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Abstract

In a large number of applications, the processing relies on objects or areas of

interest, therefore the pixel-based image representation is not well adapted. These

applications would bene�t from a region-based processing. Early examples of region-

based processing can be found in the �eld of image segmentation, such as the

quadtree. Recently, in mathematical morphology, the connected operators have

received much attention. They are region-based �ltering tools that act by merging

�at zones. They have good contour preservation properties in the sense that they

do not create any new boundaries, neither do they shift the existing ones.

One popular implementation for connected operators relies on tree-based image

representations, especially threshold decomposition representations and hierarchical

representations. These tree-based image representations are widely used in many

image processing and computer vision applications. Tree-based connected operators

consist in constructing a set of nested or disjoint connected components, followed

by a �ltering of these connected components based on an attribute function char-

acterizing each connected component. Finally, the �ltered image is reconstructed

from the simpli�ed tree composed of the remaining connected components.

In the work presented in this thesis, we propose to expand ideas about tree-

based connected operators. We introduce the notion of tree-based shape spaces,

built from tree-based image representations. Many state-of-the-art methods relying

on tree-based image representations consist of analyzing this shape space. A �rst

consequence of this change of point of view is our proposition of a local feature

detector, called the tree-based Morse regions (TBMR). It can be seen as a variant

of the MSER method. The selection of TBMRs is based on topological information,

and hence it extracts the regions independently of the contrast, which makes it truly

contrast invariant and quasi parameter free. The accuracy and robustness of the

TBMR approach are demonstrated by the repeatability test and by applications

to image registration and 3D reconstruction, as compared to some state-of-the-art

methods.

The basic idea of the main proposition in this thesis is to apply connected �lters

to the shape space. Such processing is called the framework of shape-based morphol-

ogy. It is a versatile framework that deals with region-based image representations.

It has three main consequences. 1) For �ltering purposes, the classical existing tree-

based connected operators are generalized. Indeed, the framework encompasses

classical existing connected operators by attributes. Besides, this also allows us to

propose two classes of novel connected operators: shape-based lower/upper levelings
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and shapings. 2) This framework can be used for object detection/segmentation by

selecting relevant points in the shape space. 3) We can also employ this frame-

work to transform the hierarchies using the extinction values, in order to obtain a

hierarchical simpli�cation or segmentation.

Some applications are developed using the framework of shape-based morphol-

ogy to demonstrate its usefulness. The applications of the shape-based �ltering for

retinal image analysis show that a mere �ltering step, which we compare to more

evolved processings, achieves state-of-the-art results. An e�cient shaping used for

image simpli�cation is proposed by minimizing Mumford-Shah functional subordi-

nated to the topographic map. For object detection/segmentation, we proposed

a context-based energy estimator that is suitable to characterize object meaning-

fulness. Eventually, we extend the hierarchy of constrained connectivity using the

aspect of hierarchy transformation.

Keywords: image processing, mathematical morphology, connected �lters, tree

representations, hierarchies, local feature detections, retinal image analysis, image

simpli�cation/segmentation.
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Résumé

Dans un grand nombre d'applications, le traitement repose sur des objets ou

des zones d'intérêt, et la représentation d'image à base de pixels n'est pas bien

adaptée. Ces applications pourraient béné�cier d'un traitement basé sur régions.

Les premiers exemples de traitement basé sur région peuvent être trouvés dans le

domaine de la segmentation d'image, par exemple, le quadtree. Récemment, en

morphologie mathématique, les opérateurs connexes ont reçu beaucoup d'attention.

Ce sont des outils de �ltrage basé sur région qui agissent en fusionnant des zones

plates. Ils ont de bonnes propriétés de conservation de contour dans le sens qu'ils ne

créent pas de nouveaux contours, et qu'ils ne déplacent pas les contours existants.

Une implémentation populaire des opérateurs connexes repose sur une représen-

tation d'image à base d'arbres, notamment les représentations basées sur la dé-

composition par seuillage et les représentations hiérarchiques. Ces représentations

d'image à base d'arbres sont largement utilisées dans de nombreuses applications

de traitement d'image et de vision par ordinateur. Les opérateurs connexes à base

d'arbres sont construites par la construction d'un ensemble de composantes con-

nexes emboîtées ou disjointes, suivi d'un �ltrage de ces composantes connexes basé

sur une fonction d'attribut caractérisant chaque composante connexe. Finalement,

l'image �ltrée est reconstruite à partir de l'arbre simpli�é, composé des composantes

connexes restantes.

Dans le travail présenté dans cette thèse, nous proposons d'élargir les idées des

opérateurs connexes à base d'arbres. Nous introduisons la notion d'espaces de formes

à base d'arbres, construit à partir des représentations d'image à base d'arbres. De

nombreuses méthodes de l'état de l'art, s'appuyant sur ces représentations d'images

à base d'arbres, consistent à analyser cet espace de forme. Une première conséquence

de ce changement de point de vue est notre proposition d'un détecteur de carac-

téristiques locales, appelé les �tree-based Morse regions� (TBMR). Cette approache

peut être considérée comme une variante de la méthode des MSER. La sélection des

TBMRs est basé sur des informations topologiques, et donc extrait les régions in-

dépendamment du contraste, ce qui la rend vraiment invariante aux changements de

contraste; de plus, la méthode peut être considérée sans paramètres. La précision et

la robustesse de l'approche TBMR sont démontrées par le test de reproductibilité et

par des applications au recalage d'image et à la reconstruction 3D, en comparaison

des méthodes de l'état de l'art.

L'idée de base de la proposition principale dans cette thèse est d'appliquer les

opérateurs connexes à l'espace des formes. Un tel traitement est appelé la mor-
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phologie basée sur la forme. Ce cadre polyvalent traite des représentations d'images

à base de région. Il a trois conséquences principales. 1) Dans un but de �ltrage,

il s'agit d'une généralisation des opérateurs connexes à base d'arbres. En e�et, le

cadre englobe les opérateurs connexes classiques par attributs. En outre, il permet

également de proposer deux nouvelles classes d'opérateurs connexes: nivellements

inférieurs/supérieurs à base de forme et �shapings�. 2) Ce cadre peut être utilisé

pour la détection/segmentation d'objets en sélectionnant les points pertinents dans

l'espace des formes. 3) Nous pouvons également utiliser ce cadre pour transformer

les hiérarchies en utilisant les valeurs d'extinction, obtenant ainsi une simpli�ca-

tion/segmentation hiérarchique.

A�n de montrer l'utilité de l'approche proposée, plusieurs applications sont

développées. Les applications à l'analyse d'images rétinenne de �ltrage basé sur

la forme montrent qu'une simple étape de �ltrage, comparée à des traitements plus

évolués, réalise des résultats au niveau de l'état de l'art. Une application de �shap-

ing� pour la simpli�cation d'image est proposée, fondée sur une minimisation de

la fonctionnelle de Mumford-Shah subordonnée à l'arbre de formes. Pour la dé-

tection/segmentation d'objets, nous proposons un estimateur de l'énergie basée sur

le contexte. Cet estimateur est approprié pour caractériser la signi�cation d'objet.

En�n, nous étendons le cadre de la connectivité contrainte en utilisant l'aspect de

transformation de hiérarchie.

Mots-clefs: traitement d'images, morphologie mathématique, opérateurs con-

nexes, représentations d'arbre, hiérarchies, extraction de caractéristiques locales,

analyse d'image rétinienne, simpli�cation/segmentation d'image.
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Résumé long

Résumé

Le cadre classique des �ltres connexes consiste à enlever d'un graphe certaines de

ses composantes connexes. Pour appliquer ces �ltres, il est souvent utile de trans-

former une image en un arbre de composantes, et on élague cet arbre pour simpli�er

l'image de départ. Les arbres ainsi formés ont des propriétés remarquables pour

la vision par ordinateur. Une première illustration de leur intérêt est la dé�nition

d'un détecteur de zones d'intérêt, vraiment invariant aux changements de contraste,

qui nous permet d'obtenir des résultats à l'état de l'art en recalage d'images et en

reconstruction 3D à base d'images. Poursuivant dans l'utilisation de ces arbres,

nous proposons d'élargir le cadre des �ltres connexes. Pour cela, nous introduisons

la notion d'espaces des formes basés sur des arbres : au lieu de �ltrer des com-

posantes connexes du graphe correspondant à l'image, nous proposons de �ltrer des

composantes connexes du graphe donné par l'arbre des composantes de l'image. Ce

cadre général, que nous appelons morphologie basée sur les formes, peut être utilisé

pour la détection et la segmentation d'objets, l'obtention de segmentations hiérar-

chiques, et le �ltrage d'images. De nombreuses applications et illustrations montrent

l'intérêt de ce cadre.

Mots Clefs

Traitement d'image, morphologie mathématique, �ltrage connexe, représentation

arborescente, segmentation hiérarchique, détection de zones d'intérêt.

A Introduction

En morphologie mathématique, les opérateurs connexes [Serra 1993, Salembier 1995,

Salembier 1998, Salembier 2009] ont reçu beaucoup d'attention. Ce sont des outils

de �ltrage basés sur régions qui agissent en fusionnant des zones plates. Ils ont de

bonnes propriétés de conservation des contours dans le sens qu'ils ne créent pas de

nouveaux contours, et qu'ils ne déplacent pas les contours existants.

Une implémentation populaire des opérateurs connexes repose sur les représenta-

tions d'images en arbres [Salembier 1998, Monasse 2000b, Salembier 2000]. Dans la

pratique, pour des questions d'e�cacité, les algorithmes des �ltres connexes reposent

sur ces représentations arborescentes, et comprennent trois étapes : une construction

d'arbre représentant l'image à traiter, l'élagage de cet arbre, et la reconstruction de
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Figure 1: Opérateurs connexes basés sur l'arbre (chemin noir) et notre proposition

(en ajoutant le chemin rouge).

l'image correspondant à l'arbre simpli�é. Un exemple d'un tel processus est illustré

en Figure 1 par le chemin noir. Dans le travail présenté dans cette thèse, nous pro-

posons tout d'abord une première illustration de l'intérêt de ces arbres : un détecteur

de zones d'intérêt que nous appelons �tree-based Morse regions� (TBMR). Cette ap-

proche peut être considérée comme une variante de la méthode MSER [Matas 2002].

La sélection des TBMRs est basée sur l'information topologique ; les régions sont

donc extraites indépendamment de leur contraste. Au �nal, la méthode est donc

totalement invariante aux changements de contraste des images à traiter. De plus,

TBMR est quasiment sans paramètre. Nous avons obtenu des résultats au niveau de

l'état de l'art pour le test de répétabilité [ Mikolajczyk 2005], et pour des applications

au recalage d'image et à la reconstruction 3D à base d'images.

En allant plus loin dans l'utilisation de ces arbres, nous proposons d'élargir le

cadre des opérateurs connexes. Pour cela, nous introduisons la notion d'espaces des

formes basés sur des arbres. Un espace des formes est un graphe connexe non-dirigé

dont chaque n÷ud correspond à un n÷ud (composante connexe) dans l'arbre, et la

relation de voisinage est donnée par la relation de parenté de l'arbre. L'idée princi-

pale dans cette thèse est d'appliquer les opérateurs connexes à l'espace des formes, au

lieu de s'appuyer directement sur l'espace de l'image. Un tel traitement est appelé la

morphologie basée les formes. C'est un cadre général ayant trois conséquences prin-

cipales. 1) Ce cadre peut être utilisé pour la détection et la segmentation d'objets

en sélectionnant les n÷uds pertinents dans l'espace des formes. 2) Nous pouvons

également utiliser ce cadre pour obtenir des simpli�cations d'images et des seg-

mentations hiérarchiques. 3) Dans un but de �ltrage, il s'agit d'une généralisation

des opérateurs connexes à base d'arbres. En e�et, le cadre englobe les opérateurs

connexes classiques par attributs. En outre, il permet également de proposer deux
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Figure 2: Une image (à gauche), ses Max-tree et Min-tree (au milieu), et son arbre

des formes (à droite).

nouvelles classes d'opérateurs connexes : des nivellements inférieurs/supérieurs à

base de formes et des �shapings�. L'intérêt de ces trois aspects du cadre proposé est

démontré par des applications et des illustrations.

Le reste de ce résumé long est structuré de la façon suivante. Nous rappelons

l'état de l'art dans la Section B, suivie par notre proposition d'un détecteur de zones

d'intérêt dans la Section C. Puis nous introduisons la notion d'espaces des formes

dans la Section D, et nous détaillons le cadre de la morphologie basée sur les formes

dans la Section E. Nous montrons quelques illustrations et applications de ce cadre

dans la Section F. En�n, la section G conclut le résumé long.

B Travaux liés

B.1 Représentations arborescentes

Nous distinguons deux types de représentations d'images en arbres. Le premier type

est basé sur une décomposition d'image par seuillage ; le second type est la famille

des hiérarchies de segmentations, une hiérarchie étant constitué d'un ensemble de

segmentations allant des plus �nes aux plus grossières.

Arbres basés sur la décomposition d'image par seuillage. Pour tout � 2 R,

l'ensemble supérieurX� et l'ensemble inférieur X � d'une image f : 
 ! R sont

dé�nis respectivement par X� (f ) = f p 2 
 j f (p) � � g et X � (f ) = f p 2 
 j

f (p) � � g: Les deux ensembles de niveaux supérieur et inférieur ont une structure

d'inclusion naturelle : 8 � 1 � � 2; X� 1 � X � 2 and X � 1 � X � 2 ; ce qui conduit à deux

représentations distinctes d'une image, le Max-tree et le Min-tree [Salembier 1998].

Un autre arbre, appelé arbre des formes, a été introduit dans [Monasse 2000b].

Une forme est dé�nie comme une composante connexe d'un ensemble supérieur ou

inférieur dans laquelle ses trous ont été bouchés. La relation d'inclusion entre les

formes donne un arbre unique qui est l'arbre des formes. Un exemple de ce type

d'arbre est donné en Figure2.
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Hiérarchie de segmentations. Les hiérarchies de segmentations sont dev-

enues très populaires dans le domaine de la segmentation d'images [Guigues 2006].

Un exemple de hiérarchie de segmentations est l'arbre binaire de parti-

tions [Salembier 2000], créé par un processus de fusion de régions. Un deuxième

arbre populaire est l'arbre couvrant de poids minimal [Kruskal 1956]. Un dernier

exemple est l'� -tree [Ouzounis 2011a], connu aussi sous le nom de hiérarchie de

connectivité contrainte [Soille 2008]. Toutes ces hiérarchies de segmentations peu-

vent produire des cartes de saillance [Najman 1996], et peuvent être données sous

la forme équivalente de ligne de partage des eaux ultramétrique [Najman 1996,

Najman 2011].

Toutes les représentations en arbres sont multi-échelles au sens de la théorie

d'analyse ensembles-échelles [Guigues 2006], ce qui fournit un espace réduit de

recherche d'objets. Par ailleurs, les arbres basés sur une décomposition par seuil-

lages sont covariant aux transformations (topologiques) continues, et ils sont aussi

invariants aux transformations a�nes des intensités d'image. De plus, l'arbre des

formes et l'� -tree sont des structures auto-duales.

B.2 Opérateurs connexes

Les opérateurs connexes [Serra 1993, Salembier 1995, Salembier 1998,

Salembier 2009] ne modi�ent pas la valeur des pixels individuellement mais

agissent au niveau des composantes connexes où le signal est constant, connue

par le terme zones plates [Salembier 1995]. Les opérateurs connexes fusionnent les

zones plates adjacentes. Ils ne peuvent pas introduire un contour qui n'est pas

présent dans l'image originale. Ils ne peuvent pas non plus déplacer les contours

existants. Les opérateurs connexes ont été originellement dé�nis via le concept de

partition des zones plates. Désignons parP une partition et par P(p) la région

de la partition qui contient le pixel p. Un ordre partiel entre partitions peut être

créé : P1 est plus ��ne" que P2 (ce que l'on noteP1 v P 2), si 8 p;P1(p) � P 2(p).

Les opérateurs connexes sont alors dé�nis comme suit :

Dé�nition 1 Un opérateur ' est connexe si la partition des zones platesPf de

l'image f est toujours plus �ne que celleP' (f ) de l'image ' (f ).

Une implémentation populaire des opérateurs connexes repose sur les représenta-

tions arborescentes. Le �ltrage consiste alors à concevoir un attribut caractérisant

la forme des composantes ou le degré de ressemblance entre la forme des composantes

vis-à-vis d'une forme attendue. Il y a deux types d'approches pour �ltrer l'arbre

(donc pour �lter l'image). Le premier type est l'élagage d'arbres. L'autre repose

sur le seuillage par attribut.
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Figure 3: Une image synthétique, son Min-tree (au milieu) et son Max-tree (à

droite). Les régions critiques sont représentées par des cercles rouges : ce sont

des n÷uds ayant plus d'un enfant et et les feuilles. Les TBMRs sont les régions

correspondants aux n÷uds remplis en rouge.

B.3 Applications liées aux représentations arborescentes

Il existe de nombreuses applications utilisant les représentations arborescentes en

traitement d'images et en vision par ordinateur. Nous détaillons brièvement la méth-

ode MSER [Matas 2002] dont la dé�nition originale ne repose pas sur les représenta-

tions en arbre. Cependant, cette méthode est facilement compréhensible en utilisant

le Max-tree et le Min-tree : elle extrait les régions (n÷uds) qui correspondent à des

minima locaux de la fonction de stabilité le long du trajet vers la racine de l'arbre. La

fonction de stabilité d'un n÷ud N est donnée parA q(N ) = ( jN +
� j�jN �

� j)=jN j , où j�j

est l'aire, � est un écart d'intensité de gris,N +
� et N �

� sont respectivement l'ancêtre

le plus bas et le descendant le plus haut de telle sorte quejf (N +
� ) � f (N )j � �

et jf (N ) � f (N �
� )j � � . Il est rapporté dans [Mikolajczyk 2005] que la méthode

MSER atteint une répétabilité et une précision au niveau de l'état de l'art.

C �Tree-based Morse regions�

D'après la théorie de Morse [Milnor 1963], la topologie d'une imagef est directe-

ment liée à l'analyse des points critiques : les minima, maxima, et points-selles de

f . Plus précisément, suivant [Caselles 2009], nous proposons de choisir des régions

critiques dans les Max-treeSTM et Min-tree STm . Les régions critiques sont les

feuilles de l'arbre et les régions résultant d'une fourche dans l'arbre. Pour chaque

région critique, une échelle est sélectionnée. Nous associons à chaque région cri-

tique Rc la plus grande région contenantRc et topologiquement équivalente dans

son arbre. Nous appelons notre méthode �tree-based Morse regions� (TBMR). Un

exemple d'extraction de TBMRs est illustré en Figure3. Dans la pratique, nous

ne considérons pas les TBMRs qui sont trop petits ou trop grands. Les rejets de

petites régions est e�ectuée avant l'analyse, ce qui signi�e qu'ils ne pas contribuent
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Figure 4: Le score de répétabilité (à gauche) et le nombre de correspondances (à

droite) pour les séquencesWall, Bark, Trees, Leuven (de haut en bas, et de gauche

à droite).

aux changements topologiques. Ce processus élimine aussi un peu de bruit sans

modi�er les autres composantes. Dans nos expériences, nous avons toujours �xé

cette limite inférieure à 30 pixels, et la limite supérieure de taille des composantes

considérées est �xée à 1% de la taille de l'image.

La méthode TBMR a plusieurs avantages : comme elle utilise seulement une in-

formation topologique, elle est indépendante du contraste de l'image. Elle est égale-

ment covariante aux transformations (topologiques) continues tels que les trans-

lations, les changements d'échelle, ou les rotations. Elle est également robuste

aux distorsions géométriques locales. En outre, elle est essentiellement exempte

de paramètres : seulement deux paramètres non signi�catifs sont appliqués (pour

ignorer les régions trop petites ou trop grandes).

Des tests de répétabilité [Mikolajczyk 2005] (Figure 4) montrent la précision et

la robustesse de l'approche TBMR. Nous obtenons des résultats à l'état de l'art

pour l'application de TBMR au recalage d'image et à la reconstruction 3D à base

d'images. Le TBMR est meilleur en particulier que MSER pour ces applications.

D Espaces des formes

Il existe des caractéristiques communes à tous les arbres. Ces arbres sont composés

d'un ensemble des régions (composantes connexes), de petites à grandes. Chaque ré-

gion est représentée par un n÷ud dans l'arbre. Le n÷ud racine de l'arbre représente

le domaine de l'image entière. Par ailleurs, pour deux régions distinctesR1 et

R2 représentées par deux n÷udsN1 et N2 de l'arbre, nous avons une propriété

d'emboîtement : R1 \ R2 6= 0 ) R1 � R2 ou R2 � R1. À l'exception du n÷ud

racine, chaque n÷ud N de l'arbre a un parent unique Np, et il existe une arête
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(N ; Np) re�étant le lien de parenté, c'est-à-dire, la relation d'inclusion entre les

deux régions qu'ils représentent. En conséquence, les représentations arborescentes

d'image peuvent être considérées comme des graphes connexes, ce qui donne la

dé�nition d'espace des formes basés sur l'arbreST .

Dé�nition 2 Un espace des formes basé sur un arbreT noté par ST est un graphe

non-dirigé connexe, oùV(ST ) = f N j N 2 T g , et E (ST ) est composé de l'ensemble

des arêtes qui modélisent la relation d'inclusion.

Les espaces des formes basés sur les arbres ont quelques propriétés fondamen-

tales. Tout d'abord, un espace des formesST est équivalent à une imagef , dans

le sens où l'imagef peut être reconstruite à partir de l'arbre T . De plus, tous les

espaces des formes satisfont le principe de causalité, certainement le principe le plus

fondamental de l'analyse multi-échelles [Guigues 2006]. D'après ce principe, pour

tout couple d'échelles� 2 > � 1, les �structures� trouvées à l'échelle� 2 devraient trou-

ver une �cause� à l'échelle� 1. En e�et, une région d'un certain niveau dans l'arbre

appartient à une branche de l'arbre qui correspond à un ensemble allant d'une région

très �ne jusqu'à l'image entière. Ainsi, tous les espaces des formes peuvent être con-

sidérés comme des représentations multi-échelles. Par ailleurs, contrairement aux

espaces d'échelles linéaires, le contour d'une forme donnée (composante connexe)

correspond au contour réel de l'image sans ��ou�.

E Morphologie basée sur les formes

Un espace des formes basé sur l'arbreST est un graphe connexe qui est équiva-

lent à l'espace de l'image. Chaque n÷ud dans l'espace de l'image correspond à un

point pondéré par une fonction d'intensité f . La connexité de l'espace de l'image

est généralement la 4-connexité (resp. 6-connexité) ou la 8-connexité (resp. 26-

connexité) dans les images 2D (resp. images 3D). Par contraste, chaque n÷ud dans

l'espace des formes est une composante connexe pondérée par une fonction d'attribut

A . La connexité entre les n÷uds de l'espace des formes est donnée par le lien de

parenté dans l'arbre des composantes.

Un �ltrage très simple consiste à enlever les composantes connexes dont l'attribut

est trop faible. Mais il existe de nombreux �ltres beaucoup plus sophistiqués. Nous

proposons d'appliquer les opérateurs connexes dans les espaces des formes. Nous

appelons ce processusmorphologie basée sur les formes; il est illustré en Figure 1 en

ajoutant le chemin rouge. Ainsi, le �ltrage se fait non pas dans l'espace de l'image,

mais dans l'espace des formes construits sur l'image. En procédant de cette manière,

nous généralisons les �ltres connexes existants. Nous pouvons utiliser ce cadre non
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Figure 5: Un exemple de détection d'objets. Dans les arbres, les cercles pleins

représentent les minima locaux, et les cercles pleins colorisés, les minima locaux

restant après �ltrage. En bas, les courbes montrent l'évolution de l'attribut, avant

et après �ltrage, le long de la branche entourée dans l'arbre. En haut à droite :

les objets signi�catifs détectés (contours colorisés) et une hiérarchie de détection

d'objets représentée sous la forme d'une carte de saillance.

seulement pour le �ltrage, mais aussi pour la détection/segmentation d'objets et la

segmentation hiérarchique.

Filtrage. Le cas classique est celui où l'attributA est croissant. Dans ce cas,

le Min-tree T T est isomorphe au premier arbreT . Suivre le chemin rouge est

équivalent à suivre le chemin noir. Ceci montre que notre proposition englobe le cas

classique. Cependant, un attribut A décrivant les formes est le plus souvent non-

croissant. Dans ce cas là,T T est di�érent de T . Si le second attribut est identique

au premier attribut, alors l'élagage de TT est équivalent au seuillage de T.

