N
N

N

HAL

open science

Digital geometry and algorithmic geometry for
interactive 3D design

Jean-Marc Thiery

» To cite this version:

Jean-Marc Thiery. Digital geometry and algorithmic geometry for interactive 3D design. Other.
Télécom ParisTech, 2012. English. NNT: 2012ENST0070 . tel-01078038

HAL Id: tel-01078038
https://pastel.hal.science/tel-01078038
Submitted on 27 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://pastel.hal.science/tel-01078038
https://hal.archives-ouvertes.fr

Parislech el ECOM

INSTITUT DES SCIENCES ET TECHNOLOGIES -
PARIS INSTITUTE OF TECHNOLOGY Pal"]STCCh

m e

2012-ENST-070

/

EDITE - ED 130

Doctorat ParisTech

THESE

pour obtenir le grade de docteur délivré par

TELECOM ParisTech
Spécialité « SIGNAL et IMAGES »

présentée et soutenue publiquement par

Jean-Marc THIERY
le 28 novembre 2012

Géomeétrie numérique et géométrie algorithmique pour le
design intéractif 3D

Directeur de these : Tamy BOUBEKEUR

Jury

M. Bruno LEVY, Directeur de recherche, LIRIA, INRIA Nancy Grand-Est Rapporteur
M. Marc ALEXA, Professeur, TU Berlin Rapporteur
M. Henri MAITRE, Professeur, LTCI, Télécom-ParisTech Examinateur
M. Gabriel PEYRE, Chargé de recherche, CNRS, Univ. Paris Dauphine Examinateur
M. Tamy BOUBEKEUR, Maitre de conférence (HDR), CNRS-LTCI, Télécom-ParisTech Directeur

TELECOM ParisTech
école de I'Institut Télécom - membre de ParisTech

(Géométrie numeérique et géomeétrie algorithmique
pour le design intéractit 3D

Digital geometry and algorithmic geometry for
interactive 3D design

Jean-Marc Thiery

Remerciements

Il m’est probablement impossible d’énumérer les personnes que je devrais remercier pour
toutes les choses qu’elles ont faites, et qui ont créé la suite d’événements improbables qui
m’ont finalement amené & étre en train de rédiger les remerciements de ma thése. Au
moment de le faire, je ne sais plus. Je vais donc me contenter de remercier les amis que
j’ai pu découvrir pendant cette these, et particulierement les camarades qui ont partagé
mes soucis quotidiens: Noura, Matthias, Elmar, Tamy, Bert, Jing, Guillaume, Julien, et
d’autres... Je veux également remercier ma bien aimée Claudia qui m’a supporté au mieux

pendant cette période riche en stress et frustration.

D’un autre coté, il y a un certain nombre de choses dans ma vie pour lesquelles je devrais
faire preuve de gratitude, mais la plupart n’ayant aucun lien avec cette thése, le bon gott
m’interdit de m’épancher sur celles-ci a cette occasion.

Il y a enfin quelques personnes qui ont eu une grande influence sur ma vie, que j’ai vraiment
envie de remercier, en laissant une preuve écrite qu’elles pourront ressortir d’une étagere
de temps a autre. Je veux remercier ces personnes pour les efforts qu’elles ont fournis, et
je sais qu’elles ont fait au mieux en toute occasion. Ces personnes sont ma famille, mon
défun pére, ma meére, mon grand pére, mon grand frére, ma grande soeur, mes petits fréres.

While 3D surfaces are essentially represented using triangle meshes in the domain of digital
geometry, the structures that allow to interact with those are various and adapted to the
different geometry processing tasks that are targetted by the user.

This thesis presents results on structures of various dimension and various geometrical rep-
resentations, going from internal structures like analytical curve skeletons for shape mod-
eling, to on-surface structures allowing automatic selection of feature handles for shape
deformation, and external control structures known as “cages” offering a high-level repre-
sentation of animated 3D data stemming from performance capture. Results on spatial
functions are also presented, in particular for the Mean-Value Coordinates, for which the
analytical formulae of the gradients and the Hessians are provided, and biharmonic func-
tions, for which a finite elements basis is given for the resolution of the biharmonic Laplace
problem with mixed Dirichlet/Neumann boundary conditions, as well as their applications
to 3D shapes deformation.

Alors que les surfaces géométriques sont essentiellement représentées a ’aide de mail-
lages triangulaires dans le domaine de la géométrie numérique, les structures permettant
d’interagir avec ces géométries sont variées et adaptées aux différents traitements visés par
l'utilisateur.

Cette thése présente des travaux réalisés sur des structures de dimension et de représen-
tation géométrique variées, allant de I’étude des structures internes comme les squelettes
analytiques pour la modélisation géométrique, passant par les structures surfaciques pour
la sélection automatiques de poignées de déformation, jusqu’aux structures externes de
controle d’objet de type "cage" offrant une représentation haut niveau de séquences an-
imées d’objets issues de systémes de performance capture. Sont présentés également les
résultats obtenus sur les coordonnées aux valeurs moyennes offrant une solution au prob-
léme de l'interpolation de conditions de Dirichlet, pour lesquelles les formules analytiques
des gradients et Hessiens sont fournies, et les fonctions biharmoniques pour lesquelles une
base d’éléments finis est formulée pour la résolution du probléme de Laplace biharmonique
avec conditions mixtes Dirichlet /Neumann, ainsi que leurs applications a la déformation
de formes 3D.

Contents

Contents

1 Long résumé en langue francaise

1.1 Contributions techniques

1.2 Création de squelettes analytiques pour la modélisation
1.2.1 Décomposition de surfaces en cylindres et disques topologiques
1.2.2 Intégration géométrique
1.2.3 Itération a l’aide de reprojections paramétriques
1.24 Resultats
1.2.5 Applications

1.3 Détection automatiques de structures surfaciques pour la manipulation . . .
1.3.1 Complexe de déformation
1.3.2 Réseau de lignes pour la déformation

1.4 Encodage d’animations & 'aide de cages de déformation

1.5 Sur les fonctions spatiales oL
1.5.1 Coordonnées aux valeurs moyennes
1.5.2 Coordonnées biharmoniques 0.

1.6 Conclusion

I Introduction

2 Geometry in Computer Graphics’ applications

2.1 Interactive shape editing L Lo

2.1.1 Creation L

2.1.2 Acquisition

2.1.3 Editing
2.2 Structures for shapes Lo
2.3 Various geometrical and topological representations
2.4 Shape modeling in the industry 0000
2.5 Contributions
2.6 Outline of the dissertation L

3 Technical background

11
11
13
13
15
16
17
18
19
19
21
23
29
29
34
37

39

41
41
41
42
42
43
43
44
46
47

49

3.1 Notations 49
3.2 Discrete surfaces in R3 50
3.2.1 Manifold meshes oo 50

3.22 Curvature 51

3.2.3 Laplace-Beltrami operator 0L 53

3.2.4 Topological invariants o o 54

3.3 3D transformations of surfaces 0oL 55
3.3.1 Linear variational mesh deformations 95

3.3.2 Space transformations 0L 56

3.3.3 Comparison and limitations 61

Il Inner structures 65
4 AnaSkel: analytic skeletons 67
4.1 Curveskeletons L 67
4.2 Our algorithm at a glance 71
4.3 Cylinder-disk segmentation L. 71
4.3.1 Bottom-up strategy oL 72

4.3.2 Topological priority term oo 72

4.3.3 Geometric priority term L oL 73

4.3.4 Validity predicateo 74

4.3.5 Segmentation results L oL oL 74

4.4 Skeletonization 75
4.4.1 Harmonic parameterization 75

4.4.2 Bones’ geometryo 76

4.4.3 Bones’ regularityo L 7

444 Connecting bones L 7

4.5 Optimization 78
4.5.1 Surface-restricted skeletal Voronoi diagram 78

4.5.2 Parametric skeletal Voronoi diagram 79

4.6 Results and discussion Lo 79
4.6.1 Performances 79

4.6.2 Properties 79

4.6.3 Comparison 80

4.6.4 Limitations 80

4.7 Conclusion L 83

5 Skeletal geometry processing 85
5.1 Skeletal shape modelingo oo 85
5.2 Inset surface modeling 86
5.3 Skeletal mesh filtering oo oL 87
5.4 Discussiono 88
ITTOn-Surface structures 91

6 DEX: On-surface simplicial complex for deformation 93

CONTENTS 9

6.1 Deformation complex L L 94
6.2 Multi-resolution segmentation o000 o000 94
6.2.1 Variational shape approximation 95
6.2.2 Multi-resolution descriptors L. 96

6.3 Interface for deformationo Lo 97
6.4 DISCUSSION e e e 98
7 On-surface curve set for deformation 101
7.1 Selection of intrinsic feature curves for the deformation 101
7.1.1 Construction and regularization 101
7.1.2 Interface for deformation. 102

7.2 Selection of view-dependent feature curves for the deformation 103
7.2.1 Line drawing renderingo oL 103
7.2.2 Curves regularizationo 104
7.2.3 Interface for deformation.o 104

7.3 Discussion 105
IV Outer structures 107
8 Cage-based representations of animated shapes 109
8.1 Introduction 109
8.2 Related work 112
8.3 Overview L 114
8.4 MaxVol based cage inversion Lo 115
8.4.1 Problem statement 115
8.4.2 MaxVol relaxation L 116
8.4.3 Cage inversion based on maxvol relaxation 118

8.5 Sub-spectral regularization 0oL 121
8.5.1 Regularization terms L oo 121
8.5.2 Sub-spectral regularization algorithm 121

8.6 Results. 123
8.6.1 Encoding quality o o 124
8.6.2 Encoding robustnesso 125

8.6.3 Comparisons and limitations 127

9 High-level representation for interactive modeling and processing of

Meshes 129
9.1 Animation lossy compressiono 129
9.2 Animation transfer L 131
9.3 Speeding up time-space processing tasks 131
9.4 Conclusion 135
V Spatial coordinates analysis 137
10 Mean value coordinates derivatives 139

10.1 Boundary value interpolationo oL 139

10

10.1.1 Contributionso 141

10.1.2 Overview 141

10.2 Background 141

10.2.1 3D Mean Value Coordinates 142

10.2.2 2D Mean Value Coordinates 144

10.3 Derivation Overview e 144

10.4 MV-Gradients and Hessians in 2D 146

10.4.1 Expression of the MV-gradients 146

10.4.2 Expression of the MV-Hessians 147

10.5 MV-Gradients and Hessians in 3D 149

10.5.1 Expression of the MV-Gradients 149

10.5.2 Expression of the MV-Hessians 152

10.6 Continuity between the general case and the special case 156

10.7 Experimental Analysis o oo 157

10.7.1 Complexity 157

10.7.2 Implementation 157

10.7.3 Global validation with a manufactured solution 157

10.7.4 Taylor approximations behavior 159

10.7.5 Comparison with Finite Difference schemes 161

10.7.6 Timings oo 162

10.8 Applications 162

10.8.1 MVC derivatives visualization 162

10.8.2 Flexible volumetric scalar field design 164

10.8.3 Implicit Cage Manipulation with Variational MVC 164

11 Analytic biharmonic coordinates 169

11.1 Mathematical background oo 169

11.1.1 Laplace equations with boundary conditions 170

11.1.2 Green coordinates 171

11.2 Green BiHarmonic coordinates: Analytic biharmonic cage-based deformations172

11.2.1 Computation of AT, (n) 174

11.2.2 Computation of Aik(n) 176

11.3 Variational BiHarmonic Maps 178

11.4 Discussion e 181

VIConclusion and Perspectives 183

12 Conclusion 185

Bibliography 193

13 Appendix 201

13.1 Appendix A: Taylor expansion of wg(n +eny) ..o 201
13.2 Appendix B: Expression of the Hessian in 3D, in the case of alignment with

the triangle To 205

13.3 Appendix C: Details of Taylor expansion of wF(n + eng) in the 2D case . . 208
13.4 Appendix D: Proof of Eq. 11.2: (Green biharmonic theorem) 210

Chapter 1

Long résumé en langue francaise

L’objectif de cette thése est de développer de nouvelles méthodes de design 3D interactif
s’appuyant sur les outils de géométrie numérique et géométrie algorithmique afin d’offrir
un controle de plus haut niveau dans les étapes de création et d’édition d’objets 3D.

Dans ce cadre, j’ai essentiellement étudié les structures topologiques et géométriques per-
mettant l'itéraction avec des formes 3D complexes, et j'ai développé des algorithmes qui
ont permis la création ou l'utilisation de celles-ci. J’ai classifié ces structures en trois par-
ties: 1) les structures internes (squelettes et axes médians), 2) les structures surfaciques et
locales (courbes sur la surface de objet, “patches”), et 3) les structures externes (cages et
boites englobantes).

1.1 Contributions techniques

Concernant les structures internes, j’ai développé un algorithme de création de squelette
unidimensionnel analytique, permettant de réaliser des traitements géométriques intuitifs
sur les objets présentant des structures tubulaires. Cet algorithme est typiquement adapté
a la décomposition de personnages (humains, animaux, ...). Les traitements introduits
sont: 1) la création assistée de “surfaces internes” (création de volumes a lintérieur de la
surface) et I'application au “shell mapping”, 2) I’édition de formes basée sur la décompo-
sition de 'objet sur son squelette, et 3) le filtrage bilatéral basé encore une fois sur cette
décomposition.

Concernant les structures surfaciques, j’ai étudié avec ma collégue Leila Schemali comment
définir des courbes (& partir de la géométrie de objet ainsi que du point de vue) sur
I'objet 3D, pour permettre & 'utilisateur de les manipuler et ainsi de déformer sa surface.
Avant cela, je m’étais intéressé a la définition multi-résolution d’une structure de compleze
sur l'objet, permettant a l'utilisateur de sélectionner des régions de l'objet, ou bien des
courbes séparant ces régions, ou encore des points intersectants ces différentes courbes.
Une interface utilisateur a été définie pour que l'utilisateur puisse, en temps-réel, passer
de I’édition surfacique de grandes régions a 1’édition locale de détails géométriques.

11

12

Concernant les structures externes, je me suis intéressé a I’ ingénieurie inverse d’animations
d’objets 3D a I'aide de cages. Dans ce contexte, ’artiste dispose de ’animation d’un objet
3D complexe, et il souhaite trouver la déformation d'une cage générant 'animation de cet
objet. Cela permet de paramétrer simplement I"animation, et cela permet les applications
suivantes: 1) la compression d’animations a ’aide d’une structure naturelle de manipu-
lation de volumes, 2) I’édition intéractive de ’animation, 3) l'accélération d’algorithmes
géomeétriques complexes (comme linterpolation générales de formes 3D) en utilisant les
cages produites comme des versions basse résolution de 'objet déformé.

Je me suis également intéressé a 1'étude de coordonnées de cages dans leur définition
mathématique. Dans ce cadre, j’ai obtenu les formules analytiques des dérivées au premier
ordre (Jacobien) et deuxiéme ordre (Hessien) des coordonnées aux valeurs moyennes (Mean
Value Coordinates) introduites par Floater. J'ai également travaille a 1'implémentation
d’un algorithme permettant I’obtention par des méthodes numérique d’approximation des
dérivées des coordonnées harmoniques. Dans les deux cas, j'ai étudié les applications
possibles, et notamment la définition de systémes de modélisation implicites & I'aide de
cages, permettant 'optimisation de la géométrie de la cage en fonction de contraintes
positionnelles placées directement sur 'objet déformé, ainsi que de contraintes de rotation
(Jacobiens contraints a étre des matrices de rotation dont on ne connait pas la valeur a
priori) et des contraintes de rigidité (Hessiens contraints a avoir une norme minimale).
Avec ce formalisme, l'utilisateur itéragit directement avec 'objet qu’il déforme, la cage
ne servant que de support pour la déformation en arriére plan, et il peut & tout moment
modifier directement la cage pour rajouter des détails de maniére locale.

En plus de I’étude des coordonnées aux valeurs moyennes, j’ai également obtenu les formules
analytiques d’une base d’éléments finis pour les fonctions biharmoniques.

J’ai également participé a divers travaux en collaboration avec mes colléegues thésards,
dans le domaine de l'imagerie médicale avec Noura Faraj, dans le domaine de la créa-
tion et paramétrisation de maillages avec Guillaume Vialaneix, et dans le domaine de la
modélisation 3D avec Leila Schemali et Bert Buchholz.

1.2. CREATION DE SQUELETTES ANALYTIQUES POUR LA MODELISATION 13

¥

/N A
/ ~
)
Oriented Analytic
2-manifold mesh Skeleton Surface-skeleton trajectories

Figure 1.1: Squelette analytique d’une surface polygonale. La définition d’une relation
surface-squelette avec peu de variation offre plusieurs applications au traitement du signal
et & la modélisation squelettale de surfaces 3D.

1.2 Création de squelettes analytiques pour la modélisation

Dans cette premiére partie, on présente un algorithme de création de squelette analytique a
partir de surfaces closes en 3D. Décomposer une forme 3D sur un domaine plus simple pour
effectuer des traitements géométriques n’est pas une idée nouvelle, et quelques personnes
ont du essayer de le faire en prenant comme domaine de décomposition un squelette (bien
que la bibliographie & ce sujet soit inexistante).

La nouveauté introduite dans ce travail est la décomposition naturelle de I'objet et de son
squelette, qui sont deux objets optimisés conjointement, ainsi que la forme analytique du
squelette, qui permet de considérer la relation surface-squelette partout sur la variété, et de
maniére réguliére. La stratégie adoptée est la suivante: (i) décomposer la surface initiale
en cylindres topologiques, (ii) intégrer géométriquement chaque cylindre pour trouver une
courbe en son milieu (qui est un os du squelette créé), et (iii) optimiser la relation surface-
squelette grace & un algorithme de reprojection adapté de la forme sur son squelette.

Le résultat de cet algorithme est illustré en figure 1.1, ot on peut observer que les trajec-
toires surface-squelette sont partout définies et contiennent peu de variations, permettant
de considérer ces trajectoires comme un champ de déplacement sur la surface adapté aux
applications de “déplacement” (ces modifications étant réalisées traditionnellement le long
de la normale & la surface, introduisant rapidement des auto-intersections de la surface,
méme pour des “petits” déplacements).

1.2.1 Décomposition de surfaces en cylindres et disques topologiques

La décomposition de la surface d’entrée s’appuie sur un algorithme de réduction de graphe.
Initialement, chaque triangle ¢; de la surface est une région R, et le graphe d’adjacence des
régions est construit. Puis, a chaque étape de la réduction de ce graphe par contraction
d’aréte, deux régions adjacentes R4 et RP peuvent étre unies, détruisant au passage une
région (on note cette opération RAYZ = R4 U RB). L’ordre dans lequel les régions sont
aggrégées détermine de maniére unique la topologie de la segmentation résultante.

14

Topologie Nom er

RA RP RAURP
Cyl. Disque | Disque Fill Hole 0
Disque | Disque Cyl. Create Cylinder | 1
Disque | Disque | Disque Merge Disks 2
Cyl. Disque Cyl. Grow Cylinder 3
Cyl. Cyl. Cyl. Merge Cylinders | 4
Autres cas Skip 00

Table 1.1: Terme de priorité topologique.

Traditionnellement, ce genre d’algorithme a été utilisé pour la simplification de mail-
lages 37|, ot uniquement la géométrie des régions détermine 'ordonnancement des réduc-
tions successives. La nouveauté technique que nous introduisons ici est le terme d’erreur
associé a Iétape de réduction RAYE = RAU RB, pour lequel la topologie des trois régions
est discriminante (voir Table 1.1).

Les aggrégations de régions sont ordonnées premiérement par ordre croissant de codt
topologique ep, puis par ordre croissant de coiit géométrique eg au sein d’'une méme classe
topologique. La topologie des différentes régions peut étre controlée a 1’aide de la car-
actéristique d’Euler x (nombre de sommets moins le nombre d’arétes, plus le nombre
de triangles), qui vaut 1 pour un disque topologique et 0 pour un cylindre topologique.
Pour réaliser ces tests de maniére efficace, une structure de “méta’maillages (composés de
sommets, courbes, et régions, en lieu et place d’arétes et de triangles) peut étre utilisée,
car la caractéristique d’Euler est un invariant topologique, et ne dépend donc pas de la
représentation particuliére des surfaces considérées.

Terme géométrique Les termes géométriques que nous considérons permettent de fa-
voriser I’expansion des régions convexes. Dans la suite, on note sX = fgeX do¢ la sur-

face totale de la région RX = R4 U RE, n¥ = fgeX ngdag/sX sa normale moyenne, et
p~ = fgeX pedog/s™ sa position moyenne.

L’erreur géométrique eg(A, B) associée a I'aggrégation des région R* et RP dépend de
la classe topologique er(A, B), et on la définit de maniére formelle comme eg(A, B) =

EeT(A,B) (Aa B)

Eo(A, B) =1~ [n"| (L.1)
E\(A, B) = Ei(A, B) = |n*| (1.2)
Ex(A,B) = By(A.B) = 3 si- [Ip; = ™2/ (13)

Minimiser Fy(A, B) revient & avoir une normale moyenne ayant une norme proche de 1,
ce qui n’est possible que si la région est planaire: Ej sert donc a effacer les cylindres
topologiques qui n’ont pas de sens géométrique (“reboucher les trous”).

1.2. CREATION DE SQUELETTES ANALYTIQUES POUR LA MODELISATION 15

Figure 1.2: Résultats de segmentation de surfaces en disques et cylindres topologiques.

Comme E; doit favoriser la création de cylindres et que F4 doit détecter I'union possible de
cylindres créant un cylindre valide, on modélise 'erreur £ comme une normale moyenne de
norme minimale (au contraire de Ep). On utilise ici le fait que des cylindres géométriques
parfaits ont une normale moyenne nulle.

Les erreurs géometriques Ey (Merge Disks) et Es (Grow Cylinder) sont définies comme les
déviations standards géomeétriques, dont les minimiseurs sont les formes sphériques.

Prédicat de validité Pour éviter de réduire trop la segmentation de la surface et
d’effectuer des aggrégations de régions menant & des régions insatisfaisantes, il est essentiel
d’interdire 'apparition de certaines configurations.

Le premier critére est d’ordre topologique, et est lié directement a ’objet que 1'on cherche
a créer: on interdit 'apparition de patches ayant une topologie différente d'un disque ou
d’un cylindre (voir Table 1.1). Les autres critéres sont essentiellement géométriques, et
sont expliqués plus en détail dans le chapitre 4.

Des résultats de décomposition peuvent étre observés en figure 1.2.

1.2.2 Intégration géométrique

Une fois que l'objet est décomposé en disques et cylindres topologiques, il est trivial d’en
extraire un squelette en construisant pour chaque cylindre un “os”, qui prend dans notre
cas la forme d’'une courbe en 3D. Il est & noter que tous les sommets d’un disque sont
projetés sur 'extrémité de 1'os correspondant au cylindre voisin dans la segmentation.

Pour cela, on paramétrise chaque cylindre C; a ’aide d'une carte u : C; — [0, 1] harmonique

9 T KA bl)
en résolvant le systéme de Laplace suivant: u = 0 sur un bord du cylindre, u = 1 sur l'autre
bord, et A u = 0 sur les sommets & l'intérieur du cylindre. Comme nous travaillons sur

)
des surfaces triangulaires, nous utilisons une discrétisation de 'opérateur Laplacien, en
I'occurence celle dites des “poids cotangents” (voir chapitre 3). Le systéme est un systéme
linéaire carré de taille |v(C};)| (Ie nombre de sommets appartenant au cylindre C;), que I'on
) Yy 1)

peut résoudre au sens des moindres carrés (notre implémentation repose sur la librairie

Cholmod).

16

Une fois que nous avons obtenu la coordonnée u sur le cylindre (u étant une coordonnée lon-
gitudinale), on peut compléter cette carte unidimensionnelle en une carte bidimensionnelle
(u,0) (0 étant une coordonnée cylindrique) en coupant le cylindre C; le long du chemin
qui est le plus aligné possible avec le gradient de la coordonnée longitudinale gu, et en
répétant le procédé pour obtenir une carte harmonique 6 qui prend les valeurs 0 et 27 sur
les deux bords ainsi obtenus.

Avec cette carte (u,0) : C; — [0, 1] x [0, 27], il est possible de contracter chaque isocourbe

27 ~
u = G du cylindre en un point b;(%) a l'aide de la formule b;(a) = W, construisant
ainsi la fonction géométrique b; : [0,1] — R3 qui décrit de maniére paramétrique 1'os

correspondant au cylindre Cj.

1.2.3 Itération a l’aide de reprojections paramétriques

Il a déja été remarqué que la restriction a
la surface initiale du diagramme de Voronoi

des os d’un squelette tendait a créer des B¢ Region Graph Skeletonization /7

. ., R Clsas®. reduction C
cylindres associés a chaque os sur la sur- . —— —
face (ce procédé consiste & segmenter la sur-

face d’origine en attribuant a chaque som- SRSVD partition >

met de la surface l'index de l'os le plus S Mo
proche). Les cylindres étant issus du di- — = gﬁ
agramme de Voronoi, leurs frontiéres sur y

l'objet sont réguliéres, ce qui améliore la

qualité de la segmentation et du squelette <
qui en est issus de maniére significative. Le Figure 1.3: Chaque ligne présente une itéra-
lecteur peut remarquer que jusqu’a présent, tion de Palgorithme présenté. L’entrée de
la geométrie des frontiéres des cylindres pitgration suivante est définie a I'aide de la

n’a pas été contrainte, et que les résul- reprojection paramétrique de la forme sur son
tats présentés en figure 1.2 contiennent gqyelette.

des cylindres aux frontiéres irréguliéres.

L’optimisation proposée est donc d’utiliser

la segmentation de la surface issue du di-

agramme de Voronoi des os comme segmentation d’entrée de 1’algorithme décrit, pour
obtenir au fil des itérations des cylindres avec des frontiéres de plus en plus réguliéres.

- >

Cependant, cette stratégie permet d’obtenir une segmentation de la surface d’origine com-
posée de cylindres et de disques uniquement dans un nombre extrémement restreint de cas.
La plupart du temps, 'objet 3D a une épaisseur (distance & 1’os, ou a I'axe médian) qui
varie, et cette variation introduit des cas pathologiques dans la segmentation qui résulte
de la reprojection sur le squelette.

Une maniére de contourner ce probléme est de paramétriser la reprojection de la surface
sur le squelette a I’aide d’un unique parameétre o ayant une valeur entre 0 et 1, et qui décrit
a quel point on translate la surface d’origine vers le squelette. Plus précisemment, si les
sommets v du maillage d’entrée sont projetés sur le squelette au point b(v) € R3, on crée
son translaté 9, € R? de la maniére suivante: Vv : 9, = a - b(v) + (1 — a) - v. La surface
ainsi définie est donc “plus proche” du squelette, et la restriction du diagramme de Voronoi

1.2. CREATION DE SQUELETTES ANALYTIQUES POUR LA MODELISATION 17

(a) Reésultats (b) Comparaison

Figure 1.4: (a): Squelettes obtenus pour divers objets 3D. Le code couleur indique la
paramétrisation de chaque os. (b): Comparaison avec les squelettes Laplaciens [4] (deux-
ieme ligne), et des graphes de Reeb de fonctions hauteurs (troisiéme ligne) et harmoniques
(quatriéme ligne).

du squelette a cette surface paramétrique donne des cylindres ayant une topologie valide
lorsque « est pris assez grand (dans le pire des cas, pour a = 1, la surface d’origine est
entierement projetée sur le squelette, et la segmentation obtenue & ’aide du diagramme de
Voronoi est donc identique a celle de 'itération précédente).

1.2.4 Reésultats

Des résultats de la technique introduite sont présentés en figure 1.4(a), o il peut étre vérifié
visuellement que (i) la décomposition des objets est “celle que 'on pouvait attendre”, et
que (ii) les squelettes trouvés ont une géométrie réguliére.

Il est & noter que 'objectif principal de cette technique est de fournir un squelette ayant une
géométrie la plus réguliére possible, et qu’il n’est pas contraint de maniére explicite & étre
situé “a l'intérieur de 'objet 3D”. La raison de ce choix est la classe d’applications visée,
qui est le traitement géométrique et la modélisation géométrique & 'aide de squelettes.
Pour la plupart de ces applications, il est plus important d’avoir une contrainte “dure” sur
la régularité du squelette et une contrainte “douce” sur la localisation de celui-ci prés de
I'axe médian, plutdt que l'inverse.

11 faut également remarquer que ces deux contraintes sont en opposition: seul I’axe médian
est une représentation qui est localisée parfaitement a l'intérieur et au centre de l'objet,
et par définition cet objet est géométriquement irrégulier (il correspond a ’ensemble des
points pour lesquels le gradient de la distance a l'objet n’est pas défini).

18

Input Laplacian Bilateral Bilateral Skeletal

Mapping

Figure 1.5: a) Variations obtenues a I’aide de cartes de déplacement le long des trajectoires.
b) Filtrage bilatéral, utilisant le squelette comme signal. ¢) Création de surfaces internes
paramétriques, le long des trajectoires. d) Application au “Shell Mapping”: rendu de
particules et de fonctions de densité dans le volume créé.

La figure 1.4(b) présente des éléments de comparaison avec les techniques les plus utilisées
actuellement pour obtenir des squelettes unidimensionnels, qui sont basées sur l'extraction
du graphe de Reeb de fonctions scalaires ad-hoc ou sur la contraction de surfaces a 1’aide
de son opérateur Laplacien [4].

1.2.5 Applications

La figure 1.5 illustre des applications d’un squelette analytique régulier. Ces applications
tirent toutes parti des propriétés mathématique de notre modeéle de squelette.

1.3. DETECTION AUTOMATIQUES DE STRUCTURES SURFACIQUES POUR LA
MANIPULATION 19

Input Pre-process Interactive Result

Multi-scale Multi-scale

descriptors segmentation navigation & deformation

%,

Figure 1.6: Framework de DEX

1.3 Détection automatiques de structures surfaciques pour
la manipulation

Dans la premiére partie de cette thése, on a présenté des résultats et des applications de
modélisation basée sur une structure interne unidimensionnelle.

Nous nous intéressons dans cette deuxiéme partie aux structures surfaciques qu’il est possi-
ble d’extraire automatiquement & partir d’un objet 3D, dans le contexte de la manipulation
directe d’objet, a I'aide de métaphores de modélisation faisant intervenir la minimisation
d’énergie géomeétriques (au contraire de modélisation physiques).

Cette classe de techniques de déformation d’objets 3D est répandue dans la communauté
graphique, et nombre d’entre elles reposent sur une stratégie commune pour la modélisa-
tion: L’artiste, lorsqu’il veut déformer l'objet, définit une partie de celui-ci qu’il attrape a
I’aide d’un manipulateur 3D, ainsi qu'une zone d’influence dont la géométrie est optimisée
pour minimiser différentes énergies géométriques, tandis que le reste de 'objet reste in-
changé. La définition méme de ces énergies géométriques a été traité trés largement dans
la littérature, et nombre de techniques sont suffisamment satisfaisantes pour les artistes
pour étre utilisées courrament dans 'industrie du film d’animation.

La problématique que nous soulevons ici est que la définition des zones d’influence pour
I'application de ces techniques est une tache fastidieuse, qui constitue en fait la majeure
partie du temps d’une session de modélisation. Nous proposons donc d’automatiser ce
processus en permettant diverses maniéres de définir des zones intéressantes a manipuler
par Dartiste.

1.3.1 Complexe de déformation

LLa premiére structure de manipulation que nous proposons est un compleze de déforma-
tion multi-résolution sur la surface: La surface d’origine est segmentée en patches que
I'utilisateur peut attraper. Deux patches voisins sont séparées par des courbes qui sont
composées d’arétes des triangles de la surface d’origine, et U'intersection non vide de deux
courbes sont des sommets. L’ensemble de la structure ainsi définie est donc un complexe
simplicial calculé avec lequel I'artiste peut intéragir.

20

La figure 1.6 présente le framework la construction du complexe simplicial de déformation,
appelé DEX. (Pré-calcul:) un ensemble de descripteurs multi-resolution est premiérement
calculé sur la surface d’origine, et une segmentation multi-résolution est effectuée a partir
de ceux-ci; (intéraction:) Dutilisateur peut alors naviguer dans les différents niveaux de
hiérarchie et sélectionner I’ensemble des parties pour la déformation, la zone d’influence
étant calculée automatiquement & partir des relations de voisinage dans le complexe sur-
facique.

Les descripteurs que nous utilisons ici sont
basés sur les informations de normales de
la surface (dérivée du premier ordre de la Normal scale space
géomeétrie) et de courbures (dérivée du sec-

ond ordre de la géomeétrie). Leur construc-

tion est illustrée en figure 1.7: ceux-ci sont &

calculés au plus haut niveau de la hiérarchie \ i § § § !
a partir de la représentation triangulaire de / 4 A N rvaturd Scate spatd

la surface, avant d’étre moyennés avec des

noyaux de taille de plus en plus grande dans ~ Figure 1.7: Descripteurs multi-résolution.
les niveaux de hiérarchie les plus bas.

Input shape

A partir de ces descripteurs, une segmen-

tation est effectuée a chaque niveau de la

hiérarchie, avec de moins en moins de parties tout au long de la hiérarchie, en se bas-
ant essentiellement sur la normale aux bas niveaux et sur la courbure aux hauts niveaux.
L’algorithme utilisé pour la segmentation est une variante de l'algorithme “k-means”, qui
minimise au sein de chaque partie de la segmentation la variance du descripteur utilisé.
Cette variante garantit par construction que chaque ensemble dans la segmentation est

simplement connectée sur la surface.

Une session de modélisation utilisant le complexe de déformation est illustrée figure 1.8.
L’utilisateur édite des caractéristiques géométriques du maillage sélectionnées par notre
approche multi-résolution, 'ordre dans lequel il choisit les différents niveaux de hiérar-
chie pour les étapes successives de la session d’édition ne lui étant pas imposé par notre
technique.

Discussion Premiérement, puisque nous construisons le complexe de déformation a par-
tir d'une segmentation de l'objet, nous faisons ’hypothése que chaque partie de 'objet peut
étre d’un certain intérét pour la sélection de poignées de déformation. Cette hypothése
n’est pas tout le temps vérifiée, mais notre formulation est utile pour une large classes
d’objets 3D contenant des caractéristiques d’ordres de grandeur différents.

Deuxiémement, les énergies que nous minimisons sont limités a la représentation de cer-
taines classes de zones caractéristiques, qui sont des zones quasi-planaires & grosse échelle
et les extrusions locales et variations rapides de la surface & une échelle plus fine.

Dans la partie suivante, on étudie une approche complémentaire et montrons comment des
courbes caractéristiques peuvent aider & la définition automatique de poignées de défor-
mation.

1.3. DETECTION AUTOMATIQUES DE STRUCTURES SURFACIQUES POUR LA
MANIPULATION 21

Successive édltlng steps Final result

Figure 1.8: Manipulation du complexe de déformation

1.3.2 Réseau de lignes pour la déformation

N

Toutes les parties des objets ne sont pas des caractéristiques pertinentes & attraper et
manipuler. Ce constat motive la définition de poignées surfaciques ne dérivant pas néces-
sairement d’une segmentation de la forme 3D.

Dans cette partie, on présente une interface pour la sélection de courbes caractéristiques
comme poignées pour la déformation de maillages. On propose de dériver ces courbes des
propriétés intrinseques de la géométrie, comme de propriétés dépendant du point de vue
de l'artiste en utilisant des techniques populaires de rendu non-photo-réalistes (NPR), ces
deux classes de courbes étant orthogonales et apportant des informations complémentaires

sur I'objet considéré.
Ii I

Input) Occluding Suggestive Ridges Valleys Apparent max curvature
contours contours ridges Input EKTUrgAtee thresholded Deformed
(a) Courbes issues de techniques de rendu (b) Courbes intrinséques de la géométrie et leur
“non-photo-réalistes” (NPR). manipulation.

Figure 1.9: (a): Les courbes issues de techniques de rendu NPR décrivent des caractéris-
tiques différentes des objets 3D, et mettent en relief des propriétés difficiles & entrevoir
depuis d’autres points de vue. (b): Les propriétés intrinseques de la géométrie peuvent
décrire des structures caractéristiques des objets qui peuvent étre complexes & sélectionner
manuellement.

22

Figure 1.10: Résultats de déformations utilisant des courbes issues de techniques NPR
pour la manipulation.

Interface utilisateur Les courbes NPR sont calculées en temps-réel chaque fois que
I’affichage est raffraichi & l’écran. Elles sont ensuite régularisées, pour que la forme
3D qu’elle décrive se conforme mieux & Uintuition de l'utilisateur (qui voit des courbes
réguliéres). Cette régularisation est effectuée par courbe, a 'aide de l'alternance d’'un lis-
sage unidimensionnel et d’une reprojection sur la surface de I'objet a I'aide de technique de
projection MLS, ces deux étapes étant répétées plusieurs fois pour obtenir la convergence
du lissage.

A chaque fois qu'une courbe est sélectionnée par l'utilisateur, la zone d’influence est
composée des sommets proches géodésiquement de la partie de la courbe sélectionnée.
L’utilisateur peut régler & tout moment la longueur de la partie de la courbe qu’il sélec-
tionne ainsi que la distance a cette partie définissant la zone d’influence de la déformation.
Lorsque l'utilisateur modifie I’objet 3D a 1’aide d’une courbe sélectionnée, les propriétés
de courbures de la surface sont modifiées, et la courbe servant de poignée de déformation
n’a plus de sens. Néanmoins, pour faciliter I'intéraction, il est important que la courbe
précédemment calculée et attrapée reste visible pendant le processus de déformation. Les
courbes manipulées sont donc maintenues artificiellement, puis supprimées lors de la défi-
nition d'une autre poignée de déformation.

Des résultats de déformations d’objets 3D sont présentés en figure 1.10. Ces exemples
contiennent des caractéristiques qui sont traditionnellement difficiles & sélectionner et pour
lesquelles la technique présentée se révéle parfaitement adaptée (par exemple les lignes de
contour).

1.4. ENCODAGE D’ANIMATIONS A I’AIDE DE CAGES DE DEFORMATION 23

) Yz ?

Raw Sequence

Sub-Spectral 5 &
Regularization . .

b 2

.’“"‘Slngle

Single '
Spatial Maxvol =
Cage l |Encoding™{subsampling Inversion Model Output

Figure 1.11: Framework CageR. De gauche a droite: séquence de maillages animés 3D+t
et une cage (entrée), sélection des contraintes pour linversion, inversion des différentes
poses, régularisation spectrale, création de la séquence de cages animées correspondant a
I’animation (sortie).

1.4 Encodage d’animations & ’aide de cages de déformation

Les deux premiéres parties de cette thése se sont concentrées sur des objets (i) internes et
(ii) surfaciques pour des applications spécifiques de modélisation. Dans cette partie, on
considére un ensemble d’objets externes appelés cages de déformation, qui permettent de
représenter la déformation du volume contenu a I'intérieur de ces cages par la seule donnée
de la déformation de la surface de celle-ci. La maniére de propager la déformation de la
cage a ’ensemble des points de son intérieur s’appuie sur des systémes de coordonnées
barycentriques, qui associe a chaque point de I’espace un influence par rapport a chacun
des sommets de la cage. Cela constitue une aire de recherche vaste, et on utilisera dans
cette partie plusieurs systémes de coordonnées, dont le choix revient a l'utilisateur et est
considéré comme un parameétre de la technique présentée dans cette troisiéme partie.

La problématique soulevée ici est la représentation de données animées issues de systémes
de capture haute-définition a l'aide de ces structures bas-niveau. Les avantages de cette
méthode sont multiples: (i) la géomeétrie et le mouvement des données d’entrée sont dé-
corrélées, permettant 1’édition indépendante de chacune, (ii) I'animation est compressée,
puisqu’au lieu de garder en mémoire un grand nombre de maillages haute-résolution, on ne
garde en mémoire qu’un seul d’entre eux, ainsi que la séquence de cages, qui sont typique-
ment des données de basse complexité, (iii) le systéme bénéficie directement des propriétés
mathématiques des coordonnées de cages, qui ont été développées pour préserver les carac-
téristiques géomeétriques des objets dans le contexte de la déformation de ceux-ci, (iv) il est
possible de transférer de maniére triviale le mouvement de la séquence a d’autres géométries
en placant un quelconque objet a l'intérieur de la séquence de cages, pourvu que celui-ci
soit contenu dans la cage de départ, et (v) il est possible d’utiliser cette représentation
de cages comme une représentation haut-niveau de basse complexité pour accélérer signi-
ficativement les taches complexes de manipulation des données spatio-temporelles, jusqu’a
permettre leur exécution en temps réel.

Framework Le framework CageR est illustré en figure 1.11. Prenant en entrée une
séquence de maillages animés 3D+t et une cage englobant 'une des poses de I’animation
que l'on appelle pose de référence (aprés la phase d’encodage, la géométrie du modéle M
s’exprime en fonction de la géométrie de la cage C de maniére linéaire: M = ®-C, & étant

24

la matrice des coordonnées de cage du modeéle), CageR sélectionne de maniére optimale
I’ensemble des contraintes & prendre en compte pour le probléme inverse (étant donnée une
déformation du modele My, trouver C; telle que M; ~ ® - Cy).

es coordonnées de cage sont inversées a chaque étape e l'animation & partir de ces

L données d t ées a ch ét t del t a tir d

contraintes, pour trouver une géométrie de cage correspondant a la déformation. Il est

possible d’utiliser un terme de régularité arbitraire sur un sous-ensemble du spectre du

probléme inverse pour ne 'appliquer que sur les parties les plus instables de la géométrie
insi nue. équen insi créée vari maniére réguliére.

de la cage ainsi obtenue. La séquence de cages ainsi créée varie de maniére réguliére

La complexité des deux stratégies introduites pour le probléme inverse (relaxation des
contraintes, et régularisation spectrale) se justifie par le fait que les coordonnées de cages
populaires (coordonnées aux valeurs moyennes: MVC, coordonnées harmoniques: HC,
coordonnées de Green: GC) présentent des conditionnements élevés pour les géométries
que 'on consideére.

L’étape de relaxation (sélection d’un sous-ensemble de contraintes) permet d’améliorer les
propriétés spectrales du systéme & inverser, et donc de rendre le probléme inverse plus
stable. L’étape de régularisation spectrale permet d’'utiliser des termes de régularisation
destructifs (tels quun Laplacien nul sur la géométrie de la cage) sur la partie instable du
spectre seulement, et donc de ne ’appliquer que sur la partie endommagée de la géométrie

de la cage.

