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un réel enthousiasme pour tout ce qui touche à la physique qui en font des personnes avec qui

il fait bon travailler. J’ai beaucoup appris à leur contact, et je les en remercie.
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son mari David, et ma filleule prérérée Mila. Ma grand-mère Yvette et son mari Gérard. Mon

beau-frère Yannig. Mes soeurs Agathe et Margaux.
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Résumé

Utiliser des milieux nanostructurés pour confiner la lumière permet d’augmenter l’interaction

entre un émetteur et le rayonnement électromagnétique. Dans cette thèse, nous utilisons un for-

malisme classique (présenté au Chap. 1) pour décrire cette interaction dans différents contextes,

qui peuvent être regroupés en deux parties (respectivement Parties II et III).

Dans un premier temps, nous étudions l’apparition de modes localisés en champ proche

de structures complexes. Nous nous intéressons à deux différents types de structures: des

nanoantennes d’or et des films d’or désordonnés. Nos résultats nous permettent de discerner

les modes radiatifs et non-radiatifs. Nous introduisons le concept de Cross Density Of States

(CDOS) pour décrire quantitativement la cohérence spatiale intrinsèque associée à la structure

modale d’un milieu complexe. Nous démontrons ainsi une réduction de l’extention spatiale des

modes au voisinage de la percolation électrique des films d’or désordonnés.

Nous nous intéressons ensuite à des milieux fortement diffusants. En éclairant de telles

structures par une source cohérente, on obtient une figure d’intensité complexe appelée speckle.

Nous utilisons une méthode diagrammatique pour démontrer une corrélation négative entre les

figures de speckle réfléchie et transmise à travers une tranche dans le régime mésoscopique.

Nous nous intéressons ensuite à la corrélation C0, qui apparait lorsque la source est enfouie dans

le milieu. Nous proposons une démonstration générale de l’égalité entre la corrélation C0 et

les fluctuations normalisées de la LDOS, et soulignons le rôle fondamental des interactions de

champ proche. Finalement, nous observons numériquement le régime de couplage fort entre un

diffuseur résonnant et un mode localisé d’Anderson au sein d’un milieu désordonné 2D.

Mots-clés

Nanooptique, Densité locale d’états électromagnétique, Cross Density Of States, Films métalliques

désordonnés, Corrélations de speckle; Couplage fort, Localisation d’Anderson
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Summary

Using nanostructures to confine light allows to increase the interaction between an emitter and

electromagnetic radiation. In this thesis, we use a classical formalism (presented in Chap. 1)

to describe this interaction in various contexts, that can be gathered in two parts (respectively

Parts II and III).

First, we study the apparition of localized modes in the near field of complex metallic struc-

tures. We study numerically the spatial distribution of the local density of states (LDOS) in

the vicinity of two different structures: gold nanoantennas and disordered metallic films. Our

results allow us to discriminate between radiative and non-radiative modes. We introduce the

concept of cross density of states (CDOS) to quantitatively study the intrinsic spatial coherence

associated with the modal structure of a complex medium. We use the CDOS to demonstrate an

overall spatial squeezing of the modes near the electric percolation of disordered metallic films.

Then, we focus on strongly scattering media. By illuminating such structures by a coherent

source, one obtains a chaotic intensity pattern called speckle. First, we use a diagramatic method

to demonstrate an anticorrelation between the reflected and transmitted speckle patterns in the

case of a diffusive slab in the mesoscopic regime. Then, we study the C0 correlation, that appears

the source is embedded inside the medium. We propose a general derivation of the equality

between the C0 correlation and the normalized fluctuations of the LDOS, and emphasize the

fundamental role of near-field interactions. Finally, we study two-dimensional disordered media

in the Anderson localized regime. We observe the strong coupling regime between such a mode

and a resonant scatterer, in excellent agreement with theoretical predictions.

Keywords

Nanooptics, Local Density Of States, Cross Density Of States, Disordered metallic films, Speckle

correlations, Weak coupling, Strong coupling, Anderson localization
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General introduction

The interaction of light with matter requires deeply different descriptions, depending on the

scales of the object under observation. The propagation of light in macroscopic homogeneous

media is described by the laws of geometrical optics. Our reflection in a mirror, or the distortion

of an object embedded in water, can be explained by the laws of refraction. However, when

one looks at a painted wall, a cloud or a glass of milk, one sees a diffuse white uniform color,

that geometrical optics fails to describe. Those are called complex media, because they exhibit

a microscopic structure that can “scramble” light and cause this homogeneous appearance.

The propagation of optical waves in complex media is described by the multiple scattering

theory. In this framework, light follows a random walk, where collisions are due to scattering

by the heterogeneities. On large distances, this description leads to a diffusion equation for the

transport of light intensity, that explains, e.g., the blurry appearance of a car headlamp in foggy

weather.

Figure 1: Illustration of three different regimes of light-matter interaction: a mirror, a cloud
and a compact disk.

In complex media exhibiting heterogeneities at the scale of one optical wavelength (400 −
800 nm), interferences can also lead to new interesting optical effects. When the heterogeneities

are ordered in a periodic structure, the laws of diffraction predict that the reflection of light

will occur on discrete directions, that depend on the wavelength. As an example, the holes

printed on a compact disk are of the order of one micron, and are responsible for the colored

rays reflected on CDs. In this thesis, we study the interaction of light with complex structures,

either ordered of disordered. To illustrate the new physical phenomena that can be observed in

such media, let us take four examples that were the subject of recent publications. In Ref. [1],
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A. G. Curto and coworkers designed a Yagi-Uda nanoantenna [see Fig. 2(a)], optical equivalent

of the Yagi-Uda antenna that is used for radio and television broadcast. Using nanoantennas,

they were able to force quantum dots to emit in a chosen direction. In Ref. [2], R. Sapienza and

coworkers embedded fluorescent nanosources in a strongly scattering media composed of ZnO

particle [see Fig. 2(b)]. They demonstrated that in such a disordered medium, the spontaneous

emission of some emitters was fastened by a factor up to 8.8 compared to average. Those two

works illustrate the ability of complex media to influence the emission of light sources.

(a) (b)

(c)
(d)

Figure 2: (a) Yagi-Uda nanoantenna, reproduced from Ref. [1]; (b) Fluorescent nano sources
embedded in a scattering media made of ZnO powder, reproduced from Ref. [2]; (c) Disordered
metallic film exhibiting fractal geometry, reproduced from Ref. [3]; (d) One-dimensional photonic
crystal waveguide exhibiting disorder, reproduced from Ref. [4].

In Ref. [3], V. Krachmalnicoff and coworkers have evaporated thin layers of gold on glass

substrates, giving rise to disordered metallic films [see Fig. 2(c)]. Those surfaces are known to

exhibit high values of the electric field confined in deeply subwavelength areas, called “hot-spots”.

Using fluorescent lifetime measurement and nanosources in the near field of these structures,

they observed high fluctuations of the fluorescence lifetime in the regime where the “hot-spots”

are expected to dominate. In Ref. [4], L. Sapienza and coworkers fabricated 1D photonic crystal

waveguides, where confined modes appear by the mechanism of Anderson localization, due to

inherent fabrication disorder [see Fig. 2(d)]. They observed that the interaction with Anderson

localized modes could significantly enhance the spontaneous emission of quantum dots. More

recently, it was demonstrated on the same kind of sample that the regime of strong coupling

between an emitter and a localized mode could be reached [5]. Those last two works illustrate

the ability of localized optical modes to influence light emission. In this thesis, we address both

the emission and the localization of light in complex media. The manuscript is organized in

three parts and seven chapters, that we will briefly describe.
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Part I - Introduction and basic concepts

In the process of light emission, atoms or molecules often behave as electric dipoles [6, 7]. Many

aspects of light-matter interaction can be understood from the behavior of classical electric

dipoles. Let us introduce the two following characteristic time scales:

• τp is the lifetime of the electric dipole (its decay being caused by radiation).

• τE is the typical time that the energy radiated by the dipole remains in its vicinity once

it is emitted.

Depending on the respective values of τp and τE, two regimes can be identified in the interaction

of an emitter with the electromagnetic field.

• The regime where τE ≪ τp is known as the weak coupling regime. Physically, this means

that the energy leaks to the far field or is absorbed as soon as it is emitted by the dipole.

In this limit, the structure of the electromagnetic field remains unaffected by the presence

of the emitter. Its influence on the dipole emission is a fastening of its exponential decay,

with a decay rate Γp proportional to the Local Density Of States (LDOS) ρ(r, ω0) [8]

Γp =
1

τp
∝ ρ(r, ω0), (1)

where r is the position of the emitter and ω0 the frequency of its radiation.

• Confining light in the vicinity of the emitter, e.g. using a two-mirror cavity [9], one

can reach τE ≈ τp, and enter the strong coupling regime. In this regime, the emitter

strongly interacts with one eigenmode of the electromagnetic field, which central frequency

equals ω0. Contrary to the case of the weak coupling regime, the presence of the emitter

affects the eigenmode structure. Spectrally, both the electric field and the emitter are

described by two new hybrid eigenmodes, with “splitted” eigenfrequencies ω0 − ∆ω and

ω0 + ∆ω [10, 11]. Temporally, the energy flows back and forth between the two hybrid

eigenmodes, a phenomenon known as Rabi oscillations [12].

The weak and strong coupling regimes are described in many textbooks in the framework of

Cavity Quantum Electrodynamics [13, 14]. This theory is well adapted to describe experiments

involving single atoms and optical cavities [9, 15]. However, recent works have shown that sig-

nificant enhancement of light-matter interaction could be obtained in materials such as strongly

scattering media [2], where the full quantization of the electromagnetic field is deeply involved.

In Chap. 1, we present a classical formalism to describe the interaction of resonant

scatterers and electromagnetic radiation. The electromagnetic field is described by the

Green function, and resonant scatterers are described by their electric polarizability.
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This formalism is well suited to describe light propagation in complex structures,

including strongly scattering media. We recover the weak (τE ≪ τp) and the strong

(τE ≈ τp) coupling regimes, and derive a theoretical condition to reach the latter.

Part II - Light localization in complex metallic nanostructures

In order to enhance light-matter interaction, one needs to confine radiation in the vicinity

of emitters. From another point of view, an enhancement of light-matter interaction can be

understood as a signature of light localization. The LDOS is the central quantity that drives

light-matter interaction, as illustrated by Eq. (1) in the weak coupling regime. One interest

of the LDOS is that it can be measured by a fluorescence lifetime experiment [8]. In such an

experiment, the LDOS is deduced from the temporal behavior of the fluorescence emission, and

is therefore not sensitive to any calibration. At Institut Langevin, a setup allowing to measure

simultaneously the LDOS and the fluorescence intensity using a nanosource in the near field

of nanostructures has been developed [16]. Experimental maps in the near field of a metallic

nanoantenna composed of three gold cylinders were performed by Valentina Krachmalnicoff and

coworkers.

In Chap. 2, we present a numerical algorithm based on the moment method [17] to

solve the Maxwell equations and compute the LDOS in the near field of this metallic

nanoantenna. Our calculations take into account retardation, polarization and near-

field effects. Using this numerical tool, we model the experimental setup and compute

LDOS and fluorescence intensity maps in good agreement with measurements. Nu-

merically, we are able to discuss the influence of the finite extent of the nanosources

used in the experiment on the resolution of LDOS maps.

In disordered media, the LDOS is a random quantity and needs to be studied statistically. It

was theoretically predicted that the fluctuations of the LDOS could be related to the apparition

of localized eigenmodes of the electric field [18]. Intuitively, an intensity pattern with highly

localized modes suits the picture of high fluctuations of the LDOS. Based on this prediction,

enhanced LDOS fluctuations at the surface of disordered metallic films were reported in Ref. [3].

Due to a mechanism that is still debatable, these peculiar systems are known to exhibit high

intensities of the electric field on subwavelength areas, called “hot-spots” [19, 20].

In Chap. 3, we study numerically the spatial distribution of the LDOS in the vicin-

ity of disordered metallic films. First, we present a numerical algorithm – initially

proposed in Ref. [21] – to simulate the growth of the films. Using the numerical

method presented in Chap. 2, we solve the Maxwell equations on the simulated struc-

tures and study the spatial distribution of the LDOS. We recover the trends that were

observed in experimental LDOS distributions, and analyze them by computing the
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corresponding LDOS maps. Numerically, we are able to distinguish between the ra-

diative LDOS, associated to modes that couple to the far field, and the non-radiative

LDOS, associated to modes that stay confined in the near field of the structure. We

analyze the spatial distributions of both contributions, and study quantitatively the

trade-off as a function of the distance to the films.

Although LDOS maps give a direct information on the eigenmode spatial structure, it does not

contain any quantitative information on the spatial extent of the eigenmodes. As a matter of fact,

two “hot-spots” of a LDOS map can belong to one and the same eigenmode, as well as one hot-

spot can involve several eigenmodes. The spatial extent of eigenmodes is a fundamental quantity

that drives, e.g., the coherence length of surface plasmons, the range of non-radiative energy

transfer [22], or the lower limit for spatial focusing by time reversal or phase conjugation [23].

In Chap. 4, we introduce the Cross Density Of States (CDOS) as a new tool to

describe quantitatively the average spatial extent of the eigenmodes at any position.

This gives a rigorous framework to the study of light localization and spatial coherence

in complex structures. We compute the CDOS numerically on disordered metallic

films, using the same numerical method as in Chap. 3. We demonstrate an overall

spatial squeezing of the eigenmodes near the percolation threshold.

Part III - Speckle, weak and strong coupling in strongly scatter-
ing media

When coherent light propagates in a strongly scattering medium, a chaotic intensity pattern

appears, known as a speckle [24]. Light propagation in such media can be modeled as a random

walk, where collisions are scattering events by the heterogeneities, as sketched in Fig. 3. The

scattering mean free path ℓ is defined as the average distance between two scattering events. In

ω

ℓ

Figure 3: Illustration of wave propagation in strongly scattering media. Grey points represent
scattering events by the heterogeneities of the medium.

this picture, the electric field at point r can be pictured as a sum of random complex variables
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associated to scattering paths [25]

E(r) =
∑

path

Apath(r) exp [iφpath(r)] . (2)

The speckle pattern is usually studied statistically via its spatial intensity correlation function1

C(r, r′) = 〈E(r)E∗(r)E(r′)E∗(r′)〉, (3)

where 〈.〉 denotes the average over disorder. This correlation involves the product of four fields,

that can all be considered as the result of all possible scattering paths as described by Eq. (2).

Averaging this product over disorder is deeply involved, and cannot be done analytically in most

regimes. However, in the limit where ℓ ≫ λ, some leading contributions to the correlation can

be computed theoretically [26, 27].

In Chap. 5, we study the intensity spatial correlations between reflexion and transmis-

sion. In a first part, we introduce the ladder approximation, that is valid when ℓ ≫ λ,

and give the leading terms of the spatial intensity correlation function. Although these

correlations are now textbook for the reflected or the transmitted speckle [26, 27], poor

attention has been paid to the correlation between the reflected and transmitted in-

tensity patterns. However, such a correlation does exist and exhibits a long range

behavior. We compute the leading contribution to this correlation in a slab geometry,

assuming the ladder approximation valid. We make the diffusion approximation to

obtain analytical expressions, and discuss the results.

When a speckle is generated by a point source embedded inside the disordered medium, an

infinite range term appears in the correlation function defined by Eq. (3) [28]. This contribution

has been called C0, by analogy with the previously known correlations C1, C2 and C3 [29].

Interestingly, C0 has been proved to be nonuniversal, in the sense that it varies dramatically

with the local environment of the source [30]. For an infinite nonabsorbing medium in the ladder

approximation, it has been shown that C0 equals the normalized fluctuations of the LDOS at

the source position [31]. This last result shows a fundamental connection between light-matter

interaction and speckle correlations.

In Chap. 6, we study the C0 correlation using arguments of energy conservation that

hold in any scattering medium, including regimes where the ladder approximation is

not valid. We demonstrate that the connection between C0 and the fluctuations of

the LDOS – first demonstrated in Ref. [31] – remains valid in a statistically isotropic

finite medium with any strength of disorder. Using numerical simulations based on

1The intensity correlation defined here is not normalized for the sake of simplicity. A normalized correlation
function will be considered in Chaps. 5 and 6.
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the coupled dipole method, we demonstrate that the variance of the LDOS is driven

by rare configurations of the disorder associated to high values of the LDOS. These

high values are the signature of the interaction between the source and its near-

field environment. Interestingly, measuring the C0 correlation is a way to obtain

information on the deep local properties of a strongly scattering medium by a far-

field measurement.

In a strongly scattering medium where the ladder approximation breaks down (kℓ ≈ 1, with

k = 2π/λ), spatially localized modes can arise from the phenomenon of Anderson localiza-

tion [32]. Although the localization of electromagnetic waves by a 3D system is still a very

discussed topic, Anderson localized modes have been reported in 1D [33] and 2D [34] systems.

Localized eigenmodes are the substrate of a strong light-matter interaction, since the radiated

energy remains longer in the vicinity of the source. Observations of strong enhancement of the

interaction between a 1D disordered photonic crystal exhibiting Anderson localized modes have

been reported both in the weak [4] and strong [5] coupling regimes.

In Chap. 7, we demonstrate theoretically the ability of a 2D scattering medium in

the Anderson localized regime to reach the strong coupling with an emitter. Using

numerical simulations based on the coupled dipole method, we first characterize an

Anderson localized mode by computing a LDOS spectrum. Then, we demonstrate

the spectral splitting between this mode and a resonant scatterer, described by its

electric polarizability. The results are in great agreement with predictions by the

theory developed in Chap. 1. We propose a new formulation of the strong coupling

criterion, using the Thouless conductance and the Purcell factor.
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The most complete description of light-matter interaction is provided by quantum electro-

dynamics, where both radiation and matter are quantized. However, many phenomenon can be

understood by the semi-classical theory, where a quantized emitter interacts with the classical

electric field. The fundamental reason for this success is that the Maxwell equations in the

classical and quantum formalisms are identical.

In this first chapter, we present a fully classical description of light-matter interaction. The

eigenmode structure is implicitly computed using a Green function formalism. The interaction

with matter is described by the volume integral equation. Small particles are described by

their electric polarizability. Introducing resonances in the polarizability makes the theory rele-

vant for the study of two-level systems. We recover the well-known weak and strong coupling

regimes in the case of the interaction with one single eigenmode, like in the Cavity Quantum

Electrodynamics (CQED) theory [13, 14].

11
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1.1 Electromagnetic radiation: the dyadic Green function

The aim of this section is to introduce the Green formalism in the case of the electromagnetic

wave equation. We define all the technical concepts and tools that will be necessary to the

theory, and refer to other sections of this thesis for detailed derivations of the main results.

1.1.1 Green formalism

To introduce the dyadic Green function, let us consider a medium described by its dielectric

constant ǫ(r, ω), and sources described by their current density js(r, ω). The medium is supposed

non-magnetic (µ = 1).

Dyadic Green function

It follows from the Maxwell equation that the electric field in the harmonic regime is solution

of the Helmoltz equation

∇×∇×E(r, ω)− ǫ(r, ω)k2E(r, ω) = iωµ0 js(r, ω), (1.1)

where k = ω/c. The electric1 dyadic Green function G of the medium is defined as the solution

of Eq. (1.1) with a delta source

∇×∇×G(r, r′, ω)− ǫ(r, ω)k2G(r, r′, ω) = δ(r− r′). (1.2)

Two solutions of Eq. (1.2) exist, behaving respectively like an outgoing and an incoming wave

at infinite distance2. We impose the outgoing wave boundary condition to fully characterize

G(r, r′, ω). Since Eq. (1.1) is linear, the electric field at any point r can be expressed using the

Green function as

E(r, ω) = iωµ0

∫

G(r, r′, ω) js(r
′, ω) dr′. (1.3)

To give a physical picture of the Green function, let us consider an electric dipole source located

at r′, with a dipole moment ps. The current density associated to such a source reads js(r, ω) =

−iωpsδ(r − r′). Eq. (1.3) transforms into

E(r, ω) = µ0ω
2G(r, r′, ω)ps. (1.4)

The Green function G(r, r′, ω) connects the dipole moment of a source located at r′ to the

electric field it radiates at r at frequency ω.

1In this whole thesis, we refer to the electric Green function as the Green function for the sake of brevity.
2Rigorously, this assertion is true if the medium is non-homogeneous only on a finite region (i.e. if the dielectric

constant is uniform at infinite) from r′.
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Regularized Green function

The Green function defined by Eq. (1.2) is a distribution. It only gets a physical meaning when

integrated over a volume. Let us consider the integral

I =

∫

δV
G(r, r′, ω) dr, (1.5)

where δV is a small volume surrounding r′. When δV tends to zero, the integral I is indefinite,

in the sense that it depends on the shape of the vanishing volume δV [35, 36]. One can separate

this integral into a singular and a regular part

I = − L

k2
+ δVGreg(r, r, ω), (1.6)

where L is a real dyadic describing the non-integrable singularity, and Greg is the regularized

Green function. The dyadic L depends on the shape of the volume δV (see Appendix B for

details). The regularized Green function is the quantity that enters the description of the

coupling of small particles to radiation, as we shall see in sections 1.2 and 1.3.

1.1.2 Eigenmode expansion of the dyadic Green function

We present an expansion of the dyadic Green function on a normal set of eigenmodes, using

a standard approach, initially developed in Ref. [37] to quantify the electromagnetic field. We

consider a non-absorbing system described by a real and non dispersive3 dielectric constant ǫ(r),

embedded in a closed cavity so that the set of eigenmodes is well-defined and discrete.

Eigenmode expansion of the regularized Green function

The eigenmodes en(r) of the propagation equation (1.1) are solutions of

∇×∇× en(r) + ǫ(r)
ω2
n

c2
en(r) = 0, (1.7)

where ωn are the associated eigenfrequencies. In a lossless cavity, the eigenmodes have no

linewidth and are spectrally represented by delta-functions (see Appendix B for details). In

an open or absorbing system, the eigenmodes are not discrete anymore. Though, in the limit

of weak losses, one can consider that the set of eigenmodes remains discrete. Attenuation can

be accounted for using a phenomenological approach [12]. An eigenmode is given a Lorentzian

spectral lineshape with a linewith Γn. In this approach, the regularized Green function defined

in Eq. (1.6) reads

Greg(r, r′, ω) =
c2

2ωn

∑

n

e∗n(r
′)en(r)

ωn − ω − iΓn/2
, (1.8)

where ωn and Γn are respectively the resonant frequency and the linewidth of the eigenmodes

[see Appendix B for the derivation of Eq. (1.8)].

3This condition is necessary to recover a classical eigenvalue problem.
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Local Density Of States (LDOS)

The Local Density Of States (LDOS) is the fundamental quantity that drives light-matter in-

teraction. It is defined from the imaginary part of the Green function as4

ρ(r, ω) =
2ω

πc2
Im [TrG(r, r, ω)] . (1.9)

It follows from Eqs. (1.8) and (1.9) that the LDOS can be expanded over the set of eigenmodes

ρ(r, ω) =
∑

n

ρn(r, ω) =
∑

n

An

π

Γn/2

(ωn − ω)2 + (Γn/2)2
, (1.10)

where the intensity An = |en(r)|2 of the eigenmode has been introduced. Note that the definition

given by Eq. (1.9) is independent on the set of eigenmodes. The LDOS can be measured via

a fluorescence lifetime experiment in the weak-coupling regime (described in section 1.3). It

is connected to the spontaneous decay rate of a fluorescent emitter averaged over its dipole

orientation u via

〈Γ〉u =
ωπ

3ǫ0~
|p|2ρ(r, ω), (1.11)

where 〈.〉u is the average over dipole orientation, p is the transition dipole of the emitter and ~

is the reduced Planck constant. A derivation of Eq. (1.11) as well as a detailed description of

the principle of LDOS measurements are presented in Chap. 2.

Characterization of one eigenmode

In a system where the electric response at point r is dominated by one eigenmode (e.g. an optical

cavity [39]), it follows from Eq. (1.10) that the LDOS can be fitted by a Lorentzian shape

ρ(r, ω) ≈ ρM (r, ω) =
AM

π

ΓM/2

(ωM − ω)2 + (ΓM/2)2
, (1.12)

where ωM is the resonant frequency, ΓM the linewidth and AM the intensity of the eigenmode

that contributes at point r. To describe the ability of the eigenmode to couple with an emitter,

one can introduce the Purcell factor, defined as

FP =
ρ(r, ωM )

ρ0
= 2π

c3AM

ω3
MΓM

, (1.13)

where ρ0 = ω2/(π2c3) is the LDOS in vacuum. Note that the Purcell factor defined in Eq. (1.13)

is averaged over the emitter transition dipole [as in Eq. (1.11)] and only depends on the eigen-

mode parameters (resonant frequency, linewidth, intensity). To take into account the dipole

orientation in the enhancement of its spontaneous decay rate, one can define a partial LDOS [8].

4Note that since the singularity in Eq. (1.6) is real (observation point in vacuum [38]), the imaginary part
of the Green function is equal to the imaginary part of the regularized Green function, which makes Eq. (1.8)
relevant for the expansion of the LDOS on the set of eigenmodes.
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1.2 Small particle in vacuum: the dynamic polarizability

As light propagates in a non-homogeneous medium, it induces electric dipoles in the hetero-

geneities, that become secondary sources for the electric field. The heretogeneities behave as

scatterers. Their ability to get polarized under illumination by an incident field is described by

their polarizability. Here, we derive the expression of the electric polarizability of a small spheri-

cal particle in vacuum and show that it is constrained by energy conservation. We also establish

the general expression of the polarizability of a scatterer exhibiting a resonance. This provides

a description also valid for point emitters such as two-level atoms (far from saturation). The

polarizability will be a central concept in the description of the coupling of a resonant scatterer

(or equivalently a point emitter) to its environment in section 1.3.

1.2.1 Polarizability of a small spherical particle

Let a small spherical particle with volume δV be located at rs in free space, and described by a

dielectric constant ǫs(ω). In the presence of an exciting field Eexc(rs, ω), a dipole moment ps(ω)

is induced in the particle. By definition of the polarizability αs(ω), one has5

ps(ω) = ǫ0αs(ω)E
exc(rs, ω). (1.14)

Dipole moment and polarization density

If the particle is small enough compared to the wavelength of the incident radiation, one can

assume that the electric field is uniform in its volume. In this limit, the polarization density

P(r, ω) inside the particle is also homogeneous, and is connected to the electric field inside the

particle via

P(rs, ω) = ǫ0 [ǫs(ω)− 1]E(rs, ω). (1.15)

Hence, the induced dipole ps(ω) in the particle reads

ps(ω) = δV P(rs, ω) = δV ǫ0 [ǫs(ω)− 1]E(rs, ω). (1.16)

To get an expression of the polarizability, one needs to express the electric field inside the particle

in terms of the exciting field. To do so, we will use the Lippmann-Schwinger equation, that is

based on the Green formalism described in section 1.1.

Lippmann-Schwinger equation

The exciting field is the field that would exist in the absence of the particle. Since the environ-

ment is vacuum here, it satisfies the free-space propagation equation

∇×∇×Eexc(r, ω)− k2Eexc(r, ω) = 0. (1.17)

5Note that in the general case, αs(ω) is a dyadic, and the induced dipole is not parallel to the exciting field.
For the sake of simplicity, we focus on the case of a spherical particle, which polarizability in vacuum is scalar. A
general approach for arbitrary shapes can be derived easily based on this section and Appendix B.
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It is convenient to decompose the total field inside the particle as the sum of the exciting and

scattered fields

E(r, ω) = Eexc(r, ω) +Es(r, ω). (1.18)

The dielectric constant of the environment in the presence of the particle can be expressed as

ǫ(r, ω) = 1 + θ(r) (ǫs(ω)− 1), where θ(r) equals 1 when r is inside the particle and 0 elsewhere.

Hence, the total electric field satisfies the propagation equation

∇×∇×E(r, ω)− k2 [1 + θ(r) (ǫs(ω)− 1)]E(r, ω) = 0. (1.19)

Substracting Eq. (1.17) to Eq. (1.19), one obtains the equation satisfied by the scattered field

∇×∇×Es(r, ω)− k2Es(r, ω) = θ(r)k2 (ǫs(ω)− 1)E(r, ω). (1.20)

Eq. (1.20) is a propagation equation in vacuum, with a source term proportional to the total

electric field. Its solution can be written using the free-space Green function G0, associated to

the propagation equation (1.17)

Es(r, ω) = k2 [ǫs(ω)− 1]

∫

δV
G0(r, r

′, ω)E(r′, ω) dr′. (1.21)

Using Eq. (1.18), the total field at point r reads

E(r, ω) = Eexc(r, ω) + k2 [ǫs(ω)− 1]

∫

δV
G0(r, r

′, ω)E(r′, ω) dr′. (1.22)

In this thesis, we refer to Eq. (1.22) as the Lippmann-Schwinger equation. In Chap. 2, we present

the volume integral method, that allows to solve numerically this equation in the near-field of

metallic structures.

Dynamic and quasistatic polarizabilities

Since the electric field is assumed uniform inside the particle, Eq. (1.22) for r = rs transforms

into [

I− k2 [ǫs(ω)− 1]

∫

δV
G0(rs, r

′, ω) dr′
]

E(rs, ω) = Eexc(rs, ω) (1.23)

The integration of the Green function needs to be performed with care, since the Green function

exhibits a non-integrable singularity when r = r′ (as discussed in section 1.1). Using Eq. (1.6),

one can introduce the regularized Green function of vacuum
∫

δV
G0(rs, r

′, ω) dr′ = − L

k2
+ δVGreg

0 (rs, rs, ω). (1.24)

For a spherical volume δV in vacuum, one has L = I/3 and Greg
0 (rs, rs, ω) = ik/(6π) I (see

Appendix B). From Eqs. (1.14), (1.16) and (1.23), one can deduce the expression of the polar-

izability [40]

αs(ω) =
α0
s(ω)

1− (ik3/6π)α0
s(ω)

, (1.25)
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where α0
s(ω) is the quasistatic polarizability, defined as6

α0
s(ω) = 3δV

ǫs(ω)− 1

ǫs(ω) + 2
. (1.26)

Eq. (1.25) defines the dynamic polarizability, valid in the optical regime. In the limit where

the volume δV of the particle tends to zero, both expressions are equivalent. However, in the

optical regime, the quasistatic expression is an approximation. Although it might be convenient

to obtain orders of magnitudes of the scattering properties of a particle, it is not consistent with

energy conservation, as we shall demonstrate now.

Energy conservation and dynamic polarizability

When light hits a scatterer, the latter removes energy from the incident field. This phenomenon

is known as extinction, and is the result of both scattering and absorption. Hence, energy

conservation for a scatterer can be expressed in the form [42, 43]

Extinction = Scattering + Absorption. (1.27)

The power Pext extracted by an oscillating dipole ps(ω) from an incident field Eexc(rs, ω) reads
7

Pext =
ω

2
Im [ps(ω) · Eexc(rs, ω)

∗] . (1.28)

In the case of a scatterer described by a polarizability αs(ω), Eq. (1.28) transforms into

Pext =
ωǫ0
2

|Eexc(rs, ω)|2 Im [αs(ω)] . (1.29)

From Eqs. (1.26) and (1.29), one can see that a non-absorbing particle (Im ǫ(ω) = 0) has a

real quasistatic polarizability, corresponding to a vanishing extinction. Hence, the quasistatic

polarizability cannot describe accurately a non-absorbing radiating scatterer. Let us be more

specific on the constraint imposed on the polarizability. The power scattered by an oscillating

dipole ps(ω) in vacuum reads

Ps =
µ0ω

4

12πc
|ps(ω)|2. (1.30)

In the case of a scatterer described by a polarizability αs(ω), this power transforms into

Ps =
ωǫ0
2

|Eexc(rs, ω)|2
k3

6π
|αs(ω)|2. (1.31)

6The electrostatic polarizability of a spherical particle, whatever its size, reads α0 = 3δV (ǫs − 1)/(ǫs +2) [41],
where ǫs is the static dielectric constant.