Dans le cas général, le second attributAA est di�érent de A . Cela nous per-

met d'introduire deux nouvelles familles d'opérateurs connexes. Quand l'espace des

formes est basé sur un Max-tree (resp. Min-tree), nous appelons ce type de �ltres

des nivellements supérieurs (resp. inférieurs) basés sur les formes. Quand l'espace

des formes est donné par une représentation arborescente auto-duale, plus partic-

ulièrement un arbre des formes, nous appelons �shapings� cette famille de �ltres.
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Détection/segmentation d'objets. Les espaces des formes fournissent un es-

pace réduit de recherche. Si on veut détecter un seul objet dans l'image, on peut

simplement repérer le n÷ud ayant l'attribut le plus signi�catif ; il correspond à la

forme de l'objet le plus probable. Mais dans le cas général, le nombre d'objets à dé-

tecter dans l'image est inconnu. Nous proposons alors d'identi�er ces objets comme

étant ceux qui correspondent aux minima locaux de l'espace des formes. Cepen-

dant, ces minima sont souvent trop nombreux. Pour résoudre ce problème, nous

proposons d'appliquer un �ltre connexe dans l'espace des formes, ce qui va éliminer

les minima non signi�catifs. Un exemple est donné en Figure5.

Segmentation hiérarchique. En augmentant la force du �ltrage dans la méth-

ode de détection d'objets, de plus en plus minima locaux vont disparaître ou

être absorbés par des minima plus signi�catifs. Cette force de �ltrage peut être

mesurée par une valeur d'extinction [Vachier 1995] dé�nie sur l'ensemble de min-

ima locaux. Les valeurs d'extinction mesurent les persistances des minima donc

des objets. En faisant varier le seuil sur la valeur d'extinction, nous hiérarchisons

les minima locaux. Cette hiérarchie peut être utilisée pour simpli�er (enlever les

objets les moins persistants), ou pour segmenter (garder des objets persistants).

Une telle hiérarchie peut se représenter sous la forme d'une image de saillance des

contours [Najman 1996, Najman 2011, Guigues 2006] : le contour de chaque mini-

mum peut être pondéré par la valeur d'extinction pour laquelle il disparaît dans la

hiérarchie. On obtient ainsi une image de contours dans laquelle les objets les plus

signi�catifs ont les contours les plus brillants.

F Quelques illustrations du cadre

Dans cette section, nous présentons quelques illustrations et applications de notre

cadre : en détection d'objets (Section F.1) ; en étendant la notion de connectivité

contrainte (Section F.2) ; en �ltrages (Section F.3).

F.1 Segmentation d'objets

Nous avons appliqué la méthode de segmentation d'objet à la segmentation de

nerfs optiques dans des image de fond d'oeil. Sur la base de données DRI-

ONS [Carmona 2008], nous obtenons des résultats à l'état de l'art. Nous avons

aussi introduit dans [Xu 2012] un critère original pour la détection d'objets. Ce

critère est fondé sur une énergie de type �contours actifs�. Une application à la

détection d'objets en utilisant ce critère est illustré en Figure6.
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Figure 6: Un résultat de détection d'objets.

F.2 Extension de la connectivité contrainte

Nous avons appliqué notre cadre pour étendre la connectivité con-

trainte [ Soille 2008]. Il s'agit ici de simpli�er une hiérarchie de zones plates par un

critère croissant. Nous proposons de remplacer l'attribut croissant par un attribut

non croissant inspiré de [Felzenszwalb 2004] et d'utiliser notre cadre pour produire

une segmentation hiérarchique. La Figure7 montre un exemple d'application. Les

résultats des tests dans la base de données de BSDS500 [Arbelaez 2011] sont donnés

dans la Table1.

Figure 7: Exemple de segmentation hiérarchique. En haut : l'image originale et la

carte de saillance obtenue ; en bas : deux segmentations extraites de la hiérarchie.
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Method
GT Covering PRI

ODS OIS Best ODS OIS

FH [Felzenszwalb 2004] 0.43 0.53 0.68 0.76 0.79

Guimarães [Guimarães 2012] 0.46 0.53 0.60 0.76 0.81

Ours 0.50 0.57 0.66 0.77 0.82

Table 1: Evaluation de notre segmentation hiérarchique.

F.3 Illustration des nouveaux �ltres

La Figure 8 montre une comparaison entre la méthode de seuillage utilisant l'attribut

de circularité, un �shaping� avec le même attribut et un autre �shaping� reposant

sur une combinaison de la circularité et du moment d'inertie divisé par l'aire au

carré. Dans la Figure9, nous montrons des exemples de �shaping� reposant sur un

critère issu de l'énergie de Mumford-Shah. L'espace des formes utilisé est ici l'arbre

des formes [Monasse 2000b]. Cette méthode est décrite dans [Xu 2013]. Nous avons

appliqué le nivellement supérieur à base des formes à la segmentation de vaisseaux

dans les images rétiniennes. Nous avons obtenu des résultats au niveau de l'état de

l'art avec ce simple �ltre.

G Conclusion

Dans cet thèse, nous avons introduit la notion d'espaces des formes basés sur les

arbres. Une première illustration de l'intérêt des structures arborescentes est la

conception d'un détecteur de zone d'intérêt, vraiment invariant aux changements de

contraste. Ce détecteur obtient des résultats à l'état de l'art en recalage d'images

et en reconstruction 3D à base d'images. Notre principale proposition est le cadre

que nous appelons morphologie basée sur les formes. L'idée de base est d'appliquer

des �ltres connexes dans l'espaces des formes au lieu de l'espace de l'image. Ce

cadre nous permet d'introduire deux nouveaux types d'opérateurs connexes : des

nivellements supérieurs/inférieurs basés sur les formes et les �shapings�. Nous avons

montré que ce cadre peut être utilisé pour la détection et la segmentation d'objets.

Par ailleurs, ce cadre nous permet d'obtenir des segmentations hiérarchiques.
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(a) Image d'entrée. (b) �Shaping� 1.

(c) Seuillage faible. (d) Seuillage fort.

(e) Combinaison de seuillage. (f) �Shaping� 2.

Figure 8: Comparaison entre le "shaping" et un seuillage dans l'espace des formes :

en (b,c,d), le critère est un attribut de forme ; en (e,f), l'attribut est une combinaison

de plusieurs attributs de forme.
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Figure 9: Deux résultats de pré-segmentations obtenues par �shaping� utilisant un

critère fondé sur l'énergie de Mumford-Shah ; l'espace des formes est ici créé à partir

de l'arbre des formes.
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Chapter 1

Introduction

An image to be processed is usually modeled as a discrete function de�ned on

pixels or voxels over a 2D or 3D domain. There exist also many other image rep-

resentations which decompose the image into primitive or fundamental elements,

so that it can be more easily interpreted. Indeed, an increasing number of appli-

cations in image processing and computer vision are not e�ciently handled when

using the classical pixel-based processing approaches. Content-based image com-

pression or indexing, as well as many biomedical and remote sensing applications

are such instances. In these applications, low-level processing would bene�t from

region-based representations, super-pixels for instance. In this PhD thesis, we are

interested in a particular type of region-based representations: the tree-based im-

age representations. Such representations have been popularized by connected �l-

ters [Serra 1993, Salembier 1995, Salembier 1998, Salembier 2009]. Besides, there

are many applications in image processing and computer vision relying on this kind

of image representation. This PhD thesis proposes a general framework to ana-

lyze tree-based image representations, so as to process and analyze images. This

framework o�ers several processing aspects, ranging from �ltering to object detec-

tion/segmentation, and hierarchy transformation. Those aspects lead to several

applications developed in the work presented in this thesis. In this introductory

chapter, we will �rst shortly review two types of tree-based image representations

in Section 1.1. (the detailed introduction to tree-based image representations will

be found later in the �rst chapter of Part II ). The context of this thesis is described

in Section 1.2. Our main contributions are summarized in Section1.3. Finally,

Section 1.4 presents the overall structure of this thesis report.

1.1 Image representations

A classical image model is a function de�ned on pixels of an image domain. It can

be seen as a node weighted graph. The set of vertices of this graph is the set of

pixels, and the edges of the graph encode the neighborhood relationship between

pixels. Many applications in image processing and computer vision interact with

some primitives of fundamental elements being more meaningful than the pixels.
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There are several image representations speci�c to some applications, such as the

Fourier transform or the wavelet transform. The former is often used in applica-

tions such as geometric analysis, image denoising, image deblurring, or registration,

and the later is usually used for image compression and texture analysis. The im-

age representations which we are interested in are the region-based representations.

They are composed of a set of regions of the original image. These regions are

either disjoint or are organized thanks to an inclusion relationship. These image

representations can be divided into two categories: hierarchical representations and

threshold decompositions.

1.1.1 Hierarchical representations

The �rst type of the region-based representations is the hierarchy of segmentation,

known also as pyramids [Pavlidis 1979, Rosenfeld 1984, Jolion 1994]. A hierarchy

of segmentation is composed of a set of partitions going from �ne to coarse. It

can be represented by a tree structure, whose root node represents the entire image

as a single region, and whose leaves correspond to the regions of the �nest image

partition. The other nodes lying between the root and the leaves represent the

regions obtained by the fusion of all the regions represented by its children. The

hierarchy of segmentation is a multi-resolution/multi-scale image representation.

However, unlike many scale-space based representations, all the regions encoded in

this hierarchy are actually �present� in the original image. In fact, the hierarchy

of segmentation provides a tremendously reduced space of candidate regions to be

processed for those applications that interact with objects, or areas of interest.

A �rst example of this type of image representation is the quadtree, popularized

in the early 1970's [Finkel 1974]. A quadtree is created in a top-down way by recur-

sively subdividing the regions of the image into quadrants or regions. It has been

shown to be useful in many applications such as image compression or image segmen-

tation. Another popular strategy to create a hierarchy of segmentation is bottom-up.

some noticeable examples are the minimum spanning tree (MST) [Kruskal 1956],

the � -tree [Ouzounis 2011a, Nagao 1979, Soille 2008, Meyer 2000], and the bi-

nary partition tree (BPT) [ Salembier 2000]. Those hierarchies are widely used

in image simpli�cation/segmentation, and connected �ltering. A hierarchy of

segmentation is usually represented through a special type of tree called den-

drogram. It can be e�ciently represented by a saliency map [Najman 1996],

which has been popularized by Arbeláez under the name of �ultrametric contour

map� [Arbeláez 2006a, Arbelaez 2011]. A powerful tool to compute a saliency map,

so does a hierarchy of segmentation, is the ultrametric watershed [Najman 2009].

Actually, it has been shown in [Najman 2011] that any hierarchical image segmen-
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tation is equivalent to an ultrametric watershed. Details about hierarchical repre-

sentations will be reviewed in Section2.3.

1.1.2 Threshold decompositions

The second type of region-based representations is based on threshold decom-

positions [Beucher 1992], as developed in mathematical morphology [Serra 1982,

Serra 1988, Soille 2003, Najman 2010]. Unlike the hierarchy of segmentation, which

depends usually on image contrast, the image representations based on threshold

decompositions is contrast-invariant. It relies only on the pixel-value ordering, and,

for any increasing contrast changes, the order between pixels remains the same.

One of the simplest representations given by threshold decompositions is based

on the upper level sets'f x j f (x) � � g decomposition. The upper level sets are non-

increasing with respect to the threshold values� . This property allows to embed the

set of upper level sets (with decreasing threshold values� ) into a tree structure called

Max-tree [Salembier 1998]. The root of this tree denotes the entire image domain,

and the leaves are the local regional maxima of the image. By duality, the Min-tree

is de�ned as the tree representation based on the lower level setsf x j f (x) � � g; the

leaves of the Min-tree are the local regional minima in the image. Note that the

upper/lower level sets of an imagef are the same as the ones of the imagef 0obtained

by any increasing contrast change applied tof . Any contrast-invariant processing

applied to an image can be interpreted as a geometric processing acting on those

level sets and preserving their order. Eventually, the output image is reconstructed

from these processed level sets.

The Max-tree and Min-tree representations consider respectively the local max-

ima and minima in a di�erent way. However, the objects of interest in an image

can be bright, or dark. Many applications need to rely on the self-dual property:

the bright and dark components are expected to be processed in the same man-

ner. Another tree representation based on the threshold decompositions, called the

topographic map [Caselles 1999] or the tree of shapes [Monasse 2000b], ful�lls this

condition. The topographic map is obtained using the inclusion relationship of the

shapes, where a shape is de�ned as the connected component of upper or lower level

sets with �lled holes. The topographic map is a self-dual, and non-redundant image

representation, and it is invariant to increasing contrast changes.

All those tree-based threshold decompositions are contrast-invariant. They are

also multi-scale representations composed of a set of included or disjoint regions

going from small ones to large ones. These trees have been popularized by connected

�lters, i.e., �lters that act by merging of �at zones. They are also proved to be useful

in many applications, such as local feature detection, image indexing, scenery images
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analysis, and classi�cation of images. More details about these three morphological

trees and some application examples will be presented respectively in Section2.3

and in Section2.6.

1.2 Context

In many low-level processing tasks such as image denoising and image �lters, the

classical pixel-based image representation is used. For example, in the case of lin-

ear �lters, and classical morphological operators such as dilation and erosion using

structuring elements, the processing strategy is to modify the values of each pixel

based on a function de�ned on a local window around this pixel. These tools are

not able to deal with the notion of regions.

In a large number of applications, the processing relies on objects or areas of

interests, therefore the pixel-based image representation is not well adapted. For in-

stance, in content-based image compression or indexing, one may want to selectively

encode areas of interest or act on some objects. In biomedical image analysis and

remote sensing, one is usually interested in some type of meaningful regions, such

as organs of interest or cells in biomedical images, and buildings or areas of trees

in remote sensing images. All those applications would bene�t from a region-based

processing.

Early examples of region-based processing can be found in the �eld of im-

age segmentation, such as the classical split-and-merge methods [Rosenfeld 1984].

Recently, in mathematical morphology, the connected operators [Salembier 1998,

Salembier 2009] have received much attention. They are region-based �ltering tools

that act by merging �at zones (connected components having constant values). They

have good contour preservation properties in the sense that they do not create any

new boundaries, neither do they shift the existing ones. Since the introduction of

connected operators, the related literature grows rapidly with theoretical studies,

algorithm developments, and many applications.

One popular implementation for connected operators relies on tree-based image

representations, notably threshold decomposition representations and hierarchical

representations. Tree-based connected operators consist in constructing a set of

nested or disjoint connected components, whose �ltering is based on an attribute

function that characterizes each connected component. Most of the �ltering strate-

gies are based on decisions made due to an individual analysis of these connected

components. Finally, the �ltered image is reconstructed from the simpli�ed tree

composed of the remaining connected components.

The tree-based image representations, especially the three morphological trees
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popularized by the connected operators have also been proved to be very useful

for many applications. For instance, the Max-tree and Min-tree representations

have been used for image simpli�cation and segmentation [Ballester 2007], visual-

ization of images [Wilkinson 2001, Westenberg 2007], local feature detection by the

method of maximally stable extremal regions (MSER) [Matas 2002], and classi�-

cation of images [Urbach 2007]. The topographic map has been used for mean-

ingful level lines selection [Cao 2005], preferential image segmentation [Pan 2009b],

scenery image analysis [Song 2002, Song 2003], and texture indexing [Xia 2010].

The success of the morphological trees in these applications is due to the inher-

ent multi-scale and contrast-invariant properties of these trees. Besides, these trees

can be computed e�ciently with existing algorithms. Another tree-based image

representation popularized by the connected operators is the binary partition tree

(BPT) [ Salembier 2000]. This has been demonstrated to be very useful for object de-

tection/segmentation [Vilaplana 2008] due to the fact that the BPT is a multi-scale

representation which provides a tremendously reduced search space.

Region-based representations are intensively employed in image segmentation.

According to Marr's computational theory of vision [Marr 1983], a number of im-

age analysis systems are composed of two stages: low level analysis (characteris-

tic points, contours, regions : : :) and high level vision tasks (object recognition,

scene interpretation: : :). It is also assumed that the low-level and high-level stages

are completely independent. Since the structures of interest, which might be use-

ful for the high-level tasks, can be located in any arbitrary position in the im-

age. They can have any size and any level of contrast. So the low-level process

should be uncommitted to these conditions, and output a multi-scale and contrast-

invariant general description that is independent from any speci�c high-level task.

So, in the �eld of image segmentation, one popular strategy is to compute a hi-

erarchy of segmentation, from �ne ones to coarse ones [Guigues 2006], instead

of computing a single partition with respect to a certain scale. Some examples

are the quadtree [Finkel 1974], the minimum spanning tree [Kruskal 1956], the � -

tree [Ouzounis 2011a, Nagao 1979, Soille 2008, Meyer 2000], the binary partition

tree [Salembier 2000], the ultrametric watershed [Najman 2009], and the ultramet-

ric contour map [Arbelaez 2011]. The hierarchy of segmentation has also a tree

structure. This type of region-based representations has been shown to be useful

in many applications, such as image simpli�cation/segmentation [Soille 2008], im-

age compression [Samet 1985, Markas 1992], object detection [Vilaplana 2008], and

scene labeling by learning hierarchical features [Farabet 2013].

All those region-based representations, popularized by their use in connected

�ltering and in segmentation, have several properties in common. All of them can
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be embedded into a tree structure whose root represents the entire image as a single

region. The leaves correspond to small regions. These tree structures are multi-scale

image representations in the sense that a parent region is always larger than the

children regions. They obey the most fundamental principle of multi-scale analysis,

the causality principle [Koenderink 1984]. In fact, a region R at a certain scale is

included in all its ancestor nodes till the root node. This regionR can be seen

as a kind of consequence for its ancestor nodes. Besides, some of these tree-based

structures are contrast-invariant image representations. All these features contribute

to the success of many applications using these tree-based image representations.

In most of the applications using tree-based image representations, the analysis

of the tree is performed individually, which is to say that the regions represented

by the tree nodes are considered as completely independent. The decision of �l-

tering a non-relevant region or selecting a region of interest is only based on the

attribute describing the underlying region. The structure of the tree, i.e. the inclu-

sion relationship between regions is often ignored, which is unfortunate since this

relationship contains important contextual information. That kind of information

is usually more appropriate than the one de�ned by a local window in the classical

case. Most of the tree analysis strategies fall usually into two categories: pruning-

based methods and thresholding-based methods. There are very few applications

relying on the tree-based image representations that make use of the tree structures,

such as the maximally stable extremal regions (MSER) [Matas 2002], the preferen-

tial image segmentation [Pan 2009b], and the texture image indexing [Xia 2010].

However, only some simple information about the tree structure is used. For in-

stance, the comparison of attributes describing a region with the ones describing its

parent region and the children region included in it for local minima detection in

the tree, or the number of children.

In this PhD thesis, we propose a more general method to deal with region-based

image representations. We �rst introduce the notion of tree-based shape space

given by the tree-based image representations. Most of the existing applications

relying on those representations can then be seen as a simple analysis (sometimes

individual analysis) of this shape space. A �rst consequence of this interpolation

through the notion of the shape space is a novel local feature detection method

based on topological selection of regions from the shape space, (it can be seen as

a variant of the widely used MSER). The core work presented in this thesis is a

framework that we call shape-based morphology, inspired from the connected �lters,

but applied to the tree-based shape space instead of the image space. It provides

a more general and robust way to analyze the tree than the existing strategies. It

is a versatile framework, which can be easily adapted to many image processing,



1.3. Main contributions 9

pattern recognition, and computer vision problems.

1.3 Main contributions

The main contribution of this thesis is the proposition of a framework relying on

region-based image representations, which are used in an increasing number of ap-

plications. We call this framework shape-based morphology. It is inspired by the

connected operators [Salembier 1998, Salembier 2009]. We �rst introduce the notion

of tree-based shape space which can be de�ned by any tree-based image represen-

tation. It is a new point of view that considers any tree-base image representation

as a node-weighted graph, the weights being a certain attribute function describing

each region. The main idea of the framework of shape-based morphology is to apply

connected operators to this later graph. It is a versatile framework that can be used

for many image processing, pattern recognition, and computer vision problems. A

number of applications using the framework of shape-based morphology have been

proposed, which demonstrate the usefulness and show the high potential of this

framework. Finally, the algorithms used in this thesis are also presented to ensure

reproducible research.

1.3.1 A versatile framework

The notion of tree-based shape space constructed from any tree-based image repre-

sentation provides a simple point of view for many applications using tree represen-

tations. They can be seen as non-relevant points �ltering or a selection of points of

interest in the shape space. However, in most of these applications, this shape space

analysis is performed individually, or very simple information about the tree struc-

ture is used. Such information can be for instance the number of children for each

node, or the local minima detection based on the comparison between the attribute

of a node and the ones of its parent node and children nodes. The framework of

shape-based morphology makes use of the complete tree structure, that is mainly

the inclusion relationship between neighboring regions. This information can be

seen as the context of each node, which is moreover region form adapted, unlike the

local window. This �context� might provide a more adequate information that helps

deciding whether or not to �lter out a component. Consequently, this framework is

more general than the classical existing ones and might also be more robust. De-

pending on how we process this shape space, this framework can be used for three

di�erent purposes.

� Filtering: This framework includes the classical pruning- or threshold-based
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strategies. It also yields introduction of the two novel classes of connected

operators called the shape-based lower/upper levelings, and self-dual morpho-

logical shapings.

� Object detection/segmentation: Supposing that the main structures of

the objects of interest are present in the shape space (which is usually

a reasonable hypothesis), we can apply this framework for object detec-

tion/segmentation. To do this, we can spot the local minima or maxima of a

certain attribute function describing each region of the shape space. Connected

operators in the shape space help to remove the spurious minima or maxima,

so does the meaningless objects. Besides, a saliency map [Najman 1996] repre-

senting a soft object detection can be obtained by using the notion of extinction

values [Vachier 1995].

� Hierarchy transformation: Employing the principle of the soft object de-

tection, we can produce with our framework a saliency map representing a

hierarchical image segmentation from any tree-based image representation.

1.3.2 A number of applications

We have developed a number of applications using the framework of shape-based

morphology, which demonstrate the usefulness and show the high potential of the

framework.

� Tree-based Morse regions (TBMR): The TBMR in Chapter 4 is a di-

rect result from the fact that MSER [ Matas 2002] can be seen as a relevant

selection of points from the shape space. The TBMR is a variant of MSER,

whose selection is based on topological information inspired from the Morse

theory [Milnor 1963]. Unlike MSER, the TBMR is truly invariant to contrast

changes. Experimental results show that it achieves a comparable repeatabil-

ity score, but extracts a signi�cantly higher number of features compared with

the state-of-the-art methods. The applications to image registration and 3D

reconstruction demonstrate its accuracy and robustness.

� Hierarchical image simpli�cation: The simpli�cation method presented

in Chapter 5 is an e�cient morphological shaping. It quickly minimizes the

piecewise-constant Mumford-Shah functional subordinated to the topographic

map. A hierarchical version is also obtained using by the aspect of hierarchy

transformation of the framework. Experimental results show the usefulness of

this fast simpli�cation method.
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� Retinal image analysis: We have applied the shape-based �ltering of our

framework to retinal image analysis, including blood vessel segmentation and

optic nerve head (ONH) segmentation. Quantitative benchmarks in Chapter6

demonstrate that some simple �ltering achieves state-of-the-art results, when

compared with more evolved methods.

� Object detection/segmentation: We have presented in Chapter7 a novel

e�cient ratio-cut estimator, which is context-based and which can be inter-

preted as an active contour. Some examples of the application of this estimator

to the topographic map show the usefulness and robustness of this proposed

estimator and the object detection/segmentation aspect of the framework.

� Extending constrained connectivity: We have applied in Chapter8 the

hierarchy transformation aspect of the framework to the� -tree, (known also

as the hierarchy of constrained connectivity), with an non-increasing attribute

function inspired from the work of [Felzenszwalb 2004]. Quantitative bench-

marks on the BSDS500 dataset show that this saliency map-based hierarchy

might represent better contents of input images.

1.3.3 Reproducible algorithms

We present the e�cient algorithm to compute the morphological trees based on

the union-�nd algorithm, and the algorithm to incrementally compute attributes

(relying on accumulated information on region, contour, and context). We have

also developed a fast algorithm to compute minimal information along the contours

for some attribute such as the number of false alarms [Desolneux 2001, Cao 2005].

Finally, we have also introduced an e�cient algorithm for disjoint level lines selection

from the topographic map representation, which provides a simpli�ed tree that helps

to improve the visualization of the topographic map.

1.4 Manuscript contents

This thesis is divided into three main parts.

The �rst part presents the main concept of the work presented in this thesis.

It is composed of two chapters.

� Chapter 2: Reviewing tree-based connected operators. This chapter

is an introduction to the background of our work. We review the connected

operators, which constitues the main context of our PhD work. Many region-

based image representations that can be organized into a tree structure are
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detailed. We then give some application examples that rely on these trees

to demonstrate their usefulness. The novelty of this chapter is that we in-

troduce the notion of the tree-based shape space, which is the basis of our

proposed framework. Eventually, we provide a simple understanding about

some existing applications in the context of the shape-space.

� Chapter 3: Shape-based morphology framework. This key chapter

presents the core proposition of this thesis: the framework ofshape-based

morphology. The basic idea of this framework is to apply connected opera-

tors over the tree-based shape space. It consists of two tree constructions:

one is constructed from the image, and the second one is constructed from

the �rst tree representation. Our framework provides a simple de�nition of

MSER [Matas 2002], we can easily obtain an extension of MSER. Besides,

this framework has three main consequences. 1) For �ltering purposes, the

classical existing connected operators are generalized, and two novel types

of �lters are introduced. They are shape-based lower/upper levelings and

self-dual morphological shapings. 2) This framework can be used for object

detection/segmentation by selecting relevant points from the shape space. 3)

This framework provides a method to transform any tree representation into

a hierarchy representing a hierarchical image simpli�cation/segmentation.