Sélection des contraintes Pour sélectionner uniquement m points du maillage & pren-
dre en compte dans l'inversion du systéme de coordonnées (autant de contraintes que
d’inconnues), on choisit de sélectionner ’ensemble des m points dont les coordonnées sont
les plus stables a I'inversion. Traditionnellement, la mesure de la stabilité a I'inversion d’un
systéme linéaire est donnée par son conditionnement (plus grande valeur propre divisée par
la plus petite valeur propre). Chercher une sous-matrice carrée de conditionnement mini-
mal est connu dans le monde de la recherche en algébre linéaire sous le nom du probléme
MinCond. Ce probléme est malheureusement NP-complet, comme ses e-approximations. A
la place, on choisit ici une version plus faible du probléme, qui donne satisfaction en pra-
tique dans notre cas particulier d’analyse des coordonnées de cages traditionnelles, et qui
consiste a trouver la sous-matrice carrée de volume (valeur absolue du déterminant) max-
imal probléme connu sous le nom de MaxVol. La valeur du déterminant est une mesure
plus faible de la stabilité d’'un systéme, mais on montre empiriquement que maximiser
le volume entraine une diminution du conditionnement (voir chapitre 8). Ce probléme
est également NP-complet, ainsi que ses e-approximations, mais il existe néanmoins des
algorithmes efficaces pour obtenir de maniére statistique des solutions acceptables (sans
garantie formelle de trouver la solution optimale). Dans la suite, on en présente un que I'on
utilise, et qui se révéle étre efficace — encore une fois, dans le cas particulier du traitement
des coordonnées de cages traditionnelles que nous traitons.

Dans la suite, on note A la sous-matrice carrée composée des premiéres lignes de la
matrice A, et B la matrice construite comme B = A - Aal. Une observation simple a
établir est qu’échanger les lignes ¢ et j de A, pour lesquelles B;; est 1'élément de norme

maximale dans la matrice B augmente le volume de Ap (si |B;j| > 1).

1.4. ENCODAGE D’ANIMATIONS A I’AIDE DE CAGES DE DEFORMATION 25

.

Figure 1.12: a) Modeéle et cage d’encodage, et contraintes sélectionnées a l'aide de
MaxVol (sphéres vertes). b) Les sommets caractéristiques de la géométrie sont capturés
par MaxVol, et la densité locale de la cage se retrouve dans cette sélection (queue de
I'animal). ¢) Inversion basée sur des contraintes prises au hasard. d) Inversion basée sur
les contraintes extraites par notre algorithme.

On note e le vecteur colonne avec valeur 1 & 1’élement k et 0 partout ailleurs. La mise a
jour de la matrice B apres cet échange de ligne peut étre effectuée sans inverser & nouveau
la sous-matrice carrée haute de A, a ’aide de la formule suivante:

B:=B—(Bj—¢j+e)- (B — 6?)/Bij (1.4)

ou B.; dénote la 3¢ colonne de B et B;. sa "¢ ligne.

Un algorithme efficace pour trouver la sous-matrice carrée de volume maximal est donc:

e Initialisation: Ordonner les lignes de A, afin que la sous-matrice carrée (m pre-
miéres lignes de A), notée Ap, soit inversible. Calculer B = A - Aal.

e Itération: Trouver I'élément de B de valeur absolue maximale B;; (avec i > m).
Echanger les lignes 7 et j dans la matrice courrante. Mettre a jour B avec
I’équation 1.4.

L’application de cet algorithme algébrique sur les coordonnées de cages (qui sont par défi-
nition des objets géométriques), est illustré en figure 1.12. On voit que les caractéristiques
géomeétriques du couplage maillage/cage sont capturées implicitement (figure 1.12 b)).

L’inversion du systéme pour une pose relativement simple produit de grandes instabilités
si les contraintes sont sélectionnées au hasard (figure 1.12 ¢)), au contraire de lorsque ces
contraintes sont issues de la sélection fournie par Maz Vol (figure 1.12 d)).

Il est aussi & noter que les caractéristiques spectrales d’un systéme ne sont pas capturées
complétement par le conditionnement (g1 /fim, px étant la k¢ valeur propre du systéme),
mais aussi par tous les conditionnements d’ordre inférieur (ui/pg, & < m). Ainsi, il
est intéressant d’augmenter la derniére valeur propre pour augmenter le conditionnement,
mais il est plus pertinent d’essayer d’égaliser le spectre entier du systéme. On illustre en
figure 1.13 comment le systéme issu de la sélection MaxVol améliore ’ensemble du spectre,
pour les coordonnées de cages répandues comme les coordonnées aux valeurs moyennes
(MVC), coordonnées harmoniques (HC) ou encore les coordonnées de Green (GC).

26

Mean value coordinates
82 I R

Green coordinates

L L
spec(®py) spec(Pp) spec{®) spec(Pr)) spec(®py)
c:

spec(®) spec(®ry) spec(Pp) spec(®
670 spec(®d) c:1926 781 € 1209537 “spec(®)

c:1463 €365 spec(®) c:3 1(51%

Figure 1.13: Contraintes sélectionnées par MaxVol et spectres des systémes correspon-
dants pour différents systémes de coordonnées de cages (MVC, HC, GC). Dans chaque
cas, l'utilisation de MaxVol réduit de maniére drastique le conditionnement du systéme
(ainsi que les conditionnements d’ordre inférieur) en comparaison du systéme initial sur-
déterminé.

Régularisation spectrale On propose ensuite d’appliquer un terme de régularité quel-
conque (pourvu qu’il soit invariant a la rotation, comme la minimisation du Laplacien de
la cage, ou de la norme du Hessien de la fonction de déformation) sur une sous-partie du
spectre du systéme.

Ce choix s’explique par le fait que nombre de termes de régularisation linéaires utilisés cour-
rament (comme un Laplacien nul sur la géomeétrie de la cage) sont destructeurs, puisqu’ils
ne respectent pas la géomeétrie d’origine du modele (la cage d’origine n’a pas une géométrie
qui est harmonique). Notre stratégie permet donc d’appliquer ces termes de régularisa-
tion uniquement sur la partie de la géométrie la plus instable. Des stratégies analogues
ont été utilisées pour le filtrage Laplacien sur les surfaces: effectuer un filtrage Laplacien
tangentiel revient a n’effectuer que le filtrage sur I'espace tangent a chaque sommet (de
dimension 2 au lieu de I'espace d’immersion qui est R3). Dans notre cas, on choisit de
restreindre le filtrage & ’espace vectoriel formé par les derniers vecteurs singuliers associés
a la décomposition en valeurs singuliéres du systéme.

Formellement, si UX V7T est la décomposition en valeurs singuliéres de ® (la matrice issue
de la sélection MaxVol de la matrice des coordonnées de cages ®), on peut retrouver au
sens des moindres carrés la géométrie de la cage C; correspondant & la déformation des
contraintes sélectionnées H;, grace a la formule: C; =), vk Qk,, avec qp, = (UM .
Ht/sk € R3.

Réaliser un filtrage Laplacien sur les s derniers vecteurs singuliers du systéme revient &
minimiser I’énergie suivante & ’aide d’un systéme linéaire:

E=X > AV g+ > A-VFigl?
k<(m—s) k>(m—s)

+ |[(Po-C) — Hel (1.5)

Les basses fréquences (gx, k < m — s) sont calculées par

a, = (U - Hy/sp, VE< (m—s) (1.6)

1.4. ENCODAGE D’ANIMATIONS A I’AIDE DE CAGES DE DEFORMATION 27

Reference pose MaxVol handles

Data fitting errror

Data fitting error
Model reconstruction § — 6.31 102 Model reconstruction §. — 0.53 102
02 =158 10° | O =0.11 10*]

Global regularization Sub-spectral regularization

\

Figure 1.14: Reégularisation spectrale (a droite, avec s = 20 vecteurs singuliers régularisés),
et comparaison avec I'approche traditionnelle (a4 gauche). Dans les deux cas, on a utilisé
les coordonnées aux valeurs moyennes, un terme de Laplacien nul sur la géométrie de la
cage comme terme de régularisation, et le facteur de balance d’énergies A\ a été fixé a 1.

Calculer les hautes fréquences (g, k > m—s) de sorte que la régularisation soit effectuée sur

celles-ci uniquement revient a inverser le systéme linéaire suivant (avec comme inconnues

Qk,, Yk > (m — s)):

k _ k

{ \/X'ZkZ(m—S)A'V ke = _\/X'Zk<(m—s)A'V " ket (1.7)
Sk * Qky = Sk * ((Uk)T : Ht/sk) , Vk>(m—s)

Le résultat de cette stratégie de régularisation est illustré en figure 1.14, ot on compare
les résultats avec une stratégie classique de régularisation sur ’ensemble du spectre du
systéme.

Résultats Quelques résultats sont présentés en figure 1.15 (plus sont disponibles au
chapitre 8). TLa représentation automatique que l'on propose permet de calculer une
géométrie plausible des cages pour des séquences animées complexes, telles que celles issues
de systémes de capture haute définition, et contenant des animations de vétements.

Applications La représentation a base de cages de déformation offre un bon compro-
mis entre compression (figure 1.16(a)) et traitement du signal. En effet, les maillages
triangulaires qui décrivent ces objets sont les représentations les plus courantes des sur-
faces en informatique, et ces maillages sont 'entrée de nombre d’algorithmes de traitement
géométriques. On propose comme applications supplémentaires le transfert d’animations
a d’autres géomeétries (figure 1.16(b)), en plagant n’importe quel objet tenant dans la cage

I AMAATIAR I I

AR

M1 A xR AR NN AA R o

ks 4\ AR ﬁ Gl

Figure 1.15: Séquences reconstruites: Pour chaque séquence, les poses et cages
d’encodage sont montrées, ainsi que les contraintes sélectionnées automatiquement. Pour
chaque pas de I'animation, la pose déformée correspondante est montrée, ainsi que la cage
sous-jacente et la pose originale a titre de comparaison. Les courbes bleues et rouges mon-
trent respectivement I’évolution de I'erreur moyenne et I’erreur maximale tout au long de
I’animation (celles-ci sont exprimées en fonction de la diagonale de la boite englobant la
pose d’origine).

Compression

(a) Compression (b) Transfer d’animations

Figure 1.16: (a): Compression d’un maillage animé (499 étapes). (b): En mettant
n’importe quel objet dans les cages reconstruites, on peut transférer I’animation & celui-ci.

d’encodage, et la navigation dans I'espace des formes en temps-réel (figure 1.17). Cette
derniére application permet de mélanger différentes formes compatibles, en effectuant une
interpolation barycentrique de celles-ci. Nous avons interpolé les différentes cages corre-
spondant aux différentes poses du méme objet (calculées automatiquement a 1’aide de notre
technique), en utilisant une méthode de 'état de I’art [98]. Ces techniques sont tradition-
nellement lentes sur les données utilisées ici (~ 30 secs. pour une interpolation), alors
que 'application requiert de pouvoir parcourir ’espace des formes en temps-réel, car il est
difficile voire impossible de pouvoir trouver les différents poids barycentriques a donner
& chacune des poses d’origine pour obtenir le résultat souhaité. Notre représentation est
adaptée a ce genre de techniques, et permet de I’éxécuter en temps-réel (~ 20 interpolations
par seconde, visualisation comprise)

1.5. SUR LES FONCTIONS SPATIALES 29

Interactive Shape Space Exploration

d
- _pase
Cag® =
vaemce 3

(a) Exploration de I’espace des formes (b) Interpolations le long d’un chemin

Figure 1.17: (a): Exploration de ’espace des formes en temps-réel. (b): Résultats de
Iinterpolation le long d'un chemin dans ’espace des formes.

1.5 Sur les fonctions spatiales

Dans les parties précédentes, nous avons travaillé sur la construction de géoméiries de
nature et de dimension différente, en visant des applications de modélisation ou de manip-
ulation de formes 3D. Dans la troisiéme partie, nous avons utilisé des cages de déformation
pour la représentation de données animeées, et la maniére dont la déformation était propagée
de la cage vers sont intérieur était une donnée du probléme.

Dans cette derniére partie, nous présentons les résultats mathématiques obtenus sur les
coordonnées spatiales, qui définissent une fonction de I'intérieur du volume dans R™ a partir
de contraintes données sur la cage, qui consititue la frontiére du domaine de définition de

la fonction.

Les différentes contributions présentées dans cette partie sont (i) 'obtention des formules
analytiques des dérivées des coordonnées aux valeurs moyennes (section 1.5.1) et leurs
applications a U'interpolation de fonctions multi-dimensionnelles, et (ii) 'obtention d’une
base d’éléments finis permettant la représentation de fonction biharmoniques et leurs ap-
plications a la manipulation d’objets 3D (section 1.5.2).

1.5.1 Coordonnées aux valeurs moyennes

Ces coordonnées permettent la définition partout dans I'espace de fonctions scalaires (ou
multi-dimensionnelles) f interpolant des valeurs prescrites sur la frontiére d’'un domaine.
Nous nous intéressons au cas de l'interpolation de fonctions définies sur des surfaces tri-
angulaires fermées et orientables par f(v;) = f;, v; étant les sommets du maillage et f; les
valeurs de la fonction en ses sommets.

On présente ici trés succintement la définition mathématique de ces coordonnées. L’interpolant
construit a partir des coordonnées aux valeurs moyennes s’exprime comme une combinaison
linéaire de ses valeurs aux sommets, i.e. f(n) = >, Xi(n) fi, Ai(n) étant donc la coordonnée
au point n par rapport au sommet v; du maillage.

30

[22 Pigay HAll

float

FR:[1.76e-17 , 1.19e-03] FR:[1.94e-17, 8.71e-03] FR:[2.04e-17, 7.93e-03]
DI:[1.76e-17 , 6.44e-13] DI:[1.94e-17 , 1.20e-12] DI:[2.04e-17 , 2.43e-12]

4 S — T npd (99% m.s.) (99% m.s.) (99% m.s.)
721606 1.7e-06 . :2.2605 2.5e-05 2.1e-05 2.2e-:05
St = y
(13 pi - VA — I8l 132 w8 132 Hll
e -
3
o .
- A = B
FR:[4.05e-16 , 1.24e-05] FR:[0, 1.34e-12] FR:[6.64e-20 , 5.89e-09]
! S | e I DI:[4.05e-16 , 9.06e-11] DI:[0, 3.10e-15] DI:[6.64e-20 , 5.84e-16]
-3.1e-15 4.2e-15 -2.2e-14 2.4e-14 3 -3.56-14 3.4e-14 (99% m.s.) (99.9% m.s.) (99% m.s.)
(a) 2D (b) 3D

Figure 1.18: Validation basée sur une solution manufacturée (groupe de transfor-
mations rigides)

N

Ces coordonnées sont souvent écrites a partir des poids non normalisés w;(n): \i(n) =

w; (1)
S wi () AVEC

[z] =]

, B;(M) étant la projection du maillage M sur la sphére unité centrée en 1, ¢;[x] la fonction

o pi[z] .
w; = /BU(M) S, a) (1.8)

linéaire par morceaux sur M qui prend la valeur 1 au sommet v; et 0 sur tous les autres.

Les coordonnées aux valeurs moyennes ont été utilisées dans le contexte de 'interpolation
(“boundary value interpolation”), et de la manipulation d’objets 3D a l'aide de cages de
déformation. Dans ce dernier cas, lorsque 'artiste déforme la cage, la nouvelle position

p; de ses sommets constitue la fonction & interpoler; et I'objet contenu dans la cage a la
phase d’encodage est déformé avec la fonction spatiale p(n) = >, Ai(n)p;.

Cependant, dans beaucoup d’applications, il peut étre désirable de définir des con-
traintes additionnelles sur les dérivées de la fonction considérer, pour définir la vélocité
ou 'orientation du gradient de la fonction par exemple. Dans le contexte de la manipula-
tion d’objets 3D & I’aide de cages de déformation, cela permet de définir des rotations en
plus de définir des translations.

\

Les calculs nécessaires & une présentation mathématique consistente de ces coordonnées,
ainsi que de ses dérivées d’ordre 1 et 2, sont trop longs pour apparaitre dans ce résumé, et
nous renvoyons le lecteur au chapitre 10 pour une présentation compléte de ceux-ci. Nous
nous contenterons de décrire ici la méthodologie développée pour valider numériquement
les formules obtenues.

Validation Pour valider empiriquement les formules analytiques obtenues des dérivées,
nous nous sommes appuyés sur des solutions manufacturées, une technique populaire en
vérification de code [5,32,33|. Ce type d’approches de vérification consiste & créer une
configuration d’entrée telle que la solution correspondante est connue & priori. L’étape
de vérification consiste alors & mesurer a quel point la solution fournie par le programme

se conforme a la solution exacte. Il est a noter que cette validation n’est cependant pas

1.5. SUR LES FONCTIONS SPATIALES 31

Original cage |nput Deformation
and sample points function |
» | _\ 2 |,

le+15 . . .

)

T T
HX"" (double
HA™ (256bits)
Zyerr
VA" (double)
AT (256bits)

le+10 |

100000

1B

Dimensions

le-05 |
147.5x167.9 x 137.2

le-10 |

Linear and quadratic errors. Sphere radius : 1 1e-15
le-2 le-2, le-2
le-4, 4 le-4 P
le-6__— le6 —

le
1

le-20 |

le-25 |

le-30 |

1e-35 I I I I ! I I
le-14 le-12 le-10 le-08 1le-06 0.0001 0.01 1 100

Figure 1.19: Gauche: Courbe rouge: approximation linéaire. Courbe bleue: approxima-
tion quadratique.
Droite: Validation empirique a 'aide de schémas aux différences finies.

générale, puisqu’elle ne permet que de mesurer les erreurs sur des instances de solutions
manufacturées.

A partir les propriétés des coordonnées aux valeurs moyennes, nous avons créé une solution
manufacturée basée sur les transformations rigides de 'espace, i.e. p; =T + R - p;, T étant
un vecteur de translation et R une rotation. Les Jacobiens de la fonction doivent alors
vérifier partout Jf(n) = R et les Hessiens de chaque coordonnée de f doivent étre nuls.

La figure 1.5.1 présente des résultats de calculs de déviations de la solution manufacturée,
en 2D et en 3D. On peut noter que les erreurs, bien que relativement faibles en amplitude
(relativement a la taille du domaine, et donc de I'amplitude de la fonction interpolée),
présentent une amplitude non uniforme, et celles-ci sont généralement plus grandes au
niveau des plans support des primitives composant le maillage d’entrée. Cela s’explique par
la forme particuliére des coordonnées aux valeurs moyennes, qui requiérent pour leur calcul
un traitement particulier dans ce dernier cas. On peut noter également que 'amplitude
des erreurs sur les gradients et les Hessiens est comparable, voir inférieure, & 'amplitude
des erreurs de la fonction elle-méme dont le calcul a été introduit par Ju et al. [47].

Approximations linéaire et quadratique Avec les formules des dérivées des coordon-
nées aux valeurs moyennes en main, nous nous sommes également intéressé au domaine
de validité des approximations de Taylor, au premier ordre comme au second ordre. En
effet, on sait qu’il est possible de controler ’erreur réalisée par les approximations linéaire
et quadratique de Taylor, avec

F -+ dn) = £ () + 13 dny + ol)
Fln-dn) = Fln) + 7 F - dn + S’ HFy - dn + o ldn[?)

Ces formules ne sont néanmoins valides que dans un voisinage limite du point d’intérét
1. Comprendre empiriquement dans quelle mesure ces erreurs sont grandes dans des voisi-

32

>
e _GL\ |

Figure 1.20: Gauche: Visualisation des rotations sur le squelette de 'objet. Droite:
Design de fonctions scalaires utilisant des contraintes sur les gradients pour controler la
vélocité du champ scalaire.

nages de taille considérable permet d’appréhender a quel point les contraintes mises sur
les dérivées de la fonction seront respectées localement.

La figure 1.19(a) montre les courbes d’erreur de ces approximations (en échelle logarith-
mique) dans la boule unité centrée en le point d’intérét (les dimensions du domaine sont de
lordre de 150 x 170 x 140). On peut noter que les pentes de ces courbes permettent de veéri-
fier le caractére quadratique de la convergence de l'approximation linéaire et le caractére
cubique de 'approximation quadratique.

Nous avons également comparé les formules analytiques obtenues avec des approximations
des dérivées utilisant des schémas aux différences finies. La figure 1.19(b) montre la dif-
férence entre les deux versions (analytiques et différences finies) pour le domaine montré
en figure 1.19(a). Ces courbes permettent de tirer plusieurs enseignements:

1. les schémas aux différences finies ne permettent pas d’approximer de maniére sat-
isfaisante les dérivées des coordonnées aux valeurs moyennes, puisque les valeurs
obtenues commencent & diverger pour une taille d’approximation relativement grande
avec une précision de type double des réels flottants,

2. les schémas aux différences finies semblent converger vers les formules analytiques
fournies, lorsque ces erreurs sont calculées avec une précision arbitraire (ici, 256 bits
pour la représentation des réels flottants).

Applications La premiére application utilisant les dérivées des fonctions interpolées a
I’aide des coordonnées aux valeurs moyennes est la visualisation: les gradients fournissent
I'orientation des iso-valeurs ainsi que la vélocité de la fonction au point considéré, tandis que
le Hessien fournit I'information de la rigidité de la fonction (la minimisation de la norme du
Hessien de la fonction est d’ailleurs un terme de régularité que I’on rencontre réguliérement
dans le domaine la modélisation géométrique variationnelle). La figure 1.20(a) présente une
application de visualisation des rotations de la fonction de déformation sur ’axe médian
de I'objet déformé, tandis que la figure 1.20(b) illustre I'utilité de contraindre le champ de
gradient de maniére locale pour controler la vélocité de la fonction ici créée par Partiste
(les gradients étant des combinaisons linéaires des valeurs aux sommets du domaine, il est
possible de contraindre les gradients a 'aide d’un simple systéme linéaire).

La figure 1.21 présente un scénario de manipulation directe d’objet 3D, a I’aide d’un solveur
variationnel utilisant les coordonnées aux valeurs moyennes.

1.5. SUR LES FONCTIONS SPATIALES 33

Input Mesh + Handles Input Cage

'i".(

Figure 1.21: Manipulation d’objet utilisant un solveur variationnel et les coordonnées aux
valeurs moyennes. Les seules contraintes explicitement données par l'utilisateur sont les
contraintes positionnelles (sphéres rouges). Les sphéres bleues indiquent des contraintes
de rotation (de valeur inconnue) sur l’objet.

Puisque notre formulation permet d’exprimer le Jacobien et le Hessien de la transformation
partout dans l'espace comme une combinaison linéaire des positions des sommets de la
cage, 'utilisateur peut spécifier des contraintes d’orientation (en contraignant la valeur du
Jacobien) ou de rigidité (en minimisant la norme du Hessien).

La solution a ce probléme d’optimisation est un champ 3D f : R3 — R3, défini partout
dans l'espace a l’aide des coordonnées aux valeurs moyennes, qui interpole les valeurs de
position des sommets de la cage.

On note P I'ensemble des contraintes positionnelles (Vv; € P, f(v;) = v;), J ensemble des
contraintes de Jacobien (Vv; € J, Jf(v;) = J;), et H I'ensemble des contraintes de Hessien
(Vv; € H, H fy(v;) = H f(vi) = H f+(v;) = 03). La solution du probléme peut étre obtenue
en minimisant l’énergie suivante:

E=uw" Y (I 33w ~ 7l

’UiGﬁ J
— _
+wl D (1Y ei - TN () = il
7.)2‘67 J

T ST (1S HA () - e 1)
’UZ‘EH J

+w! Z (I ZH)‘J'(W) : Cj(y)HZ)
’L)Z'GF J

Tt S (IS BN @) e[
Uieﬁ J

oit w?, w’, et wH sont des termes de balance d’énergies pour les contraintes positionnelles,

de Jacobien, et de Hessien respectivement.

De maniére similaire & [8], la transformation peut étre contrainte a étre localement une
rotation pure. La contrainte de Jacobien s’exprime alors comme:

Jf(vi)t . Jf(’Ul) =13 Wu; € J

Cette optimisation est alors quadratique, mais peut étre approximer efficacement a 'aide
d’un solveur linéaire itératif.

34

Discussion Les coordonnées aux valeurs moyennes ont été les premiéres coordonnées a
populariser I'utilisation de cages de déformation sous la définition que l'on leur connait
aujourd’hui: des surfaces fermées englobant 1'objet a déformer. FElles ont des avantages
certains: elles étendent les fonctions a tout Iespace et pas seulement a leur intérieur, ce
qui rend plus simple la phase d’encodage d’objets. Elles ont également des inconvénients
qui rendent difficile leur utilisation dans certains scénarios. En particulier, elles ne sont pas
positives partout, et cela résulte en des distortions de I'objet dans les zones de forte concav-
ité. Le calcul des dérivées des coordonnées aux valeurs moyennes permet de contraindre la
transformation de I'objet & étre composée de rotations, ce qui dans une certaine mesure
— régle le probléme soulevé. Un élément de distinction avec les coordonnées de Green est
que les coordonnées aux valeurs moyennes ne requieérent que la valeur des positions des
sommets de la cage, et pas les valeurs de normales aux triangles comme c’est le cas pour
les coordonnées de Green. Une implication directe de ce point est qu’il est possible, aprés
avoir utilisé le solveur variationnel présenté dans cette section — au contraire des solveurs
s’appuyant sur les coordonnées de Green, de reprendre la main sur le controle direct de
la cage pour ajouter des détails locaux a la déformation de I'objet aprés I’avoir mis dans
une pose. La session de modélisation peut alors se décomposer en deux étapes distinctes:
la mise dans une pose globale de 'objet & 1’aide de trés peu de points de controle en re-
streignant l'espace de transformations aux transformations quasi-rigides, puis une étape
d’ajouts de détails en manipulant directement la cage optimisée dans la premiére étape.

1.5.2 Coordonnées biharmoniques

Dans la section précédente, nous avons présenté un outil variationnel pour la manipulation
d’objets 3D s’appuyant sur les coordonnées aux valeurs moyennes.

On présente ici une formulation permettant de considérer un espace de fonctions bihar-
moniques dans ce contexte. Cette formulation s’appuie sur un théoréme similaire a la
troisiéme identité de Green: toute fonction biharmonique A\ peut s’exprimer & lintérieur
d’un domaine D en fonction de ses valeurs sur le bord du domaine 0D, avec

_ oG,
A= [RG (1.9

_ 22X¢3)
/,geaD G(&n) Ine dog
019(§,m)
+/§€3D A)\(6)78725 ddg

—/ g9(§, 77)8(%)\)(5)6105
£€oD 73

ou g est la solution fondamentale & I’équation biharmonique: Ay g(x,y) =42 g(z,y) =
G(z,y), et AT g(a,y) =43 g(z,y) = do(|lx — yl]).

On montre dans le chapitre 11 qu’en définissant les conditions au bord d’ordre 0 et 2
comme des fonctions continues, linéaires par morceaux sur la cage, et les conditions au
bord d’ordre 1 et 3 comme des fonctions discontinues, constantes sur chaque triangle, on
obtient un espace de fonctions biharmoniques qui donne des résultats satisfaisants dans le
contexte de la manipulation variationnelle d’objets 3D.

1.5. SUR LES FONCTIONS SPATIALES 35

Skeletal
constraints

Figure 1.22: Comparaison de notre solveur variationnel biharmonique (VBHM, premiére
ligne) avec VHM basé sur les coordonnées de Green (ligne du milieu) et le solveur varia-
tionnel basé sur les coordonnées aux valeurs moyennes présenté dans la section précédente
(troisieme ligne). Des contraintes de similarité ont été mises sur le squelette de I'objet
(sphéres vertes).

Ces conditions s’écrivent formellement:

VEeOD = f(§) =32, Ti(§) v
Veet; D : PL(g) =n(t))

73
VE€dD : & (f)(E) =X, Ti(€) - LY (1.10)
Veet;cop : AGHE T

Les fonctions biharmoniques de déformation ainsi définies s’expriment en fonction de
parameétres 3D sur les sommets (positions v; et valeur de Laplacien LY) et les triangles de
la cage (normale n(t;) et valeur de Laplacien l;f):

OEDIRAORY (1.11)
v;
+ > () - n(t)
tj
D A () LY
v;
2N
t
Les coordonnées ¢; et 1; sont harmoniques, et leur calcul a déja été présenté dans la

littérature [61], tandis que nous présentons dans le chapitre 11 les formules analytiques des
coordonnées biharmoniques A) et)\]T.

36

Figure 1.23: Comparaison avec des coordonnées de Green (a droite). Les déformations ont
été obtenues avec les mémes contraintes positionnelles et les mémes parameétres du solveur
variationnel (mémes énergies minimisées).

Les figures 1.22 et 1.23 présentent des éléments de comparaison avec deux autres types de
coordonnées: les coordonnée de Green et les coordonnées aux valeurs moyennes. Il est a
noter que nous n’avons pas calculé les formules analytiques des dérivées des coordonnées
biharmoniques, et que nous utilisons ici des approximations basées sur des schémas aux
différences finies pour celles-ci.

Nous avons également comparé les distortions des objets 3D induites par la manipulation,
en se basant sur la définition classique de ce genre de mesure:

S e Aire(t;) (o] — 12 + (o — 1)%)
Et]—eT Aire(t;)

o Ser Airelty)(of - o}
s 2 th ot Aire(t;)

Erot =

, a{ et ag étant les valeurs propres de la carte linéaire de transformation du triangle ¢; [77].
Plus de résultats sont disponibles dans le chapitre 11.

Discussion Nous avons présenté un ensemble de fonctions biharmoniques analytiques
dans le contexte de la déformation d’objets basée sur un solveur variationnel. A notre
connaissance, les formules analytiques de cette base de fonctions biharmoniques n’a pas
été présentée ni utilisée dans la littérature précédemment.

D’autres contextes que la déformation d’objets 3D peuvent également bénéficier de cette
base de fonctions, bien qu’il ne serait peut-étre pas évident de trouver une métaphore
permettant de trouver des valeurs pour les conditions au bord de second et troisieme
ordres, et des strategies particuliéres devraient probablement étre développées pour chaque
cas particulier.

1.6. CONCLUSION 37

1.6 Conclusion

Dans cette thése, on a présenté des algorithmes visant a extraire des structures simples
qui peuvent aider & la réalisation de calculs complexes sur les objets 3D. Ces structures
peuvent étre géométriques ou topologiques, peuvent étre localisées a 'intérieur de la forme,
sur la forme, ou & 'extérieur de la forme 3D. Elles peuvent étre des objets de dimension
1,2, ou 8, ou elles peuvent un simple ensemble d’indices décrivant un sous-ensemble de
I'objet.

A partir des contraintes applicatives, nous avons proposé a chaque fois de nouvelles pro-
priétés pour les structures que nous cherchions & construire, que ce soit une définition
analytique d’un squelette ou un ensemble minimal de contraintes représentant des défor-
mations de cages. De plus, nous avons introduit de nouveaux traitements géométriques
et outils d’analyse permettant 1'utilisation de structures classiques d’édition de formes 3D
telles que les cages ou les squelettes pour de nouvelles applications.

Sur les objets internes, nous avons proposé un modéle analytique pour les squelettes uni-
dimensionnels, ainsi qu’un algorithme pour trouver une segmentation d’un maillage en
disques et cylindres topologiques a partir de laquelle la géométrie du squelette peut étre
calculée. La construction de cette segmentation est basée sur un algorithme de réduction
de graphe, qui utilise un terme de cotit de contraction prenant en compte la configuration
topologique induite par I'opération pour définir la priorité des opérations ainsi que 'erreur
géométrique spécialisée pour la classe topologique considérée. A notre connaissance, ce
probléeme de segmentation de graphe n’avait pas été introduit dans la littérature avant.
En pratique, il semble difficile de trouver une stratégie globale permettant de le résoudre,
puisque la définition méme des erreurs géométriques dépend de la configuration topologique
de la segmentation, et donc du résultat en lui-méme. Les propriétés particuliéres de notre
modeéle de squelette permettent de multiples applications, telles que la définition d’un
champ de normales 3D consistent pour le déplacement normal surfacique, et la définition
d’un filtre bilatéral préservant les caractéristiques d’ordres de grandeur variés.

Sur les objets surfaciques, nous avons proposé une structure de complexe simplicial, ainsi
qu’un réseau de courbes sur la surface, permettant la définition automatique de poignées
de déformation. Le complexe de déformation est construit & partir d'une segmentation
multi-résolution utilisant des systémes standard de partitionnement de surfaces, et permet
la suggestion de poignées de déformation de types différents (patches, courbes, points)
a différents ordres de grandeur. L’interface utilisateur permet de naviguer simplement
dans les différents niveaux de résolution de la structure, et d’adapter les stratégies de
manipulation & la nature de la poignée de déformation. L’ensemble de courbes que nous
avons proposé est construit a partir de propriétés intrinséques ou dépendant du point de
vue de l'utilisateur, et permet d’utiliser des algorithmes standards de rendu non-photo-
réaliste pour définir ces poignées linéaires de déformation. Nous avons également introduit
une stratégie efficace pour la régularisation de ces courbes et démontré son utilité lors de
sessions standards de modélisation.

Sur les objets englobant, nous avons démontré qu’une inversion basé sur une sélection
minimale de contraintes minimisant le volume du systéme associé permettait d’améliorer
les propriétés spectrales du systéme & inverser, et que notre stratégie de sélection couplée
a une stratégie de régularisation spectrale étaient adapté au probléme particulier de la

38

représentation d’objets animés & 1’aide de cages de déformation. Le retour offert par la
solution au probléme MaxVol peut également diriger le remaillage local de la cage pour
représenter au mieux la séquence animée. Cela ouvre des pistes de recherche intéressantes
pour le remaillage efficace de structures de controle.

Enfin, nous avons travaillé sur la définition mathématique de coordonnées spatiales, et nous
avons obtenu des résultats qui sont de valeur pratique aussi bien que théorique. Nous avons
obtenu une formule analytique pour les dérivées des coordonnées aux valeurs moyennes,
en 2D et en 3D, et démontré leur utilité pour les applications typiques de ces coordonnées.
Nous avons également obtenu une solution analytique pour la modélisation de fonctions de
déformations biharmoniques en 3D, et démontré leur pouvoir d’expression dans ce contexte
particulier.

Part 1

Introduction

Chapter 2

Geometry in Computer Graphics’
applications

2.1 Interactive shape editing

Various representations can be used for 3D shapes in Computer Graphics. Polygonal
meshes are the most popular one as they are a natural low-resolution representation that
can approximate the shape with a controlable error. Physical simulations can be run on
these meshes using Finite Elements methods and on-the-fly enrichment of these can be
performed very efficiently by applying popular subdivision schemes to them. They also
approximate a lot of 3D objects that compose our everyday-world in the most efficient way,
such as buildings for example.

2.1.1 Creation

The creation from scratch of a 3D shape is usually separated into several steps, which can
be executed by different artists:

e creation of the initial geometry
e remeshing of this geometry for texturing
e detail addition (displacement maps, bump maps,...)

e texturing

These processes are usually performed at different scales, to allow the shape to be rep-
resented at different levels of detail. In particular, automatic decimation of 3D objects
from a detailed version is a very active field of research and has produced several core
contributions in Computer Graphics over the past years. Similarly, high level of details
can be generated using subdivision mechanisms, together with displacement functions.

41

42

The creation of the initial geometry can be as simple as using a simple cube for the creation
of characters for example (we then speak about “box modeling”). More advanced strategies
were developed to allow artists to draw simple shapes in order to obtain a complex mesh
in a few seconds. For example in ZBrush (Pixologic), an artist can draw a simple skeleton
with a sphere on each vertex, these spheres being interpolated linearly on the edges; a
quad-dominant mesh can be obtained from this basic geometry, that requires tuning a
small set of intuitive parameters; this structure is known as the ZSphere.

2.1.2 Acquisition

3D objects can also be acquired from the real world, by using 3D scanners for example. The
output of these algorithms are usually point-clouds, where each point can be attributed
with a normal and a color. Low-resolution RGBZ cameras, such as the Kinect, allow to
obtain in real-time images containing depth information, and these are used as the direct
controller of some video games.

These datasets are generally processed in order to create geometry that can be used by
Computer Graphics applications, and often times a triangle mesh is created from these
point-clouds. This is especially true when the reconstruction does not need to be performed
in real-time, which is the main limitation to the systematic mesh reconstruction from point-
clouds today.

2.1.3 Editing

The most straightforward way to interact with such polygonal meshes is to manipulate the
vertices it is composed of directly, and eventually edit each polygon locally. Such operations
seem to describe an outdated world, but artists have to perform them very often, when
they create characters for video games for example. They need to place extraordinary
vertices carefully, as those create less smooth local geometry when the mesh is subdivided.

Fortunately, high level control is possible. Once a first version of the object is obtained,
its shape often needs to be modified to fit particular application needs. Users control these
modification processes using interactive systems which allow to explore in real-time the
space of possible shapes. There are mainly two classes of modifiers to control the shape
of an object. The first is parametric and allows to control the global shape of the object
with a very small number of parameters. This control is often decorrelated from the shape
itself, and typically exposed with a few numerical values. Such modifiers include twisting,
bending and waving operators for instance. The second class of shape modifiers is more
object-aware and allows for both local and global shape editing. The key idea with these
modifiers is to introduce an intermediate structure which lays out the degrees of freedom
offered to the user to edit the shape and acts as a visual interface embedded in the 3D
space itself and spatially correlates to the shape.

2.2. STRUCTURES FOR SHAPES 43

2.2 Structures for shapes

Various high level structures are commonly used in Computer Graphics to control shapes.
An important part of those can be classified by dimensionality (even though their geometry
is embedded in the 3D space):

e (: points, and 3D frames;
e 1 : curve skeletons, that are particularly useful for character animation;
e 2 : surfaces and patches, that are used for variational mesh deformation for example;

e 3 : volumetric structures, such as lattices and cages for deformation.

We can classify the different techniques that transfer the transformations from these struc-
tures to the 3D object, according to their increasing degree of complexity:

e rigid: each point of the object associated with its handle structure is deformed using
the same transformation;

e linear blends: each point of the object has a transformation that is a linear com-
bination of the transformations of the different parts of the control structure;

e global coordinates: each point of the object is expressed w.r.t. the entire control
structure and its geometry is directly updated from it;

e variational: the position of each point on the surface results from the solution of
a large set of constraints which can model the local geometry, the material, user
anchors or physics behavior. Depending of the the choosen degrees of constraint, the
deformation itself is obtained using a variety of numerical methods, ranging from
linear variational ones to high non linear ones.

The automatic or user-assisted creation of these structures, and the way they control the
shape, are two distinct, yet closely related, topics of research. The different problematics
we tackle in this thesis always refer to either one of these two categories.

2.3 Various geometrical and topological representations

There are plenty of different problems in Computer Graphics, that are difficult to classify
or even enumerate (visualization, parameterization, triangular/quadrangular /tetrahedral
meshing, animation, segmentation, motion retargetting, shape matching, shape morphing,
shape retrieval from data bases, and others). It is natural to say that the structures that are
required to solve these many problems are also numerous and various (see Fig. 2.1), and no
unique structure allows to solve all problems. These structures are essentially topological
and /or geometrical structures (Reeb graphs, spectral analysis, skeletons, surfacic handles,
subdivision surfaces, cages, set of points, indices in hash tables, histograms, and others).

In this thesis, we will show that both topological and geometrical structures can be designed
specifically for particular classes of shapes and applications at the same time.

44

=& hx i A 5
mrarey (R
Yk i WA W

Segmentation Segmentatign graphs Brushes

S

Medical images Morse-Smale complex Hexahedral meshes Quadrangular meshes Mixed cages/skeletons

e

Visualizations Orientation lines Reeb graphs Data clustering Voxel grids

Figure 2.1: Various geometrical and topological structures for specialized processes.

2.4 Shape modeling in the industry

The creation of geometrical content is critical in Computer Graphics and has many ap-
plications in various branches of industry. Video games become richer by the day, the
environments where they take place become larger, more detailed and more complex.

Some games focus on characters rather than on the geometry of the environment. For
CG artists, the strategy that is used has a strong impact: several fools are used to create
characters, vegetation, or buildings. New problematics appear as well, in particular strate-
gies need to be considered for the creation and optimal representation of different kinds of
geometry.

Figure 2.2: Images from recent video games (Crisis 2 - Crytek, Max Payne 3 - Rockstar
Games, Halo 3 - Bungie) featuring complex and detailed geometry.

2.4. SHAPE MODELING IN THE INDUSTRY 45

Figure 2.3: Pictures taken from: Pirates of the Caribbean 2, Avatar.

Visual effects and special effects in movies have been improved drastically over the past
thirty years. In recent movies (e.g. Avatar, Tranformers) most of the objects that appear
on screen are fake, and were created using Computer Graphics tools. The tracking of faces

has been studied intensively, in order to map virtual geometry on the actors’ faces (see
Fig. 2.3).

Computer Aided Design (CAD, see Fig. 2.4) is widely used in industry and has a massive
impact on our world. It helps designing and modifying efficiently shapes that fit industrial
and technical engineering constraints. It is used intensively for the creation of various
objects, ranging from the smallest to the largest, such as electronic devices, phones, cars,
planes, or others. It allows to have in the same environment the tools to represent such
shapes and tools to run physical simulations on them, such as resistance to heat, crash
tests, etc. , and helps designing scenarios to understand the possible consequences of a
malfunction of the created object.

Architectural geometry [72| (see Fig. 2.5) is a topic of research that is relatively recent.
It poses the problems of fitting precise industrial constraints in the design of architectural
structures, such as developability of surfaces (ensuring that those can be obtained by
bending flat surfaces), creation of architectural structures with a finite number of primitives
(ensuring that a maximum of elements are the same and can be produced at minimum
cost), or the exploration of variations of buildings by the manipulation of a minimal set of
parameters while guaranteeing consistency.

Figure 2.4: Geometric Modeling in Computer Aided Design.

46

e s =

Figure 2.5: Geometric Modeling in architecture.

2.5 Contributions

We introduce new geometry processing and analysis tools enabling the use of classical shape
editing structures such as curve skeletons and cages in new applications. We classify our
main contributions as inner (part II), on-surface (part III) and outer (part IV) structures
for shape editing. For the latter, we also propose a mathematical analysis of spatial
coordinates referring to such structures (part V).

The key concept we develop throughout this thesis is an analysis of the relation between
the shape and its structures from the applicative constraints we target. The scientific
contributions we make are:

1. an analytic curve skeleton derived from the shape’s surface, ensuring a tight connec-
tion between both entities that allows for a wide class of signal editing applications;

2. a simplicial complex defined in a multi-resolution fashion and a curves set generated
from intrinsic or view-dependent feature lines, allowing easy interaction with the 3D
surface at all scales;

3. a set of optimal handles in the context of cage-based representations of animated
shapes, together with a new optimization procedure for the regularization of the
output cages;

4. a mathematical analysis of popular sets of spatial coordinates, such as mean value
and biharmonic coordinates, for which we provide a close formula.

2.6. OUTLINE OF THE DISSERTATION 47

2.6 Outline of the dissertation

In chapter 3 we review some technical background about discrete differential geometry and
3D transformations.

Inner structures

e In chapter 4 we present our analytic model for curve skeletons of surfaces.

e In chapter 5 we present applications that benefit from such a definition, and discuss
more generally these applications.

On-Surface structures

e In chapter 6 we present a multi-resolution simplicial complex embedded in the surface
manifold, allowing the user to grab easily predefined regions as handles for deforma-
tion.

e In chapter 7 we present a framework allowing for the definition of curve handles from
intrisic and view-dependent curvature for mesh deformation.

