L. J. Vicat, Recherches expérimentales sur les chaux de construction, les bétons et les mortiers ordinaires. Goujon, 1818.

J. Aspdin, An improvement in the modes of producing artificial stone, Brevet britannique BP, vol.5022, p.1824

R. H. Bogue, The chemistry of Portland Cement, 1947.

C. Chen, G. Habert, Y. Bouzidi, and A. Jullien, Environmental impact of cement production: detail of the different processes and cement plant variability evaluation, Journal of Cleaner Production, vol.18, issue.5, pp.478-485, 2010.
DOI : 10.1016/j.jclepro.2009.12.014

C. A. Hendriks, E. Worrell, D. De-jager, K. Blok, and P. Riemer, Emission reduction of greenhouse gases from the cement industry, International Energy Agency, 2002.
DOI : 10.1016/B978-008043018-8/50150-8

R. Rehan and M. Nehdi, Carbon dioxide emissions and climate change: policy implications for the cement industry, Environmental Science & Policy, vol.8, issue.2, pp.105-114, 2005.
DOI : 10.1016/j.envsci.2004.12.006

K. L. Scrivener and R. J. Kirkpatrick, Innovation in use and research on cementitious material, Cement and Concrete Research, vol.38, issue.2, pp.128-136, 2008.
DOI : 10.1016/j.cemconres.2007.09.025

A. F. Daly, Modelling of deterioration in bridges. Rapport technique, Transport Research Laboratory -European Commission under transport, 1999.

J. A. Gonzalez, J. S. Algaba, and C. Andrade, Corrosion of Reinforcing Bars in Carbonated Concrete, British Corrosion Journal, vol.30, issue.7, pp.135-139, 1980.
DOI : 10.1007/BF02478962

P. K. Mehta and O. E. Gjørv, Properties of portland cement concrete containing fly ash and condensed silica-fume, Cement and Concrete Research, vol.12, issue.5, pp.587-595, 1982.
DOI : 10.1016/0008-8846(82)90019-9

H. Ranaivomanana, Transferts dans les milieux poreux réactifs non saturés : applicationàapplicationà la cicatrisation de fissure dans les matériaux cimentaires par carbonatation, 2010.

M. Thiéry, Modélisation de la carbonatation atmosphérique des matériaux cimentaires Prise en compte des effets cinétiques et des modifications microstructurales et hydriques, 2005.

D. Burden, The durability of concrete containing high levels of fly ash, 2006.

E. Drouet, Impact de la température sur la carbonatation des matériaux cimentaires -prise en compte des transferts hydriques, 2010.

A. Younsi, Carbonatation de bétonsbétonsà forts taux de substitution du ciment par des additions minérales, 2011.

M. Saillio, Interactions physiques et chimiques ions-matrice dans les bétons sains et carbonatés. Influence sur le transport ionique, 2012.

X. Wang, Modélisation du transport multi-espèces dans les matériaux cimentaires saturés ou non saturés etéventuellementetéventuellement carbonatés, 2012.

N. Hyvert, A. Sellier, F. Duprat, P. Rougeau, and P. Francisco, Dependency of C???S???H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation, Cement and Concrete Research, vol.40, issue.11, pp.1582-1589, 2010.
DOI : 10.1016/j.cemconres.2010.06.010

M. Castellote, L. Fernandez, C. Andrade, and C. Alonso, Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations, Materials and Structures, vol.3, issue.3/4, pp.515-525, 2009.
DOI : 10.1617/s11527-008-9399-1

D. Damidot, Etude de l'hydratation du silicate tricalcique en suspensions diluées par microcalorimétrie isotherme, 1990.

T. Chaussadent, V. Baroghel-bouny, N. Rafa¨?rafa¨?, A. Ammouche, and H. Hornain, Influence du rapport E/C sur l'hydratation, la microstructure et les d??formations endog??nes de p??tes de ciment durcies, Revue Fran??aise de G??nie Civil, vol.5, issue.2-3, pp.217-230, 2001.
DOI : 10.1016/S0008-8846(99)00207-0

E. Gallucci and K. Scrivener, Crystallisation of calcium hydroxide in early age model and ordinary cementitious systems, Cement and Concrete Research, vol.37, issue.4, pp.492-501, 2007.
DOI : 10.1016/j.cemconres.2007.01.001

D. J. Stephens and E. Bray, Occurrence and infrared analysis of unusual zeolitic minerals from Bingham, Utah. Mineral. Rec, vol.4, pp.67-72, 1973.

T. Mitsuda, Paragenesis of 11 ?? tobermorite and poorly crystalline hydrated magnesium silicate, Cement and Concrete Research, vol.3, issue.1, pp.71-80, 1973.
DOI : 10.1016/0008-8846(73)90062-8

J. M. Sweet, D. I. Bothwell, and D. L. Williams, Tacharanite and Other Hydrated Calcium Silicates from Portree, Isle of Skye, Mineralogical Magazine, vol.32, issue.253, pp.745-53, 1961.
DOI : 10.1180/minmag.1961.032.253.01

G. F. Claringbull and M. H. Hey, A Re-examination of Tobermorite, Mineralogical Magazine, vol.29, issue.218, pp.960-962, 1952.
DOI : 10.1180/minmag.1952.029.218.10

A. Gmira, Etude structurale et thermodynamique d'hydrates modèle du ciment, 2003.

I. G. Richardson, The calcium silicate hydrates, Cement and Concrete Research, vol.38, issue.2, pp.137-158, 2007.
DOI : 10.1016/j.cemconres.2007.11.005

T. C. Powers and T. L. Brownyard, Studies of the physical properties of hardened portland cement paste, ACI Journal Proceedings, 1947.