The second part of this thesis presents di�erent applications that we have

developed using the framework of shape-based morphology.

� Chapter 4: Tree-Based Morse Regions (TBMR). The �rst application

is based on a simple analysis of the tree-based shape space. We present a

variant of the maximally stable extremal regions (MSER) that we call tree-

based Morse regions (TBMR). The main idea is to select in a covariant way

the regions from the tree-based shape space de�ned by the Min-tree and

Max-tree representations. The selection is based on some topological infor-

mation inspired from the Morse theory. It is truly contrast-invariant and

quasi parameter-free, as compared to the MSER approach. Besides, TBMR

extraction features the same complexity as MSER. Experimentally, TBMR

achieves a repeatability on a par with state-of-the-art methods, but obtains a

signi�cantly higher number of features. The applications of TBMR to image

registration and 3D reconstruction demonstrate its accuracy and robustness.

� Chapter 5: Hierarchical image simpli�cation. In this chapter, we �rst

propose an e�cient self-dual morphological shaping, that very quickly leads
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to a locally optimal solution for the piecewise-constant Mumford-Shah func-

tional minimization being subordinated to the topographic map. It selects a

set of salient level lines, and yields a simpli�ed image from the remaining level

lines. This is achieved by constructing only one tree representation. Using

the same principle of this example of shaping, as well as the aspect of hierar-

chy transformation in the framework of shape-based morphology, we obtain a

saliency map representing a hierarchical image simpli�cation. Experimental

results demonstrate the e�ciency, usefulness, and robustness of our method,

when applied to image simpli�cation, color image pre-segmentation, and au-

tophagosome counting in cellular images.

� Chapter 6: Shape �ltering. We show several applications using the �lter-

ing aspect of the framework of shape-based morphology. These shape-based

�lters introduced in this framework are applied to retinal image analysis, in-

cluding blood vessel segmentation and optic nerve head (ONH) segmentation.

Quantitative evaluations demonstrate that some simple shape-based �lters,

as compared to more evolved processings, can achieve state-of-the-art results.

Besides, we also illustrate an example among many variant of morphological

shapings.

� Chapter 7: Object segmentation on the shape spaces. We present

an application of the object detection/segmentation aspect of our framework.

In this chapter, we �rst introduce a novel e�cient ratio-cut estimator, which

is context-based and which can be interpreted as an active contour. It is

used as the attribute function that describes each region in the shape space.

A �rst example is applied to the topographic map [Monasse 2000b]. The

estimator can be computed incrementally on this shape space. Experimental

results in synthetic and real images demonstrate the robustness and usefulness

of the proposed context-based energy estimator. They also show that the

shape-based morphology is a versatile framework which is well-suited for object

segmentation tasks.

� Chapter 8: Extending constrained connectivity. This chapter focuses

on the aspect of hierarchy transformation of our framework. As a �rst example,

we use the shape space given by the� -tree (known also as the hierarchy of

constrained connectivity). This application can be seen as an extension of

constrained connectivity [Soille 2008] by transforming the � -tree into another

hierarchy of segmentation represented by a saliency map. Experiments on the

BSDS500 dataset show that this later saliency map might represent better the

contents of input images. This demonstrates the usefulness of the hierarchy
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transformation aspect in the framework of shape-based morphology.

The third part presents those algorithms used in this thesis.

� Chapter 9: Algorithms to compute information on the tree. In

this chapter, we detail the algorithms we have used for reproducible re-

search. To implement them, we use our C++ image processing library

Olena [Levillain 2010]. We �rst show the algorithm for tree construction based

on the union-�nd algorithm. Then we show how to e�ciently compute the at-

tributes relying on accumulating information on region, contour, and context.

The computation of minimal information along the contours for some attribute

such as the number of false alarms [Desolneux 2001, Cao 2005] is then illus-

trated. Finally, we present also an algorithm of disjoint level lines selection

relying on the topographic map representation. It provides a simpli�ed tree

that helps to improve the visualization of the topographic map.

Chapter 10 concludes the thesis by summarizing the framework of shape-based

morphology, and the applications developed in this framework. We also present

some possible improvements and future research on these applications. Several im-

portant factors that ensure the performance of our framework are then discussed.

We give some suggestions for additional studies of the three aspects of the frame-

work. Finally, we consider some possible applications of this framework.



Part II

Concept





Chapter 2

Reviewing tree-based connected

operators

This chapter presents the background of the core concept in this thesis. We review

the connected operators in Section2.2, which are the main context of our PhD

work. Many region-based image representations that can be organized into a tree

structure are then detailed in Section 2.3. One popular implementation of the

connected operators is based on those tree-based image representations; it is detailed

in Section 2.5. The novelty of this chapter is the introduction of the notion of

tree-based shape spacein Section 2.4. This shape space is the basis of our proposed

framework, and it provides a simple understanding about many existing applications

(see Section2.6) relying on the use of tree-based image representations.

2.1 Preliminaries

An image can be seen as an undirected graph represented by a pairG = ( V; E),

where V is the �nite set of vertices and E is the set of edges. Each vertexv 2 V

represents a pixel or a voxel of the image domain, and each edgee 2 E � V � V

models the neighborhood relationship (classically, 4 or 8-connectivity for 2D images,

and 6 or 26-connectivity in 3D cases) between the two vertices composinge.

A graph (V; E) is said to beconnectedif, for any x; y 2 V , there exists a path

from x to y, which is a sequence ofn > 1 vertices (x0 = x; x 1; : : : ; xn = y) such that

every x i 2 V , and every (x i ; x i +1 ) 2 E . Usually, the image domain is connected.

A binary image X is a subset of the image domain that induces a subgraph

(VX ; EX ), such that VX is the set of vertices representing the set of points ofX ,

and EX = VX � VX \ E . The binary set X is said to be connected if the subgraph

(VX ; EX ) is connected. A connected componentC of X is a connected subset of

X with the maximal extent. This means for any C0 such that C � C0 � X , if C0

is connected, then we haveC0 = C. More details about the notion of connectiv-

ity can be found in [Serra 1998, Braga-Neto 2003, Ouzounis 2007, Ouzounis 2011b,

Serra 2012a].
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(a) Original binary image (b) Output binary image

Figure 2.1: An example of binary connected operator.

In the following, X and Y denote the binary sets, the grayscale imagef : V !

R or Z is a mappingF from V to R or Z, which assigns a gray level to each vertex.

It is a node weighted graph denoted as(G; F ), where F is an element ofF . As a

convention, operators on binary images are denoted with capital Greek letter; the

corresponding lowercase letter is used to denote the grayscale version.

2.2 Connected operators

2.2.1 General de�nition

Let us start with the notion of connected operators [Serra 1993, Salembier 1995,

Salembier 1998, Salembier 2009] for sets and then extend it to the case of grayscale

images.

De�nition 1 An operator 	 working on an arbitrary binary image X is said to be

connected when the set of di�erenceX n 	( X ) is exclusively composed of connected

components ofX or of its complementX c.

This means that the connected operators for sets acts only by preserving or removing

the connected components of foreground and of background. An example of the

binary connected operator is given in Figure2.1, where the round foreground objects

are removed, the others are intact.

The extension of connected operators to grayscale images relies on the notion of

partition of �at zones [Salembier 1995]. A �at zone Fh(f ) of a grayscale imagef is

a connected component of the level set

Fh(f ) = f x 2 V j f (x) = hg (2.1)

Note that there may be multiple disjoint �at zones for each gray level h.
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A partition of an image is a set of disjoint, non-void connected componentsf Ci g

such that

1 8 i; C i 6= ; ,

2 8 i 6= j; C i \ Cj = ; ,

3 [ Ci = V .

It is obvious that the set of all the �at zones of a gray level imagef forms a

partition of the image domain. Now let us denoteP as the partition and P(x) as

the region of P that contains x. A partition P1 is said to be �ner than (written

as P1 v P 2) a partition P2, if 8 x; P1(x) � P 2(x). That means if P1 is �ner than

P2, then any pair of points belonging to the same region ofP1 belongs to a unique

region of P2.

De�nition 2 An operator  working on any grayscale imagef is connected if the

partition of �at zones of  (f ) is always coarser than the partition of �at zones of

the input image f .

The de�nition 2 shows that the grayscale connected operators acts by merging �at

zones. Consequently, the regions of the output partition of �at zones are created by

union of regions of the input partition. They do not introduce any new contour, and

keep perfectly the location and shape of the contours, which make the connected

operators well known for the good contour preservation properties. An example

of connected operator compared to the linear �lter and the classical morphological

operator based on structural element is shown in Figure2.2

The connected operators are usually considered as �ltering tools in the sense

that they transform an input grayscale image into a �ltered grayscale image. And

as the conception of grayscale connected operators relies on the notion of parti-

tion, They are also claimed to bridge the gap of classical �ltering and segmenta-

tion [Jones 1999, Gatica-Perez 2001]. Indeed, some theoretical notions about the

extension of connected operators to pure segmentation applications are presented

in [Serra 2006, Ronse 2008], known as connective segmentation. Some application

examples of the connected operators to segmentation will also be shown in Chapter7

and Chapter 8.

One of the most successful implementation of such connected operators is based

on a reconstruction process. The readers are referred to [Salembier 2009] for more

details. A special case called leveling will be reviewed in Section2.2.3. Another

popular implementation relies on the tree-based image representations (detailed in

Section 2.3). See Section2.5 for details about this e�cient implementation.
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(a) Input image (b) Gaussian �lter

(c) Opening with disk (d) Connected operator

Figure 2.2: A connected operator example compared with a linear �lter, and a

classical morphological opening with structuring element. The Gaussian �lter in

(b) blurs image, and the opening using a disk as structuring element in (c) creates

new contours. The grain �lter [Caselles 2002] does not create any new contour,

neither shifts the existing contours.
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2.2.2 Attribute �lters

The attribute �lters [ Breen 1996, Salembier 1998, Heijmans 1999] interact with con-

nected components instead of individual points in the case of classical morphologi-

cal operators originally developed by Matheron and Serra [Serra 1982, Serra 1988].

They are connected operators that act by preserving or by removing the con-

nected components based on some attribute criterion. A subset of these �lters,

called shape �lters [Urbach 2007], has been used for extraction of vessels in 3D

angiograms [Wilkinson 2001].

Before detailing the attribute �lters, let us review several properties usually

discussed for morphological operators	 working on binary images.

� An operator 	 is increasing if X � Y ) 	( X ) � 	( Y );

� An operator 	 is extensive if X � 	( X );

� An operator 	 is anti-extensive if 	( X ) � X ;

� An operator 	 is idempotent if 	(	( X )) = 	( X );

� An operator 	 is Self-dual if 	( X ) = 	( X c)c.

For the morphological operators  working on grayscale images, the correspond-

ing properties is de�ned by replacing � with � , and by replacing the complement

operator c by � . A grayscale connected operator is said to be self-dual if it pro-

cess symmetrically the dark and bright image components,8f;  (f ) = �  (� f ).

A morphological �lter is an increasing and idempotent operator [Heijmans 1999].

However, sometimes this condition is relaxed to mean any idempotent operator, as

in the case of shape �lters [Urbach 2007].

Let T be an attribute criterion : P(V ) ! f true, falseg, whereP(V ) is the set of

all subsets ofV . Typically, T is an assessment of a connected componentC based

on the comparison of its attribute (some interesting feature)A : P(V ) ! R to a

given threshold �

T(C) = ( A(C) � � ): (2.2)

Then the trivial attribute �lter � T on a connected componentC returns the con-

nected componentC itself if T(C) is true, and ; otherwise, with also � T (; ) = ; .

And the binary connected opening� x of X at point x 2 V gives the connected

component ofX containing x if x 2 X , and ; otherwise.

De�nition 3 The anti-extensive binary attribute �lter � T working on a binary im-

ageX is given by

� T (X ) =
[

x2 X

� T (� x (X )) : (2.3)
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If A is increasing, which meansX � Y ) A (X ) � A (Y ), � T is then an

attribute opening, otherwise, � T is an attribute thinning [ Breen 1996]. A binary

attribute thinning example is shown in Figure 2.1, the attribute is the roundness

which is a non-increasing attribute.

The extension of the attribute �lters to grayscale images is based on image

thresholding decomposition. For a given grayscale imagef , thresholding f in a

decreasing order fromhmax to hmin yields a stack of nesting upper level sets. Each

upper level set at levelh is a binary image given by

Xh(f ) = f x 2 V j f (x) � hg: (2.4)

Each binary imageXh(f ) contains a set of connected components known also as

peak componentsP i
h [Salembier 1998]. A peak componentP x

h with level h � f (x)

containing x is de�ned as below

P x
h (f ) = � x (Xh(f )) : (2.5)

Note that for any two peak componentsP i
h1

and P j
h2

at respectively levelh1 � h2,

either P i
h1

\ P j
h2

= ; , or P j
h2

� P i
h1

. This inclusion relationship yields a tree structure

with the name of Max-tree [Salembier 1998]. See also Section2.3 for more details.

The attribute �lters for grayscale images consist of preserving or removing the

peak components. For the increasing attributeA " , if P x
h is preserved, for anyh0 � h,

P x
h0 is also preserved.

De�nition 4 The grayscale anti-extensive attribute �lter 
 T for a given imagef at

some pointx is de�ned by

(
 T (f ))( x) = _f h j x 2 � T (Xh(f ))g: (2.6)

For the non-increasing attribute A , di�erent �ltering rules (see Section2.5.2 for

more details) are de�ned.

The extensive attribute �lters for binary images and grayscale images can be

easily de�ned by the duality relationship with the anti-extensive versions de�ned

above. An example of self-dual grayscale attribute �lter is given in Figure2.2(d),

the attribute is the area. This �lter is also known as the grain �lter and is detailed

in Section 2.6.1.1.
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2.2.3 Leveling: an example of connected operator

The levelings is a subclass of connected operators, it was �rst introduced

in [Meyer 1998] by imposing some constraints in the de�nition of connected op-

erators. The levelings enlarges the �at zones by suppressing many details while

keep perfectly the sharpness of the transitions zones preserved. Usually, the lev-

elings are considered as the intersection of two subclasses the lower levelings and

upper levelings.

De�nition 5 An operator  is an lower leveling working on a grayscale imagef

if and only if for any pair of neighboring points (x; y) :  (f )(x) >  (f )(y) )

 (f )(y) � f (y).

De�nition 6 An operator  is an upper leveling working on a grayscale imagef

if and only if for any pair of neighboring points (x; y) :  (f )(x) >  (f )(y) )

 (f )(x) � f (x).

Let us remark that the lower leveling (resp. upper leveling) removes the details

of the regional minima (resp. maxima), so it enlarges the dark (resp. bright) �at

zones.

De�nition 7 An operator  working on a grayscale imagef is a leveling if and

only if for any pair of neighboring points (x; y) :  (f )(x) >  (f )(y) ) f (x) �

 (f )(x) and  (f )(y) � f (y).

The de�nition 7 states that if there is a transition in the output image after

leveling, the transition exists in the initial image. Because (f )(x) >  (f )(y) )

f (x) �  (f )(x) >  (f )(y) � f (y). Furthermore, the interval of the transition in

the output image [ (f )(y);  (f )(x)] is contained in the interval of the transition in

the input image [f (y); f (x)].

An example of the leveling with the use of markers is illustrated in Figure2.3.

The leveling function g is obtained by increasing (resp. decreasing) the marker

function h as little as possible until a �at zone is created or the functiong hits the

function f on f h < f g (resp. on f h > f g).

The readers are referred to [Meyer 1998, Meyer 2004] for more details about the

properties of levelings. In particular, it has been shown that the opening and closing

by reconstruction [Vincent 1993] are levelings.

2.3 Tree-based image representations

This section brie�y review two types of image representations that can both be orga-

nized into a tree structure. The �rst one is based on image threshold decompositions,
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f
g

h

Figure 2.3: An illustration of leveling. f = reference function;h = marker function;

g = associated leveling.

including the Min/Max-tree [ Salembier 1998] and topographic maps [Caselles 1999],

known also as the tree ofshapes[Monasse 2000b]. The second type of tree-based

image representation is the hierarchy which is composed of a set of segmentations

from �ne to coarse, including the Binary Partition Tree (BPT) [ Salembier 2000], � -

tree [Ouzounis 2011a] based on the notion of constrained connectivity [Soille 2008],

the quadtree [Finkel 1974, Pietikainen 1981, Rosenfeld 1983, Samet 1984] (but not

used in any application presented in this thesis), and the minimum spanning

tree [Kruskal 1956, Morris 1986]. All these trees belong to the more general family of

hierarchical image segmentations. It has been shown in [Najman 2011] that any hier-

archical image segmentation is equivalent to a ultrametric watershed [Najman 2009],

known also as the saliency map [Najman 1996].

2.3.1 Min/Max-tree

One of the simplest tree-based image representations is the Max-tree

[Salembier 1998]. It is based on the inclusion relationship between peak compo-

nents de�ned by the upper level sets in Eq. (2.4). Each tree nodeNk with level h

represents a peak componentP i
h such that P i

h \ L h 6= ; . Note that in practice, only

the vertices of P i
h having level h denoted asC i

h = f x 2 P i
h j f (x) = hg are stored

in the node Nk . So the peak componentP i
h is actually given by the set of vertices

stored in all the nodes of the subtree rooted atNk . The links between nodes known

as parenthood re�ects the inclusion relationship. The highest node of the tree is the

root, which is the whole image domain. And the leaves of the Max-tree correspond

to the regional maxima of the image. A simple example of is shown in Figure4.2,



2.3. Tree-based image representations 25

��

��
��

�� ��	


��
��
�

� �� �

� �� � �� � �� � �� �

� �� � �� 	 �� � �� � �� �

��������

� �� � �� 	 �� � �� � �� �

	

� �� 	 �� �

� �� 	 �� � �� � �� �

�

�
������

� �� � �� 	 �� � �� � �� �

	

� �� 	 �� �

� �� � �� 	 �� � �� �

�

���� �� ��
���

� �� � �� 	 �� � �� � �� �

���
�� �
������� ����

�

��

� �� �

� �� � �� � � �� 	 �� �

� �� 	

	

�

�

Figure 2.4: Tree-based image representations. The root is at the top represented by

double circle. The numbers in the original image denote the pixel values.

where the leavesC and F are two regional maxima.

By duality, the dual structure of the Max-tree named Min-tree is based on the

lower level sets decomposition de�ned as below

X h(f ) = f x 2 V j f (x) � hg: (2.7)

The inclusion relationship between connected components of the lower level sets

yields the structure of Min-tree. The leaves of the Min-tree are the regional minima

of the image (See Figure4.2). Note also that both the data of the family of upper

level sets in Eq. (2.4) and lower level sets in Eq. (2.7) permit us to reconstruct the

image [Caselles 1999, Monasse 2000b, Caselles 2009].

f (x) = supf h 2 R j x 2 X hg = inff h 2 R j x 2 X hg: (2.8)

Note that the Max-tree (resp. Min-tree) is very appropriate for implementation

of anti-extensive (resp. extensive) connected operators, since the pruning of the

Max-tree (resp. Min-tree) enlarges the �at zones of regional maxima (resp. minima).

Various algorithms have been proposed to compute e�ciently the Max-tree and

Min-tree. They can be classi�ed into two categories. The �rst one is based on

the �ooding procedure [Salembier 1998, Nistér 2008] which generally starts at the

root, and performs a depth-�rst or breadth-�rst �ooding process to build the �nal

tree. And the second one [Najman 2006, Berger 2007] is a union-�nd [ Tarjan 1975]
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based approach. It consists usually of two passes. A �rst pass sorts the pixels,

and the second pass, in reverse order, build the tree while performing the union-�nd

process. This type of algorithm has a quasi-linear time complexity when pixel values

have a low quantization. A detailed comparison of these algorithms can be found

in [Carlinet 2013].

2.3.2 Topographic map

The Max-tree and Min-tree permit us to e�ciently handle the bright and dark

objects, but in a asymmetrical way. Several authors then proposed to consider the

level lines (topological boundaries of the connected components given by the upper

or lower level sets) instead of upper or lower level sets. This leads to a unique

tree representation describing the image. In the literature, this is tree is called

topographic map [Caselles 1999], inclusion tree or tree of shapes[Monasse 2000b],

monotonic tree or [Song 2003] or level line tree [Song 2007].

More speci�cally, according to the proposition of Monasse and

Guichard [Monasse 2000b], this tree is obtained by merging the Max-tree

and Min-tree through the concept of shapes, a shapeis de�ned as the connected

components of upper or lower level sets with the holes �lled. It has been shown that

theseshapescan be structured into a tree representation. Note that the concept of

shapehere is a special case of the notion of shape for the tree-based shape spaces

which will be de�ned in Section 2.4. In what follows, we use the term oftopographic

map for this tree-based image representation.

The topographic map along with the Max/Min-tree feature several interesting

properties. First of all, they are invariant to local contrast changes. And they inher-

ently embed a morphological scale-space (the parent of a node is a larger connected

component). Moreover, the topographic map is a non-redundant and complete

image representation. Another important property of the topographic map is its

self-duality, which make the bright object on dark background represented in the

same manner as the dark object on bright background. This implies that the bright

objects and dark objects are treated in the same way. The leaves of the topographic

map can be either regional maxima or minima. However, note that not all the re-

gional maxima and minima are represented by the leaves of the topographic map.

An example is illustrated in Figure 2.4. The regional minimaA and regional maxima

C correspond to the leaves, whereas the regional maximaF is not a leaf.

The �rst e�cient algorithm to compute the topographic map is the fast level

lines transform (FLLT) proposed by Monasse and Guichard in [Monasse 2000b]. It

takes a region-growing approach to build the Max-tree and the Min-tree, then �nds

for each hole in a connected component the connected component in the other tree



2.3. Tree-based image representations 27

corresponding to it, and puts that connected component as descendant of the one

containing this hole. An improved version, fast level set transform (FLLT) is then

introduced in [Monasse 2000a]. Both FLLT and FLST have an average complex-

ity of O (N log N ), where N is number of pixels in image. In [Song 2007], Song

proposed a top-down approach to compute the topographic map. It begins with

the image boundary, and for each level line under scrutiny, �nd all its child level

lines. The algorithm computes level lines directly instead of level set components.

It takes a complexity of O(N + t), where t is the total length of all level lines.

Recently, Géraud et al. proposed a quasi-linear algorithm to compute the topo-

graphic map for nD images [Géraud 2013]. It shares the same process as algorithms

in [Najman 2006, Berger 2007] based on union-�nd process. This algorithm will be

detailed in Section 9.1. Besides, an algorithm of disjoint level lines selection facili-

tating the visualization of the corresponding topographic map will also be presented

in Section 9.5.

2.3.3 Binary Partition Tree (BPT)

The Max/Min-tree and the topographic map are extremum oriented image repre-

sentations. They describe the image as a set of connected components starting from

the extrema. These connected components are either disjoint or included in an-

other. Nevertheless, the real objects in the scene may not coincide with nodes of

those trees. On the contrary, the Binary Partition Tree (BPT), �rst introduced by

Salembier [Salembier 2000] re�ects the similarity between neighboring regions. It

represents a set of regions obtained from an initial partition. The leaves of BPT

represent the regions of that initial partition, and the remaining tree nodes represent

regions that are obtained by merging regions represented by children. The root of

the tree represents the entire image domain. The BPT consists of a set of regions of

di�erent scales. This is why it can be viewed as a hierarchical region-based image

representation. Large regions are represented by nodes close to the root whereas

small details can be found at lower levels. This representation is considered as a

compromise between representation accuracy and the processing e�ciency. In fact,

the BPT does not include all possible merging of regions of the initial partition seen

as a region adjacency graph (RAG) , only the most �likely� or �useful� mergings

are represented in the BPT. The connectivity encoded in the BPT is binary in the

sense that each region is explicitly connected to its sibling which forms their parent.

Consequently, the BPT only encodes part of the neighborhood relationship of the

initial RAG. However, this representation allows the fast implementation of some

sophisticated processing techniques.

More speci�cally, this tree should be build in such a way that the most �interest-
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ing� regions are represented. This might be application dependent, but a possible

way which is suitable for a large number of applications is to create the tree by

tracking the merging steps performed by a region merging based segmentation algo-

rithm (See for example [Morris 1986, Garrido 1998]). Starting from a given initial

partition (that can be the partition of �at zones or even each pixel is a region),

the merging algorithm proceeds iteratively by 1) computing the similarity measure

between all pair of neighboring regions, 2) selecting the most similar neighboring

regions and merging them into a new region, 3) updating the neighborhood and the

similarity measures. The algorithms iterate the steps 2) and 3) until a single region

covering the entire image domain has been formed. Two important aspects of the

merging steps are the merging order and the region model. The readers are referred

to [Salembier 2000, Vilaplana 2008, Salembier 2009] for more details. An example

of such a tree-based representation is given in the Figure2.4.