QOuter structures

e In chapter 8 we present an intuitive framework allowing the conversion of animated
3D meshes into cage-based representations and discuss in detail the relazation as well
as spectral regularization strategies.

e In chapter 9 we present applications of such a representation for mesh modeling and
processing.

Spatial coordinates using cages

e In chapter 10 we present the computation of the derivatives of the Mean Value
Coordinates for closed triangular meshes, and illustrate their usefulness for a various
set of applications.

e In chapter 11 we present a new set of cage coordinates, that are biharmonic and have
a closed-form expression.

Chapter 3

Technical background

Before going into the core of this thesis and speak about the contributions we made, we
present some technical background that covers the set of notions that will be useful to the
reader.

We are mainly interested in surfaces — how we can represent them, model, modify, enrich,
and animate them. But, to interact with surfaces, we develop structures that are complex
(most of the time, geometrical structures), and those require the understanding of many
concepts that are popular in geometry for Computer Graphics.

Throughout this thesis, we will often refer the reader to this chapter, and briefly recall
the technical background that is appropriate to each of the specific techniques we will
introduce.

The advanced reader to whom discrete differential geometry and space transformations
are no secret can skip directly to the next chapter. Others should read this chapter that,
we hope, is an as easy as possible introduction to the world of geometry in Computer
Graphics.

3.1 Notations

We start this chapter by introducing notations that are going to be employed throughout
this thesis.
1. - x - denotes the cross product between vectors in R3.

2. < |- > denotes the dot product between vectors in any dimension. More generally,
it is still valid when applied to tensors, and < ulv >= u'v;.

3. m-dimensional vectors x are noted (z1,---,xy), but they are column vectors when
considering matrix operations (one column, n rows).

4. m; denotes the i*" row of the matrix m, and m;; denotes its element at row 7 and
column j. u; denotes the i*? coordinate of the vector .

49

50

5. m - u denotes the matricial product between m and wu.

6. u’ denotes the transpose of the matrix (or vector) u. The dot product between two

vectors u and v will be then written sometimes u! - v.

7. We note in general M a 2-manifold surface and M a triangular mesh with V =
{vo,v1, -+ ,uny_1} its vertices with associated positions {vg, vy, - ,vN_1}, & its
set of edges, and T its set of triangles.

3.2 Discrete surfaces in R?

The study of surfaces in R? is linked to several mathematical fields, in particular differ-
ential geometry. It is beyond the scope of this thesis to review all notions of differential
geometry. However, we are going to present some of them that are of interest to us. We
will present them directly in the context of discrete differential geometry where appro-
priate, where we consider manifold triangle meshes as an approximation of a smooth
surface.

3.2.1 Manifold meshes

In differential geometry, a set X is said to be manifold of dimension d if and only if for each
point 7, a small enough neighborhood Uj; is homeomorphic to a d-dimensional sphere Vi,
through a map ¢: Vn € X,3Uy, ¢ : Uy — Vi) C R?. It has boundaries if for some points,
their neighborhood is homeomorphic to half a sphere. For surfaces embedded in R?, the
condition is then that the neighborhood of each point is homeomorphic to a disk. This
condition translates easily into combinatorial conditions on the set of vertices, edges and
triangles that compose the neighborhood of each vertex. In our work, we consider mostly
triangle meshes as discrete versions of surfaces, but the following definition of 2-manifold
mesh is valid for any polygonal surface embedded in R3.

A triangle mesh M is a collection of 3D points V = {vg,v1, -+ ,ony_1} called vertices and
a collection of triangles T = {(¢3,9,19),---, (t3 =1, ¢1 1, #2~1)} that are triplets of integer
indices denoting the index in V of the vertices defining the triangle. The edges £ of M
are pairs of vertices belonging to the same triangle. An edge is said to be boundary if it
has only one adjacent triangle. A surface is said to be open if it contains boundaries, close
otherwise.

We note Vi(v) (resp. Eq(v), resp. Ti(v)) the set of vertices (resp. edges, resp. triangles)

that are connected to the vertex v, these sets are usually called one-ring adjacency sets.

Definition A triangle mesh is manifold if:

e any edge does not share more than two triangles,
e any verter shares exactly zero or two boundary edges,

e any vertex has its one-ring-triangles that contains no more than one connected com-
ponent, when considering edge-adjacency between triangles.

3.2. DISCRETE SURFACES IN R? 51

Non-manifold vertex

£

Surface Triangular Mesh
with boundary Representation Non-manifold edge

Figure 3.1: A smooth surface can be represented with any precision using a triangle mesh
representation. The manifold condition (the neighborhood of any point is equivalent to a
disk or a half-disk on boundaries) is easy to transpose to the case of triangles meshes.

The 3D normal of a triangle is defined as:

(’Utyl' — Uté) X (Ut% — Utg)

Ut{ —Utg) X (Ut%‘ —Ut%)H

(3.1)

Definition A triangle mesh is oriented if any edge {v;, v;} has an opposite ordering in its
two adjacent triangles t;; and t;; (i.e. t;; = {v;, v, k} and t;; = {vj, v, }, up to a circular
permutation in both triangles).

e A triangle mesh is ordered Counter-Clock Wise (CCW) if Eq. 3.1 gives the normal
pointing outise for all its triangles.

e A triangle mesh is ordered Clock Wise (CW) if Eq. 3.1 gives the normal pointing
inside for all its triangles.

It is common to compute normals at vertices by averaging the normals of its adjacent
triangles, and weighting them by the area of the triangles (see [44]). A more sophisticated
solution is to take into account the intersection between the Voronoi area of the vertex
and its adjacent triangle as a weighting strategy (see Fig. 3.4), but in our case we chose
the prime solution for all our work.

3.2.2 Curvature

The normal curvature k, at a point p with normal n in some direction ¢ in the tan-
gent space is defined as the inverse of the radius of the circle that approximates best the
curve defined by the intersection between the surface and the plane spanned by n and ¢.
Equivalently, it is the derivative of the normal in the direction t: kn(t) = Dyn.

For smooth surfaces, it is given in any unit direction (u,v) in a local frame {ej,ea} €
R3 x R? spanning the tangent plane by #n(u,v) = (u,v)! - II- (u,v). II is a symmetric
2 x 2-matrix called the second fundamental form.

92

WYV

Mean curvature Gauss curvature Min curvature Max curvature

Figure 3.2: Curvature plot of a saddle. Low values are displayed in blue, high values in
red. Image taken from [66].

Principal curvatures By diagonalizing 11, we obtain the minimum and maximum
curvature ko and k7 as its eigenvalues. They are also called the principal curvatures.
The associated eigenvectors 5 and & are the principal curvature directions (it is
common to use a 3D vector for their representation, and the principal curvature directions
usually refer to < k5|{e1, ez} > and < ki|{e1,ea} >).

Mean and Gauss curvatures The mean curvature H is the integral over all direc-
tions of the normal curvature k.

From the above definition, we can see that spn(6) = cos?(0)ka + sin?(0)ky in some local
frame spanning the tangent plane of the point. By integrating over 6 € [0, 27|, we obtain

H-= M (3.2)
2
The definition of the Gauss curvature G is tightly linked to what is sometimes called the
angle deficit around the point. It is defined as the product of the minimum and maximum
curvature:

G = R2K1 (33)

Computation of curvatures on triangle surfaces
There are several works that focus on approximating curva-
tures on triangle surfaces [16,66, 76| (patch fitting methods, o Pt
normal curvature-based methods, tensor averaging methods). ‘_'")=(E”“:"Ii:")
We do not review them all in this work, and briefly present - i"‘l'):(("?--:"‘i)':)
the formulation which is used all throughout this thesis, and Figure 3.3: II on a triangle.
that was introduced by Rusinkiewicz et al. [76] in 2004.

HE -

The algorithm works as follows:

1. Since the second fundamental form II can be defined in terms of the directional
derivatives of the surface normal, it is possible to express it on each triangle in a

3.2. DISCRETE SURFACES IN R? 53

Figure 3.4: Left: cotangent angles of edge e;;. Right: Voronoi area of a vertex.

local frame, in terms of the differential of the vertex normals along the edges of the
triangle (see Fig. 3.3 , image taken from [76]). A simple system of equations needs
to be inverted in order to find II.

2. Once II is found on each triangle of the mesh, it can be expressed on each vertex
of the mesh by averaging the tensors on its adjacent triangles (weighting them by
their area). It is required here to rotate the local frame of the triangle in order align
best to the local frame of the vertex, so that all tensors are expressed w.r.t. this local
frame before being averaged.

3. Once II is found on each vertex, it can be diagonalized, and all curvature informa-
tion can be derived from the expressions introduced in the previous paragraphs (see
section 3.2.2).

Note, that this approach allows to compute higher order derivatives, too.

3.2.3 Laplace-Beltrami operator

The Laplacian operator A, that is a linear operator acting on functions, is particularly
important in geometry and in Computer Graphics.

In the Euclidean space R?, it takes the form A f = Y ic1d % On n-dimensional surfaces
embedded in R? however, it is more challenging to define.

One key observation for the definition of this operator on surfaces (and on triangle meshes
in particular), is that it can be decomposed as a combination of the divergence operator

. —

divf =31 4 gif’ and gradient operator v/ f = {%, e ,%}. Indeed, it is straightfor-
’ —

ward to see that A f = div(/(f))-

Computation of the Laplace-Beltrami operator on triangle surfaces The diver-
gence operator and the gradient operator have been discretized on triangle surfaces, and
by using the previous equation, a discretization of the Laplacian operator can be found
on triangle surfaces as well. Note, that when considering this definition for the Laplacian
operator, it refers to the “Laplace-Beltrami” operator on surfaces.

o4

Note, that it is closely related to the field of Discrete Ezterior Calculus. For further
reference, please see [25].

B (N) = s 3 i (3.4)

Vj 2%
with w;; being called the cotangent weight of the edge e;; in case v; is a neighbor of v;:

wi; = cot(aij)—gcot(,ﬁij) VUj c ‘/1(7)1) | |
wij =0 Vuj & Vi(vi),j # i (3.5)
Wis = = D j2; Wi

The Voronoi set of a point z; among a collection of points X; = {z;};cr in a space M is
the set of points in M that are closer to z; than to any other point in X;. This notion
is dependent of the distance that is considered on the embedding space M. Ay,.(v;) =
3 Zvjevl(u,-) wsj||vi — v;||? denotes the Voronoi area of the vertez v; (see Fig. 3.4); the space
that 1s considered here is the surface manifold, and the distance is the geodesic distance
on the surface.

Link to curvature It is pertinent to note that, when applying the Laplacian operator
to the coordinates function x(the geometry of the surface), the mean curvature comes as
a result:

A x =2Hn (3.6)

This equality has motivated previous work regarding the computation of the mean curva-
ture on triangle surfaces, by first computing vertex normals on a mesh, then computing
the Laplacian of the mesh vertex coordinates and deriving the mean curvature per vertex
as half of the magnitude of the result (by checking for the orientation w.r.t. the vertex
normal to set the sign of the mean curvature).

3.2.4 Topological invariants

An important theorem from differential geometry relates the geometry of the surface
(through Gaussian curvature) to its topology (through its genus):

Gauss-Bonnet For any smooth close surface M

Gdog = 2 (M) (3.7)
£eM

with (M) the Euler characteristic of the surface M.

The Euler characteristic is linked to the genus of the shape g(IM) by the following formula:
x(M) =2 — 2g(M) (3.8)

3.3. 3D TRANSFORMATIONS OF SURFACES 55

| ,‘ ‘l R

Botsch 2004 Sorkine 2004 Lipman 2005 Botsch 2006
light blue: fixed red: fixed red: fixed grey: fixed
green: handle yellow: handle yellow: handle yellow: handle

Figure 3.5: Region of Influence (ROI) Images taken from [13, 14,63, 86].

Note, that on triangle surfaces, the Euler characteristic of the surface can be computed
from combinatorials, and

X(M) = #V — #E+ #T (3.9)

3.3 3D transformations of surfaces

We present in this section several methods and concepts that are used in the context of
surface deformation and surface manipulation. We make a distinction here although the
problem is essentially the same: the definition of a function on the surface that represents
its modified geometry. The distinction comes mainly from the application side.

In the following, we present linear variational mesh deformation techniques (see sec-
tion 3.3.1) and space transformation techniques (see section 3.3.2). Linear variational
mesh deformation techniques aim at defining a deformation function directly on the sur-
face, whereas space transformation techniques aim at defining a deformation function on a
portion of the 3D space embedding the surface the user wants to deform. Both have their
advantages and their drawbacks, and we discuss their respective limitations in section 3.3.3.

3.3.1 Linear variational mesh deformations

We introduce in detail the Linear Rotation Invariant Coordinates (LRI) [63], which is a
surface-based method for mesh deformation that we use in some of our work. From the
user’s point of view, this method belongs to the class of handle-based deformations: at
each deformation step, the user needs to define a region of interest (ROI) on the mesh
with a subset being the handle for the deformation — the other part of the ROI acts as
a free region, whose geometry is going to be optimized automatically by minimizing some
bending and stretching energies. The remaining part of the mesh is set to be a fixed
region.

A lot of deformation methods use the same interaction metaphor (see Fig. 3.5), and we
refer the reader to [15] for a survey about mesh deformation.

o6

Linear rotation invariant coordinates

The LRI method is based on the definition of differential coordinates on the mesh:

e A local frame B; is attached to each vertex v; (a 3 x 3-matrix with n(v;) being the
first row, and the second and third rows being two orthogonal vectors spanning the
tangent plane of the vertex).

e On each edge e;; a 3 x 3-matrix Tj; is attached, describing the change of the local
frames expressed in the local frame B;: Tj; = (Bj — B;) - Bf. This matriz encodes
the first part of the differential coordinates of the LRI

e Each edge e;; is expressed in the local frame B;: di; = B; - (vj — vi). This encodes
the second part of the differential coordinates of the LRI

To deform the model, the user grabs the handle, and applies some transformation to
it (usually, a simple manipulator widget allows to specify a rigid transformation to
the whole handle, including a translation, a rotation, and 3 scales that are eventually
equal). The algorithm first propagates the rotation and the scales to the entire mesh, thus
modifying the local frame of the vertices. In a second step, the position of the vertices are
recovered by fitting best the constraints given by the handle and the fixed part, and allows
the rest of the mesh to be optimized to fit best the differential coordinates w.r.t. the new
frames.

This requires solving two linear systems:

1. Local frames: Find B;Vv; € V, such that (Tj; + I3) - B; — B; = 03Ve;; € £, the local
frames being constrained in the fixed part and the handle;

2. Vertex positions: Find v;Vv; € V, such that (vj — vi) = B - d;;Ve;; € &, the
position of the vertices being constrained in the fixed part and the handle.

In our implementation, we express the differential coordinates on each edge e;; twice, the
first time w.r.t. the vertex v;, the second time w.r.t. the vertex v;. We noticed that, even
though the systems are heavier, the results were significantly improved when symmetrizing
the energies. The resulting frames {B;}; that are solution of the first linear system are not
rotation matrices (B! - B; # I3 in general), as this condition is not enforced. After solving
the first linear system, we project each matrix B; on the space of rotation matrices (using
SVD) before solving the second linear system. We also weigh each equation in the linear
systems by the cotangent weight of the edge that is considered.

3.3.2 Space transformations

Although we are mainly interested in deforming surfaces, it can happen that we use Space
Transformation techniques that aim at deforming the entire 3D space (or a portion that
is bounded by a closed surface) by the definition of a function f : R? — R? and deform
the surface manifold M by considering its restriction to it. Popular deformation tools such

3.3. 3D TRANSFORMATIONS OF SURFACES 57

Embedding pose Encoding step Deformation step
(preprocess) (real-time)

Figure 3.6: Cage-based deformation pipeline.

as control lattices, control skeletons and control cages rely on the definition of such
functions.

Sederberg et al. [81] presented in 1986 the free-form deformation (FFD) technique, that
allowed to use control lattices as a tool for the deformation of its inner space. This lattices
had originally the form of a cube, subdivided 3 times in each direction, therefore providing
the user with 64 control points. The deformation inside the lattice was performed using a
Bezier interpolation of the control points of the lattice. Later on, a lot of work has been
done on finding more user-friendly primitives for the deformation of shapes using FFD
techniques. The control structures evolved to what we call now a cage, which is a close
triangle mesh surrounding the shape. The definition of the deformation function is then
cast to the definition of generalized barycentric coordinates w.r.t. the cage vertices.

We refer the reader to the survey of Gain et al. [36] about spatial deformation techniques,
and focus in the following on deformations based on cages, as a major part of our work is
related to them (see chapters 8,9,10 and 11)..

Deformation cages

Traditionally, the process is composed of two steps. First, the 3D object that the user wants
to deform is encoded with respect to the cage; this process defines a set of coordinates for all
points of the object with respect to the cage vertex positions (and the cage triangle normals
for Green Coordinates, see paragraph 3.3.2). Second, the user modifies the geometry of the
cage and the position of the points of the embedded 3D object are updated with respect
to the new geometry of the cage, by multiplying their coordinates by the new positions of
the cage vertices. This process is illustrated in Fig. 3.6.

In the following, we note £ a two-dimensional parameter on the cage M, I';(§) the piecewise
linear function that takes the value 1 on vertex v; and 0 on the others, do¢ the surfacic
element at &, B, (M) the projection of the manifold M onto the unit sphere centered in 7
and dS, (&) its associated surfacic element.

o8

Embedding Coordinate Harmonic Mean Value
diffusion Coordinates Coordinates

Figure 3.7: Harmonic Coordinates are computed by diffusing each coordinate function on
a grid (second). As a result, they are positive. Third and fourth images show a comparison
with MVC.

Mean Value Coordinates Mean Value Coordinates (MVC) [47] define an interpolant
of a piecewise linear function defined on the cage to the entire 3D space (outside the cage
as well). The definition of this interpolant relies on an alternate version of the Mean Value
Theorem (the function is equals at point 1 to its averaging over the sphere centered in 7,
as well as over the ball, for any radius such that the sphere is contained in the domain)
that harmonic functions verify.

For a given point 7 in space, the function is defined as

fMVC(,)?) an(M) %dsﬁ(f)

Since we can decompose the function f on the manifold M using its associated piecewise
linear basis functions — f(§) = >_, Ti(§)fi , fi being the value at the vertex v;, we obtain
that

FMVCm) =D NV f; (3.10)

U

L (©)
with)\i\/IVC(n) — an(M) Hdsn(g)

an(M) ﬁdsn(f) -

MVC define an interpolant of any kind of multidimensional function, but if we set the
value f; to be new 3D positions for the cage vertices, we obtain the deformations induced
by MVC.

Harmonic Coordinates Although MVC allow the extension of arbitrary functions to
the entire space, they have several drawbacks that make them difficult to use. In particular,
they are not positive everywhere, and they are not local.

Harmonic Coordinates (HC) have been introduced by DeRose et al. [46] in 2006. They
are the only harmonic interpolant of the function defined on the boundary of the domain
M, and are defined everywhere as the solution of the following system:

3.3. 3D TRANSFORMATIONS OF SURFACES 59

Undeformed MVC (13.5 sec) PMVC (18.5 sec) HC (333.61 sec, 647 voxels)

Figure 3.8: Positive Mean Value Coordinates (PMVC, third) achieve similar results as
Harmonic Coordinates (HC, fourth) at reasonable rates. In particular, in comparison with
Mean Value Coordinates (MVC, second), PMVC are positive.

{vgeaD(M): MIE(€) =Ty(€) (3.11)

=Tu(¢
VneD: AN () =0

Since no close formula is known for harmonic function defined by Dirichlet conditions on
the boundary of the domain, they are approximated by solving this system of equations
on a regular grid (see Fig. 3.7).

As a result, these coordinates are positive everywhere, smooth, and local. The main draw-
back is their computation cost, and the fact that they don’t have a close formula make
them suited for character animation only (they don’t pass the famous “teapot in a stadium”
problem).

Positive Mean Value Coordinates Positive Mean Value Coordinates (PMVC) were
introduced by Lipman et al. [60] in 2007. These coordinates are defined using the same
process as for MVC, but the averaging of the function is performed on the projection of the
visible part of the domain only on the unit sphere, instead of the whole domain. By
noting V15, (M) the part of the domain M that is visible from the point 7, the function
is given by:

£
FPAVE) B, v is,an) Te=g @90 (&)
S, v 1,0y T 350 ()

In practice, the evaluation of the wisibility function V1S is not straightforward, and close
formula cannot be derived for the computation of PMVC. Instead, the geometric averaging
is performed on the GPU, by drawing basis functions on low resolution cube maps centered
in each point n of the model.

60

e (4 \U Loy
' s f‘ ‘-"‘ l'»"‘r‘} ok

:-3 - -3 ¥ 2 » >
' oy n
,,.) T\' - '-.”\’ ‘\ \w ¥ :h \»J ":",'
o f 3 . .

A A

Embedding MVC GC Embedding MVC GC

Figure 3.9: Green Coordinates allow for quasi-conformal deformations (left). Rotation on
the model can be inferred by translation of the cage vertices (right).

This method allows for the computation of positive coordinates that behave similarly as HC
and are equals to MVC for convex domains. However, the computation of PMVC is much
faster than the computation of HC (see Fig. 3.8). Note, that the visibility function is not
smooth, and therefore this set of coordinates may not be smooth everywhere themselves.

Green Coordinates Green Coordinates (GC) were introduced by Lipman et al. [61]
in 2008. Their particularity is that they use in their formulation the normals of the cage
triangles. It allows for the first time to induce rotations from cage vertex translations
(see Fig. 3.9 right).

Indeed, for previous cage coordinate systems, where each position 7 is updated a formula
of the form f(n) = >_, Ai(n) - v;, it is straightforward to see that translating the vertices

v; in a direction ¢ (v; :=v; + s; - ?) results in a translation in the same direction only.
Any harmonic function f inside a close domain D can be written (using Green’s third
identity) as
9eG(&,m) af (€
s = [g©* 5 a— [aten o (3.12)
¢€oD 13 £€€0D 3
where G is the fundamental solution to the Laplace equation, i.e. A, G(z,y) =4, G(z,y) =
do(l[z = yll)-
Lipman proposed to set the following Dirichlet (w.r.t. f) and Neumann (w.r.t. 597{5) con-

ditions on the cage:

{vgeaD: () Z Li(&) v (3.13)

Vet cop: 2L =y nlty)

with ¢; being the 4% triangle of the cage, n(t;) being its outward unit normal, and s;; being
the stretch factor associated to the deformation of the cage (its 2D conformality factor).

The resulting deformation induced by the Green Coordinates is expressed as

n) = Z di(n) - vi + Z%‘(U)Stj -n(t;) (3.14)

with ¢;(n fgeaD (&) 85(}(5 ") do¢ and 1;(n) fgeaD (&,m)dog. These functions are
the Green Coordinates, and they are harmonic.

3.3. 3D TRANSFORMATIONS OF SURFACES 61

Note, that none of the boundary conditions is fit (a Laplace equation is uniquely determined
by a Dirichlet condition or a Neumann condition). In particular, if the Dirichlet condition
was fit, the result would be the same as the Harmonic Coordinates.

Note also, that the particular choice for this Neumann condition corresponds to setting the
Jacobian of the transformation to be as close as possible to a similarity on each triangle of
the cage (the Jacobian being determined only in the two dimensional plane corresponding
to the triangle where it’s considered).

A good mathematical property of these coordinates is that the resulting deformation ap-
pears to be conformal in 2D and quasi-conformal in 3D (see section 3.3.3 for insights on
conformality and quasi-conformality).

3.3.3 Comparison and limitations

In this section, we discuss the differences between surface deformations (see section 3.3.1)
and space deformations (see section 3.3.2) and present their respective limitations. The
notions that are going to be discussed are linked to the field of parameterization, like
conformality and quasi-conformality, that measure the local anistropy of the “stretch”
(directional scaling) of the deformed space.

For example, a conformal deformation is going to induce the same stretch in any direction,
while the transformation will be locally seen as a rotation and a uniform scaling, therefore
it will preserve the visual aspect of textures (as a result, it preserves angles of the deformed
geometry). This set of transformations are very popular in the field of parameterization,
as its primary application is tezturing.

Conformal space transformations

A function f: R* — R? is said to be conformal if and only if its Jacobian matrix Jf is a
composition of a rotation and a uniform scale s at each point, i.e. Jf-Jft = Jft-Jf = s2I,.

Finding conformal functions in any dimension has been studied intensively by mathemati-
cians since many decades. It has pratical considerations in the field of Computer Graphics,
with applications to parameterization for texturing (see Fig. 3.10) or deformation of surface
meshes.

In two dimensions, several formulations have been proposed to produce conformal defor-
mations [61,96]. In particular, Green Coordinates are conformal in two dimensions.

In higher dimensions however, conformal transformations f : R* — R? are limited to
Mébius transformations, which are too rigid to be useful for surface editing. Indeed, Liou-
ville’s theorem [58] states that M&bius transformations are a composition of translations,
similarities, orthogonal transformations and inversions.

62

Figure 3.10: Conformal parameterization of a bunny (left) for texturing. Angles are
preserved by the parameterization (middle), therefore the texture is not distorted (right).
Images taken from [57].

shear is not conformal conformal surface comparison with Green
deformations Coordinates (quasi-conformal)

Figure 3.11: Spin transformations of surfaces. Left: The closest conformal deformation of
a twisted bar (right) is the original bar itself (left). Conformal transformations do not allow
twist and shear. Middle: Conformal deformations of a girafe (left). Right: Comparison
with Green Coordinates. The color code on the surface indicates the conformality factor
of the deformation. Images taken from [21].

Conformal surface transformations

Crane et al. [21] presented spin transformations of surfaces embedded in R3, which allow
the definition of conformal deformations when considering them directly on the manifold
M (as we have seen, conformal deformations from R? to itself are limited to Mdbius
transformations).

Even though, conformal transformations of surfaces are quite limited as well. For example,
twisting objects induces shear and produces non-conformal deformations (see Fig. 3.11 left).

We will not go in detail in the presentation of this technique as we do not use it, but it
serves the purpose of illustrating the mathematical discussion on surface transformations.

Quasi-conformal space transformations

Quasi-conformal deformations are more general than conformal deformations, and do not
offer the exact same guarantees. However, in light of the limitations that are inherent

3.3. 3D TRANSFORMATIONS OF SURFACES 63

to conformal deformations, quasi-conformal deformations represent — in our opinion — the
best available solution.

A deformation function f : R — R? is said to be quasi-conformal if its Jacobian Jf
presents a condition number that is bounded at any point in space. Geometrically, it means
that the ratio between the maximal stretch o; and the minimal stretch o4 is bounded, and
therefore the stretch of the deformation is “close” to being independent of the direction in
which it is evaluated (a stretch independant of the direction results in conformal deforma-
tions and preserves angles). See Fig 3.11 (right) for a comparison.

Constant conformality error

A lot of work remains to be done in this field. In particular, a method providing a constant
conformality error on surfaces or on volumic domains when fitting a user deformation
remains to be found. An equivalent in two dimensions has been presented recently by
Lipman et al. [59], but their technique does not generalize to arbitrary dimensions.

Part 11

Inner structures

In the first part of this thesis, we study inner structures and introduce curve skeletons,
that are a connected set of curves joining at articulations.

Traditionnally, these structures are used for animation, visualization or shape matching.
We show how they can be used on a variety of 3D shapes for shape modeling. We detail the
particular constraints this brings, and derive our skeleton model from these observations.

In chapter 4, we present the construction of our skeleton model, which is analytic and
derives from the shape through the integration of a piecewise harmonic parameterization
on top of a segmentation in topological cylinders and disks.

In chapter 5, we present some applications benefitting from our skeleton model, and discuss
its limitations relevant to each of these applications.

65

Chapter 4

AnaSkel: analytic skeletons

Curve skeletons are usually derived from or embedded near the medial-axis [9] of the shape,
and the main constraint for the construction of such structures is, that they are tightly
embedded inside the shape. The medial axis of the shape is usually noisy, and not smooth
— even for simplified medial axes. This is due to the fact that the distance to the surface is
not a smooth function on the medial axis. Because of this, it is difficult to obtain smooth
mappings from the surface to the skeleton and vice-versa, making difficult the use of curve
skeletons for shape modeling.

In this chapter, we introduce an analytic model for curve skeletons, that is derived from
a segmentation of the mesh into topological cylinders and disks. The construction of our
skeleton allows to use it as the underlying domain for the decomposition of the geometry
of the mesh, and allows for new applications in signal filtering and shape modeling.

4.1 Curve skeletons

Curve skeletons are 1-manifold networks capturing — to a certain extent — the topology and
the geometry of a wide class of 3D objects. Their abstraction power has been exploited
in various applications requiring analyzing 3D shapes, such as shape matching in visual
search [94], shape registration or animation [102]. Basically, they are defined as graphs,
with curved edges linking 3D nodes and a spatial embedding mimicking the input shape.

Over the many algorithms which have been introduced to compute such skeletons, the
primary goal has always been to provide a skeleton with very smooth curves while avoiding
any excess of nodes. This stems from the fact that most applications making use of
skeletons exploit their coarseness. Unfortunately, in many cases, existing solutions do not
model explicitely the relationship existing between a piece of surface and a bone of the
skeleton.

We introduce a curve skeleton model, together with its construction algorithm, which em-
beds such a relationship by the means of a piecewise smooth cylindrical parameterization.
Our basic observation is that, up to the desired level of accuracy, a given curve bone should

67

68

map to a topological cylinder portion of the surface, while extremal nodes should map to
topological disks of the surface.

This has immediate consequences on the potential applications which can benefit from such
a meta-structure. In particular, we demonstrate how shape editing and processing can
make use of a parameteric skeleton model enriching the 3D surface: for such applications,
our skeleton acts as a 1-dimensional domain onto which the surface is expressed. This
layout facilitates interactive editing methods such as local shape thickness control or inset
creation emulating a “geometric peeling” process (e.g. for Shell Mapping [71]). Moreover,
as the skeleton’s embedding reflects faithfully the shape’s one, we can express the object’s
geometry as a signal which is parameterized over the skeleton and can redefine surface
processing w.r.t. a "skeletal" basis. In particular, we introduce a new feature preserving
mesh filter extending the bilateral one |45| to better preserve mid-scale surface structures.

Related work

Extracting a curve skeleton from a given shape is a well studied problem. For a recent
overview, we refer the reader to the survey of Cornea et al. [20] and focus on previous
methods which are relevant in our context.

Reeb Graphs. A Reeb Graph [35,64,68,74,92] is essentially a data structure for under-
standing and representing the topology of scalar functions on shapes. Used with euclidean
space related functions (e. g. the Z’ function), it allows to compute a skeleton with a mean-
ingful geometrical embedding by contracting isocontours of such a function into a single
point.

In the context of skeletonization, the problem is cast to the definition of the proper scalar
function whose Reeb graph is going to give the desired skeleton. Note, that this structure is
sensitive to noise, but several works exist on the simplification of the underlying function by
“at most” e (e-simplification, see [27,28,91] for example) such that the topology is reduced.

Contraction Skeletons. Curve skeletons have also been defined as the result of surface
contraction processes. Au et al. [4] use the Laplacian operator on the mesh coordinates
to shrink the shape progressively until they obtain a (almost) zero-volume mesh. This
contracted mesh is understood as a skeleton and is very smooth. At this point, it is
naturally attached to the surface as their is a one-to-one correspondance between the
vertices on the surface and the vertices on the skeleton mesh. To get a 1 dimensional
skeleton, they collapse edges until they obtain the wanted structure. One vertex of the
skeleton then corresponds to a set of vertices of the mesh, which exhibit most of the time
a cylindrical shape. However, no parametric relationship is directly available at the end
of the process and the pointwise vertex-skeleton relationship lacks control on smoothness
and regularity.

Similar approaches [89] have been developed to handle polygon soups and pointsets, al-
lowing to use the skeleton for surface reconstruction and hole filling.

4.1. CURVE SKELETONS 69

Laplacian Skeletons Reeb Graph J Reeb Graph
on 'Z' function on harmonic function

Figure 4.1: Left: Contraction Skeleton [4]. Middle and Right: Reeb graphs of
different scalar fields.

Alternatively, Sharf et al. [83] cast the problem of curve skeleton generation as a deforming
model one, using the midpoint of advancing fronts on the surface to draw the skeleton.
Although applicable to non uniform 3D point clouds, this method is sensitive to variations
in sampling.

Overview.

While previous approaches are based on Laplacian Contractions or Medial Axis, our
method (section 4.2) decomposes the surface in regions which can be parameterized
smoothly onto single curves, i.e. topological cylinders (section 4.3). In order to guarantee
curve bones with regularity inherited from the surface itself (section 4.4.1), we generate the
actual bones’ geometry by integrating the surface one along harmonic maps (section 4.4.2)
automatically constructed from the regions boundaries,with remaining (disk-) regions pro-
jecting to skeleton extremities. We also introduce an iterative optimization process inspired
by Centroidal Voronoi Tessellation (section 4.5) which improves the surface decomposition.
Compared to other curve skeletons (section 4.6), the regularity and the parametric nature
of the skeleton model makes it suitable for interactive modeling and processing of shapes
(chapter 5): we demonstrate its use for modeling applications with shape editing and inset
surface design tools, as well as the benefit it brings to geometry processing with a skeletal
feature-sensitive mesh smoothing operator.

Contributions. The main contributions of this technique are:

e a curve skeleton model with an analytical form and the following properties:

Smoothness: each bone is a smooth 1D-curve;

Harmonicity: each bone embeds a harmonic map with a topological cylinder on
the surface;

Regularity: each bone’s geometry corresponds to its surface region, where trajec-
tories (i.e. , surface-skeleton vector field) have good differential properties;

e an efficient algorithm to construct it from a surface mesh;

70

N, W
£y
A ==
A)
/\
)
Oriented Analytic
2-manifold mesh Skeleton Surface-skeleton trajectories

Figure 4.2: Analytic Curve Skeleton of a polygonal surface mesh. Smoothly varying
surface-skeleton trajectories offer a versatile layout for shape editing and processing.

e a disk-cylinder surface decomposition structuring harmonic maps over the surface
which encodes the surface-skeleton correspondances;

e a closed-form geometric embedding of the skeleton, with regularity derived from the
surface.

We also illustrate skeletal modeling and processing with three practical contributions:

e an interactive shape modeling tool allowing to edit shape thickness locally;

e an inset surface modeling tool exploiting the surface-skeleton inter space with appli-
cation to Shell Mapping;

e a feature-sensitive mesh filter based on skeleton-aware shape thickness.

Geometric cylinders decomposition. As mentioned earlier, curve bones can be in-
terpreted as central structures of topological cylinders. Finding geometric cylinders inside
3D data [6,10,17,73] has been studied to discover semantic shape information from raw
geometry such as 3D point clouds. In this context, geometry-based segmentation tech-
niques, [49,50,75,99] are very efficient at finding cylinder-like clusters. Unfortunately, as
we are interested in topological cylinders with geometry often differing significantly
from conventional cylinders — we have to define a new algorithm with cluster topology as
the major constraint.

Topology-based decomposition. Topological disk surface decomposition is a classical
process in surface parameterization [3,57,77,78,85]. The idea is to segment the surface into
several disks, with the geometry of the disk controlled by an error function. The topology
of the decomposition can be assessed by computing the Euler characteristic and inspecting
the adjacency configuration of the region boundaries [26,29]. In our context, we seek for
regions which are homotopy equivalent to cylinders, which is a different problem than

4.2. OUR ALGORITHM AT A GLANCE 71

Region Graph " Region Graph - — ; ;

initialization ,‘{"iﬁ’“ k- reduction Parameterization Integration

i J\ —_— E—— P &)
Skeleton

Initial : Cylinders Harmonic maps
Input mesh regions . & Disks
\terative process

- z .
lﬁi’ ‘__’, \/ ;. L~ \

. 24

Figure 4.3: Algorithm overview: the skeleton creation process (top), followed by op-
tional optimization (bottom).

finding geometric cylinders to approximate the shape. While the latter can effectively be
addressed with variational methods [19,99,101], we propose a new approach, suitable to find
topological cylinders and which takes inspiration from both adaptive surface optimization
methods [40] and hierarchical segmentation [82].

4.2 Our algorithm at a glance

Given a triangulated oriented 2-manifold mesh, our algorithm outputs a skeleton composed
of articulations (3D points) and curve bones linking them, together with a disk-cylinder
surface decomposition and harmonic maps defining the relationship between both:

Analytic Skeleton
Input mesh — Cylinders and Disks Decomposition
(b, u, 0)-Parameterization

Our algorithm starts by defining an initial segmentation made up of topological disks and
applies 3 processes (Fig. 4.3):

1. the dual graph of the segmentation is reduced so that the different regions merge
together and create “well-shaped” cylinders;

2. an harmonic parameterization is computed for each region;

3. a bone is generated from each harmonic map.

4.3 Cylinder-disk segmentation

Any 2-manifold can be tessellated with an infinite number of topological disks. In order
to find a reduced set of large cylinders and disks, we adopt a bottom-up strategy where
we start from many regions and progressively aggregate them to form cylinders and larger
disks.

72

4.3.1 Bottom-up strategy

The segmentation is initialized by defin-
ing a large number of small regions on the
surface. These regions are connected sets
of triangles and the so-defined clustering
must satisfy the closed-ball property [29],
i.e. each region is homotopy equivalent to
a disk and the (non-empty) intersection be-
tween 2 partitions is a closed 1-ball, i.e. a
single open curve [26]. For the sake of sim-
plicity, the algorithm can be safely initialized with one triangle per region to guarantee
this property. Alternatively, a space subdivision structure (e.g. octree) can be adaptively
refined until meeting such a condition in each leaf, with leaf triangle sets becoming initial
regions.

Reduction

Figure 4.4: Region graph reduction: col-
lapsing an edge (black dot lines) is equivalent
to merging two regions.

The region adjacency graph (or Region Graph) is defined as a set of nodes (one for each
initial region) and a set of edges (one for each pair of regions sharing at least one triangle
edge). The region graph provides a single reduction operator by the means of successive
edge collapse merging 2 nodes/regions and removing one edge of this graph (see Fig. 4.4).

Once the region graph is initialized, all possible edge collapses are pushed into a prior-
ity queue, with the priority defined for the collapse of edge {4, B} as a 2-term value
{er(A, B),eq(A, B)}:

e cr is defined on a discrete scale of topological classes and models the topological
change induced by the collapse,

e c¢ is defined on a continuous scale and models the geometric cost of the collapse.

Edge collapses are ordered w.r.t. increasing topological cost er, and then w.r.t. increasing
geometrical cost eg when two candidates have equal er.

When processing an edge-collapse, the two nodes of the edge are merged and their neigh-
borhood in the graph is updated. Last, the two nodes are flagged as merged so that they
cannot be merged later in the queue.

At this step, new candidate edge collapses can be pushed into the queue if they pass a
discarding test, which depends on both, topology and geometry (see section 4.3.4).

4.3.2 Topological priority term

The topological priority term ep of a candidate collapse of edge {A, B} depends only on
the topology of the region sets {RA, RB RAU RB}. We summarize the different cases in
Table 4.1.

4.3. CYLINDER-DISK SEGMENTATION 73

4.3.3 Geometric priority term

In order to compute the geometric cost of a collapse, we use prozies [19]| to capture the
shape of regions. A proxy P4 is a triplet (p A n4, A) representing a surface region R4, with
p? its barycenter, n? its average normal and sA its area. The collapse operator requires

to build a new proxy for the emerging region. When RX = U, t* is the union of tr1ang1es

t* with barycenters p;, normals n; and areas s;, then sX = Z s, p~ = Z S+ pz/s

Z Si- nz/s The expressions of p* and nX correspond to the natural discretization

of the averaglng of the functions p and n defined by surfacic integration on X. Therefore,
if R* =, R, we obtain PX by additivity on {P}.

Let (|) (resp. (-@-)) be the dot (resp. cross) product between two vectors. For each
topological priority term k, we define a specific geometric cost function Fj ordering can-
didate collapses which are topologically equivalent and affect eg(A, B) = E.,.(a,5)(4, B).
Let RX = RAURPB. The definition of Ey must favor hole filling while penalizing emerging
flat “caps” at cylinder’s extremities:

Eo(A,B) =1~ |n%| (4.1)

FE4 must favor the creation of cylinders while F4 should detect the possible union of cylin-
ders leading to valid ones, we model both errors using a low mean normal:

E1(A,B) = E4(A,B) = ||n|| (4.2)

At this point, we do not aim at defining an orientation for cylindrical regions. Instead we
only exploit the fact that for ideal cylinders, the average of all normals is the null vector
(which is equivalent to minimizing Ej).

Geometric errors Ey (Merge Disks) and Es (Grow Cylinder) are defined as regions’ stan-
dard deviation of which the minimum favors sphere-like shapes:

E5(A, B) = E3(A, B) = Zsz Ip; — p¥[?/s™ (4.3)

However, without normals, this error is blind to orientation and trades concavity for convex-
ity. As a consequence, it cannot be used alone to drive the algorithm, but gives satisfying

Topology Name er
RY | RP | RAURP
Cyl. | Disk Disk Fill Hole 0
Disk | Disk Cyl. Create Cylinder | 1
Disk | Disk Disk Merge Disks 2
Cyl. | Disk Cyl. Grow Cylinder 3
Cyl. | Cyl Cyl. Merge Cylinders | 4

Other cases Skip 00

Table 4.1: Topological priority term as a function of the topological change. Candidate
edge collapses are ordered in the priority queue by increasing topological priority term.

74

results in conjunction with the validity predicate, in particular the Quasi-Star estimator
(see below).

4.3.4 Validity predicate

When an edge is collapsed, two regions merge and new potential collapses occur. However,
a large number of them lead to worse configurations with complicated topology and/or
bad geometry. We prevent such degeneration using a Validity Predicate V indicating if an
edge {A, B} can be inserted in the priority queue. The topological part of this predicate
has been mentioned before (see Table 4.1): any edge corresponding to a collapse with an
infinite topological error ep is ignored.

(i) er(A,B) €10,4] = V(A, B) = false (4.4)

The geometrical part of V checks eg to prevent segmentation discrepancy. In particular,
“ideal caps” should be preserved at cylinders’ extremity. These cases being equivalent to
a semi-sphere in R3, the mean normal over them should equal 1/2 when a “Fill Hole”
edge-collapse is considered:

(i1) { " ﬁ‘i’,f?@i? jy @ VIAB) = false (4.5)

Note that 1/2 is exactly the length of the averaged outward normal of any semi-sphere
(i.e. any positive radius).

Classical meaningful decomposition metrics [55] are too restrictive for generalized cylinders,
which may not be convex. Instead, we take into account orientation and penalize tunnels
to be interpreted as cylinders by defining a Quasi-Star estimator Q on the union of two
regions:

QRY)=> si-(p;— p~|my) (4.6)

i
and add a third test to our predicate :

(i) { ;T((é;ﬁ)}fB?fg = V(A, B) = false (4.7)

Since we seek for generalized cylinders, we do not use the Quasi-Star estimator when a
“Grow Cylinder” or a “Merge Cylinders” edge-collapse occurs.

