A. Figure, Estimation of ?, ? 2 and ? 2 using the averaged online EM algorithm (left) and the averaged BOEM (right), after n = {1000, 10k, 50k, 100k} observations. The true value of ? is 0

B. Bibliographieadamczak, R. Adamczak, and W. Et-bednorz, Exponential concentration inequalities for additive functionals of markov chains, 2012.

A. , F. Adams, R. Et-fournier, and J. , Sobolev Spaces, de Pure and Applied Mathematics, 2003.

. Bailey, Consistency of the EKF-SLAM Algorithm, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3562-3568, 2006.
DOI : 10.1109/IROS.2006.281644

. Baum, . Petrie, L. E. Baum, and T. P. Et-petrie, Statistical Inference for Probabilistic Functions of Finite State Markov Chains, The Annals of Mathematical Statistics, vol.37, issue.6, pp.1554-1563, 1966.
DOI : 10.1214/aoms/1177699147

M. Benaim, Dynamics of stochastic approximation algorithms, pp.1-68, 1999.
DOI : 10.1007/978-1-4757-1947-5

. Bickel, Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models, The Annals of Statistics, vol.26, issue.4, pp.1614-1635, 1998.
DOI : 10.1214/aos/1024691255

P. Billingsley, Probability and Measure, 1995.

. Briers, Smoothing algorithms for state???space models, Annals of the Institute of Statistical Mathematics, vol.4, issue.4, pp.61-89, 2010.
DOI : 10.1007/s10463-009-0236-2

. Bröcker, . Lander, T. Bröcker, and L. Et-lander, Differentiable Germs and Catastrophes Lecture Note Series, 1975.

. Burgard, Probabilistic robotics, 2005.

O. Cappé, Recursive computation of smoothed functionals of hidden Markovian processes using a particle approximation, Monte Carlo Methods and Applications, vol.7, issue.1-2, 2001.
DOI : 10.1515/mcma.2001.7.1-2.81

O. Cappé, Online sequential Monte Carlo EM algorithm, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, 2009.
DOI : 10.1109/SSP.2009.5278646

O. Cappé, Online EM Algorithm for Hidden Markov Models, Journal of Computational and Graphical Statistics, vol.20, issue.3, pp.728-749, 2011.
DOI : 10.1198/jcgs.2011.09109

O. K. Cappé, M. Titterington, and C. Et-robert, Online Expectation Maximization, 2011.

O. Cappé and E. Et-moulines, Online Expectation-Maximization algorithm for latent data models, J. Roy. Statist . Soc. B, issue.3, pp.71593-613, 2009.

. Cappé, Inference in Hidden Markov Models, 2005.

C. , H. Carroll, R. Hall, and P. , Optimal rates of convergence for deconvolving a density, J. Amer. Statist. Assoc, pp.1184-1186, 1988.

C. , S. Carroll, R. Et-stefanski, and L. , Deconvolving kernel density estimators, Statistics, vol.21, pp.169-184, 1990.

G. Churchill, Hidden Markov chains and the analysis of genome structure, Computers & Chemistry, vol.16, issue.2, pp.107-115, 1992.
DOI : 10.1016/0097-8485(92)80037-Z

. Comte, Penalized contrast estimator for adaptive density deconvolution, Canadian Journal of Statistics, vol.18, issue.3, pp.431-452, 2006.
DOI : 10.1002/cjs.5550340305

URL : https://hal.archives-ouvertes.fr/hal-00016489

C. Et-taupin-]-comte, F. Et-taupin, and M. , Nonparametric estimation of the regression function in an errors-in-variables model, Statistica sinica, vol.17, issue.3, pp.1065-1090, 2007.

J. Davidson, Stochastic Limit Theory : An Introduction for Econometricians, 1994.
DOI : 10.1093/0198774036.001.0001

D. Moral and P. , Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Applications, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00410165

D. Moral, P. Doucet, and A. , On a Class of Genealogical and Interacting Metropolis Models, Seminaire de Probabilites XXXVII, Lecture notes in Math, pp.415-446, 2003.
DOI : 10.1007/978-3-540-40004-2_19

D. Moral, A backward particle interpretation of Feynman-Kac formulae, ESAIM: Mathematical Modelling and Numerical Analysis, vol.44, issue.5, pp.947-975, 2010.
DOI : 10.1051/m2an/2010048

URL : https://hal.archives-ouvertes.fr/inria-00410165

D. Moral, Forward smoothing using sequential Monte Carlo, 2010.

D. Moral, On contraction properties of Markov kernels, Probability Theory and Related Fields, vol.126, issue.3, pp.395-420, 2003.
DOI : 10.1007/s00440-003-0270-6

. Delyon, Convergence of a stochastic approximation version of the EM algorithm, Ann. Statist, vol.27, issue.1, 1999.

