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Summary

Light propagation in matter is described by vibration eigensites, called modes, which
characterize the light-matter interaction. In the speci ¢ @se of random media, according
to the strength of the disorder, the modes can be either extendi®ver the whole system
or spatially localized. This disorder-based con nement is deld Anderson's localization.
In the rst part, we introduce basic notions used along this manscript. In particular
the light-matter interaction requires a semiclassical appraf: The electromagnetic eld
is described by Maxwell's equations while the quantum naturef matter must be con-
sidered. In this thesis open media are studied. In such systems thedal description
requires a speci ¢ analytic treatment di erent from closed poblems. In the second part,
we focus on Anderson-localized modes in open passive random medhny change of
the disorder induces modi cations of modes. Therefore, it ebes the control over the
light properties. Moreover, when inserting an emitter insideraAnderson-localized mode,
strong light-matter interaction regimes can be reached. Inhie third part, active random
media, commonly called random lasers, are introduced. Using oexperimental achieve-
ments, characteristics of random lasers are presented. The motiof mode enables us to
describe complex mechanisms involved in the lasing emission. Lagé demonstrate both
experimentally and numerically that a non-uniform excitaton of random lasers can lead
to a control of the properties of the emission. In particular a mitimode spectrum for a
uniform pumping can be turned into single-mode using an adaptgpumping.
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Introduction

In principle, con ning light can be easily achieved by two mirors facing each other. As
simple as it might seem, this classical cavity is the cornerstom of many physical sys-
tems such as Fabry-Perot spectrometer and lasers. In an ideal matl cavity, a photon
will remain trapped for ever. The system is isolated from the restf the universe and said
hermitian. The electromagnetic eld describing the light osidlates at speci ¢ frequencies:
These oscillations de ne the modes of the close cavity. In thideal description, the modes
are independent vibrations. The hermitian cavity allows bdt to address theoretical ques-
tions and to o er interesting prospects. As an illustration, we metion Quantum Electro
Dynamic (QED) cavities, where a two-level atom is inserted be®en two mirrors. On the
one hand it o ers elementary veri cation of quantum mechargs. On the other hand, it
paves the way to many interesting physical applications, in p#cular in quantum com-
putational processing. Unfortunately, satisfying hermitian coditions sometimes requires
tremendous e orts. For instance, Serge Haroche developed awéigh-Q cavity based on
two superconducting niobium mirrors at low temperature. Wieland's group used single
ions in ultra vacuum between to gold electrodes.

When the dimensions of the cavity are down-scaled, ensuring thermiticity of the cavity
becomes even harder. In contrast, novel science-driven castwith complex geometries
have risen much interest. Among them, we can mention open dieliec micro-disks and
micro-spheres or photonic crystal slab defect mode. In all thesystems, because of
openness or absorption, energy leaks out of the cavity. This engy loss couples the
system to the rest of the universe: The system is said non-hermitianJnfortunately,
di erent theories of hermitian physics, such as Random Matrix Teory, fail badly to
describe non-hermitian problems. In non-hermitian system, thelectromagnetic eld is
still described by privileged vibration, commonly referred siresonances. But unlike closed
cavity, these non-hermitian modes are no-longer independeribrations and energy can
be transferred from one mode to another. The new Physics invot/én non-hermitian
systems has triggered strong theoretical interest, raising marguestions: Is it possible
the adapt or extend standard approaches of hermitian Physics tmpen systems? What
are the speci c properties that these open systems may o er?