7 The instantaneous power density exchanged between an electric field Eexc(r) and charges generating a current
density js(r) reads Pext = js(r) · Eexc(r). In the harmonic regime, this power density can be averaged over the
optical oscillations and reads Pext = (1/2)Re [js(r, ω) ·Eexc(r, ω)∗]. In the case of an oscillating dipole located at
rs, js(r, ω) = −iωps(ω)δ(r− rs).
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The polarizability of a non-absorbing particle needs to satisfy Pext = Ps, i.e.

Imαs(ω) =
k3

6π
|αs(ω)|2. (1.32)

This condition is satisfied by the dynamic polarizability as defined by Eq. (1.25), whatever the

expression of α0
s(ω) (as long as it remains real).

1.2.2 Resonant scatterer polarizability

In the semi-classical theory, two-level emitters are described by an electric polarizability, that

exhibits a resonance at their emission frequency [44]. Here, we derive the general expression of

the polarizability of a resonant scatterer, consistently with energy conservation as discussed in

section 1.2.1. This encompasses the case of a two-level emitter far from saturation. This will

allow us to address the coupling of an emitter to radiation using a fully classical formalism in

section 1.3.

Polarizability of a metallic nanoparticle

To introduce the general expression of the polarizability of a resonant scatterer, let us consider

first the particular case of a spherical metallic nanoparticle. To introduce a resonance, let us

describe the metal dielectric constant by a Drude model

ǫ(ω) = 1−
ω2
p

ω2 + iγω
, (1.33)

where ωp is the plasma frequency and γ accounts for absorption losses inside the particle. In-

serting Eq. (1.33) into Eqs. (1.25) and (1.26) the polarizability of this particle reads

αs(ω) =
3π

k3
(k3/2π)δV ωs

ωs − ω − (i/2) [γ + (k3/2π)δV ωs]
(1.34)

where ωs = ωp/
√
3 is the resonant frequency. The total linewidth of the scatterer can be de-

composed into a non-radiative linewidth ΓNR
s = γ and a radiative linewidth ΓR

s = (k3/2π)δV ωs.

The non-radiative linewidth describes absorption inside the metallic particle. The radiative

linewidth describes radiation losses, and appears both at the numerator and the denominator

of the polarizability because of the constraint defined by Eq. (1.32).

General expression for a resonant scatterer

The dynamic polarizability of an isotropic resonant scatterer with resonant frequency ωs, radia-

tive linewidth ΓR
s and non-radiative linewidth ΓNR

s can be written as8

αs(ω) =
3π

k3
ΓR
s

ωs − ω − (i/2) [ΓNR
s + ΓR

s ]
. (1.35)

8Note that this expression is an approximation, known as the known as the “rotating-wave approximation”,
that is valid when |ω − ωs| ≪ ωs. An exact form can be found in Ref. [45].
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The radiative linewidth ΓR
s takes into account radiation losses. The non-radiative linewidth ΓNR

s

takes into account all internal non-radiative energy losses by the scatterer (absorption in the

case of the metal particle). In the following, we will denote by Γs the total linewidth defined as

Γs = ΓNR
s + ΓR

s . (1.36)

This form of polarizability is very general. It describes the scattering of light by small particles,

but also includes the case of a quantum two-level systems far from saturation [44]. Hence, it is

relevant to study the coupling between dipole emitters like atoms or molecules to radiation. The

radiative linewidth of the scatterer is the equivalent of the spontaneous decay rate of the emitter.

Note that the spontaneous decay rate can describe the coupling to radiative channels (emission

of a photon to the far field) or non-radiative channels (the energy is eventually absorbed in the

local environment). This is discussed in Chapters 2 and 3.

Radiative and non-radiative linewidth

To justify the introduction of the radiative and non-radiative linewidth in Eq. (1.35), let us

express explicitly the extinction, scattered and absorbed powers by a particle described by a

resonant polarizability. Let us consider an exciting field at the position of the particle Eexc(rs, ω),

and introduce the constant κ = (ǫ0c/2)|Eexc(rs, ω)|2, homogeneous to a power flux per unit

surface. It follows from Eq. (1.29) that the extinct power reads

Pext =

(

κ
3π

2k2
ΓR
s

(ωs − ω)2 + Γ2
s/4

)

Γs. (1.37)

It is proportional to the total linewidth Γs. From Eq. (1.31), one can deduce the scattered power

Ps =

(

κ
3π

2k2
ΓR
s

(ωs − ω)2 + Γ2
s/4

)

ΓR
s , (1.38)

that is proportional to the radiative linewidth ΓR
s with the same prefactor. Finally, the absorbed

power can be deduced from Eqs. (1.37) and (1.38) thanks to energy conservation as stated in

Eq. (1.27)

Pabs = Pext − Ps =

(

κ
3π

2k2
ΓR
s

(ωs − ω)2 + Γ2
s/4

)

ΓNR
s , (1.39)

and is proportional to the non-radiative linewidth ΓNR
s , once again with the same prefactor.

This justifies the physical interpretation of ΓR
s (scattering), ΓNR

s (internal absorption) and Γs

(total extinction).

1.3 Light-matter interaction: weak and strong coupling regimes

We now study the coupling between resonant scatterers and their electromagnetic environment

described in the two first sections. Our formalism encompasses both the weak-coupling regime,
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where the interaction with the environment results in an enhancement of the radiative linewidth

of the scatterer, and the strong-coupling regime, where new eigenstates of the coupled scatterer-

field system appear.

1.3.1 Dressed polarizability in the presence of an environment

Let us consider a small spherical particle described by its dynamic polarizability in vacuum

αs(ω) given by Eq. (1.25). We consider that the scatterer is lying in a small volume of vacuum

around position rs. The Lippmann-Schwinger equation [Eq. (1.21)] transforms into

E(r, ω) = Eexc(r, ω) + k2 [ǫs(ω)− 1]

∫

δV
G(r, r′, ω)E(r′, ω) dr′, (1.40)

where ǫs(ω) is the dielectric constant describing the particle, δV its small volume and G(r, r′, ω)

is the Green function describing the electromagnetic response of the environment9. Importantly,

because the scatterer is lying in vacuum, the singularity dyadic L associated to the environment

Green function G(rs, rs, ω) at the position of the scatterer is the same that of the vacuum Green

function [38]. Hence, one can introduce the regularized Green function
∫

δV →0
G(rs, r

′, ω) dr′ ≈ δVGreg(rs, rs, ω)−
I

3k2
. (1.41)

Inserting Eq. (1.41) into Eq. (1.40), and using the dynamic polarizability in vacuum defined

by Eq. (1.25) as a reference, one can show that the dressed polarizability α(ω), defined as the

polarizability of the particle in the environment reads [46]

α(ω) = αs(ω)
{
I− k2αs(ω) [G

reg(rs, rs, ω)−Greg
0 (rs, rs, ω)]

}−1
. (1.42)

All information on the coupling between the scatterer and its environment is included in Eq. (1.42),

as we shall see in this section. Note that even if the vacuum polarizability of the scatterer is

scalar, the dressed polarizability is a dyadic10. An analog expression of the dressed polariz-

ability was derived in Ref. [47]. An equivalent expression, using the quasistatic polarizability

α0(ω) as a reference instead of the dynamic polarizability, was derived in Ref. [46]. Note that

because the scatterer is surrounded by vacuum, the singularities of G and G0 cancel out in

Eq. (1.42), and the dressed polarizability expression is rigorously defined. As commented at the

end of section 1.2.1, the singularity dyadic L only appears in the vacuum polarization αs(ω) and

does not play any role in the coupling between the scatterer and the field. It is convenient to

introduce the regularized scattered Green function Sreg(r, r′, ω) = Greg(r, r′, ω) −Greg
0 (r, r′, ω)

to transform Eq. (1.43) into

α(ω) = αs(ω)
{
I− k2αs(ω)S

reg(rs, rs, ω)
}−1

. (1.43)

9Note that changing the Green function in the Lippmann-Schwinger equation implies a change of the exciting
field definition. See Appendix A for details.

10Note that the form of Eq. (1.42) does not change in the case of a non-isotropic scatterer [dyadic vacuum
polarizability αs(ω)]). This case is not presented here for the sake of simplicity.
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This notation will be used in the following.

1.3.2 Coupling to one eigenmode: Weak and strong coupling regimes

In this section, we describe the coupling between a resonant scatterer and the environment

in the case where the electromagnetic response at point rs is dominated by one eigenmode of

the electromagnetic field. This encompasses the case of engineered optical cavities [48, 15] or

multiple scattering systems in the localized regime [4, 33].

Hybrid eigenmodes

In a weakly lossy system, the regularized Green function around eigenfrequency ωM correspond-

ing to an eigenmode eM reads (see Appendix B)

Greg(r, r′, ω) =
c2

2ωM

e∗M (r′) eM (r)

ωM − ω − iΓM/2
. (1.44)

As derived in Appendix B, this expression is non-singular and corresponds to the regularized

Green function. Denoting by u the direction of the electric field eM (rs) at the position of the

scatterer, one can use Eq. (1.44) to express the scattered regularized Green function as

Sreg(rs, rs, ω) =
c2

2ωM

ρM uu

ωM − ω − iΓM/2
− ik

6π
I, (1.45)

where ρM = |eM (rs)|2. Let us consider an isotropic resonant scatterer, with polarizability αs(ω)

in vacuum, given by Eq. (1.35). An eigenmode of the coupled system {scatterer+electromagnetic

field} is characterized by a pole in the dressed polarizability given by Eq. (1.43). Since the dressed

polarizability is a dyadic, the equation satisfied by the coupled eigenfrequencies depends on the

direction. The coupled eigenmodes corresponding to a resonance of the scatterer in direction

u are associated to poles of the coefficient u · α(ω)u. These eigenfrequencies thus satisfy the

coupling equation

1 = k2αs(ω)u · Sreg(rs, rs, ω)u. (1.46)

Let us introduce the classical coupling constant, defined as

g2c =
3

4
ΓR
s ΓMFP. (1.47)

gc is the classical analog of the coupling constant introduced in cavity QED to describe the

interaction between a quantum emitter and an optical cavity [13, 14, 49]. Using the Purcell

factor introduced in section 1.1.2, and introducing the variable ∆ω = ω − ωM , Eq. (1.46)

transforms into

∆ω2 + i
∆ω

2

(
ΓM + ΓNR

s

)
−
(
ΓMΓNR

s

4
+ g2c

)

= 0. (1.48)
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As the result of the coupling between the scatterer and the field, two hybrid eigenmodes, with

complex eigenfrequencies ωM +∆ω+ and ωM +∆ω− appear [where ∆ω+ and ∆ω− are the two

solutions of Eq. (1.48)]. Depending on the parameters of both the scatterer and the eigenmode,

the solutions of this equation are imaginary or real, giving rise respectively to the weak and

strong coupling regimes.

Weak coupling regime

When the eigenfrequencies ωM +∆ω± are imaginary, the coupling between the eigenmode and

the scatterer only results in a change of the linewidth of both systems. In the weak-coupling

regime, the losses out of the environment are considered much higher than those of the scatterer

ΓM ≫ Γs. (1.49)

The picture in this case is the following: as soon as a photon is emitted by the scatterer to

its environment, the latter is immediately lost (i.e. radiated to the far field or absorbed in the

environment). Hence, an emitted photon will never come back from the environment to the

scatterer. Solving Eq. (1.48), one can show that, to the first order of Γs/ΓM ,

∆ω+ = − i

2

(
ΓNR
s + 3FPΓ

R
s

)
(1.50)

∆ω− ≈ −i
ΓM

2
. (1.51)

The eigenfrequency ∆ω− corresponds to the non-perturbed mode of the electric field, that keeps

its resonant frequency ωM and linewidth ΓM . The eigenfrequency ∆ω+ corresponds to the

perturbed scatterer, which resonant frequency remains ωs = ωM , but which radiative linewidth

has become
ΓR

ΓR
s

= 3FP = 3
ρ(rs, ω)

ρ0
. (1.52)

We recover the well-known expression of the enhancement of the spontaneous decay rate driven

by the Purcell factor. The factor 3 is due to the average over transition dipole orientation in our

definition of the Purcell factor11. Note that the internal non-radiative linewidth is not affected

by the coupling to the environment.

Strong coupling regime

The strong coupling regime occurs when the eigenfrequencies ωM +∆ω± are real, meaning that

the two eigenmodes of the coupled system are no longer degenerate. The condition to reach this

11Let u be the orientation of the electric field at rs. Let v and w be two unit vectors that form an orthonormal
basis joint with u, the orientation averaged decay rate reads 〈Γ〉 = (Γu + Γv + Γw) /3 = Γu/3 since Γv = Γw = 0
(dipole orientation orthogonal to the electric field).
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regime reads12

g2c ≥
(
ΓNR
s − ΓM

)2

16
. (1.53)

For a quantum two-level system, ΓNR
s = 0 and the condition is simply gc ≥ ΓM/4, which is

consistent with the usual criterion in cavity-QED [15]. In the usual formulation, the explicit use

of the transition dipole of the two-level system makes the criterion slightly different (but equiva-

lent). In our formalism the transition dipole is implicitly in the coupling constant gc through the

radiative linewidth ΓR
s (because of energy conservation, as commented in section 1.2). The eigen-

frequencies of the hybrid eigenmodes of the coupled system {electromagnetic field + scatterer}
then read

∆ω± = ±
[

g2c −
(
ΓNR
s − ΓM

)2

16

]1/2

− i
ΓM + ΓNR

s

4
. (1.54)

The resonant frequencies are splitted symmetrically around ωM and are separated by the Rabi

frequency, defined as

ΩR =
1

2

[

g2c −
(
ΓNR
s − ΓM

)2

16

]1/2

(1.55)

The linewidth of the hybrid eigenmodes read

Γ =
ΓM + ΓNR

s

2
. (1.56)

Note that ΓR
s is not implied in this linewidth, since this term corresponds to the radiation of

the scatterer towards the eigenmode, and hence does not correspond to losses out of the coupled

system. Finally, let us stress that satisfying Eq. (1.53) is not sufficient to observe the splitting in

the coupled system spectrum or to observe temporal Rabi oscillations. For such an observation,

the Rabi frequency has to overcome the linewidth of the hybrid eigenmodes, i.e.

2ΩR ≥ Γ. (1.57)

This condition reads

g2c ≥
(
ΓNR
s + ΓM

)2

8
. (1.58)

To reach the strong coupling regime, the coupling constant needs to overcome the intrinsic losses

of each uncoupled system.

Graphical criterion

The graphical interpretation of the coupling condition presented here results from a very inspir-

ing conversation with Juan-José Sáenz (Universidad Autónoma de Madrid, Spain). The coupling

12The discriminant of Eq. (1.48) reads ∆ =
[

16g2c −
(

ΓM − ΓNR
s

)2
]

/4.
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condition Eq. (1.46) can be written

1

αs(ω)
= k2u.Sreg(rs, rs, ω)u. (1.59)

The real part of this equation drives the eigenfrequencies of the hybrid eigenmodes, while its

imaginary part drives their linewidth. Here, we focus on the eigenfrequencies, independently on

the linewidths. Let us consider a resonant scatterer with a resonant frequency ωs, described by

Eq. (1.35). The real part of the left term of Eq. (1.59) reads

Re

[
1

αs(ω)

]

=
k3

3πΓR
s

(ωs − ω) . (1.60)

Let us consider an eigenmode with eigenfrequency ωM . The regularized scattered Green function

is given by Eq. (1.45), and the real part of the right term of Eq. (1.59) reads

Re
[
k2u.Sreg(rs, rs, ω)u

]
=

ωMρM
2

ωM − ω

(ωM − ω)2 + Γ2
M/4

. (1.61)

The eigenfrequencies of the coupled system are found when Eq. (1.60) equals Eq. (1.61). We

represent both expressions versus ∆ω = ω− ωM in Fig. 1.1, for two different sets of parameters

corresponding respectively to the weak and the strong coupling regime. The crossing between the

∆ω = ω − ωMRe
[

k2u · S
reg(rs, rs,ω)u

]

Re
[

α
−1

s
(ω)

]

Re
[

α
−1

s
(ω)

]

non-degenerate eigenmodes: 

strong coupling

degenerate eigenmodes:

 weak coupling

Figure 1.1: Graphical representation of the weak and strong coupling regimes. (Green) Eq. (1.61)
plotted as a function of ∆ω (Red and blue) Eq. (1.60) plotted as a function of ∆ω for two different
set of parameters corresponding respectively to the weak and strong-coupling regimes.

red and the blue curve corresponds to the two degenerate eigenmodes with eigenfrequency ωM



1.3. LIGHT-MATTER INTERACTION: WEAK AND STRONG COUPLING REGIMES 25

obtained in the weak-coupling regime. Varying the slope of the red curve to reach the blue curve,

two new intersections appear with the green curve. They correspond to the two eigenmodes with

eigenfrequencies ωM±∆ω obtained in the strong-coupling regime. This graphical representation

is very helpful for a qualitative understanding of the coupled system {scatterer+electromagnetic

field}. For example, when one increases ΓR
s , the slope of Eq. (1.60) decreases in absolute value,

and one tends to the strong coupling regime. This could have been intuited, since ΓR
s is the

spontaneous decay rate of the emitter in free space. However, it can be directly deduced from

this method13. Last but not least, this graphical representation could be useful to get insight

on regimes where the analytical calculations become heavy, e.g. when the resonant frequencies

of the scatterer and the eigenmode are shifted. This last idea is an open question that we have

not addressed in the present thesis.

1.3.3 General formulas in the weak-coupling regime

In the case where the electric response of the environment cannot be reduced to one eigenmode,

the explicit derivation of a coupling condition from Eq. (1.43) is non-trivial because of the

dyadic nature of the dressed polarizability14. Here, we show that the formalism is consistent

with known results for a point dipole emitter (atom, molecule, ...) in the weak-coupling regime

(see e.g. Ref. [50]). We consider a resonant scatterer with a fixed polarization direction u, that

reads

αs(ω) = αs(ω)uu, (1.62)

where

αs(ω) =
3π

k3
ΓR
s

ωs − ω − iΓs/2
. (1.63)

Forcing the scatterer to polarize in direction u is consistent with the fluorescence lifetime mea-

surement procedure, where emitters are excited with a fixed orientation of the transition dipole.

Using Eqs. (1.43) and (1.63), one can show that the projection of the dressed polarizability of

the particle on direction u reads15

u ·α(ω)u = αs(ω)
[
1− k2αs(ω)u · Sreg(rs, rs, ω)u

]−1
. (1.64)

A resonance of u.α(ω)u is a resonance of ps(ω) without illumination, i.e. an eigenmode of the

system. Hence, the eigenfrequencies satisfy

1 = k2αs(ω)u · Sreg(rs, rs, ω)u (1.65)

13The influence of ΓR
s on the coupling between a resonant scatterer and an eigenmode of the electromagnetic

field in the case of a disordered medium is studied numerically in Chap. 7 (Fig. 7.5)
14Only the case where the regularized Green function is diagonal is easily described in the case of a scatterer

with scalar polarizability.
15Here, we admit that the expression of the dressed polarizability given by Eq. (1.43) remains valid in the case

of a dyadic vacuum polarizability αs(ω). This derivation can be done with our formalism, but is not presented
here for the sake of simplicity.
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In the weak coupling regime, the intrinsic losses out of the environment are large compared

to that of the resonant scatterer. Mathematically, this approximation can be translated to the

frequency domain by assuming that the environment Green function spectrum is large compared

to the one of the scatterer. In Eq. (1.65), one makes the approximation

Sreg(rs, rs, ω) ≈ Sreg(rs, rs, ωs). (1.66)

Denoting by ω = ωs+∆ω− iΓ/2 the complex eigenfrequencies of the coupled system, Eq. (1.65)

transforms into

∆ω = −3π

k
ΓR
s Reu · Sreg(rs, rs, ωs)u (1.67)

and

Γ = ΓNR
s + ΓR

s

(

1 +
6π

k
Imu · Sreg(rs, rs, ωs)u

)

. (1.68)

The real and imaginary parts of the complex eigenfrequency of the scatterer are modified from

their value in free space due to the (weak) coupling to the electromagnetic environment. From

Eq. (1.67), one sees that the resonant frequency – that corresponds to the frequency of the

radiated light – is shifted from its value in free space. This shift is known as the Lamb shift.

In practice, it is very weak compared to the resonant frequency ωM and can be neglected (see

e.g. numerical simulations in the case of the coupling to a metallic nanoparticle in Ref. [51]).

From Eq. (1.68), one sees that the internal non-radiative linewidth is not affected by the envi-

ronment. Averaging Eq. (1.68) over dipole orientation and using Eq. (1.9), one can show that

the modification of the radiative linewidth averaged over transition dipole orientation is equal

to the modification of the LDOS

〈Γ− ΓNR
s 〉u

ΓR
s

=
ρ(rs, ω)

ρ0
, (1.69)

where ρ0 is the LDOS in vacuum. This result is well known for the spontaneous decay rate of

an emitter [8], that is the equivalent of the radiative linewidth of a resonant scatterer. Finally,

let us stress that the results of section 1.3.2 in the case of the coupling to one eigenmode are

recovered when the scattered regularized Green function is replaced by Eq. (1.45).

1.4 Conclusion

To sum up, we have introduced a classical formalism that describes the interaction of a resonant

scatterer to the electric field. Our description is relevant to describe the canonical situation

encountered in cavity QED of a two-level system far from saturation coupled to an optical

cavity [13, 14]. We have shown that the interaction of such a scatterer with one eigenmode of

the electric field gives rise to the well-known weak and strong coupling regimes. For the sake of

completeness, we show that our formalism allows to recover the general formulas in the case of

the weak coupling between an emitter and the electromagnetic field.
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Characterization of the near-field
optical properties of a metallic
nanoantenna

Contents

2.1 Experimental setup and results . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Fluorescent beads probe the LDOS . . . . . . . . . . . . . . . . . . . . . 31

2.1.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Numerical model of the experiment . . . . . . . . . . . . . . . . . . . 36

2.2.1 The Volume Integral Method . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 Model for the LDOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.3 Model for the fluorescence intensity . . . . . . . . . . . . . . . . . . . . 38

2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Numerical maps of the LDOS and fluorescence intensity . . . . . . . . . 43

2.3.2 Resolution of the LDOS maps . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Metallic nanostructures have a strong interaction with electric dipoles such as fluorescent

molecules and quantum dots. This encompasses different mechanisms which are often hard to

disentangle.

• Light absorption can be enhanced, leading to an increased effective absorption cross sec-

tion [46]. This can be advantageously used in photodetection and photovoltaics [52].

Disorder can even help to design efficiently nanostructures in thin film solar cells [53].

• The spontaneous emission can be fastened by the Purcell effect. Experimental observation

of large Purcell factors have been reported in the vicinity of gold nanoparticles [54, 55, 56].

At Institut Langevin, Valentina Krachmalnicoff and coworkers have demonstrated strong

29
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enhancement of the spontaneous decay rate of fluorescent beads at the surface of disordered

metallic films [3, 57] (see Chap. 3).

• Changes of the fluorescence intensity were mapped in pioneering experiments using single-

emitters for optical microscopy [58, 59]. As we shall explain in this chapter, local field

enhancement and non-radiative processes are the two phenomena in competition to drive

this signal.

The Local Density Of States (LDOS) is the basic quantity which governs these three mecha-

nisms. Experimentally, several methods have been proposed to map the spatial variations of the

LDOS on photonic nanostructures, among which measuring the thermal emission in the near

field [60, 61], measuring the “forbidden light” signals from the aperture of a near-field scanning

optical microscope [62], or using a scanning electron beam as a point dipole source [63]. The

LDOS can be directly inferred from measurements of the spontaneous fluorescence decay rate

of a single nanoemitter in its local environment, Γ = 1/τ , where τ is the fluorescence lifetime.

Recently, a decrease of the fluorescence lifetime was measured by scanning a fluorescent bead

across a 250 nm diameter silver rod, pointing to an increased LDOS due to the existence of

plasmonic modes on the rod [64].

While a detailed knowledge of the LDOS is clearly required, it is not enough to provide

a full characterization of a system involving dipoles coupled with plasmonic nanostructures.

Local changes of fluorescence intensity depend on other parameters such as the radiative and

non-radiative part of the LDOS and the local field enhancement factor [65]. To characterize a

plasmonic antenna, one needs at least to measure both the LDOS and the fluorescence enhance-

ment factor at the nanometer scale in the near field of the antenna.

In this chapter, we present a collaboration with Etienne Castanié, Da Cao, Valentina Krach-

malnicoff and Yannick De Wilde at Institut Langevin on the characterization of the near-field

properties of a metallic nanoantenna. They have created an experimental setup able to record

simultaneously two-dimensional maps of both the fluorescence signal and the LDOS in the

near-field of nanostructures. The experiments presented here were led using fluorescent beads

attached to an AFM tip approaching a nanoantenna composed of three aligned gold cylinders

(see artist view in Fig. 2.1). During my thesis, we have developed a numerical algorithm based

on the moment method to solve the Maxwell equations in the near field of 3D resonant nanos-

tructures. Together with the experimentalists, we have designed a model of their experiment

based on this method in order to analyze their results. First, we briefly describe the concept

of the experimental setup, and present the LDOS and intensity maps that were measured on

the metallic nanoantenna. Then, we describe in details our numerical model and emphasize the

robustness of the LDOS compared to the fluorescence intensity to obtain intrinsic quantitative

information. Finally, we present our numerical results, that are in excellent agreement with

the experimental data, and discuss the resolution of the experimental maps by modeling the
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Figure 2.1: Artist view of the gold nanoantenna and the experimental probe.

influence of the spatial extent of the fluorescent sources.

This work has been published in Optics Express [16].

2.1 Experimental setup and results

Here, we describe the experimental setup that was realized by Etienne Castanié, Da Cao,

Valentina Krachmalnicoff and Yannick De Wilde at Institut Langevin. Our aim is not to enter

the details, but to understand the important phenomena to take into account in the numerical

model presented in section 2.2. Details of the setup are given in Etienne Castanié’s PhD the-

sis [66], or in Refs. [3, 57, 16]. First, we explain the principle of the LDOS measurement using a

fluorescent bead. Then, we present the experimental setup. Finally, we comment on the LDOS

and fluorescence intensity maps measured on the metallic nanoantenna.

2.1.1 Fluorescent beads probe the LDOS

In the experiment, beads containing a few thousand of identical fluorescent molecules (dyes) are

used as probes of the LDOS. These beads are composed of a polystyrene matrix inside which the

emitters are embedded. Importantly, each fluorescent molecule is randomly oriented. Here, we

explain why such sources are good candidates to perform a direct measurement of the LDOS.

Spontaneous decay rate of an emitter

A fluorescent emitter can be modeled by a three-level system (see Fig. 2.2). |g〉 is the ground

state and |e1〉 and |e2〉 are two vibrational levels of an excited electronic state. We denote by ωexc

the frequency of the transition |g〉 → |e1〉, and ωfluo the frequency of the transition |e2〉 → |g〉.
ωexc corresponds to the frequency of the incident laser used to excite the emitters. ωfluo is the

frequency of the fluorescence emission. We denote by K and Γ respectively the rates of the

transitions |e1〉 → |e2〉 and |e2〉 → |g〉. We make the assumption that the transition rate K is

very large compared to Γ. In these conditions, if the emitter is excited – i.e. put in the state

|e1〉 – at time t = 0, it immediately decays to the lower vibrational state |e2〉. Then, the system

behaves like a two-level system [10]. Let us introduce the following notations:
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Figure 2.2: Three-level system.

• P (t) is the probability, for the emitter initially in the excited state |e2〉, to still be excited

at time t.

• h(t) dt is the probability, for the emitter initially in the excited state |e2〉, to emit a photon

between times t and t+ dt.

• Γdt is the probability, knowing that the emitter is still in its excited state at time t, that

it will emit a photon between t and t+ dt. Note that Γ does not depend on time, which

is a fundamental hypothesis for the process of spontaneous emission [44].

Using these notations, one can express P (t+ dt) using the definition of Γ

P (t+ dt) = P (t) (1− Γdt) , (2.1)

meaning that the probability to still be excited at time t+dt is the probability to still be excited

at time t and not to emit a photon between t and t+dt. Solving this differential equation yields

P (t) = exp (−Γt) . (2.2)

Γ is called the spontaneous decay rate. Experimentally, one measures h(t), the probability to

emit between t and t+ dt knowing that the emitter was excited at t = 0. One can express P (t)

as a function of h(t)

P (t) = 1−
∫ t

0
h(t′) dt′, (2.3)

meaning that the probability to still be excited at time t is the probability not to have emitted

a photon between 0 and t. Differentiating Eq. (2.3) yields

h(t) = Γ exp (−Γt) . (2.4)
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Spontaneous decay rate and LDOS

If the emitter is placed at point r in an environment described by a Green function G, the decay

rate reads1 [8]

Γ =
2

~
µ0ω

2
fluo|p|2 Im [u.G(r, r, ωfluo)u] , (2.5)

where p is the dipole of the transition |e2〉 → |g〉, u the unit vector defining its orientation and

~ = h/2π, where h is the Planck constant. Eq. (2.5) can be averaged over the dipole orientation

u, using the identity

〈u ·Gu〉u =
1

4π

∫

4π
u ·GudΩ =

1

3
TrG, (2.6)

that is valid for any dyadic G. One obtains

〈Γ〉u =
2

3~
µ0ω

2
fluo|p|2 Im [TrG(r, r, ωfluo)] . (2.7)

The LDOS at point r and frequency ωfluo can be expressed from the dyadic Green function G

ρ(r, ωfluo) =
2ωfluo

πc2
Im [TrG(r, r, ωfluo)] . (2.8)

One can see from Eqs. (2.7) and (2.8) that the decay rate averaged over the orientation dipole

reads

〈Γ〉u =
ωfluoπ

3ǫ0~
|p|2ρ(r, ωfluo) (2.9)

Hence, providing that the amount of emitters is sufficiently large to make a statistical average

over dipole orientation, a lifetime measurement of the fluorescent beads is a direct measurement

of the LDOS. One can notice that the measured LDOS is actually averaged over the spatial

extent of the bead. The role of the spatial averaging on the resolution of the experimental maps

is discussed in section 2.3.2.

2.1.2 Experimental setup

The principle of the experiment is summed up in Fig. 2.3. The fluorescent bead is attached to a

sharp tip and approached in the near field of a nanostructure standing on a glass substrate. The

tip is attached to an Atomic Force Microscope (AFM) cantilever that controls its position with

a nanometer precision. The AFM records a map of the topography of the substrate while the

measurement is performed. The beads are excited by a pulsed laser at frequency ωexc through

an inverted microscope located below the glass substrate. This same microscope gathers the

fluorescence emission at frequency ωfluo ≤ ωexc of the molecules. An avalanche photodiode is

placed behind a filter that selects only the fluorescence photons. The photodetection signal

is processed to record the delay between the excitation pulse and the photodetection events.

1In the following, we will omit the dependance of Γ on the emitter position r and the frequency ω. All values
will be computed for ω = ωfluo, the emission frequency of the experimental molecules.
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Figure 2.3: Sketch of the experimental concept. The vertical direction is denoted by ez.

Plotting the arrival times in a histogram h(t) and repeating the experiment many times (thanks

to the repetition rate of the pulsed laser), one obtains the typical histogram shown in Fig. 2.4.

The fluorescence intensity is the total number of photons actually detected by the avalanche
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Figure 2.4: Histogram of the photons arrival times h(t) for one fluorescent bead at one position.
This figure is taken from Ref. [66].

photodiode after one excitation. Hence, it is simply equal to the integral of the arrival time

histogram.