A. Nonat, The structure and stoichiometry of C-S-H. Cement and Concrete Research, pp.1521-1528, 2004.

H. F. Taylor, 726. Hydrated calcium silicates. Part I. Compound formation at ordinary temperatures, Journal of the Chemical Society (Resumed), vol.726, pp.3682-3690, 1950.
DOI : 10.1039/jr9500003682

J. A. Gard and H. F. Taylor, Calcium silicate hydrate (II) (???C-S-H(II)???), Cement and Concrete Research, vol.6, issue.5, pp.667-677, 1976.
DOI : 10.1016/0008-8846(76)90031-4

D. A. Kulik and M. Kersten, Aqueous Solubility Diagrams for Cementitious Waste Stabilization Systems: II, End-Member Stoichiometries of Ideal Calcium Silicate Hydrate Solid Solutions, Journal of the American Ceramic Society, vol.69, issue.12, pp.3017-3026, 2001.
DOI : 10.1111/j.1151-2916.2001.tb01130.x

D. A. Kulik, Improving the structural consistency of C-S-H solid solution thermodynamic models, Cement and Concrete Research, vol.41, issue.5, pp.477-495, 2011.
DOI : 10.1016/j.cemconres.2011.01.012

K. Fujii and W. Kondo, Heterogeneous equilibrium of calcium silicate hydrate in water at 30 ??C, J. Chem. Soc., Dalton Trans., issue.2, pp.645-651, 1981.
DOI : 10.1039/DT9810000645

J. Chen, Solubility and structure of calcium silicate hydrate, Cement and Concrete Research, vol.34, issue.9, pp.1499-1519, 2004.
DOI : 10.1016/j.cemconres.2004.04.034

D. Sugiyama and T. Fujita, A thermodynamic model of dissolution and precipitation of calcium silicate hydrates, Cement and Concrete Research, vol.36, issue.2, pp.227-237, 2006.
DOI : 10.1016/j.cemconres.2005.09.002

J. H. Taplin, A method for following the hydration reaction in portland cement paste, Australian Journal of Applied Science, vol.10, issue.3, pp.329-345, 1959.

I. G. Richardson, The nature of C-S-H in hardened cements, Cement and Concrete Research, vol.29, issue.8, pp.1131-1147, 1999.
DOI : 10.1016/S0008-8846(99)00168-4

G. Constantinides and F. J. Ulm, The nanogranular nature of C???S???H, Journal of the Mechanics and Physics of Solids, vol.55, issue.1, pp.64-90, 2007.
DOI : 10.1016/j.jmps.2006.06.003

H. M. Jennings, A model for the microstructure of calcium silicate hydrate in cement paste, Cement and Concrete Research, vol.30, issue.1, pp.101-116, 2000.
DOI : 10.1016/S0008-8846(99)00209-4

H. M. Jennings and P. D. Tennis, Model for the Developing Microstructure in Portland Cement Pastes, Journal of the American Ceramic Society, vol.64, issue.10, pp.3161-3172, 1994.
DOI : 10.1111/j.1151-2916.1994.tb04565.x

P. D. Tennis and H. M. Jennings, A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes, Cement and Concrete Research, vol.30, issue.6, pp.855-863, 2000.
DOI : 10.1016/S0008-8846(00)00257-X

H. M. Jennings, Colloid model of C-S-H and implications to the problem of creep and shrinkage, Mateirals and Structures, vol.37, pp.59-70, 2004.

H. M. Jennings, Refinements to colloid model of C-S-H in cement: CM-II, Cement and Concrete Research, vol.38, issue.3, pp.275-289, 2007.
DOI : 10.1016/j.cemconres.2007.10.006

X. Lecoq, Etude de l'hydratationàhydratationà concentration controlée du silicate tricalcique et des caractéristiques de ses produits de réaction, 1993.

I. Odler, Lea's Chemistry of Cement and Concrete -Hydration, Setting and Hardening of Portland Cement, 2004.

H. F. Taylor, Proposed structure for calcium silicate hydrate gel. Jornal of The American Ceramic Society, pp.464-467, 1986.

A. L. Fraay, J. M. Bijen, and Y. M. De-haan, The reaction of fly ash in concrete a critical examination, Cement and Concrete Research, vol.19, issue.2, pp.235-246, 1989.
DOI : 10.1016/0008-8846(89)90088-4

Y. Min, Q. Jueshi, and P. Ying, Activation of fly ash?lime systems using calcined phosphogypsum . Construction and building materials, pp.1004-1008, 2008.

V. Papadakis, Effect of fly ash on Portland cement systems, Cement and Concrete Research, vol.29, issue.11, pp.1727-1736, 1999.
DOI : 10.1016/S0008-8846(99)00153-2

T. Chaussadent, Etat des lieux et réflexions sur la carbonatation du béton armé, Etudes et Recherches des Laboratoires des Ponts et Chaussées. Laboratoire Central des Ponts et Chaussées, 1999.

M. D. Nguyen, Modélisation des couplages entre hydratation et dessiccation des matériaux cimentairesàtairesà l'issue du décoffrage. Etude de la dégradation des propriétés de transfert, 2009.

V. Papadakis, Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress, Cement and Concrete Research, vol.30, issue.2, pp.291-299, 2000.
DOI : 10.1016/S0008-8846(99)00249-5

P. H. Borges, J. O. Costa, N. B. Milestone, C. J. Lynsdale, and R. E. Streatfield, Carbonation of CH and C???S???H in composite cement pastes containing high amounts of BFS, Cement and Concrete Research, vol.40, issue.2, pp.284-292, 2010.
DOI : 10.1016/j.cemconres.2009.10.020

H. and L. Chatelier, Sur les changements de volume qui accompagnent le durcissement des ciments. Bulletin Societe de l' Encouragement pour l' Industrie Nationale, 1900.