A random scattering medium is another example of an open systerm such a medium,
the photon dwell time is enhanced by multiple scattering. Degnding on the disorder
strength, light may explore the entire system and escape from it enay be trapped for
a long time by the disordered structure. In the rst case, the systenis said di usive,

whereas in the second case, di usion is inhibited and the wave Iscalized. In the last
case, if the system is large enough, all the good properties ofrthdian systems are
recovered. The openness is simply driven by the degree of disardA random system
Is therefore an interesting playground to explore systems raimg from hermitian to non-

hermitian. This unique characteristic has led to the explor#on of many questions related
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to light-matter interaction, such as non-linear physics, QED otasing. In the work that
we present here, some aspects of light-matter interaction inmdom scattering media have
been investigated. Our aim is to exemplify how the complexitpf these systems o ers
new degree of freedom to explore fundamental questions aslhasl new applications.

The document is organized in four parts and eight chapters, #t we brie y introduce.

Part 1 - From microscopic light-matter interaction to modes in open random
media

In Chapter I, we review the basic notions of light-matter imtraction in the semiclassical
formalism. Starting from microscopic Maxwell's equationswe derive the propagation of
light in macroscopic dielectric systems. In particular, we deribe the scattering of light
by inhomogeneities. The matter is described quantum-menially by discrete levels of
energy. We review the di erent mechanisms allowing a transféom one level to another.
More speci cally, we consider the two-level and four-levetans.

In Chapter Il, we introduce the concept of modes in non-herniin systems. Starting
from a simple example in physics, modes are de ned as a resoc&nn non-hermitian

problems, instead of stationary wave in the hermitian case. Vggesent some fundamental
di erences between hermitian and non-hermitian modes. Thenwe consider the case
of open systems. We discuss the conditions allowing to expahd electric eld along

the modes and the related mathematical formalism. Finally, wetroduce modes for the
speci ¢ case of disordered open systems.

Part 1l - Managing light-matter interaction in passive rand om media

In Chapter Ill, we explore mode interaction and exceptiongboints in a non-hermitian
system. We rst derive the evolution with any variation of the igdlectric constant of
modes in a 2D system. In a general 2D dielectric system, we derilie exact evolution of
modes when the permittivity distribution is modi ed. In the peci c case of localization by
disorder, we induce the coalescence of two modes for a speenodulation of the disorder.
In the vicinity of this so-called exceptional point, we stydthe mechanism of coalescence
and in particular the role played by other modes. We con rm theetical predictions by
numerical simulations.

In Chapter 1V, we investigate theoretically the interactio between a two-level atom with
a localized mode. For small intensity of the electric eld,hte interaction is described by
a linear polarization of the atom. In contrast, a high intenigy gives rise to non-linear

polarization. In the linear regime, we study the electric kel evolution and recover the
strong coupling condition between the emitter and the modé&hen, we investigate the
condition of a non-linear response of the emitter. We propesexperimental observation
of both e ects. Our predictions are con rmed by numerical simiations.
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Part Il - Active random media: The random laser

In Chapter V, we introduce the random laser and present our garimental achievements
of micro uidic devices. Starting from a textbook descriptin of a conventional laser, we
de ne the random laser and model it in the di usion approximabn. Then, after describ-

ing the technique we developed to make micro uidic laserse wharacterize 1D and 2D
devices. We explain why the di usion model is inadequate tosteibe such a random laser
and conclude that a more accurate description should be lthea a modal description

In Chapter VI, we analytically derive the modes of the randomdar from the modes of
the underlying random structure, the so-called passive systeThe presence of a thresh-
old in the lasing emission requires to consider two distingegimes, namely below and
above threshold. Below threshold, we derive the evolutiontttd modes and a perturba-
tion expansion allows to investigate the linear couplingtlaeen modes. Above threshold,
we derive the lasing mode using a similar approach and exhibie linear and non-linear
mechanisms involved in the lasing.

Part IV - Control of random lasers

In Chapter VII, we propose a new method to control random lasemission based on the
shaping of the pump prole. Using an iterative approach, thspatial distribution of the
pump pro le is progressively tuned to control the random las characteristics. We o er
some analytical insights to understand the role played by thenmp pro le on mode mixing
and we propose further investigations for a complete degatron.