If the three tests fail, then V is true and {A, B} is inserted into the priority queue.

4.3.5 Segmentation results

In practice the entire process can be sped up when starting from a coarse initial segmenta-
tion (e.g., octree partition). Fig. 4.5 shows several examples of surface decomposition with
our algorithm.

4.4. SKELETONIZATION 75

Figure 4.5: Region Graph construction results.

4.4 Skeletonization

With a disk-cylinder surface decomposition in hand, we can now generate the curve bones.
Each cylinder is contracted to a smooth 1-curve and each disk (which ideally corresponds
to a cylinder “cap”) is contracted to a single point, located at the extremity of a bone. We
propose to conduct this process using an harmonic map on the regions.

4.4.1 Harmonic parameterization

We note A the Laplace operator onto the manifold surface. We use the approximation
of [69] to solve the linear systems 4.8, 4.9 and 4.11 in a least-squares sense onto the mesh
vertices. We use the CHOLMOD library for that purpose.

(u,0) cylinder parameterization. Considering Fig. 4.6, the u-parameterization of a
cylinder is obtained by solving the linear system:

u(v) =0 Yvel
u(v) =1 Yovel (4.8)
Au(v) =0 Yv ¢ UyuU

The f-parameterization is obtained by first cutting the cylinder with a path that follows
the best Vu, and then solving a similar linear system to Eq. 4.8:

O(v) =0 Yo e b
O(v) =21 Vv € oy (4.9)
ANG(v) =0 Vv ¢ by U b,

76

(a) Iso-Curve (b) Spatial Weight (c) 6-Dist. Weight

Figure 4.7: A cylinder (dot line), its #-distortion (dot line color) together with its bone
(green line). The integration of the u-iso-value (right, Eq. 4.12) yields almost no noise.

To obtain the cut, a cost function is attributed to
each edge e of the cylinder that calculates the de-
viation between the orientation of the edge and the

normalized gradient of u ?w = Vu/||Vul:

c(e) = [(V1u(vo) + Viuw) Q@) (4.10)

vp and v; being the two extremities of e. We find
the path — between the two borders of the cylinder

which minimizes this functional using Dijkstra’s
algorithm.

Figure 4.6: Cylinder cut

(u,v) disk parameterization. For (topological) disk regions, we directly compute a
planar parameterization. Let B be the border of such a given disk. We start by defining a
f-parameterization of B before computing (u, v)-coordinates by solving the linear system:

u(v) = cos(f(v)) YveB
v(v) =sin(f(v)) Yv € B
Au(v) Vv ¢ B

(v) = 0 (4.11)
Av(v) =0 Vv ¢ B

4.4.2 Bones’ geometry

Since one of the main applications we target is skeletal signal processing, we need to
make sure that the skeleton’s geometry we obtain is not only visually smooth, but has
mathematical guarantees about its smoothness. We present our construction below, and
discuss it in section 4.4.3.

Starting from the cylinder parameterization, we derive its bone’s analytical form b : [0; 1] —
R? as the mean of u-iso-values. We compute it by contouring a given u-iso-value as a
polygonal iso-curve made of iso-edges crossing the triangle edges (see Fig. 4.7(a)). We
then consider a weighted combination of these iso-edges’ centers. Our experiments show
that accounting for distortion is the foremost concern. Therefore, the analytical form of b

boils down to:)
T ,0)do
b(u) = 10 pQ(:)
g do

This simple strategy is insensitive to noise and tends to define the most “natural” bone.
See Fig. 4.7 for an illustrative comparison between spatial weighting (Fig. 4.7(b)) and our

(4.12)

4.4. SKELETONIZATION 7

integration procedure (Fig. 4.7(c)). Note that the spatial weighting is used in almost every
Reeb Graph embedding technique. In practice, we represent bones using interpolating
B-Splines with control points sampled from Eq. 4.12.

4.4.3 Bones’ regularity

Fig. 4.8 (left) recalls the definition of a 2-manifold and the regularity of a function defined
over it: p is defined over M and locally maps each open set of M to an open set of R2.
These sets recover M in a way that the transition map py o ,u|_V1 from UNV C R? to R?
is regular, for each open set U and V such that U NV # (). The regularity of M as a
2-manifold is defined as the one of the transition maps. Therefore the function f can be
seen through local coordinates given by p, and f is defined by f = f o u everywhere. The
regularity of the function f is defined as the one of f

In our case, the regularity of the function b depends on the regularity of its related cylinder
surface mesh and on the regularity of the (u,#)-parameterization. In fact, b has the same
regularity as the position function on the mesh seen through the (u,#)-coordinates p =
po AL since b(u) ~ f;;o p(u, 0)do (see Fig. 4.8).

4.4.4 Connecting bones

Once each bone is created, we obtain a disconnected skele-
ton (see Fig. 4.9). Although one can enforce additional

constraints on the (u,#)-parameterization to artificially Pl \
St

join their extremities by construction, this usually leads to Y -'\;7‘31

lower skeleton quality. Instead, we explicitly connect the s ‘

independently constructed bones by joining the extremities
of the ones related to adjacent regions on the triangular
mesh.

Given such an articulation, the adjacency graph AG of

the corresponding cylinders is built. All related bones’ Figure 4.9: Disconnected
extremities are merged, introducing a minor deviation from skeleton

the original bones: the splines defining them with border

Up (resp. Uy) are updated with their first (resp. last) control point being relocated at the
barycenter of the previous extremities. The induced skeleton deformation can be controlled
by setting the domain of the original spline to be unchanged.

M P R3
M f Y

Figure 4.8: Left: The regularity of a function f on a manifold is defined as the one of f
Right: The position function p is defined over the 2-manifold M. \is the (u, #)-coordinates
function defined over M.

78

4.5 Optimization

In the previous sections, we presented an algorithm to find topological cylinders in shapes
and a method to construct a curve skeleton from them. For some applications, it is also
important to provide a surface decomposition with well shaped, smooth boundaries We
now present the third (optional) component of our approach to iterate over the process, in
order to obtain such smooth boundaries.

4.5.1 Surface-restricted skeletal Voronoi diagram

Inspired by the Lloyd relaxation algorithm, we propose to optimize the smoothness of
our segmentations in an iterative process. Given the curve skeleton, we compute a new
surface decomposition by associating the index of the closest bone of the skeleton to each
vertex of the mesh. This corresponds to euclidean space subdivision based on individual
bones, therefore defining a Surface-Restricted Skeletal Voronoi Diagram (SRSVD). This
SRSVD segmentation is interleaved with our skeleton construction technique in an iterative
global relaxation (see Fig. 4.10). On the contrary to the initial step, the segmentation
of the following relaxation steps is not necessarly made of topological disks only, but
contains topological cylinders as well. Since the SRSVD segmentation does not guarantee
to preserve all the cylinders generated at previous steps, nor prevent from introducing
regions with different topology, we adopt a parametric approach to propose a topology-
preserving solution.

Region Graph
reduction

Skeletonization/\'\
>
K

B

(

Figure 4.10: Fach row corresponds to one step of our relaxation algorithm. The input for
the next step is defined using SRSVD segmentation.

4.6. RESULTS AND DISCUSSION 79

4.5.2 Parametric skeletal Voronoi diagram

To guarantee a valid segmentation from the SRSVD, we parameterize the projection process
and consider cylinders/bones at previous step. More precisely, we intersect the Skeletal
Voronoi Diagram with the model’s surface parameterized by sliding the surface towards
its projection onto the previously defined bone: Vv : 9, = a - b(v) + (1 — a) - v. By
taking « €]0, 1], the process of smoothing the boundaries is slower, but we have guarantees
over the topology of the resulting segmentation. Defining an optimal value for o at each
iteration of the algorithm remains an open problem. In practice, we sample [0, 1] uniformly,
and take the smallest value that preserves the topology of the resulting segmentation.

4.6 Results and discussion

4.6.1 Performances

Results are presented in Fig. 4.11 for various shapes. The skeletons were obtained with 2
iterations in average. Our curve skeletons faithfully reproduce shape topology and geom-
etry (through regularity). We have implemented the entire algorithm in C++ on an Intel
Core2 Duo running at 2.5 GHz with 4 GB of main memory. We report detailed timing for
various meshes in Table 4.2.

4.6.2 Properties

Our curve skeleton model satisfies major curve skeleton quality criteria [20]:

Thin our skeleton is analytically defined as a 1-dimensional object
Component-wise this property can be assessed visually on the different illustrations

Efficiency the bottleneck of the algorithm is the region graph reduction, which can be
significantly sped-up using prepartitioning (see Table 4.2)

Model Timing (in sec.)
Name Patches || Reg. Graph | Skel. | Total
(Triangles) (Edge Coll.)
Armadillo 9370 11.0 (66k) 99| 21.8
(345944)
Neptune 56112 || 31 0 (2951<) 1.2 327
(56 112) 2730 6 (20k) | 11| 40
Memento 52550 || 30. 2 (290k) 1.2 | 329
(52550) 3897 6 (29k) 1.1 5.0
Hand 23464 | 11 7 (132k) 04| 129
(23464)

Table 4.2: Analytic Curve Skeleton generation time.

80

Criterion AS | LS
Analytical form + -
Attachement to the surface + -
Post smooth editing of the skeleton geometry | + -
Robustness on non-organic/noisy shapes - +

Table 4.3: Our model (AS) compared to [4] (LS).

Nonetheless, we stress the fact that smoothness and regularity reproduction, although not
mentioned in Cornea et al. ’s list [20], are fundamental properties for skeletal geometry
editing and processing. We refer to section 4.4 regarding good properties of our skeleton
in this context.

4.6.3 Comparison

We compare our skeleton model to Laplacian skeletons [4] (results obtained with the au-
thors’ implementation, using default values) and Reeb Graphs in Fig. 4.12; as they use the
same input, and are commonly used in different applications.

Laplacian skeletons are defined as a contraction of the input mesh, contraction made by
successive edge-collapse. As a result, one vertex of the skeleton corresponds to a collection
of mesh vertices, usually describing a cylinder as the authors underline in their paper
(Fig. 4 in [4]). But this property is not enforced at the core of the algorithm, and we
observe that a lot of bones in the obtained skeletons do not represent any cylindrical
shape of the input geometry (see Fig.4.12, second row). This makes Laplacian skeletons
not suitable for the applications we target (e.g., one dimensional model representation for
skeletal signal processing, see chapter 5).

Reeb Graphs [68,74] are defined as the contraction of scalar function iso-contours over a
surface. By definition, Reeb Graphs shares with our skeleton the property that one bone of
the reconstructed skeleton corresponds to one generalized cylinder in the input geometry.
However, Reeb Graphs’ geometry depends heavily on the chosen scalar function, which
in general does not reproduce a faithful component-wise, surface-related geometry. See
Fig. 4.12, third and fourth rows, for examples of skeletons extracted as the Reeb Graph
of different functions. The existence of at least one maximum and one minimum of the
function implies directly that the extracted skeleton contains at least two extremities, which
limits the space of possible structures Reeb Graph can model (see “Fertility”-2"¢
Fig. 4.12 for an example).

column in

4.6.4 Limitations

First, one limitation of our algorithm is its restriction to manifold meshes: extension to
point clouds and polygon soups is an interesting direction for future work. Second, our
technique can suffer from poorly sampled surfaces with high genus during the region graph
local reduction. Nevertheless, remeshing or global reduction can overcome this issue. Third,
medialness is not enforced in our algorithm, and some parts of the skeleton may still in-

4.6. RESULTS AND DISCUSSION 81

Figure 4.11: Analytic Curve Skeletons of various shapes. The rainbow color code displays
the parameterization values from 0 (blue) to 1 (red).

82

Figure 4.12: Side-by-side comparison. Top row: Our skeleton model. Second row:
Laplacian Skeleton [4]. Third row: Reeb Graph on 'Z’ function. Bottom row: Reeb
Graph on harmonic function with user prescribed constraints.

4.7. CONCLUSION 83

tersect in some places the mesh. This can have an impact on the presented applications.
Fourth, although having too many branches is usually not suitable for the typical applica-
tions we target (e.g. requiring a smooth base domain), it could be interesting to allow the
user to refine the skeleton in a multiresolution fashion, to favor particular locations, while
keeping coarse the others. Last, as with all curve skeletons, there are shapes which are not
suitable for skeletal analysis or processing and which would benefit more from alternative
internal structures (e.g. medial surfaces).

4.7 Conclusion

Curve skeletons offer an intuitive and efficient way to track global shape information such
as topology, thickness and global alignment of structure on a large variety of shapes. Our
Analytic Skeleton model is generated efficiently by means of a disk-cylinder surface de-
composition followed by the geometrical integration of per-region harmonic maps. The
related surface decomposition can then be improved at boundaries using a specific relax-
ation method.

In the next chapter, we illustrate the utility of such a parametric skeleton on geometry
modeling and processing examples. We believe that a large variety of new applications
can benefit from it. In particular, automatic processes such as shape analysis, compression
and visualization can make use of its surface-inherited regularity; while animation, inter-
active shape modeling and processing can exploit its parametric definition and explicit
relationship to the surface.

Chapter d

Skeletal geometry processing

In the previous chapter, we presented a method to obtain an analytic curve skeleton model
from an input shape, with a dense correspondance between both entities. We will now
present some applications that benefit from our skeleton model. These applications are
modeling tools and are essentially based on the smooth displacement field that is obtained
everywhere by going in the direction of the projection of the vertex on the skeleton. Note,
that this set of applications actually drove the formulation of our skeleton model.

Beyond animation, recognition and visualization, geometric modeling and processing have
strongly motivated our work. We illustrate the effectiveness of AnaSkel with 3 examples
for such applications.

5.1 Skeletal shape modeling

Many applications can benefit from a smooth definition of the “near inside” and “near
outside” of a shape, information usually given by the normal of the surface. In Fig. 5.1
we present the Armadillo model and several variations we created simply by defining a
displacement function dy(u) on each bone b and sliding each vertex v of the mesh along its
trajectory by the corresponding value dp, (u(v)).

s

Figure 5.1: Interactive, spatially varying thickness editing using parametric displacement
mapping from our skeleton.

85

86

The trajectories from the vertices to their projection on the skeleton offer a more consis-
tent way to use displacement maps than the normals of the mesh which, in case of large
displacements values, often lead to (local) self intersections of the surface. It also gives
a consistent structure for a 0 volume that acts as a “barrier” when applying negative dis-
placement (inside the shape). With our solution, the user can also intuitively control the
induced deformation “along” components.

5.2 Inset surface modeling

Inset surfaces allow to generate internal structures starting at the boundary surface of a
shape and our Analytic Skeleton helps to design them intuitively.

First, the skeleton’s geometry and the surface-skeleton trajectories can be edited in a
simple way: the user defines a smooth bijective function I(-) to change the definition of
the u-coordinate onto the bone b. The new coordinate is defined as: @(v) = Ip(u(v)) for
any vertex v. This u-coordinate is not harmonic anymore, but gives the user the ability to
edit the trajectories intuitively. For instance, in Fig. 5.2, the user “slides” the trajectories
along the bones, to smooth them or to create singularities in this particular example,
trajectories starting from the head of the mother all point to the same location after editing.

Second, the user can edit smooth inset surfaces with local control of its shape, while
preserving the natural layout of the vertices on the bones, this layout being induced by
the initial harmonic wu-parameterization. The inset surface is then defined as a linear
interpolation between the input surface and its skeleton, with « € [0;1] an interpolation
parameter that can vary spatially (i.e. for each vertex):

ISa(v) = (1= a) - p, +a- b)) (5.1)

Examples of interactively edited inset surfaces are shown in red in Fig. 5.2 (top).

Due to the parametric nature of our analytic skeleton, painting offers a simple means to
edit the geometry of the skeleton as well as the shape of inset surfaces. The user draws
using a brush equipped with smooth functions W; : M = R* that act as a displacement

modulation from the suerace to the skeleton or vice versa. This function is inserted in
29 : _ Jo Wi (v(u.0)p(u.0)do
Eq. 77 to obtain b(u) T W (0)0

, affecting smoothly the skeleton’s geometry.

User-supervised weighting can also be integrated in Eq. 5.1 to obtain IS;(v) = (1 —
Spl(v)(«)) - p, + Spl(v)(t) - b(u(v)) and locally deform the inset surface by editing its
local depth. The weighting function is then in the form Spl : M = {F), : [0;1] — [0;1]},
F,, being a bijective cubic spline of order n.

As an application, we propose an interactive Shell Mapping |[71] tool, with which the user
can “peal” surfaces using one of its specific inset surfaces and then map arbitrary geometry
to the so-defined in-between shell space (see Fig. 5.2 bottom).

5.3. SKELETAL MESH FILTERING 87

Figure 5.2: Top: Smooth inset surfaces extraction and interactive editing. Bottom:
Interactive design of in-between shell space for mapping of arbitrary, even procedural
geometry (right) without inflating the global volume of the shape.

5.3 Skeletal mesh filtering

Mesh smoothing is a fundamental tool in geometry processing. Beyond low-pass (Lapla-
cian) filtering, the Bilateral Filter has recently emerged as an efficient feature-preserving
operator. Originally designed for images [93], it has been adapted to meshes and higher
dimensional data. Here, the basic idea is to replace the standard spatially weighted local
combination of samples by bilateral weights accounting for both sample proximity in the
domain and in the range of the sampled function. Although domain and range spaces are
clearly defined for images (i.e. , pixel positions and pixel colors), this notion is ill-posed
for geometry, as 3D vertex positions are usually not expressed relatively to a global para-
metric domain. Jones et al. [45] overcome this problem by deducing a range value from
the distance to neighbors tangent planes:

ZUGN(’U) Hu(pv)wS(Hpu - pv”)w”‘(HHu(pv) - pv”)a‘u
2 uen(w) Ws([Py = Pyl wr ([[Hu(py) — Poll)au

BL(p,) =

with a, an area weight, w a Gaussian kernel or one of its polynomial approximations and
the orthogonal projection IL,(p,) = p, — (P, — Py |Nu)n, modeling coplanar similarity as
a range space.

Although this definition works perfectly well for small scale high frequency features, it
quickly loses its detail preserving behavior for mid-size structures. Basically, the coplanar
similarity assumption does not hold for larger structures and we propose to replace it by a
local thickness similarity measure. To do so, we make use of our curve skeleton to define a
new filtering operator, more suitable for larger structure preservation: Skeletal (Bilateral)
Filtering.

Let ¥(v) = b(u(v)) be the projection of p, onto its related bone. Basically, we model
the shape thickness similarity r as the norm of the surface-skeleton vector ¥(v) — p,,
establishing the skeleton as the domain and W' as the geometric signal (range). We can
therefore express skeletal filtering as:

ZUGN(’U) Ly (py)ws [Py = Pyl[)wr (Ir(w) — r(v)])ay
> ouen () WslIPu = Polwr([r () — r(v)])ay

SBL(p,) =

Fig. 5.3 illustrates the differences to standard bilateral filtering: medium size structures
are preserved even if small structures are strongly smoothed out. This behavior is often

88

Input Laplacian Bilateral Bilateral Skeletal

Larger Support

Figure 5.3: Surface filtering comparison. All pictures but the fourth use identical support
sizes.

desirable when processing shapes with a wide range of frequencies. The skeletal filter can
be used in conjunction with laplacian and bilateral filters in a multi-lateral filter, where
planarity and thickness act as complementary range spaces.

5.4 Discussion

By nature, curve-skeletons are not differentiable at the joint points where more than two
bones connect (it is not even locally 1-manifold). This property has to be taken into account
when designing skeleton-based applications. The skeletal mesh filtering application (see
section 5.3) is not affected by this, as demonstrated in the results where the filtering
has been performed globally on the mesh, and not only onto a bone. The inset surface
modelling application (see section 5.2) is not affected either, as the result of this application
is used to construct a shell-space embedding, which does not require necessarily smooth
boundaries everywhere. On the contrary, the displacement application (see section 5.1)
requires to set a displacement that is reqular in order to avoid strong normal discontinuities
at the boundaries of the cylinders. This is achieved in our framework by adjusting the
displacement function derivatives at the joints of the bones.

Manual editing of the AnaSkel Up to this point, we presented an automatic method
to compute the AnaSkel of a triangular mesh. We eventually came to think that: (i)
the simplicity of the curve skeletons’ representation implies that they shoul be editable
easily by an artist, (ii) the optimal topology and geometry of a surface skeleton are very
dependant to the artist’s particular wishes, and (iii) the optimal topology and geometry
of a surface skeleton are very dependant to the application targetted by the artist.

5.4. DISCUSSION 89

All three points together motivate the pos-
sibility of editing manually a surface skele-
ton. Our framework could allow easy in-
teraction with the creation process of the
AnaSkel, since it is built upon a cylinders & Missing bone
disks decomposition, and brushes allowing
to design cylinders have been developed al-
ready [104]. Note, that an automatic detec-
tion of missing bones corresponding to pro-
tuberances on cylinders is already feasable
and implemented (see Fig. 5.4).

(u, 0)-distortion R-distortion

Figure 5.4: Cross analysis of (u, #) distortion
and R (distance to bone) distortion maps on
the cylinder over a scale space (right) reveals
the missing bone corresponding to the left ear
of the horse (left).

Local AnaSkel Many recent modeling

softwares, as Blender |1| and especially ZBrush |2]| are brush-based. In particular, dur-
ing a standard modeling session, a smooth base mesh is very often used, and geometric
detail is added on top of several hierarchy levels by the use of a displacement brush. During
this process, the mesh can be updated at different levels of the hierarchy. Displacement
is performed in the direction of the normal of the mesh, and artists must take care of self
intersections that are introduced by this operation.

We believe that topological brushes, allowing to design interactively smooth decomposition
domains of various types (disks, cylinders,...) can help defining smooth directions for dis-
placement mapping. For a cylindrical local domain, the embedding strategy we presented
in the previous chapter can be used. The main challenge resides in the automatic definition
of this local domain, that needs to be adapted to the geometry and to the scale of the brush
used by the artist.

Part 111

On-Surface structures

In part II, we presented results and shape modeling applications on structures that were
1-dimensional and inside the shape. In this part, we present two kinds of structures that
are embeded on the surface, and that allow easy and efficient definition of handles for
variational mesh deformation techniques.

In chapter 6, we present our simplicial complex for deformation, which is a multi-resolution
structure allowing the user to select either regions, curves or points on the surface.

In chapter 7, we present the construction of curve sets, that are derived from intrinsic and
view-dependent properties of the surface, for which we show that they are good candidates
for the selection of features on the surface.

91

Chapter O

DEX: On-surface simplicial
complex for deformation

Linear variational mesh deformation techniques such as LRI (see section 3.3.1 in the tech-
nical background) allow to perform deformations on surfaces efficiently. We remind the
reader of the modeling metaphor that is used for this technique. Each time the user wants
to perform a deformation, a region of influence (ROI) is defined; it is composed of a handle
that the user grabs and deforms, a fized region that remains still, and an in-between region
where the geometry is optimized by the system to minimize some bending and stretching
energies, therefore preserving geometry as much as possible in the deformation process.

While techniques such as LRI have been intensively developed over the past years, the
definition of the ROI itself remains a tedious task for the artist and a time consuming
process in a typical modeling session.

In this chapter, we tackle this problem and propose the definition of a deformation complex
embedded on the surface, allowing for a user-friendly selection of handles on the mesh. We
rely on the LRI technique for the deformation, but any other variational technique requiring
the definition of a ROI for the deformation can benefit of our approach.

Figure 6.1: Many 3D objects present features at different scales.

93

94

6.1 Deformation complex

We propose to define a simplicial complex on the surface as the underlying domain for
handle selection. The user can choose to select either a region, a curve separating two
regions, or a point joining several curves.

Many 3D objects present features at different scales (see Fig. 6.1). We adopt a strategy
where the user can easily switch from one level of detail to another in the deformation
complex (e.g. using the mouse wheel) in order to adjust the scale of the feature he or she
grabs. The deformation complex is therefore built in a multi-resolution fashion.

Regions that the user grabs should be homogeneous in some way, and it should correspond
to a feature. Based on this observation, we cast the problem of the definition of the
deformation complex to the definition of a multi-resolution segmentation of the surface.
The complex is built on top of this segmentation. The adjacency information in the regions
is used to define the free part of the ROI from the only information of the handle.

Our deformation pipeline is illustrated in Fig. 6.2, and is composed on two main steps:
(i) the definition of a multi-resolution segmentation, based on a set of multi-resolution
descriptors on the mesh, and (ii) an interactive step, where the user can navigate over
the different levels of the hierarchy and use the resulting deformation complex to edit the
shape.

6.2 Multi-resolution segmentation

This multi-resolution segmentation is performed on different energies at different scales,
with an increasing number of clusters when increasing the level of detail.

Using the k-means algorithm, we cluster the mesh triangles into k; regions at level [€ [1, L]
(k; < kyy1), minimizing the standard deviation of different descriptors. The size of the
regions should decrease when increasing the level of detail, and therefore the number of
regions should increase at the same time.

Input Pre-process Interactive Result

Multi-scale Multi-scale Multi-scale
descriptors segmentation navigation & deformation

Figure 6.2: DEX pipeline

6.2. MULTI-RESOLUTION SEGMENTATION 95

6.2.1 Variational shape approximation

We quickly review the variational shape approximation technique from Cohen-Steiner et al.
[19], that is an adaptation of the k-means algorithm on surfaces, that uses a relaxation
similar to Lloyd’s strategy [65].

The input is a manifold triangle mesh M = {V, T} with appropriate topology, an integer k
being the number of clusters in the partition, and a metric d(-,) that defines the distance
from a triangle to a cluster.

The different clusters are equipped with so-called proxy geometry, which is a simple plane
defined by a point p; and a normal n;. The algorithm is iterative, and works as follows:

[Initialization]: Pick k triangles in the mesh as centroids, and define the geometry
of the corresponding proxies using the centroid of the triangles and their normal;

e [Step 1]: Using a priority queue, floodfill the regions on the mesh using a breadth-
first strategy — with a cost defined by the metric d(-,-): a triangle ¢; is suggested to
be added to the region r; with cost d(¢;,7;);

e [Step 2|: Update the geometry of the proxies as the plane that fits best the geometry
of the clusters;

e [Step 3|: For each cluster, set its triangle that deviates the least from the updated
proxy to be the new centroid;

e [f convergence is not reached, go to step 1.

Two different metrics are presented in the original article, the £2 metric that gives the
squared distance to the tangent plane of the proxy, and the £*! metric that gives the
squared difference between the normal of the triangle and the normal of the proxy.

{ L2(ti,r;) = Area(t;)|[t; — IL; ()] (6.1)

L2 (ti,) = Area(t;)||n(t:) — n(rj)[]®

The authors show several advantages of using the £2! metric over the £? metric (see
Fig. 6.3). Convergence is reached faster, and errors are diminished (when comparing the
original mesh and remeshed version based on the proxies that are found). Of course, as the
normals of the triangles are very easily disturbed by noise from the position of the mesh
vertices, normal smoothing may be necessary in some cases to obtain visually pleasing
results.

Complexity The segmentation algorithm that we use has a complexity that is dominated
by the complexity of the flooding procedure, which is Ny log(Np) (N7 denoting the number
of triangles in the mesh). It is relatively insensible to the number of clusters k;, and runs
at interactive rates on meshes that we presented in Fig. 6.1. This concerns only the
pre-processing step, and the interactive exploration of the deformation complex that we
introduce later in section 6.3 is performed in real-time.

96

".w «"ﬁf E": "‘. f"f
£2 £2,1

Figure 6.3: Comparison of the £2 and £*! metrics for the variational shape approximation.
Image taken from [19].

6.2.2 Multi-resolution descriptors

Our clustering of the mesh is based on a set of descriptors on the triangular surface.
Following the idea of Cohen-Steiner et al. [19], we use the normal of the triangles as a first
descriptor to perform the clustering at coarse levels.

Our experiments show, that using the curvature as a descriptor for fine levels of details
leads to segmentations that are complementary to the low-resolution segmentations.

To summarize, our descriptors composed of two terms:

e a normal per triangle (used generally at coarse levels)

e a curvature value per triangle (used generally at fine levels)

We first compute the descriptors per-vertex. We then set the descriptors of each triangle
as the average of the descriptors of its three vertices. Even if the normals of the triangles
are perfectly defined (in contrast to per-vertex normals), this strategy tends to give better
results, as it smoothes the descriptors naturally, resulting in a partitioning that is less sen-
sitive to noise. As we perform our partitioning in a multi-resolution fashion, the definition
of the descriptors at the first scale (no blending) are compatible with the ones at coarser
scales.

To obtain our multi-resolution segmentation, we compute a k;-means clustering at each
level [, that minimizes the deviation to the chosen-per-level descriptor, using the algorithm
presented in section 6.2.1. We finish our partitioning by applying a regularization scheme
on the boundaries of the segmentation, in order to obtain smoother regions. For this, we
iterate over the triangles of the mesh that are on the boundaries of the different regions,
and we attribute the triangle to its neigbooring region if two of its edges belong to the
boundary. We perform this change only if the topology of the resulting segmentation stays
the same.

Scale space To retain large features based on normals, features at coarse levels should
be based on low-frequency geometry. In order to obtain this property, we compute a scale
space over the set of descriptors: at each level [€ [1, L], we compute the average of the
descriptors of the vertices using a gaussian kernel of standard deviation o; = m

over a sphere of radius 30; (this value is commonly accepted as a good fixed support for

6.3. INTERFACE FOR DEFORMATION 97

TEEE
LLYY

Curvature scale space

Input shape

Figure 6.4: Descriptors of the vertices are blend over the scale space.

coarse levels fine levels

Figure 6.5: Multi-resolution segmentation.

gaussian kernels, as it retains more than 97% of the information). The normals in the
descriptors are renormalized after blending.

The gathering of the neighborhood is performed by flood-filling on the mesh starting at
an initial vertex, to ensure that we blend our descriptors over a connected component of
the mesh. For small enough neighborhoods, at high levels of the scale space, the obtained
set is equivalent to a disk. To some extent, the distances are equivalent to geodesics
as the neighborhood is geometrically close to the tangent plane of the vertex. For large
neighborhoods, at low levels of the scale space, these two properties don’t hold anymore.

Note, that the computation of the scale space is performed as a pre-process. An example
of the resulting segmentation is presented in Fig. 6.5.

6.3 Interface for deformation

Based on our multi-scale segmentation, we construct the deformation complex at each scale
by considering the adjacency of the regions on the triangle mesh. A simple strategy that
we adopt is the following:

98

Figure 6.6: Exploration of the deformation complex: The user can grab regions,
curves or points. The region of interest (ROI) of the deformation is adapted to the selection.
Selectable features are displayed w.r.t. the zoom in the scene, and is reduced to a certain
area around the mouse for visualization.

1. the handle part of the ROI is composed only of the vertices that belong to the selected
feature (either a region, or a curve, or a single vertex);

2. the vertices that are located on the boundary curves of the union of the regions
adjacent to the selected feature compose the fixed part of the ROI;

3. the vertices in-between compose the remaining part of the ROI, and only their posi-
tion is unknown when setting up a linear system for the deformation.

We show in Fig. 6.6 an example of exploration of the deformation complex. Small images on
the mesh show the curve and point features that can be selected and are “mouse grabbers”
that can be clicked on by the user to select and deform them. For the curves, the “mouse
grabber” is located at the middle of the curve (except for cycles, where it is put arbitrarily).
To select a region, the user can click directly on it.

In a typical modeling session, the user can edit features at different scales, independently
of the order in which he chooses the scales. In Fig. 6.7, a standard modeling session using
our deformation complex is illustrated: in this case, fine scale features (bumps on the
leg), then coarse scale features (foot) and finally mid-scale features (knee) were edited
successively. It took less than thirty seconds to execute this standard modeling session
(after DEX definition).

6.4 Discussion

First, as we build our deformation complex over a segmentation, we make the assumption
that every part of the mesh is of some interest for the selection of features. This is not true
in general, but our formulation is useful for a wide class of meshes that contain features of
very different scales.

Second, the energies that we minimize are limited to representing a certain class of features
(large quasi-planar parts at low scales and bumps and local extrusions at higher scales).
The segmentation process that we use is also based on a local gathering, and a more global
strategy could allow better results.

6.4. DISCUSSION

Successive éditlng steps

99

Final result

Figure 6.7: Manipulation of the deformation complex: The user edits features of
the mesh that were selected by our multi-resolution approach. The order in which he or
she selects the scale of the deformed feature is not important.

The final result of the modeling session is displayed on the right.

In the following chapter, we study a complementary approach and show how curves and
curve-like features defined on the surface can help defining handles for mesh deformation.

Chapter 7

On-surface curve set for
deformation

In the previous chapter, we proposed to use the definition of regions as handles for mesh
deformation. We note that sometimes, not every part of the shape is meant to be seen as
a feature. This motivates the definition of handles on the surface, that do not necessarly
derive from a segmentation of the shape.

In this chapter, we present an interface for the selection of feature curves as handles for
mesh deformation. We propose to derive our feature curves from intrinsic, as well as from
view-dependent curvature information using existing line drawing algorithms, as these two
classes of curves describe both interesting features to grab, and they are orthogonal.

As for the previous chapter, we rely on the LRI technique for the deformation, but any
other variational technique requiring the definition of a ROI for the deformation can benefit
of our approach.

7.1 Selection of intrinsic feature curves for the deformation

As seen in the previous chapter, large features can be retained by performing a geometric
analysis of the low frequencies part of the surface. In this section, we propose to use the
curvature information in a similar way.

7.1.1 Construction and regularization
Fig. 7.1 illustrates the main steps of our pipeline:
1. the curvature is computed on the mesh

2. a subset of the mesh is considered as features (all vertices v such that x(v) € [k1, Kk2[)

3. insignificant features are removed, based on their areas

101

102

/
/ ¢ \
1
max curvature

Input max curvature ehrssholded Deformed

Figure 7.1: We rely on the curvature to detect important features on the mesh, allowing
for easy manipulation of the input mesh. Some insignificant features were not taken into
account, based on the surface of the feature.

Based on the kind of features the user wants to retain, mean curvature H, maximum
curvature |k1| or the difference between maximum and minimum curvatures |k1| — |k2| can
be used as the descriptors of the shape’s features.

In the example of Fig. 7.1, the absolute value of the maximum curvature |x1| was used as
a descriptor for our features. The red parts on the surface (Fig. 7.1, 3"%) indicate a level
set Vi, |(s) = {v € M||k1|(v) > s} parameterized by a thresold s tuned by the artist. This
parameter describes the scale of the feature he or she wants to grab. Some features that
were small were ignored in this example, based on their area (we eliminated all features
that had an area smaller than 30% of the largest feature).

Note, that smoothing of the curvature on the mesh, as described in the previous chapter,
regularizes their level sets, therefore the handles given by our technique. Alternatively,
the curvature could be computed at large scales, using quadric-fitting techniques on large
neighborhoods. These methods are typically not used for applications requiring precise
local curvature, on the contrary to our case where we are interested in retaining only large
scale features of the surface.

7.1.2 Interface for deformation

The strategy that we propose for the deformation is straigtforward: when the user grabs a
feature, we set the others to be the fixed part of the ROI, and all others vertices in between
both parts are optimized using LRI. This strategy involves generally larger systems than
when using DEX (see chapter 6).

Note, that we chose to set high values for the thresholding of the descriptors because we
are interested in finding large scale feature lines in the mesh (see Fig. 7.1). Large features
that are disconnected, yet close on the mesh, can be a problem when being manipulated
one by one: the area in-between is not large enough, and by manipulating only one feature
and setting the other one to be fixed, the user can create cracks on the geometry. Several
approaches could be used to solve this problem: e.g. thresholding by hysteresis, non-
selection of features that are geodesically close to the handle, setting of different orders of
preservation on these features.

7.2. SELECTION OF VIEW-DEPENDENT FEATURE CURVES FOR THE
DEFORMATION 103

{

i\
N {
NN \\
/

Input Occluding Suggestive Ridges Valleys Apparent
contours contours ridges

Figure 7.2: Different line drawing algorithms allow to retain details of visual importance on
3D surfaces. These describe geometry that is sometimes difficult to capture from other view
points. Images generated using the RTSC software, distributed by Princeton University.

7.2 Selection of view-dependent feature curves for the
deformation

As written before, we can also use view-dependent feature lines stemming from Line draw-
ing algorithms, such as contours and apparent ridges (see Fig. 7.2). These curves are
orthogonal to the class of intrinsic feature curves on the mesh (that are view-independent).

Line drawing algorithms focus on retaining information of the mesh that is pertinent to the
users for the visualization of 3D objects. As these algorithms aim at describing features of
visual importance, that are very difficult to capture from other points of view, these curves
constitute good candidates as handles for mesh deformation.

7.2.1 Line drawing rendering

Line drawing algorithms aim at defining curves that exhibit features of visual importance on
a 3D surface (see Fig. 7.2). These can be view-dependent (occluding contours, suggestive
contours) or not (ridges, valleys). They are often described as being part of the non-
photorealistic (NPR) rendering techniques, as they allow to abstract the representation of
the shape on the screen.

These curves are computed from curvature information on the mesh:

e Occluding contours are the set of points on the mesh, whose normal is orthogonal to
the view direction.

e Suggestive contours are the set of points that likely to become contours, for small
variations of the point of view. Equivalently, they are curves with null radial curva-
ture.

e Ridges (resp. valleys) correspond to curve where the principal curvature assumes
a maximum in the pricipal direction, for which k1 > 0 (reps. k1 < 0). Their
computation involves the curvature as well as the derivative of the curvature.

e Apparent ridges are the same, but with respect to view-dependent curvature [48].

104

7.2.2 Curves regularization

Unfortunately, many view-dependent curves are not smooth on the 3D surface, even though
they appear smooth to the user once projected on the screen (see Fig. 7.3). Moreover,
these curves are sometimes disconnected in a imperceptible way, and composed of small
components that are very close to each others. This leads to unexpected deformation
behaviour when considering these curves for deformation, as it can introduce cracks in the
geometry. We solve these problems by first processing the set of curves using the following
strategy:

1. we aggregate small components that are geodesically close on the mesh, on a per-type
basis;

2. we remove components that are small on the screen, according to a user-threshold;

3. we smooth the rest of the curves one by one, by iteratively applying a weighted
least-squares filtering on them and projecting them back on the surface (using an
interpolation MLS operator).

7.2.3 Interface for deformation

We propose to use the resulting set of smooth curves in a different way than before, when we
were considering intrinsic features that were large and sparsely distributed on the surface.
Here, a more classical approach is used: the user selects a curve as handle by clicking on it;
the ROI of the deformation will then simply be the area on the mesh that is geodesically
close to the curve. Two parameters can be tuned by the user: (i) the length of the handle
(the distance from the selection point) and (ii) the size of the ROI can be adjusted (see
Fig. 7.4). When changing these parameters, the visualization of the ROI can be updated in
real-time, as their computation requires only flood-fill algorithms on the mesh, in regions
that are generally relatively small.

Results of deformations are presented in Fig. 7.5. These examples present some features
that are traditionnally tedious to select, and that were straigtforward to capture using our
technique (e. g. the contour lines in the double torus object).

0

% Screen view
i 1Y)

Actual lines in 3D | Actual lines in 3D

Figure 7.3: Regularization is performed per-curve, and allows to obtain smoother handles
for the deformation.

7.3. DISCUSSION 105

7.3 Discussion

We have presented in this chapter two complementary approaches for the selection of curve
handles on meshes, stemming from intrinsic and view-dependent properties of the mesh.
In some cases, it is completely natural to sketch deformations from contour curves, as
demonstrated in previous work. To cope with the irregularity of the rendered curves, that
is invisible to the user, we proposed a regularization strategy that is efficient and allows to
obtain the expected deformations.

More advanced deformations could be obtained by taking into account the nature of the
different curves: (i) intrinsic, (ii) contour curves, (iii) suggestive contours, (iv) apparent
ridges, that correspond to various differential properties of the mesh. In particular, the
selection of some curves could be used in the deformation process, not as handles, but
rather as specific geometry-preserving constraints. Our approach could also be improved
by using advanced hysteresis methods.

2Rrol
y Control
- . . : —-
o
Selection i

Figure 7.4: Tuning of the influence area of the ROI allows to obtain different effects using
the handle for deformation.

Figure 7.5: Results of deformations using view-dependent NPR curves.

Part IV

Outer structures

In part IT and part III, we have presented structures that were 1-dimensional and 2-
dimensional, and that were inside the surface or on the surface. It this part, we are
presenting results that benefit from 3-dimensional outer structures, the so-called cages
that allow the use of a variety of deformation techniques.

In chapter 8, we see how to represent animated 3D shapes stemming from performance
capture using cages. The inverse problem is not straightforward to solve, as it presents
high condition numbers in general, and requires adapted strategies that we introduce in
this work. In particular, we introduce new relazation and spectral reqularization strategies,
and show how these two orthogonal approaches combine.

In chapter 9, we see the possible applications of such a representation, and discuss the
advantages and drawbacks compared to previous approaches.

107

Chapter S

Cage-based representations of
animated shapes

Cage coordinate systems have been studied intensively over the past years. They allow to
encode each point of the inner space of a cage w.r.t. its vertices. The main goal in the
development of these coordinates has always been to obtain smoother and more beautiful
deformations when manipulating the vertices of the cage. The compromise between their
simplicity of use and their expressive power has made them a very popular tool in the
animation industry.

These sets of coordinates present a high condition number for the inverse problem, and
the latter is particularly challenging. Indeed, they were designed to restrain the space of
possible deformations of the inner space of the cage, even when manipulating poorly its ver-
tices (for example, Green Coordinates guarantee to obtain quasi-conformal deformations,
regardless of the deformation of the cage).

In this chapter, we show how to represent animated 3D shapes obtained from perfor-
mance capture using cages. We present an intuitive framework for this, that is built upon
new relaxation and spectral regularization strategies. We provide a thorough mathemati-
cal analysis of these two orthogonal approaches, and show their complementarity in this
particular context.

8.1 Introduction

Motion capture and representation has always been a major concern in the cinema industry.
Many recent movies feature virtual characters that need be animated in a realistic way, or
even whole virtual worlds where no real-life object is displayed at all. One amusing fact
is, that motion capture actually preceded movies, and not the opposite. It is accepted
that FKadweard Muybridge was the first to capture images from the real world in order
to reconstruct what we later called a “movie”. His invention was motivated by a bet: he
wanted to prove that a galloping horse had, at some point in the stride, all four hooves off
the ground (see Fig. 8.1).

109

110

A Ao

S

Figure 8.1: The first movie ever shot: Eadweard Muybridge capturing the motion of a
galloping horse. Left: original movie. Right: original article in Scientific American.

Recent advances in 3D performance capture raised a large number of new problems. Among
them, high level control of raw animated sequences is an important component of any
editing or processing framework. While former, synthetic animated 3D sequences usually
came with an underlying control structure (e.g., skeleton, cage) that tailored the animation
at high level, 3D-+time acquisition systems only provide raw point sets or mesh sequences,
possibly consistent over time [22,70], but without any high level control structure. Such a
structure is key for compression, motion editing and other processing tasks.