K. Van-breugel, Simulation of hydration and formation of structure in hardening cement-based materials, 1991.

D. Bonen and S. Diamond, Occurrence of large silica fume-derived paticles in hydrated cement paste, Cement and Concrete Research, vol.22, issue.6, pp.1059-1066, 1992.
DOI : 10.1016/0008-8846(92)90036-U

E. E. Lachowsky and S. Diamond, Investigation of the composition and morphology of individual particles of portland cement paste: 1. C???S???H gel and calcium hydroxide particles, Cement and Concrete Research, vol.13, issue.2, pp.177-185, 1983.
DOI : 10.1016/0008-8846(83)90100-X

Q. Wang, J. Feng, and P. Yan, The microstructure of 4-year-old hardened cement-fly ash paste, Construction and Building Materials, vol.29, issue.0, pp.29114-119, 2012.
DOI : 10.1016/j.conbuildmat.2011.08.088

Q. Zeng, K. Li, T. Fen-chong, and P. Dangla, Pore structure characterization of cement pastes blended with high-volume fly-ash, Cement and Concrete Research, vol.42, issue.1, pp.194-204, 2012.
DOI : 10.1016/j.cemconres.2011.09.012

J. Ewald, Carbon dioxide at NOAA's Mauna Loa Observatory reaches new milestone : Tops 400 ppm, 2013.

P. V. Danckwerts and A. Lannus, Gas-Liquid Reactions, Journal of The Electrochemical Society, vol.117, issue.10, p.369, 1970.
DOI : 10.1149/1.2407312

E. Usdowski, Reactions and equilibria in the systems CO 2 ? H 2 O and CaCO 3 ? CO 2 ? H 2 O. A review, Neues Jahrb Mineral Abh, vol.144, pp.148-171, 1982.

I. Galan, C. Andrade, and M. Castellote, Natural and accelerated CO2 binding kinetics in cement paste at different relative humidities, Cement and Concrete Research, vol.49, issue.0, pp.21-28, 2013.
DOI : 10.1016/j.cemconres.2013.03.009

L. N. Plummer and E. Busenberg, The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90??C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O, Geochimica et Cosmochimica Acta, vol.46, issue.6, pp.1011-1040, 1982.
DOI : 10.1016/0016-7037(82)90056-4

A. M. Dunster, Carbonation of cement paste using trimethylsilylation Advances in Cement Research, pp.99-106, 1989.

G. W. Groves, D. I. Rodway, and I. G. Richardson, The carbonation of hardened cement pastes Advances in Cement Research, pp.117-125, 1990.

T. Nishikawa and K. Suzuki, Chemical conversion of C???S???H in concrete, Cement and Concrete Research, vol.24, issue.1, pp.176-182, 1994.
DOI : 10.1016/0008-8846(94)90099-X

K. Kobayashi, K. Suzuki, and Y. Uno, Carbonation of concrete structures and decomposition of C???S???H, Cement and Concrete Research, vol.24, issue.1, pp.55-61, 1994.
DOI : 10.1016/0008-8846(94)90082-5

I. G. Richardson, Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, ??-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume, Cement and Concrete Research, vol.34, issue.9, pp.1733-1777, 2004.
DOI : 10.1016/j.cemconres.2004.05.034

L. Black, K. Garbev, and I. Gee, Surface carbonation of synthetic C-S-H samples: A comparison between fresh and aged C-S-H using X-ray photoelectron spectroscopy, Cement and Concrete Research, vol.38, issue.6, pp.745-750, 2008.
DOI : 10.1016/j.cemconres.2008.02.003

T. Nshikawa, K. Suzuki, S. Ito, K. Sato, and T. Takebe, Decomposition of synthesized ettringite by carbonation, Cement and Concrete Research, vol.22, issue.1, pp.6-14, 1992.
DOI : 10.1016/0008-8846(92)90130-N

Z. Sauman and V. Lach, Long term carbonation of the phases 3CaOAl 2 O 3, 6H 2 O and 3CaO.Al 2 O 3 .SiO 2 .4H 2 O. Cement and Concrete Research, pp.435-446, 1972.

S. Goñi and A. Guerrero, Accelerated carbonation of Friedel's salt in calcium aluminate cement paste, Cement and Concrete Research, vol.33, issue.1, pp.21-26, 2003.
DOI : 10.1016/S0008-8846(02)00910-9

Z. Sauman, Carbonization of porous concrete and its main binding components, Cement and Concrete Research, vol.1, issue.6, pp.645-662, 1971.
DOI : 10.1016/0008-8846(71)90019-6

J. Grandet, ContributionàContributionà l'´ etude de la prise et de la carbonatation des mortiers au contact des matériaux poreux, Thèse de doctorat es sciences physiques, 1975.

P. A. Slegers and P. G. Rouxhet, Carbonation of the hydration products of tricalcium silicate, Cement and Concrete Research, vol.6, issue.3, pp.381-388, 1976.
DOI : 10.1016/0008-8846(76)90101-0

F. Matsushita, Y. Aono, and S. Shibata, Microstructure Changes in Autoclaved Aerated Concrete during Carbonation under Working and Accelerated Conditions, Journal of Advanced Concrete Technology, vol.2, issue.1, pp.121-129, 2004.
DOI : 10.3151/jact.2.121

D. J. Anstice, C. L. Page, and M. M. Page, The pore solution phase of carbonated cement pastes, Cement and Concrete Research, vol.35, issue.2, pp.377-383, 2005.
DOI : 10.1016/j.cemconres.2004.06.041

G. Villain, M. Thiéry, and G. Platret, Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry, Cement and Concrete Research, vol.37, issue.8, pp.1182-1192, 2007.
DOI : 10.1016/j.cemconres.2007.04.015