2.3.4 � -tree

The � -tree [Ouzounis 2011a], known also as hierarchy of single linkage

components [Nagao 1979], constrained connectivity [Soille 2008] or quasi-�at

zones [Meyer 2000] is based on the notion of� -connectivity [Soille 2008]. For a

pair of neighboring points x and y, let d(x; y) be the dissimilarity measure be-

tween them, then two points p and q are said to be� -connected if there is a path

f p  qg which is a chain of pairwise adjacent points commonly given in the form of

f p  qg � h p = p1; : : : ; pn = qi , such that for any pair of adjacent points(pi ; pi +1 ),

d(pi ; pi +1 ) � � always holds. Based on the notion of� -connectivity, a � -connected

component [Soille 2008] (known also as single linkage component [Nagao 1979] or

quasi-�at zone [Meyer 2000]) � -CC(p) containing a point p is de�ned as

� -CC(p) = f pg [ f q j p and q are � -connectedg: (2.9)

Assuming that the dissimilarity measure between a pair of neighboring pointsx

and y is the intensity di�erence d(x; y) = jf (x) � f (y)j, and setting � = 0 , the 0-

connected component is actually the �at zone. Note that for two neighboring points

p and q, d(p; q) > � does not imply that p and q do not belong to the same� -

connected component but only that there is no direct linkage between them. Some

examples of � -connected components are shown in Figure2.5. Such de�ned � -

connected components based on the local dissimilarity measure are known to su�er

from leakage e�ects. One possible solution proposed in the literature to this problem,

is the introduction of global constraints, for example, the range! [Soille 2008], i.e.,

the maximal dissimilarity between all the pairs of points within a given � -connected
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Figure 2.5: A 4� 4 image and its partitions into � -connected components for�

range from 0 to 3. (a) 0-CCs, (b) 1-CCs, (c) 2-CCs, (d) 3-CCs. Note the �ne

to coarse partition hierarchies. (e) The associated� -tree that encodes the �ne to

coarse partition hierarchies. The red dashed circles represent redundant nodes of

the tree-based image representation.

component, which leads to the following de�nition of (�; ! )-CC(p):

(�; ! )-CC(p) =
_

f � i -CC(p) j � i � �; R
�
� i -CC(p)

�
� ! g; (2.10)

Where R
�
� -CC(p)

�
denotes the maximal dissimilarity within � -CC(p).

Note also that there exists an inclusion relationship between the� -connected

components:

8 x 2 V; if � 1 � � 2 ) � 1-CC(x) � � 2-CC(x) ) P � 1 v P � 2 : (2.11)

Where P� is the partition of � -connected components. This inclusion relation-

ship yields the structure of � -tree [Ouzounis 2011a], a hierarchical image repre-

sentation of multi-scale partition. A simple example of � -tree is given in Fig-

ure 2.5. The interested readers are referred to [Soille 2008, Ouzounis 2011a] for

more details about the � -tree. Some algorithms to compute this tree are available

in [Najman 2011, Ouzounis 2011a, Najman 2013, Ouzounis 2012b].
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2.3.5 Quadtree

The quadtree �rst proposed in the early 1970's [Finkel 1974] is a data structure

in which each node has exactly four children or no children at all (a leaf node).

For image processing applications, the quadtree [Rosenfeld 1983] is often used

to decompose the image by recursively subdividing it into homogeneous quad-

rants or regions. The regions may be square or rectangular, or may have any

arbitrary shapes. The quadtree has been demonstrated to be useful in applica-

tions such as image compression [Samet 1985, Markas 1992] or image segmenta-

tion [Pietikainen 1981, Spann 1985, Smith 1994, Pavlidis 1977].

More concretely, suppose that we have a given homogeneous criterionC, (e.g., the

region range is under a given threshold valuet). Then based on this homogeneous

criterion, we can recursively subdivide a given image into homogeneous pieces. Let

us also assume that each subdivision is into subquadrants. If the whole image to

begin with is homogeneous under the criterionC, we are done. Otherwise, split it

into quadrants. And then examine the homogeneity for each of them, if a given

quadrant is homogeneous, we are done for it, if not, split it into quadrants, and so

on until all the quadrants are homogeneous underC.

The result of the subdivision process can be represented by a tree structure. The

root node of the tree represents the whole image, each internal node has exactly four

children and represents a non homogeneous region to be subdivided into quadrants

represented by the four children, and each leaf node represents a homogeneous block.

An example of the quadtree is shown in Figure2.6.

Note, however, the homogeneous blocks represented by the leaves are not neces-

sary maximal homogeneous regions, as it is possible that the union of some adjacent

blocks is still homogeneous. Consequently, for the image segmentation purpose, we

must allow merging of some adjacent blocks as long as the union remains homoge-

neous. However, this �split-and-merge� process does not result a quadtree structure

any more.

2.3.6 Minimum Spanning Tree (MST)

Given a imagef which can also be seen as a nodes weighted graph(V; E), a spanning

tree of that graph is a subgraph that is a tree connects all the vertices (i.e., points)

together. An image can have many spanning trees. An image can also be represented

by an edge weighted graph, where each edgee 2 E is weighted by the dissimilarity

measure between the two points linked by this edgee. Then use this to weight the

spanning tree by computing the sum of the weights of the edges in that spanning

tree. A minimum spanning tree (MST) [Kruskal 1956] is then a spanning tree having
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Figure 2.6: An example of quadtree. The homogeneous criterionC is that the global

range ! � 3.
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a weight less than or equal to the weight of any other spanning tree. Note that the

minimum spanning tree may not be unique.

The minimum spanning tree is a typical and well-known problem of combina-

torial optimization. It has been applied for many years to image analysis prob-

lems [Suk 1984, Morris 1986, Ma 2000, Felzenszwalb 2004, Cousty 2009]. Kruskal's

algorithm [Kruskal 1956] is a well-known greedy algorithm that computes a MST

for a connected edge weighted graph. It can be described as follows:

� Create a forest (a set of trees), where each vertex is a separate tree,

� Create a setSE that contains all the edges in the graph, and sort this setSE

in weight increasing order,

� For each edgee 2 SE in increasing order,

� if e links two di�erent trees, then add this edge e to the forest, and

merging the two trees into a single one.

� otherwise, do nothing.

At the termination of the algorithm, the forest has only one component and is a

minimum spanning tree of the graph.

A Min-tree of the MST represents a set of partitions from �ne to coarse, that

can be organized into a tree structure. The root node represents the entire image

as a single region. The regions correspond to the leaf nodes are the �at zones.

The in-between nodes are obtained by incremental merging of regions. A simple

example of the MST is depicted in Figure2.7. An e�cient algorithm based on

Kruskal algorithm was presented in [Najman 2013], where the authors propose a

quasi-linear algorithm that computes a so calledbinary partition tree by altitude

ordering. A linear post-processing of this tree can give a Min-tree of the MST,

which is proved in [Cousty 2013] to be equivalent to the � -tree.

2.3.7 Hierarchical image segmentations

The Binary Partition Tree (BPT) in Section 2.3.3, the � -tree in Section 2.3.4, the

quadtree in Section2.3.5, and the Minimum Spanning tree 2.3.6 exhibits several

features in common. They are all multi-resolution/scale image representations that

consist of a set of partitions from �ne to coarse. The root represent the entire image

as a single region, while the leaves correspond to the regions of the �nest image

partition ( e.g., partition of �at zones). In fact, they belong to a more general family,

the hierarchical image segmentations, known also as the pyramids [Pavlidis 1979,



2.3. Tree-based image representations 33

0 5 3

0 3 4

1 3 2

1 4 2

3

2

0

3

3

0

1

3

1

0

3

1

0 0 5 2

3 3 6 2

1 0 3 5

1 0 4 6

(a) An image and the MST

A B

C

D

E

F

G

H

I

J

K

(b) Partition of �at zones

A B I J C D E F K G H

A [ B C [ D E [ F G [ HI J K

A [ B [ I J C [ D [ E [ F K G [ H

A [ B [ C [ D [ E [ F [ G [ H [ I [ J [ K
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Figure 2.7: An example of the Minimum Spanning Tree (MST). The edges in the

MST of image (a) are highlighted in green. The Min-tree of the MST represents a

set of partition from �ne to coarse, which is equivalent to the � -tree.
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Rosenfeld 1984, Jolion 1994]. A hierarchy of image segmentationH is a chain of

nesting image partitions Pi , i.e.,

H = fP i j 0 � i � n; 8j; k; 0 � j � k � n ) P j v P kg; (2.12)

where Pn is the partition f Vg of V into a single region, andP0 represents the

�nest partition of the image G = ( V; E). In another word, a hierarchy H is a set of

regionsf Rg, such that

(i) f Vg 2 H ,

(ii) for each region R 2 P 0, R 2 H ,

(iii) for each pair of distinct regions (R; R0), where R 2 H; R 0 2 H , R [ R0 6= ; )

R � R0 or R0 � R.

The (iii) means that two distinct regions in the hierarchy of segmentation are either

disjoint or nested.

An indexed hierarchyon the image domainV is a pair (H; � ), where H denotes

a given hierarchy onV and � is a positive function (e.g., the scale), de�ned onH

such that for two nesting regionsR; R0 2 H; R � R0, we have� (R) < � (R0).

A hierarchy of image segmentation is usually represented using a special type

of tree called dendrogram. The root node represents the entire imagef Vg, and

the leaves are the regions of the �nest partitionP0, while an intermediary nodeN

represents the merging of regions represented by the nodes just below nodeN , known

as the children of nodeN . An example of such a hierarchical image segmentation

represented by a dendrogram is shown in Figure2.8 and Figure 2.9.

The most fundamental principle of hierarchical image segmentations being multi-

scale representations is the causality principle [Koenderink 1984]. From this princi-

ple, for any couple of scales� 2 > � 1, the �structures� found at scale� 2 should �nd a

�cause� at scale� 1. Following the original idea of Babaud [Babaud 1986], used also

by Morel and Solimini [Morel 1995] and in the work of Guigues et al. [Guigues 2006],

the causality principle is applied to the edges associated to the set of partitions rep-

resented by a hierarchy of segmentationH . In this case, the relationship ��ner

than� between the set of partitions spanned by a hierarchyH behaves as a scale

parameter if and only if for all � 2 > � 1, which implies P� 1 @P� 2 , the boundaries

of partition P� 2 are in a one-to-one mapping with a subset of the boundaries ofP� 1

(their �cause�).

Instead of performing a single partition of the input image, such a hierarchical

image segmentationH describes the image contents using multiple representations

with decreasing resolution, so increasing scale. A best or optimal partition is then
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Figure 2.8: A synthetic image (a), and its associated dendrogram (b) representing

a hierarchy of image segmentation. Note that there are possible partitions that

are not spanned by the dendrogram. The red dashed curve in (b) is a cut of the

dendrogram (i.e., hierarchy), the partition given by this cut is illustrated with red

boundaries in the original image (a).

selected from the set of partitions spanned by that hierarchyH based on some

sophisticated criterion [Guigues 2006, Serra 2012b, Serra 2013, Cardelino 2013,

Kiran 2013a, Kiran 2013b, Kiran 2014] through the notion of cuts [Guigues 2006].

A cut of a hierarchy H is a subset ofH which intersects any path from the base to

the top of H exactly once. Equivalently, a cut is a partition P of V whose regions

are taken from the regions represented by nodes inH . The red dashed curve in

Figure 2.8(b) represents a cut of the hierarchy, and its associated partition is given

by the red boundaries in the original image in Figure2.8(a). The Figure 2.9(c).

represents a partition corresponding to a cut obtained from the hierarchy in Fig-

ure 2.9(b).

There exist many methods for computing a hierarchical image segmentation,

which can be divided in two classes: bottom-up (e.g., BPT, alpha-tree, MST), top-

down or split-and-merge (e.g., quadtree). Some recent reviews of those approaches

can be found in [Mar�l 2006 , Soille 2008].

2.3.8 Saliency maps or ultrametric watersheds

A useful representation of hierarchical image segmentations reviewed in Section2.3.7

was originally introduced in the PhD work of Najman [Najman 1994] under the name

of saliency map[Najman 1996]. A saliency map is obtained by stacking a family

of hierarchical contours. This representation is then rediscovered independently

by Guigues et al. through the notion of scale-set theory for visualization purposes



36 Chapter 2. Reviewing tree-based connected operators

[Guigues 2006], and it is then popularized by Arbeláez under the name ofultrametric

contour map for boundary extraction and comparing hierarchies [Arbeláez 2006a,

Arbelaez 2011].

Roughly speaking, for a given indexed hierarchy(H; � ), the corresponding

saliency map can be obtained by valuating each point of the image domainv 2 V

with the highest value � such that it appears in the boundaries of some partition

represented by the hierarchyH . Given a hierarchical image segmentation, it is

easy to assign importance to contours, which de�nes a duality between closed, non-

self intersecting weighted contours and that hierarchy. The low level (resp. upper

level) of a hierarchy respects to weak (resp. strong) contours, and is thus an over-

segmentation (resp. under-segmentation), which can be obtained by thresholding

the saliency map with low (resp. high) value.

Recently, it is stated by Najman that any hierarchical image segmentation (i.e.,

saliency map) is equivalent to aultrametric watershed[Najman 2009, Najman 2011]

in the framework of edge-weighted graphs(G; Fe), where Fe is a positive func-

tion weighting the edge u = f x; yg between neighboring points x and y by

a dissimilarity measure (e.g., Fe(u) denotes the absolute di�erence between in-

tensity of point x and y). An ultrametric watershed is a topological water-

shed [Couprie 1997, Couprie 2005, Bertrand 2005] null on the minima applied on

edge-weighted graph [Najman 2009]. The topological watershed was originally in-

troduced by Couprie and Bertrand [Couprie 1997] on nodes weighted graph(G; Fn ),

and having a fundamental property, that preservers the contrast between the re-

gional minima of F , where the contrast between two regional minimam1 and m2 is

de�ned as the minimal altitude to which one must climb in order to go from m1 to

m2, known also as theconnection valueCV. For two points x 2 V and y 2 V , it is

the number

CV(x; y) = minf h j x 2 X h(V ); y 2 X h(V )g: (2.13)

In other words, the connection value between two pointx and y is the altitude of

the lowest lower level set that contains bothx and y (rule of the least common

ancestor). The connection value is very similar with the notion ofultrametric dis-

tance. Recall that a distance is a proper dissimilarity that obeys the triangular

inequality: d(x1; x2) � d(x1; x3)+ d(x2; x3), wherex1; x2, and x3 are three points in

the space. An ultrametric distance obeys the ultrametric inequality [Krasner 1944]:

ud(x1; x2) � max
�
ud(x1; x3); ud(x2; x3)

�
. It is stronger than the triangular inequal-

ity.

There exists general connection between indexed hierarchies and ultrametric

distances which goes back to Benzécri [Benzécri 1973] and Johnson [Johnson 1967].

They proved that there is a bijection between them. In fact, the ultrametric distance
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associated to a indexed hierarchy(H; � ) on V is the following:

ud(R1; R2) = minf � (R0) j R0 2 H; R 1 � R0; R2 � R0g: (2.14)

In other words, the ultrametric distance ud(R1; R2) between two regions inV

that are also presented in the HierarchyH is given by the smallest region inH which

contains both R1 and R2. Conversely, each ultrametric distanceud is associated to

one and only one nodes in a indexed hierarchy. Taking this associated ultrametric

distance as the positive function de�ned onH , the ultrametric watershed is easy to

compute. There exists e�cient and proven algorithms to compute the ultrametric

watersheds (i.e., saliency maps).

The Figure 2.9(d) depicts an ultrametric watershed corresponding to the hierar-

chical image segmentation represented in image in Figure2.9(b). One segmentation

in Figure 2.9(c) is obtained by thresholding the ultrametric watershed with certain

value. With the equivalence between hierarchical image segmentation, saliency map,

ultrametric watershed, the reading order for interpretation in Figure 2.9 can be (a),

(d), (c), (b) instead of the classical reading order (a), (b), (c), (d). Each threshold-

ing of the ultrametric watershed (i.e., saliency map) yields a image segmentation of

a certain resolution level.

2.4 Tree-based shape spaces

All the image representations reviewed in Section2.3can be divided into two classes:

the thresholding decompositions based on treesTt (e.g., Min/Max-tree, topographic

map), and the hierarchy of image segmentation based on treesTh (e.g., BPT, � -tree,

quadtree, MST). A major di�erence between Tt and Th is that any cut (except the

root) of Tt yields a subset of the image domain, whereas any cut of a hierarchy of

segmentationTt gives a partition of the image domain. An example of several levels

of the treeTt and Th are depicted respectively in Figure2.10(a) and in Figure 2.10(b).

All these image representations are composed of a set of regions (i.e., connected

components) from small to large. These regions can be organized into a tree struc-

ture. Each region is represented by a nodeN in that tree. The root node of the

tree represents the entire image domain, and for any two distinct regionsR1 and R2

represented by two nodesN1 and N2 in the tree, we have a nesting property:

R1 \ R2 6= ; ) R1 � R2 or R2 � R1: (2.15)

Except the root node, each nodeN in the tree has a unique parent nodeNp,

and there exists an edge(N ; Np) linking them re�ecting the parenthood relation-
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(a) (b)

(c) (d)

Figure 2.9: An example of a hierarchical segmentation produced by the method of

Guigueset al. [Guigues 2006]. (a) Original image; (b) Dendrogram of the hierarchi-

cal segmentation; (c) One segmentation (i.e., a cut) extracted from the hierarchy;

(d) An ultrametric watershed corresponding to the hierarchical segmentation. The

classical order for reading the images is (a), (b), (c), (d). But based on the notion

of saliency map, the reading order can also be (a), (d), (c), (b) [Najman 2011].
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(a) Several levels of a thresholding decomposition based tree (e.g., Min-tree).

(b) Several levels of a hierarchy of image segmentation (e.g., binary partition tree).

Figure 2.10: An example of the two classes of trees for the image shown in Figure2.4.

ship, i.e., the inclusion relationship between the two regions they represent. Con-

sequently, the tree-based image representations can be seen as connected graphs

GT = ( TN ; Te), where TN = fN j N 2 T g denotes the set of nodes in the tree

T , and Te = f (N ; Np) j N ; Np 2 T ; N 6= Npg is the set of edges representing the

parenthood between the nodes. In this undirected graphGT , each node has not

only its parent but also its children as its neighbors. For instance, the neighbors for

the node A [ E of the binary partition tree in Figure 2.4 are the nodesA, E , and

A [ E [ F .

For each nodeN in all the tree-based image representations, we can assign an

attribute function A that characterizes some interesting feature of the region (i.e.,

connected component) represented by that nodeN . The attribute function can be

any measurement as simple as the region area, or the compactness of the region,

or some shape attribute that describes the region form, or the importance of the

region boundary, or even some speci�cally designed feature based on certain prior

information. A tree with its nodes weighted by an attribute function can be seen

as a nodes weighted graph(GT ; FA ), where FA is an element of nodes mappingF

given by the attribute function A .

2.4.1 De�nition of tree-based shape space

All the tree-based image representations depicted in Section2.3 provide a tree-based

shape spaceST (the name shape spaceis sometimes used in the sequel) de�ned as:

De�nition 8 A tree-based shape spaceST is de�ned as a set of regionsf Ri g (R0

is the entire image domain), that can be organized into a tree structureT for which
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the root node representsR0, and any pair of regions satis�es the nesting property

de�ned by Eq. (2.15) (i.e., they are either nested or disjoint). The neighborhood of

the shape space is de�ned by the inclusion relationship between those regions.

A tree-based shape spaceST is built from a tree-based image representation,

which is equivalent to the image in the sense that the image can be reconstructed

from the set of tree nodes (the tree structure is not needed). Hence, a tree-based

shape space is an equivalent image representation. Besides, for the tree-based shape

spaces built from thresholding decomposition based trees, they are invariant to a�ne

contrast changes.

Note also that the tree-based shape spaceST is a connected graph which is

similar to the image space. Each node in the image space is an individual point

weighted by some intensity function f , the adjacency of the image space is usually

4-connectivity (resp. 6-connectivity) or 8-connectivity (resp. 26-connectivity) in

2D images (resp. 3D images), while each node in the shape space is a individual

connected component weighted by some attribute functionA , the adjacency of the

nodes is given by the parent-child relationship between the nodes (i.e., inclusion

relationship between the regions represented by those nodes) in the shape space.

The similarity between the shape space and the image space shed some light on

a novel concept: applying connected operators on the shape space. This will be

developed in Chapter3.

2.4.2 Tree-based shape spaces versus scale-space

Following Marr's computational theory of vision [Marr 1983], a number of image

analysis systems are based on a bottom-up architecture, made up of two stages:low

levelanalysis (characteristic points, contours, regions: : : ) and high levelvision tasks

(object recognition, scene interpretation: : : ). It is also assumed that the low level

and high level stages are completely independent. The interesting structures that

can be useful for high level tasks can be located at arbitrary position in the image,

can have any size, and can be very salient as well as very poorly contrasted. So

the low level processes should be uncommitted in terms of position, size and con-

trast [Lindeberg 1994], and its output should be a multi-scale, and contrast invariant

general description independent from any speci�c high level task. The tree-based

shape spaces are very suitable for such desired low level analysis. Many applications

based on low level analysis using the tree-based shape spaces are given in PartIII .

A popular multi-scale analysis tool which is widely used in image processing and

computer vision is the scale space. It is a formal theory handling image structures

at di�erent scales, by representing an image as a one-parameter family of smoothed
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images, the scale-space representation, parametrized by the size of the smoothing

kernel used for suppressing the �ne-scale structures [Lindeberg 1994]. The scale

parameter � can be seen as a third dimension of a 2D image. The main type of

the scale-space is the linear Gaussian scale-space [Lindeberg 1994]. For a given 2D

image f (x; y) its linear Gaussian scale-space representation is a family of smoothed

imagesL(x; y; � ) obtained by the convolution of f (x; y) with the Gaussian Kernel:

g(x; y; � ) =
1

p
(2�� )

e� (x2+ y2 )=2� ; (2.16)

such that

L (�; �; � ) = g(�; �; � ) � f (�; �): (2.17)

There exist also some non-linear scale-spaces in the literature in order to cor-

rect some shortcomings of linear scale space, such as edge localization. The �rst

type of such examples is based on non-linear di�usion [Perona 1990, Harvey 1997].

However, these techniques usually tend to be computationally expensive. Another

type of non-linear scale-spaces are based on mathematical morphology. Such mor-

phological scale-spaces are usually more computationally e�cient. Examples are

dilation-erosion scale space [Jackway 1996], open and close scale-spaces [Chen 1989,

Park 1996, Jackway 1998], area morphology based scale-space [Bangham 1996], and

morphological levelings based scale-space [Meyer 2000].

The tree-based shape space inherently embeds a similar morphological scale

space, because the parent of a node is always larger. In consequence, a tree-based

shape space obeys the causality principle, the most fundamental principle of multi-

scale analysis [Koenderink 1984]. Indeed, a regionR at certain scale is included in

all its ancestor nodes till the root node. This regionR can be seen as a kind of

cause of all its ancestor nodes.

The scale-spaces based on smoothing kernel with di�erent scale parameters blur

the contours in image, and they are not invariant to contrast changes. The tree-

based shape spaces are also multi-scale analysis tools. But contrary to the scale-

spaces, the tree-based shape spaces do not apply a convolution with a kernel. As the

connected components in a shape space are already presented in the original image,

the contours of the regions in a shape space are actual contours in the original image.

Consequently, they are very precised in terms of contours shapes and locations. This

good contour preservation property, as well as those interesting features discussed

in Section 2.4.1 make the di�erences between the scale-space and tree-based shape

space in applications depicted in PartIII .
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Figure 2.11: An example (a) and a schematic overview (b) of tree-based connected

operators implementation [Salembier 1998, Salembier 2000]. In (a), the tree �ltering

strategy is a tree pruning process, and for those pixels contained in the pruned nodes,

they take the value of the lowest preserved ancestor in the image reconstruction step.

2.5 Tree-based implementation

2.5.1 Schematic overview

One popular implementation of connected operators described in Section2.2relies on

transforming the image into an equivalent representation, the tree-based image rep-

resentation. Image �ltering then involves the design of an attribute function A that

weights some interesting feature of a node of the tree (e.g., a certain shape attribute

A s that measures how much a node �ts a given shape), a tree �ltering that simpli-

�es the tree based on the attribute function A , and an image reconstruction step

from the simpli�ed tree that yield a �ltering result [ Salembier 2000, Salembier 2009].

An example of such tree-based implementation of connected operators is illustrated

in Figure 2.11 (a) [Salembier 2000], and a schematic overview of such process is

depicted in Figure 2.11(b). Roughly speaking, a tree-based implementation of con-

nected operators consists of three steps: tree construction, tree �ltering and image

reconstruction. Several available tree-based image representations are already re-

viewed in Section2.3. The choice depends on the input image and the application,

in general, the type of tree is chosen to make the connected components that we are

interested with or that we want to discard be present in the tree. The tree �ltering

step and image reconstruction step will be respectively detailed in Section2.5.2and

Section 2.5.3.
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2.5.2 Tree �ltering strategies

Once the tree is constructed, the connected operators involve a tree �ltering step.