As already mentioned in the introduction of this thesis, high level motion control struc-
tures can be roughly classified in three categories. First, skeletons capture nicely locally
rigid motions and are extensively used in synthetic human and animal body animation.
Second, surface handles can be defined using a shape decomposition and help establishing
a consistent segmentation of the model, allowing to morph independently each component
w.r.t. rigging controllers. Third, cages are low resolution meshes which transfer their de-
formation to a high resolution model embedded in their encompassed space by the mean
of a specific coordinate system. Recent advances in cage coordinate systems [46,47,61]
now offer a very flexible framework to smoothly and efficiently edit the shape of models
with arbitrary topology, without even being constrained manifold structure, using a simple
cage. These three categories of structures have all their own strength and weakness, and
rather complete each other than compete in a modelling and animation package.

To exploit their modelling power, with performance captured data for instance, a reverse
engineering process is required to construct them automatically from a raw animated se-
quence. Most reverse engineering methods built on the same observation: a large part of
the raw sequence motion can be captured at a coarser level and small local motions can be
ignored in a number of application scenarii. Thus, the reverse engineering process consists
in replacing a sequence of (high resolution) raw models by a single static one together with
a sequence of (coarser) control structures. Then, the high resolution sequence can be re-
constructed by applying the animated control structure sequence to the static model. This
yields immediate benefits for compression and high level editing, but also for processing
and analysis, as the coarse nature of the control structure makes it practical for a number
of computationally expensive techniques.

8.1. INTRODUCTION 111

Such a reverse engineering framework has been recently proposed for skeletons [23], where
the resulting structure can be used for both processing and shape/motion modelling.

The case of cages however has not been entirely tackled, and existing methods fail to
provide high quality animated cage sequences which are both able to reconstruct faithfully
the input sequence and also well-structured enough to be exposed to the user for interactive
post-editing.

In this chapter, we address this problem and present a new powerful framework for the
compact and stable encoding of deforming 3D objects with cage-based representations.
Given an animated sequence (with one-to-one vertex correspondences) along with an ini-
tial cage embedding, our technique generates smoothly varying cage embeddings which
reconstruct the enclosed object deformation with controllable error. Our framework is
constructed around an inversion process and exhibits the following features:

e Generality: our approach supports synthetic and captured sequences in the form
of triangle soups, point clouds and volumetric data; it is oblivious to the cage coor-
dinate system; it can implicitly deal with realistic (e.g., as-rigid-as-possible) as well
as expressive (e.g., cartoon stretching) deformations. Thus, the resulting compact
cage-based representation can act as an intermediate, low-memory footprint substi-
tute to speed up time-varying geometry processing, while delegating the tricky task
of detail preservation to the underlying cage coordinate model.

e Speed: high resolution animated sequences are usually heavy data sets; we propose
an adaptive algorithm which reduces the number of constraints taken into account,
and which maps naturally to GPUs.

e Accuracy: we measure the reconstruction error of our cage-based representation and
show that it remains low and controllable, which allows its usage for compression.

e Usability: when exposed to the user, each reconstructed cage should be easy to edit
; we present an algorithm for localized cage regularization, yielding very smooth vari-
ations of the reconstructed cage over the sequence, while maintaining high accuracy
in model reconstruction.

Technical contributions: In order to fulfill these criteria, we propose the following
contributions:

e A fast and automatic framework for the extraction of re-usable deformation cages
from arbitrary sequences of deforming 3D objects (section 8.3).

e A purely algebraic algorithm for the extraction of optimal geometry-sensitive handles
for cage deformation based on mazimum-volume sub-matrices [38], allowing for stable
and fast cage coordinate inversions (section 8.4).

e A novel spectral regularization algorithm, enabling a localized enforcement of regular-
ization terms, only for the cage vertices where the numerical solution of the inversion
is found to be the most unstable (section 8.5).

112

We evaluate our framework on various synthetic and acquired data sets and demonstrate
its usefulness for different applications (section 8.6):

e Compression: Since cages are meant to have much less vertices and faces that the
enclosed model, they can be used for sequence compression. In that case, decom-
pression consists in, given the enclosed model at the first frame only, reconstructing
its poses along the sequence thanks to the cages generated by our algorithm. As
these cages are smooth and obtained through stabilized inversion, they are not sen-
sitive to numerical instabilities and guarantee stable sequence decompression. Also,
in contrast to traditional compression strategies, this approach is oblivious to the
representation of the enclosed model (non-manifold meshes, point clouds, etc.).

e Animation Transfer: Since they are stable and smooth, the cages generated by our
algorithm can be used to enclose another object (in contrast to traditional inversion
strategies), thus transferring the animation to the other object.

e Speeding up geometry processing tasks: Sharp features introduced by the artist in
the “rest pose cage” are well-preserved in our cages, therefore they can be used as a
low-resolution representation that is suited to heavy geometry processing tasks such
as mesh interpolation.

8.2 Related work

Many deformation models have been recently proposed for interactive 3D shape model-
ing/editing, in particular using a variational framework [62,63,84] (see the complete survey
by Botsch and Sorkine [15]). While control skeletons [42,97,103| are an industry standard
to interact with the shape, volume deformations based on enclosing cages have become
very popular due to their simplicity, flexibility and speed.

In particular, they are oblivious to the representation of the enclosed object (polygonal
soup, point cloud, volumetric data etc.) and allow for efficient pre-computations, along
with simple on-line computations based on linear combinations. This makes them a perfect
support for deformation sequence encoding.

Cage-based deformation: As presented in the technical background section 3.3.2 of
this thesis, a lot of work has been done on the definition of cage coordinates, allowing to
transfer the deformation of a cage to its inner space.

Despite these advances in cage-based volume deformations, only little work payed attention
to the stable computation of the inverse of the cage coordinates, a necessary step for the
cage-based encoding of animated sequences.

Animation inverse kinematics: Several complete systems have been presented for
the purpose of animation post-editing through the analysis of time-varying 3D shapes
[53,54,87,100]. However, their internal animation representation is not compliant with

8.2. RELATED WORK 113

industry standards (e.g., skeletons or cages), which reduces their applicative impact, as
discussed in [23].

More specialized techniques specifically address the extraction of intermediate, manipula-
ble shape representations for the purpose of easy post-editing, such as reduced deformation
models [24,56] or control skeletons [80]. However, they do not encode the deformation itself,
which restricts their application to pose post-editing only. In contrast, de Aguiar et al. [23]
introduced the first framework able to fully convert the animation into a compact and
editable representation. Their algorithm reconstructs a plausible skeleton corresponding
to the input animation as well as the skeleton’s deformation parameters enabling a faithful
reconstruction of the input sequence, useful for compression for instance. However, such
techniques are mostly restricted to rigid motion estimation, suitable for human bodies for
instance, but not for sequences subject to stretching or volume variation. More impor-
tantly, such methods are exclusively surface-based and require a manifold input. Also,
skeletons are mostly suited for shapes exhibiting tubular components and they are difficult
to extend to arbitrary shapes. A few skinning approaches [43,51] allow to reverse-engineer
an animated mesh by considering moving 3D frames instead of the skeleton’s bones. This
flexibility allows to process sequences including non-trivial motion, like cloth motion for in-
stance [51]. However, the absence of a global structure on these frames limits the spectrum
of their applications to compression.

Only a few approaches address the stable and efficient inversion of cage-based deformations.
Xu et al. [100] propose to transfer an initial cage embedding from one frame of the sequence
to the others. However, their algorithm does not explicitly invert the transformation, but
instead tries to compensate the cage pose change through local rotation blendings, which
turns to be inaccurate and unstable, especially when the cage is not close to the object.
Similarly, a possible strategy could consist in transferring the motion from the mesh to the
cage, using deformation transfer algorithms [88|. However, this strategy would induce a
large reconstruction error of the model by the deformed cage since there is no guarantee
in general that the cage reproduces in its interior the transformation it undergoes. For
instance, an as-rigid-as-possible (ARAP) transformation of the cage does not induce an
ARAP transformation of the enclosed model and reciprocally. The same remark goes for
any direct spatial encoding of the cage w.r.t. the model geometry, such as maintaining
the cage as an offset of the animated mesh for example. Moreover, the inversion of the
cage must take into account the coordinate system used for reconstruction. Indeed, for
a given cage, reconstructing an enclosed object with different coordinates (Mean Value
Coordinates, Green Coordinates, Harmonic Coordinates, Positive Mean Value Coordinates,
Maximum Entropy Coordinates, etc.) leads to different results.

Ben-Chen et al. 7,8 automatically compute new cage embeddings to satisfy sparse user
constraints through a sequence of least squares fitting. However, their framework is using
GC only and enforces pure rotations on the medial azis of the shape, as well as Hessian’s
norm minimization on the cage, and is highly restricted to as-rigid-as-possible deformations
and does not specifically address general and stable cage inversion.

Savoye et al. [79] introduce a global regularization term aiming at preserving the differential
coordinates of the cage vertices. Being not rotation invariant, such an approach leads
to shrinking artifacts and fails at preserving the cage geometry, which is often carefully
designed by artists and critical for editing. Finding an efficient but general regularization

114

Input

[
! Raw Sequence
Single I Spatial Maxvol mg:

Cage |Encoding| ™ |Subsampling RVErIon

W) ith
Sub-Spectral fﬁ? V!L
Regularization ‘&&’ ‘\(&&

l

y \

=, <
Cage Sequence

b 2

Output

Figure 8.2: Processing Pipeline. From left to right: Given a raw 3D+t sequence and
an initial cage, we first extract an optimal subset of positional constraints for the cage
coordinate inversion. Then, the cage coordinates are inverted for each frame of the input
sequence. A selective enforcement of arbitrary regularization terms is defined to affect the
cage vertices where the inversion is the most unstable. The resulting smoothly varying
cage sequence faithfully reconstructs the input sequence.

term, with no a priori on the input sequence, and which does not completely smooth away
the cage geometry, turns out to be unexpectedly difficult. We cope with it by reshaping
the linear least squares fitting pipeline with a novel, efficient inversion algorithm, coupled
with a new selective regularization scheme, which only regularizes the cage vertices where
the inversion is less numerically stable.

8.3 Overview

Input: We consider a raw animated sequence of N frames, represented by a set of points
P with time-varying embeddings in R3 (1, Pa, ... Py). This position data can correspond
to the embedding of a triangle mesh, a point cloud or a volumetric mesh. Additionally, we
consider an input cage Cr enclosing an arbitrary reference frame Pg of the sequence.

Inversion procedure: Our processing pipeline (Fig. 8.2) is composed of three major
stages:

1. Compute the spatial encoding ® of Pg into Cr using a cage coordinate system (e.g.,
MVC, HC, GC).

2. Identify the set of handles Hr C Pr which maximizes the volume of a squared version
of the cage coordinate matrix. This property stabilizes and speedups the inversion
while guaranteeing dense inversion spectra.

3. For each frame Py, the corresponding cage embedding is computed by inverting the
cage coordinates, using H; (embedding of Hp at frame t) as positional constraints.

Additionally, our framework can selectively apply arbitrary regularization terms on the
highest frequencies of the spectrum of the inversion (the last singular vectors of the coor-
dinate matrix singular value decomposition).

8.4. MAXVOL BASED CAGE INVERSION 115

Input Animated Sequence
L {.

3 y ¢ !
§ 1

A LE EE LA S

Full Over Constrained Least Square Reconstruction

Figure 8.3: Cage coordinate (MVC) inversion using a traditional over-constrained least-
squares fitting results in unstable cage inversions (middle row). The output cages exhibit
spikes and other artifacts (bottom row), which makes them unusable for manual post-
editing or compression.

Output: The resulting set of smoothly varying cages compactly and faithfully recon-
structs the input sequence.

8.4 MaxVol based cage inversion

In the following, we present our algorithm for the stable inversion of the cage coordinates.
We briefly discuss why a simple strategy based on over-constrained least-squares fitting
can be unsatisfactory. Then we present our algebraic algorithm based on optimal handle
identification.

8.4.1 Problem statement

Given an enclosed 3D model represented by its reference position data Pr and a closed
triangle cage mesh Cpr, cage coordinates (such as MVC [47], HC [46] or GC [61]) allow
to encode each point position p; € R3 of Pr w.r.t. to the cage vertex positions cj € R3
(and triangle normals n; for GC) of Cr by: p; = Zj ¢(i) - ¢j, or Pr = ® - Cg, where
Pr is represented as an (n x 3)-matrix, ® is a rectangular (n x m)-matrix and Cg is a
(m x 3)-matrix.

Given a set of poses P; of the model, we aim at computing a set of corresponding cages C,
such that ® - C; ~ P;. The Lo-projection of P onto the space of admissible deformations
is P, = ® - ®f P, which involves the pseudo-inverse ®f of ®. As the cage coordinate
matrix @ is large and dense, the computation of its pseudo-inverse ®' (an (m x n)-matrix)
through singular value decomposition (SVD) is expensive. A faster approach consists in
solving the equivalent system, where (®7 - ®)T is an (m x m)-matrix:

¢ = (o7 - @) oTp, (8.1)

This yields an over-constrained linear system, where the number of unknowns m (the
number of vertices in Cy for MVC, plus the triangle normals for GC) is meant, by definition
of control cages, to be significantly smaller than the number of constraints n (the number

116

Random Constraint Selection MaxVol Constraint Selection

| Reference Pose Reconstruction Reference Pose Reconstruction

Figure 8.4: Minimal selection of position constraints (as many as cage vertices, MVC).
Selecting constraints randomly on the reference frame Pg (left) generates a cage for the
other frames which performs poor reconstruction (middle left). In contrast, our relaxation
strategy (with the same amount of constraints) generates a smooth reconstruction (right).

of point samples in the model). Let UXVT be the SVD of (®7 - ®). The solution is given
by:

6= V- (WHT 07 7). L (8.2)
k

Sk

with s; the k" singular value.

However, a slight perturbation ép, on the constraints P; may be drastically amplified
through the SVD when projecting onto the singular vectors associated with low singular
values (Eq. 8.2). We illustrate this phenomenon in Fig. 8.3: over-constrained least-
squares fitting yields instabilities resulting in important spikes on the output cages, which
makes them useless application-wise. To overcome this issue, we first propose a strategy to
optimally relax the system, which has the beneficial side-effect of decreasing the condition
number of the coordinate matrix, hence stabilizing its inversion.

8.4.2 MaxVol relaxation

Reducing the number of constraints of an over-determined linear system reduces the
chances of taking into account multiple conflicting constraints. Traditionally, an arbi-
trary subset of the constraints is considered, whose size is progressively reduced until a
satisfactory trade-off between stability and precision is obtained. Ultimately, one could
narrow the size of the constraint set down to that of the unknowns. However, as shown in
Fig. 8.4, this selection process must be carefully carried out to maintain a decent solution
precision.

Minimum condition number sub-matrix To optimally reduce the number of con-
straints, while guaranteeing a stable inversion process, one needs to seek the optimal square
(m x m) sub-matrix &g of ®, with minimum condition number. This linear algebra prob-
lem is well known to be NP-hard. As discussed by several authors [18,31,38], computing
e-approximations is NP-hard as well.

8.4. MAXVOL BASED CAGE INVERSION 117

iy i T

A S = A L n P [v J [¥]
o l‘ 4 21 20 -4 5 29 1 -3
i h{‘ 3[25 -15 " 1 2 -1 :> 1 2' -1
zh}&*ﬁrﬁa{Q”ﬁs/i”ﬁd‘li*]?ﬁ/i A e AT i om
3]
[\ Vﬁ Eg g‘: B: . 0 1 0 3 1 0 0
- oo, : 0 1 0 0 1 0 0 1 0
| L Hi - et b h 3[7102.4 olm] [0.0(153 029 0.01110] [00?74 O.SSB n.n%ms]
Condition Nb./Iter (log) Volume/iter (log) Final selection 75?)?47 :‘1:;?4 flngz ¢ 700027? 7002?722 6 (?71481 :00011‘112 Pnﬁjf?n
(a) Each iteration of the maxvol algorithm (top) (b) Tterations of the mazvol algorithm on a toy
corresponds to deselecting a constraint (red), example. At each iteration, the location of the
and selecting another (yellow). The condition element B;; with maximum absolute value
number and the volume of & are respectively indicates which rows to flip in A to improve
shown in red and blue (log scale). the volume of Ag (in blue on the right).

Figure 8.5: MaxVol illustrated on a toy example

Maximum volume sub-matrix A weaker indication of the invertibility of a matrix
is given by the value of its determinant, which ought to be high for the matrix to admit
stable inversion. Finding a square sub-matrix that has maximum volume (absolute value
of the determinant) has been intensively researched by the linear algebra community and
an efficient iterative algorithm has been proposed recently [38]. Although it is not guaran-
teed to identify the optimal sub-matrix maximizing its volume, its practical performances
demonstrate significant decrease of the condition number, which in the worst case falls
back to that of the over-determined system. In the following, we sketch the main steps of
this algorithm and detail its integration into our framework.

MaxVol algorithm Let A be an (nxm)-matrix (m < n). The goal of the algorithm is to
identify the m rows of A such that the resulting square (m x m) sub-matrix has maximum
volume. The algorithm Maz Vol is based on simple observations, further discussed in the
original paper [38|.

Let Ag be the top square sub-matrix of A, composed of the first m rows of A, and B =
A- Aal. Swapping the rows ¢ > m and j in A for which B;; has maximum absolute value
increases the volume of the top square sub-matrix of A, if |B;;| > 1. Let e; be the column
vector with value 1 at j and 0 elsewhere. Then, both swapping the rows ¢ and j in A and
updating B can be performed in a single update of the form:

B:=B—(Bj—ej+e) (Bi— 6?)/31']‘ (8.3)

where B.; depicts the entire jth column of B and B;. its entire i*" row.

This yields a practical iterative algorithm (Fig. 8.5(b)):

e Initialization: Order the rows of A, such that its top square sub-matrix Ag is
invertible. Compute B = A - Aal.

e Iteration: Find the maximum absolute value element B;; with ¢ > m. Swap rows %
and j in the current solution. Update B with Eq. 8.3.

118

The iterations can be stopped on demand or when the maximum B;; gets smaller than
one. In terms of complexity, the initialization stage takes O(m? x n) operations and each

iteration takes O(m x n) steps.

8.4.3 Cage inversion based on maxvol relaxation

Applying the maxvol algorithm to our setting is straightforward, the input being ® and the
output being ®. In practice, we observed that about 2 x m iterations are required until
convergence. Fig. 8.5(a) illustrates a few iterations of the algorithm. Both the volume and
the condition number of ® respectively increases/decreases at each iteration (results are
shown in log scale), assessing the invertibility quality of ®p.

Cage coordinate inversion For each frame Py, the corresponding cage embedding Cy
is given by (where H; is the sub-matrix of the top m rows of P;):

Ci == OLH, (8.4)

The pseudo-inverse <I>TD is computed through SVD, as discussed in the case of (®7 - <I>)T in
Eq. 8.2 (®T . P; needs to be exchanged with H;). Notice that for each frame, the rows
of C; and P; also need to be swapped according to the swaps performed in ® by maxvol.
Fig. 8.10 provides a comparison of the repartition of the singular values yielding from the
SVD, between our technique (®5) and the classical over-determined approaches (® and
®T. ®). Notice that ®o exhibits a more convez spectrum. Also, as discussed with Eq. 8.2,
important instability occurs in the inversion if the last singular values of the SVD are low.
With our relaxation scheme, the last singular values of &0 are much higher than those of
the traditional over-determined approximations (Fig. 8.10, rightmost plots), which yields
much more stable inversions.

Finally, once &g is computed, the inversion of the cage embeddings for the whole sequence
is faster with our approach than with the traditional over-determined least-square strategy.
In both cases, the SVD of an (m x m) matrix needs to be computed in a pre-process. For
each frame, with our strategy, the solution is obtained by the multiplication of an (m xm)
by an (m x 3)-matrix (Eq. 8.4). For the traditional least-squares approach however, an
extra multiplication between an (m x n) and an (n x 3)-matrix is required (Eq. 8.1).

Geometric interpretation Although our strategy is purely algebraic, it yields inter-
esting geometrical insights. When reflected on the matrix Ppr, the row swaps of ® are
equivalent to deselecting a constraint and picking another one instead (Fig. 8.5(a)). Near
convergence, the constraints to flip get closer and closer. At the end of the process, the set
of corresponding points of Pr (in green in Fig. 8.5(a)) can be interpreted as a minimally
optimal set (noted Hr C Pgr) of handles for deformation, given the model Pg, the cage
Cr and the employed cage coordinate model. As shown in Fig. 8.6, the local density
of Cg is captured by Hpg. Also, configurations implying high curvature, sharp edges, or
boundaries (Fig. 8.5(a)) are captured by Hp, while the symmetries of the cage are also
represented by Hgr. In other words, the constraints Hpg are well dispatched in the space of
cage coordinates.

8.4. MAXVOL BASED CAGE INVERSION 119

Figure 8.6: Geometry-sensitive deformation handles extracted by our algebraic-only al-
gorithm. Sharp edges (ears) and high curvatures (finger tips) are implicitly detected as
constraints. The sampling density (tail) and the symmetry of the cage are also captured
by the constraints.

(8, =0.0610%7 §.o= 0.78 107)

Reference pose

_8,=0.1210% 8ox=1.40102) 82 =0.1510% 8oc=2.4110%)

Figure 8.7: Comparison between the over-determined least-squares approach (blue) and
our relaxation strategy (red) for deformations based on rotations (top) and stretching
(bottom). The point-to-point Lg and L, distances between the reconstructed model and
Py, are given by 09 and do, (fraction of the model bounding box diagonal).

Fig. 8.7 shows the cage reconstruction with MVC of two poses with our inversion strategy,
compared to the classical over-determined least-squares. Since our strategy relaxes the set
of constraints, the error in the model reconstruction is necessarily slightly higher. However,
as shown on the right, our approach removes many of the cage instabilities occurring with
the over-determined approach.

Coordinate system analysis Fig. 8.8 presents the spectral behavior of the different
cage coordinate systems used in this chapter, namely MVC, HC and GC. MVC and HC
exhibit similar spectral behavior: in comparison to the over-determined full least-squares
system (Fig. 8.8, bottom), MaxVol exhibits much higher last singular values, which sta-
bilizes the inversion. In the case of GC, MaxVol increases the singular values all over the
spectrum. In all the cases, MaxVol decreases significantly the condition number of the
system.

120

Mean value coordinates
1t 2

spec(®) spec(@n) —tr) spec(®) spec(®p) spec(®p) wpec(®) Spee(@0) sqpec o)

§)
c:1463 C:365 spec(®@) c:3616 C: 670 spec(®) c: 1926781 ¢ 1209537 spec(d)

Figure 8.8: MaxVol handles and coordinate matrix spectra for different coordinate systems
(MVC, HC, GC). In each case, MaxVol drastically reduces the condition number of the
system (®g, middle) in comparison to over-determined least-squares (®, top). The gain
(bottom row) is maximum in high frequencies, where the inversion is the most instable.

Full Least-Squares inversion MaxVol subsystem inversion

Figure 8.9: Comparison between over-determined and MaxVol inversions with different
coordinate systems (mean value coordinates and harmonic coordinates).

Fig. 8.9 shows the cage reconstruction with our inversion strategy (MaxVol or not), with
different coordinate systems (MVC, HC). Since they do not admit a close form expression,
HC need to be approzimated with a solver, which necessarily leads to residuals (as disccused
in [46]), whose importance is implementation-dependant. This imprecision can be observed
when inverting the reference pose Pr (Fig. 8.9, right): the inversion does not result in the
identity (spike on the base of the tail).

The GC are the most instable to invert. The space of transformations they allow is too
large to allow accurate inversions if the face normals are not constrained to be orthogonal
to the cage faces. Also, the inversion uniformly processes all the unknowns of the system
whereas for GC, these mix much different entities (vertex positions and face normals). As
a result, the geometry of the cage is globally unstable.

As shown in Fig. 8.7, our relaxation strategy significantly reduces the condition number
of the system, resulting in less instabilities on the inverted cages. Still, a few of them
may remain (Fig. 8.7, right). To overcome this issue, we introduce a novel regularization
strategy, that selectively focuses on the unknowns for which the most instabilities occur.

8.5. SUB-SPECTRAL REGULARIZATION 121

8.5 Sub-spectral regularization

Traditionally, to cope with the instability of a linear system, a solution consists in introduc-
ing globally a geometrical regularization term. This enables to bias the solution towards a
space of preferred solutions (e.g. detail-preserving or as-rigid-as-possible transformations).
However, global regularization also comes with several drawbacks. First, such a solution
is not general, since it makes assumptions on the transformations present in the input se-
quence. Second, even with a priori information on the model transformations, there is no
direct connection to the transformations that the cage should undergo. Third, in practice,
this solution tends to over-damage the data fitting, even before all of the instability is
corrected.

8.5.1 Regularization terms

In our setting, without any a priori on the space of transformations exhibited in the input
sequence, one of the only desirable properties of a regularization term is its invariance
against rotation. For instance, Savoye et al. [79] enforce the preservation of the differential
coordinates of the cage vertices. However, this is not rotation invariant and leads to
significant shrinking artifacts. The preservation of the norm of the Laplacian of the cage
vertices does not suffer from this drawback but involves non linear terms [30].

Minimizing the Laplacian of the cage vertex positions is rotation invariant but, without
sophisticated reconstruction strategy [12], it smooths away the cage curvature. The same
holds for the minimization of the deformation Hessian [8,90]. In other words, rotation
invariant linear regularization terms are destructive, in the sense that they will smooth
away the information provided in the input cage Cr. In the following, we present a new
regularization algorithm that locally allows the usage of destructive terms only for the
unknowns where the inversion solution is unstable and not reliable.

8.5.2 Sub-spectral regularization algorithm

Let UXVT be the SVD of ®1. The vector of the cage vertex positions (and of its face
normals for GC) can be expressed as a linear combination of the columns of V: C; =
>k V¥.q,, qr, € R3. The solution to the system inversion is given with g, = (U¥)T -
H/sk. A common strategy for sub-spectral regularization [39] consists in directly cropping
the spectrum by setting the inverse of the last singular values to 0. Instead, a second
common solution [39] consists in parameterizing the stability of the solution by a scalar «,
Si‘ffaQ. These two strategies do not allow for the
insertion of a geometrical regularization term, which would take into account the physics
of the problem. In the following, we introduce a novel and general sub-spectral algorithm,
which allows to include relevant geometrical regularization terms only on the most instable
portions of the spectrum of &p.

and using s} instead of sy, where s) =

122

As shown in Fig. 8.10, the left part of the spectrum of &g
can be interpreted as the low frequencies of the inversion,
while the right part can be interpreted as its high frequen-

cies. Also, as discussed earlier, the cage reconstruction insta-
bility is more likely to occur on the high frequencies of the

spectrum, where the singular values are low. The last sin-
gular vectors of &g correspond to its “pseudo-kernel”, in the
sense that a perturbation in that space induces only a slight

change in the model reconstruction, since it is amplified by spec <I>D) spec(®n)
the corresponding singular value. In other words, relaxing the spec(® spec(®T - @)
data-fitting constraints for these vectors will have a negligi-
ble impact on the reconstruction of the model. Therefore, our
technique enforces regularization terms (expressed through a
matrix A) only on the high frequencies of the spectrum. As
the last singular vectors are highly localized (see Fig. 8.11),
this guarantees a minor destructive impact of the regulariza-
tion term on the global aspect of the cage inversion (its low
frequency component) while locally fixing instabilities.

spec(®) spec(®” - D) spec <I>E|

Figure 8.10: Comparison
of the coordinate matrix
spectra for the sequence of
Fig. 8.2 with MVC (nor-
malized plots).

Given a spectrum threshold s, the low frequency part of the spectrum is directly recon-
structed from the positional constraints H;:

= (UMNT - Hi/sk, Yk < (m—s) (8.5)

The high frequency part is reconstructed with the traditional combination of positional
constraints and regularization, to minimize the following energy (A € [0, 1]):

E=X|A-Cl* +[|(®0 - Cr) — Hell? (8.6)

which is equivalent to (with g, fixed Vk < (m — s)):

E=X > AV g+ Y AVFig?

k<(m—s) k>(m—s)
+ (@0 C) — Hill? (8.7)

Minimizing equation 8.7 is equivalent to solving the following linear system in the least
squares sense, where the unknowns are g;,, Vk > (m — s) and where g, are fixed Vk <
(m —s) (cf Eq. 8.5):

{ \/X : ZkZ(m—s) A- Vk "k, = _\/X' Zk<(m—s) A Vk Ak,

Sk * Qk, = Sk - ((Uk)T : ’Ht/sk) , Vk>(m—s) (88)

The first line of Eq. 8.8 is the regularization energy expressed on the last singular vectors
of the SVD, and the second line of Eq. 8.8 is the data fitting energy. This strategy
can be used with arbitrary linear regularization terms expressed through a matrix A.
Figs. 8.12 and 8.13 show examples of cage and model reconstructions with a particularly
destructive term, the minimization of the cage Laplacian. As shown in Fig. 8.12, our
spectral strategy enables a progressively localized blending of the data-fitting constraints

8.6. RESULTS 123

148 150 154

£ 3

sq: 115325 s,: 1.09183 s, 1.06343 s;: 1.04103 5,:1.02358 s 0,99955 S140: 0.07432 5,501 0.06572 5,5, 0.03955

i
o

155 156 157 158 59 160 161 162 163

Sisst 0.03164 5440 0.02544 5,441 0.02340 s5,44: 0.01656 Si50t 0.01525 Siant 0.01516 5,6, 0.01502 545 0.00522 5,.:: 0.00334

Figure 8.11: Singular vectors of ® on the cage (MVC, in absolute value, gradient of pink).
For the last singular values, where instabilities may occur, these vectors are localized to a
small subset of cage vertices.

Subspectral

Reference pose Regularization

Figure 8.12: Cage and model reconstruction with MVC and Laplacian minimization. In-
creasing the spectrum threshold yields localized and progressive blending of the unstable
cage vertex solutions with the solutions of the regularization.

with the regularization term, while the rest of the cage remains unaffected. Fig. 8.13
provides further comparisons between a classical regularization strategy and our spectral
approach on a challenging cage with sharp dihedral angles and a deformation with high
distortion. The color map plots the point-to-point distance with the non-regularized cage.
In other words, it depicts the local quality of the data fitting in term of cage reconstruction.
Whereas classical regularization damages globally the reconstructed cage, our strategy
automatically localizes the effect only on the unstable cage vertices, while preserving the
true solution on stable ones, yielding much more accurate model reconstruction.

8.6 Results

In this section, we present the results of our technique on data-sets coming from spatio-
temporally coherent motion captures [22| and synthetic animations. These experiments
have been run under Linux on a commodity laptop with a Core 2 Duo 2.53 GHz CPU and
a GeForce GTX 260 M GPU. Our programs are written in C++. The maxvol algorithm

124

Reference pose

Data fitting errror

Data fitting error
Model reconstruction § — 6.31 102 Model reconstruction §. — 0.53 102
02 =158 10° | L O =0.11 10*]

Global regularization Sub-spectral regularization

\

Figure 8.13: Localized effect of our sub-spectral regularization (s = 20), in comparison
to traditional global regularization, on a destructive regularization term: the Laplacian
minimization (MVC and maxvol relaxation). In both cases, the regularization weight X is
set to the same value (1).

is fully implemented on the GPU with CUBLAS, while SVD computation uses GSL and
OpenNL is used to solve Eq. 8.8. Unless explicitly mentioned, all the results have been
computed with the same default setting (MVC, MaxVol selection, Laplacian minimization,
A =1, s =20). Distance measurements are expressed w.r.t. the bounding box diagonal.

8.6.1 Encoding quality

Fig. 8.14 shows the cage-based encoding of several input sequences, along with the result-
ing reconstruction. The corresponding timings are provided in table 8.1. Note, that the
cage embeddings smoothly vary over time, while guaranteeing low model reconstruction
error. Hence, the output cages can be used for post-editing or compression. The algorithm,
without any geometrical a priori, implicitly handles acquired data-sets (top-4 rows) and
synthetic data motioned through as-rigid-as-possible (bottom row) or cartoon-like stretch-
ing deformations (Fig. 8.12). The algorithm successfully reconstructs the sequence despite
chaotic deformations (cf. the skirt motion, 3rd row). Note, that in this specific example,
the spectral regularization automatically removed unstable cage spikes but preserved those
which are mandatory for a correct reconstruction.

As demonstrated in Fig. 8.15, removing systematically all the spikes appearing on the
skirt would require a regularization up to the 50" last singular vectors. However, the
corresponding singular value is then more than 0.1, which would induce significant model
reconstruction errors. Then, the remaining spikes appearing in Fig. 8.14 are necessary

8.6. RESULTS

X I;
i
Ji
d A
4 g
] il
. %
& -
)
24

)

o

14

i

‘/ﬁ

i it

L

§

o

LG RN ;A ARTY A4 \"’\? R Aot
N 7\} %‘\x } ﬁ 250 500
™17 A XX AANR NN AN R 4 oo

¢ ﬁ%%‘?_"ﬁik J 90 \.\.‘1;30

iU

CEEEIAR L4

i; §idit Agi}‘ e VIR D nn- B oo ,
wmxﬂh
R e '*’«“ﬁ AR P

PN S8 o '\i‘\ |

Figure 8.14: Reconstructed sequences: for each sequence, Pr, Cr and Hp are shown on
the left. For each frame ¢, on the top, P; appears on the left; the reconstructed cage is on
the right, the reconstructed frame is at the bottom (larger view). The blue and red curves
respectively show the evolution of the point-to-point Ly and L, model reconstruction

error.

for an accurate model reconstruction. Moreover, these features of the cage still evolve
smoothly along the sequence.

8.6.2 Encoding robustness

Fig. 8.17 shows a reconstruction example with random perturbations inserted in the se-
quence to fit (each vertex is displaced randomly within a radius equal to 0.3 x 10~2 times

the bounding box diagonal).

The algorithm still generates a valid reconstruction. Note

that the curves of the model reconstruction errors exhibit the same overall behavior than
those of the original data-set (Fig. 8.14, top row) but with additional noise. In particular,
the difference between the maximum L, errors is 0.36 x 1072, which exactly reflects the
introduced noise and which further assesses the robustness of the algorithm.

126

345

357 356 354 351
0.04140

362

342 315
0.07050 0.07471 0.08158 0.08754 0.09033 0.09702 0.10129 0.11020 0.11516

Figure 8.15: Singular vectors (with their singular values) localized on the skirt of the Skirt
model. A change in the 315" singular vector induces a change in the model reconstruction,
up to a factor 1/10.

MaxVol
No Reg

Full LS .
With Reg £

MaxVol «
With Reg

Figure 8.16: Relative importance of the individual steps of our approach: inversion of
the Skirt sequence with the over-determined least-squares (Full LS No Reg, first row),
MaxVol (MazVol No Reg, second row), the over-determined least-squares with spectral
regularization (Full LS With Reg, third row, s = 50), MaxVol with spectral regularization
(Maz Vol With Reg, fourth row, s = 50).

8.6. RESULTS 127

i

250 500

0.014
0.01
0.006

0.002
0 250 500

Figure 8.18: Encoding with a reference cage generated automatically. The surface is
first voxelized. We then contour a slight offset of this volume before simplyfing it using
QSlim.

INPUT SEQUENCE | POINTS CAGE | FRAMES PRE-PROCESS: | Av. FRAME ToTAL

(#V | #7T) MaxVoL + SVD INV. (ms)
Fig. 8.14, 1st row 19,998 330 / 656 499 5,616 568 || 289,048
Fig. 8.14, 2nd row 19,998 330 / 656 179 5,616 568 || 107,288
Fig. 8.14, 3rd row 19,990 368 / 732 437 7,291 890 || 396,221
Fig. 8.14, 4th row 15,002 339 / 674 169 5,617 624 || 111,073
Fig. 8.14, 5th row 8,431 348 / 692 48 5,029 748 40,933

Table 8.1: Detailed running times for Fig. 8.14. The pre-process, dominated by MaxVol,
and the frame inversion timings are mostly dependent on the number of unknowns (number
of cage vertices for MVC). All timings are expressed in ms.

Fig. 8.18 shows a reconstruction with a reference cage computed automatically (602
vertices). Interestingly, the reconstruction error is lower (with an average Lo, error of
0.73 x 1072 against 1.39 x 10~2 in Fig. 8.14, top row). Indeed, realistic cages designed by
artists (Fig. 8.14) are more challenging to fit, given their specific structure and the very
small number of unknowns they provide to the inverse system.

8.6.3 Comparisons and limitations

The localized nature of our sub-spectral regularization allows to reconstruct a cage sequence
which is more faithful to the input reference cage, avoiding the rounding artifacts stemming
from destructive regularization terms (Fig. 8.13). Fig. 8.19 provides a comparison between
our algorithm and a traditional, globally regularized, over-determined least-squares (with
the exact same setting). Important artifacts occur with the traditional approach (see the
inset zooms), yielding higher reconstruction error (with an average Lo error of 0.24 x
1072 against 0.14 x 1072 with our approach). As discussed earlier, not only our sub-

128

Figure 8.19: Cage and model reconstruction comparison between a globally regularized
over-determined least-squares (blue) and our approach (red), with the same setting (MVC,
Laplacian minimization, A = 1).

spectral scheme enables localized regularization, but it also automatically focuses on the
cage vertices where higher instabilities occur.

Fig. 8.16 shows the relative importance of each step of our approach (Maz Vol and spectral
reqularization) on the Skirt sequence. The regularization parameters have been increased
(s — 50) for illustration purpose. The full least-squares approach produces the largest
spikes (1! row). These are stabilized thanks to the MaxVol relaxation (2"¢ row). Spectral
regularization further improves the cage stability (3"¢ and 4" row), while the most stable
cages are obtained in conjunction with MaxVol relaxation (4" row).

For the Capoeira and Horse sequences (Fig. 8.14), our approach respectively yields an
average Lo error of 0.12 1072 and 0.19 10~2 against 0.47 1072 and 0.56 102 in the case of
the skeleton-based framework by deAguiar et al. [23] (numbers from the original paper),
which is more than a 50% error improvement. Although they are not directly comparable
(different computers), the timings of our implementation are up to 50 times smaller than
in [23], both on a pre-processing and per-frame basis.

Limitations As one can expect from a cage-based framework (error curves Fig. 8.14)),
the maximum reconstruction error occurs on frames where the model pose is radically
different (highly distorted) from the reference pose (e.g., 2nd row, middle). Another lim-
itation is that, since our approach is cage-based, very small shape variations (e.g. small
clothes motion) might be difficultly captured by the cage, since it tends to be designed for
more global shape interactions.

Chapter 9

High-level representation for
interactive modeling and
processing of Meshes

It is common to use reduced representations for complex data analysis and processing. This
is motivated by the fact that some problems have sometimes non-polynomial complexity,
or have a complexity of high order, and are not directly applicable on full data.

We show some examples of applications of our high-level animated representation, and
motivate the choice of cage representations in this context.

9.1 Animation lossy compression

The reconstruction step of our algorithm only requires Pgr, Cr and the output cage positions
across time. For instance, the first animation of Fig. 8.14 can be encoded in binary format
with 115 MB (single connectivity, 499 embeddings corresponding to the 499 frames of
the animation), while it can be compressed down to 2.58 MB with our approach with
a single connectivity, a single model embedding, a single cage connectivity and its 499
embeddings (see Fig. 9.1). The reconstruction error can be controlled with the spectrum
threshold. Since our output cages smoothly vary over time, their vertex trajectories could
further be compressed using orthogonal schemes (e.g. wavelets) for even higher compression
rates. Traditional compression approaches, such as Progressive Meshes [40], require a
clean connectivity on the animated mesh, while our approach can handle various shape
representations (non-manifold meshes or point-sets for instance).

Discussion

Although different representations can be used, and obtain sometimes better compression
factors, we found interesting to use cage coordinates to model the motion of a mesh.

129

130

Compression

Figure 9.1: Compression of an animated mesh (499 frames). We need to store on disk
one input mesh (connectivity + embedding), one connectivity for the cage and 499 cage
embeddings. The compression factor for storing increases with an increasing number of
frames. Note, that it has a upper bound which is the number of mesh vertices divided by

the number of cage vertices.

Indeed, cage coordinates have been studied intensively over the past years with one main
goal: to produce visually pleasing deformations.

This does not translate easily into mathematical terms, but it involves general mathemat-
ical notions such as harmonicity, biharmonicity, quasi-conformality, high order regularity
and smoothness, - -+ But in the end, artists make a choice between these deformation tools
based on the visual quality they obtain.

Finally, recall that cage coordinate systems have been designed for producing animations
of objects, and are used in the industry for the production of movies (e. g. “Ratatouille”).

Bounds on the compression factor We note ny (resp. ng) the number of mesh
vertices (resp. triangles) of the input shape, F' the number of frames in the animation, and
cy (resp. c¢r) the number of cage vertices (resp. triangles) that we use for the representation
of the animated mesh. The complete animation can be stored by keeping one frame of
the input mesh (ny + nr), and F' times the number of cage vertices (Fey + c¢r). The

compression factor for storing the animation is then Compstore = %

e When the number of frames is high (Fey >> ny), Compstore = Z—“/’

e When the number of frames is small (Fey << ny), Compstore >~ F.

9.2. ANIMATION TRANSFER 131

Additionally, we need to compute the cage coordinates matrix (size nycy) when running

the application. The compression factor when running an application is then Compryn =
TLT+F?’LV
nr+nycy+Fey *

e When the number of frames is high (F' >> ;5=), Comprun ~ -

To obtain a reduced representation at run-time, the number of frames F needs to be

higher than the lower bound %

9.2 Animation transfer

Since they are clean and re-usable, the output cages can be employed for post-editing
or animation transfer. An artist fits a model with complex topology (many handles)
into the Capoeira reference cage. The cage sequence reconstructed with our algorithm
automatically yields a smooth animation transfer to the new model.

Discussion

Cage-based deformation transfer has already been proposed by Ben-chen et al. [7] in
the context of rigid deformations. Their method is based on an implicit framework
(VHM [8]) that uses Green Coordinates as the underlying deformation machinery. The
system optimizes the cage geometry in order to fit positional constraints on a subset of
the vertices of the input shape, and optimizes for unknown rotations on the medial
axis, as well as for minimal Hessian. Once they obtain the data of the Jacobian of the
deformation on the medial axis of the source shape, by mapping manually the medial axis
of the source shape and the target shape, they can transfer the Jacobian on the medial
axis of the target shape. The same framework can be used to reconstruct the geometry of
the target shape, thus transferring the animation.

The benefits of this approach are, that both objects can have a different cage embedding,
and therefore they can handle more different geometries than our approach.

The main drawback is, that they are limited to rigid animations.

To represent animations obtained from performance capture, we experienced that Green
Coordinates are not the right choice of cage coordinates, and Mean Value Coordinates and
Harmonic Coordinates are better suited for such deformations. For these set of coordinates
and the kind of motion we targetted, it seems difficult to rely only on the data of the
Jacobian of the deformation on the medial axis.