Provided that a sufficiently high number of arrival times are measured, the histogram h(t)

must converge towards an exponential decaying function of t, which slope is the fluorescent decay

rate, as shown in Eq. (2.4). Since this decay rate is intrinsically averaged over dipole orientation,

the slope of this curve is directly proportional to the LDOS at the position of the nanosource.
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2.1.3 Experimental results

The nanoantenna we study is composed of a linear chain of three 150 nm-diameter gold nanodisks

separated by 50 nm gaps on a glass substrate. These structures were manufactured by Stéphane

Collin and Nathalie Bardou at Laboratoire de Photonique des Nanostructures (LPN) using

electron beam lithography on a glass microscope coverslip. Each disk is made of a 2 nm thick

wetting layer of chromium and a 30 nm thick layer of gold. In Fig. 2.5, we show an AFM image

of the topography. One can remark that the disks appear elliptical instead of circular. We
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Figure 2.5: AFM image of the topography of the sample.

show in Fig. 2.6 the maps of the LDOS and fluorescence intensity that were measured using the

method described previously. The contour of the measured topography (Fig. 2.5) is reported on

the maps to guide the eye (dashed lines).

The intensity map gives more insight on the apparent asymmetric shape of the disks on the

AFM image. This is due to the fact that the bead is attached on the size of the tip, and not

perfectly at the center, breaking the symmetry of the AFM tip (as illustrated in Fig. 2.3). This

can be seen in the intensity signal. The latter only decreases in three circularly shaped regions

located on the upper half of the elliptical contour. Since the fluorescence signal only comes

from the bead, this confirms that the three gold disks are scanned twice, once by the bead and

then by the tip, which results in this elliptical topography. The trends of these maps will be

discussed in section 2.2 together with the numerical results. Roughly, one can notice that the

fluorescence intensity is significantly reduced when the fluorescent bead passes on the top of each

disk (approximately by a factor 3). The LDOS exhibits two hot-spots in the two gaps between

the disks, and one minor hot-spot on the side. As will be discussed later, this asymmetry is most

likely due to a defect of the sample. Interestingly, the hot-spots of the LDOS maps have a spatial

extent of the order of 50 nm, which is lower than the diameter of the fluorescent beads. This

phenomenon was already observed in Ref. [64], and is discussed in details based on numerical

simulations in section 2.3.2.
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Figure 2.6: (Top) Fluorescence intensity map. (Bottom) Decay rate (LDOS) map. The contour
of the topographic relief (dashed line), as measured by the active AFM asymmetric probe [see
Fig. (2.5)], is reported on the two maps to guide the eye.

2.2 Numerical model of the experiment

In order to analyze the experimental results, we have developed an exact 3D numerical method

to solve the Maxwell equations. We present this algorithm in details here, and identify the

important phenomena to take into account. In particular, we study the influence of the finite

size of the bead and the finite aperture of the detection setup.

2.2.1 Solving the Maxwell equations on 3D nanostructures: the Volume In-
tegral Method

The Volume Integral Method we have developed is based on the Lippmann-Schwinger equation

E(r, ω) = E0(r, ω) + k2
∫

V
[ǫ(ω)− 1]G0(r, r

′, ω)E(r′, ω)dr′, (2.10)

where V is the volume occupied by gold, E0 is the incident field, G0 is the dyadic Green

function of the host medium (vacuum in our simulations) and ǫ(ω) is the dielectric constant of

gold, tabulated in Ref. [67]. Eq. (2.10) is derived in Appendix A. The numerical computation is

done by discretizing the volume of integration V into cubic cells with lateral size ∆ = 5nm. On

each cell, the field is considered constant, but the Green function G0 is integrated analytically

to improve convergence (moment method [17]). This integration is the difference between our
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method and the Discrete Dipole Approximation (DDA), and is necessary to deal with near-field

modes of resonant metals. Our simulations are exact, given that the discretization of the volume

is sufficient to get convergence. In particular, they take into account the vectorial nature of the

field, near-field interactions and retardation.

2.2.2 Model for the LDOS

An ideal measurement of the LDOS requires a point-like emitter averaged over orientations.

However, to understand the resolution of the experimental maps, one needs to take into account

the influence of the finite size of the bead.

Calculation using a point-like source dipole

The numerical method to compute the LDOS is actually very intuitive if one understand the

concept of the experiment. As in the experiment, a point source dipole is located at rs to probe

the LDOS. Numerically, this is done by using an illuminating field in the Lippmann-Schwinger

equation that corresponds to the radiation of a source dipole p located at rs

E(r, ω) = µ0ω
2G0(r, rs, ω)p+ k2

∫

V
[ǫ(ω)− 1]G0(r, r

′, ω)E(r′, ω)dr′. (2.11)

Solving this equation for three orthogonal orientations2 of the source dipole p gives access to the

complete dyadic Green function G of the system. From the Green function, one can retrieve the

decay rate of the emitter for one dipole orientation from Eq. (2.8), or the LDOS by averaging

the decay rate over three dipole orientations (see section 2.1.1). In our calculations, we compute

the LDOS for the emission frequency ωfluo of the experimental molecules.

Finite size of the fluorescent beads

To address the issue of the resolution of the experimental maps, one needs to take into account

that the illumination is not point-like3. To do this numerically, we randomly choose Nem relative

emitter positions inside a sphere of radius R = 50 nm that models the bead. As in the experi-

ment, we perform a constant-height scan of this sphere over the structure and solve Eq. (2.11)

for 3 orthogonal orientations and Nem positions of the source dipole. The LDOS is deduced by

averaging the 3Nem values of the decay rate. Note that the relative positions of the emitters

inside the bead are considered fixed during the scan.

In first approximation, we consider a uniform distribution of emitters inside the bead. In

these conditions, the probability densities P (x) [respectively P (y), P (z)] for an emitter to have

2Note that averaging over the three dipole orientations in the simulations is equivalent to averaging over dipole
orientations in the real fluorescent beads.

3Experiments have been performed using single molecules [58, 59], but knowing the dipole orientation remains
a challenging issue.
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a coordinate x (resp. y, z) inside the bead reads

P (x) =
3

4R3

[

R2 − (R− x)2
]

. (2.12)

In all calculations presented here, Nem = 100, which is lower than the experimental value (few

thousands emitters) for computation time considerations. To check that this value is sound,

we show in Fig. 2.7 a comparison between the numerical and theoretical probability densities.

Although the statistical distributions of x, y and z coordinates are not perfectly uniform, they
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Figure 2.7: (Full green line) Analytic expression [Eq. (2.12)] of the probability density P (z)
for an emitter to be located at relative vertical coordinate z inside the bead; (Blue circles)
Numerical estimation for Nem = 100 (corresponding to the numerical model of the bead used
in all calculations presented here).

are good enough to get a rough idea of the influence of the size of the bead.

Fig. 2.8 shows two maps of the LDOS ρ(r, ω) – normalized by its value in vacuum ρ0 =

ω2/(π2c3) – computed respectively with one pointlike emitter at a point r and using 100 emitters

inside a bead of radiusR = 50 nm centered at the same point r. Counterintuitively, the averaging

over a 100 nm diameter bead does not dramatically decrease the resolution of the map. It even

seems that the random assembly of emitters probes smaller details than the single emitter

centered in the bead. This will be discussed in details in section 2.3.2.

2.2.3 Model for the fluorescence intensity

The fluorescence intensity maps are driven both by the exciting intensity and the trade-off be-

tween radiative and non-radiative channels. We define precisely the relevant quantities for a

computation of the fluorescence intensity, and expose our numerical method to compute the

fluorescence enhancement. We emphasize the strong influence of the detection scheme on the



2.2. NUMERICAL MODEL OF THE EXPERIMENT 39

 

 

1.2

1.4

1.6

1.8

 

 

1.2

1.4

1.6

100 nm

100 randomly

located emitters

1 emitter 

at the center

ρ
/
ρ
0

ρ
/
ρ
0

Figure 2.8: (Top) Normalized LDOS map averaged over 100 randomly located emitters; (Bot-
tom) Normalized LDOS map computed using a pointlike emitter located at the center of the
fluorescent bead. ρ0 denotes the LDOS in vacuum.

measured signal. This illustrates the limits of the fluorescence signal for a quantitative charac-

terization of a nanostructure.

Local intensity enhancement

Let a nanostructure be illuminated by an incident field E0(r, ωexc). Let us denote by E(r, ωexc)

the total field at point r in the presence of the nanostructure. The modification of the intensity

due to this nanostructure is measured by the local intensity enhancement, that we define as

K2(r, ωexc) =
|E(r, ωexc)|2
|E0(r, ωexc)|2

. (2.13)

This quantity is highly sensitive to the illumination conditions. To model the laser light used

in the experiment, we consider a plane-wave illumination E0(r, ωexc) = E0 exp (−ik0.r) in the

Lippmann-Schwinger equation, where k0 = (ωexc/c)ez is the incident wave-vector. The propa-

gation direction ez (defined in Fig. 2.3) accounts for the illumination from below the structure.

The local intensity enhancement at each position is averaged over two orthogonal polarizations

E0 of the plane-wave, to take into account the non-polarized nature of the laser light. Finally,

we take into account the finite size of the bead by computing the values of K2(r, ωexc) over Nem

positions inside a 100 nm diameter sphere, exactly as in the LDOS calculations. Importantly,

we do not average these values until the final calculation of the fluorescence signal.

Apparent quantum yield

For a fluorescent emitter, the emitted energy can either be radiated in the far field, or transferred

non-radiatively to its local environment to be eventually absorbed. In other words, its decay

rate can be decomposed into a radiative and a non-radiative part

Γ = ΓR + ΓNR. (2.14)



40 CHAPTER 2. CHARACTERIZATION OF A NANOANTENNA

The apparent quantum yield is the ratio between radiative and non-radiative channels available

at the position of one emitter. It is defined as

η(r, ωfluo) =
ΓR

ΓR + ΓNR
. (2.15)

It is the probability for an emitter in its excited state to eventually emit a photon in the far

field. Numerically, we have explained in section 2.2.2 that the decay rate Γ of an emitter was

computed by solving Eq. (2.10) under the illumination of a source dipole. From this calculation,

we can deduce the electric field at any position inside the metal. The non-radiative decay rate

of an emitter is proportional to the power absorbed inside the medium, and reads4

ΓNR

Γ0
=

6πǫ20
k3|p|2 Im[ǫ(ωfluo)]

∫

V
|E(r′, ωfluo)|2 d3r′. (2.16)

where Γ0 is the decay rate of a point emitter located in the host medium. The radiative decay

rate ΓR is deduced from Γ and ΓNR from Eq. (2.14).

We take into account the finite size of the fluorescent bead exactly as in the LDOS calculation.

The apparent quantum yield is computed for 3 dipole orientations for each of Nem = 100 random

positions of the source dipole inside a 100 nm diameter sphere. Here also, we do not average

these values before the final computation of the fluorescence signal.

In the experiment, the collection is not performed over 4π steradian, but is limited to a

finite solid angle Ω. To model this effect, we denote by ΓR(u) the radiative contribution to the

decay rate that corresponds to photons collected in a unit solid angle around direction u. This

quantity is proportional to the power radiated in a unit solid angle in this direction (this will

be important for the numerical calculation). ΓR(u) and ΓR are connected via

ΓR =

∫

4π
ΓR(u)dΩ. (2.17)

We define the directional apparent quantum yield as

η(r, ωfluo,u) =
ΓR(u)

ΓR + ΓNR
. (2.18)

Integrating η(r, ωfluo,u) over the solid angle Ω covered by the detector yields the probability,

once an emitter is excited, to detect a photon on the avalanche photodiode.

Numerically, from the resolution of the Lippmann-Schwinger equation (under dipole illumi-

nation), we know the electric field at any point in space. One can compute rigorously the power

radiated by the source dipole in the far-field in a unit solid angle using the far-field expression

of the Green function of vacuum (see Appendix A). We can deduce the change in ΓR(u) due to

4See Appendix A. The host medium is vacuum here, which explains why k = kh.
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the environment by

ΓR(u)

Γ0
=

3

8π

ǫ20
ωfluok3|p|2

∣
∣
{
µ0ω

2
fluo [I− u⊗ u]p

+k2
∫

V
{ǫ(ωfluo)− 1} e−iku.r′ [I− u⊗ u]E(r′, ωfluo) d

3r′
}∣
∣
∣
∣

2

,

(2.19)

where I is the unit dyadic, and k = ωfluo/c.

Note that integrating ΓR(u) over 4π steradians, one can retrieve the value of ΓR. We

have used this second way of computing ΓR as a probe of numerical errors. In all presented

calculations, the two methods are in excellent agreement for at least one position of the source

dipole illumination. The details of this computation can be found in Appendix E.

Fluorescence intensity

The fluorescence intensity is the number of photons per second detected in the experimental

setup. For emitters far from saturation, the fluorescence intensity signal reads [68]

S = C

[∫

Ω
η (r, ωfluo,u) dΩ

]

σ(ωexc)K
2(r, ωexc)Iinc. (2.20)

In this equation, η(r, ωfluo,u) is the directional apparent quantum yield for a detection in di-

rection u, and Ω is the solid angle of the detection objective. The constant C is a calibration

parameter of the detection (that accounts for transmissivity of filters, detector efficiency, ...),

σ(ωexc) is the absorption cross-section of the bare fluorescent beads, Iinc is the incident laser

intensity and K2(r, ωexc) is the local-intensity enhancement factor.

The quantity that drives the contrast of fluorescence intensity maps is the fluorescence en-

hancement factor, defined as

F (r, ωfluo, ωexc) =

[∫

Ω
η (r, ωfluo,u) dΩ

]

K2(r, ωexc). (2.21)

This is the quantity that we will compute to understand the fluorescence intensity maps. Let

us sum up the numerical procedure.

• We randomly choose Nem = 100 positions inside a 100 nm diameter sphere.

• For one point of the fluorescence map, we solve the Lippmann-Schwinger equation under

plane-wave illumination (exciting laser beam) to compute 2 ×Nem values of the local in-

tensity enhancement K2(r, ωexc) corresponding to Nem emitter positions and 2 orthogonal

polarizations of the incident field. Then, we solve the Lippmann-Schwinger equation under

a source dipole illumination to compute 3×Nem values of the directional apparent quantum

yield η(r, ωfluo,u) corresponding to Nem emitter positions and 3 orthogonal orientations

of the source dipole.
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• We obtain 3×2×Nem = 600 values of the fluorescence enhancement factor F (r, ωfluo, ωexc)

corresponding to Nem emitter positions, 3 orthogonal orientations of the source dipoe and

2 orthogonal polarizations of the incident field. We average all these values to deduce

F (r, ωfluo, ωexc).

• We repeat the procedure for each point of the map5.

Influence of the detection setup on the fluorescence intensity measurement

The microscope objective does not detect all photons emitted by the fluorescent bead, but only

those emitted in a finite solid angle Ω. To observe the influence of this limitation on the fluo-

rescence signal, we show in Fig. 2.9 two different computations of the fluorescence enhancement

factor F . The first one corresponds to an ideal experiment where all photons emitted in the far
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Figure 2.9: (Top) Fluorescence signal integrated over 4π steradians; (Bottom) Fluorescence
signal in a small solid angle Ω = 10−2 steradian around direction −ez pointing towards the
detector.

field would be detected. It is obtained by performing the integration in Eq. (2.21) over Ω = 4π

steradians. In the second one, the directional quantum yield in direction u = −ez is considered

constant over a small solid angle Ω = 10−2 steradians. The direction −ez corresponding to a de-

tection from below the sample, like in experiments. Integrating over a solid angle corresponding

to the real setup is perfectly possible numerically. Though, as we will see in section 2.3.1, this

crude model gives a very satisfying agreement with experiments. Since our purpose is to find

the simplest model to understand the measurements, we have limited ourself to this approach

in all calculations presented here.

Strikingly, the two maps have a very different structure. The influence of the detection

scheme on the fluorescence intensity was already emphasized in Ref. [69]. It is due to the non-

isotropical radiation pattern of the nanosource placed in the vicinity of the nanostructure. A

precise description of the influence of nanoantennas on fluorescence emission directivity can be

5Note that the relative positions of the emitters inside the bead are the same for every point in the map.
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found in Ref [68]. In particular, enhanced directivity in the radiation pattern of quantum dots

was reported using a Yagi-Uda shaped nanoantenna [1]. This effect is a strong limitation for

the quantitative characterization of nanostructures using fluorescence intensity. The LDOS is a

more robust quantity to measure, since a lifetime measurement is independent on the detection

scheme. It only depends on the absolute value of the LDOS at the fluorescent source position.

2.3 Numerical results

We present here the numerical maps that were computed using the model described previously

to understand the experimental ones. These maps are in very good agreement with experimental

data. Our method allows us to go further and model the fluorescent beads to try to understand

the experimental resolution in the LDOS maps, that looks better than the size of the sources.

2.3.1 Numerical maps of the LDOS and fluorescence intensity

We show in Fig. 2.10 the numerical maps of the fluorescence enhancement factor and the nor-

malized LDOS computed according to the model presented in section 2.2. The experimental
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Figure 2.10: (Top) Fluorescence enhancement factor F (r, ωfluo, ωexc) =
η(r, ωfluo,−ez)K

2(r, ωexc) expressed in arbitrary units; (Bottom) LDOS ρ(r, ωfluo) nor-
malized by its value in vacuum ρ0. The dashed lines represent the contours of the nanoantenna.
As in experiments, λfluo = 575nm and λexc = 605nm. The distance between the bottom of the
bead and the top of the nanoantenna is set to d = 20nm and the bead diameter equals 100 nm.

fluorescence intensity map (Fig. 2.6) is well recovered by the computed directional fluorescence

enhancement factor F (r, ωfluo, ωexc). The fluorescence intensity is reduced by a factor of the

order of 3 on top of the disks. The agreement is almost quantitative.

In the experimental map, the LDOS increases by about 30% in three regions presenting an

extension of about 60 nm each and separated by 100 nm. The two regions located between

the gold disks are predicted by the numerical simulations. As in the case of the fluorescence
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intensity map, numerical and experimental data are in almost quantitative agreement regarding

the expected change of the decay rate in the region between the disks with respect to a region

far away from the nanoantenna. The presence of the third lateral region of enhanced LDOS

in the experimental map is more speculative. The numerical simulations predict the presence

of two such regions of enhanced LDOS, on the external sides of the nanoantenna. A possible

explanation for this is an asymmetry of the gold structure, caused for example by a defect of the

lift-off process, that would translate in an asymmetry of the structured the electromagnetic file on

the surface of the nanoantenna. Numerical calculations with asymmetric shaped nanoantennas

have been done and produce similar asymmetries in the LDOS images. However, since the exact

shape of the nanoantenna is not accessible at the required level of resolution, having an exact

matching between theory and experiment is a very speculative task and the discussion is therefore

limited here to a comparison between the experimental results with numerical simulations made

on an ideal antenna formed by three regularly spaced circular disks.

2.3.2 Resolution of the LDOS maps

One interesting feature of both the experimental and numerical LDOS maps is that both seem

to exhibit variations on scales well below 100 nm, the size of the fluorescent bead. To explain

this phenomenon, already observed in [64], we compare the contribution to the decay rate of the

emitters located in the lower and upper half of the bead. Figure 2.11 shows the LDOS maps

averaged respectively over 100 emitters located at random positions inside a 100 nm diameter

bead, over the emitters located in the lower half of the bead and over the emitters located in

its upper half. Each map is normalized by the value of the LDOS in vacuum to allow for the

comparison between the maps. Every map is computed for a distance d = 20nm between the

bottom of the bead and the top of the trimer. A detailed observation allows us to assert that

the resolution of the LDOS map is not limited by the size of the bead. Indeed, the similarity

between the top and bottom maps clearly shows that the measured LDOS is driven by the

emitters situated on the lower half of the bead. The two hot spots which are visible on the right

and on the left side of the nanoantenna are smeared out when considering only the contribution

of the emitters populating the upper part of the sphere. More insight can be given by plotting

the section of the LDOS maps along the lines drawn in every map. The obtained profiles are

shown in Fig. 2.12. Each curve is normalized by the maximum value of the corresponding map

ρmax, in order to quantify the contrast of each hotspot. The lateral hot-spot is clearly resolved

when the LDOS signal is averaged on the emitters located on the bottom of the sphere or over

all the sphere, while it is washed out when the signal is averaged over the top of the sphere.

Therefore the resolution of this detail is clearly due to the bottom emitters. Consequently, the

effective resolution is not limited by the size of the bead but is smaller and in the case presented

in this thesis is of the order of 50 nm.

It is very instructive to consider the influence of the distance between the bead and the
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Figure 2.11: Computed normalized LDOS maps a distance d = 20nm between the bottom
of the bead and the top of the trimer. (Top) Average over 100 emitters randomly located
in the bead; (Middle) Contribution of the 48 emitters located in the lower half of the bead;
(Bottom) Contribution of the 52 emitters located in the upper half of the bead. λexc = 560nm;
λfluo = 605nm. Diameter of the bead: 100 nm.
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Figure 2.12: Section view of the maps shown in Fig. 2.11 along the lines shown on the maps.
Note that in this case the LDOS has been normalized by the maximum value of each map ρmax

to quantify the contrast of the image.

nanostructure on the resolution. Subwavelength details are exponentially decaying with the

distance to the sample [8]. Hence, the closer the emitter, the better the resolution is expected to

be. We show in Fig. 2.13 the maps and profiles of the LDOS computed exactly as in Figs. 2.11

and 2.12 but for a distance d = 50nm between the bottom of the bead and the top of the
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nanoantenna. A comparison between Figs. 2.11 and 2.13 confirms that the smallest details
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Figure 2.13: Map and profile of the LDOS computed exactly as the ones of Figs. 2.11 and 2.12,
for a distance between the bottom of the bead and the top of the sample equal to d = 50nm.

(such as for example the two LDOS hot spots visible on the right-hand and left-hand sides of

the nanoantenna) are washed out when the distance of the bead to the sample surface increases.

Since these details are visible on the experimental map, this study confirms that the real distance

between the bottom of the probe and the sample surface is of the order of 20 nm. Interestingly,

at d = 50nm, even if a non-monotonic behavior is observed in the profiles, the bottom emitters

are too far away from the sample surface and the smallest details are washed out. The high

resolution compared to the size of the bead is fundamentally a near-field effect and can only be

obtained at very subwavelength distances to the sample.

2.4 Conclusion

To sum up, we have developed a numerical model based on the Lippmann-Schwinger equation

to identify the important phenomena and understand the maps that were measured in the real

experiment at Institut Langevin. Our numerical results are in great agreement with experimental

data. In particular, we have shown that the finite size of the bead has a positive influence on the

resolution of the maps, clarifying a phenomenon that was first observed in [64]. We have also

emphasized the sensitivity of the fluorescence signal to the angular aperture of the detection

setup. The LDOS, as opposed to the fluorescence intensity, is robust and contains intrinsic

quantitative informations about the optical near-field properties of the nanoantenna.

As a perspective, an ingredient is missing in our numerical model and would be very inter-

esting to take into account: the influence of the substrate. In all our calculations, the metallic

nanoantenna (as well as the disordered metallic films in the next chapter) are lying in vacuum.
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Even if we do not believe this will fundamentally change the trends of our results, it would help

being even more quantitative. In the volume integral method, taking this effect into account

is possible, by replacing the Green function of vacuum in the Lippmann-Schwinger equation by

the Green function of the semi-infinite space described by the dielectric constant of glass.

Another perspective is the experimental measurement of the radiative and non-radiative

decay rate of a dipolar emitter near a nanoantenna. This is a very challenging issue, that should

be the subject of future work at Institut Langevin. Our numerical tool is already able to compute

these quantities, and can be used to save some time by predicting the interesting measurements.
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Spatial distribution of the LDOS on
disordered metallic films
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By evaporating thin layers of noble metal on a glass substrate, one obtains structures with

very peculiar optical properties. These structures are called disordered metallic films. Depending

on the surface filling fraction, three regimes can be identified, as illustrated in Fig. 3.1.

• For low filling fraction, the films look pink to the eye. The local structure shows that these

films are mainly composed of isolated gold particles. The color is well explained by the

plasmon resonances of individual particles.

• For high filling fraction, the films look green to the eye. This color is that of a thin

continuous layer of gold (transmitted light is responsible for the green color). It is well

explained by the spectral dependence of the Fresnel transmission factors.

49
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Figure 3.1: (Top) Naked eye pictures of disordered gold films deposited on a white substrate.
From left to right, the gold filling fraction is increasing from 30% to 99%; (Bottom) Transmission
Electron Microscope (TEM) image of the films for three different gold filling fractions.

• In between these two extreme regimes, the films look blue to the eye. This regime is found

close to the electric percolation, which occurs when a continuous metallic path appears

between two sides of the sample. In this regime, the films are known to exhibit fractal

geometry, and to support deep subwavelength areas with high intensity of the electric field,

called hot spots [19, 70, 71]. These hot spots are responsible for an absorption plateau in

the red and near infrared [72], and have an influence on the macroscopic optical properties

of the films [73], as illustrated by the blue color in Fig. 3.1.

In the fractal regime (near the percolation threshold), these systems are resonant on a broadband

spectrum. Many potential applications can benefit from this property, e.g. in photodetection

or photovoltaics. Moreover, basic experiments in nanophotonics can be though of using the

disordered films as platforms. As we have seen in Chap. 2, the LDOS and its radiative and

non-radiative contributions are the fundamental quantities that drive photon absorption of the

radiation of emitters in the vicinity of a nanostructure. A characterization as complete as

possible of disordered films based on the LDOS is a promising path both towards applications

and fundamental experiments. Recently, at Institut Langevin, V. Krachmalnicoff and coworkers

have measured LDOS distributions in the near field of disordered films, and have shown that

enhanced spatial LDOS fluctuations occur in the regime dominated by fractal clusters compared

to the “isolated particle” regime (low filling fractions) [3]. These experiments were the motivation

at the start of my PhD to develop a numerical method to compute the LDOS in the near field of

disordered films. Although an exact numerical study has been reported recently using a FDTD

(finite-difference time-domain) scheme [74], all theoretical and numerical results until then were

based on approximations, such as mean-field theories [75] or quasi-static calculations [76, 77].

Here, we present a method to simulate the growth of disordered films numerically, with

realistic fractal properties near the percolation threshold. The volume integral method we
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have presented in Chap. 2 offers an exact 3D resolution of the Maxwell equations in order to

compute the field scattered by the films generated numerically. In particular, it takes into

account retardation, polarization and near-field interactions. We recover the enhanced LDOS

fluctuations observed experimentally in the fractal regime. A study of the distance dependence of

the LDOS statistical distribution shows a nearly quantitative agreement between experiments

and numerics. By analyzing this data qualitatively, we deduce an order of magnitude of the

typical spatial extent of a hot spot, in good agreement with near-field intensity observations [19,

70]. We use numerical simulations to go further in the characterization of the films. In particular,

we compare LDOS maps to the films topography and show that the appearance of hot-spots

in the fractal regime comes from a complex collective interaction. Finally, we study the spatial

distributions of the radiative and non-radiative LDOS. We show that the hot spots observed

in the fractal regime are dominated by non-radiative channels, and study quantitatively the

distance dependence of the trade-off between radiative and non-radiative LDOS.

The results presented here have been published in Photonics and Nanostructures: From

Fundamental to Applications [78] and Optics Letters [57].

3.1 Simulation of the growth of the films

Our first goal is to generate numerically disordered metallic films that have the same properties

as the real ones. Here, we describe the algorithm we have implemented. It was first proposed

in Ref. [21], and is based on a Kinetic Monte-Carlo algorithm (KMC). We show that fractal

properties of experimental films are recovered in the numerical results, which is an evidence of

the reliability of the approach.

3.1.1 Numerical generation of disordered metallic films

A detailed description of the algorithm is given in Appendix D. The idea is to randomly deposit

5 nm gold particles on a square grid via an iterative algorithm, and let the particles diffuse under

the influence of an interaction potential until a stable geometry is reached. At every iteration of

the algorithm, we randomly choose either to deposit a new particle (probability p0) or to make

a particle on the grid jump to a more stable neighbour site (probability pij to diffuse from site

i to site j). Using the normalization p0 +
∑

i,j pij = 1, we only need to pick a random number

out of [0, 1] to determine the relative weight of each process. More precisely, the probability to

deposit a particle reads1 p0 = aNdepF , where Ndep is the number of particles that remains to be

deposited in order to reach the prescribed filling fraction, and F is a constant (with dimension

s−1) modeling the experimental deposition rate. The probability for a particle located on site i

to jump to the neighbor site j reads (see footnote 1)

pij = b exp[−∆Eij/(kBT )], (3.1)

1a and b are two constants determined by the normalization.
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where kB is the Boltzmann constant, T the temperature of the surface and ∆Eij the activation

energy barrier. Computing ∆Eij is a complex issue for atoms [79, 80], and is not possible

from first principles for nanometer size particles. In the present approach, we have chosen to

deal with a rescaled atomic potential that renormalizes the energy barrier in order to apply to

a nanoparticle. This potential is given by the following expression, based on a tight-binding

second moment method [81]

Ei = A
∑

j 6=i

e−p(rij/r0−1) −B




∑

j 6=i

e−2q(rij/r0−1)





1/2

. (3.2)

In this expression, r0 is the size of one particle (that defines the scaling), rij the distance between

two sites i and j and A, B, p and q are constants that were tabulated for atoms [81]. Ei is

the rescaled “atomic” potential of a particle located on site i, which is allowed to jump to the

neighbor site j if Ei > Ej . We assume that the activation energy barrier reads

∆Eij = α(Ei − Ej), (3.3)

where α is a positive dimensionless adjustable parameter taking into account the influence of

the substrate and the scaling. The iterative deposition process is stopped when all particles

have been deposited (so that the prescribed filling fraction has been reached) and no particle

can move to a more stable site.

Three examples of films are shown in Fig. 3.2, with a lateral size of 375 nm and three different

surface filling fractions f .

3
7

5
 n

m

f=20% f=50% f=75%

Figure 3.2: Numerically generated gold films for three different filling fractions f (gold is rep-
resented in dark). The parameters for the computation are: T = 300K, α = 2 × 58.102,
F = 1014 s−1, A = 0.2061 eV, B = 1.79 eV, p = 10.229, q = 4.036.

3.1.2 Percolation threshold

When the filling fraction is high enough, a continuous metallic path appears between two sides

of the sample. This is the percolation phenomenon, and the filling fraction corresponding to
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the transition is called the percolation threshold. To determine roughly this filling fraction in

the numerical films, we have implemented the Hoshen-Kopelman algorithm to label the clusters

of the films [82]. In Figure 3.3, we show four films generated for different filling fractions, in

which each cluster has been identified by one color. We observe that percolation occurs between

f = 50% and f = 60%.

f = 60 %f = 50 %f = 40 %f = 30 %

Figure 3.3: Disordered films generated numerically for four filling fractions between f = 30%
and f = 60%. Clusters have been labelled using the Hoshen-Kopelman algorithm, one color
identifies one cluster. The films with filling fractions f = 50% and f = 60% are percolated.

3.1.3 Apparition of fractal clusters near the percolation threshold

One can see in Fig. 3.3 that for a filling fraction f = 50%, clusters with complex shapes appear.

Disordered metallic films are known to support fractal clusters near the percolation thresh-

old [83]. This fractality has been correlated to the apparition of localized modes [3]. Here, we

give the basic mathematical definitions to understand fractality and self-similarity. Based on

the von Koch flake example, we show that the percolation clusters have fractal contours, char-

acterized by a specific relation between their perimeter and surface. The numerically generated

films exhibit exactly the same fractal features as the real ones.

Fractality and self-similarity

The definitions given in this section are freely inspired from B. Mandelbrot’s book on fractals [84],

and should not be understood as general definitions. Our aim is not to make a general description

of the fractal geometry, but to give an intuitive picture of the connection between self-similarity

and fractality in the case of disordered films.

Let r ∈ R
∗
+ and P ∈ N

∗. Let [x1, x2] a segment of R and f a real function defined on [x1, x2].

f is self-similar on [x1, x2] if it satisfies

∀x ∈ [x1, x2], f(x) = Pf(rx). (3.4)
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We denote by r the homothety coefficient and P the number of parts. We admit the following

equivalence

∀x ∈ [x1, x2], f(x) = Pf(rx) ⇔ ∃λ,∀x ∈ [x1, x2], f(x) = λxD (3.5)

where D is the homothety dimension, defined as

D =
log P

log (1/r)
. (3.6)

Hence, the self-similar functions are the power-law functions. We call fractal on an interval

[x1, x2] any self-similar function which homothety dimension is non-integer. We call fractal

dimension (or Haussdorf dimension) the homothety dimension of a fractal function2.