This is the critical step of the entire process. In general, based on the �ltered nodes,

the tree �ltering strategies can be divided into two classes: the tree pruning and

non-pruning strategies. Tree pruning strategies consist of pruning the whole sub-

trees rooted in some speci�c nodes, while keeping the nodes above those speci�c

nodes intact. It can be seen as cutting the sub-branches of the tree. An example

of tree pruning is illustrated in Figure 2.11 (a). If a node is �ltered by a pruning

strategy, then all its descendants are also �ltered. Whereas, for the non-pruning

strategies, a descendant of a �ltered node might be preserved. The use of pruning

or non-pruning strategies depends on the property of the attribute functionA . We

distinguish the attribute function A based on whetherA is increasing or not.

2.5.2.1 Increasing attributes

One of the simplest case is when the attribute function is increasing, which means:

8 N 2 T ; A(N ) � A (Np); (2.18)

where Np is the parent of nodeN . Let A " denote the increasing attribute. Some

instances of increasing attributesA " (N ) for a given nodeN 2 T are listed as follows:

� Area(N ) = f # p j p 2 N g ;

� Height(N ) = max
p2N

f (p) � min
p2N

f (p);

� Volume(N ) =
P

p2N

�
max
p2N

g(p) � g(p)
�

with g = � f (depends on orientation);

� The diameter of the largest circle that can �t into N [Breen 1996];

� The diameter of the smallest circle that enclosesN [Breen 1996].

In the case of these increasing attributesA " , the tree �ltering is rather straight-

forward, it is performed by pruning the nodes whose attribute functionA " is under a

given threshold, which can be seen as an attribute thresholding. The increasingness

of the attribute function A " make this attribute thresholding a pruning strategy.

2.5.2.2 Non-increasing attributes

In practice, many attribute functions A are non-increasing attributes, especially for

those shape attributesA s that describe the form of the shapes. Some instances of

non-increasing attributes for a nodeN is given as follows:
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� Perimeter of N denoted by P(N );

� Compactness(N ) = 4� Area(N )
P2 (N )

, many other shape attributes that measure the

circularity are reviewed in the work of Montero and Bribiesca [Montero 2009];

� Elongation(N ) = lmax (N )=lmin (N ), where lmax and lmin denote respectively

the major and minor axes of the best �tting ellipse having the same moments

as the region represented byN ;

� Sharpness(N ) = Volume (N )
Height (N )� Area( N ) ;

� The maximum geodesic distance in the region of nodeN [Breen 1996].

For the non-increasing attributes A , the tree �ltering is not straightforward.

Salembieret al. [Salembier 1998, Salembier 2009] and Urbach et al. [Urbach 2007]

propose three pruning strategies (Min, Max, Viterbi ) and an attribute thresholding

strategy. The nodes �ltering decisions of these rules for a given attribute threshold

t are described as follows:

� Min : A node N is removed if A (N ) < t or if there exists one of its ancestors

Na such that A (Na) < t . An example of such tree �ltering is depicted in

Figure 2.12 (b).

� Max: A node N is removed if A (N ) < t and for all its descendantsNd

A(Nd) < t holds. An example of theMax rule is depicted in Figure 2.12 (c).

� Viterbi : The removal and preservation of nodes is determined by a cost op-

timization process with Viterbi algorithm [ Viterbi 1979]. From a leaf to the

root, each transition of removal decision is assigned a cost. For each leaf node,

the branch with the lowest cost to the root node is taken. Note that this is

a pruning strategy, since the cost of a transition from a nodeN preservation

to the removal of its parent Np is assigned an in�nitely great cost. So it is

impossible to preserve a node while �ltering one of its ancestor. More details

about the Viterbi rule can be found in [Salembier 1998].

� Attribute thresholding: A node N is removed if and only if A (N ) < t . The

content of the removed nodes are merged with their the lowest preserved an-

cestors. This is rather a straightforward approach to handle the non-increasing

attributes. Attribute thresholding strategy is originally proposed by Breen and

Jones under the name attribute thinnings [Breen 1996]. Based on the image

reconstruction rules which will be described in Section2.5.3, two di�erent tree

�ltering rules relying on attribute thresholding strategy are proposed: Direct
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Figure 2.12: An example of tree �ltering and image reconstruction in the case of

non-increasing attribute. Top row: Input image and reconstructed images from

the corresponding �ltered trees. Bottom row: Input tree and �ltered trees using

di�erent tree �ltering rules for the non-increasing attribute.

rule proposed by Salembier et al. [Salembier 1998] and Subtractive rule orig-

inally mentioned in [Breen 1996], then popularized by Wilkinson and West-

enberg [Wilkinson 2001], and Urbach et al. [Urbach 2007]. An example of

Direct rule and Subtractive rule of tree �ltering are illustrated respectively in

Figure 2.12 (d) and (e).

Let us remark that all those rules dealing with non-increasing attributes have

some drawbacks. The pruning strategies cannot deal with the case where two in-

teresting objects are present in the same branch. The two attribute thresholding

based rules are although rather simple, they share the practical problems of image

thresholding strategies. It is often impossible to retrieve at the same time all the

expected objects with one unique threshold. Thresholding based strategies are not

robust because the �ltering decisions are made locally and do not depend on neigh-

boring nodes (in the case of an increasing attribute, the decision is also local, but

the decisions on various levels are known thanks to its increasing property).

2.5.2.3 Individual shape analysis in the shape space

For attribute thresholding based tree �ltering strategies, including the tree pruning

strategy in the case of increasing attributes, the regions in the tree-based shape space

are considered individually. The nodes' removal decisions are made locally upon the

attribute values of themselves. The relationship (i.e., neighborhood relationship
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given by the parenthood) between those regions in the tree-based shapes is not

used, which means the edges of the nodes weighted graph with attribute function

representing a tree-based shape space are not utilized. So the attribute thresholding

strategies are not robust.

For pruning strategies dealing with the non-increasing attributes, the parent-

hood relationship between regions in the tree-based shape space is utilized. But

only partial of the neighborhood relationship is used, because for each node, it has

its parent and its children as its neighbors, whereas only the parent is taken into

account. Besides, the pruning strategies maybe interesting in some cases, but two

interesting regions might be nested so that they are present in a same branch, so

the pruning strategies �lter either some interesting regions or many non-interesting

regions remain.

2.5.3 Image reconstruction rules

In the case of pruning strategies, some entire sub-trees are removed, whereas, the

nodes above those sub-trees are intact, the image reconstruction is trivial. For

those pixels contained in the nodes that belong to the removed sub-trees, they

take the value of the lowest preserved nodes. Figure2.11 (a), Figure 2.12 (b)

and (c) are such instances. In the case of attribute thresholding based strate-

gies dealing with non-increasing attributes, the removed nodes can be anywhere

in the tree, and descendants of a removed node might be preserved. Two im-

age reconstruction rules are proposed: direct rule [Salembier 1998] and subtrac-

tive [Breen 1996, Wilkinson 2001, Urbach 2007].

� Direct : As the same as the pruning strategies, the contents of the removed

nodes merge with the lowest preserved ancestors, and take their values. This

is the most straightforward way to reconstruct the image from the simpli�ed

(i.e., �ltered) tree. However, the local contrasts for the preserved nodes are

no longer maintained, and if we subtract the �ltered image from the original

image, some arti�cial shapes that should not be removed by the tree �ltering

step may present in the residual imagef r .

� Subtractive: As above, but the gray level di�erences between those removed

nodes and their parents are taken into account by all their descendants, so that

the local contrast of preserved shapes remains unchanged. The shapes in the

residual imagef r are exactly those removed shapes during the tree �ltering

step. More speci�cally, if a nodeN is removed, and if the tree is a Max-tree

(resp. Min-tree), the descendants of nodeN are lowered (resp. augmented)

by the same amount of local contrast as nodeN itself. However, if the tree
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(a) Original image (b) Direct rule (c) Subtractive rule

(d) Average reconstruction (e) Median reconstruction

Figure 2.13: An example illustrating di�erent image reconstruction rules. The �l-

tering is performed by removing some nodes having small average of gradient's

magnitude in the topographic map.

is a topographic map which is self-dual structure, the accumulated gray level

lowering and augmentation are applied to the descendants. More details and

the formal de�nition of subtractive rule can be found in [Urbach 2007].

Other image reconstruction rules might also be interesting, for instance, instead

of using the value of the lowest preserved ancestor, we can take the average or the

median value of the removed contents to reconstruct the image from a simpli�ed

tree. This is not morphological reconstruction, but it might give some interesting

result, especially for the case of a topographic map being a self-dual representation.

An example of these reconstruction rules is shown in Figure2.13.

2.6 Some examples using the tree-based shape spaces

Since the proposition of those tree-based image representations described in Sec-

tion 2.3, many applications are developed using these tree representations in image

processing and computer vision. The goal of this section is not to develop these

applications, but to show the usefulness of the tree-based shape spaces that we

introduced in Section 2.4 and that are inspired from those tree-based image repre-

sentations. We thus �rstly give a short review of some applications from �ltering,

simpli�cation to segmentation, and visualization of images in image processing re-

lying on the tree-based shape spaces. Besides, some applications in computer vision

based on that space are also reviewed. They can all be seen as the extraction of

�relevant� shapes from the tree-based shape spaces. The de�nition of �relevant� de-
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(a) Original image,
24127 shapes

(b) t = 10, 4643
shapes,PNSR = 38 :4

(c) t = 100, 2119
shapes,PNSR = 32 :9

(d) t = 1000, 958
shapes,PNSR = 23 :3

Figure 2.14: Grain �ltering with di�erent grain sizes.

pends on applications. Note that there are many other applications relying on the

tree-based shape spaces that are not presented here.

2.6.1 Applications in image processing

2.6.1.1 Grain �lter

The grain �lter was originally and formally introduced by Caselles and

Monasse [Caselles 2002]. The grain �lters consist in removing the level sets of an

image whose area is smaller than a given thresholdt. They are known as extrema

killers, because they are self-dual �lters that remove all the connected components

starting from the extrema and having an area smaller thant. Unlike the classical

morphological �lters based on structural elements and the linear Gaussian �lters,

the grain �lters only remove small level sets, leaving others unchanged. An example

of the comparison between these �lters is given in Figure2.2. Note that the result

of a grain �lter with a area threshold t can still have �at zones whose area is smaller

than t, because these �at zones are presented in the nodes whose area is big enough.

An e�cient implementation of the grain �lters is to use the topographic map rep-

resentation along with the area as the attribute function. An example of the grain

�lter with di�erent threshold values is illustrated in Figure 2.14.

2.6.1.2 Meaningful level lines extraction

Meaningful level lines (boundaries of level sets) extraction was proposed by Cao et

al. [Cao 2005]. This proposed meaningful level lines extraction is based on statisti-

cal arguments, which leads to a parameter free algorithm. It is an improvement of

the previous work of Desolneuxet al. [Desolneux 2001] which proposes a parame-

terless algorithm using the topographic map to detect contrasted level lines, called

meaningful boundaries. More speci�cally, for a given shape� in the topographic
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map, the authors de�ne a meaningfulness for the boundary of that shape� , know

as a level line. The meaningfulness is de�ned using thea contrario model, which

was introduced by Desolneux et al. [Desolneux 2001, Desolneux 2008] within the

framework of Computational Gestalt Theory. It is based on the so-called Helmholtz

principle, which states that: �we naturally perceive whatever could not happen by

chance�. So thea contrario models �rst assume uniform background or noise model,

then de�ne the interesting events as large deviations from this model. these devia-

tions are measured by theNumber of False Alarms (NFA). For the meaningful level

lines extraction case, the NFA re�ects the meaningfulness. Then extract one level

line with the smallest NFA among each monotone branch of the topographic map,

where a monotone branch is a branch of the topographic map for which each node

has only one child and the gray level value of each node is either strictly increasing

or strictly decreasing. By this method, only around 1% level lines are selected that

coincide with pieces of edges in the image, and the image represented by these ex-

tracted level lines has nearly no loss of shape contents, and they delivers accurate

shape elements. The details about the de�nition of NFA and meaningful level lines

extraction can be found in [Desolneux 2001, Cao 2005].

2.6.1.3 Image simpli�cation and segmentation

Since the beginning of the introduction of the morphological trees and the binary

partition tree, they are used to implement connected operators which act by merging

�at zones, so there exist many works that achieve image simpli�cation and segmen-

tation relying on the �relevant� shapes extraction from the tree-based shape spaces.

For instance, the work of Salembieret al. [Salembier 1998] which proposes a set of

�ltering strategies that simplify images using the Max-tree representation. Then

in [Salembier 2000], the authors propose to use the binary partition tree to achieve

image simpli�cation, segmentation, and information retrieval. In [Wilkinson 2001],

the authors propose to use the Max-tree and some shape attributes to simplify im-

ages so that the �lament is enhanced. Ballesteret al. propose in [Ballester 2007]

to use the topographic map with variational models (e.g., minimize the piecewise

constant Mumford-Shah functional [Mumford 1989]) for segmentation and encod-

ing. In [Lu 2007], the authors propose to simplify the binary partition tree, so the

image by analyzing the second order statistics of some evolvement functions using a

knee function. Knee values show the reluctancy of each merge, which helps to �lter

the tree and yield a simpli�ed image.

A segmentation result can be simply obtained by an horizontal cut of a hierar-

chy of segmentations. The works of Najman et al. [Najman 1996, Najman 2009] are

such instances. In [Felzenszwalb 2004], the authors propose an e�cient graph-based
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image segmentation algorithm using the minimum spanning. It consists in �rst of

all sorting the edges belongs to minimum spanning tree by increasing importance

of pixel edges linking two pixels , and then for each edge of MST in this pre-sorted

order, if the two regions linked by that edge is not merged yet, examine if we can

merge them based on the di�erence maximal intra-dissimilarity and minimal inter-

dissimilarity controlled by a parameter K . In [Guigues 2006], the authors propose

the scale-sets theory that can provide an optimum cut (usually not horizontal) very

e�ciently subordinated to some energy functional to minimize. In [Soille 2008],

Soille proposes an image simpli�cation and segmentation method based on the con-

strained connectivity which yields the � -tree. Then a local range� combined with

a global range! or not is used to cut the hierarchy that provides a simpli�cation

or segmentation result. In [Serra 2013, Kiran 2014], Serra and Kiran propose a new

approach to �nd optimal cuts in hierarchies of partitions by energy minimization. It

relies on the notion ofh-increasingness, and allows to �nd optimal cuts in one pass.

Recently, Cardelino et al. [Cardelino 2013] propose to select the best (optimal) par-

tition (cut) from a hierarchy of segmentations based on the use ofa contrario model,

they assign a meaningfulness re�ected by the NFA to each possible partition given

by that hierarchy. The optimal partition is simply given by the most meaningful

partition.

2.6.1.4 Preferential image segmentation

In [Pan 2009b], the authors propose a novel preferential image segmentation method,

which preferentially segments objects that have intensities and boundaries similar

to those of objects in a database of prior images. This method relies on the topo-

graphic map representation. It consists in �rst of all constructing the topographic

map for both images. For the preferential objectOp to which the similar objects in

another image f 0 from the database is to be segmented, the intensity and bound-

ary information of the corresponding shape in its topographic map is known. The

proposed method �rst of all select a reduced set of shape candidates in the cor-

responding topographic map off 0 based on the intensity information, such as the

number of direct children, the relative area change between the shape and its direct

children, the rough similarities of the boundaries based on the compactness. Then

a curve matching step introduced in [Lisani 2003] is applied on the boundaries of

the reduced shape candidates in the topographic map representingf 0 and the pref-

erential shapeOp. The candidate shape which best matches the preferential curve

is �nally selected as the preferential segmentation result. Experimental results on a

large image dataset show that this application using topographic map is promising.

The readers are referred to [Pan 2009b] for more details about this application.
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2.6.1.5 Visualization of images

For 3D images visualization, despite the fact that they can not be directly printed

on paper, one usually displays slices, or voxels, or isosurfaces, and expects that the

content of the 3D image is understandable from the �gure. However, in practice,

visualization of 3D images is extremely interesting and di�cult. For the visualiza-

tion by voxels and isosurfaces, some interesting objects may be hidden inside some

surrounding structures, or surrounded by many noises, which make the interesting

objects visualization impossible or di�cult. In [ Wilkinson 2001], the authors pro-

pose to use the Max-tree combined with moment of inertia (minimal for a sphere,

and increases rapidly as the object becomes more elongated) as attribute func-

tion to �lter the 3D images of vessels. In the simpli�ed 3D image, the �lament

(i.e., vessels) is enhanced so that we can better visualize the vessels in the image.

In [Westenberg 2007], the authors also propose some other attribute function, such

as elongation, �atness and sparseness to �lter the Max-tree of a 3D image, which

results a simpli�ed image where the interesting objects are more visible.

2.6.2 Applications in computer vision

2.6.2.1 Maximally Stable Extremal Regions (MSER)

Maximally Stable Extremal Regions (MSER) was originally proposed by Mataset

al. [Matas 2002]. It is a method of blob detection in images, which belongs to

the family of local feature detection. It is used to establish the correspondences

between image elements from two images to be compared, and is widely used in

stereo matching, object recognition, and tracking. The MSER was originally de�ned

as follows:

Region Q is a connected component in image.

(Outer) Region Boundary @Q= f q 2 VnQ : 9 p 2 Q : e = ( p; q) 2 Eg, which

means the boundary@Qof Q is the set of pixels adjacent to at least one pixel ofQ

but not belonging to Q.

Extremal Region Q � V is a region such that either8p 2 Q; q 2 @Q: f (p) > f (q)

holds or 8p 2 Q; q 2 @Q: f (p) < f (q) holds.

Maximally Stable Extremal Region (MSER). Let Q1; : : : ; Qi � 1; Qi ; : : : be a

sequence of nesting extremal regions (Qi � Qi +1 ). Extremal region Qi � is maximally

stable if and only if q(i ) = jQi +� nQi � � j=jQi j has a local minimum at i � , where j � j

denotes cardinality, and � 2 Z is a parameter of the method.

The stability function q(i ) checks for regions that remain stable over a certain

number of thresholds. If an extremal regionQi +� is not signi�cantly larger than

an extremal regionQi � � , the extremal region Qi is selected as a maximally stable
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extremal region.

The set of extremal regions can be organized into a tree structure: component

tree [Najman 2006] (either a Min-tree or a Max-tree), and the MSER is easily under-

standable using Min-tree and Max-tree representations. As shown in [Donoser 2006],

MSER extracts the regions (nodes) that correspond to local minima of the stability

function along the path to the root of the tree. The stability function of a given node

is given by the di�erence between the area of some (grand-)parent and some (grand-

)child, divided by the area of the node itself. It is reported [Mikolajczyk 2005] that

MSER achieves state-of-the-art repeatabilities and regions accuracies. It is also very

e�cient. Nister and Stewenius propose in [Nistér 2008] a linear algorithm (similar

to the one of Salembieret al. [Salembier 1998]) to compute the MSER.

A variant of MSER is proposed by Perdoch et al. in [Perdoch 2007] called the

Stable A�ne Frame (SAF) for which only local stability is required. Many more

features are obtained with a comparable repeatability score. However, it is much

slower than MSER.

2.6.2.2 Topological approach to hierarchical segmentation using Mean-

Shift

Mean shift is popular method to segment images and videos. Pixels are represented

by feature points which encodes the spatial information of that point in the origi-

nal image and the color information, and the segmentation is driven by the point

density in feature space. It has been shown by Cheng [Cheng 1995] and Comani-

ciu and Meer [Comaniciu 2002] that mean shift is equivalent to a steepest ascent

on a density function underlying the image data. In [Paris 2007], Paris and Du-

rand propose an e�cient scheme to evaluate that density function. They apply the

Morse theory [Milnor 1963] on the explicit representation of the underlying density

function to extract the density modes corresponding to the clusters. Based on the

Morse theory, it has been shown that the density modes are unions of cells of the

Morse-Smale complex. This approach leads to a fast method to compute mean-shift

segmentations. Besides, With the notion of topological persistence introduced by

Edelsbrunner et al. [Edelsbrunner 2000], they build a hierarchical segmentation at

the computational cost of a single-level clustering.

The core structure used in this method is the Max-tree representation con-

structed from the underlying density function de�ned on the feature space, not

directly from the original image. The Max-tree representation make the analysis

of maxima and saddle points very e�ciently. In fact, the �ltering using the topo-

logical persistence in [Paris 2007] is a �ltering by height applied on the Max-tree

representation. It has been shown that this method achieves an accuracy equivalent
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to previous technique but runs faster then all the previous work, especially on large

images and videos. Besides, a hierarchical segmentation can be obtained with no

additional computational cost based on the extinction values using height, known

also as dynamic. This hierarchical segmentation is useful for multi-scale analysis.

2.6.2.3 Scenery images analysis

A �rst example of scenery images analysis making use of the tree-based shape spaces

is proposed by Song and Zhang in [Song 2002] to separate the foreground and back-

ground regions in images. More speci�cally, they made two assumptions about the

image background. Compared to the foreground regions, the background regions

are (1) smoother in intensity; and (2) peripheral in location. In an input image, the

harshness of the foreground is characterized by intensity peaks and valleys, which

correspond to the nodes of topographic map representing small textons whose height

are high. The complete system is consist of �rst of all selecting these nodes from the

topographic map as foreground objects, then connecting those textons controlled

by the distance between them. A noise removal step is also applied by removing

small connected components that contains very few textons after textons connecting

step. Then repair the boundary by connecting all the close points. �nally, a hole

�lling step is performed to achieve the �nal foreground region. It has been shown

in [Song 2002] that such scheme can e�ectively locate background region in images

which satisfy the two assumptions.

Lately, Song and Zhang propose in [Song 2003] a method for analyzing scenery

images to support semantics-based image retrieval. The method makes use of the

monotone tree (i.e., topographic map). The structural elements of an image are

modeled as sub-branches of the topographic map. These structural elements are

classi�ed and clustered on the basis of such properties as color, spatial location,

harshness and shape. Each cluster corresponds to some semantic feature. It has

been show in [Song 2003] that such scheme is e�cient for analysis and retrieval of

scenery images.

2.6.2.4 Classi�cation of images

In [Urbach 2007], the authors propose a multiscale and multishape morphologi-

cal method for pattern-based analysis and classi�cation of gray-scale images us-

ing connected operators relying on the Max-tree representation. Pattern spec-

tra [Maragos 1989, Serra 1982] are commonly used tools for image analysis and

classi�cation, which can be computed using a technique from mathematical mor-

phology known as granulometries [Breen 1996, Serra 1982]. Intuitively, a size gran-

ulometry can be considered as a set of sieves of di�erent grades, each allowing
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details of certain size classes to pass. In [Urbach 2004, Urbach 2007] the authors

propose to use the joint shape-size pattern spectra computed from connected op-

erators which makes use of the Max-tree representation. Compared with previous

existing methods, which use structuring elements, it is stated out that the proposed

method in [Urbach 2007] features three main advantages: 1) The computation time

is independent of the dimensions of the pattern spectrum, since it does not depend

on the number of scales or shapes used. 2) The method can make use of exact shape

attributes to construct a joint 2D shape-size pattern spectra. 3) It is signi�cantly

less sensitive to noise and it is rotation-invariant. The benchmark of the classi�ca-

tion performance on four image datasets shows that their proposed method achieves

better or equal classi�cation performance to the best competitor but with a 5 to

9-fold speed gain.

Morphological pro�les [Epifanio 2007, Tuia 2009] are widely used for the classi-

�cation of high-resolution remote sensing images. Recently, Luo and Zhang propose

in [Luo 2013] a robust auto-dual morphological pro�les for the classi�cation of high-

resolution satellite images. They make use of the topographic map representation,

and extract some other feature pro�les (perimeters, scales, total variations, etc.)

that are more robust than the intensity variations from that representation. The

e�ciencies of their proposed method are validated by experimental results on two

datasets of remote sensing images.

2.6.2.5 Texture indexing

In [Xia 2010], Xia et al. propose a texture analysis scheme, the shape-based invariant

texture indexing, which is invariant to local geometric and radiometric changes.

Their proposed method makes use of the topographic map representation, which is

a multi-scale and contrast invariant representation of images. More speci�cally, for

each texture image, its corresponding topographic map is �rstly computed, then for

each shape in the topographic map, assign some invariant texture feature based on

the second order moments (having many invariant properties, such as translation,

scale, rotation, etc.) of that shape. Then each image is associated with a 1D

histogram of the texture features for those shapes belonging to the corresponding

topographic map. Then the comparison two textual images is performed through

the distance between their 1D histograms of texture features of their shapes. Their

proposed texture indexing approach is validated by performing classi�cation and

retrieval experiments on three texture databases. Their obtained results outperform

previous state of the art in locally invariant texture analysis.
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2.6.2.6 Object detection

In [Vilaplana 2008], Vilaplana et al. propose an approach of object detection based

on the use of binary partition trees. The BPT provides a tremendously reduced

search space for the object detection task. In order to handle the compromise

between computational complexity reduction and accuracy, the authors propose to

distinguish two zones in the BPT: the accuracy spaceproviding preciseness to the

description (lower scales) and thesearch spacefor the object detection task (higher

scales). These two zones are de�ned by specifying a point of merging sequence why

is obtained by assessing a stop criterion. A rough object detection is obtained by

searching the node in the search space which is most likely to be a meaningful object.