9.3 Speeding up time-space processing tasks

Time-consuming processing tasks on time-varying 3D shapes can be drastically sped up
by considering the cages reconstructed with our algorithm, which have a memory footprint
orders of magnitude smaller than the input sequences. We present an application to the

132

Figure 9.2: The embedding cage is a space that is slightly larger than the original mesh.
By placing any object in that space, our cage representation allows to transfer in a straight-
forward manner animations from one mesh to another. Note, that this method does not
work for highly dissimilar objects, as we require that both objects fit into the same cage
for embedding (but they can be of different form, the target shape could be composed of
thousands of stones).

interactive exploration of shape spaces [98] (implementation provided by the authors).
Given a set of model poses and a cage, our algorithm automatically adapts the cage to
the entire set of poses. Then, shape space exploration can be dones interactively (500x
speed-up) on the space of cages, delegating detail preservation to the underlying coordinate
system.

Discussion

The interpolation of many different meshes is an application that recent geometry pro-
cessing techniques allows. Interpolating positions in a linear fashion is straightforward: it
corresponds to create the segment between two points. Interpolating angles in two dimen-
sions is already more difficult: they are defined up to 2x, and an infinity of solutions is
possible (usually, the shortest path is considered though). Interpolating different poses of
the same object is a highly challenging task, and the first (the main) difficulty is to give
an appropriate definition to this problem.

Several solutions have been proposed with success [52,98], but these require a significant
amount of computations. We rely on the technique presented by Winkler et al. [98|
(implementation gently provided by the authors), that interpolates linearly the lengths
and the dihedral angles of the edges of the mesh, at different scales. This way, differentials

9.3. SPEEDING UP TIME-SPACE PROCESSING TASKS 133

Interactive Shape Space Exploration

Inte,
E:tefact"'\'e
Pi’orat,-On

Figure 9.3: Real-time shape space exploration is performed on the set of cages that
represent, the different poses. The model is reconstructed on-the-fly on the GPU, as it
requires only a multiplication of the cage coordinate matrix with the positions of the cage
vertices that are obtained. We reach 20 frames per second on a standard laptop, allowing
for the exploration of thousands of shapes within minutes.

.
R

N
v

£Z 1\
v,

1
2N

Zad
%

,
>
B

Figure 9.4: Results of shape space exploration performed on the cages and the recon-
structed shapes. They can be used as the final result, or act only as a real-time feedback
for the user to find the desired weights for the interpolation.

are actually blend together; it defines the manifold in an implicit way, therefore it involves
quite some computations to retrieve the geometry from the interpolation.

The only “problem” is, that interpolating different meshes is not intuitive. We can
actually say that, in this scenario, the user needs to explore the shape space that is defined.
Practically, such an exploration is possible only if it is done in real-time and the user has
an immediate feedback.

134

L2 §

M,
e ”7\

LT

My __— \ AT

‘/\ / '\ ‘/\ \
w w

KRR XY

Polygonal domain (6 meshes) Triangular domain (3 meshes)

Figure 9.5: Left: Interpolation of 6 different meshes at the same time. Right: Interpolation
of 3 different meshes at the same time. Images taken from [98] and [52].

Several scenarios that were presented in the previous work [52,98| show the interpolation of
three different models at the same time (see Fig. 9.5), and none show the interpolation over
10 or 15 different meshes. We believe that it is for two main reasons: (i) the interpolation
of many meshes requires generally a structure that is heavy and memory consuming,
(ii) the interpolation of many meshes is very counter-intuitive.

These two remarks motivate the fact that the space that defines the interpolation
itself (that gives a set of weights for the different meshes) should be editable as well, and
in real-time.

In the example we presented, our cage representation is light enough to allow the inter-
polation of 11 different cages in real-time, and reconstruct the shape from the cage (all
of this at 20 frames per second on a standard laptop). We use Mean Value Coordinates
in two dimensions for the interactive definition of the weights, but we can rely on a 2D
triangulation of the poses in the plane, such that each triangle ¢ with vertices {to, %1, 2}
defines a domain for the linear blending of the three meshes {¢o, t1,t2}. As we precomputed
the structure for the interpolation of the whole set of meshes, it corresponds simply to set
the other weights to 0 in the interpolation. Using this machinery, the 2D space for the
interpolation can be updated in real-time as well.

Note, that the reconstruction of the whole mesh relies on the cage coordinates system. In
our application, we believe that the result is pleasing enough, and the images we provide
were obtained using this strategy. But to allow such an exploration, recall that only the
exploration of the shape space needs to be performed in real-time (the user
explores sometimes thousands of different poses in our case). Once the weights are found,
the user may want to use the original meshes instead of our cage representation, to obtain
better results as a post-process.

9.4. CONCLUSION 135

9.4 Conclusion

We have presented CAGER, an automatic algorithm for the compact and stable encoding
of animated 3D shapes into cage-based representations. The main contributions are an op-
timal selection of handles for cage coordinate inversion and a novel spectral regularization
scheme, which localizes its destructive effects and automatically focuses on the most un-
stable cage vertices. Our technique is fast (GPU implementation) and generates smoothly
varying, re-usable cages which reconstruct the input sequence with comparable accuracy
with previous methods. We demonstrated the benefits of our algorithm for several 3D+t
processing tasks.

Interestingly, our approach makes only few geometrical considerations. Our solution natu-
rally rises from a thorough algebraic analysis of the inverse problem. Hence, our framework
completely delegates the geometrical aspects to the chosen cage coordinate model, guar-
anteeing the generality and the versatility of the technique.

Part V

Spatial coordinates analysis

In part IV, we considered cage coordinate systems as the underlying machinery for shape
deformation. In this part, we present mathematical results on two sets of cage coordinates:
(i) mean value coordinates, for which we present in chapter 10 an analytical solution for
their derivatives and applications benefitting from them, and (ii) biharmonic coordinates,
for which we present in chapter 11 an analytical form, following a construction similar to
what has been done for Green Coordinates in the past.

This last part is rather technical compared to the three previous parts. Even though it
presents applications in Computer Graphics, a large part of it is a technical derivation of
derivatives and antiderivatives.

137

Chapter 10

Mean value coordinates derivatives

In this chapter, we present the mathematical derivation of the derivatives of the mean
value coordinates, in 2D and in 3D. These can be used in any application using mean value
coordinates, and goes beyond cage-based deformations.

We present some applications of these, but we focus more on the deformations, as it is an
important part of our work. In chapter 8, we have used intensively this set of coordinates
to represent animated 3D shapes using cages, as they are easy to use, since they do not
require the shape to be entirely enclosed in the cage, and we did not studied fully the
optimal creation of a cage embedding a shape. We then presented strategies that allow to
use simple regularization terms on the cage (e. g. a null Laplacian everywhere on the cage’s
geometry) in this context.

The contributions made in this chapter can be used for CageR, by replacing regularization
on the cage’s geometry with a regularization term of the deformed space instead, by con-
straining some locations to have a low Hessian for example (which is also a regularization
term that can be set in a linear system, and that is rotation-invariant).

10.1 Boundary value interpolation

Boundary value interpolation is a common problem in computer-aided design, simulation,
visualization, computer graphics and geometry processing. Given a polygonal domain with
prescribed scalar values on its boundary vertices, barycentric coordinate schemes enable
computing a smooth interpolation of the boundary values at any point of the Euclidean
space located in the interior (and possibly the exterior) of the domain. Such interpolations
are efficiently obtained through a linear combination involving a weight (or coordinate) for
each of the boundary vertices. These weights can be obtained by solving a system of linear
equations [46] or, more efficiently, through a closed-form expression [34,47].

However, in several applications, it may be desirable to enforce additional constraints on the
interpolation, in particular constraints involving the partial derivatives of the interpolated
function. Derivative constraints have been shown to provide additional flexibility to the
interpolation problem and many optimization tasks can benefit from them. For instance,

139

140

Figure 10.1: “Kicking Demon”. Red points indicate positional constraints; blue points
indicate unknown rotational constraints. This pose was obtained by specifying only 14
positional constraints.

The derivation of the Jacobian and Hessian of the MVC coordinates makes it possible
to induce wvariational MVC deformations (implicit cage deformation based on sparse user
constraints, with rotation and smoothness enforcement).

in the context of approzimation schemes based on Green Coordinates [61], constraints on
the Jacobian and the Hessian have been used for implicit cage-based deformations [8]. In
such a setting, given some sparse user constraints, an optimization process automatically
retrieves an embedding of the polygonal domain (the cage) such that the transformation
of the interior space is locally close to a rotation.

In order to achieve acceptable precision and time efficiency, such an optimization process
requires a closed-form expression of the Jacobian and the Hessian of the interpolated
function. While such closed-form expressions are known for approzimation schemes (in
particular for Green Coordinates [8,95|), this is not the case for interpolation schemes.
Moreover, these formulations are specific to the context of space deformation and it is not
clear how to extend them to arbitrary functions.

We bridge this gap by deriving the closed-form expressions of the Jacobians and the Hes-
sians of functions interpolated with Mean Value Coordinates (MVC) [34,47]|, both for the
2D and 3D case. We also provide a complete analysis of their degenerate configurations
along with accurate approximations of the derivatives for these configurations. We show
the accuracy of this derivation with extensive numerical experiments.

We demonstrate the utility of this derivation for several applications, including cage-based
implicit 3D model deformations (i.e. Variational MVC deformations). This technique
allows for easy and interactive model deformations with sparse positional, rotational and
smoothness constraints.

The cages produced by our algorithm can be directly re-used for further manipulations,
which makes our framework directly compatible with existing software supporting MVC-
based deformations.

10.2. BACKGROUND 141

10.1.1 Contributions

In this chapter, we present the following contributions:

1. the closed-form expressions of the Jacobian and the Hessian of Mean Value Coor-
dinates, both in 2D and 3D — these expressions are both faster and more accurate
than a variety of experimented Finite Difference schemes and they are not prone to
numerical instability;

2. a thorough analysis of the degenerate configurations of these expressions, along with
accurate alternate approximations for these configurations;

3. an implicit cage-based transformation technique using Mean Value Coordinates,
called Variational MVC Deformation, which interactively optimizes the target cage
embedding given sparse user positional constraints, while respecting smoothness and
rotational constraints;

10.1.2 Overview

We first review Mean Value Coordinates in section 10.2. The core contribution of our
work, the derivation of the Jacobian and Hessian, is presented in section 10.3 through
10.6. In particular, section 10.4 and 10.5 provide the specific results for the 2D and 3D
cases respectively. Note, that we are mainly interested by the 3D case in this thesis, but the
2D case is much less involved than the 3D case, and it helps understanding the derivation
for the 3D case, as the same particular cases need to be considered.

As the derivation of the Jacobian and the Hessian is relatively involved, for the reader’s
convenience, we highlighted the final expressions with ‘rectangular boxes ‘, whereas the

final expressions for degenerate cases are highlighted with a |ellipsoidal box | Note, that
some derivation details were removed from the text for clarity purpose. These are given in
Appendix at the end of the thesis.

Experimental evidence of the accuracy of our derivation is presented in section 10.7.

Finally we present applications demonstrating the utility of our contributions in sec-
tion 10.8.

10.2 Background

In this section, we review the formulation of Mean Value Coordinates in 2D and 3D [47].
The reader that is not interested in a detailed presentation of this set of coordinates is
referred to section 3.3.2 for a concise introduction of them. The following section will be
useful to anyone who wants to follow in detail the mathematical derivation that we present
in this chapter.

142

10.2.1 3D Mean Value Coordinates

Let be a point in R3, and f a function expressed as a linear combination of some values
f; € R? defined at the vertices of a triangular mesh M by:

where \;(n) is the barycentric coordinate of n with respect to the vertex i. It defines an
interpolating function of the samples f; if and only if f(p;) = f;Vi.

For a point 2 € M (a two-dimensional parameter), let ¢;[z] be the linear function on M
which maps the vertex i to 1 and all other vertices to 0, and p[z] € R? the position of =
on M, and n, its unit outward normal.

The definition of the coordinates A; should guarantee linear precision (i.e. n =3, Ai(n)p;).

Since [p (M) ‘pm_?]'dS (x) = 0 (the integral of the unit outward normal onto the unit
sphere is 0)/ the following equation holds:

dSy(x)
dSy(x)

_plz]
an M) \p[wl 7]

an (M) \p[ﬂ 7]

where B,(M) is the projection of M onto the unit sphere centered around 7, and dS,(x)
is the infinitesimal element of surface on this sphere at the projected point (dS,(z) =

(plz]—n)t-ng
el * 4%)

By writing plz] = >, ¢s[z|p; Vo, with), ¢;[z] = 1, we have:

@iz
2i Ip, |pa:1[745 (@)pi
S5, 0) B @Sn(7)

’]7_

The coordinates \; are then given by:

fB ¢ilz] ds (SE)

Ip[fv] 7]

fB) Ip m] nld’S ()

Ai =

and the weights w; such that \; = Zw—lw are given by:

B oile]
wZ/ | pla] - @50(®) (10-)

This definition guarantees linear precision [47]. It also provides a linear interpolation of the
function prescribed at the vertices of the cage onto its triangles and it smoothly extends
it to the entire 3D space.

10.2. BACKGROUND 143

Figure 10.2: Spherical edge E (left) and triangle T(right).

Weight computation

The support of the function ¢;[x] is only composed of the adjacent triangles to the vertex
i. Eq. 10.1 can be re-written as w; = ZTeNl(i) w]', with

T _ dilr] =
o = e 1o

Given a triangle T" with vertices %1, to, t3, the following equation holds:

wl -) = Zj(étj[m]‘(ptj_n)' _
D

B,(7) |P[*] =7

The latter integral is the integral of the unit outward normal on the spherical triangle 7.

T
By noting the unit normal as n! = l%}‘, with N 2 (py,,, —n) A(p,,, — 1) (see Fig.10.2),
T

m* is given by (the integral of the unit normal on a closed surface is always 0):

(10.3)

1
mT = Z 5ez.TniT (10.4)

As suggested in [47], the weights thj can be obtained by noting A7 the 3x3 matrix {p;, —
7, Pty — 1, Pts — N} (Where ! denotes the transpose):

T T . Tyt_ AT—1 T
{wtl,wtzjwtg} =A -m

Since NiTt “(pt; —m) =0 Vi# jand NZ-Tt - (py; —n) = det(AT) Vi, the final expression for
the weights is given by:

NIt T NIt T
T [)
wy = = Vn & Support(T')
Tt (p,, —n) det(AT)

)

144

10.2.2 2D Mean Value Coordinates

In 2D, the orientation of an edge F = ege; of a closed polygon is defined by the normal

ng:
R% (p61 - peo)
ng=—m——
[Pey — Peo|
\\rz,E
It defines consistently the interior and the ezxterior of the closed polygon.
Then, similarly to the 3D case:
Zw (Pe; —m) = m? = ZnJE (10.5)
J
with:
NE
n]E ‘NE‘ NO =Rz (77 Peo) N = _R’T (1 = Pey)
Therefore:
mP = Ra (L —Peo 17 Per) (10.6)

20N = Deol M — ey |

Since (pe; —n)" - N = 0 (Fig.10.2), we obtain w/” with:

E
E Nerl

(pez) NZE—I

10.3 Derivation Overview

In the following, we present our main contribution: the derivation of the Jacobians and
the Hessians of Mean Value Coordinates. In this section, we briefly give an overview of
the derivation.

Let f : M — R™ be a piecewise linear field defined on M (in 2D, M is a closed polygon, in
3D, M is a closed triangular mesh). As reviewed in the previous section, f can be smoothly
interpolated with Mean Value Coordinates for any point 7 of the Euclidean space:

=ZMﬂm

Then, the Jacobian and the Hessian of f, respectively noted Jf and H f, are expressed as
the linear tensor product of the values f(p;) with the gradient 7 \; and the Hessian H\;
of the coordinates respectively:

10.3. DERIVATION OVERVIEW 145

Note, that care must be taken when writing Hf = >, f(p;) - H)\;, as it is correct for a
scalar function, but it is ambiguous for a multi-dimensional function. To be correct, the
Hessian of each k' coordinate fi of f is given by H fi(n) = >, fr(pi) - HN\i(n).

Wi

Since \; =
3 Zj wj ?

VA = - .
>iwi o (0 w)?

Then, the Hessian can be obtained with the following equations

_ Huw; B w; Zj HZUj
w0 w))?
Ve X, V() + X, V) - vt
(Zj w;)?

H);

(10.8)

(>0 ws)?

The above expressions are general and valid for the 2D and 3D cases. Thus, in order
to derive a closed-form expression of the gradient and the Hessian of the Mean Value

%
Coordinates \;, one needs to derive the expressions of yw; (Eq. 10.7) and Hw; (Eq. 10.8).
The expressions of these terms are derived in section 10.4.1 and section 10.4.2 respectively
for the 2D case and in section 10.5.1 and section 10.5.2 for the 3D case.

Properties

Functions interpolated by means of Mean Value Coordinates as previously described have
the following properties:

1. they are interpolant on M

2. they are defined everywhere in R"

3. they are C'°° everywhere not on M

B

. they are C? on the edges (resp. vertices) of M in 3D (resp. in 2D)

Since these are interpolant of piecewise linear functions defined on a piecewise linear do-
main, they cannot be differentiable on the edges of the triangles (resp. the vertices of
the edges) of the cage in 3D (resp. in 2D). Although, as they are continuous everywhere,
they may admit in these cases directional derivatives like for almost all continuous
functions, but as they are of no use at all in general, we won’t present these quantities.
Recall that the directional derivative is the value 9f,(n) = lim,_ o+ M, with
u € R3,||u|| = 1, ¢ € R, which strongly depends on the orientation of the vector u

146

where the limit is considered. These derivatives cannot be used to evaluate the neigh-
borhood of a the function around the point in general with a single gradient (or Jacobian
if the function is multi-dimensional).

In the following, we provide formulae for the 1%¢ and 2" order derivatives of the Mean
Value Coordinates everywhere in space but on the cage.

10.4 MV-Gradients and Hessians in 2D

10.4.1 Expression of the MV-gradients

By deriving Eq. 10.5, we obtain:

- pt
2 (Pe; — 1) - vwg = Jm¥ + g wgb = B¥(n) (10.9)
j j

JmP¥ is given by deriving Eq. 10.6:

I I — Dey) - (11— Pey)’t — Dey) - (1 — pey)t
2 ’n_pe()’ ’n_pm’ ’n_pe()’ |77_pe1|

Then, in the general case where (p., —)" - N£1 #£ 0, the gradient of the weights is given
by the following expression:

= B _ B ‘Ni]il
Vwei - t E
(pei —n)t- Ni+1

Special case: 7 € (epey), ¢ [eoeq]

The special case where (p., — 1)t - Nfrl = 0 only occurs when 7 lies on the same line
as the edge E (n lies on the support of the edge E, noted Support(E)). As discussed in
section 10.3, we omit the case where 1 € [ege;]. Since the length of E is zero (see Fig. 10.2),
for all 1 € (eger), ¢ [eoer], wE(n) =0Vi=0,1.

%
Similarly, VweEi and ng are collinear, then:

= g a(wg(n—}—en;;))

VW, = ng
c Oe le—0

A closed-form expression can be derived from the above equation with Taylor expansions.
For conciseness, the details of this derivation are given in Appendix C (see section 13.3)
and only the final expression is given here:

10.4. MV-GRADIENTS AND HESSIANS IN 2D 147

B iy
- B N Nz+1 (_1)Z+]
vw, = (+ g (10.12)
Z 20E|INF]P |E|INF

VT] S (6061), Qf [6061]

10.4.2 Expression of the MV-Hessians

By deriving Eq. 10.9 successively with regards to ¢ = {x,y}, we obtain:

— Et

Za Pe; — vwel +Z Pe; —) ac(vwei)
= 0.(JmP) + Z@c(wE) I

= gt
Zi (pei - 77) : ax(ng) — sz’
{ > (Pe; =) - ay@wgt) e (10.13)

with
cr =Z¢<1> vwt " 0.(JmE) + Y, 0, (wh Ey.I
C’f = Zl< (1) > 'ng —|-8y(JmE) —I—Ziﬁy(wfi)-lg

Expressions have been provided for all of the terms appearing in the above equations,
except for the derivatives of JmP.

Expression of J.(Jm”)

By deriving Eq. 10.10, we obtain:

.(J E -R (n_pel)(c)IQ (n_peo)(c)l2 50'(n_peo)t+(n_peo)‘5ct
I =By (B ™ T paP 1= Pl
el €0 €0
3(77 _peo)(c)(n _peo) ’ (77 _peo)t Oc - (7] _pel)t + (77 _pel)) 5Ct
+ 5 + 3
|77_p60| |77_p€1|
301 = Per)(0)(n — Per) - (n—pel)t)
7 = pey |°

. 1 0
Wlthéx—<0>and5y—<1>.

148

Final expression of Hw!

From Eq. 10.13, ((pe; —)t - NF =0, see Fig. 10.2) we obtain:

= CF'NE
du(vwl) = oo NE
— (junst,]\/El+ Vn & (PegPe,)
Oy(vwl) = e
v €i (pei_n)t'NfH

Finally:
%
ENt
Huw? = 8m(zw%)t (10.14)
Special case: 7 € (epeq), ¢ [eoeq]
%
When 7 lies on the support of the edge FE, VweEi(n) = dwgnE, where dwg =
A(wE
W\e—m is a scalar term obtained in the special case of section 10.4.1 (Appendix

C, see section 13.3).

Therefore Vn € (eper), ¢ [eoer]:

Hw

o

ﬁ
v (dw;) - g

JNE," - NF+ JNF'. NE

— E i+1
V (dwe;) =
‘ Z 2E||NFP
t t
By 3(NJ" - NE)JNF - NP
E|5
- 2| E|[NF|
Z <_1)i+j+1JijEt . NJE
+
- |BIINEP3
= g 3(—1)i+1Nf‘|‘(—1)jNi€1
V(dw l) =Rx -
@ T Z 2| E||NFP3
; t
bRy 3 MW NE N
H 2E||NFP

Finally:

10.5. MV-GRADIENTS AND HESSIANS IN 3D 149

3(~1)INF 4+ (-1)/ N,
Huw? = Rx - J , 4l gt 10.15

; t
3= (VP! NENF
2 B|[NFP

Vn € (eoe1), & [eoen]

+R gt

Wl

10.5 MV-Gradients and Hessians in 3D

10.5.1 Expression of the MV-Gradients

Instead of deriving Eq. 10.2 (which involves the calculus of an integral), we derive the
Jacobian from Eq. 10.3 (by noting BT £ Jm? + > wg - I3):

— t
> (o, —n) - vuwl =BT (10.16)

J

From the above expression, we obtain: (again, NZ-Tt “(py; —m) = 0Vj #1i, see Fig. 10.2)

t
r_ BT NP
b det(AT)
Vn & Support(T)

Jw (10.17)

T

At this point, the Jacobian of the vector m” is required for the expression of BT

Expression of Jm”

From Eq. 10.4, we have:

T, T T A\1T

ot N0 N0
2y =

J J J

Then, we obtain:

— 7t
gt o5 NI S GINT
- 2|NT| - 2|NT|

OTNT . (JNT'. NT)! (10.18)
_2: JJ J J

- 2|NT|3

j J

150

Derivatives of NjT

From the expression of NJT (section 10.2.1), we obtain:

N (n+dn) =(pe;,, —n—dn) x (pt;,, — 1 — dn)
:(ptj+1 - 77) X (ptj+2 - 77) + (ptj+2 - ptj+1) X dn.

Therefore
JN]T = (Pty42 = Pty i)
where k) is the skew 3 x 3 matrix (i.e. k[,\]t = —kjn)) such that kjy)-u =k xu Vk,u € R3.

In particular, we see from Eq. 10.19 that NJT admits a null second order derivative.

%
Expression of 6]

%
The term vHJT can be derived from the following expressions:

sin(@7) =87, §7 & @unxbynnl N
J J ’ J ‘pt]'+2_77|"ptj+1_77| |Ptj+2—77\‘|l7tj+1—77|
A (0t o= (Pt —)
COS(QJT):CJT ’ C]T 2 W42 1

|Ptj+2 *W\'|Ptj+1*77|
cos(f]) - 39{ = §>SJ.T (10.19)
—sin(67) - V67 = YCT (10.20)

_>

v@;fp can be evaluated with Eq. 10.19 when Hf # /2, and with Eq. 10.20 when QJT #0,7.
=T = T . . .

VS, and 7C; are given by the following expressions:

t
ST = JNJ - N N =pye) INTL (=)
! ’NJT‘ ’ ’ptj+2 - 77’ ! |ptj+1 - 77’ |ptj+2 - "7’3 : |ptj+1 - 77‘ ’pt]’+2 - 77| : |ptj+1 - 77‘3

t . .
e JN[" - N} (0= pryy,) sin(0]) (0 —py,) -sin(f]) (10.21)
! |NJT| : |ptj+2 - 77| : |ptj+1 - 77| |ptj+2 - 77‘2 |ptj+1 - 77|2
oot = 20 =Ptjy —Piys (1 = Prysa) - (Prye =)' Pry0 — 1)
! |ptj+2 - 77| ’ ‘ptj-ﬁ—l - 77| |ptj+2 - 77|3 : |ptj+1 - 77’

(77 - ptj+1> : (pt]‘+2 - 77)t : (ptj+1 - 77)
‘ptj+2 - 77| ’ |ptj+1 - 77|3

10.5. MV-GRADIENTS AND HESSIANS IN 3D 151

2n — DPtjpr = Ptjpo (n— ptj+2) ’ COS(QJT) _ (n— ptj+1) : COS(QJT)
’ptj+2 - 77‘ ’ |ptj+1 - 77’ ‘ptj+2 - 77|2 ‘pthrl - 77|2

—

T _
vC; =

(10.22)

From Eq. 10.19 and 10.20, we obtain:
cos(GT)VST - sm(GT)vCT = COS(H) VHT + sm(@) VHT @9;[

And by replacing the expressions of vS]T and ijT on the left side of the equality by
those of Eq. 10.21 and 10.22:

t .
27 _ COS(QJT)JNJT . N]-T B sm(GjT)(Qn — Dtjps — Ptjir)
! |ptj+2 - 77||ptj+1 - 7]||N]T| |ptj+2 - "7Hptj+1 - 77|
. t .
COS(QJT) sm(ﬁ;fp)JNJT : NJT B 51n(0f)2(217 — Dtj s — Ptjsr)
|NT|2 [N

— o COS(QJT) sin(OjT)Jth : NJT sin(@f)2(2n — Dtjpo — Ptjir)
vl = TS - = (10.23)
NG | NG |

_)
At this point, an expression for VOJT has been provided. To complete the expression of
JmT, Eq. 10.23 and 10.18 need to be combined:

cos(f]) sin(6])N - (JNjTt N

Z 2]NT\3

J

Sln QT 2NT (277 - ptj+2 - ptj+1)t

_Z 2|NT |2

0T JNT OTNT - (JNT'- NT)

+Z 2|NT’ ZJ: ’ 2|N]Tj|3

Final expression of Jm?”

We obtain the final expression of Jm”(n) as:

t
er(01)N/ - N JNT
2(|pt]’+2 - 77||ptj+1 - 77‘)3

JmT:Z

J

o Z NjT : (277 —DPtj — ptj+2)t
2(|ptj+2 - 77Hptj+1 - 77‘)2

62 HT JNT
2’ptj+2 77Hpt]+1 - 77’

3

152

% and ey(z) = s are two well-defined functions on 10, [which

admit well-controlled Taylor expansions around O.

where e; =

%
Given the final expression of Jm” (Eq. 10.24), we recall that Y wy, can be computed with
Tt

N NT
the following expression: Vw;f = % (with BT = Jm™ + > th], - I3).

Special case: 1 € Support(T),¢ T

The expressions provided so far admit degenerate cases when det(AT) = 0 (Eq. 10.17).
Similarly to the 2D setting, these cases only occur when 7 is lying on the support plane of
T, noted Support(T).

For n € Support(T),¢ T, as discussed above, given small steps in the support of 7', the
weights are set to 0: V(n + dn) € Support(T), ¢ T, wi (n+ dn) = 0.

Therefore, the weights only evolve in the direction of the normal of 7"

— owl (n+en
v € Support(T), ¢ T : wl = M -y
' Oe le—0

To approximate the above expression, we consider the Taylor expansion of wg(n +eny) =

NT (nteng)-m? (+eng)
det(AT (n+eng))

with regards to e.

The details of this expansion can be found in Appendix A (see section 13.1). The final
result is given by:

/@wT = — Z 62(9;'11)(pti+2 - pti+1)t ! (ptj+2 - ptj+1)nT \
‘ j 4|T’|pt]’+2 - 77”ptj+1 - 77|
t
o Z el(ng)’ptﬁr? - ptj+1’2NzT) NJTnT
j 8’T|(‘ptj+2 - 77Hptj+1 - 77‘)3

t
—Z cos(GjT)eg(Q;‘-F)NiT -NjT
j 4|T|(’pt]’+2 - TI||Ptj+1 - 77|

\ Vn € Support(T),¢ T J

with ex(z) = iy, e1(@) = %, and e3(x) = Cgfrff;)gl being functions well defined

on |0, [and which admit controllable Taylor expansion around 0.

2

10.5.2 Expression of the MV-Hessians

1 0 0
Wenoted*=1 0 |,0=1 1 |,0*=1| O
0 0 1

10.5. MV-GRADIENTS AND HESSIANS IN 3D

Derivation of Hw!

By deriving Eq. 10.16 successively by ¢ = z,y, and z, we obtain:

t

Za%rm‘ﬂ’+2ﬁww)mvﬂ

Jm +Z€9

)

S oy, =) - 0Tl = CF

%
with CT 2 6¢- Y wl ' + 8.(Jm”) + 32, 0. (wl) - I,

All these terms have been expressed previously, except for the derivatives of Jm”.

Expression of the derivatives of Jm?”

Given a vector k € R?, we note (k)(), (k) y), (k)(») its components in z,y, and z.

153

(10.24)

By deriving Eq. 10.24 term by term, and using Eq. 10.23 for VHT, we obtain the final

expression of d.(Jm7)

154

Tt T T Tt T
N N)()Nj -Nj -JNj
|pt]+2 77Hptj+1 _77‘)5

t
67(9;[)(277 —Ptj — ptj+2)(c)N]T ’ N]T : JNJT
j 2(|ptj+2 - anthrl - 77|)4

T\ A7 T T\t T
+Z +Zel(9j)Nj -8C(Nj) -JNj
J

2(‘ptj+2 - 77Hptj+1 - 77’)3
t t
_2361 (=P) N N JNT _ Be1(07)(n — piy0) N - N - JNT

2|pt]+2 - 77| |pt]+1 - 77|5 Zj: 2|ptj+2 77’ |ptj+1 - 77’3

T Tt T
o(NT)-NT". JN
’pt3+2 antj-H - 77’)3

B Z 8c(N]) . (277 - ptj+1 - ptj+2)t 4 Z (T] pt]+1)(c) (277 pt]+1 ptj+2)t
2(’ptj+2 - TI||Ptj+1 - 77|)2 |ptj+2 77| |ptj+1 - 77|
t
es(07)(JNI" - NI) o JNT
2(‘ptj+2 - 77Hptj+1 - 77’)3

T t
+ Z g _ptj+2>(C)Nj (20 =Py = Piyas) + Z

j ‘pt]'+2 - 77’4‘pt]'+1 - 7]’2

B Z)(21 = Ptj1 = Prysa)(0) JNjT _ Z (n— ptj+1)(0)62(9}ﬂ)JNf
!pt7+2 e, —nl)? 2|pt; o — 0Pty — 0l
B Z (N = Pty (QT)JNT NjT .ot
20pt;4s — 77| Pty — 1 = [Pty2 = 0[Pty 0 =1l

with eg(z) = €} (x)cos(z)/sin(x), er(x) = €}(x)sin(x),es(x) = eh(x)cos(x)/sin(z), and
eg(x) = eh(x)sin(x).

As previously discussed, |NJT| can become close to 0 only if GJT tends to 0 or w. The
second case corresponds to 7 lying on one edge p,,,pt, , of the triangle T'. As discussed
in section 10.3, we do not provide expressions of the derivatives in that case (for points
lying on T)).

The first case corresponds to 7 lying on the same line as one edge of the triangle. All the
degenerate functions in this expression admit well-defined Taylor expansions. As these ex-
pressions are shown to converge, they provide a practical way to robustly evaluate 9,(Jm?)
near the support lines of the edges of the cage triangles.

When 7 lies exactly onto the support plane of a triangle T', we cannot use the same strategy
to compute the Hessians. These special cases will be discussed in the next paragraph.

10.5. MV-GRADIENTS AND HESSIANS IN 3D 155

Final expression of Hw!

From Eq. 10.24, once again we obtain

= cr'.NT
Ou(vwi) = Gacaty
— Tt NT
Oy(vuwl) = 75;(/]‘\;) Vn & Support(T).
— cT'.NT
0:(Vwi) = Faaty
Since
ax(iwg)t
Huw] = ay(zthi)t
8Z(Vw£)t
finally we obtain
1 NT'- 0, (JmT)
Huw!l = ——— Tt T 10.25
w; dct(AT) Nth 8y(JmT) ()
N/ -0.(Jm")

det NT va —i—ZVM NTt

Special case: n € Support(T),¢ T

For all n € Support(T), ¢ T, Eq. 10.25 does not hold anymore, as A’ is a degenerate basis.

= T (nte . .
Using yw] = dw!nr with dw!(n) = Wkao (previously expressed in sec-
tion 10.5.1), we obtain:

T_ 3 T .t
[Hwi =vdw; -np , Vn € Support(T), ¢ T (10.26)}

The details of the derivation of ?de’ can be found in Appendix B (see section 13.2). The

%
final expression of \7dw! is given by:

156

where ej(x) =

es(x) =

_>
—2|T|vdw] =

£ (ptj+2 - ptj+1))(277 — Ptjo — ptj+1)

o Z ((pti+2 — Dty

J

(|ptj+2 - antj+1 - 77|)2

t
0)((pti+2 - ptz‘+1)t : (ptj+2 - ptj+1))‘]N]T : NJT

+)° “
J
I Z |ptj+2

2(|ptj+2 - anthrl - 77|)3

t
_ptj+1|2(NzT N]T)(277_ptj+2 _ptj+1)

J

2(|ptj+2 - 77||ptj+1 - 77|)4

t t
61(9f)‘ptj+g - pt]'+1 ‘2<JN]T ’ NZT + JNIT) N.;T)

2

J

4(‘ptj+2 - TIHPth - n’)g

t t
64(0f)|ptj+2 _ptj+1|2(NiT N]T)JN]T N]T

-2

J

2(|ptj+2 - 77||ptj+1 - 77|)5

0T)(JNT'- NI + NI NT)

(1 —2cos(67))(NI" - NT)(2n — p;

|pt]‘+2

antj+1 77‘)

j2 ~ Ptjg)

cos(9 Jes(
2(
)

(|ptj+2 "7Hptj+1 77|)
t t
es(07)(N]" - NJ)JIN]" - NT

¥

cos(x) sin(z)—x
sin(z)3

2(‘ptj+2

,64($) =

cos(x) sin(x)2(1—2 cos(x))—2 cos(z)24-2 cos(x)

- 77Hptj+1 - 77‘)4

2 cos(z) sin(z)3+3(sin(z) cos(z)—x) €3 (I) _ cos(z)—1 and

sin(z)® sin(z)?

sin(x)?®

are functions well defined on |0, 7[and that

admit controllable Taylor expansion formula around 0.

10.6 Continuity between the general case and the special

case

We obtained the formulae for the gradient and the Hessian of wiT(n) in the general case,
when the point of interest 17 does not lie on the triangle 7', and in the special case when 7
lies on it.

As MVC are C* everywhere not on M, these formulae are guaranteed to converge, since
in particular, the gradient and the Hessian are continuous functions everywhere not on M.

The same holds in 2D where the distinction is made for the computation of w¥(n) whether
1 lies on the line supported by the edge F or not.

10.7. EXPERIMENTAL ANALYSIS 157

10.7 Experimental Analysis

In this section, we present experimental evidence of the numerical accuracy of our deriva-
tion and provide computation timings.

10.7.1 Complexity

For each point 7, computing the MVC, the MVC gradients and the MVC Hessians is linear
in the number of vertices and edges (faces in 3D) of the cage.

10.7.2 Implementation

In this chapter, we have introduced several functions that were noted ey (x). These func-
tions are unstable near 0, but all have clean Taylor expansions around 0 (their exact
expression are of no scientific value, but they can be obtained using standard numerical
computing environments, e.g. Matlab). In our implementation, we rely on these Taylor
expansions up to the order 15 for the computation of e (z) for all values of x smaller than
0.1, and consider the true expressions of the functions otherwise.

This strategy prooved to be efficient for their computation. However, they can be ap-
proximated with any precision using look-up tables, themselves computed using an infinite
precision library!.

10.7.3 Global validation with a manufactured solution

We first inspect the numerical accuracy of our derivation through the Method of Man-
ufactured Solution (MMS), a popular technique in code verification [5,32,33]. Such a
verification approach consists of designing an input configuration such that the resulting
solution is known a priori. Then the actual verification procedure aims at assessing that the
solution provided by the program conforms to the manufactured solution. In other words,
MMS verification counsists of the design of ezact ground-truths for accuracy measurement.
However, note that this verification is not general, as it only assesses correctness for the
set of manufactured solutions.

Manufactured solution: As Mean Value Coordinates provide smooth interpolations, a
global rigid transformation of the cage p; = T'+ R-p; should infer a global rigid transforma-
tion of the entire Fuclidean space. In particular, the Jacobians of the embedding function
f of the transformed cage (f : R® — R3, f(p;) = Pi) should be equal to R everywhere,
and its Hessian should be exactly 0. Then our manufactured configuration is the space
of global rigid transformations and our manufactured solution is defined by Jf = R and
Hf=0.

'For instance, see the GNU Multiple Precision Arithmetic Library, http://gmplib.org/

158

[1 22 piy HAl
- \ 2

122 Pigay HAill (132, iy HAll
~ S PR 6

float

FR:[1.76e-17 , 1.19e-03] FR:[1.94e-17, 8.71e-03] FR:[2.04e-17, 7.93e-03]
DI:[1.76e-17 , 6.44e-13] DI:[1.94e-17 , 1.20e-12] DI:[2.04e-17 , 2.43e-12]

) o1, - Tk (99% m.s.) (99% m.s.) (99% m.s.)
17 -2.1e-06 1.7e-06 > “-2.2e-05 2.5e-05 -2.1e-05 2.2e-05
: = oy y
: [132:pi- VA" — Is]| 132 w8 132 Hll
Q . 7NN ")
N & A
3
o .
- ot S =
e FR:[4.05e-16 , 1.24e-05] FR:[0, 1.34e-12] FR:[6.64e-20 , 5.89e-09]
! S i et i DI:[4.05e-16 , 9.06e-11] DL:[0, 3.10e-15] DI:[6.64e-20 , 5.84e-16]
-3.1e-15 4.2e-15 -2.2e-14 2.4e-14 3 -3.56-14 3.4e-14 (99% m.s.) (99.9% m.s.) (99% m.s.)
(a) 2D (b) 3D

Figure 10.3: Validation based on a manufactured solution (group of rigid trans-
formations)

Left (a: 2D case): The histograms show the violation of the correctness conditions asso-
ciated with the manufactured solution (95% most relevant samples). Top: simple floating
point precision (output precision: 107°). Bottom row: double precision (output precision:
10~'). Size of the diagonal of the domain: ~ 1000.

Right (b: 3D case): The violation of the correctness conditions (from transparent blue,
low values, to opaque red, high value) is measured on each vertex of a 100% voxel grid.
The full value range (FR) is given below each image while only the 99% most significant
samples are displayed (DI). Size of the diagonal of the domain: ~600.

Given this manufactured solution, we can derive correctness conditions for the Jacobian
evaluation from the following expression:

TF=S) VN =R-S pi- UM+ TS UA

Thus, to conform to the manufactured solution Jf = R, the following equations should be
satisfied:

vt
[z
i Pi - i — 13

As for the Hessian evaluation, we can derive similar correctness conditions:
Hfe= " felpi)HXi
i
= Z Req- ZPi(d)H)‘i —i—TcZH)\i Ve ={z,y,z}
i

vde{z,y,z} i

where T, T, and T, are the first, second and third coordinate of the vector T respectively
(similarly for R.q).

10.7. EXPERIMENTAL ANALYSIS 159

Thus, to conform to the manufactured solution H f = 0, the following equations should be
satisfied:

> HN =03

2iPieyHAi = 03

2oiPigyyHA; =03 (10.28)
2 Piz)HAi =03

Note that both the Jacobian and Hessian correctness conditions (Eq. 10.27 and 10.28) are
not functions of the rigid transformation parameters. These properties remain valid for ar-
bitrary translations and rotations and thus cover the entire group of rigid transformations.

Fig. 10.3(a) shows numerical evaluations of these correctness conditions for different cages,
at random points (in grey) of a 2D domain. In particular, the histograms plot the entries
of the left-hand term (a vector or a matrix) of each of these equations, which should all

be zero (for the second Jacobian condition, the entries of the matrix ZZ i - ?AJ — I are
shown). As shown in this experiment, the error induced by the violation of the correctness
conditions is close to the actual precision of the data structure employed for real numbers
(float or double). Also, the error slightly increases when the cage is denser. Indeed, with
dense cages, it is more likely that the randomly selected samples lie in the vicinity of the
support of the cage edges. These configurations correspond to the special cases discussed
earlier and for which Taylor expansions are employed.

Fig. 10.3(b) shows a similar experiment in 3D, with a coarse cage (black lines). Similarly,
most of the errors are located on the tangent planes of the triangles (special cases). Note,
that an important part of the error yields from the samples which are located in the vicinity
of the cage triangle, a configuration for which we do not provide a closed-form expression,
as discussed in section 10.3. Interestingly, the errors on the correctness conditions for the
Jacobian and the Hessian are comparable to the errors induced by the actual computation
of the Mean Value Coordinates ;. In the example shown in Fig. 10.3(b), the error range of
the positional reconstruction on the grid (i. e. the violation of the linear precision property
of the MVC) is [0,1.08 10~°], which is larger than the error ranges observed in two of the
six correctness condition evaluations of the derivatives.

10.7.4 Taylor approximations behavior

Validation based on manufactured solutions enables assessing the accuracy of a numerical
computation on a sub-set of pre-defined configurations. However, in our setting, designing
manufactured solutions corresponding to other configurations than rigid transformations
is highly involved.

Thus, to extend our analysis to arbitrary configurations, we present in this paragraph an
analysis of the Taylor approximations of MVC-functions based on our derivation.

In contrast to manufactured solutions, this analysis is not meant to wvalidate our results,
but simply analyse how functions expressed by MVC behave in the local neighborhood of
a point.