T. Ogino, T. Suzuki, and K. Sawada, The formation and transformation mechanism of calcium carbonate in water, Geochimica et Cosmochimica Acta, vol.51, issue.10, pp.2757-2767, 1987.
DOI : 10.1016/0016-7037(87)90155-4

L. Black, C. Breen, J. Yarwood, K. Garbev, P. Stemmermann et al., Structural Features of C?S?H(I) and Its Carbonation in Air?A Raman Spectroscopic Study. Part II: Carbonated Phases, Journal of the American Ceramic Society, vol.13, issue.9, pp.90908-917, 2007.
DOI : 10.1021/cg034257v

G. W. Groves, A. Brough, I. G. Richardson, and C. M. Dobson, Progressive Changes in the Structure of Hardened C3S Cement Pastes due to Carbonation, Journal of the American Ceramic Society, vol.2, issue.7, pp.2891-2896, 1991.
DOI : 10.1111/j.1151-2916.1991.tb06859.x

S. E. Pihlajavaara, Some results of the effect of carbonation on the porosity and pore size distribution of cement paste, Mat??riaux et Constructions, vol.31, issue.6, pp.521-526, 1968.
DOI : 10.1007/BF02473640

Y. F. Houst and F. H. Wittmann, Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste, Cement and Concrete Research, vol.24, issue.6, pp.1165-1176, 1994.
DOI : 10.1016/0008-8846(94)90040-X

V. T. Ngala and C. L. Page, EFFECTS OF CARBONATION ON PORE STRUCTURE AND DIFFUSIONAL PROPERTIES OF HYDRATED CEMENT PASTES, Cement and Concrete Research, vol.27, issue.7, pp.995-1007, 1997.
DOI : 10.1016/S0008-8846(97)00102-6

S. Lammertijn and N. De-belie, Porosity, gas permeability, carbonation and their interaction in high-volume fly ash concrete. Magazine of Concrete Research, pp.535-545, 2008.

. A. Th, J. Bier, H. K. Kropp, and . Hilsdorf, Carbonation and realcalinisation of concrete and hydrated cement paste, Durability of Construction Materials, pp.927-934, 1987.

N. Hyvert, Application de l'approche probabilistè a la durabilité des produits préfabriqués en béton, 2009.

M. Thiéry, P. Faure, A. Morandeau, G. Platret, J. Bouteloup et al., Effect of carbonation on the microstructure and moisture properties of cement-based materials, DBMC, 2011.

M. Thiéry, V. Baroghel-bouny, A. Morandeau, and P. Dangla, Impact of carbonation on the microstructure and transfer properties of cement-based materials, Transfert

M. Castellote, C. Andrade, X. Turrillas, J. Campo, and G. Cuello, Accelerated carbonation of cement pastes in situ monitored by neutron diffraction, Cement and Concrete Research, vol.38, issue.12, pp.1365-1373, 2008.
DOI : 10.1016/j.cemconres.2008.07.002

G. Villain and M. Thiéry, Impact of carbonation on microstructure and transport properties of concrete, Proceedings of 10 D.B.M.C. Conference on Durability of Building Materials and Components, pp.1-8, 2005.

M. Daimon, T. Akiba, and R. Kondo, Through Pore Size Distribution and Kinetics of the Carbonation Reaction of Portland Cement Mortars, Journal of the American Ceramic Society, vol.33, issue.2, pp.423-428, 1971.
DOI : 10.1111/j.1151-2916.1971.tb12379.x

C. Gervais, A. C. Garrabrants, F. Sanchez, R. Barna, P. Moszkowicz et al., The effects of carbonation and drying during intermittent leaching on the release of inorganic constituents from a cement-based matrix, Cement and Concrete Research, vol.34, issue.1, pp.119-131, 2004.
DOI : 10.1016/S0008-8846(03)00248-5

B. Bary and A. Sellier, Coupled moisture???carbon dioxide???calcium transfer model for carbonation of concrete, Cement and Concrete Research, vol.34, issue.10, pp.1859-1872, 2004.
DOI : 10.1016/j.cemconres.2004.01.025

T. Ishida and C. H. Li, Modeling of Carbonation based on Thermo-Hygro Physics with Strong Coupling of Mass Transport and Equilibrium in Micro-pore Structure of Concrete, Journal of Advanced Concrete Technology, vol.6, issue.2, pp.303-316, 2008.
DOI : 10.3151/jact.6.303

M. Hamada, Neutralization (carbonation) of concrete and corrosion of reinforcing steel The Cement Association of Japan, 5th International Symposium on Cement Chemistry, pp.343-369, 1968.

B. Huet, ComportementàComportementà la corrosion des armatures dans un béton carbonaté Influence de la chimie de la solution interstitielle et d'unebarrì ere de transport, 2005.

K. Tuutti, Corrosion of steel in concrete. Swedish Cement and Concrete Research Institute, 1982.

H. Wierig, Longtime studies on the carbonation of concrete under normal outdoor exposure, In In R.I.L.E.M. Seminar R.I.L.E.M, pp.239-249, 1984.

V. G. Papadakis, C. G. Vayenas, and M. N. Fardis, Fundamental modeling and experimental investigation of concrete carbonation, ACI Materials Journal, vol.88, issue.4, 1991.

G. Arliguie and H. Hornain, Grandeurs associéesassociéesà la durabilité des bétons GranDuBé, Presses Ecole Nationale Ponts et Chaussées, 2007.

F. Vodák, V. Vydra, K. Trtík, and O. Kapi?ková, Effect of gamma irradiation on properties of hardened cement paste, Materials and Structures, vol.20, issue.14, pp.101-107, 2011.
DOI : 10.1617/s11527-010-9612-x

G. Villain and M. Thiéry, Gammadensimetry: A method to determine drying and carbonation profiles in concrete, NDT & E International, vol.39, issue.4, pp.328-337, 2006.
DOI : 10.1016/j.ndteint.2005.10.002

G. Villain and M. Thiéry, Incertitudes des mesures par gammadensimétrie sur deséprouvettesdeséprouvettes en béton, Bulletin des Laboratoires des Ponts et Chaussées, vol.280, pp.69-82, 2006.