Then the region represented by this detected object node is re�ned by introducing

a shape �tting step. The object re�nement step is performed in the accuracy space.

Various experimental results in [Vilaplana 2008] illustrate the generality and the

e�ciency of their proposed method for object detection.

2.7 Conclusion

We have reviewed the tree-based connected operators in this chapter. They rep-

resent the context of the core concept of our PhD work. Many tree-based image

representations are reviewed. And some application examples that rely on those

tree-based image representations are shortly introduced to demonstrate their use-

fulness for many problems in image processing and computer vision. The novelty of

this chapter is the introduction of the tree-based shape space. It is the corner stone

of our proposed framework described in Chapter3. This notion provides us with

a new point of view of the classical connected operators. They can be seen as an

atomic analysis of this shape space, without using the structure of the tree. Besides,

many applications in image processing and computer vision relying on tree repre-

sentations can be seen as relevant/representative points selection from the shape

space. In some cases, the selection/decision is performed individually, whereas, the

local structure of the tree is sometimes used to guide the selection/decision.





Chapter 3

Shape-based morphology

framework

This chapter presents the core concept of our PhD work presented in this thesis:

the framework of shape-based morphology. The basic idea of this framework (see

Section 3.1) is to apply the connected operators in the tree-based shape space.

It consists of two tree constructions: one is constructed from the image, and the

second one is constructed from the �rst tree representation. The principle ex-

plaining the rationale behind this framework is detailed in Section3.2. We will

show that this framework allows us to provide a simple de�nition of the MSER

method [Matas 2002] and an extension of this method (see Section3.3). Besides,

this framework has three main consequences. 1) For �ltering purpose, detailed in

Section 3.4, it is a generalization of the classical existing connected operators. Two

novel kinds of �lters are introduced: the shape-based lower/upper levelings, and

the self-dual morphological shapings. 2) As shown in Section3.5, this framework

can be used to object detection/segmentation by selecting relevant points from the

shape space. 3) This framework provides a way to transform any tree representation

into a hierarchy representing a hierarchical image simpli�cation/segmentation. This

aspect will be detailed in Section3.6.

3.1 Overview of the framework

3.1.1 Classical tree-based connected operators

As reviewed in Section2.5 and depicted in Figure 2.11 (b), the classical tree-based

connected operators is consisted of three steps: tree construction, tree �ltering, and

image reconstruction from the simpli�ed tree. The core process of such process

relies on the tree �ltering step. For an increasing attribute function A " , the tree

�ltering is simply performed by pruning the leaves which is equivalent to applying

an attribute thresholding. For a non-increasing attributes (the most usual cases,

e.g., many shape attributes), the pruning strategies reviewed in Section2.5.2 do

not take into account the possibility that several relevant objects can have some
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inclusion relationship, meaning that they are on the same branch of the tree. For

attribute thresholding strategies, one simply removes the nodes of the tree for which

the attribute is lower than a given threshold. Such a thresholding does not take into

account the intrinsic parenthood relationship of the tree, the regions in the shape

space are analyzed individually. It is often impossible to retrieve all expected objects

with one unique threshold. Figure3.1 shows the evolution of a shape attribute, the

circularity, along two branches of the topographic map. The light round shape and

the dark one are both meaningful round objects when compared to their context.

However, their attribute values are very di�erent. In order to obtain the light

one, a high threshold is required, but then some non-desired shapes appear in the

background in Fig. 3.1 (f).

3.1.2 Connected operators on shape space

The founding idea of the framework that we callshape-based morphologyis to apply

connected �lters on the tree-based shape spaceST de�ned in Section 2.4, being the

space of all the nested or disjoint components of the image, structured into a graph

by the parenthood relationship (i.e., the neighbors of a node are its children and its

parent). Each node in the shape space is weighted by an attribute functionA . This

process of shape-based morphology is illustrated by the black+red path of Figure3.2.

Note that the process depicted in the red block of Figure3.2 is exactly a tree-based

connected operator applied on the tree-based shape spaceST induced by a tree-

based image representationT . It is composed of three steps: treeT T construction,

tree T T �ltering, and a simpli�ed tree T 0 (equivalent to the simpli�ed image f 0

of the connected operators applied to the space of image) reconstruction from the

simpli�ed tree T T 0. The use of tree-based shape space make this process act by

merging �at zones, which implies that the shape-based morphology still belongs to

the family of connected operators.

This surprising and simple idea of the shape-based morphology framework has

several deep consequences:

� This framework allows us to give a new point of view of the widely used

MSER [Matas 2002], and it also gives us the possibility to extend the de�nition

of MSER by analyzing the tree-based shape space based on some attribute

function other than the stability function used in the original de�nition of

MSER [Matas 2002]. This will be detailed in Section 3.3.

� For the �ltering purpose, it will be shown in Section 3.4 that this framework

encompasses some usual attribute �ltering operators. Novel connected �lters

based on non-increasing criterion can also be proposed. When the �rst treeT



3.1. Overview of the framework 59

��

������

������

������

������

������

������

�� ���� ���� ���� ���� ���� ���� �	��

�
�
���

���

��

���
���

����������

���

���

���

���

������������������

(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.1: (a) Evolution of the circularity attribute on two branches of T being

the topographic map; (b to e) Some shapes; (f) Result of attribute thresholding; (g)

Result of a shaping.



60 Chapter 3. Shape-based morphology framework

����������
��

����������
���������	���
���	��������

��������

�

��������
���������	���
���	��������

��������
�������	���	�
�	������

���
��������
�������	���	�
�	����������������

���

����������
�����
��������

����������
�����	����������

������������������������������

��������

�� �

��������

���

��������

��� �

Figure 3.2: Classical connected operators (black path) and our proposed shape-

based morphology scheme (black+red path).

is respectively a Min-tree or a Max-tree [Salembier 1998], such �lters are new

morphological lower or upper levelings [Meyer 1998], [Meyer 2004]. When the

�rst tree T is the topographic map, it gives rise to a novel family of self-dual

connected �lters that we call morphological shapings.

� This framework can also be used for object detection and segmentation pur-

pose, where the basic idea is that the local minima of some attribute function

A correspond to meaningful objects, and the morphological �ltering in shape

spaces helps to remove meaningless local minima, so does the meaningless

objects. This will be detailed in Section3.5,

� By expanding the idea of the principle of object detection, we can weight the

contours of regions represented by the local minima in the shape space by

the �ltering force (known as extinction value [Vachier 1995]) for which a local

minimum disappear, the obtained image of weight is a saliency map which is

equivalent to a hierarchy of image segmentation. Consequently, the framework

of shape-based morphology provides an e�cient way to transform hierarchy

(see Section3.6).

Roughly speaking, it will be shown in the sequel that the proposed framework

of shape-based morphology is a versatile framework that can be used for extend-

ing MSER, image �ltering, object detection/segmentation, and transformation of

hierarchy.
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3.2 Principle of the shape-based morphology

Let us explain the principle of the shape-based morphology that acts by applying

connected operators on the tree-based shape space, instead of on the space of image

directly. We will detail each step of the framework depicted in Figure3.2.

3.2.1 First tree construction

As illustrated in Fig. 3.2, the �rst step of shape-based morphology is to construct

a tree-based image representationT , which is equivalent to the imagef . Di�erent

trees are reviewed in Section2.3. The choice of the kind of tree depends on the

targeted application. The criterion to choose a particular tree among the set of

trees is that the shapes (objects) of interest, are present as connected components

of this tree. As stated in Section2.3, all trees can be constructed e�ciently.

During this tree construction, we are able to compute incrementally a lot of in-

formation, based on which the attribute A (some interesting feature) characterizing

the corresponding connected components will be obtained. The attributeA can

be as simple as for instance, the shape area (increasing attributes), or some more

evolved ones which are non-increasing and usually more interesting. That is for

example the case of compactness, or elongation, etc [Westenberg 2007].

As explained in Section2.4, a tree-based shape spaceST given by a tree-based

image representationT with nodes weighted by an attribute function A is equivalent

to a node weighted graph(GT ; FA ), where GT = ( TN ; Te), TN is the set of nodes

fN j N 2 T g , and Te is the set of edgesTe = f (N ; Np) j N ; Np 2 T ; N 6= Npg

that encode the parenthood relationship between nodes.FA is an element of nodes

mapping F given by the attribute function A . The Figure 3.3 depicts a simple tree

T with four regional minima (represented by red circles) on the graph.

3.2.2 Second tree construction

Just like the �rst tree construction, a second tree-based image representationT T

is constructed in this second step. This second treeT T is built from the graph

(GT ; FA ), whereas the �rst tree was built from the input image. The second tree

T T is either a Min-tree or Max-tree representation. The choice between them is

based on the application and on the nature of the attribute functionA . In the case

of non-desired shapes �ltering, the criterion is to keep the vertices inGT (i.e., nodes

N 2 T ) representing the non-desired shapes near the leaves of the second treeT T.

For example, if we want to �lter out the non-desired shapes, and ifA encodes the

probability for a shape to be of a desired type, the minima of the space of shapes

are the shapes that are less probable to be of that type, compared to their parents
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Figure 3.3: An example of the work�ow of shape-based morphology withT T being

the Min-tree of T . Circles with capital letter inside: nodes N ; Blue values: �rst

attribute A ; Circles without letter inside: nodesN N ; Red values: second attribute

AA (being the height of the �rst attribute A in this example); Dashed circles:

�ltered nodes with a given threshold 2 for the second tree pruning.
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and children, i.e., the neighbors of the node representing the shape in the graph

(GT ; FA ). Then the choice ofT T will be a Min-tree representation. However, if

we want to keep the shapes being very likely to the desired shapes, the criterion

is chosen to make the leaves ofT T correspond to the desired shapes. ThenT T

will be the Max-tree. Each nodeN N of the second treeT T is a set of neighboring

connected components with similar type of shapes. Remark also that two di�erent

�objects� located in the same branch ofT are now possibly present on two di�erent

branches ofT T (e.g., in Figure 3.3 the node C and H ofT are now in two distinct

branches ofT T).

A second attribute AA characterizing each nodeN N of the second treeT T is

required to apply the second tree processing. It is always designed to be an increasing

attribute in order to make the second tree �ltering be a simple pruning strategy.

The design of this second attributeAA is quite �exible. Usually, it can be also

computed incrementally during T T construction, based on the �rst attribute A (For

instance, the height, or the volume ofA), or based on the contextual information

on the image domain around the shapes thatN N represents. An example of this

later case is the area, a second example is the total variation inside the region

formed by the union of element �region�RN of shapes contained in the nodeN N :

fN j N 2 T ; N 2 N N g , where the induced elemental �region�RN for a given node

N is de�ned as RN = f p j p 2 N ; p =2 C(N )g, C(N ) denotes all the direct children

of the node N . A such example of second attribute functionAA is depicted in

Figure 3.4.

The Figure 3.3 gives an example ofT T. It is a Min-tree of T . The four regional

minima of the graph (GT ; FA ) are presented as four leaves (red circles) ofT T. The

second attribute AA in this example is the height ofA .

3.2.3 Second tree �ltering

The second tree �ltering is performed based on the second attributeAA , which is

properly designed to be increasing. The second tree �ltering is a pruning based

on comparing AA to a given threshold. Let us remark that depending on the

application, two di�erent pruning strategies can be used. For the purpose of �ltering

out some non-desired shapes, the nodes to be pruned are the subtrees rooted just

above the leaves. In the case of selecting the shapes corresponding to the desired

shapes (represented by the leaves ofT T), the pruning strategy removes the nodes,

that are closer to the root node ofT T. It is equivalent to preserving the subtrees

containing the leaves.

The second tree in Fig.3.3 is �ltered by pruning the nodes N N whose attribute

value AA (the height of A ) is less than 2. This is an example of �ltering the
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Figure 3.4: Illustration of second attribute AA being the total variation inside

the region given by the union of element �region� of shapes contained in a node

N N . (a) A branch of the tree in Figure 3.3, the nodes inside the ellipse form the

node N N = f HCEg in the second treeT T. (b) The underlying region of image

represented by the branch of treeT in (a), the total variation inside the region

covered with oblique lines correspond toAA (N N ).

non-desired shapes around the leaves.

Let us mention also another interesting variant of the second tree �ltering strat-

egy. It is based on the extinction value [Vachier 1995] on the basis of the increasing

attribute AA . If for example, the interesting shapes corresponding to nodes being

minima of A (a context-based energy estimator [Xu 2012] (see also Chapter7) and

the Number of False Alarms (NFA) [Cao 2005] are such instances) on the graph

(GT ; FA ), and we want to keep the shapes which are very likely to be interesting

ones. The second treeT T will be the Min-tree. Let � be a strict total order on the

set of minima m1 � m2 � � � � � mn in a decreasing order of signi�cance, such that

mi � mi +1 wheneverA(mi ) < A(mi +1 ). The extinction value E for a minimum mi

is de�ned by:

E(mi ) = AA (N N
m i �
m i ) � AA (N N m i ); (3.1)

whereN N m i is the leaf ofT T corresponding to the nodemi of the graph (GT ; FA ),

and N N
m i �
m i denotes the lowest node onT T containing N N m i that does not contain

any leaf N N m i 0 with i 0 < i .

The extinction value of a minimum measures the signi�cance of this minimum.

The �ltering strategy based on the extinction values is to preserve (or remove) only

the blobs determined by a minimum whose extinction value is higher than a given
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Figure 3.5: Illustration of the extinction values of three minima. A, B , and C are

three local minima, and hm denotes the extinction value of height for the corre-

sponding minimum m.

value � and whose attribute AA is also below� . The advantage of this strategy is

that it preserves only these shapes which are meaningful enough compared to their

context. For example, the red part in Fig. 3.5 is preserved for the value given by

the purple line, but the blobs corresponding to minimaB and C are removed. In

this example, AA is the height and the extinction value of the height is also known

as the dynamic of a minimum.

3.2.4 Tree restitution

The step of tree restitution is trivial. The simpli�ed tree T 0 is reconstructed by

removing the set of nodesfN i g contained in the series of �ltered nodesfN N kg. For

example, the simpli�ed tree T 0 in Fig. 3.3 is obtained by removing the nodes (dashed

circles) contained in �ltered nodes of T T 0. Note that, in this example, the nodes

C and H are removed, while the node E lying between them in the same branch

is preserved. None of the existing pruning strategies described in Section2.5.2 can

achieves such a result. Indeed, the nodes E and J withA = 3 are preserved, while

the node F with A = 3 , and even the node D withA = 4 are �ltered out. Such a

behavior cannot be obtained with a threshold-based strategy. In fact, shape-based

morphology is more �exible than conventional connected operators and brings some

new possibilities.
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3.3 De�nition of MSER on the shape spaces

3.3.1 A point of view of MSER using the shape space

As discussed in Section2.6.2.1and as shown in [Donoser 2006], the MSER is easily

understandable using the tree-based shape spaces given by the Min-tree and Max-

tree representations. Here we will provide a novel point of view of MSER in spirit

of corner detection.

The corners in images are robust features having many invariant or covariant

properties. Corner detection is frequently used in many applications of computer

vision for its robustness and reasonable number of points, such as motion detection,

image registration, image mosaicing, panorama stitching, video tracking, 3D mod-

elling, and object recognition. The Harris corner detector [Harris 1988] is one of

the popular corner detection method. It extracts the corner points in the space of

image by �nding extrema of a corner measure based on the second moment matrix

at some �xed scale. Such a process can be seen as �rst of all de�ne a searching

space (e.g., all points of the space of image for corner detection), then de�ne some

robust measurement upon which the decision of robust points selection is made.

The measurement should satisfy many invariant or covariant properties, such as,

invariant to viewpoint changes, contrast changes, scale changes, blur changes,: : : ,

the measurement based on the second moment matrix satis�es some of these invari-

ances. Then the decision based on this measurement should also be made under

some invariances, the choice of extrema is a appropriate one.

In the same spirit, the MSER is in accord with the principle of corner detection

methods. Whereas, in the case of MSER, the searching space is the tree-based shape

space given respectively by the Min-tree and Max-tree representation. This shape

space is a reduced searching space compared with the number of points of the space

of image. The measurement is stability function (see Section2.6.2.1and Eq (3.2))

de�ned on each region of in the space. This stability function is only based on the

area variation, which satis�es most of the invariant properties mentioned above.

The decision of the selection of robust regions in the space of shapes is conducted

by the local minima extraction, which is similar with the extrema choice in the case

of corner detection.

Both the corner detection and MSER extraction are performed by selecting ro-

bust features in the space of features being respectively the space of image and the

space of shapes. However, in the case of corner detection, a multi-scale corner detec-

tion is usually required to make it robust to scale changes. A scale-adapted Harris

corner detector and its extension Harris-Laplace with scale selection by �nding ex-

trema of the Laplacian of Gaussian (LoG) �lter were proposed in [Mikolajczyk 2004].
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The corner detection belongs to the family of scale-space based local feature detec-

tion. It is also well-known that the corner detection methods usually extract several

corner points that correspond actually to a real single corner in image. Whereas, the

MSER de�ned in the tree-based shape space is already multi-scale thanks the multi-

scale property of the tree-based image representations and the invariance to scale

changes of the stability function. Besides, the stable regions extracted by MSER

provide a compact local path (elliptic �tting of the real regions in shape space)

upon which some descriptor [Lowe 1999, Lowe 2004, Forssen 2007] is computed to

establish the correspondence between a pair of images. In fact, the tree-based shape

space is a multi-scale image representation, it is invariant to a�ne transformation of

image intensities, covariant to adjacency preserving transformation, all these prop-

erties make the tree-based shape space well suited for local feature detection, which

contributes to the main reason of the success of MSER. The stability function is

certainly also an important reason that preserves these invariance properties of the

tree-based shape space, and it contributes also to the success of MSER. However,

note that due to the fact that the stability function is based on a parameter re-

lated to image contrast, the MSER is not truly contrast invariant. It is reported

in [Mikolajczyk 2005] that MSER outperforms the corner detection in term of re-

peatability test [ Mikolajczyk 2005], in the case of viewpoint changes, scale changes,

and contrast changes.

A more detailed comparison between scale-space based local feature detectors

and shape-space based local feature detectors will be given in Section4.2.1.

3.3.2 Matching the tree-based shape spaces

MSER is a blob detection method, it extracts stable (usually contrasted) regions. In

practical use, the centroid of the regions extracted by MSER in the shape space of

an image is used as the interest points based on which the correspondence between a

pair of images is established. Such correspondence matching is achieved through the

point descriptors [Lowe 1999, Lowe 2004, Forssen 2007] computed upon a local patch

(usually an elliptic region) around the points, the distance between the descriptors of

points in two images is then used to estimate the correspondence. Such a classical

process (i.e., keypoints detection + descriptors + correspondence estimation) is

widely used in many applications.

Unlike the corner detection methods, for which the relationship between the

keypoints in the space of images is unclear, the structure in the space of image

around a keypoint is trivial, and the searching space is too large, the shape space

provides a reduced searching space. More interestingly, the regions extracted in

the shape space by MSER obey the nested property reported in Eq (2.15), i.e.,
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two regions of MSER are either disjoint or one is included in the other one, the

structure around a MSER in the shape space (i.e., a point in the shape space) is

rich in terms of local information contents (e.g., the number of children). These later

two interesting properties are obtained thanks to the edges (tremendously reduced

compared with the edges in the space of images) in the shape space that re�ect the

inclusion relationship of neighboring regions in the shape space. However, these two

interesting properties are not utilized in the classical scheme using MSER. It might

be interesting to make use of these properties by replacing the descriptors computed

upon a local patch around the keypoints (centroid of MSERs) by the local structures

around the MSERs in the shape space. In another word, the local structure around

a MSER Rs in the shape space is served as a descriptor describing/characterizing

that MSER Rs. This proposition is equivalent to match directly the underlying tree-

based shape spaces of a pair of images based on some located points (i.e., MSERs)

of that shape space. This is somehow in the same spirit with the work of Panet

al. [Pan 2009b] where the authors a preferential image segmentation method based

on the use of tree-based shape space given by the topographic map representation

(see Section2.6.1.4and [Pan 2009b]) for more details.

The matching of two tree-based shape spaces seen as graphs is in general a NP-

hard problem. But we only would like to match a tremendously reduced interesting

nodes extracted by MSER. This might help to reduce the complexity of graph match-

ing. Besides, there exist some e�cient graph matching optimization techniques, such

as the work of Torresani et al. [Torresani 2008]. The proposition of matching di-

rectly the tree-based shape space is still a open question that we did not exploit. We

have tried the tree-based shape space matching through another interesting nodes

spotting method which will be detailed in Chapter 5. It is a simpli�cation method

based on minimizing the piecewise Mumford-Shah functional [Mumford 1989] that

extracts few salient shapes. A such based shape space matching is illustrated in

Figure 3.6, the underlying tree representation is the topographic map.

3.3.3 Extending MSER

Using the shape space given by a tree-based image representationT (either a Min-

tree or Max-tree), the MSER is de�ned as the local minima of the attribute function

given as follows:

A q(N ) =
(jN +

� j � jN �
� j)

jN j
; (3.2)
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Figure 3.6: Feature correspondence via the tree-based shape space matching. The

shape space is given by the topographic map representation, the keypoints (i.e., in-

teresting regions) in the shape space is extracted by a simpli�cation method detailed

in Chapter 5.

where j � j denotes the cardinality, N +
� and N �

� are respectively the lowest ancestor

and the highest descendant such that

jf (N +
� ) � f (N )j � � ; (3.3)

jf (N ) � f (N �
� )j � � ; (3.4)

where j � j denotes the absolute value. Note that the lowest ancestor nodeN +
� is

unique, whereas the highest descendant nodeN �
� may not be unique, because a

bifurcation node might be present below the nodeN , in this sense the stability

function in Eq ( 3.2) is not quite well de�ned. One popular choice is to chose the

biggest highest descendantN ��
� that satis�es Eq ( 3.4), de�ned as follows:

N ��
� = argmax(jN � i

� j); i = 1 ; : : : ; n; (3.5)

where fN � i
� j i = 1 ; : : : ; ng is the set of disjoint descendants (i.e., in di�erent

branches of the treeT ) that obey Eq (3.4). The public implementation in OpenCV

is a such instance, where a small modi�cation of Eq (3.2) is also applied, de�ned by:

A 0
q(N ) =

(jN j � jN ��
� j)

jN j
; (3.6)

An variant stability function is used in the public implementation of

VLFeat [Vedaldi 2008], where the area variation is de�ned using only the node itself

and its unique lowest ancestor which obeys Eq (3.3), it is given by:

A 00
q(N ) =

(jN +
� j � jN j )

jN j
; (3.7)
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Note also that the stability function make use of a parameter that depends on

the contrast of image, which make it not truly invariant to local contrast changes.

The evolution of the stability function of Eq ( 3.2) along a branch starting from a

leaf (left side) to the root (right side) of the Min-tree for a simple image is given in

Figure 3.7 (a) ( � = 10 ) and (c) (� = 2 ). Figure 3.7 (b) and (d) are respectively

the zoomed curves of (a) and (c) by removing the nodes whose values (axis Y) are

too large, in order to better visualize the local minima of the stability function.

Note that the number of children depicted in Figure 3.7 (f) shows that almost all

the nodes of that branch have only one child, so the local minima shown in (b)

and (d) are actually local minima in the shape space, that correspond to MSERs.

However, from Figure3.7 (b), we can see there are actually many MSERs that are

very similar, a clean up step is necessary to regroup them. In fact, in the both public

implementation: OpenCV and VLFeat [Vedaldi 2008], the MSERs being too small or

too large are removed, the MSERs having a big stability function values are �ltered,

and the MSERs that are similar in terms of position and size are regrouped. These

processes can be seen as a �ltering in the shape space based on the attribute function

of Eq (3.2). From this point of view, the framework of shape-based morphology

can be used to extend the MSER. More importantly, as discussed in Section3.3.1,

the main reason of the e�ciency of MSER is that the shape space given by Min-

tree and Max-tree representations have many invariant properties and the stability

function ( i.e., a special example of the attribute function) preserves those invariant

properties when it is used to extract the critical regions in an invariant/covariant

way by spotting its local minima. Following this principle, any shape space given by

a tree representation having those invariant properties and any attribute function

that preserves those properties can be used. The minima or maxima of the attribute

function gives also the interesting regions in a invariant/covariant way for a pair of

images. A such example is the average of gradient's magnitude along the boundary

of a region in the shape space, it is given by:

A r (N ) =
� X

e2 @N

grad(e)
�
=j@N j ; (3.8)

where @N denotes the boundary of the region represented byN , j@N j denotes the

length of the boundary, and grad : E ! R is an image of gradient's magnitude.

The local maxima of this attribute function A r extract the interesting regions in

the shape spaces. The evolution of the attribute functionA r for a simple image is

depicted in Figure 3.7. There are also many local maxima that correspond to similar

interesting regions, a �ltering step in the shape space is also required. However,

note that the interesting regions extracted by using the stability function of MSER

in Eq (3.2) and by using the attribute function in Eq ( 3.8) are quite similar but
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not identical. But since the centroid of the interesting regions is used to estimate

the transformation between a pair of image, the extracted interesting regions from

the shape space are robust to small local geometrical deformation, which is one of

the many advantages of shape-space based local feature detectors. A comparison

of MSER and the one using the attribute function in Eq (3.8) will be shown in

Chapter 4.