In Chapter VIII, we experimentally demonstrate the control foan opto uidic random
laser. Using a spatial light modulator, the pump uence is motated and an iterative
procedure adjusts the pump pro le to drive the multimode las to single-mode operation
at a desired wavelength. We investigate the in uence of purppo le on linear and non-
linear mixing. Finally a similar approach to control the diretivity of the random laser
emission is proposed.
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Light-matter interaction:
Semiclassical description
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4 Chapter 1. Light-Matter Interaction

The most complete description of light-matter interaction iprovided by a quantum me-
chanic description, where both electromagnetic eld and métr are quantized. However,
many phenomena can be understood within the framework of themilassical theory of
light-matter interaction, where the light is described by a tassic electromagnetic eld,
while the quantum nature of matter is considered.

In this chapter, we introduce basic notions of the semiclassictdeory that will be used
in this manuscript. Starting from Maxwell's equations, we rst derive the propagation
equations of the electromagnetic eld in media with homogesous and inhomogeneous
refractive index at macroscopic scale. Then, we consider theopagation of the eld
when scattered by a particle. Finally, we present briey the gantum description of
matter and introduce the di erent mechanisms of energetic ansition.
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1.1 Light-Matter interaction: Light propagation in
matter

In this section, we remind the evolution of electromagneticeld in 1D and 2D dielectric
inhomogeneous media. This section is mostly based on lectureée®o[1,2]. First, we recall
the microscopic description of the electromagnetic eld praded by Maxwell's equations.
Then, we derive the Maxwell's equations for matter at a macszopic scale. Finally, the
Lorentz's oscillator model is used to de ne the susceptibility fodielectric material and
derive the equation of propagation in 1D and 2D dielectric ntka, namely Helmholtz
equation.

1.1.1 Light at microscopic scale
Maxwell's equations in vacuum

Light propagation is described by the electromagnetic eldE(r;t);B(r;t)), wherer and
t stand for spatial and temporal coordinates (see Fidg._1.1). Vemt electric eld and
magnetic eld, E and B ful | two constitutive equations

divB(r;t)=0 (1.1)

rote (r;t) = %t(r;t) 1.2

known as Maxwell-Thomson's and Maxwell-Faraday's equatien[3]. For propagation in
vacuum, the electric eld obeys to Maxwell-Gauss's equation

divE(r;t)=0 (2.3)

and the magnetic eld Maxwell-Ampére equation

0 O%t(r; t) (1.4)

The universal constants o and o are respectively the permeability and permittivity of
vacuum.

rotB (r;t) =

Figure 1.1: Schematic representation of light propagatinghivacuum: Light is described
by the oscillations of the electromagnetic eld E(r;t); B(r;t))
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Maxwell's equations in matter at microscopic scale

At microscopic scale, the matter is assumed to be composed of pathirgesg at position
ri(t) (as sketched in Fig.1.R). The corresponding densityy, (r;t) reads

X
m(ht)= g (r ri(t) (1.5)
/”'\\\
QW 1 Ta
<l_G B ,,’I” 1)
| - 1
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Figure 1.2: Electromagnetic in matter at microscopic scale: Hewe consider point charges
g located atr;.

The motion of the charges induces a current densify, (r;t)

. X dr X
Imt)= g O @ @@= gvi®) r ri(®) (1.6)

This charges and currents in uence the evolution of the el@omagnetic eld by giving
rise to discrete source terms in Maxwell's eq(1[1-1.4)

divB(r;t)=0 2.7)
rote (r;t) = %t(r;t) (1.8)
dive(rt)= (b (1.9)
0
rotB (r;t) = ojn(nt)+ o O%t(r;t) (2.10)

1.1.2 Light at macroscopic scale
From micro to macroscopic scale

At macroscopic scale, we can no longer consider point charges gketched in Fig[ZLR).
The gap between microscopic and macroscopic scales can be gy performing a

spatial averagel]1,12,14]. For a functionk- (r;t), the macroscopic average reads
z