Fractality of the von Koch curve

The von Koch curve is defined as the limit when n tends to infinity of the serie defined in Fig. 3.4.

Let us denote by a, and call linear extent of the von Koch curve, the length of its first iteration.

n=1 n=2 n=3 n=4

a a / 3 a / 9 a / 27

Figure 3.4: First four iterations of the von Koch curve.

Let us denote by G the length of the unit segment that is used to draw it. Let M(a,G) the

mass of the von Koch curve, defined as the number of unit segments that compose it. The mass

of the von Koch curve is a self-similar function, since its satisfies the relation

M(a,G) = 4M(a/3, G). (3.7)

This self-similarity is illustrated in Fig. 3.5. The von Koch curve of linear extent a (blue curve)

is composed of four von Koch curves of linear extent a/3 (red curve) arranged in the same

configuration. In a self-similar curve, “the ensemble resembles the unit bricks”. Hence, the von

Koch curve is a fractal ensemble with dimension

D =
log 4

log 3
≈ 1.262. (3.8)

Using Eq. (3.5), for a fixed size G of the unit segment, M can be expressed as

M(a,G) = λaD. (3.9)

2A self-similar function is fractal when its number of parts P is a non-integer power of the inverse of its
homothety coefficient 1/r.
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G = a/9

a

a / 3

Figure 3.5: Illustration of the self-similarity of the von Koch curve.

Let us stress the physical signification of the unit segment size G. It is related to the scale used

to observe a physical phenomenon. Depending on the observation scale G, a same object can

have different dimensions, integer or not. In his book [84], B. Mandelbrot takes the example of a

base-ball ball. If we observe it at the scale of a whole stadium, it is basically a zero-dimensional

object, i.e. a point. When we get closer to the size of the ball, it becomes a three-dimensional

object, since its more or less spherical shape appears. Now if we get even closer, we will at

some point reach the scale of the strings that compose the ball, and we will now consider it as

a one-dimensional object.

In this section, we consider self-similarity properties for a fixed unit segment length G.

This means that we do not change the observation scale. As we shall see, the fractality of the

percolation clusters of disordered films is observed for an observation scale of the order of a few

nanometers.

Surface and perimeter - The von Koch flake

The von Koch flake with linear extent a is composed of three von Koch curves of linear extent

a as shown in Fig. 3.6. The perimeter of the von Koch curve P (a,G) is defined from the mass

of the von Koch curve as

P (a,G) = 3GM(a,G). (3.10)

For a given length of the unit segment G, the perimeter of the von Koch flake satisfies the same

self-similarity relation Eq. (3.7) as the mass of the von Koch curve. Hence, it has a fractal shape

with dimension D = log 4/ log 3. Using Eq. (3.5), one can show that P (a,G) satisfy

P (a,G) ∝ aD. (3.11)
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G = a/9

a

Figure 3.6: von Koch flake of linear extent a drawn using unit segments of length G = a/9.

Let us denote by S(a,G) the area inside the von Koch flake of linear extent a drawn with unit

segments of length G. Summing a geometric series under the assumption G ≪ a yields3

S(a,G) ∝ a2. (3.12)

The surface of the von Koch flake is not fractal. Though, for a sufficiently small length G of the

unit segment, the perimeter fractality can be observed by comparing the surface and perimeter

of flakes for various linear extent

P ∝ SD/2. (3.13)

Apparition of fractal clusters near the percolation threshold

The fractality of the clusters appearing near the percolation threshold on disordered metallic

films is analog to that of the von Koch curve. To check this feature, we have generated 100 films

with filling fractions f = 20% and f = 50%. We have extracted the perimeter and surface of

all clusters, using the Hoshen-Kopelman algorithm. The surface was defined as the number of

pixels, and the surface as the number of empty neighbor pixels4. We show in Fig. 3.7 the location

of each cluster in a perimeter/surface diagram, in a log-log scale (each blue cross corresponds

to one cluster), for both filling fractions. One clearly sees on Fig. 3.7 that for the low-filling

fraction (f = 20%), the perimeters and surfaces of the clusters scale as

P ∝ S1/2, (3.14)

3According to the interpretation of G exposed before, this means that the observation scale is small enough to
observe the details of the structure.

4Note that in these images, the observation scale G is the lateral size of one pixel, i.e. 5 nm.
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Figure 3.7: Distribution in a perimeter/surface diagram of the clusters taken out from 100
numerically generated films. Left: filling fraction f = 20%. Right: filling fraction f = 50%.
The red solid line and green dotted line are guides for the eye, corresponding to P = 7 × S1/2

and P = 0.28× S1.88/2, respectively.

which is the expected behavior for a euclidian cluster (perimeter dimensionD = 1). For f = 50%,

a new collection of clusters appear, which perimeters and surfaces satisfy

P ∝ S1.88/2, (3.15)

corresponding to a fractal dimension D = 1.88. This value is consistent with experimental

observations [83, 66]. This result, already shown in Ref. [21], is a strong evidence that the

geometrical features of real films are well described by the numerical generation method.

The contour fractal dimension satisfies 1 ≤ D ≤ 2 because of the fundamentally two-

dimensional approach used for its characterization. Experimental studies of the surface/volume

relation taking into account the three-dimensional roughness of the films exist. A fractal dimen-

sion D = 2.26, satisfying 2 ≤ D ≤ 3, has been reported [85]. Although this approach is more

complete, it does not contradict the method used here. The very good results we obtain seem

to indicate that the most important physical phenomenon are comprised in the 2D geometrical

properties of the films.

3.2 Spatial distribution of the LDOS in the near field of disor-
dered films

3.2.1 Statistical distribution of the LDOS

Measurements of the LDOS statistical distribution on top of disordered metallic films were

performed at Institut Langevin by Valentina Krachmalnicoff and coworkers [3, 57]. The principle

of this experiment is to deposit a thin silica layer (a few tens of nanometers) on top of a

disordered film and to spin-coat fluorescent beads at random positions on the surface of this

layer (that we will call spacer). Addressing each bead with a confocal microscope and recording
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the arrival-time histogram as described in chapter 2, one can retrieve the statistical distribution

of the LDOS at a given distance from the film. Fig. 3.8(a) is taken from Ref [3] and shows

the experimental statistical distribution of the orientation-averaged decay rate5 measured on

two disordered films, respectively in the low-filling fraction and in the fractal regimes. For both

distributions, the spacer thickness was 40 nm, and the measurement was performed using 25 nm-

diameter beads. To get more insight on the experimental results, we have developed the following
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Figure 3.8: (a) Experimental spatial distribution of the orientation-averaged decay rate on top
of two real films with respective filling fractions f = 30% and f = 82%. The beads have a 25 nm
diameter, and an emission wavelength λfluo = 607nm. The spacer thickness is 40 nm; (b) Spatial
distribution of the normalized LDOS at 40 nm distance of two numerically generated films with
respective filling fractions f = 20% and f = 50%. The wavelength is λfluo = 780nm. The films
size is set to 375 nm. The volume is discretized into unit cells of size ∆ = 2.5 nm.

numerical method. We consider that the films generated following the procedure described in

section 3.1 are 5 nm thick. We solve the Maxwell equations in 3D using the volume integral

method described in Chap 2. The whole structure is discretized into cubic unit cells of lateral

size ∆6. Using this method, we are able to compute the LDOS at any point in space. For two

filling fractions corresponding to the regimes studied experimentally, we have generated 60 films.

We have computed the LDOS at 40 nm from the center of each film and gathered the results in

a histogram. Note that our purpose here is not to describe quantitavely the experiment but to

observe the same qualitative trends, which explains the different filling fractions and emission

wavelengths chosen in numerics. Fig. 3.8(b) shows the corresponding LDOS distributions.

The qualitative agreement between experiments and simulation is very good. Two major

differences are observed as one goes from the low-filling fraction regime to the fractal regime.

5The decay rate of an emitter, averaged over its dipole orientation, is proportional to the LDOS, see Chap. 2,
section 2.1.1.

6Note that the smaller the distance to the film, the faster the electric field spatial variations and the smaller
the unit cell size ∆ necessary to obtain a satisfying numerical convergence.
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• The mean value of the LDOS increases.

• The fluctuations of the LDOS are enhanced. In particular, very high values of the LDOS

(up to three times the average value) are observed.

The enhanced fluctuations of the LDOS in the fractal regime are connected to the apparition of

spatially localized modes, as will be discussed later. Let us comment on the difference between

the experimental and numeric parameters in Figure 3.8. First, the wavelength λfluo = 780nm in

the simulations was chosen because the fluctuations are known to be stronger in this regime [72,

20]. This is confirmed in our simulations (see Fig. 3.12). Then, the correspondence between the

appearance of fractal clusters on disordered films and the filling fraction is highly dependent

on the experimental conditions (substrate, temperature, ...). In the numerical model, we have

chosen the filling fractions f = 20% and f = 50%. We have checked in section 3.1 that they

correspond respectively to a regime where fractal clusters do not exist and to another where

they clearly appear, thus defining regimes that are similar to the regimes f = 30% and f = 82%

used experimentally. A detailed study of the dependence of the discussed optical properties on

the filling fraction would require a more sophisticated algorithm to simulate the growth of the

films, which is beyond the scope of the present work.

Finally, let us stress that for the sake of simplicity, the calculations of the LDOS are per-

formed with a point-like source dipole (we do not take into account the finite size of the bead).

Moreover, we consider that the system lies in vacuum. In Ref [57], we have performed calcula-

tions taking into account the size of the bead and considered a system embedded in glass instead

of vacuum. The trends of the calculations are not modified by these sophistications.

3.2.2 Distance dependence of the LDOS statistical distribution

Using the same experimental setup and numerical scheme, we have studied the distance depen-

dence of the LDOS statistical distribution in the fractal regime. Experimentally, a control of the

distance was achieved by varying the spacer thickness. In Fig. 3.9(a), we show measurements of

the orientation-averaged decay rate distribution measured for three different thicknesses of the

silica spacer. A reference measurement is presented for fluorescent beads deposited on a bare

glass substrate. The diameter of the beads used here is 25 nm. The distribution were obtained

from lifetime measurements on 30 beads. To get more insight on the experimental data, we

have used the volume integral method to compute the LDOS distribution as a function of the

distance to a numerically generated film. Figure 3.9(b) displays the spatial distribution of the

normalized LDOS (ρ0 is the LDOS in vacuum) computed at three distances corresponding to

that used in the experiment.

The experimental and numerical data exhibit the same trends. One clearly sees that both

the mean value and the width of the distribution are affected by the proximity of the disordered

gold film. The behavior of the averaged value can be qualitatively understood replacing the film
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Figure 3.9: Experimental distributions of the orientation-averaged decay rate (normalized by its
averaged value on a glass substrate) for different distances d between the center of the fluorescent
nanosources and the film (i.e. spacer thickness + 12.5 nm).

by an effective homogeneous film. The averaged LDOS close to this absorbing homogeneous film

is expected to be larger than that on the glass cover slide (the reference) due to an increase of the

non-radiative LDOS at short distance [86, 40]. This will be discussed in details in section 3.3.

The broadening of the decay rate distribution when the distance to the film decreases is

more interesting. Close to the film, as shown in section 3.2.1, high fluctuations of the LDOS are

induced by the disordered surface. An important feature in the data is the substantial change

in the shape and width of the statistical distribution with the distance to the film, in the range

d ≈ 30 − 90 nm. This is due to spatial filtering of optical modes laterally confined on scales

below the wavelength. Indeed, the field distribution in a plane at a distance d is exponentially

filtered in Fourier space by a factor exp(−Kd) compared to the distribution at d = 0nm, with

K the spatial frequency in the transverse direction (parallel to the film plane) [8]. We show

in Fig. 3.10 numerical maps of the LDOS corresponding to the three distances considered in

Fig. 3.9(b). In these maps, the spatial filtering of subwavelength details is striking. From

this simple observation, an order of magnitude of the lateral confinement ξ of the field can be

extracted. Since field variations giving rise to substantial fluctuations of the LDOS strongly

attenuate between d = 32.5 nm and d = 52.5 nm, the attenuation length can be estimated to

be 1/K ≈ 10 nm. One can deduce ξ ∼ 2π/K ≈ 60 nm as a typical size of hot spots at the

surface of the films. This is in agreement with orders of magnitude found by near-field optical

microscopy [19, 70, 87].

Note that ξ is an estimation of the typical scale of the electric field variations, but cannot be

linked to the spatial extent of the modes, since a mode can be composed of several hot spots. In

Chap 4, we introduce the Cross Density Of States (CDOS) to study quantitatively the spatial
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Figure 3.10: Maps of the normalized LDOS at three distance from the top of a 245 nm size film
with filling fraction f = 53%. Parameters are those of Fig. 3.9(b).

extent of the modes, and hence address the problem of coherence on these structures.

3.2.3 LDOS maps and film topography

One advantage of the numerical tool is to give access to LDOS maps, while obtaining them

experimentally is a difficult task. In Fig. 3.11, we show LDOS maps in the low filing fraction

and the fractal regime for a wavelength λfluo = 780nm and a distance 40 nm to the films. In
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Figure 3.11: LDOS maps computed at 40 nm of two disordered films, with respective filling
fractions f = 20% and f = 50%. The wavelength is λfluo = 780nm. The films size is set to
375 nm, and the discretization is set to ∆ = 2.5 nm.

both maps, we observe very subwavelength areas of high LDOS, but with very different physical

origin. At f = 20%, two significative “hot spots” are observed, very separated from each other,

where the maximum LDOS is twice its value in vacuum. At f = 50%, a higher number of “hot

spots” are observed, all of them being more intense (up to six times the vacuum LDOS) than in

the low filling fraction regime. To get more insight on the underlying phenomena, we show in
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Fig. 3.12 the topography of the films superimposed on several LDOS maps (gold is represented in

black). For each filling fraction, we present calculations for four different wavelengths. In the low
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Figure 3.12: Maps of the normalized LDOS ρ/ρ0 at d = 40nm of two disordered films with filling
fractions f = 20% and f = 50%. The discretization is set to ∆ = 2.5 nm. The topography of the
films are superimposed on the LDOS maps (black=gold). The maps are shown for four different
wavelengths.

filling fraction film, one can observe that the hot spots are always correlated to a single particle.

The hot spots are actually due to the plasmon resonances of the individual particles. Since they

have different geometries and sizes, one can observe that these resonances are switched on and

off when the wavelength is modified.

In the fractal regime, connecting the topography and the LDOS maps is much more involved.

It was observed in experiments that the hot spots in this regime can appear either in gaps or on

metal [20]. In Fig. 3.12, we observe that their positions and shapes cannot be trivially explained

from the topography, but seems to be the result of a complex collective interaction. In Chap. 4,

we propose a new approach to quantify the trade-off between localized and delocalized modes

in complex media, which allows us to describe quantitatively this regime, independently on the

underlying phenomenon.

3.3 Radiative and non-radiative LDOS

3.3.1 Definition

In Chap 2, we have introduced the radiative and non-radiative decay rates and explained their

calculation in the frame of the volume integral method. The total decay rate Γ of an emitter
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can be expanded into these two contributions ΓR and ΓNR and reads

Γ = ΓR + ΓNR. (3.16)

By analogy with the LDOS, one can define the radiative and the non-radiative LDOS as the

quantities that drive respectively the orientation-averaged radiative and non-radiative decay

rates.

ρR
ρ0

=
〈ΓR〉u
Γ0

ρNR

ρ0
=

〈ΓNR〉u
Γ0

,

(3.17)

where 〈.〉u denotes the average over dipole orientation u, ρ0 the LDOS in vacuum and Γ0 the

decay rate of an emitter in vacuum. ρR and ρNR are intrinsic quantities that characterize the

nanostructure. They quantify the trade-off between radiative and non-radiative decay channels

available for a fluorescent emitter depending on its position in the vicinity of a nanostructure.

3.3.2 Statistical distributions of the radiative and non-radiative LDOS

We have shown in section 3.2 that one feature of the disordered films in the fractal regime is the

apparition of hot-spots due to collective interactions in the disordered fractal structure. One

signature of these hot-spots is the existence of enhanced fluctuations of the LDOS, compared

to that observed on a low-filling fraction film. In order to use this property in future basic

experiments or applications, it is fundamental to determine whether high localized excitations

are radiative or non-radiative. Radiative modes can be used e.g. for Surface Enhanced Fluores-

cence [88]. Non-radiative modes can enhance the interaction between emitters, as discussed in

the conclusion of the present chapter.

In Fig. 3.13, we show the spatial distribution of the total, radiative and non-radiative LDOS

at 40 nm distance from disordered films of filling fractions f = 20% and f = 50%. Parameters are

those of Fig. 3.8(b). One can clearly see that at 40 nm from the films, the enhanced fluctuations

of the LDOS are mainly due to non-radiative channels. This means that the hot-spot structure

observed in Fig. 3.11 is mostly associated to non-radiative modes.

3.3.3 Distance dependence of the radiative and non-radiative LDOS distri-
butions

In this last section, we use numerical simulations to study quantitatively the distance depen-

dence of both the radiative and non-radiative LDOS distribution. We plot in Fig. 3.14 the

total, radiative and non-radiative LDOS distributions for three different distances to the films.

Parameters are those of Fig. 3.9(b). As expected, the increase of ρ at short distance is mainly

due to the increase of ρNR. Interestingly, at d = 92.5 nm, the non-radiative LDOS ρNR is small
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Figure 3.13: Spatial distribution of the total, radiative and non-radiative LDOS computed at
40 nm distance from 60 disordered films for each filling fraction f = 20% and f = 50%. The
discretization is set to ∆ = 2.5 nm.

0.9 10 4
ρNR/ρ0 ρR/ρ0

0

3000

0

2000

1 5
0

600
d = 32.5 nm

d = 52.5 nm

d = 92.5 nm

ρ/ρ0

O
c
c
u

re
n

c
e

s
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by ρ0, the LDOS in vacuum. Three different distances d are considered, as in Fig. 3.9(b).

compared to ρR, that is approximately equal to the vacuum LDOS ρ0. Beyond the average value,

one needs to be careful about the fluctuations of the LDOS. At d = 92.5 nm, even though the

LDOS is dominated by radiative modes, its fluctuations are still dominated by the non-radiative

LDOS fluctuations. To illustrate this result, we show in Fig. 3.15 the maps of ρ, ρNR and ρR

normalized by the vacuum LDOS ρ0. As a result of the high fluctuations of the non-radiative

LDOS – compared to those of the radiative LDOS – the contrast of the LDOS maps are very

similar to the one of the non-radiative LDOS map.

3.4 Conclusion

To sum up, we have presented exact numerical calculations of the spatial distribution of the

LDOS in the near field of disordered metallic films. The calculations are in very good agreement

with experimental data. In particular, we have recovered the well-known existence of localized
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enhancements of the near-field intensity and the LDOS on subwavelength areas (hot-spots) in the

fractal regime. Based on the distance dependence of the LDOS distributions, we have estimated

the extent of a hot-spot at the surface of a fractal film to roughly 60 nm, in good agreement with

previous experimental observations. Comparing numerical LDOS maps to the film topography,

we have shown that LDOS maps in the low-filling fraction and the fractal regime are explained

by fundamentally different phenomena. Finally, we have studied numerically the radiative and

non-radiative LDOS. We have shown that at a distance 40 nm above the film, the LDOS is chiefly

driven by non-radiative modes. The fluctuations of the LDOS are driven by the fluctuations of

the non-radiative LDOS for distances up to 90 nm. As a consequence, below these distances,

the LDOS maps and the non-radiative LDOS maps are very similar. Though, above d = 90nm,

the average value of the non-radiative LDOS is very low compared to the radiative LDOS. This

means that for such distances, an emitter will hardly couple to non-radiative modes.

Our work gives a better characterization of the near-field optical properties of disordered

metallic films, and paves the way to future potential applications. In particular, the non-

radiative nature of the hot-spot structure in the fractal regime is very promising to enhance the

interaction between emitters. Two examples of applications are exposed below.

Non-radiative modes such as ideal plasmons can be used to enhance Förster Resonant Energy

Transfer (FRET) between two emitters (a donor and an acceptor). In this particular situation,

emission to the far field is considered as losses. In Ref. [89], a donor and an acceptor molecules

were located on two opposite sides of a 120 nm thick metallic layer. Energy transfer was possible

because of the coupling between the surface plasmon polaritons of the two interfaces of the layer.

In Ref. [90], the surface plasmon of a gold nanoparticle was used to enhance the photolumines-

cence intensity of an acceptor quantum dot. A FRET experiment in the near field of disordered

metallic films would be interesting both to enhance the interaction range between emitters, but

also to probe the spatial extent of excitations on these structures.

Recently, cooperative emission between emitters coupled by plasmon modes of an individual

gold nanoparticle was predicted theoretically [91]. This effect is the analog – using non-radiative
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coupling – of the Dicke superradiance, where an ensemble of dipoles coupled radiatively emit

in a non-individual way. The observation of coherent emission by a disordered set of molecular

emitters (J-aggregated dyes) strongly coupled to a surface plasmon was experimentally reported

in Ref. [92]. Here again, disordered metallic films are potentially good substrates for future basic

experiments in nanophotonics.
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Spatial coherence in complex
systems: the Cross Density Of States
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The ability of nanostructures to concentrate and transport light at subwavelength scales

make them promising candidates for the design of efficient sources and absorbers of visible

and near-infrared radiation, or for optical storage and information processing with ultrahigh

spatial density. Metallic nanostructures benefit from the excitation of surface plasmons that

permit concentration at ultra-small length scales and ultra-fast time scales [93]. Disordered

media also offer the possibility to build up spatially localized modes (e.g. by the process of

Anderson localization) [26]. Optical modes with subwavelength structure are the substrate for

many interesting phenomena.

• Localized optical modes can enhance light-matter interaction. In the weak coupling regime,

enhanced Purcell factors have been observed in disordered 1D photonic crystals [4], ZnO

powders [94, 2] or in the nanoscale gap of a gold particle dimer [56]. Strong coupling

can be reached between plasmons modes and single emitters [95] or disordered set of

molecules [92]. Experimental observation of strong coupling between scatterers and An-

67
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derson localized modes has been reported recently in 1D photonic crystals [5]. This phe-

nomenon is discussed theoretically in Chaps. 1 and 7.

• The coupling between emitters can be enhanced, leading to superradiance or non-radiative

energy transfer. Super and sub-radiant states have been observed coupling two emitters

by a graphene surface plasmon mode [96]. Förster Resonant Energy Transfer (FRET)

between emitters can be achieved beyond the usual Förster radius using surface plasmon

modes [90].

• Subwavelength mode structures can allow light focusing beyond the diffraction limit. Mi-

crowave antennas separated by λ/30 (λ being the wavelength) have been addressed indi-

vidually in the near field of a disordered subwavelength environment using a time-reversal

cavity [97]. Using plasmonic nanosystems to realize an equivalent experiment in the op-

tical regime has been proposed theoretically [98]. A nanoscale mode structure can also

be provided by periodically patterned substrates, that have been shown in simulations to

allow focalization on spots as small as one-sixth of a wavelength [99].

In all these phenomena, the spatial extent of eigenmodes is of central importance, since

it characterizes the ability of the system to support concentrated or delocalized excitations.

It drives, e.g., the coherence length of surface plasmons, the range of non-radiative energy

transfer, or the lower limit for spatial focusing by time reversal or phase conjugation. On

disordered metallic films, as discussed in Chap. 3, quantifying the trade-off between localzed

and delocalized excitations is a central issue.

In this chapter, we introduce the Cross Density Of States (CDOS) as a quantity that char-

acterizes the overall spatial extent of eigenmodes on any complex photonic or plasmonic system.

We use this quantity to address the spatial localization of light on disordered metallic films.

We demonstrate unambiguously the spatial squeezing of eigenmodes in the fractal regime. This

illustrates the relevance of the CDOS to characterize the intrinsic spatial coherence in photonic

and plasmonic systems.

This work was published in Physical Review Letters [100].

4.1 The Cross Density Of States (CDOS)

Here, we introduce the Cross Density Of States (CDOS) as the imaginary part of the Green

function of the propagation equation of electromagnetic waves. This quantity has two spatial

dependences, and characterizes the intrinsic spatial coherence of a photonic or plasmonic system.

We propose an interpretation based on an eigenmode expansion, and show that it quantifies

the connection between two points r and r′ provided by the set of eigenmodes.
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4.1.1 Definition

In order to characterize the intrinsic spatial coherence of complex photonic or plasmonic systems

at a given frequency ω, we introduce a two-point quantity ρ(r, r′, ω) that we will refer to as

CDOS, defined as

ρ(r, r′, ω) =
2ω

πc2
Im
[
TrG(r, r′, ω)

]
. (4.1)

In this expression, c is the speed of light in vacuum, G(r, r′, ω) is the electric dyadic Green

function, and Tr denotes the trace of a tensor. This definition has been chosen so that one

recovers the LDOS when r = r′.

4.1.2 CDOS and spatial coherence in systems at thermal equilibrium

The choice of this quantity as a measure of the intrinsic spatial coherence results from the

observation that the imaginary part of the Green function at two different points appears in a

number of situations where the spatial coherence of random fields (produced by random sources

and/or a disordered medium) needs to be characterized. In a system at thermal equilibrium,

the spatial correlation tensor of the electric field at a given frequency Ekl(r, r′, ω), defined as

〈Ek(r, ω)E
∗
l (r

′, ω′)〉 = 2πδ(ω − ω′)Ekl(r, r′, ω), (4.2)

has been known for long to be proportional to the imaginary part of the dyadic Green function,

a consequence of the fluctuation-dissipation theorem [61]

Ekl(r, r′, ω) ∝ ImGkl(r, r
′, ω). (4.3)

The same relation connects the spatial correlation function of acoustic or seismic wavefields

under white-noise excitation [101, 102]. More generally, any field generated by a statistically

homogeneous and isotropic distribution of sources produces a spatial correlation function char-

acterized by the imaginary part of the Green function [103]. Fully developed speckle patterns

belong to the same class of systems [26]. The imaginary part of the Green function also describes

the process of focusing by time reversal. Indeed, under perfect time reversal conditions (ideally

using a time-reversal cavity enclosing the medium), the field distribution around the focal spot

at a given frequency is given by the imaginary part of the Green function [104, 23]. The spatial

correlation under uncorrelated excitation (thermal sources, white noise) or the ultimate spot size

that can be created in a medium under perfect time reversal eventually depend on the spatial

extent of the underlying eigenmodes at the observation frequency. As we shall see, this spatial

extent can be rigorously defined using the CDOS.

4.1.3 Interpretation based on a mode expansion

The physical picture behind the CDOS is a counting of optical eigenmodes that connect two

different points at a given frequency. In a network picture, the LDOS measures the number
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of channels crossing at a given point, whereas the CDOS measures the number of channels

connecting two points. In order to give a more rigorous basis to this picture, we first consider

the canonical situation of a non-absorbing system placed in a closed cavity. In this situation,

we derive the expansion of the Cross Density Of States (CDOS) on the well-defined set of

normal modes. Then, we generalize this result to the case of a system with low losses, using a

phenomenological approach.

Non-absorbing system embedded in a close cavity

Let us first consider the canonical situation of a non-absorbing system (e.g., a nanostructured

material) placed in a closed cavity. In this case an orthonormal discrete basis of eigenmodes can

be defined, with eigenfrequencies ωn and eigenvectors en(r). The expansion of the dyadic Green

function reads [105]

G(r, r′, ω) =
∑

n

c2
e∗n(r

′)en(r)
ω2
n − ω2

(4.4)

where the superscript * stands for complex conjugate. This expression contains a singularity

(see Appendix B for details). It can be rewritten in the more explicit form

G(r, r′, ω) =
∑

n

c2
{

PV

[
1

ω2
n − ω2

]

+
iπ

2ωn
δ(ω − ωn)

}

e∗n(r
′)en(r), (4.5)

where PV stands for principal value. Introducing Eq. (4.5) into Eq. (4.1) yields

ρ(r, r′, ω) =
∑

n

δ(ω−ωn)Re
[
e∗n(r

′) · en(r)
]
+
2ω

π

∑

n

PV

[
1

ω2
n − ω2

]

Im
[
e∗n(r

′) · en(r, ω)
]
(4.6)

One can simplify Eq. (4.6) using the reciprocity theorem

G(r, r′, ω) = tG(r′, r, ω), (4.7)

which, using Eq. (4.5), transforms into

∑

n

c2
{

PV

[
1

ω2
n − ω2

]

+
iπ

2ωn
δ(ω − ωn)

}
[
e∗n(r

′)en(r)− en(r
′)e∗n(r)

]
= 0. (4.8)

Since e∗n(r
′)en(r)− en(r

′)e∗n(r) = 2i Im [e∗n(r
′)en(r)], the imaginary part of Eq. (4.8) leads to

∑

n

PV

[
1

ω2
n − ω2

]

Im
[
e∗n(r

′)en(r)
]
= 0. (4.9)

Taking the trace of Eq. (4.9) yields

∑

n

PV

[
1

ω2
n − ω2

]

Im
[
e∗n(r

′) · en(r)
]
= 0, (4.10)
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showing that the last term in Eq. (4.6) actually vanishes. Finally, the CDOS expansion Eq. (4.6)

simplifies into

ρ(r, r′, ω) = Re
∑

n

[
e∗n(r

′) · en(r)
]
δ(ω − ωn) (4.11)

This expression explicitly shows that the CDOS sums up all eigenmodes connecting r to r′ at

frequency ω, weighted by their strength at both points r and r′.

Phenomenological approach for a weakly lossy system

In the case of an open and/or absorbing system, the rigorous introduction of a basis of eigen-

modes is more involved. Approaches have been developed in the quasi-static limit [106], or based

on statistical properties of the spectral expansion of non-Hermitian matrices [107]. A proper

treatment of the normalization of quasi-normal modes in the presence of dissipation has been

proposed recently [108]. Here, we restrict ourselves to a simple but very common phenomeno-

logical approach [12]. Assuming weak leakage, quasi-modes with linewidth γn replace the delta

functions in Eq. (4.4), so that the dyadic Green function reads

G(r, r′, ω) =
∑

n

c2
e∗n(r

′)en(r)
ω2
n − ω2 − iγnω

. (4.12)

Using reciprocity exactly as in the previous case, one can derive the following expansion of the

CDOS

ρ(r, r′, ω) = Re
∑

n

γn
2π

e∗n(r
′) · en(r)

(ω − ωn)2 + (γn/2)2
. (4.13)

Eq. (4.13) shows that our interpretation of the CDOS remains meaningful in the more realistic

case of a system with weak losses, in which the spectral delta function has been replaced by a

Lorentzian lineshape. Let us stress that by using the mathematical identity

lim
γn→0

1

π

γn/2

(ω − ωn)2 + (γn/2)2
= δ(ω − ωn), (4.14)

Eq. (4.13) leads to Eq. (4.11), i.e. to the case of non-dissipative systems. This generalizes

the physical picture to lossy systems. Nevertheless, it is important to note that all calculations

presented in this chapter are performed using Eq. (4.1), in which the correct counting of modes

is implicit, without referring to a basis of eigenmodes.

Spatial coherence and polarization

The trace operator in Eq. (4.1) was voluntarily added to restrict the discussion to spatial coher-

ence and wash out the polarization degrees of freedom. Though, a CDOS dyadic can be defined

as follows to take into account all cross-polarized components.