160

Original cage

Input

Dimensions
147.5x 167.9 x 137.2

b=y

Deformation
function |

Linear and quadratic errors. Sphere radius : 1

le+15

le+10 |

100000

1B

le-05 |

le-10 |

le-15 |

T T
HX"" (double)
HA™ (256bits)
= e
VA" (double)

)

TAT (256bits

le-2 le-2, 3 (f - le-2
v - @8)r 005 (@8
81 1 W) 1§ 1 lefy 1T s
le-2 @) 1e2) le-30 |
le4 le-d —@ led 7
o e
€01 L A 1=) 1e§

le-2
e8] 1 1

1e-35 I I I I ! I I
le-14 le-12 le-10 le-08 1le-06 0.0001 0.01 1 100

Figure 10.4: Left: Red curve: Linear approximation. Blue curve: Quadratic approxima-
tion. Plots show on a logarithmic scale the radial function defined as the average of
the absolute error on the sphere of radius r (r € [0,1]). The points 7 where the evaluation
was performed were taken on the skeleton shown in the original cage (here are displayed
the evaluations for the points #0, #1, #2, #3, #4, #5, but these are representative of the
curves we have for all locations). For each plot, the spheres on the top show the linear
approximation error from two points of view (red box), the others show the quadratic
approximation error from the same two points of view (blue box). From the tangent, we
can assess the quadratic convergence of the linear approximation scheme and the cubic
convergence of the quadratic approximation scheme.

Right: Comparison with Finite Differences. The domain are the same as described
previously in Fig. 10.4(a), and the evaluations are performed on point 0. x axis: size
of the stencil for Finite Differences. y axis: difference between Finite Differences ap-
proximations of the derivatives and our formulae. Axes of the plots are in logarithmic

scale. The functions that are plotted are ?)\6”(7') = \/Zlﬂg)\, —g)\iFD(T)HQ and
HN (1) = /S, ([N — AP

For regular functions, function values in the neighborhood of a point can be approximated
up to several orders of precision, using Taylor approximations:

Fn+dn) = F(n) + V £4 - dn + ol||dn]])

Flntdn) = F(n) + T fy - dn+ o' - Hfy - + o)

In the following, we use these approximations to analyze the behavior of our derivation for
arbitrary configurations. In particular, we evaluate the following errors:

%
E' = |[f(n+dn) = f(n) = f}-dnl]
- 1
E? = |[f(n+dn) = f(n) = 7 fy - dn — 5dn" - Hf - dn|
As the evaluation neighborhood shrinks to a point, these errors should tend to zero, with

a horizontal tangent. Fig. 10.4(a) shows plots of these errors (logarithmic scale) on an
arbitrary deformation function defined by user interactions:

10.7. EXPERIMENTAL ANALYSIS

161

INPUT CAGE MODEL || COORD. ONLY | COORD. + DERIV. | COORD. + DERIV. | COORD. + DERIV.
(#V | #T) (ms) [ANALYTIC| (MS) [FD] (ms) [TRIC] (MS)
Beetle (32 / 60) 0.060 0.781 1.157 4.196
Beetle (130 / 256) 0.256 3.261 4.881 17.625
Beetle (514 / 1024) 1.027 13.171 19.620 70.768
Armadillo (164 / 324) 0.324 4.130 6.174 22.428
Monster (128 / 252) 0.252 3.212 4.809 17.503
Monster (506 / 1008) 1.013 12.860 19.389 69.900

Table 10.1: Performance of the computation of the 3D Mean Value Coordinates and their
derivatives at a single point. Tests were performed on 1000 points and average timings
are presented. We compare our formulae computation time with Finite Differences (FD)
methods that require 27 evaluations in total, and with tricubic approximations (TriC) that
require 65 evaluations in total. Without any regards to the quality of such approximations,
it is still faster to compute the true value of the derivatives using our formulae than
approximating them using any Finite Differences scheme.

e On regular functions, the derivatives of the MVC characterize the interpolated func-
tion correctly: the maximum error is 7. 102 (for a bounding diagonal of 316). Note,
that the radius r € [0, 1] of the evaluation neighborhood where they can be used to
approximate the function is not too small. Therefore, our derivative formulation pro-
vides enough accuracy to enforce sparse derivative constraints on local neighborhoods
such as those expressed in the applications described in section 10.8.

e The linear approximation can sometimes produce more accurate approximations
in average than the quadratic approximation on a large neighborhood, while the
quadratic approximation provides results which are less direction-dependant.

e The induced errors indeed tend to zero when the neighborhood shrinks to a point and
the tangent of the curves in logarithmic scale illustrates that the error conforms to the
expected form (O(||dn||?) for the linear approximation,O(||dn||?) for the quadratic
approximation). Indeed, remember, that if y = A-2™, then log(y) = log(\)+n-log(z).

10.7.5 Comparison with Finite Difference schemes

In this section we use Finite Differences schemes to derive the gradient and the Hessian of
the MVC, to compare with the expressions we obtained.

A conventional scheme for approximations of first and second order derivatives is the
following:
hy,2)—f(z—h
f:l}(xa y’ Z) ~ f(x+ 7yvz)2hf(x ,y,z)
fII ($, y’ Z) ~ f(:Jchh,y,z)72f(:v,2y,z)+f(:rfh,y,z)

h
fxy($7 v, Z) ~ f(a:—i—h,y-i—h,z)—f(at+h,y—h,221;2]‘(:c—h,y—i—h,z)—i—f(:r—h,y—h,z)

This scheme requires 27 evaluations of the function in total. Results of convergence of
Finite Differences (FD) of the Mean Value Coordinates derivatives using this scheme are

162

presented on an example on Fig. 10.4(b), using double precision and 256 bits precision
(using mpfrc++, which is a c++ wrapper of the GNU multiple precision floating point
library (mpfr)). The domain is the same as described previously in Fig. 10.4(a), and the
plots correspond here to the evaluation made in point 0. The error functions that are plot-

— = =
ted are A7 (1) = \/zi 17X — VAF PO 2 and HX (r) = \/zi [HX; — HXEP0))|2,
Note, that these plots are representative of all the experiments we made (i.e. with other
cages, at other locations, etc.).

These results validate empirically our formulae, as the Finite Differences scheme converges
to our formulae when the size of the stencil tends to 0 (Fig. 10.4(b), using 256 bits pre-
cision). It also indicates that Finite Differences schemes are not suited to evaluate MVC
derivatives in real life applications (see Fig. 10.8 for example), as these schemes diverge
near 0 when using double precision only (Fig. 10.4(b) blue and red curves).

Note also, that we used different schemes to approximate the derivatives using Finite
Differences methods (9 points evaluation + linear system inversion, 27 points evaluation
on a 3 x 3 x 3-stencil, tricubic interpolation on a 4 x 4 x 4-stencil), and that they all diverge
in the same manner when using double precision.

The error curves are also similar when looking at the deviation of the gradients and Hessians
of the function itself that is interpolated (e.g. the deformation function in Fig. 10.4(a)),
instead of the gradients and Hessians of the weights themselves.

10.7.6 Timings

Table 10.1 shows average computation times of the evaluation of the Mean Value Coordi-
nates and their derivatives for several input cages. As the cost of the evaluation depends
on the occurence of the special cases (point lying on the support plane of the triangles
of the cage), we performed the computation on a set of 1000 points that were randomly
distributed inside the bounding box of the model, and the average time is presented. As
shown in this table, these computations take only a few milliseconds, which allows their
usage in interactive contexts. Also, note that in the applications discussed in the follow-
ing section, the derivatives are only evaluated on a very small set of points for constraint
enforcement.

10.8 Applications

In this section, we review the applications presented in the original paper [47], and illustrate
the utility of our contribution for all of them.

10.8.1 MYVC derivatives visualization

In the context of function design/editing/visualization, the derivatives of the function can
be of use to the user, as they have very often an intuitive meaning.

10.8. APPLICATIONS 163

5

- !

oM umy

-

Figure 10.5: Visualization of rotations on the shape skeleton.

Scalar constraints Gradient constraints

1D G |

Figure 10.6: Flexible volumetric scalar field design with MVC gradient constraints. Left:
Scalar constraints (spheres in the cage). Right: Gradient constraints (arrows in the cage).
Blue and red colors respectively correspond to low and high value/gradient. In contrast to
simple scalar constraints (left), gradient constraints (right) enable to intuitively interact
with the shape and the velocity of the level lines.

For example, in the context of 2D or 3D deformation, the Jacobian of the transforma-
tion J(n) can be put in the form J(n) = R(n) - B(n) - X(n) - B(n)" using Singular Value
Decomposition. These different matrices represent the scales of the transformation (X)
in the basis given by B, and the rotation that is applied afterwards (R) — which can be
represented easily as a vector and an angle (see Fig. 10.5). In the context of color inter-
polation, the gradients of the different channels can be displayed. In general, the norm of
the Hessian provides the information of how locally rigid the function is around the point
of interest. Using our formulation, one can obtain these informations at any scale with the
same precision, to the contrary of what finite differences schemes would provide.

164

Input Mesh + Handles Input Cage

Figure 10.7: Implicit Cage Manipulation with Variational MVC. Red points indicate
positional constraints; blue points indicate unknown rotational constraints. The quality
of the produced cages allows the user to edit small details manually by switching from an
implicit manipulation to an ezplicit manipulation. The same cannot be done with a Green
Coordinates solver.

10.8.2 Flexible volumetric scalar field design

As shown in [47], Mean Value Coordinates can be used to solve the boundary value interpo-
lation problem for the definition of volumetric scalar fields, given an input field prescribed
on a closed surface. Our derivation of the MVC gradients and Hessians enables to extend
this application to more flexible volumetric scalar field designs, in particular by enforcing
the gradient of the interpolated function. Such flexible scalar fields contribute to volumet-
ric texturing 47| and meshing [67]. Fig. 10.6 illustrates this application where the user
sketched gradient constraints inside the volume. To compute a function which satisfies
these constraints, a linear system is solved, where the unknowns are the scalar field values
on the cage. In particular the following energy is minimized:

E= Z PHZ)‘ ;) f sz2

v EV

+ > llafillP+) GHZV/\ vi) - fi = gill®

v; EM ’U1€G

where V is a set of points where hard constraints are applied on function values, A f;
denotes the cotangent Laplacian of the function at the vertex ¢; of the cage, and G is the
set of points where the gradient constraints are specified. Such an optimization procedure
generates a smooth function on the cage (by minimizing its Laplacian) as well as in the
interior volume (thanks to the MVC) with enforced gradient constraints. As shown in Fig.
10.6, the gradient constraints enable interacting with the shape and the welocity of the
level sets of the designed function.

10.8.3 Implicit Cage Manipulation with Variational MVC

As shown in [8], intuitive volumetric deformations with little distortion can be obtained
through a variational framework. In this context, the space of allowed transformations is
explicitly described and the cage deformation is automatically optimized to satisfy posi-
tional constraints, while respecting the allowed transformations.

Since our derivation enables to express the Jacobian and Hessian of the transformation at
any point in space as a linear combination of the cage vertices, the user can specify rigidity

10.8. APPLICATIONS 165

constraints (by minimizing the norm of the Hessian) or rotational constraints (by setting
the Jacobian to the corresponding value).

The solution to this optimization problem is a 3D field f : R® — R3, defined everywhere
in space using MVC, which interpolates the transformation of the cage vertices. We note
P the set of positional constraints of the transformation (Vv; € P, f(v;) = v;), J the
set of Jacobian constraints (Vv; € J,Jf(v;) = J;), and H the set of Hessian constraints
(Vv; € H, H f,(v;) = Hfy(v;) = Hf.(v;) = 03). The solution is given by minimizing the

following energy:
E=%" wlIIY_ Xwi)e; — i)
J

’UiE?
— —
+) @il I () = TilP)
viEj J
3 @Y HA) - e D)
vieﬁ J
+ > (1Y HXN (i) - ey |P)
U»;Eﬁ J
57 @S HA () - 1)
’Uieﬁ J

where w, w’, and wf are weights for the positional, Jacobian, and Hessian constraints

respectively. Similarly to [8], the transformation can be constrained locally to be a pure
rotation. Then, in prescribed locations, the following property should hold:

Jf(vi)t . Jf(’Ul) =13 Wu; € J

Note, that the actual values of these Jacobian constraints are now unknowns which can
be obtained through an iterative optimization, as described in [8]. Due to the non-local
nature of Mean Value Coordinates (in comparison to Green Coordinates), we constrain
pure rotations to a subset of the enclosed surface vertices (blue spheres in Fig. 10.1 and
10.7) instead of constraining them to the medial axis.

Fig. 10.1 illustrates the algorithm, where the input surface is shown on the left in its
enclosing cage. In this example, rotational constraints have been distributed evenly on
the surface (blue points) and only 14 positional constraints have been specified and edited
by the user. The interactions required by our system are limited and intuitive and our
resolution of this optimization process is fast enough to provide interactive feedback despite
a CPU-only implementation.

Fig. 10.8 shows a comparison with the results one can obtain using a Finite Differences
scheme in the context of shape deformation. Using Finite Differences requires to tune the
size of the stencil used for computation of the MVC derivatives case by case, and it can be
difficult to set it up correctly, resulting in poor reconstructions.

Discussion

Other techniques have been proposed in the past for as-rigid-as-possible (ARAP) cage-
driven shape deformations. For instance, Boroséan et al. [11] presented a technique which

166

Q

Input: model and cage results using the formulae results using Finite Differences

Figure 10.8: Comparison with Finite Differences schemes in the context of Variational
MVC Deformations. The parameters for the linear system are strictly the same.

solves for ARAP transformations on the cage, while interpolating the results in the interior
with MVC. However, as discussed earlier, MVC coordinates exhibit a very global behavior.
Thus, ARAP transformations on the cage do not necessarily imply ARAP transformations
in the interior. Reciprocally, it is often necessary to generate non-ARAP transformations
of the cage in order to yield ARAP transformations in the interior. Instead, our technique
enforces ARAP constraints directly on the enclosed shape.

In contrast to [8], our optimization process does not involve the normals of the triangles of
the cage. Hence, it requires the resolution of fewer unknowns. Also, as the triangle normals
are unknowns of the system in variational harmonic maps (VHM), they can take values
arbitrarily far from the actual normals dictated by the Euclidean cross product of face
edges. Hence, the cages generated by this technique cannot be exploited in a consistent
manner for post-processing tasks. For instance, loading these cages in a modeling software
supporting Green Coordinates would fail to correctly reconstruct the enclosed shape if the
traditional Euclidean normals were used. Even if the normal solutions provided by the
VHM system were used for this initial reconstruction, it would be not clear how to update
them consistently given some explicit user deformation of the cage. The same remark goes
for other post-processing tasks, such as cage-driven shape interpolation, for animation
generation based on key-frames provided by implicit cage manipulation.

On the contrary, our technique (variational MVC) does not suffer from this drawback as
only cage vertex positions are unknowns. Thus, the cages produced by our algorithm can
be manipulated and re-used directly and consistently with existing software supporting
MVC based deformations in various post-processing tasks. Also, our technique allows the
user to switch at any time from implicit to explicit cage manipulation for small detail
tuning, which cannot be done with a solver based on Green Coordinates. Note however,
that it is not clear how to go from an ezplicit manipulation to an implicit manipulation, as
the constraints enforced by our system are not respected when moving each cage’s vertex
independently from the others. Thus, smplicit manipulation of the cage using our system
can only be done before an explicit manipulation, or this editing phase will be discarded
by the system.

It may be possible to express the derivatives for Positive Mean Value Coordinates
(PMVC) [60] using our formula. The possible non-positivity of MVC coordinates has
often been discussed as a drawback in certain contexts. Note however, that this particular

10.8. APPLICATIONS 167

property makes them the only barycentric coordinates which allow the definition of coordi-
nates outside of the cage in a straightforward manner. Nevertheless, PMVC can overcome
this possible drawback, by only taking into consideration the cage vertices which are wisi-
ble from the point under evaluation, which can be done very efficiently on the GPU, using
the rasterization hardware machinery. However, these coordinates are not smooth since
the visibility function is not smooth either. It would be interesting to study in practice
how reliable the MVC derivatives can be when restricted to visibility dependant sub-cages,
in order to mimic the behavior observed with PMVC. In the original paper, the authors
motivate the approximation of the PMVC with the rendering of the basis functions on
cube-maps by pointing out the fact that computing the visibility function is extremely
difficult (it would require to re-mesh the part of the cage that is visible from the consid-
ered point, and then to compute the MVC w.r.t. this new cage). It seems difficult to do,
but we recall that in most scenarios (e.g. the Variational MVC), the computation of the
derivatives is required at a few locations only.

Chapter 11

Analytic biharmonic coordinates

We have seen in the technical background section of this thesis (see section 3.3.3), that
3D space transformations are limited to be at most quasi-conformal (or to belong to the
class of Md&bius transformations, which are too rigid to be considered in shape deformation
tools). Surface-based transformation techniques allow to consider conformal deformations,
but even those are quite limited, as they do not allow the twisting of objects (which is not
conformal).

Biharmonic Coordinates have been made popular for shape deformation by Jacobson et al.
[41], but their formulation does not come with a close formula, and the computation of this
set of coordinates is quite involved. Although it was not the only contribution of this paper
(it is probably more popular for the interaction process that is presented, that allows to
manipulate at the same time control cages, control skeletons, and control points), it made
the point that non-harmonic deformation functions can be of help to Computer Graphics
artists.

We are interested in this work in finding a close formula for the expression of bi-
harmonic coordinates, expressed w.r.t. a control cage of the form of a close triangular
mesh.

11.1 Mathematical background

Deriving an equivalent of the Green’s third identity in the biharmonic case, we express
all biharmonic functions in terms of boundary constraints on the cage (when subdivid-
ing enough the cage surface, all functions can be expressed in this basis). We show, that
expressing these constraints as continuous, piecewise linear for the second order and discon-
tinuous, constant per triangle results in a set of coordinates that are appropriate for shape
deformation. We make use of our set of coordinates in the context of shape deformation
driven by a variational framework that optimizes for well considered sets of deformation
spaces (limited to be smoothly varying by minimizing the norm of the Hessian of the
function, and to be as-rigid-as-possible on the medial axis of the shape, resulting in quasi-

169

170

conformal deformations), and show their expression power. We also use this framework to
compare our set of coordinates to previous work.

Contributions
In this chapter, we make the following contributions:

1. an introduction of our so-called Green BiHarmonic Coordinates, based on a piecewise

2nd 37”d

linear and constant per triangle orders derivatives constraints on the cage (see

section 11.2);

2. the close form expression of the integrals of the Green biharmonic functions on tri-
angles;

3. a framework similar to Variational Harmonic Maps [8] that uses our Green BiHar-
monic Coordinates, and that we call Variational BiHarmonic Maps (see section 11.3).

11.1.1 Laplace equations with boundary conditions

As presented in [61], a Green identity can be derived to express any harmonic function A
everywhere in a close domain D by the means of an integration of its boundary conditions:

_ oG,
A= [G

[aen s, (1)
£€OD ne

where G is the fundamental solution to the Laplace equation, i.e. A1 G(z,y) =Ay G(z,y) =
do(l|z = yll)-

Note that G is given in dimension d by

1 2-d
G(z,y) = WH“‘—ZJH d>3
5= log(||z —yl|) d=2

where |S?| denotes the volume of the unit sphere in R?.

In the same way, any biharmonic function A\ can be expressed as

_ oG,
A= [xRG (11.2)

B 22X¢3)
Awﬁ@m%ﬁm
019(§,m)
+/§€3D A)\(6)78715 ddg

—/ g(§, 77)8(%)\)(5)6105
£€dD 73

11.1. MATHEMATICAL BACKGROUND 171

where ¢ is the fundamental solution to the biharmonic equation, i.e. Ay g(z,y) =Aq
g(z,y) = G(a,y), and AT g(z,y) =43 g(z,y) = d(||z — yl[). A simple proof of Eq. 11.2
can be found in Appendix D of this thesis (see section 13.4).

11.1.2 Green coordinates

In the following, we call cage a closed triangular mesh that acts as a control structure
for shape deformation. Its vertices and their positions are similarly noted v;, ¢ being an
integer index, and its triangles are noted ¢; = {t%, ¢}, 2} and are represented as a triplet

327507
of the vertex indices of the triangle.

We consider a deformation function f defined on the cage (the boundary of the domain
0D) that we wish to extend to the interior of the cage (the interior of the domain D). This
function is necessarly piecewise linear on the cage. By noting I';(§) the piecewise linear
basis function associated to the vertex v;, that takes value 1 at v; and 0 at other vertices,
the function f can be expressed as:

Y€ 0D 1 f(¢) =) Ti(€) v (11.3)

Lipman et al. |61] set the following Neumann conditions when deforming the cage:

0
Veet; CaD ai(fg) = s, - nlty) (11.4)

with ¢; being the j* triangle of the cage, n(t;) being its outward unit normal, and s¢; being
the stretch factor associated to the deformation of the cage (its 2D conformality factor).
As explained in the technical background of this thesis, this choice corresponds to setting
the Jacobian of the function to be as close as possible to a similarity on each triangle of
the cage.

The resulting deformation induced by the Green coordinates is expressed as

F) =" ¢i(n) - vi (11.5)
+> 1bi(n)se; - n(t;)

The functions ¢;(n) and 1;(n) are the Green Coordinates. We refer the reader to [61] for
an analysis of those, and to [8] for the expression of their derivatives.

Ultimately, we would like to have a similar argument that would allow us to set simple
boundary constraints for our biharmonic functions, given the only information of the vertex
positions. Unfortunately, this seems difficult, as the definition of higher order constraints
requires more global information.

Biharmonic and harmonic functions If we set A f(§) and % to be null every-
¢

where, we obtain the formulation proposed by [61]. Derived from our formulation, these

172

coordinates are still biharmonic. In fact, as explained in [61], they are harmonic, which
is not in contradiction with our statement: a harmonic function is biharmonic (if A (f) = 0,

then A2 (f) =4 (& (f)) =4 (0) = 0),

Then again, if we consider a biharmonic function, its Laplacian is harmonic and therefore
verifies the mazimum principle. Setting A (f) to be null on the boundary of the domain
should imply that it is null everywhere inside the domain, making harmonic the resulting
function.

In the following sections, we discuss choices for the setting of other boundary conditions
regarding the second order boundary condition (A (f)(§), see section 11.2) and the third
order boundary condition (6(%7735@), and discuss the comparison with traditional harmonic

Green coordinates in the context of cage-based shape deformations.

Note also, that as for the Green coordinates, the resulting function fits none of the
boundary constraints. Indeed, to write an harmonic function, either a Dirichlet condition
or a Neumann condition should be prescribed, and not both of them at the same time.
You should note, that if the Dirichlet boundary constraint was respected, the resulting
deformation would be the one given by the Harmonic Coordinates [46].

In the same way, a biharmonic function should be obtained by prescribing the Dirichlet
condition and a Neumann condition, and no more boundary condition. The result of our
formulation, as for the Green Coordinates, is the result of a mixture of these boundary
conditions.

11.2 Green BiHarmonic coordinates: Analytic biharmonic
cage-based deformations

Setting A (f) to be constant on each triangle gives biharmonic coordinates with a very
simple expression. Unfortunately, we eventually found out that the behaviour induced by
this set of coordinates was leading to severe distortion in the space deformation, making
unusable these coordinates.

By setting A (f) to be linear on each triangle of the cage and continuous on the cage, and

% to be constant on each triangle, i.e.
€

VEet; COD : (11.6)

{vgeap : A(fg(ﬁ)zzvi i(€)- LY
/1

with LZV, le € R3, we obtain additional coordinates w.r.t. the cage.

. . 0
Finally, by noting Al‘-/(n) = fge{teTl(vi)} Fi(f)%i’n)dag and)\?(77) = _fgetj g(&,n)doe |
we obtain that the deformation function f is expressed everywhere as

11.2. GREEN BIHARMONIC COORDINATES: ANALYTIC BIHARMONIC CAGE-BASED
DEFORMATIONS 173

Zgzbl v; (11.7)
+Zw]
+ZAV
+Z/\T

The coordinates ¢; and v; are harmonic [61], and the coordinates AZV and)\? are bihar-
monic.

The resulting function f is biharmonic as well, and
A (F)m) =20 6 (A) - LY + 32, & (X)) - 1]
=, 6l - LY + X, () 1T (1L8)
8% (f)m) =0 (11.9)

The space of our biharmonic functions is a vectorial space of dimension dpg (M) = 2(#V+

#T).

Motivations behind the choice of the constraints We chose to set A (f) to be
continuous on the cage, as the Laplacian of a biharmonic function should be C'*° everywhere
inside the domain, and we consider its restriction on a 2-manifold of order of regularity C©.
We set it to be linear on each triangle as a default choice: it corresponds to the simplest
basis function for continuous functions on triangular meshes.

Setting M to be discontinuous across the cage edges corresponds to the dlscontlnultles

of the normal on the cage (the normal is constant on each triangle, and (8 (O 2 vA f(&)-

ng). We could have set this constraint to be linear on each triangle to enr1ch the space
(providing each triangle with three values in R? as a space to define it), but our experiments
have shown that the behavior of this set of coordinates was introducing instabilities in the
context of implicit cage-based deformations (see section 11.3).

For completeness, we provide the expression of A fge{t} i (€) algf n)da and
/\j,k _fge{tj} t;?(g) (fﬂ])daé-

Once these expressions are found, we can obtain AY (n) and)\]T(n) as

{ AV(U) Z] k|th=i A;‘fk(n)

N () = S A4 () (11.10)

Convergence Note, that by subdividing M, any function can be approximated using
this basis for the constraints. This set of functions is therefore a good candidate for a basis
of biharmonic functions, when using Finite Elements methods.

174

11.2.1 Computation of AT, (n)

_ — _
Since g(§,n) = 7”58;7", we have that 7¢g(&,n) = 87$ﬁ§—37||’ and therefore, 781?)555’77) =
(E=m)mne _ (E=m)'n(t;)
selfe—nll — sale—al "o € L
(E=v,0)tn(ty) (vo—m)n(ty)
. 9 +0 0
Since V¢ € t;, 1?)2’77) = 87r|]|§—n|\ + éﬂllf—nl\ , we have finally, that
a 9 d 7

Ong 2
, where d(n,t;) denotes the signed distance of 7 to the triangle t; (i.e. d(n,t;) £ (n— vt(]))t~
n(tj))-
Using Eq. 11.11, we have
M) = Jeey, Tor(©) 258 dog = W5 [Ty ()G, n)doe = 52 p; ()
where (1) = Jeey, T ()G (&, n)dore.

(givt]?Jrl)'n?
i . . e E—
Expression of 11;(n) VEet;, Ft? &) = Oye=yerye S
J J
f&et]’ (éfn)G(éﬂﬂdUE‘i’fgetj (nfvtlfkl)'G(gan)dUﬁ
1k (1) = A, ’ "1

with Aj = (v — v,et1) n;“ = 2Area(t;)Vk.
J J

Jeer; (€=n)mj-G(gm)dog (= ”k+1 "} Jeer; GEMdog

s, k(n) A + A
_ fget]. 5*0)'”?0(577])‘1‘7& + (n_vt;?*l)'"?wf(n)
A A
(n—v,k+1)n%
The expression ——3x—— is the extension of the basis function associated with the vertex
J

t;‘f‘ of the cage I';x, from the triangle t; to the entire 3D space. We note these functions
J

f‘tj,k(n)7 and they have the following properties:

(11.12)

k
J

Shoolyk(n) =1 VneRP Wi
e ny
VT k() =5z WneR® Vi k

All that remains is to find the expression of this last integral. We see that

vn , féetj (&—mn) n?‘ -G(&n d‘7£ fget |\5 TIH daﬁ
We obtain
pige(n) = - A tfe, () + Lo, ()5 (n)

11.2. GREEN BIHARMONIC COORDINATES: ANALYTIC BIHARMONIC CAGE-BASED
DEFORMATIONS 175

(a) Notations in the local orthonormal (b) Notations defined in paragraph 11.2.2. In this case
basis defined in paragraph 11.2.1. t; = Tjo — Tj1 + Tjo.

Figure 11.1: Notations for the change of variables in integrals of paragraphs 11.2.1
and 11.2.2.

Expression of tf; ;(n) We make the following change of variables in this integral:
U1 =00 Ul —Y40

DL (c_ : : : : J J . J J .

(u,v,w) = R-(& vtg_)), with R being the rotation matrix [Hvt} —Ut?H ,n(ty) x ||vt1._vt?|| ,n(tj)]

(see Fig. 11.1(a)).

<(E—mnt >
. = — 7 _dos =
REEY /5 E—nl

/ < ((U,U,O) - (aabv C))|R’I’L§: >
(u,v)ER(t —th)

dudv
||(U,’U,O) - (a7 ba C)H

To simplify, we note (u;,v;) the coordinates of v, in this new frame (note, that ug = vp =
J

v1 = 0). Since we only need the dot product of this integral and the vectors nf that belong
in the support plane of the triangle, we need to compute only the integrals over the two
first coordinates v and v (note, that R - ng‘/’ = (—(vgt2 — Vg+1)s (Upt2 — Uk+1),0)).

(u—a)

tfue, (n :/
t;(n) (el o) [(w,v,0) — (a,b,c)]|

vy 2yt _
:/ / : gu @) > 2dudv
v=0Ju="42v Vu—a)2+(w—-0b)%+c

v2 ug—ul
— / [\/(u —a)?+ (v —"5b)2+ 2 732 dv
v=0 2

dudv

176

. B (v—"0)
tf tj(n)_/(uv)eR(t ~ug H(u v,0) — (a,b, c)||

B @y
‘/u:o/:o 0w 0,0) — (a5,) "4
(

ug . 1’_2u (u—u1) o b)
2 1 v
— dvdu
/ /vo 1(u,0,0) — (a, b, ¢)]]

—/UQ {\/(u—a)2+(v—b)2+c2}v2
u=0

U
“2 du
Y2 (y—uq)

v=0
- /uu2 {\/(u —a)?+ (v—"0)%+ 02} wmn du

— v=0

dudv

We note ¢(5,T — «) the relevant antiderivative

T—a

T
4«8, T - a) = / JE—aP+Bdt= [e+t
with
(B, T) =

B-asinh(T/\/B)+T - /T?+
2

The final expressions of ¢ fuy, (1) annd tfv;(n) are given by
tfug, () = — f1q(A103, v2—v2s1)+ f1q(A103, —v2s1)+ f2q(A2v3, va—v252) — faq(Aov3,

—v282),

and tfvg, (n) = fsq(A1u3, ua —uas1) — faq(Aru3, —uas1) +q(b* + ¢, —a) — q(b* + ¢, uy — a)

— f2q((ug — u1)® A, ug — us) + faq((ua — u1)? Ao, ug — ug)

with
fi = “5";“%
v
(u2— ul) +U2
f2
u2+v2
f3 2
f (’LLQ wy)
4 C(uz—u1)?
_ [(ava— buz) 2
)\1 — 2+v 2 + 2+v2)
o (a ul)vg— ug ul)b) c?
A2 = (u2 u1)?+03)? * (uz—u1)?+v3
— auz-i— U2
S1 = u3+v3
s o ((ug ul)(a w1)+bva)
2 = (uz— u1)2+v2
v — vab(ug—u1)+uivi+alus—uy)?
s =

(ug—u1)?+v3

11.2.2 Computation of AT, (n)

Following the same strategy as earlier,
k() = = feer, T (€)g (€, m)do

11.2. GREEN BIHARMONIC COORDINATES: ANALYTIC BIHARMONIC CAGE-BASED

DEFORMATIONS 177
e, €I Fyatr

= o v Jeer, 1€ = nlldoe
_fg £ (E—n)%k\lﬁ—nll ~

= — A + th,k(ﬂ)/\gr(n)

Note, that the computation of)\JT(n) is required for the computation of)\JTk(n), and not
the other way around (recall that)\]T(n) =>)\]Tk(n)) We still provide the expression of
/\]-Tv,c (n) for completeness, but they are not our primary goal.

Computation of — fgetj (&—n)- n§| | —nl| This integral is equal to (vgy2—vk1)TFUy; (n)—
(g2 —upy1)TEVy, (1), with TFU, (n) and TFV;,(n) the same expressions as t fuy, (1) and
tfvg;(n), simply by replacing ¢(-,-) in their expressions by ga(-,-) defined as:

a T (t2+ﬁ)%
@(B.T)= [dt
:14T2+ﬂﬁ-+5T T% 4+ B+ Zasinh(L)

sy

Computation of fgetj || = n||doe The second integral is quite more challenging to com-
pute. We cannot use the same change of variables as before, as it leads to over-complicated
expressions that seem impossible to integrate. Instead, we propose to use the same change
of variables as Lipman, in its computation of the GC [61](see Fig. 11.1(b)).

We note p the projection of 1 on the triangle ¢;, and Tj, = {p, vt@+1,vt;;+2} (the super
J J

indices being modulo 2). It is easy to see that the integral of any function on the triangle
t; can be decomposed on the three triangles T}q, 11,72 using the formula:

(&)doe = Zszgn]k/ f(&)doe (11.13)

get] g]k

where sign(T};) denotes the orientation of the triplet of Tjy, (sign(Tj) = sign(det([v,r+1 —
J
Py vz = ponlt5)])).

All we need to do is compute the integral of || — n|| over the triangles Tj;. We note
c2|n—pl}a = A(pvt§+1vt§+z),ﬁk = A{(vt?+2pvt§+1),@ = |]vt§+1 — p|[?sin?(ay,) and
5k = ™ — 0.

For convenience, in the following, we drop the index k in the notations.

Jeer, 1§ = nlldoe = [eer, v/e+ TIp— €][Pdo = [P [e 2 rardo = [Owde—

3
Be2
3

[[v,k+1—pl[sin(c)

with R(6) =

sin(r—a—0)

3 0 3
Joto (c+R(0)%)2d0 = [;_5_;(c+ i) 2 0

178

By setting x = tan(f) we see that the relevant antiderivative is f (c+ SmQ())2d0 =

j‘tan()(+ <(1+m2)) 1-?—?82 = Q(Ca c, ta‘n(@))

where

|z

Q¢ e.2) = =5 D((3y/Ce+ () ln (CV\/W)

n cr2+§2(1+x2)g“

— 9¢5 arctan (Cm?%mm?)>]

Nz

By making the remark that ¢ depends on a (¢x = ||v, ke~ p||?sin?(ay,)), we can prove that

these expressions are well defined in case tan(f) — O for # =6 or § — . In that case, this
integral tends to 0 (indeed, it corresponds to a triangle with one of its angles being equal
to m, therefore with a null area).

At this point, we know how to compute féeTk 1§ — nl|do¢, we can compute [.., ||§ — nlldoe
J
by using Eq. 11.13, and finally X (n) = fget 1€ — nl|doe.

11.3 Variational BiHarmonic Maps

In this section, we present a comparison of Green Coordinates and Green BiHarmonic
Coordinates, based on an implicit cage manipulation framework, as introduced in [§].

The idea is simple: we are going to set values for cage vertex positions, cage triangle nor-
mals, and eventually cage Laplacians as solution of a least-squares system, which associated
energy models positional constraints, Jacobian constraints, and rigidity constraints.

This type of framework has already been presented in details in the previous chapter (see
section 10.8.3) to compare our Variational Mean Value Coordinates to VHM [8]. We call
our framework Variational BiHarmonic Maps.

To evaluate the quality of the underlying cage coordinates system, we plot the conformality
factor of the deformation, as done in [8]. We compare our framework to VHM using this
set of statistics.

We use finite difference schemes to approximate the derivatives of our coordinates, and
use them in our implementation. However, closed formulae could be obtained by direct
derivation of the presented equations.

Comparison with VHM and VMVC

In each example in this section, red spheres indicate positional constraints and green
spheres the places where the user constraints the Jacobian to be eiter a pure rotation
or a pure similarity, depending on the case. The weights that are given to each of the
three energies (positional, rotational, and minimization of the Hessian) are the same when
comparing our set of coordinates to others, to allow fair comparison.

11.3. VARIATIONAL BIHARMONIC MAPS 179

Skeletal
constraints

Figure 11.2: Comparison of our Variational BiHarmonic Maps (top row) with Variational
Harmonic Maps based on Green coordinates (middle row) and Variational Mean Value
Coordinates (bottom row).

We show a comparison of our system with VHM [8] and VMVC, introduced in the precedent
chapter, on an example featuring extreme local scaling (similarities were enforced on the
skeleton displayed in green, instead of rotations) in Fig. 11.2.

As already discussed in the previous chapter, MVC do not exhibit the mathematical proper-
ties to rely on this kind of setup, and rotational constraints as well as similarity constraints
should be enforced directly on the target mesh. Some differences with VHM are visible
on this example, although very subtile in our opinion. The conformality factors that are
displayed correspond to the ones of the space transformation itself, and not to the trans-
formation of the surface. They are computed as the condition number of the Jacobian of
the transformation. In the case of our Variational BiHarmonic Maps, we see that some
conformality factors seem to be unexpectedly high, especially when put in respect to the
obtained deformation. We believe that this behavior appears because we rely on Finite
Differences schemes to compute the derivatives of our set of coordinates. This introduces
instabilities, as demonstrated in the previous chapter. Nevertheless, this point requires
further investigation.

In Fig. 11.3, we show an example where rotations were enforced on the skeleton of the
shape. The color code indicates the two dimensional conformality factor of each triangle
(from 1 in blue, to 6 in red). It is computed as the ratio between the largest singular
value o1 and the smallest singular value oo of the 2 x 2 linear map that represents the
deformation of the triangle in the plane. These quantities are classically used to evaluate
the quality of a deformation of a triangle mesh; we refer the reader to |77] for a description
of their computation.

We display in table 11.1 a set of statistics comparing our model to VHM and VMVC. E,
computes the deviation of the mesh deformation from rigid deformations (featuring pure

180

Ours

VHM

VMVC

&

Figure 11.3: Arma #1: Comparison of our Variational BiHarmonic Maps (top row) with
Variational Harmonic Maps based on Green coordinates (middle row) and Variational
Mean Value Coordinates (bottom row), using the same setup as in Fig. 11.2.

Ours VHM VMVC
Ryol ‘ Esim ‘ Erot Ryol ‘ Esim ‘ Erot Ryol ‘ Esim ‘ Erot
Arma #1 || 0.98790 | 0.02948 | 0.05020 | 0.95339 | 0.02977 | 0.05131 | 0.98364 | 0.05199 | 0.08113
Arma #2 || 1.02390 | 0.02457 | 0.03461 | 1.02027 | 0.02092 | 0.02907 | 1.02752 | 0.04372 | 0.06083
Arma #3 || 0.98754 | 0.04546 | 0.05753 | 0.97110 | 0.04016 | 0.05080 | 1.02045 | 0.06594 | 0.08556

Model

Table 11.1: Deviation of the deformations presented in Fig. 11.3 and 11.4 from rigid
deformations.

rotations everywhere), and Ej;,, the deviation of the mesh deformation from conformal
deformations (featuring pure similarities everywhere). They are computed as

5 e Arealt;) (o] — 12 + (3 — 1)?)
2ty Areally)

o Syer Arealty)(o] - o}
s 2 theT Area(t;)

Erot =

In addition to conformality errors, we also show the volume preservation ratio R,y (ratio
between the volume of the shape after and before the deformation) for the three systems.
Enforcing rotations everywhere should lead to preservation of the volume (on the contrary
to similarities, that constraints the deformation to be as conformal as possible). Our co-
ordinates seem to exhibit statistics similar to VHM on the same data set. Recall that
the variational framework that we use minimizes three kinds of energies: positional, rota-
tional, and minimization of the Hessian. It may happen that the user specifies positional

11.4. DISCUSSION 181

Ours VHM VMVC

Arma #2

Arma #3

Figure 11.4: Comparison of our Variational BiHarmonic Maps (left) with Variational Har-
monic Maps based on Green coordinates (middle) and Variational Mean Value Coordinates
(right), using the same setup as in Fig. 11.2.

Figure 11.5: Self-intersections were avoided by our system.

constraints that are contradictory to the rigidity constraints on the shape. Although these
statistics are interesting to quantify in some way the quality of the deformation methods,
the visual quality of the deformations should prevail.

Fig. 11.5 shows another example with extreme scalings and rotations. Enforcing similarities
on the medial axis is not always sufficient to obtain rigidity on the whole shape (and even
avoid flip-overs). We prevent flip-overs on the medial axis by constraining the Jacobians
to have a positive determinant. In some cases, it is still not enough to ensure that no flip-
over or self-intersection are going to occur elsewhere. Using the same parameters for the
linear system, the use of our biharmonic coordinates avoids self-intersections in that case,
which seems to indicate that they allow quicker varying rotations in the shape. However,
note that it is done at the cost of increasing slightly the similarity error (Fg;,, = 0.01679)
in comparison to the solution given by VHM (Ej;,, = 0.01002). As already said in the
introduction of this chapter, twisting introduces a loss of conformality.

11.4 Discussion

We have presented a set of analytic biharmonic coordinates in the context of shape de-
formation based on a variational framework. To our knowledge, the derived basis for
biharmonic functions was not presented nor used before in the literature.

182

In all our examples, we used traditional positional constraints to drive the deformation. It
would be interesting to see other kinds of constraints on this set of coordinates.

Other contexts than shape deformation may also benefit from a basis for biharmonic func-
tions, although it is not clear how to retrieve values for the 2"¢ and 3"¢ orders of derivatives
in general, and specific strategies would probably need to be used for each different case.

Finding a closed form formula for the derivatives of our biharmonic coordinates is of interest
and such an additional analysis could precise more the values of the different statistics
that we have shown in this chapter to compare our coordinates to previous methods. In
particular, it may impact the quality of the deformation when using a variational framework
that relies intensively on these quantities to drive the shape transformation.

Part VI

Conclusion and Perspectives

Chapter 12

Conclusion

In this thesis, we presented algorithms that aim at eztracting simple structures that can
drive complex computations on 3D objects. These structures can be geometrical or topo-
logical, can be located inside the shape, on the shape, and outside the shape. It can be
1,2, or 3-dimensional objects, or it can be a simple set of indices describing a subset of the
object.

Based on the applicative constraints, we proposed each time new properties for the objects
we were looking for, whether it is an analytic curve skeleton, a simplicial complex structure
on the surface, or a minimal set of handles representing cage deformations. Furthemore,
we introduced new geometry processing and analysis tools enabling the use of classical
shape editing structures such as curve skeletons and cages in new applications.

Regarding inner objects, we proposed an analytic model for curve skeletons, along with
an algorithm to find a segmentation of a mesh into topological cylinders and topological
disks, from which the skeleton’s geometry can be derived. The construction of this seg-
mentation relies on a mesh decimation algorithm, that considers a 2-term cost function,
whose first term describes a topological event in the clustering and second term describes
a geometrical cost depending on the topology. To our knowledge, this graph segmentation
problem was not introduced in the litterature before. In practice, it seems difficult to find
a global strategy to solve it , as the geometrical energies that we minimize depend on the
topology of the segmentation, and therefore it depends on the result itself. This opens
a new graph segmentation problem that is interesting and general enough to allow new
applications, even in other fields of research. The several properties of our skeleton model
allow multiple applications, such as skeletal modeling and the definition of a new bilateral
filter on triangular meshes, that supports large kernels and preserves mid-scale features.

