E. M. Velsky, . Landisbb09-]-o, N. Bernardi, . N. Bonichonbgg73-]-i, I. M. Bernstein et al., An algorithm for the organization of information Catalan's intervals and realizers of triangulations Orderings of Coxeter groups, Figure 8.16 ? Le treillis de m-Tamari comme quotient d'un treillis sur les chaînes de permutations Bibliographie Schubert cells and cohomology of the spaces G/P. Russian Math. Surveys Combinatorics and algebra, pp.1259-1263, 1962.

E. [. Bousquet-mélou, L. Fusy, and . Préville-ratelle, The number of intervals in the m-Tamari lattices, Paper 31, pp.189-222, 1968.

L. [. Bergeron and . Préville-ratelle, Higher trivariate diagonal harmonics via generalized Tamari posets, Journal of Combinatorics, vol.3, issue.3, pp.317-341, 2012.
DOI : 10.4310/JOC.2012.v3.n3.a4

F. [. Bergeron, . ]. Sottilebw88, M. L. Björner, ]. Wachsbw91, M. L. Björner et al., Generalized quotients in Coxeter groups Permutation statistics and linear extensions of posets, Frontiers in number theory, physics, and geometry. II, pp.373-423, 1988.

G. A. Casamayou, T. Connan, L. Dumont, F. Fousse, M. Maltey et al., Calcul mathématique avec Sage. none (electronic version only), 2013. 89 [Cha07] F. Chapoton. Sur le nombre d'intervalles dans les treillis de Tamari, Sém. Lothar. Combin, vol.55, issue.151, pp.7-141, 2005.

]. F. Cha13 and . Chapoton, Flows on rooted trees and the Menous-Novelli-Thibon idempotents, p.190, 2013.

J. [. Chapoton, J. Novelli, V. Chatel, and . Pons, Counting smaller trees in the Tamari order International conference of Formal Power Series and Algebraic Combinatorics, 2013. arXiv preprint :1212.0751. 11, 143 [CS98] I. Chajda and V. Sná?el. Congruences in ordered sets Invariants symétriques entiers des groupes de Weyl et torsion, Désingularisation des variétés de Schubert généralisées . Ann. Scient. Ec. Norm. Sup., 4-ième série, pp.15895-100287, 1973.

G. H. Duchamp, F. Hivert, J. Novelli, J. Duchamp, F. Hivert et al., Noncommutative symmetric functions VII : free quasi-symmetric functions revisited Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Ann. Comb. Internat. J. Algebra Comput, vol.15, issue.133, pp.655-673, 2002.
DOI : 10.1007/s00026-011-0115-4

URL : https://hal.archives-ouvertes.fr/hal-00826640

A. [. Duchamp, D. Klyachko, J. Krob, and . Thibon, Noncommutative symmetric functions. III. Deformations of Cauchy and convolution algebras Introduction to lattices and orderFin13a] Findstat : The combinatorial statistic finder, www.findstat.org, 2013. Statistic St000011 http, Lie computations (Marseille Hivert. Combinatorial rooted ordered and binary trees The combinatorial statistic finder, pp.159-216, 1934.
URL : https://hal.archives-ouvertes.fr/hal-00826640

. M. Gkl-+-95-]-i, D. Gelfand, A. Krob, B. Lascoux, V. S. Leclerc et al., Noncommutative symmetric functions Geometry of Coxeter groups An introduction to combinatorial Hopf algebras? examples and realizations The algebra of binary search trees, Physics and theoretical computer science Thesis (Ph.D.)?The University of British Columbia (Canada), pp.218-348, 1974.

H. , S. Huang, and D. Tamari, Problems of associativity : A simple proof for the lattice property of systems ordered by a semi-associative law Coalgebras and bialgebras in combinatorics, J. Combinatorial Theory Ser. A Stud. Appl. Math, vol.13, issue.6, pp.7-13, 1972.

. [. Bibliographie, B. Krob, J. Leclerc, J. Krob, and . Thibon, Noncommutative symmetric functions. II. Transformations of alphabets Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at q = 0 Noncommutative symmetric functions. V. A degenerate version of U q (gl N ), Internat. J. Algebra Comput. J. Algebraic Combin. Internat. J. Algebra Comput, vol.7, issue.9, pp.181-264339, 1997.

P. Sci, . Sér, and . Math, The Grothendieck Festschrift Volume III Formal power series and algebraic combinatorics (Montreal, PQ, 1992). 5, 44 [Las13] A. Lascoux. Polynomial representations of the Hecke algebra of the symmetric group 3 [Len03] C. Lenart. A K-theory version of Monk's formula and some related multiplication formulas From Macdonald polynomials to a charge statistic beyond type A Affine Weyl Groups in K-Theory and Representation Theory Hopf algebra of the planar binary trees, Le monoïde plaxique Noncommutative structures in algebra and geometric combinatorics Young tableaux and Schur functors in algebra and geometry, pp.393-398, 1978.

. [. Bibliographie, M. Lascoux, . Schützenberger, . C. Polynômes-de-schubert, . Acad et al., Symmetry and flag manifolds Treillis et bases des groupes de coxeter A Pieri-type formula for the K-theory of a flag manifold The geometry of flag manifolds, 10.1007/BFb0063238. 43, 68 [LS92] A. Lascoux and M.-P. Schützenberger. Décompositions dans l'algèbre des différences divisées. Discrete MathMac60] P. A. MacMahon. Combinatory analysis. Two volumesMac95] I. G. Macdonald. Symmetric Functions and Hall Polynomials Proc. London Math. Soc. (3), pp.447-450, 1915.

C. [. Malvenuto, . Reutenauernt09-]-t, N. Gomez-diaz, and . Thiéry, Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra, Journal of Algebra, vol.177, issue.3, pp.967-982, 1035.
DOI : 10.1006/jabr.1995.1336

]. V. Pon13b and . Pons, Combinatorial m-ary trees http://trac.sagemath. org/sage_trac/ticket/13987. 11 [Pon13c] V. Pons. Interval structure of the Pieri formula for Grothendieck polynomials Analyse algébrique d'un scrutin Hopf algebra methods in combinatorics, Bibliographie [Pon13a] V. Pons. Adding new combinatorial maps to binary trees Ordres totaux finis Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, pp.123-146, 1971.

. [. Stein, The Sage Development Team http://www.sagemath.org. 10, 89 [SCc08] The Sage-Combinat community. Sage-Combinat : enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, Sage Mathematics SoftwareSta99] R.P. Stanley. Enumerative combinatorics, vol.2, issue.15, pp.89-117, 1999.

]. M. Swe69, ]. Sweedlertam62, and . Tamari, Hopf algebras Mathematics Lecture Note Series The algebra of bracketings and their enumeration. Nieuw Arch. Wisk, Verma. Möbius inversion for the Bruhat ordering on a Weyl group. Annales Scientifiques de l'École Normale Supérieure, pp.132131-146, 1962.