ρ(r, r′, ω) =
2ω

πc2
ImG(r, r′, ω). (4.15)



72 CHAPTER 4. THE CROSS DENSITY OF STATES

This defines a tensor that characterizes the intrinsic spatial coherence and polarization state. In

the canonical situation where a discrete set of modes can be defined, the mode expansion of the

CDOS given in Eq. (4.11) can be generalized to the CDOS dyadic, and reads

ρij(r, r
′, ω) = Re

∑

n

[
e∗n(r

′) · ui

]
[en(r) · uj] δ(ω − ωn), (4.16)

where ui and uj are two unit vectors defining two polarization directions i and j. Eq. (4.16)

shows that the co-polarized component along direction ui is described by the coefficient ρii of the

CDOS dyadic, while the cross-polarized component between directions ui and uj is described

by ρij . This definition is in agreement with the relation between the CDOS and the spatial

correlation tensor mentioned in Eq. (4.3). The CDOS used in this chapter is the sum of the

co-polarized components of the CDOS dyadic

ρ(r, r′, ω) =
∑

i

ρii(r, r
′, ω). (4.17)

4.2 Overall squeezing of the optical modes on disordered metal-
lic films

In the near field of disordered metallic films, as discussed in Chap. 3, high values of the electric

field located on very subwavelength areas, called hot-spots, appear in the fractal regime. The

physical origin of the apparition of these hot-spots was the subject of a controversy. Using a scal-

ing theory in the quasi-static limit, a mechanism based on Anderson localization has been put

forward [109]. Anderson localization on percolating systems for electronic (quantum) transport

leads to a clear transition between the localized and delocalized regimes [110, 111]. Moreover,

localized electronic states are known to be exponentially decaying in space (on average). For

light scattering on percolating metallic systems, a theoretical analysis has proved the existence

of localized modes characterized by algebraic rather than exponential spatial confinement [107].

Numerical simulations on planar random composites have even shown that localized and delo-

calized plasmonic eigenmodes could coexist [76]. This has been confirmed by computations and

measurements of intensity fluctuations in the near field [112, 113], that have also indicated that

localized modes should dominate around the percolation threshold.

For nanophotonics, a major issue is the description of the overall spatial extent of the full set

of eigenmodes whatever the underlying mechanism. Spatial coherence and the concept of CDOS

appear as a natural tool to address this issue. Here, we present numerical maps of the CDOS

computed in the near field of disordered metallic films. We demonstrate unambiguously an

overall squeezing of the optical modes near the percolation threshold of the films. To be more

quantitative, we introduce the intrinsic coherence length as a measure of this overall spatial

extent, and study its dependence on the metal surface filling fraction of the films.
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4.2.1 Numerical maps of the CDOS on disordered metallic films

The CDOS can be calculated numerically using exact three-dimensional simulations. The pro-

cedure is fully described in Chaps. 2 and 3. Solving the Lippmann-Schwinger equation with the

volume integral method allows us to compute the Green function of the system and to deduce

the CDOS. We show in Fig. 4.1 the LDOS maps (center column) and CDOS maps (right col-

umn) computed in a plane at a distance z = 40nm above two different films (shown in the left

column) corresponding to two different regimes. The films were generated numerically using the

procedure described in Chap. 3 (section 3.1). For f = 20% (left column), the film is composed

of isolated nanoparticles whereas for f = 50% (right column) the film is near the percolation

threshold, a regime in which fractal clusters dominate, as discussed in Chap. 3 (section 3.1.3).

Before studying spatial coherence and the extent of eigenmodes based on the CDOS, let us
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Figure 4.1: (Left column) Geometry of the disordered films generated numerically (with gold in
black color). (Center column) Maps of the normalized LDOS ρ(r, ω)/ρ0 calculated in a plane at
a distance z = 40 nm above the film surface. Red lines corresponding to LDOS hot-spots have
been drawn both on the topography and the LDOS maps to guide the eye; (Right column) Maps
of the normalized CDOS ρ(r, r′, ω)/ρ0(ω) with r′ fixed at the center of the sample. λ = 780 nm.

summarize here the main features of the LDOS maps (already discussed in Chap. 3). For low

surface fraction (top row), LDOS peaks are observed on top of isolated nanoparticles that are

resonant at the observation wavelength. A correspondence between LDOS peaks and the posi-

tion of one or several nanoparticles is easily made. For a different observation wavelength (see

Fig. 3.12 in Chap. 3), particles can switch on or off resonance and the position of the LDOS

peaks change, but remain attached to individual particles. The sample behaves as a collection

of individual nanoparticles with well identified surface plasmon resonances. In the multiscale



74 CHAPTER 4. THE CROSS DENSITY OF STATES

resonant regime (bottom row), the LDOS structure is more complex. There is no obvious cor-

respondence between the film topography (composed of fractal clusters in which the concept of

individual nanoparticles becomes meaningless) and the localized field enhancements responsible

for LDOS fluctuations.

The maps of the CDOS ρ(r, r′, ω) are displayed versus r for a fixed position r′ (chosen at the

center of the sample). Their meaning can be understood as follows: They display the ability of

a point r at a given distance from the center point r′ to be connected to this center point by

the underlying structure of the optical eigenmodes. For example, a large CDOS (larger than the

vacuum CDOS) would allow two quantum emitters at r and r′ to couple efficiently. It would also

ensure coherent (correlated) fluctuations of the light fields at r and r′ under thermal excitation.

The CDOS also allows one to discriminate between hot spots that belong to the same eigenmode

(or that are connected by at least one eigenmode), or that are completely independent. Last but

not least, since the CDOS implicitly sums up the spatial extent of the full set of eigenmodes, it

appears as a natural tool to describe the overall spatial localization in the multiscale resonant

regime. It is striking to see that the extent of the CDOS in the multiscale resonant regime is

reduced to a smaller range compared to the case of a film composed of isolated nanoparticles.

The reduction of the extent of the CDOS clearly demonstrates an overall spatial squeezing of the

eigenmodes close to the percolation threshold. Let us stress that the approach based on the CDOS

gives a non-ambiguous description of this overall spatial squeezing, whatever the underlying

mechanism. It is based on a concept implicitly related to field-field spatial correlations as in

classical spatial coherence theory, that seems to carry sufficient information to describe one of

the most striking features in the optics of disordered metallic films.

4.2.2 Intrinsic coherence length

In order to quantify the overall reduction of the spatial extent of eigenmodes in the multiscale

resonant regime, we introduce an intrinsic coherence length ℓcoh, defined from the width of the

CDOS. More precisely, fixing r′ at the center of the sample, we use polar coordinates in the

plane z = 40nm parallel to the sample mean surface to write

ρ(r, r′, ω) = ρ(R, θ, ω), (4.18)

with R = |r− r′] and define an angularly-averaged CDOS

ρ̄(R,ω) =
1

2π

∫ 2π

0
ρ(R, θ, ω)dθ. (4.19)

The intrinsic coherence length ℓcoh is defined as the half width at half maximum of ρ̄(R,ω)

considered as a function of R. It is important to note that ℓcoh is not necessarily the size of the

hot spots observed on the surface, since a given eigenmode can be composed of several hot spots.

Two different hot spots separated by a distance smaller than ℓcoh can be intrinsically connected
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(meaning that they are connected by at least one eigenmode). The ability to clarify this dis-

tinction between eigenmodes and hot spots is an essential feature of the CDOS. The averaged

value of 〈ℓcoh〉 (solid line) and its variance Var(ℓcoh) (error bars) are shown in Fig. 4.2 versus

the film surface fraction for two wavelengths λ = 650 nm and λ = 780 nm. Both quantities are
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Figure 4.2: Averaged value (solid line) and variance (error bars) of the intrinsic coherence length
ℓcoh calculated at a distance z = 40 nm above a disordered film, versus the gold surface fraction
f . Inset: Typical film geometries (black color corresponds to gold). Lateral sizes of the films
range from 500nm for f = 20% to 205 nm for f = 100%.

calculated using a statistical ensemble of realizations of disordered films generated numerically

(the error bars indicate the real variance of ℓcoh, and not computations errors due to lack of

numerical convergence, the latter being ensured by a sufficiently large set of realizations). For

both wavelengths, the average value 〈ℓcoh〉 is significantly smaller near the percolation threshold

than for lower filling fractions. This unambiguously demonstrates the overall spatial squeezing

of eigenmodes in the regime dominated by fractal clusters, with a stronger squeezing at λ = 780

nm where more pronounced resonances occur [20]. The curve for λ = 780 nm even shows a

minimum near the percolation threshold. Our approach provides a theoretical description of the

experiment of Krachmalnicoff and coworkers [3] discussed in Chap. 3, although in this study, the

inverse participation ratio was used to connect qualitatively the spatial extent of eigenmodes to

the variance of the LDOS fluctuations. Therefore only a qualitative comparison with the curve

in Fig. 4.2 is possible (the inverse participation ratio and the intrinsic coherence length cannot

be compared directly).

The behavior of Var(ℓcoh) is also instructive. Strong fluctuations are observed in the regime
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of isolated nanoparticles. In this regime, optical modes attached to a single particle and de-

localized modes are observed. This difference with the known behavior in quantum electronic

transport [110, 111] is due to long-range interactions. The strong fluctuations reflect the fluctu-

ations in the interparticle distance. Conversely, in the multiscale resonant regime, the reduction

of the fluctuations reinforces the assumption of a mechanism based on collective interactions

that involve the sample as a whole.

4.2.3 Finite-size effects

An important limitation of our simulations is the limited size of the numerical films, due to

computation time considerations. On real films, modes with spatial extent larger than the size

of the numerical films could exist, that are not taken into account in the simulations. The

existence of such modes would change the exact shape of Fig. 4.2. In Fig. 4.2, the size of the

films decreased from 500nm for f = 20% to 205 nm for f = 100%. To check that the trends we

observe are physically sound, we have checked their robustness when the film size was reduced

to 180 nm for all filling fractions. Comparison, for λ = 780nm between the curve in Fig. 4.2

and the same curve computed for a uniform lateral size of the films equal to 180 nm is shown

in Fig. 4.3. The trends observed in Fig. 4.2 for filling fractions near the percolation threshold
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Figure 4.3: (Red full line) Intrinsic coherence length computed for λ = 780nm (curve shown in
Fig. 4.2); (Blue dashed line) Intrinsic coherence length computed for the same parameters with
films of reduced lateral size 180 nm.

are robust on smaller films, showing that the results are physically sound. The discrepancy for

low filling fractions is a finite-size effect, since the intrinsic coherence length calculated on these

systems cannot be larger than half the size of the system (r′ is fixed at the center of the film).

This observation is actually compatible with the CDOS picture of spatial coherence. For low



4.3. CONCLUSION 77

filling fractions, the CDOS is broad and the center point ”feels” the borders of the system. For

intermediate filling fractions, the CDOS is squeezed, and the center point is no longer influenced

by the topography further than ℓcoh. It is consistent to observe that for very high filling fractions,

the intrinsic coherence length increases again, and the discrepancy between the two calculations

increases as well.

4.3 Conclusion

In summary, we have introduced the CDOS that characterizes the intrinsic spatial coherence

of a photonic or plasmonic system, independently on the illumination conditions. Using this

concept, we have demonstrated unambiguously the spatial squeezing of plasmonic eigenmodes

on disordered metallic films close to the percolation threshold. This clarifies a basic issue in

plasmonics concerning the description of the optical properties of these films, that have been

discussed in Chap. 3. This also illustrates the relevance of the CDOS in the study of spatial

coherence in photonics and plasmonics systems, and more generally in wave physics.
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Chapter 5

Reflection-transmission intensity
correlation in speckle patterns
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When a slab of strongly scattering medium is illuminated by a monochromatic plane wave

(e.g. a laser), two speckle patterns are generated: one in transmission and one in reflection

(see Fig. 5.1). In these intensity patterns, one can identify bright spots with comparable sizes.

These “speckle grains” are the signature of a short range spatial correlation, known as the

C1 correlation [114, 29]. This short range correlation vanishes for large distances, and has an

exponentially small contribution to the reflection-transmission correlation in the case of a slab

in the multiple scattering regime. However, a long range correlation survives at large distance,

and has been denoted by C2 [29]. Although the C2 correlation has been computed for two points

either in the reflected or in the transmitted speckle [115], little attention has been paid to the

reflection-transmission correlation1.

1Note that another long-range contribution to the spatial intensity correlation is denoted by C3 and is the

81
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laser
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Figure 5.1: Sketch of the system.

In this chapter, we compute explicitly this correlation for a slab in the mesoscopic regime.

In a first part, we make a brief review of the leading terms of the speckle intensity correlation

function within the ladder approximation. We do not enter the details of the derivations, since

all the results we present are detailed in textbooks [26, 27, 117]. In the second part, we compute

the long range correlation C2 in the reflection-transmission geometry. We consider a slab in the

mesoscopic regime, and make the diffusion approximation to obtain analytical solutions of the

transport problem. We obtain an analytical expression of the leading term of the reflection-

transmission intensity correlation. Our prediction should pave the way towards an experimental

observation, and should inspire future applications making use of this statistical connection

between reflected and transmitted speckle patterns.

5.1 Intensity correlations in the mesoscopic regime

5.1.1 The mesoscopic regime

Let us consider a non-absorbing disordered medium described by a fluctuating dielectric con-

stant2

ǫ(r) = 1 + δǫ(r), (5.1)

where 〈.〉 denotes the average over disorder realizations, and 〈δǫ(r)〉 = 0. We assume that the

fluctuating part of the dielectric constant δǫ satisfies white-noise statistics, i.e.

〈δǫ(r1)δǫ(r2)〉 = Uδ(r1 − r2), (5.2)

cause of universal conductance fluctuations [29, 116]. This contribution is known as a second-order term in the
perturbation theory we develop here, and is therefore not considered in this chapter.

2A more general approach taking into account a non-unity background dielectric constant is used e.g. in
Ref. [117], but is not considered here for the sake of simplicity.
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where U is a constant that can be connected to the scattering mean free path ℓ of the medium

via [27]

U =
4π

k4ℓ
, (5.3)

with k = 2π/λ. Equation (5.3) is valid only if the wavelength λ inside the medium satisfies

λ ≪ ℓ, (5.4)

with ℓ the scattering mean free path. We make the additional assumption that the medium is

in the multiple scattering regime, i.e. that

ℓ ≪ d, (5.5)

where d is the typical size of the system (the slab thickness in our case). The regime where

Eqs. (5.3) and (5.5) are valid is often referred to as the mesoscopic regime.

5.1.2 Dyson equation for the average field

A complete description of light propagation requires the resolution of the vector wave equation.

However, in a disordered medium, the scalar model describes accurately wave propagation upon

large distances (compared to the scattering mean free path) [118, 119]. The scalar model is not

sufficient to describe polarization dependent measurements, and fails when near-field interactions

are not negligible (see Chap. 6 for an example). In this study, we limit ourself to the scalar wave

equation satisfied by the scalar electric field E(r, ω)

∇2E(r, ω) + k2ǫ(r)E(r, ω) = 0. (5.6)

In any statistically homogeneous and isotropic disordered medium, the average field 〈E(r, ω)〉
satisfies a wave equation in an homogeneous and isotropic effective medium described by an

effective dielectric constant ǫeff

∇2〈E(r, ω)〉+ k2ǫeff〈E(r, ω)〉 = 0. (5.7)

The effective dielectric function ǫeff is a local quantity (independent on the wavevector) when only

field variations at a scale larger than the correlation length of the disorder are considered. This

result is a consequence of the Dyson equation [27, 26]. The calculation of the effective dielectric

constant is deeply involved. In the mesoscopic regime, the perturbation theory described in

Ref. [27] shows that it can be estimated to the first order in (kℓ)−1 by

ǫeff = 1 +
i

kℓ
. (5.8)

Let us introduce 〈G(r, r′, ω)〉 the Green function of Eq. (5.7), solution of

∇2〈G(r, r′, ω)〉 + k2ǫeff〈G(r, r′, ω)〉 = δ(r− r′), (5.9)
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that describes the propagation of the average field inside the medium. In the case of an infinite

medium, imposing an outgoing wave condition, the average Green function takes the form

〈G(r, r′, ω)〉 = exp (ik|r− r′|)
4π|r− r′| exp

(

−|r− r′|
2ℓ

)

. (5.10)

5.1.3 Bethe-Salpether equation for the average intensity

The intensity of the field is defined as3

I(r, ω) = |〈E(r, ω)〉 + δE(r, ω)|2 . (5.11)

Therefore, since by definition 〈δE(r, ω)〉 = 0, one can expand the average intensity into

〈I(r, ω)〉 = |〈E(r, ω)〉|2
︸ ︷︷ ︸

Ib(r,ω)

+ 〈|δE(r, ω)|2〉
︸ ︷︷ ︸

Id(r,ω)

. (5.12)

The first term defines the ballistic intensity, that corresponds to the intensity of the average field.

It is denoted by Ib(r, ω). The ballistic beam corresponds to light that has not been scattered,

and is attenuated by scattering as it propagates inside the medium. The second term defines

the diffuse intensity and is denoted by Id(r, ω).

Bethe-Salpether equation

The average intensity obeys the Bethe-Salpether equation [26, 27]

〈I(r, ω)〉 = |〈E(r, ω)〉|2 +
∫

〈G(r, r1, ω)〉〈G∗(r, r2, ω)〉

× Γ(r1, r2, r3, r4)〈E(r3, ω)E∗(r4, ω)〉dr1 dr2 dr3 dr4,
(5.13)

where, Γ(r1, r2, r3, r4) is the irreducible vertex, that takes into account all multiple scattering

events inside the medium. As the effective dielectric constant, the existence of the irreducible

vertex is mathematically proven, but its calculation is deeply involved. To the lowest order of

(kℓ)−1 in the perturbation theory, and for the white-noise disorder considered here, it reads [27]

Γ(r1, r2, r3, r4) =
4π

ℓ
δ(r1 − r2)δ(r3 − r4)δ(r1 − r3). (5.14)

This approximation of the vertex is known as the ladder approximation, and is commented later

in this chapter. Using Eq. (5.14), Eq. (5.13) transforms into

〈I(r, ω)〉 = |〈E(r, ω)〉|2 + 4π

ℓ

∫

|〈G(r, r1, ω)〉|2 〈I(r1, ω)〉dr1. (5.15)

The expression of the diffuse intensity can be deduced directly from Eqs (5.12) and (5.15). It

reads

Id(r, ω) =
4π

ℓ

∫

|〈G(r, r1, ω)〉|2 〈I(r1, ω)〉dr1. (5.16)

3We consider a dimensionless intensity with no restriction, since the correlation functions we consider are
normalized.
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Ladder propagator and diffuse intensity

Let us introduce the ladder propagator L(r2, r1), solution of

L(r2, r1) =
4π

ℓ
δ(r2 − r1) +

4π

ℓ

∫

dr3|〈G(r2, r3)〉|2L(r3, r1). (5.17)

Using the ladder propagator L, one can extract from Eq. (5.15) the following expression of the

diffuse intensity

Id(r, ω) =

∫

dr1dr2|〈G(r, r2, ω)〉|2 L(r2, r1)|〈E(r1, ω)〉|2. (5.18)

To give an intuitive picture of the ladder approximation, let us expand Eq. (5.18) using Eq. (5.17).

Id(r, ω) =

∫

dr1|〈G(r, r1, ω)〉|2
(
4π

ℓ

)

|〈E(r1, ω)〉|2

+

∫

dr1dr2|〈G(r, r2, ω)〉|2
(
4π

ℓ

)

|〈G(r2, r1, ω)〉|2
(
4π

ℓ

)

|〈E(r1, ω)〉|2 + . . .

(5.19)

We have seen in the general introduction of this thesis that wave propagation in scattering

media could be described as a random walk, where collisions are scattering events by pointlike

heterogeneities (white-noise model). Equation (5.19) gives a rigorous basis to this picture.

In this equation, each scattering event is represented by a factor (4π/ℓ). The propagation

between two scattering events is described by the square modulus of the average Green function

|〈G(r2, r1, ω)〉|2. Finally, each scattering sequence starts with the ballistic intensity |〈E(r1, ω)〉|2
at the position of the first scattering event. This representation is sketched in Fig. 5.2. Grey

points correspond to scattering events, full lines represent the average Green function, and

dashed line its complex conjugate. In the ladder approximation, only the contributions where

r1

r2|〈E(r1,ω)〉|
2

Id(r,ω)

ballistic intensity on

 the first scattering event

propagation between 

the last scatterering event 

and the observation point

r3

|〈G(r, r3,ω)〉|
2

(

4π

ℓ

)

scattering event

Figure 5.2: Illustration the ladder approximation for the diffuse intensity.

the electric field and its complex conjugate follow one same scattering sequence are taken into

account. This approximation is valid to the lowest order in (kℓ)−1, i.e. when ℓ ≫ λ. This

can be understood by considering the contribution to the diffusive intensity of the product

〈E1(r, ω)E
∗
2(r, ω)〉 where E1 and E∗

2 are obtained by two scattering paths that differ by one
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E1

E
∗

2

≈ ℓ

Figure 5.3: Contribution to the diffuse intensity not included in the ladder approximation.

scattering event only (see Fig. 5.3). In the limit where ℓ ≫ λ, the phase difference between

these two scattering paths can take very large values. Therefore, the average over disorder

cancels out the contribution of 〈E1(r, ω)E
∗
2(r, ω)〉 to the diffuse intensity.

5.1.4 Long range nature of the reflection-transmission intensity correlation

Let r and r′ be two observation points. The normalized spatial intensity correlations function

is defined as

C(r, r′) =
〈I(r, ω)I(r′, ω)〉
〈I(r, ω)〉〈I(r′, ω)〉 − 1. (5.20)

Following the picture sketched in Fig. 5.2, the intensity correlation function involves four scat-

tering paths (two for each observation point). Here, we present (without derivation) the leading

terms of C(r, r′) for short and long distances between r and r′. The expressions presented here

can be found in textbooks [26, 27]. Discussing the spatial range of the respective contributions,

we show that reflection-transmission correlation does not exhibit any short range contribution.

Leading term of the short range correlation

The main contribution to the intensity correlation is called C1, according to the classification

introduced in Ref. [29], and was first computed in Ref. [114]. In its integral form, it is given by

〈I(r)I(r′)〉1 =

∫

dr1 dr2 dr3 dr4 |〈E(r1)〉|2|〈E(r3)〉|2L(r2, r1)L(r4, r3)

× 〈G(r2, r)〉〈G∗(r2, r
′)〉〈G(r4, r)〉〈G∗(r4, r

′)〉.
(5.21)

It is convenient to use diagrams to visualize the meaning of Eq. (5.21). The analogy between

the integral and diagrammatic representations is described in Table 5.1. The diagram associated

to the C1 correlation is displayed in Fig. 5.4. For the intensities at r and r′ to be correlated,

the scattering paths leading to r and r′ need to share scattering events, i.e. to cross. In the C1

correlation, this crossing appears at the position of the last scattering event, and is followed by

a straight propagation to the observation points. Therefore, no further propagation inside the

medium is possible after the apparition of the correlation, which gives an intuitive picture of its

short range character. Interestingly, as a consequence of this short range character, Eq. (5.21)
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Diagram Integral form Description

Arrows |〈E(r1, ω)〉|2 Ballistic intensity
Full horizontal lines 〈G(r2, r1, ω)〉 Average Green function

Dashed horizontal lines 〈G∗(r2, r1, ω)〉 Conjugate of the average Green function
L-box L(r2, r1) Ladder propagator
H-box H(ρ1,ρ2,ρ3,ρ4) Hikami box (crossing of two ladder propagators)

Table 5.1: Analogy between the integral and diagrammatic representations.

L rr1 r2

Lr3
r4 r

′

〈I(r,ω)I(r′,ω)〉1 =

Figure 5.4: Diagrammatic representation of the C1 correlation.

can be factorized into

〈I(r)I(r′)〉1 =
[∫

dr1 dr2 |〈E(r1)〉|2L(r2, r1)〈G(r2, r)〉〈G∗(r2, r
′)〉
]2

. (5.22)

Leading term of the long range correlation

As we shall see below, for distances larger than ℓ, the short range correlation C1 is exponentially

decaying, and one needs to consider higher order diagrams. Following the picture that we used

to understand the short range character of the C1 correlation, a crossing between scattering

paths inside the medium is necessary to obtain a long range correlation. This crossing was first

described to leading order of (kℓ)−1 in Ref. [120], and is represented by a Hikami box. The long

range correlation induced by such crossings was first computed in Ref. [115], and is denoted by

C2 [29]. Its diagram is displayed in Fig. 5.5. The ladder propagators between ρ2, ρ4 (associated

L r2

L r4

〈I(r,ω)I(r′,ω)〉2 =

L rr1

Lr3 r
′

ρ
1

ρ
2

ρ
3 ρ

4

H

Figure 5.5: Diagrammatic representation of the C2 correlation.

to the Hikami box) and r2, r4 (last scattering events) allow r and r′ to be separated by large
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distances. In its integral form, the C2 correlation is given by

〈I(r)I(r′)〉2 =

∫

dr1 dr2 dr3 dr4

∫

dρ1 dρ2 dρ3 dρ4 |〈E(r1)〉|2|〈E(r3)〉|2L(ρ1, r1)L(ρ3, r3)

×H(ρ1,ρ2,ρ3,ρ4)L(r2,ρ2)L(r4,ρ4)|〈G(r, r2)〉|2|〈G(r′, r4)〉|2,
(5.23)

where H(ρ1,ρ2,ρ3,ρ4) is the Hikami box, given by (see Ref. [27])

H(ρ1,ρ2,ρ3,ρ4) = h

∫

dρ
4∏

i=1

δ(ρ − ρi)∇2 ·∇4, (5.24)

where ∇2,∇4 are gradient operators acting on the two output ladder propagators and h =

l5/(48πk2). Note that an equivalent formulation exists, where the gradient operators act on the

input ladder propagators [27].

Orders of magnitude

In Ref. [114], it was shown that in an infinite medium, the short range correlation reads

C1(∆r) =

(
sin(k∆r)

k∆r

)

exp

(

−∆r

ℓ

)

, (5.25)

where ∆r is the distance between the two points. Note that this correlation decays exponentially

with ∆r, on a typical distance of one scattering mean free path (short range). In Ref. [115], it

was shown that for two points located on the output plane of a slab, the long range correlation

reads4

C2(∆r) =
1

24(kℓ)2

(
ℓ

d

)[
1

2

∫ ∞

0
J0(q∆r/Le)

{
sinh(2q)− 2q

sinh2(q)
− 2

}

dq +
d

∆r

]

, (5.26)

where J0 is the Bessel function of first kind and zero order, defined as

J0(x) =
1

π

∫ π

0
dθ exp(ix cos θ). (5.27)

Note that this expression diverges for small distances ∆r because of an approximation detailed

in Appendix F. An exact expression, valid at short distance, but less convenient from a numerical

point of view is given by

C2(∆r) =
3

76(kℓ)2
d

ℓ

∫ ∞

0
J0(q∆r/d)

sinh2(qℓe/d)

q2
sinh(2q)− 2q

sinh2(q)
dq. (5.28)

In Fig. 5.6, we display both the C1 correlation in the case of an infinite medium and the C2

correlation in the output plane of a slab versus the distance between the observation points ∆r.

For the sake of simplicity, we have not considered the slab geometry in the calculation of the C1

correlation here, since our purpose is to qualitatively compare the orders of magnitude of each



5.2. REFLECTION-TRANSMISSION INTENSITY CORRELATIONS 89

∆r/d
10

−2
10

−1
10

0
10

−15

10
−10

10
−5

10
0

 

 

C
2
 (exact expression)

C
1

C
2
 (long distance)

C
2
(∆

r
)

≈ 3ℓ

Figure 5.6: (Red full line) short range correlation C1 for an infinite medium [Eq. (5.25)]; (Green
dashed line) long range correlation C2 for a slab of thickness d [exact expression Eq. (5.28)]; (Blue
full line) long range correlation C2 in the same slab (approached expression for long distances
Eq. (5.26)). ∆r is the distance between the observation points. Parameters are coherent with
Ref. [116]: d = 13µm; ℓ = 1.35µm; λ = 628nm. The long range correlation at the origin is
C2(∆r = 0) ≈ 10−4.

contribution. The parameters are consistent with those used in Ref. [116]. Figure 5.6 shows

that the C1 correlation is the leading term for distances ∆r ≤ 3ℓ. The C2 correlation is the

dominant term for larger distances.

Leading diagram for the reflection-transmission intensity correlation

In the case of the reflection-transmission intensity correlation, the minimum distance between

two observation points is the thickness of the slab d. For a slab in the multiple-scattering

regime (d ≫ ℓ) the C1 correlation has an exponentially small contribution. Hence, to compute

the leading contribution, one needs to consider a C2 diagram. In Fig. 5.7, we display both

the corresponding diagram and the input and output planes of a slab of disordered medium.

This diagram gives an intuitive picture of this correlation. After a crossing inside the medium,

described by a Hikami box, two ladder propagators reach both sides of the slab and create a

correlation between the two observation points.

5.2 Reflection-Transmission intensity correlation

Based on the formalism described in section 5.1, we now compute an explicit expression of the

reflection-transmission intensity correlation for a slab geometry in the diffusion approximation.

4The prefactor given here differs from the reference, and corresponds to the calculation proposed in Ap-
pendix F. It is coherent with the computation performed in section 5.2. Different prefactors were found in other
references [121, 122].
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Figure 5.7: Diagrammatic representation of the reflection-transmission C2 correlation. Grey
lines represent the slab interfaces.

5.2.1 Geometry of the system and assumptions

We consider a slab of disordered media of thickness d in the z direction, infinite in both x and

y directions, as sketched in Fig. 5.8. We assume that the medium is non-absorbing and satisfies

λ ≪ ℓ ≪ d (mesoscopic regime). A plane-wave propagating along the z direction is illuminating

the system. In this geometry one can solve the Dyson equation [Eq. (5.7)] and show that the

ℓe

d

ω

z0

R
r

r
′

Figure 5.8: Geometry of the system.

ballistic intensity reads

Ib(r) = exp
(

−z

ℓ

)

, (5.29)

for an incident plane wave of unit intensity. We consider two observation points r = 0 and

r′ = R+ d ez, respectively in the input plane z = 0 and the output plane z = d of the slab.

5.2.2 Ladder propagator for a slab in the diffusion approximation

Let us consider the ladder propagator, solution of Eq. (5.17). The diffusion approximation

amounts to a spatial Taylor expansion to second order of the ladder propagator L(r3, r1) in the



5.2. REFLECTION-TRANSMISSION INTENSITY CORRELATIONS 91

integral of Eq. (5.17)

L(r3, r2) ≈ L(r2, r1) + (r3 − r1) ·∇r2
L(r2, r1) +

|r3 − r2|2
2

∇
2
r1
L(r2, r1). (5.30)

Performing the integral in Eq. (5.17) using Eq. (5.30), only the second-order term remains, and

Eq. (5.17) transforms into

∇
2
r2
L(r2, r1) = −4π

ℓ3
δ(r2 − r1), (5.31)

which is a diffusion equation for the ladder propagator. As a consequence of translational

invariance along x and y in the slab geometry, L(r2, r1) is a function of R2−R1, z2 and z1 only,

where r1,2 = R1,2 + z1,2 ez. It is convenient to work in Fourier space with respect to R2 −R1

to obtain an analytical expression of L. The diffusion equation satisfied by L(R2 − R1, z2, z1)

turns into a one-dimensional diffusion equation satisfied by L(K, z2, z1) in Fourier space

∂2
z2L(K, z2, z1)−K2L(K, z2, z1) = −4π

ℓ3
δ(z2 − z1). (5.32)

To solve Eq. (5.32), one needs to specify boundary conditions, which needs to be done with care.

Details can be found in Ref. [25]. The most common solution to this problem is to introduce an

extrapolation length ℓe (see Fig. 5.8), so that

L(K, z2 = −ℓe, z1) = L(K, z2 = d+ ℓe, z1) = 0. (5.33)

Under these conditions, the expression of the ladder propagator in Fourier space reads (see

Ref. [27])

L(K, z2, z1) =
4π

Kℓ3
sinh [K (z< + ℓe)] sinh [K (d+ ℓe − z>)]

sinh (Kde)
, (5.34)

where de = d + 2ℓe is the extrapolated thickness of the slab, z< = min(z1, z2) and z> =

max(z1, z2). The extrapolation length ℓe can be computed using the “P1 approximation”, that

leads to [25, 123]

ℓe =
2ℓ

3
. (5.35)

Let us stress that the diffusion approximation describes accurately the propagation on distances

large compared to the scattering mean free paths ℓ. Therefore, the diffusion approximation fails

to describe the ladder propagator for short distances. To go beyond this assumption, one needs

to perform numerical simulations based on the Radiative Transport Equation (RTE) [25, 124],

which is beyond the scope of the present work.