V. Baroghel-bouny, T. Chaussadent, G. Croquette, L. Divet, J. Gawsewitch et al., Caractéristiques microstructurales et propriétés relativesàrelativesà la durabilité des bétons(méthodes de mesure et d'essai de laboratoire), 2002.

M. Maciejewski and A. Baiker, Quantitative calibration of mass spectrometric signals measured in coupled TA-MS system, Thermochimica Acta, vol.295, issue.1-2, pp.95-105, 1997.
DOI : 10.1016/S0040-6031(97)00100-7

M. Müller-vonmoos, G. Kahr, and A. Rub, DTA???TG???MS in the investigation of clays, Thermochimica Acta, vol.20, issue.3, pp.387-393, 1977.
DOI : 10.1016/0040-6031(77)85093-4

J. Wang and B. Mcenaney, Quantitative calibration of a TPD-MS system for CO and CO2 using calcium carbonate and calcium oxalate, Thermochimica Acta, vol.190, issue.2, pp.143-153, 1991.
DOI : 10.1016/0040-6031(91)85240-I

M. Thiéry, P. Dangla, P. Belin, G. Habert, and N. Roussel, Carbonation kinetics of a bed of recycled concrete aggregates: A laboratory study on model materials, Cement and Concrete Research, vol.46, pp.50-65, 2013.
DOI : 10.1016/j.cemconres.2013.01.005

H. F. Taylor, Cement chemistry, 1997.
DOI : 10.1680/cc.25929

G. Villain and G. Platret, Two experimental methods to determine carbonation profiles in concrete, ACI materials journal, vol.103, issue.4, 2006.

V. S. Ramachandran and J. J. Beaudoin, Handbook of thermal analysis of construction materials, 2002.

Q. Zhou and F. P. Glasser, Thermal stability and decomposition mechanisms of ettringite at <120??C, Cement and Concrete Research, vol.31, issue.9, pp.1333-1339, 2001.
DOI : 10.1016/S0008-8846(01)00558-0

N. Meller, K. Kyritsis, and C. Hall, The hydrothermal decomposition of calcium monosulfoaluminate 14-hydrate to katoite hydrogarnet and ??-anhydrite: An in-situ synchrotron X-ray diffraction study, Journal of Solid State Chemistry, vol.182, issue.10, pp.2743-2747, 2009.
DOI : 10.1016/j.jssc.2009.07.029

N. C. Collier and N. B. Milestone, The encapsulation of Mg(OH)2 sludge in composite cement, Cement and Concrete Research, vol.40, issue.3, pp.452-459, 2010.
DOI : 10.1016/j.cemconres.2009.10.007

V. Kocaba, ´. Ecole-polytechnique-f-´-edéraleed´edérale, and . De-lausanne, Development and evaluation of methods to follow microstructural development of cementitious systems including slags, 2009.

P. Mounanga, Etude expérimentale du comportement de pâtes de ciment au très jeunê age : hydratation, retraits, propriétés thermophysiques, 2004.

P. Mounanga, A. Khelidj, A. Loukili, and V. Baroghel-bouny, Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach, Cement and Concrete Research, vol.34, issue.2, pp.255-265, 2004.
DOI : 10.1016/j.cemconres.2003.07.006

URL : https://hal.archives-ouvertes.fr/hal-01007190

A. Favier, Mécanisme de prise et rhéologie de liants géopolymères modèles, 2013.

S. Diamond, Mercury porosimetry, Cement and Concrete Research, vol.30, issue.10, pp.1517-1525, 2000.
DOI : 10.1016/S0008-8846(00)00370-7

R. F. Feldman and J. J. Beaudoin, Pretreatment of hardened hydrated cement pastes for mercury intrusion measurements, Cement and Concrete Research, vol.21, issue.2-3, pp.2-3297, 1991.
DOI : 10.1016/0008-8846(91)90011-6

M. B. Haha, K. De-weerdt, and B. Lothenbach, Quantification of the degree of reaction of fly ash, Cement and Concrete Research, vol.40, issue.11, pp.1620-1629, 2010.
DOI : 10.1016/j.cemconres.2010.07.004

J. R. Johnstone and F. P. Glasser, Carbonation of portlandite single crystals and portlandite in cement paste, 9th International Congress on the Chemistry of Cement, pp.370-376, 1992.

B. Lothenbach and F. Winnefeld, Thermodynamic modelling of the hydration of Portland cement, Cement and Concrete Research, vol.36, issue.2, pp.209-226, 2006.
DOI : 10.1016/j.cemconres.2005.03.001

T. J. Wolery, EQ3NR, a Computer Program for Geochemical Aqueous Speciation-solubility Calculations : Theoretical Manual, User's Guide and Related Documentation
DOI : 10.2172/138643

S. Roy, K. Po, and D. Northwood, Durability of concrete???accelerated carbonation and weathering studies, Building and Environment, vol.34, issue.5, pp.597-606, 1999.
DOI : 10.1016/S0360-1323(98)00042-0

B. K. Marsh, R. L. Day, and D. G. Bonner, Pore structure characteristics affecting the permeability of cement paste containing fly ash, Cement and Concrete Research, vol.15, issue.6, pp.1027-1038, 1985.
DOI : 10.1016/0008-8846(85)90094-8

A. Wang, C. Zhang, and W. Sun, Fly ash effects, Cement and Concrete Research, vol.34, issue.11, pp.2057-2060, 2003.
DOI : 10.1016/j.cemconres.2003.03.001

N. Bouzoubaâ and S. Foo, Utilisation de cendres volantes et de laitier dans le béton : guide des r` egles de l'art, 2005.