. Dempster, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. B, vol.39, issue.1, pp.1-38, 1977.

. Douc, Sequential Monte Carlo smoothing for general state space hidden Markov models, The Annals of Applied Probability, vol.21, issue.6, pp.2109-2145, 2011.
DOI : 10.1214/10-AAP735

URL : https://hal.archives-ouvertes.fr/hal-00839311

R. Douc and E. Et-moulines, Asymptotic properties of the maximum likelihood estimation in misspecified hidden Markov models, The Annals of Statistics, vol.40, issue.5, 2012.
DOI : 10.1214/12-AOS1047

URL : https://hal.archives-ouvertes.fr/hal-00832818

. Douc, Consistency of the maximum likelihood estimator for general hidden Markov models, The Annals of Statistics, vol.39, issue.1, pp.474-513, 2011.
DOI : 10.1214/10-AOS834

URL : https://hal.archives-ouvertes.fr/hal-00633451

. Douc, Quantitative bounds for geometric convergence rates of Markov chains, 2004.

. Doucet, Sequential Monte Carlo Methods in Practice, 2001.
DOI : 10.1007/978-1-4757-3437-9

. Doucet, On sequential Monte-Carlo sampling methods for Bayesian filtering, Statistics and Computing, vol.10, issue.3, pp.197-208, 2000.
DOI : 10.1023/A:1008935410038

G. Fort and E. Et-moulines, Convergence of the Monte Carlo Expectation Maximization for curved exponential families, Ann. Statist, vol.31, issue.4, pp.1220-1259, 2003.

H. T. Friis, Noise Figures of Radio Receivers, Proc. IRE, pp.419-423, 1946.
DOI : 10.1109/JRPROC.1944.232049

. Gorce, Deterministic Approach for Fast Simulations of Indoor Radio Wave Propagation, IEEE Transactions on Antennas and Propagation, vol.55, issue.3, 2007.
DOI : 10.1109/TAP.2007.891811

URL : https://hal.archives-ouvertes.fr/inria-00404836

. Gordon, Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proc. F, Radar Signal Process, pp.107-113, 1993.
DOI : 10.1049/ip-f-2.1993.0015

. Hall, P. Hall, and C. C. Et-heyde, Martingale Limit Theory and its Application, 1980.

. Hull, . White, J. Hull, and A. Et-white, The Pricing of Options on Assets with Stochastic Volatilities, The Journal of Finance, vol.40, issue.2, pp.281-300, 1987.
DOI : 10.1111/j.1540-6261.1987.tb02568.x

. Hürzeler, . Künsch, M. Hürzeler, and H. R. Et-künsch, Monte Carlo approximations for general state-space models, J. Comput. Graph. Statist, vol.7, pp.175-193, 1998.

J. Et-rabiner-]-juang, B. Et-rabiner, and L. , Hidden Markov Models for Speech Recognition, Technometrics, vol.50, issue.4, pp.251-272, 1991.
DOI : 10.1007/978-3-642-66286-7

S. Julier and J. Et-uhlmann, A counter example to the theory of simultaneous localization and map building, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), 2001.
DOI : 10.1109/ROBOT.2001.933280

K. Et-bucy-]-kalman, R. E. Et-bucy, and R. , New Results in Linear Filtering and Prediction Theory, Journal of Basic Engineering, vol.83, issue.1, pp.95-108, 1961.
DOI : 10.1115/1.3658902

G. Kitagawa, Monte-Carlo filter and smoother for non-Gaussian nonlinear state space models, J. Comput. Graph. Statist, vol.1, pp.1-25, 1996.

. Kitagawa, . Sato, G. Kitagawa, and S. Sato, Monte carlo smoothing and self-organizing state-space model ´ editeurs : Sequential Monte Carlo methods in Practice, 2001.