5.2.3 Diffuse intensity inside the slab

The diffuse intensity is expressed using the ladder propagator in Eq. (5.18). In the diffusion

approximation, L(r1, r2) ≈ L(r, r2) and the integral over r1 can be performed. Equation (5.18)

transforms into

Id(r, ω) =
ℓ

4π

∫

dr2 L(r, r2)|〈E(r2, ω)〉|2. (5.36)
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Introducing the Fourier transform of L(r, r2) along R−R2, the integrals over R2 and K can be

performed and yield

Id(r, ω) =
ℓ

4π

∫ d

0
dz2 L(K = 0, z, z2) exp(−z2/ℓ). (5.37)

Using Eq. (5.34) and performing the integral over z2, one obtains

Id(z, ω) =
5

3

d− z + ℓe
d

. (5.38)

5.2.4 Intensity correlation between reflection and transmission

The long range correlation displayed for the reflection-transmission geometry in Fig. 5.7 is given

in its integral form by Eq. (5.23). Using the expression of the average intensity in the slab given

by Eq. (5.38), its contribution to the correlation as defined in Eq. (5.20) reads

C2(r, r
′, ω) =

[
〈I(r)〉〈I(r′)〉

]−1
∫

dr1 dr2 dr3 dr4

∫

dρ1 dρ2 dρ3 dρ4 |〈E(r1)〉|2|〈E(r3)〉|2

× L(ρ1, r1)L(ρ3, r3)H(ρ1,ρ2,ρ3,ρ4)L(r2,ρ2)L(r4,ρ4)|〈G(r, r2)〉|2|〈G(r′, r4)〉|2.
(5.39)

In Eq. (5.39), the integrals on r1 and r3 yield twice the diffuse intensities at ρ1 and ρ3, as can

be seen from Eq. (5.36). Moreover, we make the diffusion approximation: L(r2,ρ2) ≈ L(r,ρ2)

and L(r4,ρ4) ≈ L(r′,ρ4). This allows to perform the integrals on r2 and r4. Using Eq. (5.24),

Eq. (5.23) transforms into

C2(r, r
′, ω) =

[
〈I(r)〉〈I(r′)〉

]−1
h

∫

dρ Id(ρ, ω)
2
∇ρL(r,ρ) ·∇ρL(r

′,ρ). (5.40)

Let us introduce ρ⊥ and z1 such that ρ into ρ = ρ⊥ + z1ez. Expanding L(r,ρ) and L(r′,ρ) in

the transverse Fourier space and performing the two gradient operators, Eq. (5.40) becomes

C2(r, r
′, ω) =

[
〈I(z)〉〈I(z′)〉

]−1
h

∫

dz1
dKdK′

(2π)4
Id(z1) exp

[
iK′ ·R

]
∫

exp
[
−iρ⊥ ·

(
K+K′)] dρ⊥

× [−iKL(K, z, z1) + ∂zL(K, z, z1)ez] ·
[
−iK′L(K ′, z′, z1) + ∂zL(K, z′, z1)ez

]
.

(5.41)

Performing the integral upon ρ⊥ yields a function δ(K+K′). Performing the integral upon K′

and using the parity of L(K, z, z1) upon variable K, Eq. (5.42) can be transformed into

C2(r, r
′, ω) =

∫
dK

(2π)2
exp [−iK ·R]F (Kd), (5.42)

where

F (Kd) =
[
〈I(z)〉〈I(z′)〉

]−1
h

∫ d

0
dz1 Is(z1)

2

×
[
L(K, z, z1)L(K, z′, z1)K

2 + ∂z1L(K, z, z1)∂z1L(K, z′, z1)
]
.

(5.43)
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Eq. (5.42) is valid whatever the coordinates z and z′5. In the present case, z = 0 and z′ = d. The

average intensity at both positions can be deduced from Eqs. (5.29) and (5.38), and respectively

read 〈I(z = 0)〉 = 8/3 and 〈I(z = d)〉 = 10ℓ/(9d). Replacing L by its expression, and using

h = ℓ5/(48πk2) yields

F (Kd) =
5π

16k2dℓ2
sinh2(Kℓe)

sinh2(Kd)

∫ d

0
dz1 (d− z1 + ℓe)

2 cosh [K(d− 2z1)] . (5.44)

Performing the integral (see useful integrals in Appendix F) leads to

F (Kd) =
5π

16k2dℓ2
sinh2(Kℓe)

sinh2(Kd)

(K2d2 + 1) sinh(Kd)−Kd cosh(Kd)

2K3
. (5.45)

Inserting Eq. (5.45) into Eq. (5.42), and introducing the Bessel function of first kind and zero

order J0, defined as

J0(x) =
1

π

∫ π

0
dθ exp(ix cos θ), (5.46)

one obtains, by making the change of variable q = Kd,

C2(r, r
′, ω) =

−5

128(kℓ)2

∫ ∞

0
J0(q∆r/d)

sinh2(qℓe/d)

q2
−q cosh q + (q2 + 1) sinh q

sinh2(q)
dq, (5.47)

where ∆r = |R| is the transverse distance between r and r′ (see Fig. 5.8). The integral in

Eq. (5.47) can be estimated for qℓe/d ≪ 1, since the integrand behaves as exp(−q) for large

values of q and d ≫ ℓe (multiple-scattering). Therefore, Eq. (5.47) transforms into

C2(∆r, ω) =
−5

288(kℓ)2

(
ℓ

d

)2 ∫ ∞

0
J0(q∆r/d)

−q cosh q + (q2 + 1) sinh q

sinh2(q)
dq, (5.48)

Equation (5.48) is the main result of this chapter. It gives the leading term to the intensity

correlation between one point in the input plane z = 0 and another in the output plane z = d,

as a function of their transverse distance ∆r. The correlation is displayed in Fig. (5.9) versus

∆r/d.

5.2.5 Discussion

One can see in Fig. 5.9 that the value of the correlation for two points aligned in the transverse

direction, i.e. when R = 0, is of the order of −3.10−6. This value can be compared to the

value of the same long range correlation between two points in the output plane z = z′ = d,

that is plotted in Fig. 5.6. For a vanishing distance, this correlation tends to 10−4. The two

correlations have the same physical origin, and the difference between these two values have two

origins. First, the normalization is different, since the average intensity in the input plane is

much higher than that of the output plane. Second, for a same value of the transverse distance

5The calculation in the case where z = z′ = d is detailed in Appendix F.
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Figure 5.9: Intensity correlation between two points r and r′ respectively in the input plane
z = 0 and the output plane z = d of the slab represented in Fig. 5.8. ∆r = |R| is the transverse
distance between r and r′. Parameters are coherent with Ref. [116]: d = 13µm; ℓ = 1.35µm;
λ = 628nm.

∆r, the real distance between the observation points is higher in the reflection/transmission case.

Interestingly, the reflection/transmission correlation is negative, meaning that a high intensity

at point r will most likely lead to a lower intensity at point r′ = r + dez. This result is highly

non-intuitive, and was already observed in the diffusive regime in Luis Froufe’s thesis [125],

using a Random Matrix Theory. Positive correlations were observed in non-diffusive regimes.

Unfortunately, we cannot probe these regimes in the framework of the ladder approximation.

Let us comment on the approximations made in the calculation leading to Eq. (5.48). The use

of the diffusive approximation does not describe accurately the propagation on short scattering

paths. The main consequence of this approximation is that the contribution to the correla-

tion of crossings between ladder propagators occurring within few scattering mean free paths

of the entry or output planes are not correctly described by our model. This problem can be

addressed numerically by computing the ladder propagator in the slab geometry using the Ra-

diative Transfer Equation (RTE). All results presented in section 5.1 are independent on the

diffusion approximation and could be the base of a future study.

However, the level of approximation used in this chapter is the same than the one used in the

early calculations of speckle intensity correlations [114, 115]. The success of these calculations

to predict experimental observations [121, 116] is an encouraging sign of the relevance of our

approach. Before going further with the theory, we believe that an experimental study would

be of tremendous interest.
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5.3 Conclusion

To conclude, we have studied the reflection-transmission intensity correlation in speckle patterns

in the framework of the ladder approximation. We have showed that this correlation has no short

range contribution, and that its leading term needs to be described by a C2 diagram, involving

a Hikami box. We have obtained an analytical expression of this leading term for an infinite

slab in the diffusion approximation. Surprisingly, the correlation is negative, meaning that two

opposite points having the same transverse coordinates are anti-correlated.

A first perspective of this work is obviously to work in collaboration with experimentalists

and observe this correlation. This is under progress, and should be the first step before the

development of a more sophisticated theoretical model. One way to improve our model would

be to go beyond the diffusion approximation, using numerical simulations based on the RTE, in

order to accurately describe the contribution of short scattering paths to the correlation. While

these short paths may have a negligible influence in transmission-transmission correlations, in

the reflection-transmission correlation, it could be more problematic due to the influence of

crossing occurring close to the input interface.

The control of the propagation of waves through complex media has been very active in the

past few years [126]. One major drawback of the experimental setups involved to control the

transmitted speckle is the necessity for a feedback on the transmitted side of the medium. For

applications such as imaging, getting rid of this feedback would be of tremendous importance.

Recently, a fluorescent object was imaged through a diffusive slab without feedback, using the

memory effect (short range speckle correlations) [127]. Our work paves the way to future ideas

taking advantage of the statistical connection between the transmitted and the reflected speckle

to go beyond the use of this feedback.
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When a disordered medium is illuminated by coherent light, the random scattering paths

inside the medium interfere to create a random intensity pattern called speckle. The spatial

structure of a speckle pattern is often characterized by the intensity spatial correlation func-

tion 〈I(r)I(r′)〉. In usual experiments the medium is illuminated by an external beam, and

the speckle pattern is observed, e.g., in transmission. Short-range and long-range contributions

can be identified in the intensity correlation function, which is written as a sum of three terms

denoted by C1 (short range), C2, and C3 (long range) [29]. These correlations have been widely

studied since they are responsible for enhanced mesoscopic fluctuations [27] and their sensitivity

to changes in the medium can be used for imaging in complex media [128]. More details on this

approach are given in Chap 5. When a source is embedded inside a medium, as in Fig. 6.1, the

situation is slightly different. A new contribution to the intensity correlations, fundamentally

different from the previous ones, appears [28]. This contribution has been called C0. It has

97



98 CHAPTER 6. NONUNIVERSALITY OF THE C0 CORRELATION
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′

Figure 6.1: Light source embedded inside a disordered medium. We study the correlations
between I(u) and I(u′), defined as the power per solid angle radiated by the source in the far
field in directions defined by the unit vectors u and u′.

infinite range, and is nonuniversal, in the sense that it does not only depend on macroscopic

properties (mean free path, effective index, ...) but varies dramatically with the local environ-

ment of the source [30]. In an infinite nonabsorbing medium, it has been shown that C0 equals

the normalized fluctuations of the LDOS at the source position [31].

To our knowledge, all published works on C0 rely on the diagrammatic approach. Though,

despite of its undeniable power of prediction, the diagrammatic approach fails to give a simple

physical picture of C0. Moreover, it implies a scalar model of light that does not include near-field

interactions, and requires a weakly disordered medium.

In this chapter, we present a non-diagrammatic approach of C0, based on LDOS fluctuations

and energy conservation. We generalize the equality of Ref. [31] to 3D electromagnetic waves

interacting with any strength of disorder, including the Anderson localization regime, and we

propose a simple and robust physical picture of C0. Based on this picture, we present 3D

exact numerical calculations of LDOS distributions, and show the sensitivity of their normalized

variance C0 to the correlations of disorder, as predicted in [30]. Analysing the numerical

data with an approximate analytical model, we demonstrate the fundamental role of near-field

interactions in the appearance of C0.

This work has been published in Physical Review A [129].

6.1 C0 equals the normalized fluctuations of the LDOS

We propose a new approach to demonstrate the equality between C0 and the normalized variance

of the LDOS, that was first derived in [31]. Our demonstration relies essentially on energy

conservation, and is independent of the strength of the disorder inside the medium. It takes into

account the vector nature of light. Using this new approach allows us to understand in simple

terms the appearance of the C0 correlation.
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6.1.1 The C0 correlation equals the fluctuations of the normalized LDOS

Let us consider a disordered medium embedded inside a sphere of radius R. At the center rs of

this sphere lies an electric-dipole source with moment p, radiating at frequency ω.

We assume that the system is nonabsorbing. In this case, the power radiated outside the

system P is equal to the power transferred by the emitter to its environment. Hence, averaged

upon dipole orientation, it is proportional to the LDOS ρ(rs, ω) and reads [68]

P =
πω2

12ǫ0
|p|2ρ(rs, ω). (6.1)

Denoting ρ0 and P0, respectively, the LDOS and the radiated power in vacuum, Eq. (6.1) can

be normalized to give

P

P0
=

ρ(rs, ω)

ρ0(ω)
. (6.2)

As a characterization of the far-field speckle produced by the point source, we consider the

angular intensity correlation function1

C(u,u′) =
〈I(u)I(u′)〉
〈I(u)〉〈I(u′)〉 − 1 (6.3)

where I(u) is the radiated power in the direction defined by the unit vector u (as illustrated in

Fig. 6.1), such that

P =

∫

4π
I(u)du. (6.4)

From Eqs. (6.2), (6.3), and (6.4) the fluctuations of the normalized LDOS can be written

〈
ρ(rs, ω)

2

ρ0(ω)2

〉

=

〈
P 2

P 2
0

〉

=
1

P 2
0

∫ ∫

〈I(u)I(u′)〉dudu′.

=
1

P 2
0

∫ ∫

〈I(u)〉〈I(u′)〉
[
C(u,u′) + 1

]
dudu′

(6.5)

The second assumption we make concerning the medium is statistical isotropy. Under this

assumption, the averaged directional radiated power 〈I(u)〉 is independent of the direction u.

Using Eq. (6.2), it reduces to

〈I(u)〉 = 1

4π
〈P 〉

=

(
P0

4π

) 〈ρ(rs, ω)〉
ρ0(ω)

.
(6.6)

1C(u,u′) is the angular counterpart of the spatial intensity correlation C(r, r′) = 〈I(r)I(r′)〉, studied in Chap. 5.



100 CHAPTER 6. NONUNIVERSALITY OF THE C0 CORRELATION

Moreover, the angular intensity correlation is a function of x = u · u′. Inserting Eq. (6.6) into

Eq. (6.5) yields

〈ρ(rs, ω)2〉
〈ρ(rs, ω)〉2

= 1 +
1

16π2

∫ ∫

C(u · u′)dudu′.

= 1 +

∫ 1

−1
C(x) dx.

(6.7)

As a continuous function defined on [−1, 1], the correlation function C(x) can be expanded on

the basis of Legendre polynomials in the form

C(x) =
∞∑

n=0

anLn(x). (6.8)

Since L0 = 1, the first term is constant and corresponds to an infinite range correlation. We

define the C0 correlation as that given by the constant term, so that a0 = C0. The integral in

Eq. (6.7) is performed by writing

C(x) =

∞∑

n=0

anL0(x)Ln(x), (6.9)

and using the orthogonality relation of Legendre polynomials

∫ 1

−1
Ln(x)Lm(x)dx =

2δnm
2n+ 1

, (6.10)

where δnm is the Kronecker delta. We finally obtain

C0 =
〈ρ(rs, ω)2〉
〈ρ(rs, ω)〉2

− 1 =
Var [ρ(rs, ω)]

〈ρ(rs, ω)〉2
. (6.11)

Eq. (6.11) shows that the C0 speckle correlation and the normalized variance of the LDOS at

the position of the emitter are the same, a result that was first derived in [31] based on a

diagrammatic approach. Our derivation relies only on energy conservation and the assump-

tion of a nonabsorbing and statistically isotropic medium. In particular, Eq. (6.11) holds in

all wave transport regimes, from weakly scattering to strongly scattering, including Anderson

localization.

6.1.2 Physical origin of the C0 correlation

An important feature of our derivation is that it leads to a simple interpretation of the C0 corre-

lation. Energy conservation induces correlations between I(u) and I(u′), respectively the power

radiated per unit solid angle in directions u and u′ (see Fig 6.1). Intuitively, radiating more

in direction u forbids to radiate too much in another direction u′. This constraint is mediated
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by the value of the radiated power P , that is driven itself by the LDOS at the position of the

emitter. Fluctuations of the LDOS for various disorder configurations induce a modification of

the constraint of energy conservation and hence a modification of the angular intensity corre-

lation. This modification is a constant background correlation called the C0 correlation, and

is exactly equal to the normalized variance of the LDOS if absorption in the medium can be

neglected. Recently, a direct observation of this constant background in the speckle correlation

was reported in acoustic experiments using ultrasounds [130].

6.2 Near-field interactions and long-tail behavior of the LDOS
distribution

We have seen that the appearance of the C0 correlation was intimately connected to fluctua-

tions of the LDOS inside a disordered medium. Before my PhD thesis, Luis Froufe and Rémi

Carminati have studied the LDOS statistical distribution based on a numerical coupled dipoles

method. In particular, they have shown that from this distribution, one could retrieve infor-

mation about the trade-off between scattering and absorption in the local environment of the

emitter [131]. In Ref. [132], they developed an approached analytical model – that we will refer

to as the “one-scatterer” model – to understand the influence of a dipole orientation to the

statistical distribution of its decay rate.

Here, we present 3D exact numerical simulations of the LDOS distribution based on the

same coupled dipoles method. To analyze our data, we first present the “one-scatterer” model,

where the LDOS is driven by the nearest scatterer only. Based on this model, we show that the

shape of our distributions is driven by a regime where near-field interactions dominate. This

paves the way for the study of the sensitivity of C0 to the local environment of the source, which

is presented in section 6.3.

6.2.1 The “one-scatterer” model

In the “one-scatterer” model, the source dipole interacts with one scatterer only. In this regime,

both the Green function and the LDOS can be expressed analytically. In particular, if the

scatterer is close enough to the emitter, the LDOS distribution exhibits a power-law behavior

and a cut-off for a maximum value of the LDOS corresponding to the minimum distance allowed

between the source and the nearest scatterer.

Green function of the system

In the configuration shown in Fig 6.2, involving a single scatterer in a spherical domain, the

Green function can be expressed analytically as a function of αp(ω), the polarizability of the

scatterer, and G0, the Green function of vacuum. Let us consider a source dipole p located at
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point scatterer

at r
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Figure 6.2: One single point scatterer in vacuum at distance d of a source dipole at rs.

rs illuminating the system. The incident field radiated by the source dipole located at rs to

point r reads

E0(r, ω) = µ0ω
2G0(r, rs, ω)p. (6.12)

Since the scatterer is lying alone in the host medium, the incident field at r = rp is rigorously

its exciting field. Hence, the induced dipole pp in the scatterer reads

pp = ǫ0αp(ω)E0(rp, ω) (6.13)

The scatterered field is radiated by the induced dipole pp of the scatterer. Using Eqs. (6.12)

and (6.13), it reads

Es(r, ω) = µ0ω
2G0(r, rp, ω)

[
ω2

c2
αp(ω)G0(rp, rs, ω)p

]

. (6.14)

From Eqs. (6.12) and (6.14), the Green function of the system reads

G(r, rs, ω) = G0(r, rs, ω)
︸ ︷︷ ︸

incident field

+
ω2

c2
αp(ω)G0(r, rp, ω)G0(rp, rs, ω)

︸ ︷︷ ︸

scattered field

(6.15)

LDOS at the center of the cluster

The LDOS at point rs reads as a function of the Green function of the environment [8]

ρ(rs, ω)

ρ0(ω)
= 1 +

2π

k
Im [TrS(rs, rs, ω)] , (6.16)

where S = G−G0 is the scattered Green function, k = ω/c and ρ0(ω) is the LDOS in vacuum.

Inserting Eq. (6.15) into Eq. (6.16) and using reciprocity [G0(rs, rp) =
tG0(rp, rs) = G0(rp, rs)]

yields
ρ(rs, ω)

ρ0(ω)
= 1 + 2πk Im

[
αp(ω)TrG0(rp, rs, ω)

2
]
, (6.17)
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Denoting x = kd, the Green function of vacuum can be written (see Appendix B)

G0(rp, rs, ω) = PV








keix

4π







1

x
[I− u⊗ u]

︸ ︷︷ ︸

far field

+

(
i

x2
− 1

x3

)

[I− 3u⊗ u]

︸ ︷︷ ︸

near field













− I

3k2
δ(rp−rs), (6.18)

where d = |rp − rs|, u = (rp − rs)/d, PV denotes the principal value operator and I is the

identity matrix. The term proportional to x−1 is called the far field term since it is the only

term that contributes to energy radiation to the far field. The terms proportional to x−2 and

x−3 are called near-field terms. The term proportional to x−3 is the quasi-static term, that

remains when k → 0. The near-field terms are a feature of vector electromagnetic waves and

will play a fundamental role in the behavior of C0.

Denoting αp(ω) = α′
p(ω)+iα′′

p(ω), and inserting Eq. (6.18) into Eq. (6.17), one finally obtains

ρ(rs, ω)

ρ(ω)
= 1 +

k3

4πx6
[
α′
p(ω)g1(x) + α′′

p(ω)g2(x)
]
. (6.19)

where

g1(x) =
(
2x3 − 6x

)
cos(2x) +

(
x4 − 5x2 + 3

)
sin(2x)

g2(x) =
(
x4 − 5x2 + 3

)
cos(2x) +

(
6x− 2x3

)
sin(2x)

(6.20)

Near-field asymptotic expression

In the limit case where x = kd ≪ 1, the Green function of vacuum G0 is dominated by the

quasi-static term and becomes proportional to x−3 [see Eq. (6.18)]. Taking the proper limit in

Eq. (6.19), the LDOS becomes

ρ(rs, ω)

ρ0(ω)
≈

3k3α′′
p(ω)

4πx6
. (6.21)

Asuming a uniform probability density for the particle inside the cluster, the probability P (x)

for the scatterer to be at a dimensionless distance x from the emitter is given by

P (x) =
3x2

(kR)3
. (6.22)

Since in this case, the LDOS is a monotone (hence bijective) function of x, one can make the

change of variable |P (x) dx| = |P (ρ/ρ0) d(ρ/ρ0)|. Using Eq. (6.21), it yields

P (ρ/ρ0) =
1

2(kR)3

(

3k3α′′
p(ω)

4π

)1/2(
ρ

ρ0

)−3/2

(6.23)

This −3/2 power-law behavior of the statistical distribution of the LDOS is an evidence of a

regime where near-field interaction dominate in the LDOS. It could not be observed, for example,

for scalar waves.
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Cutoff in the statistical distributions

In the one-scatterer regime, the LDOS is increasing when the distance d to the scatterer is

decreasing. If a minimum distance R0 is imposed between the emitter and the scatterer (as it

will be the case in our numerical experiments), the LDOS cannot overcome a maximum value,

and a cutoff is expected in its statistical distribution. In Fig. 6.3, we plot, as a function of the

distance d, the analytical value of the LDOS corresponding to Eq. (6.19) and the curve d = R0

to illustrate the maximum value reachable for the LDOS (ρ/ρ0 ≈ 62 here). The parameters are

those of Fig. 6.5.
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Figure 6.3: Maximum value of the LDOS inducing a cutoff in the distribution in the “one-
scatterer” regime. Same parameters as in Fig. 6.5.

6.2.2 Asymmetric shape of the LDOS distribution: Numerical results

We now turn to numerical simulations of LDOS distributions. We consider a scattering medium

modeled by a three-dimensional cluster of N resonant point scatterers randomly distributed

inside a sphere with radius R. Each scatterer is described by the polarizability of a resonant

scatterer in vacuum, that is discussed in Chap. 1.

αp(ω) =
3π

k3
Γp

ωp − ω − iΓp/2
, (6.24)

where ωp is the resonant frequency and Γp the linewidth of the resonance. The host medium

considered in all our calculations is vacuum, described by its Green function G0 [Eq. (6.18)]. A

dipole emitter is placed at the center of the cluster (at position rs) and is surrounded by a small

exclusion sphere with radius R0. A minimum distance d0 between the scatterers is preserved for
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the dipolar approximation to remain valid2. The geometry of the system is shown in Fig. 6.4

for one typical configuration of disorder. For a high number of configurations (i.e. random

point scattererspoint source

d
0

2R
0

R

Figure 6.4: One configuration of the model 3D disordered system.

sets of positions of the scatterers), we compute the LDOS at the center rs. Gathering all these

values in an histogram, we can plot a statistical distribution. The details of the calculation of

the LDOS for one configuration of the disorder within the coupled dipoles method are given in

Appendix C. It is important to note that this is an exact calculation. It takes into account the

three-dimensional geometry of the system, including polarization, retardation effects, multiple

scattering and near-field interactions (this is a key point in this study).

We show in Fig. 6.5 a distribution obtained for parameters corresponding to a weakly scatter-

ing sample (R ≈ 0.63 ℓ, where ℓ is the scattering mean free path and a weak disorder (kℓ ≈ 19).

Note that, as we shall see in section 6.3, the minimum interparticle distance d0 induces cor-

relations between the positions of the scatterers. We focus in this section on an uncorrelated

disorder, which is obtained in our case in very good approximation for a minimum interparticle

d0 = 7.5 nm. The curve exhibits a broad distribution, with values of ρ/ρ0 ranging from 0.2 to

1000. The analysis of the line shape allows us to distinguish three regimes.

First, the curve covers a zone corresponding to ρ/ρ0 ≤ 1, which means that some configu-

rations lead to a reduction of the LDOS compared to that in free space. This effect has been

analyzed previously and is due to collective interactions in the multiple-scattering regime [133].

Measurements of the fluorescent lifetime of emitters at the surface of a volume scattering disor-

dered medium seem to have shown evidence of this regime [134].

Second, in the region ρ/ρ0 ≥ 1, a power-law decay is observed, with a statistical distribution

behaving as P (ρ) ∝ ρ−3/2 (the power law is indicated by the dashed line in Fig. 6.5). This

region is delimited by a cutoff (green vertical line in Fig. 6.5). As described in section 6.2.1, this

2Since we consider point scatterers, the dipolar approximation is always valid. Still, this minimum distance
is compulsory to treat with the same formalism a real system with non-pointlike scatterers. See Appendix C for
more details.
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Figure 6.5: Statistical distribution of the normalized LDOS ρ(rs, ω)/ρ(ω) for an uncorrelated
system (d0 = 7.5 nm). Parameters are N = 100, ωp = 3×1015 s−1, ω−ωp = 109 s−1 (wavelength
λ = 630nm), Γp = 109 s−1, R = 1.2µm, andR0 = 0.05µm. The calculations are performed using
3× 108 configurations of disorder. This large number is necessary to correctly describe the tail
of the distribution. The blue dashed line indicates a power-law behavior P (ρ/ρ0) ∝ (ρ/ρ0)

−3/2.
The vertical solid line indicates the one-scatterer cutoff.

behavior is explained by the “one-scatterer” model and corresponds to a regime where the source

interacts with its nearest scatterer only. The observation of this −3/2 power law is an evidence

of the fundamental role played by near-field interactions in the fluctuations of the LDOS, which

are directly connected to C0. It is striking to see that these interactions are fundamental even in

weakly scattering materials. The LDOS distribution is non-trivially asymmetric (the distribution

has a very long tail). Experimental evidences of this long-tail distribution and of its influence

on the C0 correlation, have been reported in [3] and [2].

Third, in the region ρ/ρ0 ≫ 1, the tail of the distribution deviates from the power law

ρ−3/2. This can be understood because the “one-scatterer” regime responsible for this power-

law implies a maximum value of the LDOS (ρ/ρ0 = 62 in the present case, see Fig. 6.3). The

observation of a tail beyond this one-scatterer cutoff is the evidence of near-field interactions

with more than one scatterer. As we shall see below, this tail contains information on the local

environment of the emitter, and in particular on the degree of correlation of disorder.

6.3 C0 is sensitive to disorder correlations

We have shown that C0 is equal to the normalized variance of the LDOS distribution, and

that the latter is driven by near-field interactions and hence contains information on the local

environment of the source. It was predicted in [30], using a scalar model, that C0 depends on
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the correlation length of the disorder. Here, we artificially introduce correlations in the disorder

and observe explicitly their influence on C0.

6.3.1 The effective volume fraction: a “correlation parameter”

In the generation of the random configurations of disorder, a minimum distance d0 is forced

between the scatterers. This distance actually induces a degree of correlation of the disorder.

Indeed, this amounts to simulating an effective hard-sphere potential between scatterers. One

can define an effective volume fraction

feff =
N(d0/2)

3

R3 −R3
0

, (6.25)

that can be taken as a measure of the degree of correlation of the disorder (feff will be denoted

by “correlation parameter” in the following).

For large feff , this potential is long-range (d0 is large), so there is a weak probability of

getting two closely separated scatterers. Small values of feff correspond to non overlapping

point scatterers (delta-correlated disorder).

6.3.2 LDOS distribution and correlation parameter

We show in Fig. 6.6 the statistical distribution of ρ/ρ0 for different values of the correlation pa-

rameter feff , ranging from 1% to 4.2% (i.e. d0 ranging from 111 to 180 nm). An effective volume

fraction of 4.2% already corresponds to non-negligible correlations between the positions of the

scatterers. The tail of the distribution is subtantially affected by the level of correlations in the
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Figure 6.6: Same as Fig. 6.5, with different values of the correlation parameter feff . As a result
of near-field interactions, the tail of the distribution is the signature of the local environment of
the emitter
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Figure 6.7: C0 speckle correlation versus the correlation parameter feff . Red solid line: Full
numerical simulation with the same parameters as in Fig. 6.5. Blue solid line with markers:
Calculation considering only the two nearest scatterers. Black dashed lines: Calculation consid-
ering only the nearest scatterer.

system, while the part of the distribution corresponding to ρ/ρ0 smaller than the “one-scatterer”

cutoff remains unchanged. This means that the sensitivity of C0 to the local environment of the

emitter is driven by the near-field interactions with several surrounding scatterers, this infor-

mation being encoded in the tail of the statistical distribution of the LDOS. Although this tail

corresponds to events with a low probability, it is at the core of the C0 correlation concept.

6.3.3 C0 and correlation parameter

In order to visualize the influence of the correlation of disorder directly on C0, we have computed

numerically the variance of the LDOS distributions shown in Fig. 6.6 for more values of the

correlation parameter feff . The corresponding values of C0, deduced from Eq. (6.11), are plotted

in Fig. 6.7 versus feff . A sharp transition is visible at feff ≈ 2%, the value of C0 dropping by a

factor of 2. In order to give a physical interpretation of this behavior, we have also plotted in

Fig. 6.7 the values of C0 computed by considering the interaction with the nearest scatterer only

(black dashed curve), and with the two nearest scatterers (blue line with markers). For large

feff , the emitter essentially interacts with one particle (the red solid line and the black dashed

curve have a similar behavior) and the C0 correlation can be understood in simple terms. This

is the “one-scatterer” regime with its characteristic long-tail distribution. We stress here that

this regime results from a near-field interaction, so the value of C0 depends on local microscopic

parameters (it cannot be described with the single scattering or transport mean free path as

a single parameter). For small feff , the probability of getting more than one scatterer in the
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vicinity of the emitter becomes non-negligible, and the behavior of C0 cannot be explained (even

qualitatively) with the “one-scatterer” model. One sees that by including the interaction with

the two nearest scatterers (blue curve with markers), one reproduces nicely the behavior of

the transition. This result demonstrates the high sensitivity of C0 to the level of correlation

of the disorder. As discussed in the previous section, this sensitivity, often referred to as the

nonuniversality of C0, is fundamentally driven by near-field interactions.

6.4 Conclusion and perspectives

In summary, we have derived the relation between the C0 speckle correlation and the LDOS

fluctuations based on energy conservation. This simple and exact derivation leads to an inter-

pretation of C0 based on the fluctuations of the energy delivered by a classical dipole source to a

disordered environment. Using exact numerical simulations, we have shown that C0 is essentially

a correlation resulting from near-field interactions. These interactions give C0 its nonuniversal

character, which is reflected in its high sensitivity to the level of correlation of disorder. This

nonuniversality confers to C0 a potential for sensing and imaging at the submicron scale in

complex media.