The MSER extracts usually contrasted regions in the shape space, which results

in a small number (but reasonable) of extracted regions. This limits the application

of MSER. For instance, in spite of the accuracy and e�ciency of MSER, for the

applications such has image registration, image mosaicing, panorama stitching, and

3D modelling, where a high number of features is required, the corner detection is

usually more preferred than MSER. Although lowering considerably MSER stability

margin gives much more points that would probably be interesting. However it

creates numerous local minima of the stability function, many of them represent

similar regions (see Figure3.7 (d)), merging those minima is unsound. A topology

based interesting regions extraction method that we call Tree-Based Morse Regions

(TBMR) will be detailed in Chapter 4. It relies on the Morse theory [Milnor 1963],

and no attribute function is required, only the structure of the shape space given by

Min-tree and Max-tree is needed. Numerous advantages will be presented including

a much more important number of extracted features.

3.4 Filtering

Connected operators are �ltering tools that act by merging the �at zones. The

framework of shape-based morphology is proposed by expanding the idea of tree-

based connected operators. Filtering is one direct consequence of the framework,

which we will discuss in this section. Note that the �lters disposed with the frame-

work of shape-based morphology belong always to the family of connected operators

thanks to the use of shape-spaces given by tree-based image representations.

3.4.1 More possibilities and �exibilities

As reviewed in Section2.5.2, the existing tree-based connected operators treat the

regions in the shape space individually. The decision of tree �ltering is made without

making use of the inclusion relationship between those regions. We propose to apply

the connected operators in the tree-based shape space to make up that issue and to

expect a more robust tree �ltering decision.

In fact, as we will show in the sequel, for the �ltering purpose, the framework of

shape-based morphology encompasses some usual attribute �ltering strategies, and
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Figure 3.7: Evolution of stability function of Eq ( 3.2) and average of gradient's

magnitude en Eq (3.8) of a branch starting from a leaf node (left side of Axis X) to

the root node (right side of Axis X). Axis Y represents the value of corresponding

attribute function. The images on the bottom of each �gure represents the cor-

responding regions represented by the nodes at the corresponding locations in the

shape space. (a-b) Normal and zoomed stability function with� = 10 ; (c-d) Nor-

mal and zoomed stability function with � = 2 ; (e) Average of gradient's magnitude

along the boundaries. (f) Number of children.
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two new class of connected operators based on the non-increasing shape attributes

A s are introduced. Indeed, as shown in Figure3.3 and discussed in Section3.2.4,

the shape-based morphology can give some �ltering results that is impossible by the

existing tree �ltering strategies.

3.4.2 Encompassing the classical attribute �lters

In the most trivial case, the attribute A is increasing, and the classical connected

�lterers are equivalent to a pruning of the tree.

Proposition 1 If A is increasing, let T T be the Min-tree built from the tree-based

shape space seen as a node weighted graph(GT ; FA ) induced byT and A, then T T

is isomorphic to T .

Proof: SinceA is increasing, so for any given nodeNk , A (Nk ) � A (Na) holds

for any ancestor nodeNa of Nk , which means that the leaves ofT are regional

minima on the corresponding node weighted graph(GT ; FA ). These regional minima

lie also on the leaves ofT T being the Min-tree. Furthermore, as the adjacency

(graph edge) of the graphGT represents the parenthood, for any pair of neighboring

vertices (N i ; N j ) in GT , either N i = parent(N j ) or N j = parent(N i ). Suppose that

the former one holds, thenN j � N i ; A (N j ) � A (N i ) , FA (N j ) � FA (N i ). Let

Nk 2 TN be any neighboring vertex (6= N i ) of N j , since the parent of each node on

a tree structure is unique, soNk is a child of N j , which meansFA (Nk ) � FA (N j ).

In consequence, we haveN N i = parent(N N j ), whereN N denotes the �rst node in

the second tree that contains the vertexN of the node weighted graph(GT ; FA ).

So T T is isomorphic to T .

Let AA be the current level of the second treeT T, which means 8N N k 2

T T; AA (N N k ) = A(Nk ). Pruning T T is equivalent to pruning T . In other words,

the shape-based morphology encompasses the classical �ltering strategy in this case,

but we do not have to test whether the attribute A is increasing or not.

3.4.3 Encompassing attribute thresholding strategy

A shape attribute A is more often non-increasing. In such a case, there exists

some pair of vertices(N i ; N j ) composing an edge in the graphGT , such that N j =

parent(N i ), and A(N j ) � A (N i ) , FA (N j ) � FA (N i ). For example, Let T T be

the Min-tree of the graph (GT ; FA ), then the node N N i is hence an ancestor of

N N j on T T. So T T is di�erent from T . Furthermore, just like the increasing

attribute case, let AA be the current level of T T, we have AA (N N i ) = A(N i ).

Pruning T T on the basis ofAA is equivalent to thresholding T . Accordingly, the



74 Chapter 3. Shape-based morphology framework

shape-based morphology encompasses the threshold-based strategies (Direct and

Subtractiverules). But let us also remark that it is nevertheless impossible to retrieve

the same pruning strategies as the classical ones (Min , Max, and Viterbi ) described

in Section 2.5.2.

The second attribute AA can be di�erent from A; for example, it can be any

measure based onA or even some new attribute/measure computed from the image

domain (e.g., the total variation inside the context region represented by the node

N N ). This is when the shape-based morphology becomes di�erent. In general,

two new classes of connected operators will be introduced. The �rst class is de�ned

from the leveling family, and is namedshape-based lower/upper levelings(see Section

3.4.4). The second class is theself-dual morphological shapings(see Section3.4.5).

3.4.4 Shape-based lower/upper levelings

We will now detail the �rst type of novel connected operators given by the shape-

based morphology, in the case ofT being a Max-tree or Min-tree representation of

the image f .

Proposition 2 If the tree T is a Max-tree, the shape-based morphology gives an

upper leveling, named as shape-based upper leveling s" .

Proof: Let T be a Max-tree representation, then no matter what type of tree

T T is and no matter howT T is pruned, the simpli�ed tree T 0has always a Max-tree

structure in the sense that gray level for the ancestors is always lower. In the image

reconstruction step, the pixels stored in some removed nodeN r take the gray level of

the �rst preserved ancestorNa (Direct rule) or even lowered with the change induced

by those removed ancestors (Subtractive rule). Anyway, 8x 2 V;  s" (f )(x) � f (x)

always holds. By De�nition 6, such an operator s" is a upper leveling.

Proposition 3 If the tree T is a Min-tree, the shape-based morphology gives a lower

leveling, named as shape-based lower leveling s#.

Proof: Let T be a Min-tree, the simpli�ed tree T 0 is still a Min-tree in the sense

that the gray levels of the ancestors are always higher. So, as the same as the proof

in the case ofT being a Max-tree, 8x 2 V;  s#(f )(x) � f (x) holds. According to

De�nition 5, such an operator s# is a lower leveling.

E�ectively, the fact that shape-based morphology in the case ofT being a Max-

tree (resp. Min-tree) results in a shape-based upper (resp. lower) leveling is because

any anti-extensive (resp. extensive) operator is a upper (resp. lower) leveling. Let us

also remark that such an operator s is not a leveling, since eitherf (x) �  s(f )(x)
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or  s(f )(x) � f (x) holds for any vertex of the graph, therefore,9 x; y 2 V , f (x) �

 s(f )(x) and  s(f )(y) � f (y) do not hold in the same time. So the operator s is

not a leveling except in the case that s(f ) is constant.

The classical upper (resp. lower) leveling removes the details of the regional

minima (resp. maxima). In practice, it is equivalent to pruning the Min-tree (resp.

Max-tree) with an increasing attribute A " . Nevertheless, the shape-based upper

(resp. lower) leveling is based on some connected �lterings on the shape space

built from the Max-tree (resp. Min-tree) representation. It �lters out the details of

unwanted bright (resp. dark) shapes on the basis of the user de�ned non-increasing

shape attributes.

Proposition 4 If the second treeT T �ltering is idempotent, then the shape-based

upper leveling s" and lower-leveling s# are idempotent.

Proof: Let T0, T T0, T T 0
0 , and T 0

0 be the tree structures corresponding to the

shape-based morphology s applied to f . T1, T T1, T T 0
1 , and T 0

1 are the tree struc-

tures corresponding to s applied to f 0 =  s(f ). As T 0
0 and T1 are a Max-tree or

a Min-tree, it is trivial that T1 = T 0
0 , thanks to the strict �xed order of the gray

level between neighboring nodes of those trees. As the second tree �ltering is based

on the pruning strategy, it is equivalent to remove some blobs around minima or

maxima of the graph (GT ; FA ). As a consequence, the second tree of(GT 0; FA )

is the same asT T 0, which means that T T1 = T T 0
0 . The idempotent second tree

�ltering yields: T T 0
1 = T T 0

0 ) T 0
1 = T 0

0 , so  s( s(f )) =  s(f ) holds.

The preservation of the blobs based on the use of extinction value is an example

of an idempotent second tree �ltering. The blobs of the minima or maxima are

preserved, so the extinction values for the minima or maxima of(GT 0; FA ) are

still higher than the given value. Hence the blobs will remain with any additional

�ltering.

3.4.5 Morphological shapings

Unlike the shape-based upper or lower leveling, which deals only with bright or

dark shapes, we introduce in this section a second type of novel connected operators

which process both bright and dark shapes at the same time.

Proposition 5 If T is a self-dual representation, i.e., a topographic map, andA is

a non-increasing attribute, the operator  s given by the shape-based morphology is

not a leveling.

Proof: Since the shape attributeA is non-increasing, and the shape-based mor-

phology yields a T 0 which is not a pruning of T . So there could exist a pair of
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neighboring vertices (x; y), such that Nx � N y , and Ny is removed while Nx is

preserved. The nodesNx and Ny denote the smallest shapes that contain respec-

tively x and y. Let Nz be the lowest preserved ancestor ofNy . Then we have

 s(f )(x) = f (x),  s(f )(y) = f (z). However, as the treeT is the topographic map,

the order of the gray level of a node and any of its ancestor is not monotonous a

priori. So it is possible that f (z) < f (x) and f (z) < f (y). In this case, we have

 s(f )(x) >  s(f )(y), f (x) �  s(f )(x) and  s(f )(y) < f (y). It is contradictory

with the de�nition of leveling (see Eq (7)).

De�nition 9 If T is a topographic map, the connected operator de�ned by the shape-

based morphology is called amorphological shapingdenoted byS.

The name �shaping� comes from the fact that such operator acts by removing

some unwanted dark and bright shapes and preserving some desired shapes.

Proposition 6 The morphological shapingS is a self-dual operator.

Proof: Since the treeT is self dual, which meansT + representing f has the

same structure asT � representing� f . And the attribute A is shape attribute being

independent to the gray level. So8; N +
k 2 T + ; 9 N �

k 2 T � , such that N +
k , N �

k

in the sense that the two nodes represent the same connected component and so

A + (N +
k ) = A � (N �

k ). In consequence, the graph(GT + ; A + ) is equal to the graph

(GT � ; A � ). Then we haveT T + = T T � ) T 0+ = T 0� and f 0 = � f 0, which means

S(� f ) = �S (f ). So the shapingS is a self-dual operator.

To make the self dual shapingsS idempotent, the �rst condition is T1 = T 0
0 .

However, this requirement is not trivial due to the un�xed order of gray level of the

neighboring nodes on the topographic mapsT . For any nodeNk 2 T , it is given by

the holes �lling of connected components either from upper level sets (see Eq (2.4)),

or from lower level sets (see Eq (2.7)). Let us denote this nature of Nk respectively

by N k
< or N k

> .

Proposition 7 Let T be a topographic map, for each preserved nodeNk of T 0, if

f 0(Nk ) < f 0(parent0(Nk )) holds for Nk being N k
< , and f 0(Nk ) > f 0(parent0(Nk ))

holds for Nk being N k
> , then the treeT1 constructed from f 0 is equal toT 0.

Proof: Thresholding the reconstructed imagef 0 by Eq (2.4) and Eq (2.7)

yields some shapes which can be also found inT 0. This correspondence is guar-

anteed by the condition 8 N k
< 2 T 0; f 0(N k

< ) < f 0(parent0(N k
< )) and 8 N k

> 2

T 0; f 0(N k
> ) > f 0(parent0(N k

> )) . According to the de�nition of the topographic

map [Monasse 2000b], the inclusion relationship between those shapes yields a

unique tree structure, which is equal toT 0.
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Proposition 8 If the second tree �ltering T T is idempotent and the nature of the

preserved nodes does not change, then the shapingS is idempotent.

Proof: See Proposition7 and the proof of proposition 4.

3.5 Object detection/segmentation

3.5.1 Main idea: local minima correspond to meaningful objects

The tree-based shape space provides a tremendously reduced searching space for

object detection and segmentation, and it is a multi-scale representation. All these

motivate us to perform object detection and segmentation tasks using that space.

The work of Vilaplana [Vilaplana 2008] shortly reviewed in Section2.6.2.6is a such

instance.

Suppose that for a given image, we compute a shape space given by one of the

tree-based image representationsT presented in Section2.3, such that the inter-

esting objects that one would like to detect are represented by some nodes in that

tree T . The question is how to retrieve those interesting objects. Similar with

the �ltering tasks, we could assign an attribute function A o to each node. For the

purpose of object detection/segmentation tasks, the attribute functionA o can be

some measurement that characterizing the importance/meaningfulness of the region

represented by a nodeN , such as the meaningfulness of the boundary@N proposed

in [Cao 2005] by the number of false alarms (NFA), the average of gradient's mag-

nitude along the boundary (see Eq (3.8)), or the compactness. If the underlying

tree is created by means of region merging algorithms (e.g., BPT), the attribute

A o could also be some assessment that show the reluctancy of a merge resulting

that node N . If the form, the color, or the position of the interesting objects to be

detected are are known a priori, the attribute A o can also be some speci�c designed

assessment measuring how much a node �ts the a priori knowledge.

The choice of the tree representation and the design of attribute functionA o

as well as their computation are kind of preparation work, based on which the

decision of objects detection is made. Once these information is available, the object

detection/segmentation task is achieved by objects spotting in the shape space (i.e.,

searching space). The most trivial spotting strategy is to spot the �most likely�

one. It is useful if there is only one interesting object in the image. However, in

most cases, the number of interesting objects is unknown, and is usually more than

one. In this case, one possibility is to �rst of all spot the �most likely� node N �
1

among all the regions in the shape space, then disable all the nodes belonging to

the branches that containsN �
1 (i.e., the descendants of the nodeN �

1 as well as the
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Figure 3.8: Object spotting by repeating the process of selecting the �most likely�

node N �
i and disabling the ancestors and descendants of nodeN �

i . Blue values are

corresponding attribute value A o. The three nodes represented by red circles are

the detected objects, whereN �
1 is �rstly spotted, then N �

2 and N �
3 . Note that the

green nodeN13 is more meaningful thanN11, but it is not spotted.

ancestors ofN1). Then retrieve a second �most likely� nodeN �
2 among the rest

regions in the shape space, and disable again its relative nodes (i.e., its descendants

and its ancestors). This �most likely� node spotting and the descendants as well

as the ancestors disabling process is repeated until all the nodes are disabled. In

consequence, a set of nodesfN �
i ; j i = 1 ; : : : ; ng will be detected, where the number

of detected objects is decided by the algorithm. A such objects spotting process

is depicted in Figure 3.8. This spotting strategy might give interesting results in

some cases, but it ignore the fact that several interesting objects may be present in

a same branch ofT , which means one is included in another. For example the node

N06 and nodeN13 in Figure 3.8.

The notion of �most likely� is usually modeled by the extremum of the attribute

function A o. Following this idea, we propose to spot the local extrema of the

attribute function A 0 as interesting objects. For the sake of simplicity, we propose

to use the local minima, if it is the local maxima of A o which are interesting, then

use 1=A o so that the local maxima become local minima. Using this strategy, the

regions that are represented by nodes in the same branch can be spotted meanwhile.

For instance, in Figure 3.8, the three local minima of attribute function A o in the

shape space are respectivelyN06, N13, and N14, where nodesN06 and N13 are in

the same branch.
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Figure 3.9: (a): Evolution of two attribute functions A o along a branch starting

from a leaf (left side of Axis X) to the root (right side of Axis X). These two at-

tribute functions A o are both based on the meaningfulness of the region boundaries:

snake energy [Kass 1988] is depicted in green, and context-based energy estima-

tor [Xu 2012] (see also Chapter7) is in blue. (b) and (c): the boundaries of two

regions corresponding to signi�cant energy minima in the shape space given by the

topographic map.

3.5.2 Problem: many meaningless local minima

The idea of spotting local minima in the shape space as meaningful objects is in spirit

similar with the principle of MSER discussed in Section2.6.2.1and Section3.3. As

same as the stability function A q of Eq (3.2), there are usually many local minima

of the attribute function A o, two examples of the attribute function A o based on

the meaningfulness of the region boundaries are depicted in Figure3.9. Many of

the local minima correspond actually to meaningless objects (e.g., the local minima

between the two signi�cant minima (b) and (c), as well as the local minima at the

beginning and the end in Figure3.9), some local minima represent some regions

that are very similar, and only a representative one should be detected (e.g., several

local minima around (b) and (c)).

3.5.3 Connected �ltering in shape spaces

It is rather di�cult to design a perfect attribute function A o in the sense that all its

local minima correspond to meaningful objects. Usually an attribute functionA o

having many local minima is obtained, and only those signi�cant minima correspond

to the interesting objects to be spotted. We need to �lter the meaningless local
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Figure 3.10: Tree pruning based connected �ltering applied in the shape space.

The �rst tree-based image representation along with the attribute function A o is

seen as an imagef A o de�ned subordinated to the shape space. The second tree

representation build from the image of attribute f A o is a Min-tree Tm .

minima in the shape space. This could be achieved by applying a connected �lter

to the tree-based shape space seen as a nodes weighted graph. In fact the attribute

function A o can be seen as an image de�ned on the space of shapes given by a tree

representation f A o : N ! R. Then apply a classical tree-based connected �lter on

the imagef A o . The underlying tree of this connected �ltering process is the Min-tree

representationTm , a pruning of this Min-tree is well know as a local minima killer,

then from the pruned Min-tree T 0
m , we can reconstruct a �ltered attribute function

A 0
o of which the minima correspond to the meaningfully interesting objects. Many

meaningless local minima ofA o are thus �ltered. Note that the local minima of

A 0
o are usually �at zones of the shape space, and a �at zone of local minima might

contain several local minima ofA o which correspond to several meaningful objects

being very similar. We propose to select the region having the smallestA o as

the representative one for that �at zone of local minima. An example is given in

Figure 3.11. This connected �ltering process applied in the shape space is depicted

in Figure 3.10, which is equivalent to �rst of all transform a given image f to an

image of attribute function f A o (the preparation work discussed in Section3.5.1),

then followed by a classical tree pruning based connected �lter. This scheme is

equivalent to discard the last image restitution step and change the way of tree

restitution step in the framework of shape-based morphology depicted in Figure3.2.

By augmenting the pruning force, more and more local minima ofA o will be �l-

tered or absorbed by the close local minima having a smaller attribute value (the case

of �at zone of local minima in �ltered attribute function A 0
o). This �ltering force can

be measured by the notion of extinction value (see Section3.2.3and [Vachier 1995])
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Figure 3.11: An example of the object detection scheme by spotting local minima

of an attribute function A o as meaningful objects. The underlying tree represen-

tation is the topographic map, and A o is the context-based energy estimator (see

Chapter 7). Filled circles: local minima; Colorized �lled circles: resistant local min-

ima after connected �ltering in the shape space. Top right: detected meaningful

objects surrounded by the colorized contour and a hierarchy of object detection re-

sult; Bottom: Evolution of attribute A o and �ltered attribute A 0
o along the branch

surrounded by dashed contours in the tree.

de�ned for those local minima. Consequently, a soft object detection result can be

obtained through a hierarchy using the extinction value. This idea will be detailed

in Section 3.6.

An example of such described method for object detection/segmentation is il-

lustrated in Figure 3.11. In this example, the underlying tree representation is the

topographic map. The attribute function A o is the context-based energy estimator

which will be detailed in Chapter 7. The �lled circles represent the local minima

of A o in the topographic map, and the colorized ones correspond to the four mean-

ingful objects in the image whose boundaries are colorized with the corresponding

color in the output result. The local minima represented by the black �lled circles

will be �ltered by the connected �ltering in the shape space. A hierarchy of object

detection represented by a saliency map is also depicted in the output of this object

detection scheme.
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3.6 Transformation of hierarchy

By expanding the idea of the scheme of object detection through the framework of

shape-based morphology, when we increase the �ltering force in the shape space,

the minima disappear one by one, so less and less local minima are spotted as

interesting objects. In this sense, each local minimum has a certain possibility to

be identi�ed as interesting object. This possibility reveals the meaningfulness of

that object represented by a local minimum. As discussed in Section3.2.3 and in

Section3.5.3, this meaningfulness is measured by the extinction value de�ned on the

local minima. But how to represent the extinction values de�ned for those nodes

being local minima in a shape space is not straightforward. In fact, this question

leads to a more general question: how to better visualize and better understand

a tree-based shape space. As discussed in Section2.4.1, a tree-based shape space

ST is an equivalent image representation, it is a multi-scale representation, and

an image is easier to interpret through the tree-based shape spaceST . ST can

be seen as an intermediary level representation. But how can we perceive these

advantages directly in the same way as one observe for example a 2D imagef itself.

An example is depicted in Section9.5 through an e�cient algorithm of disjoint level

lines selection, from a simpli�ed imagef 0 reconstructed from these disjoint level

lines, the main structure of topographic map (i.e., tree structure yielded by all the

level lines presented in image) can be easily perceived. This method can be extended

to other tree representations. But still the attribute function A characterizing some

interesting feature of the regions in the shape spaceST is not considered. Whereas,

the intensity value of each point in the space of image could be easily observed

through the image f itself.

In this section, we will �rst introduce how to better perceive a tree-based shape

space as well as its associated attribute functionA . This is achieved by �rst of all

locating a set of important nodes decided by the attribute function characterizing

some interesting region feature, and by weighting the attribute functionA instead

of the intensity value to a new created image that we call attribute mapM A . From

this attribute map, the most important information carried by the shape space can

be easily perceived. Then we will detail a special case of the attribute map that

represents the extinction value of the local minima of a shape space. It will be shown

that it is in fact a kind of new saliency map which is equivalent to a hierarchy of

image segmentation.
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Figure 3.12: Materialization of the points in a 2D image with 0-faces (blue disks),

1-faces (green strips), and 2-faces (red squares). The original points of the image is

the 2-faces, the boundaries are materialized with 0-faces and 1-faces. The contour

of the purple region is composed of black 1-faces and 0-faces.

3.6.1 Attribute map

We distinguish two types of attribute map depending on weighting the attribute

function A to the regions itself or to the region boundaries. Note that a region

boundary is composed of a set of elements that lie in between points, the elements

are materialized by 1-faces and 0-faces for a 2D image as depicted in Figure3.12.

For instance, the contour of the purple region having three pixels is composed of

the black 1-faces and black 0-faces.

� Attribute map M �
A de�ned on regions

The idea of attribute map M �
A de�ned on regions is to weight the attribute

function A to each point in the space of image. More speci�cally:

1) Initialize the attribute map M �
A with 0, the size ofM �

A is the same as the

original image.

2) For each point p 2 V , �nd the set of connected components of the treeT

that contain this point p, it is a �nite set of regions starting from the �rst

nodeNp including p to the root node of the treeT . M �
A (p) is the attribute of

the representative region among the set of ancestor nodes. The representative

region can be obtained by some means such as, selection the most meaningful

one, or the closest (i.e., lowest) meaningful one.
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Such de�ned attribute map M �
A is useful for better visualize the tree structure

as well as the attribute function. It is also useful in some real applications, such as

the scale map of local scale measure for remote sensing images proposed by Luoet

al. [Luo 2009], where the representative node is selected by the closest meaningful

region subordinated to some criterions, and for instance, if the attribute function

is a learned hierarchical features [Farabet 2013], the representative node could be

selected using their proposed automatic node retrieval technique. The produced

attribute map M �
A can be used for �nal scene labeling in their method.

This attribute map M �
A is somehow similar in spirit with the work of di�erential

are pro�les proposed by Ouzouniset al. [Ouzounis 2012a], where for each pointp, a

vector representing the di�erential area along the set of regions fromNp to the root

is used instead of a scalar value being the attribute of some selected node.

� Attribute map M �
A de�ned on boundaries

The attribute map M �
A de�ned on boundaries is to weight the attribute function

A to each 1-face and 0-face composing the region boundaries. More precisely:

1) Initialize the attribute map M �
A with 0, note that the size of M �

A is doubled

compared with the original imagef .