Regarding on-surface objects, we proposed a simplicial complex structure as well as a set
of curves on the surface, allowing the automatic definition of handles for mesh deforma-
tion techniques, thus relieving the artist from this time consuming task. The deformation
complex is built in a multi-scale fashion upon a multi-resolution segmentation using stan-
dard partitioning systems, suggesting the selection of different kinds of handles (points,
curves, patches) at different scales. The user interface allows to navigate easily through
the different levels of the hierarchy, and to adapt the processing strategies to the nature

185

186

of the handle. The set of curves we propose is designed from intrinsic and view-dependent
properties of the surface, and allows to use standard line rendering algorithms to define
curve handles. We introduced an efficient strategy for the regularization of these curves
and demonstrated its power in standard modeling sessions.

Regarding outer objects, we have demonstrated that an inversion based on minimal se-
lection of constraints (MaxVol) improves the spectral properties of the linear system to
inverse, and that our subsampling strategy coupled with subspectral regularization were
adapted to the particular problem of finding a cage-based representation for animated 3D
objects. Ultimately, the feedback offered by the solution to the MaxVol problem can drive
the resampling of the cage object to represent a given geometry at its best. It opens an
interesting avenue for finding an optimal sampling of the cage object, so that the cage-
coordinate system offers optimal control over the deformed geometry.

Finally, we worked on the derivation of spatial coordinates, and obtained results that
are of practical as well as theoretical value. We obtained an analytic solution for the
derivatives of the mean value coordinates in 2D and in 3D, and demonstrated their utility
on the applications that are commonly presented for them. We also obtained an analytic
solution of biharmonic coordinates in 3D, and demonstrated their expressive power in the
particular context of shape deformation. We have shown that their profile is adapted to
implicit constraints set up on their first and second order derivatives, and presented an
application to variational shape deformation.

Future work Throughout this thesis, we discovered some problematics that inspire us
for future directions of research. Some of these directions are the direct continuation of the
work we did during this thesis — such as designing automatic or user-assisted algorithms
for creating optimal cages for mesh deformation, but some are complementary to our work,
and describe orthogonal directions of research for interactive modeling.

Although we have seen that the mathematical derivation of cage coordinates for the def-
inition of spatial functions has been intensively studied, we believe that constructing the
geometry of these cages has not been solved so far. Various representations can be imagined
to help designing cages: a hierarchy of enclosing spheres or enclosing boxes, etc. . Specific
applications should benefit from the definition of such structures. These are numerous and
various: volume simplification for fast intersection tests, volume abstraction, deformation,
etc. . Different constraints need to be met, and not only the underlying geometry of the
mesh has to be taken into account, but the deformation the artist wants to model as well.
In this context, new ways of specifying these user-constraints have to be thought through,
and specific interfaces need to be developed for the modeling of such volumetric objects.

The reverse engineering of the construction of 3D shapes has been studied recently. To
our knowledge, it is limited to techniques allowing to discover a plausible succession of
topological operations (e. g. local subdivision) to transform a coarse triangle “source” mesh
into a high-resolution “target” mesh. One interesting avenue for future work is the reverse
engineering of the modeling process of complex shapes. In particular, as described in the
introduction of this thesis, 3D objects are usually designed by artists upon basic shapes
described by simple primitives, such as boxes (“box modeling”) or simple sets of connected
spheres (“ZSPhere’-Pixologic). A clean, quad-dominant mesh can be obtained from these
basic structures called “base meshes”, on which the user can design high frequency details.

187

We believe that retrieving such high-level structures from complex geometrical objects
can be done, and would allow new applications, such as the design of base meshes from
example and more generally “modeling by example”. It would also improve a large number
of existing applications, such as remeshing for instance.

The definition of other types of “base meshes” is also a topic that we did not address in
this thesis, and we are interested in designing such structures from scratch. These can
be optimized to fit particular application needs, such as allowing easy definition of shape
grammars on meshes for example, making possible the modeling from object data bases.
New modeling interfaces would benefit from it. Specific constraints can be added on 3D
objects in case they are designed to be re-used as modeling bricks and deformed in other
3D scenes one can think about specifying simple descriptors to preserve the aspect ratio
of important visual features, such as blazons or emblems, while allowing anisotropic bend
and distortion on other parts of the object that can be performed by shape grammars to fit
the editing domain. Recent work has been focused on painting geometry on surfaces. This
geometry is generally taken from other surfaces in a data basis. This was the evolution
of the classical brush-based techniques, that allow in most modeling frameworks to paint
displacement or carving (negative displacement) on meshes. The displacement is generally
not uniform, and simple grey scale textures can be used for the design of the motif of the
displacement. The research direction we propose is the natural evolution of this concept:
after having proposed uniform displacement brushes, anisotropic displacement brushes,
and finally geometry brushes, one can think about defining object brushes, allowing the
artist to paint a domain on a surface that acts as a support for the automatic arrangement
of complex objects that need to be deformed using basic rules when being arranged.

In this thesis, we gave a particular importance to deformation and motion, which has
been studied since the beginning of Computer Graphics. Recently in particular, new
strategies have allowed to extract it from characters and rigid objects with as-few-as-
possible assumptions on its nature. This allowed applications such as partial motion editing
and motion transfer. Still, we feel that a lot of work remains for a proper definition of
motion, that would allow retrieving it from data bases for example. In particular, recent
work has demonstrated that the recognition of important features in static meshes involves
both local and global descriptors. We believe that, when considering animated data, two
more dimensions are going to sum up, as intrinsic geometry of the object and its temporal
evolution (once decorrelated) should be both discriminant. Motion that is specific to
certain classes of objects can give clues about the nature and the materials of the object,
and should allow finer recognition of objects in animated scenes and in videos. This would
imply the enrichment of the existing descriptors of motion on objects, as well as tracking
algorithms in animated scenes when the mapping from one frame to another is not known,
like in videos for instance.

Author’s publications

. Curve Skeleton from Topological Disks & Cylinders Decomposition
ACM SIGGRAPH/Eurographics Symposium on Geometry Processing 2010 - Poster
Jean-Marc Thiery, Tamy Boubekeur and Bert Buchholz

. Automatic Line Handles for Freeform Deformation
Eurographics 2012 - Short paper
Leila Schemali, Jean-Marc Thiery and Tamy Boubekeur

. VoxMorph: 3-Scale Freeform Deformation of Large Voxel Grids
Computer & Graphics Journal 2012 - Special issue of Shape Modeling International
2012

Noura Faraj, Jean-Marc Thiery and Tamy Boubekeur

. CageR: From 3D Performance Capture to Cage-based Representation
Siggraph 2012 - Talk
Jean-Marc Thiery, Julien Tierny and Tamy Boubekeur

. CageR: Cage-based Reverse Engineering of Animated 3D Shapes
Computer Graphics Forum 2012
Jean-Marc Thiery, Julien Tierny and Tamy Boubekeur

. Analytic Curve Skeletons for 3D Surface Modeling and Processing
Computer Graphics Forum 2012 - Special issue of Pacific Graphics 2012
Jean-Marc Thiery, Bert Buchholz, Julien Tierny and Tamy Boubekeur

. Robust and Scalable Interactive Freeform Modeling of High Definition
Medical Images

Springer Lecture Notes in Computer Science - Special issue of MICCAI Workshop
on Mesh Processing in Medical Image Analysis 2012

Noura Faraj, Jean-Marc Thiery, Isabelle Bloch, Nadége Varsier, Joe Wiart and Tamy
Boubekeur

189

Data and software

We would like to thank the following organizations for providing the various models shown
in this thesis:

e Aim@Shape Network

e Stanford University

e the research group 3D Video and Vision-based Graphics of the Max-Planck-Center
for Visual Computing and Communication (MPI Informatik / Stanford)

We are particularly grateful to Tim Winkler and his colleagues for providing us with the
implementation of their algorithm “Multi-Scale Geometry Interpolation” [98], as well as for
the time they spent making it easy for us to use it.

191

Bibliography

[1]
2]
3]

4]

1]

[6]

7]

18]

9]

[10]

[11]

Blender: http://www.blender.org/.
Zbrush: http://www.pixologic.com/zbrush/.

P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun. Anisotropic
polygonal remeshing. ACM Transactions on Graphics (TOG). Special issue for SIG-
GRAPH conference, 22(3):485 493, 2003.

0O.K.C. Au, C.L. Tai, H.K. Chu, D. Cohen-Or, and T.Y. Lee. Skeleton extraction by
mesh contraction. In ACM Transactions on Graphics (TOG), volume 27, page 44.
ACM, 2008.

I. Babuska and J. Oden. Verification and validation in computational engineering and
science: basic concepts. Computer Methods in Applied Mechanics and Engineering,
193:4057-4066, 2004.

C. Beder and W. Forstner. Direct solutions for computing cylinders from minimal
sets of 3d points. pages 135-146. Springer, 2006.

M. Ben-Chen, O. Weber, and C. Gotsman. Spatial deformation transfer. In Proceed-
ings of the 2009 ACM SIGGRAPH /Eurographics Symposium on Computer Anima-
tion, pages 67 74. ACM, 2009.

M. Ben-Chen, O. Weber, and C. Gotsman. Variational harmonic maps for space
deformation. ACM Transactions on Graphics (TOG), 28(3):34, 2009.

H. Blum. A Transformation for Extracting New Descriptors of Shape. In Weiant
Wathen-Dunn, editor, Models for the Perception of Speech and Visual Form, pages
362-380. MIT Press, Cambridge, 1967.

R. C. Bolles and M. A. Fischler. A ransac-based approach to model fitting and
its application to finding cylinders in range data. In IJCAI’'81: Proceedings of the

Tth international joint conference on Artificial intelligence, volume 2, pages 637—643,
1981.

P. Borosan, R. Howard, S. Zhang, and A. Nealen. Hybrid Mesh Editing. In Euro-
graphics 2010-Short Papers, pages 41-44.

193

194

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Botsch and L. Kobbelt. Multiresolution surface representation based on displace-
ment volumes. 22(3):483-491, 2003.

M. Botsch and L. Kobbelt. An intuitive framework for real-time freeform modeling.
In ACM Transactions on Graphics (TOG), volume 23, pages 630-634. ACM, 2004.

M. Botsch, M. Pauly, M. Gross, and L. Kobbelt. Primo: coupled prisms for intuitive
surface modeling. In Proceedings of the fourth Eurographics symposium on Geome-
try processing, SGP '06, pages 11-20, Aire-la-Ville, Switzerland, Switzerland, 2006.
Eurographics Association.

M. Botsch and O. Sorkine. On linear variational surface deformation methods. Vi-
sualization and Computer Graphics, IEEE Transactions on, 14(1):213 230, 2008.

F. Cazals and M. Pouget. Estimating differential quantities using polynomial fitting
of osculating jets. Computer Aided Geometric Design, 22(2):121 146, 2005.

T. Chaperon, F. Goulette, and C. Laurgeau. Extracting cylinders in full 3d data
using a random sampling method and the gaussian image. In Proceedings of the
Vision Modeling and Visualization Conference, pages 35—42. Citeseer, 2001.

A. Civril and M. Magdon-Ismail. Finding maximum Volume sub-matrices of a matrix.
RPI Comp Sci Dept TR, pages 1-13, 2007.

D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation. In
ACM Transactions on Graphics (TOG), volume 23, pages 905-914. ACM, 2004.

N. D. Cornea, D. Silver, and P. Min. Curve-skeleton properties, applications, and
algorithms. IEEE Transactions on Visualization and Computer Graphics, 13(3):530—
548, 2007.

K. Crane, U. Pinkall, and P. Schroder. Spin transformations of discrete surfaces. In
ACM Transactions on Graphics (TOG), volume 30, page 104. ACM, 2011.

E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, and H.P. Seidel. Performance capture
from sparse multi-view video. ACM Trans. Graph. (SIGGRAPH), 27, 2008.

E. de Aguiar, C. Theobalt, S. Thrun, and Seidel H.-P. Automatic conversion of mesh
animations into skeleton-based animations. Comp. Graph. Forum (Eurographics), 27,
2008.

K. G. Der, R. W. Sumner, and J. Popovic. Inverse kinematics for reduced deformable
models. ACM Trans. Graph. (SIGGRAPH), 25:1174-1179, 2006.

M. Desbrun, E. Kanso, and Y. Tong. Discrete differential forms for computational
modeling. Discrete differential geometry, pages 287-324, 2008.

R. Dyer, H. Zhang, and T. Mdller. Surface sampling and the intrinsic Voronoi
diagram. In ACM Symposium on Geometry Processing, pages 1393-1402, 2008.

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and
simplification. Discrete and Computational Geometry, 28(4):511-533, 2002.

BIBLIOGRAPHY 195

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-sensitive simplification
functions on 2-manifolds. In Proceedings of the twenty-second annual symposium on
Computational geometry, pages 127-134. ACM, 2006.

H. Edelsbrunner and N. R. Shah. Triangulating topological spaces. In Proc. of the
10th Symposium on Computational Geometry, pages 285292, 1994.

M. Eigensatz, R.W. Sumner, and M. Pauly. Curvature-domain shape processing.
Comp. Graph. Forum (Eurographics), 27:241 250, 2008.

A. Eivril and M. Magdon-Ismail. On selecting a maximum volume sub-matrix of a
matrix and related problems. Theoretical Computer Science, 410(47-49):4801-4811,
2009.

T. Etiene, L.G. Nonato, C. Scheiddeger, J. Tierny, T. J. Peters, V. Pascucci, , R.M.
Kirby, and C.T. Silva. Topology verification for isosurface extraction. IEEE Trans.
on Vis. and Comp. Grap., 2011.

T. Etiene, C. Scheiddeger, L..G. Nonato, R.M. Kirby, and C.T. Silva. Verifiable
visualization for isosurface extraction. 15:1227-1234, 2009.

M. S. Floater, G. Kos, and M. Reimers. Mean value coordinates in 3D. Comp. Aided
Geom. Design, 22:623 631, 2005.

A. Fomenko and T.L. Kunii. Topological modeling for visualization, 1997.

J. Gain and D. Bechmann. A survey of spatial deformation from a user-centered
perspective. ACM Transactions on Graphics (TOG), 27(4):107, 2008.

M. Garland and P.S. Heckbert. Surface simplification using quadric error metrics.
In Proceedings of the 24th annual conference on Computer graphics and interactive

techniques, pages 209-216. ACM Press/Addison-Wesley Publishing Co., 1997.

S.A. Goreinov, L.V. Oaeledets, D.V. Savostyanov, E.E. Tyrtyshnikov, and N.L. Za-
marashkin. How to find a good submatrix. Matriz Methods: Theory, Algorithms and
Applications, page 247, 2010.

P.C. Hansen, T. Sekii, and H. Shibahashi. The modified truncated svd method for
regularization in general form. SIAM Journal on Scientific and Statistical Computing,
13:1142, 1992.

H. Hoppe. Progressive meshes. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 99-108. ACM, 1996.

A. Jacobson, I. Baran, J. Popovi¢, and O. Sorkine. Bounded biharmonic weights
for real-time deformation. ACM Transactions on Graphics (proceedings of ACM
SIGGRAPH), 30(4):78:1-78:8, 2011.

A. Jacobson and O. Sorkine. Stretchable and twistable bones for skeletal shape
deformation. ACM Trans. Graph. (SIGGRAPH Asia), 2011.

D.L. James and C.D. Twigg. Skinning mesh animations. In ACM Transactions on
Graphics (TOG), volume 24, pages 399-407. ACM, 2005.

196

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[53]

[56]

[57]

[58]

[59]

[60]

S. Jin, R.R. Lewis, and D. West. A comparison of algorithms for vertex normal
computation. The Visual Computer, 21(1):71-82, 2005.

T. R. Jones, F. Durand, and M. Desbrun. Non-iterative, feature-preserving mesh
smoothing. In ACM SIGGRAPH, 2003.

P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki. Harmonic coordinates for
character articulation. ACM Trans. Graph. (SIGGRAPH), 26, 2007.

T. Ju, S. Schaefer, and J. Warren. Mean value coordinates for closed triangular
meshes. ACM Trans. Graph. (SIGGRAPH), 24(3):561-566, 2005.

T. Judd, F. Durand, and E. Adelson. Apparent ridges for line drawing. ACM
Transactions on Graphics (TOG), 26(3):19, 2007.

S. Katz, G. Leifman, and A. Tal. Mesh segmentation using feature point and core
extraction. The Visual Computer, 21(8-10):649-658, 2005.

S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts.
In SIGGRAPH °03: ACM SIGGRAPH 2003 Papers, pages 954-961, 2003.

L. Kavan, P.P. Sloan, and C. O’Sullivan. Fast and efficient skinning of animated
meshes. In Computer Graphics Forum, volume 29, pages 327-336. Wiley Online
Library, 2010.

M. Kilian, N.J. Mitra, and H. Pottmann. Geometric modeling in shape space. ACM
Transactions on Graphics (TOG), 26(3):64 es, 2007.

S. Kircher and M. Garland. Editing arbitrarily deforming surface animations. ACM
Trans. Graph. (SIGGRAPH), 25:1098 1107, 2006.

S. Kircher and M. Garland. Free-form motion processing. ACM Trans. Graph., 27,
2008.

V. Krayevoy and A. Sheffer. Variational, meaningful shape decomposition. In SIG-
GRAPH 06: ACM SIGGRAPH 2006 Sketches, page 50, 2006.

T.-Y Lee, Y.-S. Wang, and T.-G. Chen. Segmenting a deforming mesh into near-rigid
components. The Visual Computer (Pacific Graphics), 22:729 739, 2006.

B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for
automatic texture atlas generation. ACM Trans. Graph., 21(3):362-371, 2002.

J. Liouville. Extension au cas des trois dimensions de la question du tracé géo-
graphique. Application de I’Analysea la Géométrie, pages 609-616, 1850.

Y. Lipman, V.G. Kim, and T.A. Funkhouser. Simple formulas for quasiconformal
plane deformations. ACM Transactions on Graphics (TOG), 31(5):124, 2012.

Y. Lipman, J. Kopf, D. Cohen-Or, and D. Levin. Gpu-assisted positive mean value
coordinates for mesh deformations. In Proceedings of the fifth Eurographics sympo-
stum. on Geometry processing, pages 117-123. Eurographics Association, 2007.

BIBLIOGRAPHY 197

[61]

[62]

[63]

[64]

[65]

[66]

[67]

|68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

Y. Lipman, D. Levin, and D. Cohen-Or. Green coordinates. ACM Trans. Graph.
(SIGGRAPH), 27(3):1-10, 2008.

Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, D. Rossl, and H.-P. Seidel. Differen-
tial coordinates for interactive mesh editing. In IEEE Shape Modeling International,
pages 181-190, 2004.

Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or. Linear rotation-invariant coor-
dinates for meshes. ACM Trans. Graph. (SIGGRAPH), 24:479-487, 2005.

Y. Liu, Z. Chen, and K. Tang. Construction of iso-contours, bisectors and voronoi
diagrams on triangulated surfaces. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, (99):1-1, 2011.

S. Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions
on, 28(2):129-137, 1982.

M. Meyer, M. Desbrun, P. Schroder, and A.H. Barr. Discrete differential-geometry
operators for triangulated 2-manifolds. Visualization and mathematics, 3(7):34-57,
2002.

M. Nieser, U. Reitebuch, and K. Polthier. CubeCover - Parameterization of 3D
volumes. Comp. Graph. Forum (SGP), 30:1397 1406, 2011.

V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust on-line compu-
tation of reeb graphs: simplicity and speed. In SIGGRAPH ’07: ACM SIGGRAPH
2007 papers, page 58, 2007.

U. Pinkall, , and K. Polthier. Computing discrete minimal surfaces and their conju-
gates. Ezrperimental Mathematics, 2:15-36, 1993.

T. Popa, I. South-Dickinson, D. Bradley, A. Sheffer, and W. Heidrich. Globally
consistent space-time reconstruction. Comp. Graph. Forum (SGP), 29:1633-1642,
2010.

S. D. Porumbescu, B. C. Budge, Z. Feng, and K. Joy. Shell maps. ACM SIGGRAPH
2005, ACM Transactions on Graphics, 24(3):626-633, 2005.

H. Pottmann. Architectural geometry, volume 10. Bentley Institute Press, 2007.

T. Rabbani and F.A. van den Heuvel. Efficient hough transform for automatic de-
tection of cylinders in point clouds. pages xx yy, 2005.

G. Reeb. Sur les points singuliers d’une forme de pfaff completement intergrable ou
d’une fonction numerique on the singular points of a complete integral pfaff form or
of a numerical function. Comptes Rendus Acad. Science Paris., v222.:847-849, 1946.

M. Reuter, S. Biasotti, D. Giorgi, G. Patané, and M. Spagnuolo. Discrete laplace-
beltrami operators for shape analysis and segmentation. Computers & Graphics,
33:381-390, 2009.

198

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

S. Rusinkiewicz. Estimating curvatures and their derivatives on triangle meshes.
In Symposium on 8D Data Processing, Visualization, and Transmission, September
2004.

P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping progressive
meshes. In SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 409 416, 2001.

P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-chart geom-
etry images. In SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 146-155, 2003.

Y. Savoye and J.-S. Franco. Cage-based tracking for performance animation. In
Asian Conference on Computer Vision, 2010.

S. Schaefer and C. Yuksel. Example-based skeleton extraction. In Symposium on
Geometry Processing, pages 153 162, 2007.

T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric models.
In ACM Siggraph Computer Graphics, volume 20, pages 151 160. ACM, 1986.

A. Shamir. A survey on mesh segmentation techniques. Computer Graphics Forum,
27(6):1539-1556, 2008.

A. Sharf, T. Lewiner, A. Shamir, and L. Kobbelt. On-the-fly curve-skeleton compu-
tation for 3d shapes. Computer Graphics Forum, 26(3):323-328, September 2007.

O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In Symposium on
Geometry Processing, pages 109-116, 2007.

O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-distortion
piecewise mesh parameterization. In VIS '02: Proceedings of the conference on Vi-
sualization 02, pages 355 362, 2002.

O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, and H.P. Seidel. Lapla-
cian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geomelry processing, pages 175-184. ACM, 2004.

R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popovic. Mesh-based inverse kine-
matics. ACM Trans. Graph. (SIGGRAPH), 24:488-495, 2005.

R.W. Sumner and J. Popovi¢. Deformation transfer for triangle meshes. In ACM
Transactions on Graphics (TOG), volume 23, pages 399 405. ACM, 2004.

A. Tagliasacchi, H. Zhang, and D. Cohen-Or. Curve skeleton extraction from incom-
plete point cloud. ACM Transactions on Graphics, (Proceedings SIGGRAPH 2009),
28(3):Article 71, 9 pages, 2009.

J.-M. Thiery, J. Tierny, and T. Boubekeur. Jacobians and Hessians of Mean Value
Coordinates for Closed Triangular Meshes. Technical report, CNRS LTCI Telecom
ParisTech, 2011.

BIBLIOGRAPHY 199

[91]

[92]

93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

J. Tierny and V. Pascucci. Generalized topological simplification of scalar fields on
surfaces.

J. Tierny, J.-P. Vandeborre, and M. Daoudi. Enhancing 3d mesh topological skeletons
with discrete contour constrictions. The Visual Computer, 24:155-172, 2008.

C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In ICCV,
page 836 846, 1998.

T. Tung and F. Schmitt. Augmented reeb graphs for content-based retrieval of 3d
mesh models. In SMI ’04: Proceedings of the Shape Modeling International 2004,
pages 157 166, 2004.

M. Urago. Analytical integrals of fundamental solution of three-dimensional laplace
equation and their gradients. Trans. of the Japan Soc. of Mech. Eng., 66:254-261,
2000.

O. Weber, M. Ben-Chen, and C. Gotsman. Complex barycentric coordinates with
applications to planar shape deformation. Computer Graphics Forum (Proceedings
of Eurographics), 28(2), 2009.

0. Weber, O. Sorkine, Y. Lipman, and C. Gotsman. Context-aware skeletal shape
deformation. Comp. Graph. Forum (Eurographics), pages 265-274, 2007.

T. Winkler, J. Drieseberg, M. Alexa, and K. Hormann. Multi-scale geometry inter-
polation. Comp. Graph. Forum (Eurographics), 29:309-318, 2010.

J. Wu and L. Kobbelt. Structure recovery via hybrid variational surface approxima-
tion. Computer Graphics Forum, 24(3):277 284, 2005.

W. Xu, K. Zhou, Y. Yu, Q. Tan, Q. Peng, and B. Guo. Gradient domain editing of
deforming sequences. ACM Trans. Graph. (SIGGRAPH), 26, 2007.

D.M. Yan, Y. Liu, and W. Wang. Quadric surface extraction by variational shape
approximation. Geometric Modeling and Processing-GMP 2006, pages 73 86, 2006.

X. Yang, A. Somasekharan, and J. J. Zhang. Curve skeleton skinning for human
and creature characters: Research articles. Comput. Animat. Virtual Worlds, 17(3-
4):281 292, 2006.

S. Yoshizawa, A. Belyaev, and H.P. Seidel. Skeleton-based variational mesh defor-
mations. Comp. Graph. Forum (Eurographics), pages 255-264, 2007.

Y. Zheng and C.L. Tai. Mesh decomposition with cross-boundary brushes. In Com-
puter Graphics Forum, volume 29, pages 527-535. Wiley Online Library, 2010.

Chapter 15

Appendix

13.1 Appendix A: Taylor expansion of th(n + eny)

We present here the details for the Taylor expansion to the order 1 of wg(n + enyp) =

NI (n+ent)’ -m” (nt+ent)

dt (AT (reng)) in the special case where n € Support(T), ¢ T.

The determinant of a basis of R3 is the volume of its generated parallelepiped, and the
following expression holds: det(A”(n + ent)) = —2¢ - |T'|, where |T| is the area of T. All
that is left is to write the Taylor expansion of NI (n + enr)! - m” (n + enr) to the order 2.

NZ-T(W +eng)t - mT(n + eny)

1
=3 Z 0;(n + enr) - N (n + enp)' - nj (n + eny)
J

NI (n+ enr)

1
== 0. .NT [

We need to develop 9?(77 + enr) to the second order:

2
= 7t €
QJ»T(U +eny) =6+ GVGjT “nr + En%‘ . HQjT -ny + o(€?)

- —
From the expression of v/ C]-T, we know that VC].Tt -np =0V n € Support(T). Therefore
—>
vﬁjTt -np =0V n € Support(T), and
T € T 2
0; (n+ ent) :9j+§nToH9j -y + o(€”)

We develop \NJ-T(n + enr)| 7! to the second order:

201

202

1 1 (JNJTt-NjT)t-nT
INT G+ ene)] —INJT NP
e nk - (JNI' - INT) -
2 INT]3
b (JNI'-NT-NT'-JNT) - ng + o)
2 INTP5

We can start simplifying this expression by noticing that (JNjT . NjT)t - ny = 0 and
t
ntT . (JN]-T . JNjT) np = \JN]-T “npl? =]ptj+2 —ptj+1]2.

Therefore the development of the function n — |NJT|_1 in the direction of ny is equal to
1 1 62 |pti+2 — Ptit |2

= - = + o(€?) (13.1)
T T T3
INj (n+ent)| |[N;| 2 [N |

Nl (n+enr)' - m” (n+ enr)

1
:§(N? + eJNT - np)t

62 1 62 |pti — Pt; |2
> (NS + eIN] - np)(6; + 5n1;-HejT-nT)(’NT| -5 +|2NT‘3“)
j J J
+ 0(62)

We note that (JN; -nr)' - N; =0 and N} - (JN; - nr) = 0, since Ni, and ng are colinear
Yk, Vn € Support(T).

We also note that

(‘]N’l : nT)t : (‘]N] : TLT) = ((pti+2 - pt¢+1) A nT)t ’ ((ptj+2 _pt]url) A nT)
= (pti+2 - ptz‘+1)t : (ptj+2 - ptj+1)
By developing all the terms, we see that all that is left is the order two (plus higher orders,

that we do not write, since they are negligeable in front of €2).

— Ptina)t ’ (ptj+2 - ptj+1)
2|N]|

HT pti
NI (n+ enp)t-mT (n + eny) =€ Z j (Pica
J

t
+622n§p~H9;r-nT-NiT -NT
- 4|NT|

0T e,y — pe,y|P NI toNT
2 j Wtite g1l Vi J 2
- E +o
€ : 4|NJT]3 (e”)

13.1. APPENDIX A: TAYLOR EXPANSION OF W;fl (n+ eN7) 203

o7 DPtiro — Pt t. Dtiro — Dt
T(’?"‘enT) 2622](ik tia)” bj+2 t1+1)

N (opkens) - m 2[NT]
J

J
t
|NT 2nT HGT'nT_0T|ptj+2 _ptj+1|2) NZT N]T

€2 J J
Z 4‘N]T|3

+ 0(62)

This expression is not well defined when 35 / H;f = 0. In fact, |N]T| ~ GJT around 0, and

therefore the term under the first sum tends to a constant when HT — 0.

By combining this expression with the one of HGT, we will obtain the final expression of
sz , and we will be able to prove that the j-th term under the second sum tends to 0
when OJT — 0.

<ptj+1 _n‘pt]'+2 —n>
Pt —nllpejo—nl 7

By derivating twice CJT = COS(H;TF) = we have that —008(0 K V@T

o7 —sin(0T)HOT = HCT, with

ngT 2y Py <Py Py — 1> (0 Pryys)
[Pt o — 0l - [Prya — 1 Pt; o — [Pty — 7 (13.2)
<Py — Py =1 > (0= Py '
|Ptj+1 - 77|3|Ptj+2 -1
and
HC]T 213 @0 =pin —Py) (0 - Pja)
Pt;0 — 0l |Ptyy0 — 1l Pty — 0l Pty s — I
@0 =Py o) (= py)t I3 <pyyy —nlpg, — 1>
Pty — 0% [Pey oy — 1 Pty o — 0Pty — 1|
= pyae) (20 =Py —)" L S Py Py =0 > (0= pyes) (0 = Ptyi)'
Pt; o — [Pty — 7l pt; o — P[Pty — 1
B3 <Pty — Py — 1> (0= Prys) (1= Puyys)' I3 <Py —1lpy — 1>
Pt; o — I[Pty 4y — 7| [P0 — P[Py y0 — 1

= pyn) (20 =Py —Ps)t | <Py Py — 1> (=) (= Py)

|ptj+1 - n’3|ptj+2 - 77| |ptj+1 - 7]|3‘ptj+2 - 77|3
L3Py Py =0 > (0= py) - (0=)|
|pt]'+1 - 77’5‘pt]-+2 - 77’

(13.3)

204

ﬁ
Since (pt, — 1)t -ny =0 Vk,Vn € Support(T), we have that ijTt -nr = 0 and we obtain:

—nTt . HC]T nr

nTt-HHjT-nT:

sin(&f)
COS(HJT) COS(HJT) 2
sin(@fﬂptﬁz - 77’2 Sin(gf)’ptj-s-l - n‘2 Sin(gf)’ptj+2 - anth,-l - 77’

(13.4)
We now focus on the expression of]N]-T\QnTt . HHJ-T ‘N — eﬂptﬁg — P %
IN]Pngt - HOT - ng — 0] [pe,y — Dty |* =

|N]T|2 sin(@f)(cos(ﬁ;f)(]ptjﬁ - 7)‘2 + |ptj+2 - 77|2) - 2|ptj+2 - 77”ptj+1 - 77|)

Sin(ejr)2|ptj+2 - "7’2|ptj+1 - 77|2

T 2
=05 Iptyso — Pty
. T T
= Sln(ej)(COS(QJ-)(|ptj+2 - 77‘2 + |ptj+2 - 77|2) - 2|ptj+2 - 77”ptj+1 - 7)‘)

T 2
=05 1Dt — Dty |

Since ‘ptj+2 _ptj+1‘2 = ‘ptj+2 - 77|2 + |ptj+1 - 77’2 - 2COS<9;I‘W)|ptj+2 - 77Hptj+1 - 77|7
‘NJ'T|2nTt ' ngT L QJT‘ptj‘FQ — Pty

= Sin(ejr) COS(HJT)(’ptj-q-Q — Pty ’2 + 2COS(0]T)|pt]’+2 - 77Hptj+1 - 77| - 2|ptj+2 - antj-H - 77|)
- 9,]1'1|ptj+2 - pth |2

= (sin(QjT) COS(GJT) - QJ-T)|ptj+2 - QDth|2 + QCos(Gf)(cos(Of) - 1)|N]T|

This expression is an equivalent of 9?3 around 0, which proves that the problematic term
under the second sum in the exgession of NI (n+enr)t-mT(n+ enr) tends to 0, and can
be neglected in the calculus of 7w in the special case of n € Support(T), ¢ T.

Finally, Vn € Support(T), ¢ T

= 62(9;'11)(1)1‘/#2 - pt¢+1)t : (ptj+2 - ptj+1)
—2|T |7 w; :Z B
|ptj+2 - 77”ptj+1 - 77|

¢
e1(0]) Ity o — Poyuy PNT - NJ

nr
; 4(‘pt]‘+2 - antj-H - 77‘)3

2

j 2(|ptj+2 - 77||ptj+1 - 77|)

nr
J

cos(07)es (0T)NT" - NT .
o v

with e, e2, and eg being functions well defined on]0, [and that admit controllable Taylor
expansion around 0.

13.2. APPENDIX B: EXPRESSION OF THE HESSIAN IN 3D, IN THE CASE OF
ALIGNMENT WITH THE TRIANGLE T 205

13.2 Appendix B: Expression of the Hessian in 3D, in the
case of alignment with the triangle T’

We have seen that if n € Support(T'),¢ T, the gradient of the unnormalized weight with
regard to T is given by yw! (n) = dw! (n)ny, with dw! (n) a scalar function whose form
was presented previously. In order to get the Hessian of the unnormalized weight with

_>
regards to 7', we need to derivate dw! since Hw! (n) = ny - dw] .

— I .
Expression of de;[By derivating the expression of Wk—m that we obtained

previously, we have that

t T
- i+2 Pt ’ ji+2 — Ptj 0;
_2|T’deZT :Z ((pt 12 Pt +1) 2‘(;);7]“]-2 pt]+1))v J
j J
t
_ Z HJT((pti+2 - ptz‘+1)t : (ptj+2 - ptj+1))JN]T : NJT
2INJ 2

t
Sln |pt]+2 ptj+l| (NT NT)VGT

_Z 2|NjT\3

(sin(#;) cos HJT) — GT)\pthrQ —Ptj+1‘2<JNJTt NI+ JNz‘Tt'NJT)

J
+Z 4|N-T\3
Z 3(sin(07) cos(07) — 0T pr,,p — pr, (NI - NT)INT' - NT
4NTPP
- TV NTE . NTYS)T
sm(ej)(L —2cos(0))(N; - N;j)v0;
+Z Q‘NTP

cos(HT)(cos(H) — 1)(JNTt NI + JNTt NT)

D 2[NT |2

(T Tt T Tt T
cos(0;)(005(0) —D(N; - Nj)JN; - N;

_Z ’ |NjT|4

_>
By replacing vﬁ;‘r by the expression found at the Eq. 10.23, we have

206

%
—2|T|7dw! = —

Z Sin(ejT)Q((pth - pti+1)t : (ptj+2 - ptj+1))(277 — Ptjo — ptj+1)

T2
j 2[NT|
t
COS Sln)((ptz+2 Ptiq)t : (ptj+2 - ptj+1))JN]T : N]T
+ Z 2|N]T|3
t
. Z j pti+2 - ptz‘+1)t : (ptj+2 - ptj+1))JN]T : N]T
T3
2|NT|
t
Sln() ‘pt]+2 Ptj |2(N1T) NJT)(277 — DPtjyo — ptj_H)
- Z 2|NT|4
J J
. t t
(sin(0]) cos(0]) — 07)|pt; ., — pt; o [P(JN] - N+ N - NT)
R P

t t
COS(GT) Sln() |pt3+2 pt3+1’ (NT NT>JNT NT

_Z ’ 2’N]‘T‘5

. t t
3(sin(67) cos(07) — 07 |pr,, — pryy [PVT" - NT)INT - NT

_ Z J J 4’NT|5

cos(07)(cos(67) = 1)(JNT" - NI + JNT" - NT)

" Z 2|NT |2

sin(HT 1—2cos(0T))(NTt NT)(277 Dtjn — Ptjsr)

+Z 2’N~T|3

T T Tt AT Tt AT
N Z cos(0;)8111(9])2(1 — 2cos(0;))(N; - Nj)JN; - Nj
2|NT]4

J

Tt AT N
cos(6 cos@)= DN - Nj)JN; - N

_Z |NjT|4

13.2. APPENDIX B: EXPRESSION OF THE HESSIAN IN 3D, IN THE CASE OF
ALIGNMENT WITH THE TRIANGLE T 207

. = .7 _ ((pti+2 — Pty)t) (ptj+2 - ptj+1))(277 — Ptjyo — ptj+1)
2|T|dei - Z 2
2(’ptj+2 - 77||ptj+1 - 77|)

J
t
+ Z BI(HJT)((ptHQ - pti+1)t ’ (ptj+2 - ptj+1))JNjT) NJT
2(|ptj+2 - antj-H - n‘)g

J
t
Z |ptj+2 — Pt; |2(NZT) N]T)(277 —DPtjro — ptj+1)
2(’pt]‘+2 - TI||Ptj+1 - 77|)4

J
t t
n Z el(eg)’ptj-t,-z _ptj+1’2(JN]T NZT + ‘]NZT : N]T)
j 4(’ptj+2 - UHPtHl - 77’>3

t t
HJT)’pth _ptj+1’2(NiT N]T)JN]T NJT
4(|ptj+2 - 77”ptj+1 —n|)°

-
J
cos(07)es(07)(JNT"- NI + JNI"- NT)
t2 2(ptys — Pty — 1)
pt]+2 77 ptj+1 77

J
%
j

t t
+Ze5(9f)(NiT -N)JN]" - NT
2(’ptj+2 - 77||ptj+1 - 77|)4

t
1-2 COS(QJT))(NZT ’ NJT)(277 — Ptjo — ptj+1)
2(|ptj+2 - anthrl - 77|)3

where
er(x) = Cos(ms)izi(r;(? — (13.5)
(@) = 2C05(@) @)’ ;—n?()is)i;l(x) cos(z) — z) 150)
es(z) = ‘”:fjél)j (13.7)
R C) sin(2)2(1 — 2 CZISISZ;; 2 cos(z)? + 2 cos(z) (13.9)

are functions well defined on |0, [and that admit controllable Taylor expansions around
0.

208

13.3 Appendix C: Details of Taylor expansion of w”(n + eng)

in the 2D case

E E
Expression of wl o To obtain a closed-form expression of wk—w
we derive the Taylor expansion of wF(n + eng) with regards to e.
E E
m +eng) - N +eng
wi (n+ enpg) = r) NE() (13.9)

(pe; —n — enp)t - NE (0 + eng)

The denominator of the latter fraction is equal to:

(pei —n- enE)t : R% : (pei_H -1 — EHE) . (—1)i

:(pez 77)t R% ' (pei+1 - 77) ' (_1)1 - 6ntE ' R% : (pei+1 - 77) : (_1)1
—e(pe; —m)" - Rz - B (1) + 62n'jERgnE (1)

:eniE RW (pez p€i+1) . (_l)i

= —€|E]|

The numerator is equal to:

F(n+ enp) - NE,(n+ enp)
INF(n+ eng)|

t
m¥(n + eng) 'Nz+1 n+eng) = Z
J

We develop Nf(n + enE)t - NE(n+ eng) to the second order:

1

NJE(n + 6”E)t : NEH(?? +eng) =

(NP (n) + (=17 Rg - ng)’ - (NE1(n) + e(—1)'Rg - np)
=Nf(n)t'Ni+1(n)+e(— Y Hnk - NE (1)

+ 6(_1)iNjE(77)t ‘Rz -np+e (—1)”3“(}2% ng)t- (R -np)
:NgE(n)t - Nip1(n) + (=1)7++!

We develop to the second order:

I S
INE(n-+enp)|

13.3. APPENDIX C: DETAILS OF TAYLOR EXPANSION OF WF(n+ eNg) IN THE 2D

CASE 209
1 1 (JNF'NPY ng
= —€

INE(n+eng)| |NF| NP3
e nl - (JNF' - INF) - n
5 INF[3
enly - (JNF'-NF.NF'.JNF).n
9 E5
2 \Nj |

=1wvEl € B3
NP 2N

We obtain the Taylor expansion of m%(n + enE)t -NE(n+ eng) as

t
m” (i + enp) -N£1<n+enE>
L 1 1
—Z (NE(n)" - Niga () + (=1)"H1)(’

2
\NE\ —€ Q\NE|3) + o(€?)
j

— t 7 1() (*1)1—"—]
_mE(Tl) 1+1 Z 2|NE)—;—3 + |N]E(’r])| —+ 0(52)
Z Nz]il() n (1)t

QINE (P INF ()

+ o(€?)

We obtain that, for all n € (ege1), ¢ [eoer]:

NE@m)' - NE(n) (<1)*d
QS ENFwPF T EINEG)

Vwl(n) = g (13.10)

210

13.4 Appendix D: Proof of Eq. 11.2: (Green biharmonic
theorem)

From Stokes’ theorem, we know that [, p, divg(?)(f)dpe = fgeaD ?(5) -nedog (where dpg
is the volumic element, do¢ is the surfacic element, and n¢ is the outward unit normal on
the boundary of the domain).

Considering the following equations (with A £ X(£),g £ g(€,m) and all derivatives being
expressed w.r.t. &):

div(T (5 N)g) = <A>g + 50 %) (@

div(s AV g) = % V(g)+ b ((b)

div(A 0 g) = @ VIS I

div(Av (4 9)) = V(A - V(4 (9) +A 4% (g) (d)
These equations can be obtained with the following observation: for any n—dimensional
function ﬁ, for any scalar function v, div(a2 = >0, 0, (Uiv) = >, 02, (Ui)v +
S, Uidy, (v) = div(T o + T - o,
By writing (d) — (¢) + (b) — (a), we have that

— - - —

A% (g)= a2 (Mg = div(Av (4 g)) = div(V A & g) + div(s AV g) = div(V (A N)g)

Now, making the remark that A is writen to be biharmonic (A2 (\) = 0), and that g is the
biharmonic Green function (A (g) = G and A? (g) is the Dirac operator dp), we have that

A = [M©m(le = ul e
£eD
_ /5 N dive(ME) Ve (G)(€:m))dpe
_ / dive(VMEG(E,n))dpe
&eD
+/ dive (B¢ M€)T eg(€,m))dpe
&eD

_ /&D divg(gg(ﬁg A (&)g(&,m))dpe

Applying Stokes’ theorem to the right hand term of this last equation completes the proof.
Note, that the writing of this proof is correct for any scalar function A\. Writing it per
component extends it directly to any multi-dimensional biharmonic function.