Several experimental measurements of the LDOS statistical distribution in complex media

have been reported recently [94]. The long-tail behavior due to near-field interactions, and its

influence on C0 have been reported in [2]. These enhanced fluctuations have been correlated

to the apparition of fractal clusters on disordered metallic films near the percolation threshold

in [3], and used as a probe of plasmons localization on these systems (see Chaps 3 and 4). More

recently, the direct observation of C0 as a constant background in the spatial intensity speckle

correlation have been observed in acoustics using ultrasounds [130]. In the future, it could be

very interesting to combine both approaches and measure simultaneously LDOS fluctuations

and C0 directly from the intensity correlations. Such an experiment could, for example, probe

the robustness of Eq. (6.11) in the presence of absorption.

One potential direct application of our work is the discrimination between two materials

exhibiting very similar macroscopic optical properties, but different microscopic structures. One

force of C0 in such practical applications is the robustness of the measurement of the LDOS using

a fluorescence lifetime measurement. This measurement is independent on any experimental

calibration, since it is deduced from a temporal signal (see Chap. 2).

Another perspective is to probe the sensitivity of C0 (or the LDOS fluctuations) to the

Anderson localization transition. It was shown experimentally in acoustics that C0 was highly

correlated to the anomalous multifractal exponent [130], that is a signature of the Anderson

transition [135, 136]. The issue of Anderson localization for electromagnetic waves in 3D is a

very active topic at the moment. It was suggested that near-field interactions – that do not

exist in the initial Anderson model for electron transport – could have a dramatic incidence
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on localization [137]. Our numerical tool is very suitable to address these issues in the light of

LDOS distributions.
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We have presented in Chap. 1 a scattering formalism that describes the coupling between

a resonant scatterer or emitter and its electromagnetic environment. In particular, we have

explained that two different regimes could be distinguished: the weak and the strong coupling

regimes.

• In the weak coupling regime, the linewidth of a resonant scatterer, or equivalently the

spontaneous decay rate of an emitter, depend on the environment through the LDOS.

This is known as the Purcell effect [138], and was observed in optics by Drexhage [139].

• In the strong coupling regime, the resonant emitter and one mode of the electric field – both

sharing the same resonant frequency ωM – cannot be distinguished anymore. Two hybrid

eigenmodes appear, with eigenfrequencies ωM −ΩR and ωM +ΩR, where ΩR is called the

Rabi frequency. In the time domain, the energy flows back and forth between these two

hybrid eigenmodes, a phenomenon called Rabi oscillations. Spectrally, the signature of

the strong coupling regime is a splitting in the frequency spectrum [14, 13].

111
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We focus in this chapter on the strong coupling regime. This regime has been demon-

strated with single atoms in engineered vacuum cavities [140, 48], and in condensed matter

using quantum-well or quantum-dot excitons in microcavities or photonic crystals [141, 15, 142].

In nanophotonics, surface-plasmon modes on metallic nanoparticles or substrates provide sub-

wavelength light confinement without a physical cavity, and strong coupling has been reported

with quantum dots or molecules [143, 95, 92, 51, 144]. Multiple scattering in disordered media

provides an alternative route since confined modes can be produced by the mechanism of An-

derson localization [145, 146]. Substantial modifications of the spontaneous decay rate (Purcell

effect) have been demonstrated using quantum dots and localized modes in disordered photonics

crystal waveguides [4]. In these one-dimensional structures, even fabrication imperfections in

otherwise perfect waveguides generate efficient localization on the micrometer scale [147, 148],

and the strong coupling regime was recently demonstrated experimentally [5], following its theo-

retical prediction [149]. In addition to multiple scattering, near-field interactions also contribute

to an enhancement of light-matter interaction with large Purcell factors in the weak-coupling

regime, as discussed in Chap. 6.

In this chapter, we compute numerically LDOS spectra in two-dimensional disordered cou-

pled dipoles systems. From these spectra, we characterize an Anderson localized mode. Based

on the formalism described in Chap. 1, we describe the interaction between this mode and

a resonant scatterer. Using exact numerical simulations, we demonstrate the strong coupling

regime by observing a splitting in the scatterer response spectrum. This splitting is in perfect

agreement with a theoretical formalism based on a coupled mode approach. Using this theory,

we examine the strong coupling criterion, and show that it can be expressed in terms of the

Thouless conductance and the Purcell factor.

This work was published in Physical Review Letters [150].

7.1 An optical cavity made of disorder: Anderson localization

7.1.1 LDOS spectrum of a weakly lossy cavity mode

We consider a two-dimensional disordered medium and Transverse Electric (TE) waves (electric

field perpendicular to the plane containing the 2D scatterers), so that we are left with a scalar

problem. In the canonical situation of a non-absorbing environment placed in a closed cavity, one

can define an orthonormal discrete basis of eigenmodes with eigenfrequencies ωn and eigenvectors

en(r). The electromagnetic response of the medium can be expanded over the set of eigenmodes

(see Appendix B for details)

G(r, r′, ω) =
∑

n

c2
e∗n(r

′)en(r)
ω2
n − ω2

, (7.1)

where c is the speed of light in vacuum, ω the frequency and G(r, r′, ω) the outgoing 2D scalar

Green function. In the general case of a leaky system, the weak losses out of each eigen mode
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can be taken into account phenomenologically using a linewidth γn [Eq. (B.31) in Appendix B]

G(r, r′, ω) =
∑

n

c2

2ωn

e∗n(r
′)en(r)

ωn − ω − iγn/2
. (7.2)

The LDOS is defined as (see Chap 1)

ρ(r, ω) =
2ω

πc2
ImG(r, r, ω). (7.3)

Therefore the LDOS spectrum in a weakly lossy environment is given by

ρ(r, ω) =
∑

n

ρn(r, ω) =
∑

n

An

π

γn/2

(ωn − ω)2 + (γn/2)2
, (7.4)

where An = |en(r)|2. The LDOS spectrum contains all the relevant parameters of a given eigen-

mode (central frequency, linewidth and local intensity), independently of an explicit knowledge

of the full set of eigenmodes. A major interest is that it can in principle be determined ex-

perimentally from fluorescent lifetime measurements, even at the nanoscale in complex geome-

tries [64, 16] (see Chap. 2). For convenience, we also define the Purcell factor associated to a

given eigenmode n at position r, as

FP = ρn(r, ωn)/ρ0, (7.5)

where ρ0 = ω/(2πc2) is the vacuum LDOS in 2D. The Purcell factor is the LDOS enhancement.

It describes the enhancement of the spontaneous decay rate of a fluorescent emitter due to its

interaction with a given electromagnetic eigenmode.

7.1.2 Numerical characterization of a 2D Anderson localized mode

In order to investigate Anderson localization numerically, we consider an assembly of 2D point

scatterers randomly distributed in a cylinder of radius R. In order to compute the LDOS at

the central point rs, we illuminate the system by a source dipole p located at rs. The system is

illustrated in Fig. 7.1. The scatterers are described by their electric polarizability

αsca(ω) =
2

k2
Γsca

ωsca − ω − iΓsca/2
, (7.6)

where k = ω/c, ωsca is the resonance frequency and Γsca the linewidth. As discussed in Chap. 1

in 3D, this form of the polarizability describes non-absorbing scatterers and satisfies energy

conservation for 2D scatterers under TE illumination. We have fixed ωsca = 3× 1015 s−1 (visible

optical radiation) and Γsca = 5 × 1016 s−1 ≫ ωsca. With such a wide resonance, the scattering

cross-section of the scatterers is constant over the spectral range considered in the numerical

simulations below.
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R

p

αsca(ω)

Figure 7.1: Sketch of the system. (Black) Disordered coupled dipoles system; (Red) Illumination
by a source dipole p located at rs.

As explained in Appendix C (coupled dipoles method), the exciting field on scatterer number

i is given by the self-consistent equation

Ei = µ0ω
2G0(ri, rs, ω)p +

ω2

c2
αsca(ω)

∑

j 6=i

G0(ri, rj , ω)Ej , (7.7)

where ri is the position of scatterer number i. The 2D vacuum Green function for TE waves

reads

G0(r, r
′, ω) =

i

4
H

(1)
0 (k|r− r′|), (7.8)

where H
(1)
0 is the zero-order Hankel function of the first kind. For a system with N scatterers,

the linear system of N self-consistent equations can be solved numerically. Once the exciting

field on each scatterer is known, it is possible to compute the scattered field at rs and to deduce

the Green function of the system. The LDOS ρ(rs, ω) is then obtained from Eq. (7.3).

Let us consider one configuration of the random system, with N = 5000 scatterers in a

cylinder of radius R = 20µm. Two computed LDOS spectra, with the same bandwidth but

centered on two different central frequencies ωd
c = 2.7 × 1015 s−1 (diffusive regime) and ωl

c =

1.5 × 1015 s−1 (localized regime), are shown in Fig. 7.2(a) and 7.2(b), respectively. To choose

these two frequencies, we have estimated the localization length by

ξ = ℓs exp[πRe (keff)ℓs/2], (7.9)

with ℓs the scattering mean free path and keff the effective wavenumber in the medium [151, 34].

For a rough estimate, we have made the approximation keff ≈ k0 + i/(2ℓs), valid in the weak

scattering limit. In the spectrum shown in Fig. 7.2(a), one has ξ ≃ 84R and the sample is

in the diffusive regime. We observe a smooth profile corresponding to the intuitive picture of

a continuum of modes. Conversely, in Fig. 7.2(b), the localization length is ξ ≃ R/5 and the

sample is in the localized regime. We observe very sharp and well-separated peaks, each of them

being a signature of a localized mode. A peaked spectrum, characteristic of localized modes, is

found numerically on any configuration of the disorder, provided that ξ ≪ R. A zoom on one of



7.1. AN OPTICAL CAVITY MADE OF DISORDER: ANDERSON LOCALIZATION 115

−2 −1 0 1 2

x 10
13

0

5

10

−2 −1 0 1 2

x 10
13

0

1

2

x103

(a) Diffusive regime

ω − ω
d

c
(s−1)

ω − ω
l

c
(s−1)

ρ
(r

s
,ω

)/
ρ
0

ρ
(r

s
,ω

)/
ρ
0

(b) Localized regime

Figure 7.2: (a) LDOS spectrum centered at ωd
c = 2.7 × 1015 s−1 (diffusive regime). (b) LDOS

spectrum centered at ωl
c = 1.5 × 1015 s−1 (localized regime). A zoom on the area indicated

by red dashed lines is shown in Fig. 7.3.

the LDOS peaks, as displayed in Fig. 7.3, shows that it can be perfectly fitted by a Lorentzian

lineshape as in Eq. (7.4), demonstrating the relevance of this description. Importantly, every

peak we have found in this regime was perfectly fitted by Eq. (7.4), in agreement with the picture

of Anderson localization. Such a Lorentzian lineshape for localized modes is consistent with

measurements performed in disordered waveguides [4, 33]. The isolated Anderson localized mode

shown in Fig. 7.3 will be denoted by mode M in the following. It will be used to demonstrate

numerically the strong coupling regime. It is characterized by an eigenfrequency ωM ≃ 1.5 ×
1015 s−1, a linewidth ΓM ≃ 8× 109 s−1 (the quality factor QM ≃ 1.8× 105) and a Purcell factor

FP ≃ 36.
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Figure 7.3: Zoom on one peak in Fig. 7.2(b). Circles correspond to a fit by Eq. (7.4).
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7.2 Strong coupling to a 2D Anderson localized mode

7.2.1 Strong coupling condition for a TE mode in 2D

Let us consider a resonant scatterer, assumed on resonance with mode M (resonance frequency

ωs = ωM , described by its scalar polarizability

αS(ω) =
2c2

ω2

ΓR
s

ωM − ω − i(ΓR
s + ΓNR

s )/2
, (7.10)

where ΓR
s and ΓNR

s are, respectively, the radiative and intrinsic non-radiative linewidth. As

discussed in Chap. 1, this polarizability describes either a classical resonant scatterer (the non-

radiative linewidth corresponding to dissipation in the material), or a quantum two-level system

far from saturation (in this case ΓNR
s = 0). Note that ΓR

s also appears in the numerator. This is

an important feature of the scattering formalism. Radiation losses contribute to the linewidth

(denominator), but the oscillator strength is also proportional to ΓR
s (numerator) due to energy

conservation. The theoretical formalism described in Chap. 1 allows to derive the following

expression of the Rabi frequency

ΩR =

[

g2c −
{ΓNR

s − ΓM}2
16

]1/2

, (7.11)

where gc is the coupling constant, defined as1

gc = (ΓR
s ΓMFP/4)

1/2. (7.12)

In this expression, FP is the Purcell factor of mode M , ΓM its linewidth and ΓR
s the linewidth of

the emitter in vacuum. As discussed in Chap. 1, the strong coupling regime is reached when the

two new eigenmodes of the coupled system are no longer degenerated. This regime is reached if

the Rabi frequency is real, which requires

g2c ≥ (ΓNR
s − ΓM )2

16
. (7.13)

The spectral width Γ of the new eigenmodes reads

Γ =
ΓM + ΓNR

s

2
. (7.14)

Γ is the average of the intrinsic linewidths of the uncoupled systems. Let us remind that

Eq. (7.13) is not sufficient to ensure that the Rabi splitting is larger than the linewidth (which

is a necessary condition to observe Rabi oscillations in the time domain). One needs to satisfy

the more restrictive condition 2ΩR ≥ Γ, that reads

g2c ≥ (ΓNR
s )2 + Γ2

M

8
. (7.15)

1In 3D, the coupling constant differs by a factor
√
3, gc = (3ΓR

s ΓMFP/4)
1/2.
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7.2.2 Numerical observation of the strong coupling regime

To check the expected strong coupling, we use numerical simulations based on the coupled

dipole method. We consider the same system as in Fig. 7.2(a), and add at position rs a resonant

dipole scatterer (scatterer S), tuned to the resonance frequency ωM of the localized mode M

identified in Fig. 7.3. The polarizability of scatterer S is given by Eq. (7.10), with ΓNR
s = 0

(no intrinsic non-radiative losses). A sketch of the system is represented in Fig 7.4. The system

R

αS(ω)

αsca(ω)
E0(r,ω)

k0

Figure 7.4: Sketch of the system. (Black) Disordered coupled dipole cavity giving rise to mode
M ; (Blue) Resonant scatterer S placed at the center rs of the cavity; (Red) External illumination
by a plane-wave E0(r, ω).

is illuminated by an external plane-wave E0(r, ω) = E0 exp(ik0.r), where k0 = (ω/c)u0 is the

incident wavevector, directed by u0, a unit vector oriented in the plane transverse to the electric

field. A system of N self-consistent equations similar to (7.7) can be written

Ei = E0(ri, ω) +
ω2

c2
α(ω)

∑

j 6=i

G0(ri, rj , ω)Ej

+
ω2

c2
αS(ω)G0(ri, rs, ω)Es, (7.16)

where the exciting field Es on scatterer S is given by the additional equation

Es = E0(rs, ω) +
ω2

c2
α(ω)

N∑

j=1

G0(rs, rj , ω)Ej . (7.17)

Solving this linear systems with N+1 equations allows us to compute the induced dipole moment

of scatterer S

pS(ω) = ǫ0αS(ω)Es(rs, ω). (7.18)

We show in Fig. 7.5(a) the resulting spectrum for five different values of the radiative linewidth

ΓR
s (increasing from top to bottom). The Rabi splitting 2ΩR increases with ΓR

s , as expected from

theory since the coupling strength gc scales as (ΓR
s )

1/2. The dependence of the Rabi splitting
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Figure 7.5: (a) Spectra of the dipole moment |pS(ω)| of scatterer S for different values of the
radiative linewidth ΓR

s (from top to bottom ΓR
s = 1.5 × 108 s−1; 3.9 × 109 s−1; 7.5 × 109 s−1;

11× 109 s−1; 15× 109 s−1); (b) Frequency splitting in the spectrum of the dipole moment versus
ΓR
s . Solid line: Theoretical prediction by Eq. (7.11). Circles: Numerical simulations shown in

Fig. 7.5(a).

on ΓR
s extracted from the numerical simulations is shown in Fig. 7.5(b). Excellent agreement is

found with the theoretical prediction by Eq. (7.11).

7.3 Alternative formulation of the strong coupling criterion

We shall show that an alternative formulation of the strong coupling criterion can be given,

that is particularly relevant in the case of Anderson localization. Let us introduce the average

linewidth of the electromagnetic modes δω and the average mode spacing ∆ω. Normalized

linewidths Γ̂R
S = ΓR

s /∆ω and Γ̂M = ΓM/δω can be introduced, respectively for scatterer S and

mode M . Γ̂R
S = 1 means that the bandwidth of the scatterer covers on average only one mode of

the disordered medium (the linewidth of the resonant scatterer can be chosen or tuned to satisfy

this condition). When scatterer S is resonant with the localized mode M , the strong coupling
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criterion given by Eq. (7.15) becomes

FP ≥ 1

2

Γ̂M

Γ̂R
S

g , (7.19)

where g = δω/∆ω is the normalized Thouless conductance, a key concept in the theory of

Anderson localization [152, 32]. The localized regime corresponds to g < 1 [this condition

describes statistically a spectrum as that in Fig. 7.2(b)]. The inequality shows that the smaller

the conductance, the smaller the critical Purcell factor permitting to enter the strong coupling

regime. This confirms the idea that deeply localized modes in 2D or quasi-1D [147, 148, 149] are

particularly suitable to achieve strong coupling in the optical regime in condensed matter. For

Γ̂R
S ≃ 1 and Γ̂M ≃ 1 (this condition is satisfied on average for the localized modes), the strong

coupling criterion takes the remarkable simple form

FP ≥ g/2. (7.20)

This simple relation directly connects the Purcell factor (a central quantity in cavity QED) and

the Thouless conductance (a statistical concept in transport theory). Let us remark that the

inverse of the Thouless conductance is statistically the analogue of the finesse of a standard

Fabry-Pérot cavity that enters standard cavity QED analyses [14, 13]. Once localization is

reached, an Anderson localized mode does not behave differently from any cavity mode. Hence,

the real challenge to reach strong coupling to Anderson localized modes is to reach the Anderson

localized regime.

7.4 Conclusion

In conclusion, we have demonstrated numerically the strong coupling regime between a resonant

scatterer and an Anderson localized mode for electromagnetic waves in two dimensions. The

numerical results are in perfect agreement with the coupled-mode theory presented in chapter 1.

The strong coupling threshold has been expressed in terms of the Thouless conductance and the

Purcell factor. From the fundamental point of view, Eq. (7.19) establishes an interesting con-

nection between concepts in transport theory and cavity QED. On the practical side, it shows

that once localization is reached (g < 1), the strong coupling criterion is not restrictive. For

a resonant scatterer with a linewidth on the order of the averaged mode spacing (i.e. that on

average is in coincidence with only one mode), the criterion is equivalent to having a Purcell

factor FP > 1. Although this criterion is rigorous only statistically, it provides a simple rule

that could be useful in practice for the design and/or the analysis of future experiments aim-

ing at demonstrating or using (classical or quantum) strong coupling with Anderson localized

electromagnetic waves.

An important message of our work is that a LDOS spectrum fully characterizes the local-

ization regime of a disordered sample, as proposed initially in Ref. [149]. Eq. (7.19) gives a rule
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of the thumb to design an experiment using the same principle as the numerical procedure pre-

sented in section 7.3. Two-dimensional localization of electromagnetic waves have been reported

or predicted in several systems. In Ref. [34], two thin copper layers, one of them containing ran-

domly located dielectric scatterers, were shown to exhibit localized modes in the microwave

regime. A theoretical study predicted that high-quality factor modes could be designed in dis-

ordered photonic crystals [153]. Recently, it was predicted that short-range correlated disorder

in 2D photonic structures could help to design localized modes [154]. Our work paves the way

towards an experimental observation of the strong coupling regime on such systems.

Finally, one major interest of our theoretical formalism is to be easily generalizable to other

kinds of waves, such as acoustic waves. At Institut Langevin, Fabrice Lemoult and coworkers

have demonstrated subdiffraction localization of acoustic waves in a Helmoltz resonator crys-

tal. [155]. Isolating one eigenmode of the acoustic field in such a system could lead to the

observation of weak and strong coupling with one resonator, as described here.



General conclusion and perspectives

In this thesis, we have studied different aspects of light emission and scattering in complex media.

Theoretical and numerical approaches have been developed in close proximity to experiments.

Many of our results are at the crossing between nanophotonics and light transport in strongly

scattering media. Here, we summarize the main results, and present some perspectives.

• In Chap. 2, we have computed numerical maps of the LDOS and fluorescence signal in the

near field of a metallic nanoantenna, in good agreement with experiments performed at

Institut Langevin. Using our numerical model of the experiment, we have explained the

spatial resolution observed in the LDOS maps, below the size of the fluorescent nanosources

(this was also observed in Ref. [64]). These results pave the way towards a full experimental

characterization of nanoantennas for the control of fluorescent emitters. Following this

path, the next step is to access experimentally the radiative and non-radiative LDOS, that

are the two missing parameters to fully describe the emission of an electric dipole on these

structures. Work in this direction is already in progress at Institut Langevin.

• In Chap. 3, we have computed numerically the spatial structure of the LDOS in the near

field of disordered metallic films. We have recovered the enhanced LDOS fluctuations, that

were observed experimentally, and interpreted as a signature of the apparition of localized

modes in Ref. [3]. We have showed numerically that the “hot-spot” structure observed

experimentally [19] is chiefly associated to non-radiative modes. This work allows a better

characterization of disordered metallic films. In particular, the non-radiative nature of the

hot-spot structure makes these structures great platforms for future basic experiments in

nano-optics. As an example, one idea is to use the non-radiative modes supported by the

films to perform Förster Resonant Energy Transfer (FRET) at distances larger than the

Förster radius.

• In Chap. 4, we have introduced the Cross Density Of States (CDOS) as a new tool to

describe quantitatively the average spatial extent of eigenmodes in a complex photonic

or plasmonic structure. In other words, the CDOS characterizes the intrinsic spatial

coherence of a given system. Using the CDOS, we have demonstrated an overall spatial

squeezing of the eigenmodes near the percolation threshold of disordered metallic films.
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The concept of CDOS is a new pragmatic approach of light localization, that does not

need any description of the underlying localization mechanism. It quantifies the ability

of a nanostructure to connect two points coherently, i.e. via at least one eigenmode.

Therefore, following the idea mentioned earlier, it should be useful, e.g., to design and

understand FRET experiments taking advantage of non-radiative eigenmodes in complex

media.

• In Chap. 5, we have shown the existence of a long-range correlation between the reflected

and transmitted speckles generated by illuminating a slab of strongly scattering media with

a plane wave. Interestingly, the explicit calculation of this correlation within the ladder

approximation leads to a negative correlation (assuming diffusive transport). This implies

that a bright speckle spot in the reflected speckle will be more likely associated with a

dark spot in the transmitted speckle at the same transverse position. A collaboration with

experimentalists has started in order to observe this new correlation. Possible sophisti-

cations of the theoretical model could involve taking into account the finite size of the

incident beam [121], or numerical simulations going beyond the diffusion approximation.

As a speculative but stimulating perspective, experiments of imaging and focusing through

complex media often involve a CCD camera on the output size of the medium (e.g. to run

optimization algorithms [156]). Finding a way to use the statistical connection between

reflected and transmitted speckle to replace this feedback would be a real breakthrough,

leading to noninvasive imaging setup, as proposed recently [127].

• In Chap. 6, we have derived the equality between the normalized fluctuations of the LDOS

and the C0 correlation – first derived in Ref. [31] – using energy conservation arguments.

This approach generalizes this equality to finite statistically isotropic media, in any regime

of transport (including Anderson localization). We have computed numerically LDOS dis-

tributions in weakly scattering media, and showed that the long-tail behavior is caused by

the interaction of the source with its near-field environment. An experimental observation

of this long tail behavior of the LDOS distribution in a strongly scattering media has been

reported since this work was published [2, 129]. As a perspective, it could be interesting

to study the sensitivity of C0 (or the LDOS fluctuations) to the Anderson localization

transition. It was shown experimentally in acoustic that C0 was correlated to the anoma-

lous multifractal exponent [130], that is a signature of the transition [135, 136]. Anderson

localization of light in three-dimension is a very ill-understood phenomenon, and is even

still a controversial issue [137]. We believe that LDOS statistics can be a very sound tool

to probe Anderson localization. Numerical studies, using the same method as in this work,

are in progress.

• In Chap. 7, we have derived numerically the ability of a 2D scattering medium in the

Anderson localized regime to reach strong coupling with an emitter. Using the theory
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presented in Chap. 1, we have expressed the strong coupling condition in terms of the

Thouless conductance and the Purcell factor, showing an interesting connection between

concepts in transport theory and cavity QED. One important message is that, as far as

a strong coupling experiment is concerned, an Anderson localized mode behaves exactly

as a cavity mode, and that the parameters entering the strong coupling criterion can

all be deduced from a spectrum of the LDOS. This work should pave the way towards

an experimental observation of strong coupling between a 2D disordered system in the

localized regime and an emitter.
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Appendix A

Lippmann-Schwinger equation

The Lippmann-Schwinger equation is an integral formulation of the electric field in a scattering

medium as a function of the Green function of a reference medium Gref . It is introduced in two

different situations in this thesis:

• In Chap. 1, it describes the interaction between a small particle and its environment. The

reference medium in this case is the environment in the absence of the particle.

• In Part II, it is the fundamental equation of the volume integral method (described in

Appendix E), used to solve the Maxwell equations in 3D metallic nanostructures. In this

case, the reference medium is a homogeneous medium (vacuum in all calculations presented

in this thesis), where lies a metallic volume, described by a dielectric constant obtained

from Ref. [67].

Let a reference medium described by the dielectric constant ǫref(r, ω) and its Green function

Gref(r, r
′, ω), solution of

∇×∇×Gref(r, r
′, ω)− k2ǫref(r, ω)Eref(r, r

′, ω) = δ(r− r′)I. (A.1)

In a region with no source1, the electric field in the reference medium (reference field) satisfies

the propagation equation

∇×∇×Eref(r, ω) − k2ǫref(r, ω)Eref(r, ω) = 0, (A.2)

while the electric field in the medium of interest (total field) satisfies

∇×∇×E(r, ω)− k2ǫ(r, ω)E(r, ω) = 0. (A.3)

It is convenient to decompose the field into the reference field and a term that we define as the

scattered field

E(r, ω) = Eref(r, ω) +Es(r, ω). (A.4)

1We do not consider a region with sources here for the sake of simplicity, but the exact same equation can be
derived in a region with sources.
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One can transform Eq. (A.3) into

∇×∇×E(r, ω)− k2ǫref(r, ω)E(r, ω) = k2 [ǫ(r, ω)− ǫref(r, ω)]E(r, ω). (A.5)

Substracting Eq. (A.2) to Eq. (A.5), one sees that the scattered field satisfies

∇×∇×Es(r, ω)− k2ǫref(r, ω)Es(r, ω) = k2 [ǫ(r, ω) − ǫref(r, ω)]E(r, ω). (A.6)

The scattered field satisfies Eq. (A.6), a propagation equation in the reference medium, with a

source term proportional to the total field. It can be expressed using the Green function of the

reference medium Gref(r, r
′, ω)

Es(r, ω) = k2
∫
[
ǫ(r′, ω)− ǫref(r

′, ω)
]
Gref(r, r

′, ω)E(r′, ω) dr′. (A.7)

Using Eq. (A.4), the total field at point r reads

E(r, ω) = Eref(r, ω) + k2
∫
[
ǫ(r′, ω)− ǫref(r

′, ω)
]
Gref(r, r

′, ω)E(r′, ω) dr′. (A.8)

Eq. (1.22) is called the Lippmann-Schwinger equation.



Appendix B

Regularized Green function and
eigenmode expansion in weakly lossy
systems

Here, we first introduce the regularized Green function, and derive its expression in the case

of vacuum. Then, we derive the expansion of the regularized Green function on the set of

eigenmodes of a weakly lossy system. Those results are used to describe the coupling of a

resonant scatterer to an eigenmode based on the LDOS in Chaps. 1 and 7.

B.1 Regularized Green function

The aim of this section is to introduce the regularized Green function. To do so, we concentrate

on the integral
∫

δV
G0(r, r

′, ω) dr, (B.1)

where G0(r, r
′, ω) is the dyadic Green function of the propagation equation of electromagnetic

waves in free space and δV is a small volume surrounding r′. In Chap. 1, this integral is used

for the derivation of the polarizability of a scatterer in free space. This physical example will

guide us in this appendix.

B.1.1 General case of an arbitrary volume δV

For two points r 6= r′, G0(r, r
′, ω) is given by

G0(r, r
′, ω) =

exp(ikr)

4πr

[

(I− uu) +
ikr − 1

(kr)2
(I− 3uu)

]

, (B.2)

where r = |r − r′|, u = (r − r′)/r, I is the unit dyadic, uu is the tensorial product of u with

itself and k = ω/c. This expression exhibits a non-integrable singularity when r = r′. Though,
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for certain shapes of δV tending to zero, it is well-defined. Mathematically, the dyadic Green

function needs to be written

G0(r, r
′, ω) = PV

{
exp(ikr)

4πr

[

(I− uu) +
ikr − 1

(kr)2
(I− 3uu)

]}

− L

k2
δ(r − r′), (B.3)

where PV denotes the principal value operator, and L is a dyadic that depends on the shape of

δV (expressions of L for various shapes of δV are listed in Ref. [36]). Eq. (B.3) can be integrated

over δV ∫

δV
G0(r, r

′, ω)dr = Greg
0 (r, r, ω)δV − L

k2
, (B.4)

where Greg
0 (r, r, ω) is the regularized Green function (by definition). Rigorously, the limit of the

integral defined by Eq. (B.1) reads

∫

δV →0
G0(r, r

′, ω) dr = − L

k2
. (B.5)

Using this result to derive the polarizability of a scatterer in vacuum, one obtains the approached

expression in the quasistatic limit Eq. (1.26). As commented in Chap. 1, this expression does

not satisfy energy conservation. This is due to the fact that physically, a scatterer cannot be

pointlike but must have a finite spatial extent. To correct this approximation, one needs to

compute the regularized Green function Greg(r, r, ω).

B.1.2 Case of a spherical volume δV

Let us consider a spherical volume δV , and denote by R its radius. To compute the regularized

Green function, let us consider two points r 6= r′. In this case, the dyadic Green function of

vacuum is non-singular and reads

G0(r, r
′, ω) =

eikr

4πr

[

(I− uu) +
ikr − 1

(kr)2
(I− 3uu)

]

(B.6)

=
k

4π

cos(kr) + i sin(kr)

(kr)3
[
(kr)2 (I− uu) + (ikr − 1) (I− 3uu)

]
. (B.7)

Separating real and imaginary part yields

ReG0(r, r
′, ω) =

k

4π(kr)3
{
cos(kr)

[
(kr)2 (I− uu)− (I− 3uu)

]
− sin(kr)(kr) (I − 3uu)

}
,

(B.8)

ImG0(r, r
′, ω) =

k

4π(kr)3
{
sin(kr)

[
(kr)2 (I− uu)− (I− 3uu)

]
+ cos(kr)(kr) (I − 3uu)

}
.

(B.9)

In the limit where r → 0,

ReG0(r, r
′, ω) ≈

[
3uu− I

4πk2

]
1

r3
(B.10)
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and

ImG0(r, r
′, ω) ≈ k

6π
I. (B.11)

Integrating the real part of the Green function on an infinitely small spherical volume is com-

plicated and performed carefully in Refs. [157] and [35]. It yields1

Re

∫

δV →0
G0(r, r

′, ω) dr =
−I

3k2
. (B.12)

Integrating the imaginary part of G0 yields

Im

∫

δV→0
G0(r, r

′, ω) dr =
kδV

6π
I. (B.13)

From Eqs. (B.4), (B.12) and (B.13), the regularized Green function of vacuum can be deduced

Greg
0 (r, r, ω) = i

k

6π
I. (B.14)

Therefore, in the case of a spherical particle, Eq. (B.5) transforms into

∫

δV→0
G0(r, r

′, ω) dr =

(

− 1

k2
+ i

k

6π

)

I. (B.15)

Using the corrected integral Eq. (B.15), one obtains the expression of the dynamic polarizability

of a particle in vacuum Eq. (1.25), that satisfies energy conservation.

