bounded tree-width graphs, Proceedings of the twelfth annual ACM- SIAM symposium on discrete algorithms, pp.392-401, 2001.

Y. Kim, M. Valtorta, and J. Vomlel, A Prototypical System for Soft Evidential Update, Applied Intelligence, vol.21, issue.1, pp.81-97, 2004.
DOI : 10.1023/B:APIN.0000027768.02013.54

R. Kindermann and J. Snell, Markov random fields and their applications, 1980.
DOI : 10.1090/conm/001

A. Klar, R. Kühne, and R. Wegener, Mathematical models for vehicular traffic, 1995.

V. Kolmogorov, Convergent tree-reweighted message passing for energy minimization. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.28, issue.10, pp.1568-1583, 2006.

F. R. Kschischang, B. J. Frey, and H. Loeliger, Factor graphs and the sum-product algorithm. Information Theory, IEEE Transactions on, vol.47, issue.2, pp.498-519, 2001.

C. Laurgeau, A. De-la-fortelle, and B. Steux, Brevet 0851809: Système et procédé d'information sur le trafic dans un réseau routier, 2009.

S. Lauritzen and D. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems, Journal of the Royal Statistical Society. Series B (Methodological), pp.157-224, 1988.

B. H. Lee-dicker and X. Lin, Variable selection and estimation with the seamless-l 0 penalty, Statistica Sinica, vol.23, issue.2, pp.929-962, 2012.

R. J. Little and D. B. Rubin, Statistical Analysis with missing data, 2002.
DOI : 10.1002/9781119013563

H. A. Loeliger, An Introduction to factor graphs, IEEE Signal Processing Magazine, vol.21, issue.1, pp.28-41, 2004.
DOI : 10.1109/MSP.2004.1267047

H. Ma, J. J. Wolf67-]-d, J. S. Mackay, W. T. Yedidia, Y. Freeman et al., On Tail Biting Convolutional Codes, IEEE Transactions on Communications, vol.34, issue.2, pp.104-111, 1986.
DOI : 10.1109/TCOM.1986.1096498

D. Malioutov, J. Johnson, and A. Willsky, Walk-sums and Belief Propagation in Gaussian graphical models, The Journal of Machine Learning Research, vol.7, pp.2031-2064, 2006.

A. Matthai, Estimation of parameters from incomplete data with application to design of sample surveys. Sankhy¯ a: The Indian Journal of, Statistics, vol.11, issue.2, pp.145-152, 1933.

T. Meltzer, A. Globerson, and Y. Weiss, Convergent message passing algorithms: a unifying view, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp.393-401, 2009.

M. Mézard and T. Mora, Constraint satisfaction problems and neural networks: A statistical physics perspective, Journal of Physiology-Paris, vol.103, issue.1-2, pp.107-113, 2009.
DOI : 10.1016/j.jphysparis.2009.05.013

M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond, World Scientific, 1987.

T. Minka, Expectation Propagation for approximate bayesian inference, Proceedings of the Seventeenth conference on Uncertainty in Artificial Intelligence, pp.362-369, 2001.

T. Minka, Divergence measures and message passing, 2005.

J. M. Mooij and H. J. Kappen, On the properties of the Bethe approximation and loopy belief propagation on binary networks, Journal of Statistical Mechanics: Theory and Experiment, vol.2005, issue.11, 2005.
DOI : 10.1088/1742-5468/2005/11/P11012

J. M. Mooij and H. J. Kappen, Sufficient conditions for convergence of the sum-product algorithm. Information Theory, IEEE Transactions on, vol.53, issue.12, pp.4422-4437, 2007.

K. Murakami, Stability for non-hyperbolic fixed points of scalar difference equations, Journal of Mathematical Analysis and Applications, vol.310, issue.2, pp.492-505, 2005.
DOI : 10.1016/j.jmaa.2005.02.020

K. Murphy, Y. Weiss, and M. Jordan, Loopy Belief Propagation for approximate inference: an empirical study, Proceedings of the Fifteenth conference on Uncertainty in Artificial Intelligence, pp.467-475, 1999.

R. Neal and G. Hinton, A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants, NATO ASI Series D, Behavioural and social sciences, pp.355-370, 1998.
DOI : 10.1007/978-94-011-5014-9_12

R. Pan, Y. Peng, and Z. Ding, Belief Update in Bayesian Networks Using Uncertain Evidence, 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06), pp.441-444, 2006.
DOI : 10.1109/ICTAI.2006.39

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference, 1988.