J. C. Orellan, G. Escadeillas, and G. Arliguie, Electrochemical chloride extraction: efficiency and side effects, Cement and Concrete Research, vol.34, issue.2, pp.227-234, 2004.
DOI : 10.1016/j.cemconres.2003.07.001

H. Yazici, The effect of steel micro-fibers on ASR expansion and mechanical properties of mortars, Construction and Building Materials, vol.30, issue.0, pp.607-615, 2012.
DOI : 10.1016/j.conbuildmat.2011.12.051

A. V. Girão, I. G. Richardson, R. Taylor, and R. M. Brydson, Composition, morphology and nanostructure of C???S???H in 70% white Portland cement???30% fly ash blends hydrated at 55??C., Cement and Concrete Research, vol.40, issue.9, pp.1350-1359, 2010.
DOI : 10.1016/j.cemconres.2010.03.012

A. Kar, I. Ray, A. Unnikrishnan, and J. F. Davalos, Microanalysis and optimization-based estimation of C???S???H contents of cementitious systems containing fly ash and silica fume, Cement and Concrete Composites, pp.419-429, 2012.
DOI : 10.1016/j.cemconcomp.2011.09.008

L. J. Parrott, A review of carbonation in reinforced concrete. Cement and Concrete Association, 1987.

J. Khunthongkeaw, S. Tangtermsirikul, and T. Leelawat, A study on carbonation depth prediction for fly ash concrete, Construction and Building Materials, vol.20, issue.9, pp.744-753, 2006.
DOI : 10.1016/j.conbuildmat.2005.01.052

M. Daimon, T. Akiba, and R. Kondo, Through Pore Size Distribution and Kinetics of the Carbonation Reaction of Portland Cement Mortars, Journal of the American Ceramic Society, vol.33, issue.2, pp.423-428, 1971.
DOI : 10.1111/j.1151-2916.1971.tb12379.x

V. G. Papadakis, C. G. Vayenas, and M. N. Fardis, Physical and chemical characteristics affecting the durability of concrete, ACI Materials Journal, vol.88, issue.2, 1991.

R. F. Bakker, Model to calculate the rate of carbonation in concrete under different climatic conditions, 1993.

M. Thiéry, C. Cremona, and V. Baroghel-bouny, Application of the reliability theory to the assessment of carbonation-induced corrosion risk of rebars, European Journal of Environmental and Civil Engineering, vol.270, issue.2, pp.3-4273, 2012.
DOI : 10.1002/aic.690351008

M. Thiéry, A. Orcesi, and V. Baroghel-bouny, Durability design of reinforced concrete structures submitted to carbonation by using an probabilistic modelling, RILEM, editor, ICCCRR (3rd International Conference on Concrete Repair, pp.1-10, 2012.

A. V. Saetta, B. A. Schrefler, and R. V. , 2 ??? D model for carbonation and moisture/heat flow in porous materials, Cement and Concrete Research, vol.25, issue.8, pp.1703-1712, 1995.
DOI : 10.1016/0008-8846(95)00166-2

A. V. Saetta, Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures, Cement and Concrete Research, vol.34, issue.4, pp.571-579, 2004.
DOI : 10.1016/j.cemconres.2003.09.009

A. V. Saetta and R. V. Vitaliani, Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures Part II. practical applications, Cement and Concrete Research, vol.35, pp.958-967, 2005.

T. Ishida, K. Maekawa, and M. Soltani, Theoretically Identified Strong Coupling of Carbonation Rate and Thermodynamic Moisture States in Micropores of Concrete, Journal of Advanced Concrete Technology, vol.2, issue.2, pp.213-222, 2004.
DOI : 10.3151/jact.2.213

M. Peter, A. Muntean, S. Meier, and M. Bohm, Competition of several carbonation reactions in concrete: A parametric study, Cement and Concrete Research, vol.38, issue.12, pp.1385-1393, 2008.
DOI : 10.1016/j.cemconres.2008.09.003

B. Bary and C. Mugler, Simplified modelling and numerical simulations of concrete carbonation in unsaturated conditions. Revue européenne de génie civil, pp.1049-1072, 2006.

A. Morandeau, M. Thiéry, P. Dangla, and V. Baroghel-bouny, Incorporating an ideal solid solution model for the C-S-H decalcification in a reactive transport modelling of carbonation, CONMOD lausanne, 2010.

T. Matschei, B. Lothenbach, and F. P. Glasser, Thermodynamic properties of portland cement hydrates in the system CaO-Al 2 O 3 -SiO 2 -CaSO 4 -CaCO 3 -H 2 O. Cement and Concrete Research, 2007.

D. Damidot, B. Lothenbach, D. Herfort, and F. P. Glasser, Thermodynamics and cement science, Cement and Concrete Research, vol.41, issue.7, pp.679-695, 2011.
DOI : 10.1016/j.cemconres.2011.03.018

D. A. Kulik, E. Berner, and . Curti, Modelling chemical equilibrium partitioning with the gemspsi code, PSI Scientific Report, vol.4, pp.109-122, 2003.

J. Van-der-lee, Thermodynamic and mathematical concepts of CHESS, 1998.

J. Van-der-lee, L. De-windt, V. Lagneau, and P. Goblet, Presentation and application of the reactive transport code HYTEC, Developments in Water Science, vol.47, pp.599-606, 2002.
DOI : 10.1016/S0167-5648(02)80114-9

URL : https://hal.archives-ouvertes.fr/hal-00596580

B. M. Huet, J. H. Prevost, and G. W. Scherer, Quantitative reactive transport modeling of Portland cement in CO2-saturated water, International Journal of Greenhouse Gas Control, vol.4, issue.3, pp.561-574, 2010.
DOI : 10.1016/j.ijggc.2009.11.003

J. Shen, Reactive Transport Modeling of CO 2 through Cementitious Materials under CO 2 Geological Storage Conditions, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00905453

J. Shen, P. Dangla, and M. Thiery, Reactive Transport Modeling of CO 2 Through Cementitious Materials Under Supercritical Boundary Conditions, pp.181-208, 2013.