K. Et-yin-]-kushner, H. J. Et-yin, and G. G. , Stochastic Approximation Algorithms and Applications, 1997.

H. J. Kushner and G. G. Et-yin, Stochastic Approximation and recursive Algorithms and Applications, 2003.

C. Lacour, Adaptive estimation of the transition density of a particular hidden Markov chain, Journal of Multivariate Analysis, vol.99, issue.5, pp.787-814, 2008.
DOI : 10.1016/j.jmva.2007.04.006

URL : https://hal.archives-ouvertes.fr/hal-00115612

C. Lacour, Nonparametric estimation of the stationary density and the transition density of a Markov chain, Stochastic Processes and their Applications, pp.232-260, 2008.
DOI : 10.1016/j.spa.2007.04.013

URL : https://hal.archives-ouvertes.fr/hal-01139399

S. Laruelle, Analyse d'Algorithmes Stochastiques AppliquésAppliquésà la Finance, Thèse de doctorat, 2011.

S. Laruelle and G. Et-pagès, Stochastic approximation with averaging innovation applied to Finance, Monte Carlo Methods and Applications, vol.18, issue.1, pp.1-52, 2012.
DOI : 10.1515/mcma-2011-0018

URL : https://hal.archives-ouvertes.fr/hal-00504644

L. Corff, L. Fort, S. Corff, and G. Et-fort, Convergence of a Particle-Based Approximation of the Block Online Expectation Maximization Algorithm, ACM Transactions on Modeling and Computer Simulation, vol.23, issue.1, 2011.
DOI : 10.1145/2414416.2414418

URL : https://hal.archives-ouvertes.fr/hal-00638388

L. Corff, L. Fort, S. Corff, and G. Et-fort, Online Expectation Maximization based algorithms for inference in Hidden Markov Models, Electronic Journal of Statistics, vol.7, issue.0, 2011.
DOI : 10.1214/13-EJS789SUPP

URL : https://hal.archives-ouvertes.fr/hal-00615615

[. Corff, Block online EM for hidden Markov models with general state-space, 14th Applied Stochastic Models and Data Analysis International Confe- rence, 2011.

[. Corff, New Online EM Algorithms for General Hidden Markov Models. Application to the SLAM Problem, 10th international conference, 2012.
DOI : 10.1007/978-3-642-28551-6_17

G. Le, F. Le-gland, and L. Et-mevel, Recursive estimation in HMMs, Proc. IEEE Conf. Decis. Control, pp.3468-3473, 1997.

J. Lee, Introduction to Topological Manifolds. Graduate Texts in Mathematics, 2000.

B. G. Leroux, Maximum-likelihood estimation for hidden Markov models, Stochastic Processes and their Applications, vol.40, issue.1, pp.127-143, 1992.
DOI : 10.1016/0304-4149(92)90141-C

. Mamon, R. Elliott-]-mamon, and R. Elliott, Hidden Markov Models in Finance, de International Series in Operations Research & Management Science, 2007.

R. Martinez-cantin-martinez-cantin, Active Map Learning for Robots : Insights into Statistical Consistency, Thèse de doctorat, 2008.

. Massart, . Picard, P. Massart, and J. Et-picard, Concentration inequalities and model selection : Ecole d'Eté de Probabilités de Saint- Flour XXXIII -2003, 2007.

M. Et-tweedie-]-meyn, S. P. Et-tweedie, and R. L. , Markov Chains and Stochastic Stability, 1993.

M. Et-denève-]-mongillo, G. Et-denève, and S. , Online Learning with Hidden Markov Models, Neural Computation, vol.20, issue.7, pp.1706-1716, 2008.
DOI : 10.1162/089976600300015853

. Montemerlo, FastSLAM 2.0 : An improved particle filtering algorithm for simultaneous localization and mapping that provably converges, Proceedings of the Sixteenth IJCAI, 2003.

R. Nickel and B. Et-potscher, Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov- and Sobolev-Type, Journal of Theoretical Probability, vol.74, issue.2, pp.177-199, 2001.
DOI : 10.1007/s10959-007-0058-1

. Olsson, Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models, Bernoulli, vol.14, issue.1, pp.155-179, 2008.
DOI : 10.3150/07-BEJ6150

URL : https://hal.archives-ouvertes.fr/hal-00096080

. Pitt, . Shephard, M. K. Pitt, and N. Shephard, Filtering via Simulation: Auxiliary Particle Filters, Journal of the American Statistical Association, vol.24, issue.446, pp.94590-599, 1999.
DOI : 10.1016/0005-1098(71)90097-5

G. Pólya and G. Et-szeg?-o, Problems and Theorems in Analysis, 1976.

B. T. Polyak, A new method of stochastic approximation type, Autom. Remote Control, vol.51, pp.98-107, 1990.

. Polyak, B. T. Polyak, and A. B. Et-juditsky, Acceleration of Stochastic Approximation by Averaging, SIAM Journal on Control and Optimization, vol.30, issue.4, pp.838-855, 1992.
DOI : 10.1137/0330046

. Poyiadjis, Particle Methods for Optimal Filter Derivative: Application to Parameter Estimation, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., 2005.
DOI : 10.1109/ICASSP.2005.1416456