T. Raiko, Partially observed values, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), pp.2825-2830, 2004.
DOI : 10.1109/IJCNN.2004.1381105

E. Seneta, Non-negative matrices and Markov chains, 2006.
DOI : 10.1007/0-387-32792-4

B. L. Smith, B. M. Williams, and R. Oswald, Comparison of parametric and nonparametric models for traffic flow forecasting, Transportation Research Part C: Emerging Technologies, vol.10, issue.4, pp.303-321, 2002.
DOI : 10.1016/S0968-090X(02)00009-8

T. Speed and H. Kiiveri, Gaussian Markov distributions over finite graphs. The Annals of Statistics, pp.138-150, 1986.
DOI : 10.1214/aos/1176349846

E. Sudderth, A. Ihler, M. Isard, W. Freeman, and A. Willsky, Nonparametric belief propagation, Communications of the ACM, vol.53, issue.10, pp.95-103, 2010.
DOI : 10.1145/1831407.1831431

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Taga and S. Mase, On the convergence of loopy Belief Propagation algorithm for different updates rules. Fundamentals of Electronics, Communications and Computer Sciences IEICE transactions on, vol.89, issue.2, pp.575-582, 2006.

M. Talagrand, Rigorous results for the Hopfield model with many patterns . Probability theory and related fields, pp.177-275, 1998.

S. Tatikonda and M. Jordan, Loopy Belief Propagation and Gibbs measures, Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp.493-50, 2002.

Y. W. Teh and M. Welling, Passing and bouncing messages for generalized inference, 2001.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society,Series B, vol.58, pp.267-288, 1996.

T. Travesti-project, D. Uherka, and A. M. Sergott, On the continuous dependence of the roots of a polynomial on its coefficients, American Mathematical Monthly, pp.368-370, 1977.

A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. Information Theory, IEEE Transactions on, vol.13, issue.2, pp.260-269, 1967.

M. J. Wainwright, Stochastic processes on graphs with cycles: geometric and variational approaches, 2002.

M. J. Wainwright, Estimating the " wrong " graphical model: benefits in the computation-limited setting, The Journal of Machine Learning Research, vol.7, pp.1829-1859, 2006.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, Tree-reweighted Belief Propagation algorithms and approximate ML estimation by pseudomoment matching, Workshop on Artificial Intelligence and Statistics, 2003.

Y. Watanabe, Discrete geometric analysis of message passing algorithm on graphs The Graduate University for Advanced Studies (SOKENDAI), 2010.

Y. Watanabe and K. Fukumizu, Graph zeta function in the Bethe free energy and loopy Belief Propagation, Advances in Neural Information Processing Systems 22, pp.2017-2025, 2009.

Y. Weiss, Correctness of Local Probability Propagation in Graphical Models with Loops, Neural Computation, vol.12, issue.1, pp.1-41, 2000.
DOI : 10.1162/neco.1997.9.2.227

Y. Weiss, Comparing the mean field method and Belief Propagation for approximate inference in MRFs, 2001.

Y. Weiss and W. Freeman, Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology, Neural Computation, vol.13, issue.10, pp.2173-2200, 2001.
DOI : 10.1109/18.910585

Y. Weiss and W. Freeman, On the optimality of solutions of the maxproduct Belief Propagation algorithm in arbitrary graphs. Information Theory, IEEE Transactions on, vol.47, issue.2, pp.723-735, 2001.

M. Welling and Y. W. Teh, Approximate inference in Boltzmann machines, Artificial Intelligence, vol.143, issue.1, pp.19-50, 2003.
DOI : 10.1016/S0004-3702(02)00361-2

W. Wiegerinck and T. Heskes, Fractional Belief Propagation, Advances in Neural Information Processing Systems, pp.455-462, 2003.

S. N. Winkler, Uniqueness of Gibbs Measures with Applications to Gibbs Sampling and the Sum-Product Algorithm, 2007.

M. Yasuda and K. Tanaka, Approximate Learning Algorithm in Boltzmann Machines, Neural Computation, vol.21, issue.11, pp.3130-3178, 2009.
DOI : 10.1080/14786437708235992

J. S. Yedidia, W. T. Freeman, and Y. Weiss, Bethe free energies, Kikuchi approximations, and Belief Propagation algorithms, 2001.
DOI : 10.1109/tit.2005.850085

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. S. Yedidia, W. T. Freeman, and Y. Weiss, Constructing free-energy approximations and generalized Belief Propagation algorithms. Information Theory, IEEE Transactions on, vol.51, issue.7, pp.2282-2312, 2005.
DOI : 10.1109/tit.2005.850085

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Yuille, CCCP Algorithms to Minimize the Bethe and Kikuchi Free Energies: Convergent Alternatives to Belief Propagation, Neural Computation, vol.14, issue.7, pp.1691-1722, 2002.
DOI : 10.1162/neco.1994.6.3.341