2) For each 1-facee 2 E (an element lying in between a pair of neighboring

points (x, y)) in the image, �nd the set of connected components on the tree

T whose boundary containse. Note that the set of connected components

are represented by one (or two) set(s) of successive nodes starting respectively

from the �rst node Nx , Ny that contains respectivelyx, y. if Nx \N y 6= ; , then

either Nx � N y or Ny � N x . Suppose that the former inclusion holds. Then

the set of nodes arefN x ; : : : ; Ny(not included)g. Whereas if Nx \ N y = ; ,

in such a case, letNa be the lowest common ancestor ofNx and Ny . Then

Na is also the �rst node such that x 2 N a and y 2 N a. The set of nodes are

fN x ; : : : ; Na(not included)g [ fN y ; : : : ; Na(not included)g. Note also that the

set of connected components might be empty in the case ofNx = Ny . M �
A (e)

is decided by the smallest attributeA m (suppose that smaller attribute A(N )

is, the region represented byN is more meaningful) of the set of connected

components. ThenM �
A (e) is given by the reverse ofA m , such asM �

A (e) =

1=A m . Besides, ifNx = Ny which implies that the set of regions is empty,

then M �
A (e) = 0 .

3) For each 0-faceo in the image, M �
A (o) = maxfM �

A (e) j o is neighboring to eg.
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The attribute map M �
A de�ned on the region boundaries is inspired from the

saliency map [Najman 1996] obtained by stacking a family of hierarchical contours.

In fact, an attribute map M �
A represents a hierarchy of segmentation, each threshold

of M �
A gives a partition of the image. Compared with the attribute map M �

A de�ned

on the regions, it is more adapted to handle the nested meaningful regions thanks

to the following property:

N1 � N 2 ; @N1 � @N2; (3.9)

in fact, if N1 � N 2, the boundaries of their represented regions@N1 and @N2 can

be totally disjoint.

The attribute map M �
A de�ned on region boundaries either transforms a mor-

phological tree (i.e., Min-tree, Max-tree, or topographic map) to a hierarchy of

segmentation, or transforms a hierarchy of segmentation to another one. They are

both guided by the attribute function A which is computed on a set of multi-scale

regions that are not too local. Which might be more interesting than the initial one.

However, as depicted in Figure3.7 and Figure 3.9, around the meaningful nodes,

many close nodes are also relative meaningful, so there are lots of close bound-

aries having similar meaningfulness in the attribute mapM �
A , which make the real

meaningful ones not so visible. This e�ect will be illustrated in Chapter 5.

3.6.2 Saliency map using extinction value

In order to enhance the visibility of the meaningful regions, we propose a variant of

the attribute map de�ned on region boundaries: the saliency map using extinction

values (see Section3.2.3) M E. Recall that the extinction value E is de�ned on the

local minima, for a given minimum mi of an attribute function A in the shape space,

E(mi ) is de�ned as the maximal morphological �ltering force for which mi is still a

local minimum (the representative one in the case of a �at zone of local minima) of

the �ltered attribute function A 0. In fact, this saliency map using extinction value

is inspired from the scheme of object detection, for which the basic idea is that

the meaningful objects in the image correspond to local minima of some attribute

function A o characterizing the meaningfulness of each node. Consequently, we can

discard the nodes which are not local minima ofA o in the shape space, because

the important information is carried by the local minimal nodes. Moreover, the

importance of those local minima can be measured by their extinction valuesE. The

saliency map based on the extinction valueM E is de�ned by weight the extinction

value E instead of the attribute function A to region boundaries. More precisely,M E

is obtained by changing the step 2) in the scheme of attribute mapM �
A computation:
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Figure 3.13: An example of hierarchy transformation through the saliency map using

extinction value M E. (a) Original image; (b) Original hierarchy H , blue numbers

are the attribute values; (c) Saliency map using extinction valueM E, the boundary

of region A[ B is weighted with 9, greater than the weight (being 6) of boundary of

C, they are given by respectively the extinction value of the minimum A[ B and of

the minimum D; (d) Dendrogram of M E, and a cut of this dendrogram is given by

the red dashed line.

2) The value for each elemente of the saliency map using extinction valueM E(e)

is given by the maximal extinction value of the minima among the set(s) of

nodes representing the set(s) of nested components havinge as an element

of its boundary. Certainly, if there is no minimum among the set of nodes,

M E(e) = 0 .

Each threshold of this map M E represents an object detection/segmentation

result. This saliency map using extinction valueM E represents a hierarchy of seg-

mentation computed from a tree-based shape space given by either a morphological

tree (i.e., Min-tree, Max-tree or topographic map) or a hierarchy of segmentation.

The computation is guided by the attribute function A . Note that a segmentation

given by a cut of M E might be di�erent from any cut of the original shape space

ST . For instance, in Figure 3.13, the region C merge with the union of regions A

and region B in the original hierarchy H depicted in Figure 3.13 (b), the union of

region C and region D will never be a single region of a partition given by any cut of

the original hierarchy H . However, the union of region C and region D is a possible

single region of a partition given by thresholding the saliency map using extinction

value M E as depicted in Figure3.13 (c). Indeed, the partition given by the cut of

M E depicted in Figure 3.13 is composed by two regions: region A[ B and region

C[ D.

Some applications of the saliency map using extinction value will be depicted in

Chapter 5 and Chapter 8.
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3.7 Conclusion

In this chapter, we have presented the main proposition in this thesis: the con-

cept of shape-based morphology framework. It is a versatile framework that deals

with region-based image representations. Such representations are used in a large

number of applications. Our framework is inspired from the connected operators.

We propose to apply them on the tree-based shape space underlying any tree-based

image representation. The framework of shape-based morphology makes use of the

complete tree structure, i.e., the inclusion relationship between neighboring regions

present in the tree. Such information can be seen as a regional context whose shape

is adapted to the image contents. That helps to take a more robust �ltering deci-

sion. We have shown that this framework is more general than the classical existing

methods. It can be used for three types of processing tasks. 1) For shape �lter-

ing, we have shown that it encompasses the classical pruning- and threshold-based

strategies. Two novel classes of connected operators are introduced. Namely the

shape-based lower/upper levelings, and the shapings. 2) This framework can be ap-

plied to object detection/segmentation, and a soft object detection/segmentation is

obtained via a saliency map representation with no additional cost. 3) We have also

shown that this framework is useful to compute a saliency map representing a hi-

erarchical image segmentation from any tree-based image representation. All these

aspects demonstrate the high potential of the proposed framework of shape-based

morphology.
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Applications





Chapter 4

Tree-Based Morse Regions

(TBMR)

This chapter introduces a topological approach to local invariant feature detection

motivated by Morse theory. We use the critical points of the graph of the intensity

image, revealing directly the topology information as initial �interest� points, and

then associate to each point a local patch selected from the shape space. The

critical points coincide with the leaves and nodes having bifurcation on the Max-

tree and Min-tree. For each critical point, we �nally extract the largest region that

contains it and is topologically equivalent in its tree. We call such regions the Tree-

Based Morse Regions (TBMR). They can be seen as a variant of MSER, which

are contrasted regions. TBMR relies only on topological information and hence

extracts the regions independently of the contrast, which makes it truly contrast

invariant and quasi parameters free. TBMR extraction is fast, having the same

complexity as MSER. Experimentally, TBMR achieves a repeatability on par with

state-of-the-art methods, but obtains a signi�cantly higher number of features. Its

accuracy and robustness are demonstrated by applications to image registration and

3D reconstruction.

4.1 Introduction

Local invariant feature detection [Matas 2002, Tuytelaars 2004, Lindeberg 1998,

Lowe 2004, Schmid 2000, Mikolajczyk 2005, Moreels 2007, Aanæs 2012] is an im-

portant step in a number of applications such as wide baseline matching, object and

image retrieval, tracking, recognition, image registration and 3D reconstruction.

The classical process to obtain the features consists in detecting a speci�c class of

interest points, such as corners, together with an associated scale generally obtained

from a scale-space. Typical examples of such key locations are the local extrema

of the result of di�erence of Gaussians (DoG) applied in scale-space to a series of

smoothed and resampled images. Several crucial invariance properties are required

for using such points in applications, such as invariance to image translation, scaling,

and rotation, to illumination changes or to local geometric distortion.
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(a) Four among 76 used multi-view images.

(b) Incomplete reconstructed 3D facades using DoG.

(c) The four facades of the 3D reconstruction using TBMR.

Figure 4.1: An example of 3D reconstruction using local invariant features. Top:

4 among 76 used multi-view images. Four facades of the PMVS [Furukawa 2010]

densi�ed sparse 3D reconstruction from the SfM pipeline [Moulon 2012] using DoG

(middle: almost no points on the front roof, and the back facade of the building is

missing.) and the proposed TBMR (down: the whole tour is reconstructed ).
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In this Chapter, we propose a topological approach to extract the local invariant

features. We �rst extract some initial �critical� points, based on ideas from the

Morse theory [Milnor 1963]: minima, maxima and saddle points. More precisely,

following [Caselles 2009], we propose to choose critical nodes in the two trees (called

Min-tree and Max-tree [Salembier 1998]) made by the connected components of

lower and upper level sets: those critical nodes are the leaves and the nodes having

several children. For each critical node a scale is selected. Instead of using a scale-

space, the scale comes from the tree-based shape space: we associate to a critical

nodeNc the largest region containing it and topologically equivalent in its tree. We

call our method Tree-Based Morse Regions (TBMR).

TBMR has several main advantages: as it uses only topological information, it is

independent on the image contrast. It is also covariant to continuous (topological)

transformations such as translation, scaling or rotation. As demonstrated in this

Chapter, it is also robust to local geometric distortion. Furthermore, it is essentially

parameter-free: only two non-signi�cant parameters are applied, so that we ignore

regions that are either too small or too large. And last, but not the least, e�-

cient algorithms with a quasi-linear or a linear complexity are available to compute

it [ Salembier 1998, Najman 2006, Nistér 2008].

In Section 4.4.1, some qualitative results compared with other state-of-the-art

methods will be illustrated to show the better distribution of TBMR. Quantita-

tive evaluation, based on the image coverage measurement in Section4.4.2, con-

�rms the qualitative evaluation. Tests in Section 4.4.3 demonstrate that TBMR

achieves repeatability score comparable to other state-of-the-art methods with a

signi�cantly higher number of correspondences. We evaluate TBMR on two ap-

plications in which many matched features are required: image registration (Sec-

tion 4.4.4) and 3D reconstruction (Section4.4.5). For these two applications, and

as illustrated in Figure 4.1, results attest that TBMR improves over the commonly

used DoG [Lowe 1999].

4.2 Related work

We focus on two detector classes, those based on scale-space and those based on

MSER. For a complete review of invariant feature detectors, the interested reader

is referred to Tuytelaars and Mikolajczyk's survey [Tuytelaars 2008].

4.2.1 TBMR versus scale-space feature detection

There exists a variety of local invariant feature detectors having relatively

good performance, as assessed by several evaluation frameworks [Schmid 2000,
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Mikolajczyk 2005, Moreels 2007, Aanæs 2012]. The �rst type is based on scale-

space. Harris corners, Hessian based detectors and the Di�erence of Gaussians

(DoG) are such instances. The Harris corner detector [Harris 1988] �nds the extrema

of a corner measure based on the second moment matrix at some �xed scale. A scale-

adapted Harris corner detector and its extension Harris-Laplace [Mikolajczyk 2004]

with scale selection �nd extrema of the Laplacian of Gaussian (LoG) �lter. The Hes-

sian detector [Lindeberg 1998] extracts the extrema of a feature measure based on

the Hessian matrix. Its extension Hessian-Laplace [Mikolajczyk 2004] uses the same

scale selection as Harris-Laplace. The a�ne versions of both Harris and Hessian are

based on the a�ne shape estimation using the second moment matrix. Harris based

detectors tend to extract corner-like structures, while Hessian based detectors tend

to �nd blobs and ridges. DoG [Lowe 1999] is similar to the Hessian detector in the

sense that it approximates LoG by the trace of the Hessian matrix. DoG tends to

extract points at isotropic blob structures.

In spirit, TMBR is very similar to these kinds of approaches. TBMR detects

critical points (i.e., extrema and saddle points), but it does not rely on a scale-space.

As described in section4.3, it uses the shape space given by the Min-tree and Max-

tree representations, as discussed in Section2.4, this space having the main property

of scale-space, namely the causality principle [Koenderink 1984].

4.2.2 TBMR versus MSER

As discussed in Section3.3, although its original de�nition is quite di�erent, the

Maximally Stable Extremal Regions (MSER) [Matas 2002] is easily understand-

able using Min-tree and Max-Tree. As shown in [Donoser 2006] and Section 3.3,

MSER extracts the regions (nodes) that correspond to local minima of a stability

function along the path to the root of the tree. The stability function of a given

node is given by the di�erence between the area of some (grand-)parent and some

(grand-)child, divided by the area of the node itself. It is de�ned by Eq (3.2) It

is reported [Mikolajczyk 2005] that MSER achieves state-of-the-art repeatabilities

and regions accuracies. It is also very e�cient. However, the number of detected

features are comparatively small which limits its ability for some applications like

image registration and 3D reconstruction. Perdoch et al. [Perdoch 2007] propose

the Stable A�ne Frame (SAF) for which only local stability is required. Many more

features are obtained with a comparable repeatability score. However, it is much

slower than MSER.

TBMR can be seen as a variant of MSER, both relying on Min/Max-tree rep-

resentations. The most fundamental di�erence is related to illumination change,

a very common e�ect in natural images that is reported as an unsolved problem



4.3. TBMR extraction 95

in the literature [ Aanæs 2012]. Indeed, the MSER stability function depends on a

parameter � that �xes the intensity level di�erence of the (grand-)parent and of the

(grand-)child actually used for the ratio. That prevents a true invariance of MSER

to illumination change. By contrast, TBMR, being purely topological, is truly in-

variant to a�ne illumination change. A less fundamental di�erence concerns the

number of parameters of MSER. As TBMR, MSER uses two parameters to remove

too large and too small regions. But MSER also requires in the stability function,

on top of the parameter � we just described, a threshold to remove unstable re-

gions, and another parameter to group together detected regions that are similar

in terms of position and size. Such parameters are not needed in TBMR. A last

minor di�erence deals with the de�nition of MSER. Indeed, the stability function is

not clearly de�ned in the presence of bifurcations, i.e. when a node has more than

one child. That raises a di�culty in trying to reproduce some results: for example,

there exist two public implementations of MSER, one from VLFeat [Vedaldi 2008],

the other from OpenCV, each one of them using a similar but di�erent stability

function. The topological de�nition of TBMR allows for a perfect reproducibility,

whatever the chosen algorithm implementation.

4.3 TBMR extraction

In this section, we describe our proposed topology-based local invariant features

detector called theTree-Based Morse Regions (TBMR). The TBMRs are extracted

from the shape space built from the image by the Max-treeTM and Min-tree Tm .

In Section 4.3.1, we will show how to extract those �interest� regions from the shape

space based on Morse theory [Milnor 1963].

4.3.1 Feature extraction based on Morse theory and shape space

Properties of the tree-based image representation make the shape space (see Sec-

tion 2.4) very appropriate for local invariant features detection. MSER extracts the

�stable� regions using a stability function. Doing so, it does not preserve properties

such as the contrast invariance. In order to preserve all the invariance of the tree,

we propose a topological approach that detects �interest� regions based on Morse

theory [Milnor 1963]. Recall that a Morse function is a smooth functionf whose

critical points (i.e., points where r f = 0 ) are isolated. Critical points are minima,

maxima and saddle points off . The topology of f is directly linked to the analysis

of those critical points. However, the Morse function is not an adequate model for

an image, as it prevents the existence of plateaux for example. A consequence is

that we will deal with regional extrema and saddle points with regional extrema and
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Figure 4.2: A synthetic image and the corresponding Min-tree (middle) and Max-

tree (right) representation. The critical nodes are represented by red circles: (1)

nodes having more than one child, and (2) leave-nodes. The �lled nodes are the

TBMRs.

saddleregions instead of isolated points.

The use of Morse theory is not new in computer vision: see, for example,

the contour tree [Kweon 1994, Van Kreveld 1997] and the Reeb graph [Reeb 1946,

Takahashi 1995] for shape matching. Here, we use the Max- and Min-trees to lo-

cate the critical points. To do that, we rely on the following property, that can be

deduced from Caselles and Monasse [Caselles 2009, Chapter 4]:

Proposition 9 The critical points of a Morse function are the extrema off , cor-

responding to the leaves of the Max-treeTM and of the Min-tree Tm of f , and the

saddle points off , corresponding to nodes of these trees with several children.

We thus call critical nodes the leaves and the nodes ofTM and Tm with more than

one child. Having critical nodes rather than critical points allows us to deal with

any function, even if it is not a Morse one. In Fig.4.2, critical nodes are highlighted

with a red circle.

The next stage is to associate a scale to each critical node. A critical node

corresponds to a change of topology in its tree: either an apparition (leaves corre-

sponding to extrema) or a merge (nodes with several children). Thus, on a branch

of the tree between two critical nodes, there is no topological change in the tree.

In other words, a node that is not critical is topologically equivalent to the �rst

critical node we encounter going from the node to the leaves of the tree. Conversely,

and as a node corresponds to a region of the image, a critical region/nodeNc is

topologically equivalent to any region/node that contains Nc but no other disjoint

critical region/node. A good �scale� choice for representing a critical region/node is

thus the largest region/node to which it is topologically equivalent. We call such a

region a Tree-based Morse Region(TBMR). A reason to take the largest topologi-
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Figure 4.3: An example of TBMR extraction. Left: Front view (top) and 30�

view (down) of �Gra�ti� scene [ Mikolajczyk 2005]. Middle: Evolution of number

of children starting from a leaf to the root and some extracted TBMRs along the

branch; Right: �rst TBMR containing the TBMRs illustrated in middle column

(though they are actually too large).

cally equivalent node in the tree is that we want as much context as reasonable to

encode the region.

In practice, we do not consider TBMRs that are either too small or too big. This

small regions discarding is performed before analyzing the tree structure, which

means the small regions do not contribute to the topological changes of the tree

structure. Discarding them eliminates also some noise without modifying other

components. Also, regions that meet the image border are considered truncated

and we ignore them. In Fig.4.2, TBMRs are drawn with a red disk. The evolution

of the number of children of a node, starting from a leaf to the root is illustrated in

Figure 4.3.

As in most shape-space based methods, we compute the centroids of the selected

regions as the �nal feature points. The ellipse with the same �rst and second mo-

ments as the detected region is then used as the local patch upon which a descriptor

is computed.

4.4 Results

Qualitative and quantitative comparison of the distribution of TBMR with other

popular local feature detectors are illustrated in Section4.4.1 and Section4.4.2. In
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section4.4.3, the repeatability assessment of the TBMR is evaluated using the frame-

work of Mikolajczyk et al. [Mikolajczyk 2005]. Two applications using local invariant

features are presented in sections4.4.4 and 4.4.5 to compare the TBMR with other

widely used detectors. The application to image registration in Section4.4.4 high-

lights the accuracy and the robustness of the TBMR. The experiments are conducted

on the Stanford Mobile Visual Search (SMVS) Data Set [Chandrasekhar 2011]. In

Section 4.4.5, the application to 3D reconstruction using structure from motion is

�rst tested on the dataset of Strecha et al. [Strecha 2008], providing the ground

truth of the camera positions. The baseline error and angular error measurements

reveal the accuracy of the TBMR. Then the 3D reconstruction experiments are

conducted on some real images taken in a sunny day around some structure. The

structure from motion succeeds in reconstructing a complete 3D model using the

TBMR, whereas only part of the scenes are reconstructed for the 3D model by using

other detectors. In all experiments, the parameters of the corresponding method

are set with the recommended values.

4.4.1 Qualitative features comparison

We �rst compare the TBMR with the state-of-the-art local feature detectors by

visualize the distribution of the keypoints obtained with each method. The methods

that we tested are Harris-A�ne, Hessian-A�ne, DoG, DoG octave-1, MSER. For

the shape-space based methods: MSER and TBMR, the centroid of the extracted

regions is considered as the detected keypoints. The qualitative comparison are

conducted on two images taken against the sunlight in a sunny day. The distribution

of the keypoints extracted with di�erent methods on the two tested images are

illustrated respectively in Figure 4.4 and in Figure 4.5. From these two �gures,

the same assessment is observed: MSER detects few points, which explicates the

failure of a 3D reconstruction using MSER in the example shown in Figure4.1;

Harris-A�ne, Hessian-A�ne, and DoG all extract a reasonable number of points,

but few points on the real object of the scene, which make them fail to reconstruct

the 3D structure correctly in Figure 4.1. By using the option octave-1 for DoG, a

signi�cantly higher number of points than DoG without this option are detected,

but the additional points are mostly distributed where there were already many

points, not on the real object. However, the proposed TBMR has a reasonable

number of keypoints, and they are distributed more uniformly over the image, which

contributes the main reason of its success of having a correct 3D reconstruction in

Figure 4.1.
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(a) (a) Harris-A�ne. (b) (b) Hessian-A�ne.

(c) (c) DoG. (d) (d) DoG octave-1.

(e) MSER. (f) TBMR.

Figure 4.4: Qualitative comparison of TBMR with other widely used local feature

detectors applied on an image taken against the sunlight (used in Figure4.1). Yellow

points in the image are the detected keypoints.
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(a) (a) Harris-A�ne. (b) (b) Hessian-A�ne.

(c) (c) DoG. (d) (d) DoG octave-1.

(e) MSER. (f) TBMR.

Figure 4.5: Qualitative comparison of TBMR with other widely used local feature

detectors applied on an image taken against the sunlight. Yellow points in the image

are the detected keypoints.
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4.4.2 Image coverage evaluation

In order to assess the uniformity of those keypoint distributions obtained with dif-

ferent methods, we �rst measure the distribution of keypoints along the two image

dimensions, as well as the number of extracted points for a set of images taken

around some scene objects. In Fig.4.6, we show the distribution of keypoints posi-

tion along the horizontal dimension for the images taken around the objects of scene

presented respectively in Fig.4.5, Fig. 4.17, and Fig. 4.18. These images are taken to

make the object of interest presented in the middle (horizontally) of the scene. The

distributions shown in Fig. 4.6 are smoothed by taking the average inside a horizon-

tal window (size is set to 21). As shown in this �gure, MSER extracts few points;

TBMR has a number of points comparable with Harris-A�ne, Hessian-A�ne, and

DoG without option octave � 1; DoG with the option octave � 1 has many more

points. However, TBMR has the largest part of keypoints that cover the objects of

interest in those scenes, which contributes to its success in Fig.4.17 and 4.18.

We also evaluate how well the keypoints cover the image. First, we propose to

dilate the extracted keypoints by a 2D window centered at each point with a certain

size (e.g., 31). Then we compute the rate of area covered by the dilated region.

Note that for two close keypoints, their dilated regions may have a large part in

common, but the common regions count only once. As shown in Fig.4.7, MSER

covers a small part of the image because of a few extracted points. TBMR covers

the image better than the others having a comparable or much larger number of

detected points, which con�rms the qualitative observation in Section4.4.1.

4.4.3 Repeatability evaluation

To assess the performance of the proposed TBMR, we compare it with other a�ne

detectors: Harris-A�ne and Hessian-A�ne, de�ned on the scale-space, and MSER,

de�ned on the shape space.

We repeat the tests of Mikolajczyk et al. [Mikolajczyk 2005]. They evaluate the

repeatability scorebased on theoverlap error " :

" (RE1 ; RE2 ) = 1 �
RE1 \ RH T

21 E2H 21

RE1 [ RH T
21 E2H 21

; (4.1)

where RE represents the elliptic region (i.e., local patch of each extracted feature)

de�ned by xT Ex � 1, and H21 is the ground truth homography between the test

and reference image. The repeatability score for a pair of images is then de�ned

as the ratio between the number of region-to-region correspondences established

under a certain overlap error (e.g., 40%) and the smaller number of regions in

the compared images. Another evaluated measurement is the absolute number of
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Figure 4.6: Horizontal distribution of the keypoints (left) and number of extracted

keypoints (right), for the multi-view images taken around the objects of scene pre-

sented in respectively Fig.4.5, Fig. 4.17, and Fig. 4.18 (top to bottom).
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correspondences. A high repeatability score and a large number of correspondences

are normally desired.

Some results applied to the sequencesWall (viewpoint change), Bark (scale

change), Trees (blur), Leuven (light change) [Mikolajczyk 2005] are illustrated in

Figure 4.8. Compared to the scale-space based approaches (i.e., Harris-A�ne and

Hessian-A�ne), the TBMR achieves a competitive repeatability score and a signif-

icantly higher number of correspondences, except for the blur sequenceTrees. The

explanation is that the topology of the image is damaged by the blur. For the same

reason, the performance is poor on UBC sequence (not shown here), testing robust-

ness to strong JPEG compression artifacts. Such defects (blur, JPEG artifacts) are

better handled by the scale-space methods. Compared with the MSER which is also

based on the shape space, the TBMR has a comparable repeatability score, but a

signi�cantly higher number of correspondences thanks to the contrast independent

property of TBMR.

Experiments on other datasets (such as the dataset of DTU) that contains more

images will be added.

4.4.4 Image registration

Image registration methods use the local features to establish a correspondence

between a number of interest points (e.g., the centroids of the detected elliptical

regions) in images. These one-to-one correspondences are then used to estimate
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Figure 4.8: Repeatability score (left) and number of correspondences (right) for the

sequencesWall, Bark, Trees, Leuven (top to down).
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