P. C. Lichtner, FLOTRAN user's manual. Rep. LA-UR, 2001.

C. I. Steefel and S. B. Yabusaki, OS3D/GIMRT software for modeling multicomponentmultidimensional reactive transport, Pacific Northwest National Lab, 2000.

T. Q. Nguyen, Modélisations physico-chimiques de la pénétration des ions chlorures dans les matériaux cimentaires, 2007.

S. A. Greenberg and T. N. Chang, Investigation of the Colloidal Hydrated Calcium Silicates. II. Solubility Relationships in the Calcium Oxide-Silica-Water System at 25??, The Journal of Physical Chemistry, vol.69, issue.1, pp.182-188, 1965.
DOI : 10.1021/j100885a027

S. Hong and F. P. Glasser, Alkali binding in cement pastes, Cement and Concrete Research, vol.29, issue.12, pp.1893-1903, 1999.
DOI : 10.1016/S0008-8846(99)00187-8

M. Poupeau, Dosage des alcalins dans les matériaux cimentaires, 2010.

D. A. Kulik, Gems-psi 2.3. PSI Villigen, 2009.

E. Prud-'homme, Rôle du cation alcalin et des renforts minéraux et végétaux sur les mécanismes de formation de géopolymères poreux ou denses, 2011.

L. S. Glasser and N. Kataoka, The chemistry of ???alkali-aggregate??? reaction, Cement and Concrete Research, vol.11, issue.1, pp.1-9, 1981.
DOI : 10.1016/0008-8846(81)90003-X

S. J. Kwon and H. W. Song, Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling, Cement and Concrete Research, vol.40, issue.1, pp.119-127, 2010.
DOI : 10.1016/j.cemconres.2009.08.022

B. H. Oh, S. H. Jung, and M. K. Lee, Influence of porosity on the CO 2 diffusion characteristic in concrete (in korean, figures in english), Journal of the Korea Concrete Institute, 2003.

M. Mainguy, O. Coussy, and V. Baroghel-bouny, Role of Air Pressure in Drying of Weakly Permeable Materials, Journal of Engineering Mechanics, vol.127, issue.6, p.582, 2001.
DOI : 10.1061/(ASCE)0733-9399(2001)127:6(582)

A. J. Katz and A. H. Thompson, Prediction of rock electrical conductivity from mercury injection measurements, Journal of Geophysical Research, vol.29, issue.B1, pp.92599-607, 1978.
DOI : 10.1029/JB092iB01p00599

P. C. Carman, Fluid flow through granular beds. Transactions-Institution of Chemical Engineeres, pp.150-166, 1937.

A. Verma and K. Pruess, Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations, Journal of Geophysical Research, vol.213, issue.6, pp.931159-1173, 1988.
DOI : 10.1029/JB093iB02p01159

K. Pruess, G. J. Moridis, and C. Oldenburg, TOUGH2 user's guide, version 2.0, 1999.

T. Xu, Y. Ontoy, P. Molling, N. Spycher, M. Parini et al., Reactive transport modeling of injection well scaling and acidizing at Tiwi field, Philippines, Geothermics, vol.33, issue.4, pp.477-491, 2004.
DOI : 10.1016/j.geothermics.2003.09.012

O. Coussy, Mechanics of porous continua, 1995.

P. Dangla and O. Coussy, Non linear poroelasticity for unsaturated porous materials : an energy approach, Proceedings of the Biot conference on poromechanics, 1998.

Z. Zhang and M. Thiéry, A study of sorption hysteresis models for cementitious materials. submitted to Cement and Concrete Research (under review, p.2013

Y. Mualem, Modified approach to capillary hysteresis based on a similarity hypothesis, Water Resources Research, vol.7, issue.1, pp.1324-1331, 1973.
DOI : 10.1029/WR009i005p01324

Z. P. Bazant and L. J. Najjar, Nonlinear water diffusion in nonsaturated concrete, Materials and structures, vol.5, issue.1, pp.3-20, 1972.

C. Tognazzi, Couplage fissuration-dégradation chimique dans les matériaux cimentaires : caractérisation et modélisation, 1998.

E. J. Garboczi and D. P. Bentz, Computer simulation of the diffusivity of cement-based materials, Journal of Materials Science, vol.73, issue.8, pp.2083-2092, 1992.
DOI : 10.1007/BF01117921

E. J. Garboczi, Permeability, diffusivity, and microstructural parameters: A critical review, Cement and Concrete Research, vol.20, issue.4, pp.591-601, 1990.
DOI : 10.1016/0008-8846(90)90101-3

D. S. Mclachlan, M. Blaszkiewicz, and R. E. Newnham, Electrical Resistivity of Composites, Journal of the American Ceramic Society, vol.73, issue.26, pp.2187-2203, 1990.
DOI : 10.1007/BF01107449

H. Scher and R. Zallen, Critical Density in Percolation Processes, The Journal of Chemical Physics, vol.53, issue.9, pp.3759-3761, 1970.
DOI : 10.1063/1.1674565

D. P. Bentz and E. J. Garboczi, Percolation of phases in a three-dimensional cement paste microstructural model, Cement and Concrete Research, vol.21, issue.2-3, pp.325-344, 1991.
DOI : 10.1016/0008-8846(91)90014-9

D. P. Bentz, O. M. Jensen, A. M. Coats, and G. , Influence of silica fume on diffusivity in cement-based materials, Cement and Concrete Research, vol.30, issue.6, pp.953-962, 2000.
DOI : 10.1016/S0008-8846(00)00264-7

S. Y. Jang, Modeling of chloride transport and carbonation in concrete and prediction of service life of concrete structures considering corrosion of steel reinforcement, 2003.