B.2 Eigenmode expansion of the regularized Green function

In this section, we use the normal set of eigenmodes of the propagation equation of the electric

field for a non-lossy system embedded in a closed cavity to expand the Green function of this

equation. We generalize this expansion to the case of weakly lossy environment based on a

phenomenological approach. In this thesis, we use this expansion to fit the LDOS of a weakly

lossy system in Chap. 1, and to give a physical picture to the Cross Density Of States (CDOS)

introduced in Chap. 4.

B.2.1 Case of a closed non-absorbing medium

The following derivation was first proposed in Ref. [37]. Let us consider a closed system with

no absorption (the dielectric function ǫ(r) is real) and no dispersion (ǫ(r) does not depend on

ω). In such a system, one can introduce a discrete set of eigenmodes {en} of the vector wave

equation that obey

∇×∇× en(r)− ǫ(r)
ω2
n

c2
en(r) = 0, (B.16)

1NB: Using the identity
∫

4π
uu dΩ = (4π)/3 I here might be tempting, since the term I − 3uu in Eq. (B.10)

seems to vanish with the angular integration. Though, one needs to be extremely careful about inverting integrals
and limits here, and this reasoning is thus incorrect.
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where ωn is the resonant frequency of eigenmode n. This equation can be rewritten in the form
[

1
√

ǫ(r)
∇×∇× 1

√

ǫ(r)

]

un(r) =
ω2
n

c2
un(r) (B.17)

with un(r) =
√

ǫ(r)en(r). Eq. (B.17) is an eigenvalue equation with an Hermitian operator,

that admits a set of orthogonal solutions (eigenmodes) satisfying the orthogonality relationship
∫

um(r).u∗
n(r)d

3r = δmn. (B.18)

As a result, the orthogonality condition for the eigenmodes solution of Eq. (B.16) reads
∫

|ǫ(r)|em(r).e∗n(r)d
3r = δmn. (B.19)

Our goal is to expand the Green function on the basis of eigenmodes of Eq. (B.16), in the form

G(r, r′, ω) =
∑

n

An(r
′, ω)en(r, ω). (B.20)

The Green function satisfies

∇×∇×G(r, r′, ω)− ǫ(r)
ω2

c2
G(r, r′, ω) = δ(r − r′)I (B.21)

Inserting Eq. (B.20) into Eq. (B.21) yields

∑

n

An(r
′, ω)

[

∇×∇× en(r)− ǫ(r)
ω2

c2
en(r)

]

= δ(r− r′)I (B.22)

which, using Eq. (B.16), leads to

∑

n

An(r
′, ω)

(
ω2
n − ω2

)
ǫ(r)en(r) = c2δ(r− r′)I (B.23)

Multiplying both sides by e∗m(r′), integrating over r and using the orthogonality condition leads

to

(ω2
n − ω2)An(r

′, ω) = c2e∗n(r
′) (B.24)

This equation only defines the distribution An(r
′, ω) modulo two complex constants ̟ and ̟′.

An(r
′, ω) = c2e∗n(r

′)

{

PV

[
1

ω2
n − ω2

]

+̟δ(ω − ωn) +̟′δ(ω + ωn)

}

(B.25)

Not all distributions described by Eq. (B.25) have a physical meaning. One way to set ̟ and ̟′

is to consider the case of a very slowly damped harmonic oscillator. Taking the limit when the

damping tends to zero should give the exact physical result of the ideal case of a non-damped

oscillator. Mathematically speaking, we use the identity

lim
Γ→0

1

ω2
n − ω2 − iΓω

= PV

[
1

ω2
n − ω2

]

+
iπ

2ωn
δ(ω − ωn)−

iπ

2ωn
δ(ω + ωn) (B.26)
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which allows us to set ̟ = iπ/(2ωn) and ̟′ = −iπ/(2ωn). Finally, we obtain the expression of

the physical distribution solution of Eq. (B.24)

An(r
′, ω) = c2e∗n(r

′)

{

PV

[
1

ω2
n − ω2

]

+
iπ

2ωn
δ(ω − ωn)−

iπ

2ωn
δ(ω + ωn)

}

. (B.27)

Thus, dropping the term proportionnal to δ(ω + ωn) corresponding to non-physical negative

frequencies, the Green function reads

G(r, r′, ω) =
∑

n

c2e∗n(r
′)en(r)

{

PV

[
1

ω2
n − ω2

]

+
iπ

2ωn
δ(ω − ωn)

}

(B.28)

For sake of brevity, this expression is usually written

G(r, r′, ω) =
∑

n

c2e∗n(r
′)en(r)

ω2
n − ω2

, (B.29)

where the expansion into the principal value and the delta distribution is implicit. Note that

this decomposition is non-singular when r = r′. Eq. (B.30) actually gives the expression of the

regularized Green function, where the non-integrable singularity at the origin has been removed.

This was shown in Ref. [158]. Here, we admit that the expansion obtained here is valid for the

regularized Green function, so that

Greg(r, r′, ω) =
∑

n

c2e∗n(r
′)en(r)

{

PV

[
1

ω2
n − ω2

]

+
iπ

2ωn
δ(ω − ωn)

}

(B.30)

B.2.2 Phenomenological approach of lossy environments

In many cases, losses have to be taken into account. Dealing with the definition of eigenmodes

in open or lossy media is a very complex issue since the operator considered in Eq. (B.17) is

not hermitian anymore [37]. Nevertheless, eigenmode attenuation can be accounted for using

a phenomenological approach [12]. One introduces a eigenmode damping rate γn and modifies

Eq. (B.30) in the following way

Greg(r, r′, ω) =
∑

n

c2
e∗n(r

′)en(r)
ω2
n − ω2 − iγnω

. (B.31)

One can remark, using Eq. (B.26), that the limit when all γn tend to zero of this phenomeno-

logical approach is the expansion of Eq. (B.30). This expansion being valid for weak losses,

the linewidth γn introduced in Eq. (B.31) is very small compared to the resonant frequency ωn.

Hence, a very good approximation of Eq. (B.31) is given by

Greg(r, r′, ω) =
c2

2ωn

∑

n

e∗n(r
′)en(r)

ωn − ω − iγn/2
. (B.32)
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Appendix C

Coupled Dipoles method

We give here a detailed presentation of the coupled dipoles method, that is used to compute the

Green function of a disordered system in Chaps. 7 (in 2D with transverse electric polarization)

and 6 (in 3D). In the coupled dipoles method, a disordered system is modeled by an assembly of

point scatterers randomly located inside a geometrical contour. The scatterers are supposed to

be lying in a host medium described by its Green function G0, that connects the field radiated

at point r by a dipole located at r′ by

E(r, ω) = µ0ω
2G0(r, r

′, ω)p. (C.1)

A typical system obtained for a spherical geometry is shown in Fig. (C.1). Each scatterer is

point 

scatterers

exclusion

volume

host

medium

Figure C.1: Coupled dipoles system. Note that an exclusion volume needs to be imposed around
the source for the dipolar approximation to remain valid.

described by its polarizability α(ω), that connects the exciting field Eexc at its position to its

induced dipolar momentum p by

p = ǫ0α(ω)E
exc. (C.2)

Considering an external illumination E0, the exciting field Eexc
j at the position rj of scatterer

number j reads

Eexc
j = E0(rj) +

ω2

c2
α(ω)

∑

i 6=j

G0(rj , ri, ω)E
exc
i . (C.3)
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Eq. (C.3) actually is a set of N coupled linear equations which N unknown are the exciting fields

Eexc
j at the position of all scatterers. Inverting this system, one has access to these exciting fields,

and thus to the field at any point r of space, via Eq. (C.4)

E(r, ω) = E0(r, ω) +
ω2

c2
α(ω)

N∑

j=1

G0(r, rj , ω)E
exc
j . (C.4)

Illuminating the system by a source dipole p located at rs corresponds to takes an illuminating

field E0(r, ω) = µ0ω
2G0(r, rs, ω). In this configuration, illustrated in Fig. C.2, one can compute

the Green function, and hence the LDOS at the source position rs. Eqs. (C.3) and (C.4) remain

exclusion

volume

point

dipole

Figure C.2: Coupled dipoles system illuminated by a point dipole. Note that an exclusion
volume needs to be imposed around the source for the dipolar approximation to remain valid.

valid if each scatterer is treated within the dipolar approximation. In this thesis, we only

consider toy models with rigorously pointlike dipolar scatterers, so that no approximation is

done. However, the coupled dipoles method holds for non pointlike scatterers, as long as they

remain distant enough from each other, as well as from any source of illumination. In this case,

one needs to be careful to only compute the field far away enough from every scatterer. In

practice, a minimum distance between the scatterers corresponding to twice their spatial extent

is sufficient to satisfy the dipolar approximation, which is hence not a very severe constraint.

Apart from this restriction, the coupled dipoles method allows one to solve the Maxwell

equations with no approximation. In particular, it takes into account multiple scattering, po-

larization, retardation and near-field interactions, which is a crucial point for our work.



Appendix D

Simulation of the growth of
disordered metallic films: the KMC
2D algorithm

In this appendix, we describe the algorithm that we implemented to simulate the growth of

disordered metallic films. This algorithm was first described in the PhD thesis of Jérémie

Aubineau [21]. Figure D.6 sums up the general idea of the algorithm.

D.1 Description of the algorithm

D.1.1 Vocabulary and notations

Our vocabulary and notations are summarized in figure D.1. We consider a Ndim×Ndim matrix,

where each element is 1 if the corresponding site is occupied by a gold particle (we will describe

more precisely the concept of gold particle later), and 0 if the site is empty. We denote by r0

N 
dim

diffusion

deposition

r  : size of a site0

gold "particle"

Figure D.1: Geometry of the numerical model.
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the lateral size of one site and p the expected filling fraction at the end of the generation. At

every iteration of the algorithm, either a new particle is deposited on a free random site or a

previously deposited particle diffuses to a more stable neighbour site.

We call process a deposition or a diffusion. As a convention, we chose the label k = 0 for

the deposition of a particle and labels k from 1 to 8 for the 8 possible diffusions to a closest

neighbour (see figure D.2)

1 2 3

4 5

6 7 8

Figure D.2: Labels of possible diffusions for a particle from k = 1 to 8.

D.1.2 Interaction potential

The physics of the algorithm lies in the interaction between the diffusing gold particles which

allows us to compute the probabilities of every process at every iteration. Interactions between

transition metal atoms are well described by the interaction potential given by Eq. (D.1), based

on a tight-binding second-moment model. The constant r0 is the lattice constant of the metal,

rij is the distance between atoms i and j, and the constants A, B, p, q are tabulated [81].

Ei = A
∑

j 6=i

e−p(rij/r0−1) −B




∑

j 6=i

e−2q(rij/r0−1)





1/2

, (D.1)

We assume that the diffusing particles are clusters of Nato gold atoms interacting which each

others. The calculation of the interaction between clusters is a very complicated problem, which

leads us to make the assumption of a scaling law between the atomic interaction potential and

the interaction potential between particles. Thus, we will use the potential given by Eq. (D.1)

for the particles, calling r0 the lattice constant of the grid and rij the distance between two

particles. In this scaling, there is no reason for the constants A, B, p, q to remain the same as

in the atomic potential. We will discuss this later.

Another assumption is to consider only the interactions of a particle with its three kinds of

closest neighbours. Figure D.3 shows that there are 12 closest neighbours : 4 at distance r0

(type A), 4 at distance r0
√
2 (type B), and 4 at distance 2r0 (type C). Denoting by NA, NB

and NC respectively the number of neighbours of type A, B and C of a particle placed in site i,

the interaction energy reads

Ei = A
[

NA +NBe
−p(

√
2−1) +NCe

−p
]

−B
[

NA +NBe
−2q(

√
2−1) +NCe

−2q
]1/2

(D.2)
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A

A

A

AA

B B

BB

C

C

C

C

r
0

Figure D.3: Closest neighbours of a particle.

D.1.3 Energy barrier for particle diffusion

The diffusion of a particle from a site i to a neighbour site j is a jump allowed by its thermal

energy kBT , where kB is the Boltzman constant and T the temperature. A major issue in the

algorithm is to evaluate the energy barrier corresponding to this jump.

First, we assume that a particle can only diffuse to a more stable site, i.e. to a site of

lower energy (figure D.4). In reality, jumping from site i to site j requires some energy even if

E
i

E
j E

i

E
j

Allowed diffusion Forbidden diffusion

Figure D.4: Diffusion processes.

Ei ≥ Ej (see figure D.5). The calculation of the corresponding energy barrier ∆Ei→j is not a

simple problem, even for atoms [79, 159, 80]. We consider that this barrier can be evaluated

using Eq. (D.3), where α is a dimensionless constant that accounts for the interaction with the

substrate and the rescaling of the potential.

∆Ei→j = α (Ei − Ej) (D.3)

D.1.4 Choice of a process

At each iteration of the algorithm, one process is chosen randomly. To do so, one needs to list all

available processes, and to define a probability for each of them. Let us define non-normalized



140 APPENDIX D. SIMULATION OF THE GROWTH OF DISORDERED FILMS

E
i

E
j

ED i  j

Figure D.5: Diffusion to a more stable site, taking into account the energy barrier ∆Ei→j.

probabilities P ′
k for each process. The deposition probability is defined as

P ′
0 = F.Ndep, (D.4)

where F is a constant (with dimension s−1) modeling the experimental deposition rate and Ndep

is the number of particles that remains to be deposited in order to reach the prescribed filling

fraction.

The probability for a particle initially located at site i to k-diffuse to site j is given by

Eqs. (D.5) and (D.6).

p′k,i = 0 if Ei < Ej (D.5)

p′k,i ∝ e−∆Ei→j/kBT if Ei ≥ Ej. (D.6)

Hence, the probability to perform a diffusion instead of a deposition is given by

P ′
k =

N2
dim∑

n=1

p′k,n. (D.7)

Finally, every probability is normalized

Pk =
P ′
k

∑8
k=0 P

′
k

. (D.8)
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KMC algorithm

Initialization

Choice of a process k given the probabilities P

(k=0 : deposition ; k=1 , ... , 8 : diffusion)

k=0 k=1,...,8

Random choice of site number n

(n=1,...,N    ) in the griddim

2
Random choice of site number n

(n=1,...,N    ) containing a 

particle able to k-diffuse given

the probabilities p

dim

2

site n is 

occupied site n is 

free

Deposition Diffusion

Update of the probabilities P  of every process k

 and p   of every k-diffusion taking into account 

the modification of the grid

No particule left 

to deposit 

or able to diffuse

Not all the particles have been deposited

or some particles still can diffuse

End

k

k,n

k,n

k

Figure D.6: General description of the algorithm.
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Appendix E

Volume Integral method

In this Appendix, we present our numerical method to solve the Maxwell equations on 3D

nanostructures. We have developed an exact volume integral method based on the Lippmann-

Schwinger equation, that allows us to compute the Green function of nanostructures with no

approximation but the discretization of the volume. In particular, we take into account polar-

ization, retardation and near-field effects.

E.1 Weyl expansion of the Green function

Before introducing the volume integral method, we need to present the Weyl expansion of the

Green function of a non-absorbing homogeneous medium described by its real dielectric constant

ǫh. This medium will be referred to as the host medium.

E.1.1 Spatial Fourier transform

Considering monochromatic current sources j(r, ω), the propagation equation of the electric field

in the host medium reads

∇×∇×E(r, ω)− ǫh
ω2

c2
E(r, ω) = −iωµ0j(r, ω) (E.1)

In the following, we will denote k = ω/c and kh =
√
ǫhk. The Green function of the host medium

Gh is defined as the solution of

∇×∇×Gh(r, r
′, ω)− khGh(r, r

′, ω) = δ(r− r′)I, (E.2)

that satisfies an outgoing wave condition. Since the medium is invariant by translation, Gh only

depends on R = r− r′ and one can Fourier transform Eq. (E.2). Let us denote k the conjugate

coordinate of R in Fourier space. Eq. (E.2) transforms into

ik× ik×Gh(k, ω)− khGh(k, ω) = I. (E.3)
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Hence, Gh reads

Gh(k, ω) =
[(
k2 − k2h

)
I− k⊗ k

]−1
(E.4)

The expression of Gh can be guessed using an integer series expansion.

Gh(k, ω) =
1

k2 − k2h

[

I− k⊗ k

k2h

]

(E.5)

A matrix multiplication confirms that Eq. (E.5) is the correct inverse required in Eq. (E.4), and

hence the correct spatial Fourier transform of Gh.

E.1.2 Weyl expansion

We want to compute Gh(kx, ky, z, ω) the spatial Fourier transform along x and y (coordinates

of R) of the host medium Green function. To do so, we perform the inverse Fourier transform

of Eq. (E.5) along the z coordinate. Let us denote kx, ky and kz respectively the conjugate

coordinates of x, y and z in the Fourier space.

Gh(kx, ky , z, ω) =

∫ ∞

−∞
Gh(k, ω)e

ikzz dkz
2π

(E.6)

=

∫ ∞

−∞

1

k2 − k2h

[

I− k⊗ k

k2h

]

eikzz
dkz
2π

(E.7)

Let us denote k+z the complex that satisfies (k+z )
2 = k2h−k2x−k2y and Im(k+z ) ≥ 0. The following

identities can be computed from the residue method.
∫ ∞

−∞

eikzz

k2z + k2x + k2y − k2h

dkz
2π

=
i

2k+z
eik

+
z |z| (E.8)

∫ ∞

−∞

kze
ikzz

k2z + k2x + k2y − k2h

dkz
2π

=
isgn (z)

2
eik

+
z |z| (E.9)

∫ ∞

−∞

k2ze
ikzz

k2z + k2x + k2y − k2h

dkz
2π

=
ik+z
2

eik
+
z |z| + δ(z) (E.10)

Using Eqs. (E.8), (E.9) and (E.10), one can transform Eq. (E.6) into

Gh(kx, ky, z, ω) = PV

{
i

2k+z k2h
eik

+
z |z|M

}

− δ(z)

k2h
ez ⊗ ez. (E.11)

where PV denotes the principal value operator and M the dyadic given by

M =





k2h − k2x −kxky −sgn (z)k+z kx
−kxky k2h − k2y −sgn (z)k+z ky

−sgn (z)k+z kx −sgn (z)k+z ky k2x + k2y



 , (E.12)

where sgn (z) denotes the sign of a real z. The spatial expansion of the host medium spatial

Green function in terms of its Fourier transform coefficients along coordinates x and y is called

its Weyl expansion. It reads

Gh(R, ω) =
i

2k2h

{
∫ ∞

−∞

∫ ∞

−∞
M

ei[kxX+kyY+k+z |Z|]

k+z

dkx
2π

dky
2π

}

− δ(R)

k2h
ez ⊗ ez (E.13)
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E.2 The Volume Integral method

E.2.1 The Lippmann-Schwinger equation

We consider a volume V filled with a homogeneous material described by a dielectric constant

ǫ(ω)1. The system is lying in a homogeneous host medium described by its dielectric constant ǫh

and its Green function Gh. Considering sources radiating an incident field E0(r, ω), the electric

field at any point r obeys the Lippmann-Schwinger equation (see Appendix A)

E(r, ω) = E0(r, ω) + k2[ǫ(ω)− ǫh]

∫

V
Gh(r, r

′, ω)E(r′, ω)dr′. (E.14)

In order to solve this equation numerically, we discretize V into cells of size ∆, and assume that

the electric field is constant in each cell (the volume of cell number j will be denoted by Vj). As

far as the Green function is concerned, we define

Gint
ij =

∫

Vj

Gh(ri, r
′, ω) dr′. (E.15)

Since the expression of Gh is analytical, it is possible to consider it constant over the cell, or to

integrate it analytically to accelerate convergence. Here, we only present the approach with the

analytical integration. Reinserting Eq. (E.15) into Eq. (E.14), one obtains the linear system of

N equations satisfied by the values of the electric field inside each cube, denoted Ei = E(ri, ω)

{
I− k2 [ǫ(ω)− ǫh]G

int
ii

}
Ei − k2 [ǫ(ω)− ǫh]

∑

j 6=i

Gint
ij Ej = E0(ri, ω). (E.16)

The solution leads to the expression of the three components of the electric field Ei in cell

number i, for all i.

E.2.2 Analytical integration of the Green function over the unit cells

To accelerate convergence, one can analytically integrate the Green function of the homogeneous

medium. To do so, one has to perform a Weyl expansion and to work in the Fourier space. The

approach detailed here is largely inspired from Ref. [160].

Calculation of Gint
ij

When i 6= j, no singularity is involved and one can simply integrate the expression ofGh(ri, r
′, ω)

[Eq. (E.8)] in direct space over r′.

Gh(ri, r
′, ω) =

eikh|ri−r
′|

4π|ri − r′|

{

I−
(
ri − r′

)
⊗
(
ri − r′

)
+

(
ikh|ri − r′| − 1

(kh|ri − r′|)2
)
[
I− 3

(
ri − r′

)
⊗
(
ri − r′

)]
}

(E.17)

1The case of a non-homogeneous dielectric constant is not described here, but our formalism can be trivially
generalized to deal with this situation.
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Calculation of Gint
ii

Let us denote Vj the volume of the unit cell centered at rj and ∆ the volume of the one centered

at r = 0. Using the change of variable R = rj − r′ and knowing that Gh(r, r
′, ω) only depends

on r− r′ (translational invariance of the host medium), one obtains

Gint
ii =

∫

Vi

Gh(ri − r′, ω) dr′

=

∫

∆
Gh(R, ω) dR

(E.18)

To integrate, we use the Weyl expansion of the Green function, that reads (see part E.1)

Gh(r, ω) =
i

2k2h

{
∫ ∞

−∞

∫ ∞

−∞
M

ei[kxx+kyy+k+z |z|]

k+z

dkx
2π

dky
2π

}

− δ(r)

k2h
ez ⊗ ez, (E.19)

where M is the dyadic defined in Eq. (E.12), and k+z is the complex number that satisfies

(k+z )
2 = k2h − k2x − k2y and Im k+z ≥ 0. Inserting Eq. (E.19) into Eq. (E.18) and assuming that

the unit cell is a cube which lateral size is ∆ yields

Gint
ii =

i

8π2k2h

{
∫ ∫ ∫ ∆/2

−∆/2
dx′dy′dz′

∫

kx,ky

dkxdky

k+z
Mei[kxx

′+kyy′+k+z |z′|]
}

− ez ⊗ ez
k2h

(E.20)

First, from Eq. (E.18), the diagonal terms of Gint are equal (every direction plays exactly the

same role in the integral). The non-diagonal terms vanish [160]

Let us focus on the component Gint
zz (ri, ri). We use the following identities

∫ ∆/2

−∆/2
eikxx

′

dx′ =
2 sin(kx∆/2)

kx
, (E.21)

∫ ∆/2

−∆/2
eik

+
z |z′|dz′ =

2

ik+z

(

eik
+
z ∆/2 − 1

)

, (E.22)

∫ +∞

−∞

∫ +∞

−∞

sin(kx∆/2) sin(ky∆/2)

kxky
dkxdky = π2. (E.23)

To perform the spatial integrals in Eq. (E.20), we use Eqs. (E.21) and (E.22). Then we reinject

the singularity inside the integral by using Eq. (E.23). Finallly, we obtains the relation

Gint
zz (ri, ri, ω) =

1

π2k2h

∫

kx,ky

sin(kx∆/2) sin(ky∆/2)

kxkyk
+2
z

{(
k2x + k2y

)
eik

+
z ∆/2 − k2h

}

dkxdky (E.24)

We perform the polar change of variable kx = k� cos θ and ky = k� sin θ. This leads to

Gint
zz (ri, ri, ω) =

1

π2k2h

∫ ∞

k�=0

dk�

k�

k2�e
i∆/2

√

k2h−k2
� − k2h

k2h − k2�

∫ 2π

θ=0

sin(k�∆/2 cos θ) sin(k�∆/2 sin θ)

cos θ sin θ
dθ

(E.25)
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Finally, by making the change of variable k+z =
√

k2h − k2�, one obtains

Gint
zz (ri, ri, ω) =

4

π2k2h

[∫ 0

k+z =kh

+

∫ i∞

k+z =i0

] k2h − k2�e
ik+z ∆/2

k�k
+
z

∫ π
2

0

sin
(
k�∆/2 cos θ

)
sin
(
k�∆/2 sin θ

)

cos θ sin θ
dθdk+z

(E.26)

E.3 Energy balance

We consider a medium described by its dielectric constant ǫ(r)2, lying in a host medium described

by its real, uniform dielectric constant ǫh. The system is illuminated by a source dipole p located

at rs. The source current associated to the dipolar source is js(r, ω) = −iωδ(r− rs)p.

E.3.1 Power transferred to the environment

The average power transferred by the emitter to its environment through the electromagnetic

field is

P =
ω

2
Im [p∗.E(rs)] . (E.27)

Note that this power can be either transferred to a radiative mode (emission of a photon in

the far field) or a non-radiative mode (the energy stays localized around the emitter and is

eventually absorbed by the environment).

When the emitter is embedded in the host medium, this power is deduced from the non-

singular imaginary part of the Green function ImGh(0) ∼ kh/(6π)I, where kh = k
√
ǫh. It

reads

Pe =
µ0ω

3

12π
kh|p|2, (E.28)

Finally, when the emitter is embedded in the medium described by ǫ(r), one can use the

Lippmann-Schwinger equation (E.14) and insert it into Eq. (E.27). This yields

P

Pe
= 1 +

6πǫ0
kh|p|2

Im

[

p∗.
∫

V
{ǫ(r)− ǫh}Gh(rs − r′)E(r′) d3r′

]

(E.29)

E.3.2 Absorption by the medium (non-radiative channels)

The average power absorbed by the medium reads

PNR = ω Im

[∫

V
j(r).E∗(r)

]

/2 (E.30)

Normalizing by the power Pe yields

PNR

Pe
=

6πǫ20
k2kh|p|2

∫

V
Im {ǫ(r′)}|E(r′)|2 d3r′ (E.31)

2The omega dependance is omitted for sake of simplicity. This does not reduce the generality of our discussion.



148 APPENDIX E. VOLUME INTEGRAL METHOD

E.3.3 Radiation to the far field (radiative channels)

We assume that the dipole source is located at the origin (rs = 0). We consider a point r, and

denote r = ru, where u is a unit vector. The average power flux at point r, if the latter is

located in the far field of the source, reads

JR(r) =
ǫ0
2
|E(r)|2u, (E.32)

where E(r) is the field at r and u = r/|r|. The power PR(u) radiated per unit solid angle dΩ in

direction u in the far field reads

PR(u) = lim
r→∞

ǫ0
2
r2|E(r)|2. (E.33)

The field E(r) is given by the Lippmann-Schwinger equation [Eq. (E.14)]

E(r) = E0(r) + k2
∫

V
{ǫ(r)− ǫh}Gh(r− r′)E(r′) d2r′. (E.34)

In the far field limit (r ≫ L and r ≫ L2/λ, where L is the spatial extent of the source), this

expression can be simplified using the far field expression GR
h of the Green function of the host

medium Gh, that reads

GR
h (r− r′) =

eikhr

4πr
[I− u⊗ u] e−ikhu.r

′

. (E.35)

The far field expression of the field is

ER(r) =
eikhr

4πr

{

µ0ω
2 [I− u⊗ u]p+ k2

∫

V
{ǫ(r)− ǫh} e−ikhu.r

′

[I− u⊗ u]E(r′) d3r′
}

(E.36)

Hence, introducing Eq. (E.36) into Eq. (E.33), and normalizing by Pe, the power radiated per

unit solid angle in direction u in the far field is rigorously

PR(u)

Pe
=

3

8π

ǫ20
ωk2kh|p|2

∣
∣
∣
∣

{

µ0ω
2 [I− u⊗ u]p+ k2

∫

V
{ǫ(r)− ǫh} e−ikhu.r

′

[I− u⊗ u]E(r′) d3r′
}∣
∣
∣
∣

2

(E.37)

The total power radiated by the source in the far field can be computed either by integrating

the directional power PR(u)
PR

Pe
=

∫

4π

PR(u)

Pe
du (E.38)

or by using energy conservation, since the energy that is not radiated in the near-field has to be

eventually absorbed in the environment

PR

Pe
=

P

Pe
− PNR

Pe
. (E.39)

Checking the agreement between the results of Eqs. (E.38) and (E.39) is a way to detect errors

in the numerical calculations. We have performed this test in all our numerical calculations

based on the Lippmann-Schwinger equation.
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F.1 Leading term for the long-range correlation

Let us now consider the transmission-transmission geometry, i.e. the correlations between two

points located in the output plane z = z′ = d. In Eq. (5.42), replacing L by its expression and

performing the integrals yields

F (Kd) =
π

12k2ℓd

sinh2(Kℓe)

K2

sinh(2Kd) − 2Kd

Kd sinh2(Kd)
. (F.1)

Eq. (F.1) can be interpreted as the angular correlations between two outgoing plane-wave with

a wavevector difference which modulus equals K. Provided that Kℓe ≪ 1, i.e. that we focus on

the correlation for large distances, it can be approached by

F (Kd) =
πℓ

27k2d

sinh(2Kd)− 2Kd

Kd sinh2(Kd)
, (F.2)

where we have used ℓǫ ≈ 2ℓ/3. Finally, inserting Eq. (F.2) into Eq. (5.42), and normalizing by

the average intensity product 〈I(z = d)〉2 given by Eq. (5.38), one obtains

C
T/T
2 (∆r) =

1

48(kℓ)2
ℓ

d

∫ ∞

0
J0(q∆r/Le)

sinh(2q)− 2q

sinh2(q)
dq, (F.3)

where ∆r = |R| and J0 is the Bessel function of first kind and zero order, defined as

J0(x) =
1

π

∫ π

0
dθ exp(ix cos θ). (F.4)
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It can be transformed for the sake of numerical convergence into

C
T/T
2 (∆r) =

1

24(kℓ)2

(
ℓ

d

)[
1

2

∫ ∞

0
J0(q∆r/Le)

{
sinh(2q)− 2q

sinh2(q)
− 2

}

dq +
d

∆r

]

. (F.5)

Note that this expression diverges for small distances because of the approximation Kℓe ≪ 1.

This divergence does not have any physical origin, and can be avoided using

C
T/T
2 (∆r) =

3

76(kℓ)2
d

ℓ

∫ ∞

0
J0(q∆r/d)

sinh2(qℓe/d)

q2
sinh(2q)− 2q

sinh2(q)
dq. (F.6)

F.2 Useful integrals
∫ ∞

0
e−r/ℓdr = ℓ (F.7)

∫ ∞

0
re−r/ℓdr = ℓ2 (F.8)

∫ ∞

0
r2e−r/ℓdr = 2ℓ3 (F.9)

Let G(r, r′, ω) the average Green function of the infinite medium, defined by Eq. (5.10).

∫

dr|〈G(r, r′, ω)〉|2 = ℓ

4π
(F.10)

∫

dr1〈G(r, r1, ω)G
∗(r′, r1)〉 =

ℓ

4π

sin(k∆r)

k∆r
exp(−∆r/2ℓ) (F.11)

∫ d

0
dz1(d− z1)

2 cosh(2Kz1) =
sinh(2Kd) − 2Kd

4K3
(F.12)

∫ d

0
dz1(d− z1 + ℓe)

2 cosh[K(d− 2z1)]

=
1

2K3

[
K2(d2 + 2dℓe + 2ℓ2e) sinh(Kd)−Kd cosh(Kd) + sinh(Kd)

]
(F.13)
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[46] E. Castanié, R. Vincent, R. Pierrat, and R. Carminati, “Absorption by an optical dipole antenna
in a structured environment,” Int. J. Opt. 2012, 452047 (2012).
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