B. H. Oh and S. Y. Jang, Prediction of diffusivity of concrete based on simple analytic equations. cement and concrete research, pp.463-480, 2004.

N. Olsson, V. Baroghel-bouny, L. O. Nilsson, and M. Thiéry, Non-saturated ion diffusion in concrete ??? A new approach to evaluate conductivity measurements, Cement and Concrete Composites, pp.4040-4087, 2013.
DOI : 10.1016/j.cemconcomp.2013.04.001

URL : https://hal.archives-ouvertes.fr/hal-01213313

V. Baroghel-bouny and M. Thiery, Modelling of isothermal coupled moisture???ion transport in cementitious materials, Cement and Concrete Research, vol.41, issue.8, pp.828-841, 2011.
DOI : 10.1016/j.cemconres.2011.04.001

O. Francy, Modelling of chloride ions ingress in partially water saturated mortars

T. C. Powers, A hypothesis on carbonation shrinkage, J. Res. Dev. Labs. Portld. Cem. Ass, vol.4, issue.2, pp.40-50, 1962.

J. J. Chen, J. J. Thomas, and H. M. Jennings, Decalcification shrinkage of cement paste. Cement and concrete research, pp.801-809, 2006.

R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods. Handbook of numerical analysis, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00346077

J. Gerthoffert, Modelisation du comportement hyrique des materiaux cimentaires en adsorption et en desorption, stage de master, 2008.

A. Morandeau, M. Thiéry, and P. Dangla, Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties, Cement and Concrete Research, vol.56, pp.153-170, 2014.
DOI : 10.1016/j.cemconres.2013.11.015

URL : https://hal.archives-ouvertes.fr/hal-00922073

. Initialement, ce projet de recherché etait en collaboration avec Lafarge et je tiensàtiensà remercier M

J. Remercier-claude, . Jeanne, P. Sandrine, . Patrick, . Daniel et al., Assia ainsi que Pierre pour ses nombreuses remarques scientifiques Parmi les gens qui m'ont fait confiance, je tenaisàtenaisà remercier Mme Véronique Baroghel-Bouny qui m'a accueilli dans sonéquipesonéquipe Parisienne pendant ces trois années. Les nombreux essais réalisés lors de ma thèse n'auraient pas pû etre réalisés sans le soutien de Mickaël (encore une fois), qui m'a transmis toutes ses compétences expérimentales. Un grand merci aux techniciens de choc Jean-François et Alexandre (ainsi que Patricia) pour leur disponibilité, les nombreux essais qu'ils ont réalisés pour moi et pour l'aide qu'ils m'ont accordée lorsque j'en avais besoin. J'en profite pour remercier Pamela Faure pour son aide et le temps passé sur les essais de RMN dont les résultats ne sont malheureusement pas présentés dans cette thèse, Ce n'est que partie remise. L'ambiance régnant allée Képler a permis de rendre ces années de thèse agréables et inoubliables, et je tiensàtiensà remercier dans un ordre aléatoire Claire, p.229

. Manu, Je tiens aussì a remercier Aza et Teddy pour les nombreuses pauses café (productives) quand je n'´ etais qu'une jeune recrue. Leur bonne humeur et leur gentillesse m'ont permis d'apprécier d'autant plus mon travail au laboratoire. J'ajouteraì a cela tous les chercheurs et le staff de Képler qui m'ont permisàpermisà chaque heureuxévènementheureuxévènement de manger des chocolatines et croissants gratuitement dans la salle café

. Ajoutonsàajoutonsà-cela-le, . Doctorants-de-l-'enpc, . Matthieu, M. Solenn, and . Blanchemanche, et cela fait beaucoup de merci. J'ai aussi passé d'excellents moments avec les doctorants de l'ancien site de Paris, et je tenais aussìaussì a saluer l'ambiance sympathique et agréable qui m'a permis d'alterner entre les deux sites sans le moindre regret. Un grand mercì a Guillaume

. De-façon-plus-informelle, Institut Curie pour leur gentillesse et leur compassion, et plusparticulì erement le Dr. Decaudin (et sa moustache) ainsi que toutes lesinfirmì eres de l'hôpital de jour. Je tenaisàtenaisà associer mon chaman-acupuncteuràacupuncteurà ces remerciements, il a ´ enormément contribuécontribuéà ma santé physique et mentale pendant l

. Au, Bioware et son dragon originel qui m'ont occupé pendant certains moments de creux et l'´ equipe SC2 WoL de Blizzard. J'ai une penséparticulì ere pour l'´ equipe D3 de Blizzard qui m'a permis de ne pas perdre de temps en gâchant une licence. George Martin m'a appris une chose : les vieux codes de la fantasy sont morts

. Une-kassdédie-pour-jérémie, . Greg, . Clairie, . Sara, and H. Beata, Tania qui m'ont permis de vivre une vie parisienne animée et sociale. Pour finir, j'ai une penséé emue pour tous mes relecteurs nonexperts qui ont, pour certains, insisté pour lire l'intégralité (plusieurs fois !) de ma thèse, Peio

A. Merci-pour-ton-soutien-suivre, et pas seulement pour corriger mes fôtes d'orthographe (l'académie française a ´ eté prévenue, ils t'enverront un pin's et le diplôme qui va avec, cosigné par Bernard Pivot, sous peu de temps) Ton soutien donc, et ta compréhension, ton amour, ta patience, et le fait qu'on ait pu avoir ce projet commun qui nous amène maintenant ensemble sur le sol Américain