HE(rt)i= wr rYF@rt)dr® (1.112)

wherew(r) the regularization function is
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_ R
normalized : w=1
real and positive

bounded, in such way thatShF (r;t)i = hSF (r;t)i i

Macroscopic Maxwell's equations

Maxwell's eq. [1.T) and [I.B) are easily derived at macroscale

divhBi(r;t)=0 (1.12)

rot FEi(r;t) = %(r;t) (1.13)

For eq. (I.9) and [1.ID), macroscopic expressions are compkchby the presence of

h i
Hmi

Figure 1.3: Schematic representation of light propagatiomimatter at macroscopic scale:
The charges and currents are continuous functions.

averaged source written a® i and hj i

divEi(rt)= 1! (1.14)
0

rot Bi(r;t)= o, i+ o O%U;t) (1.15)
Let us rst consider the macroscopic charge densitig ,,i. We assume that the medium
is made of atoms and we focus on an atonmat) at position ry (see Fig.[1.¥a)). For
sake of simplicity, position of the charges are expressed in theoatic frame and temporal
dependency is removed. The charge density of this atom reads

X
atm (r) = G (I’ lat ri) (1-16)
leading to a macroscopic average
_ x £ . . X
hami(t)=" g w(r 1)@ ryg r)d®= " qw(r ry 1) (1.17)

. R _ R .
1The derivative of the spatial average reads@‘@Fr' = @v(r@rr("t) F(rot)dro= %ﬁp (r®t)dro
Using an integration by parts, @gr' = h%fi. Because the function is boundedv(1 ;t) =0. As a result
@Fi - KhaF;

@r @r -
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The regularization function w is extremely smooth at atom scale. Eq.[{1.17) can be
expanded at rst order around the positionr ry and reads

_ X X
h ami(r) gw(r rg) gri:grad f(r ry) (1.18)
De ning P g = Oy the atomic charge andp gri = py the atomic dipole moment
hami(r)  oaW(r ra) Ppgigrad f(r ra) (1.19)

Consequently, even for a neutral atomic chargey; = 0), if the atomic dipole moment
p.: 6 0, a macroscopic chargé 51 exists. For instance, some neutral molecules (e.g.
H,0O, CO) have permanent dipole moment or atoms can polarized wh coupled to the
electric eld (see example in FigL¥b) ).

(b) Eext
~—

P

Figure 1.4: (a) The atomic frame (positionry): In this example a positive nucleus at
position r4 is surrounded by electrons at positiom;. (b) Example of neutral particle ex-
hibiting a dipole momentp: An atom is placed in a external electric eldE.. Barycentre
of positive (q at r.) and negative ( g at r ) charges are spatially separated, leading to
the appearance of a dipole momenipjj= q(r» r ) 60.

Now, since we perform similar operation on all atoms, the total neaoscopic density reads
_ X X
h mi(r) X CueW(r  Tat) pxat:grad f(r ra)
= GueW(r ra) div paf(r ra)

Dening P = P p.f(r ra) as the polarization density of the medium, the averaged
charge density reads

(1.20)

hmi(rt) = free(r) divP(r;t) (1.21)
As a result, at macroscopic scale, the charge density is the sum obteerms
free (I) = P eW(r rg), referred to as the free charge density
divP(r) = i p.:grad f (r ry), referred to as the polarization charge density
Hence, Maxwell-Gauss's eq[[(1.114) reads

free (I‘) div P(I’;t)
0

divhEi(r) = (1.22)
In the scope of this manuscript we will consider material with ze macroscopic charge
l.e. free = 0. Maxwell-Ampere's eq. [1.I5) can be derived by a similar appach and be
written !

@Ei

rot Bi(r)= jfree+Q+ rotM

at + 0 @t (1.23)
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whereM is the magnetization of the medium.

From now on, we will only consider the macroscopic quantitiesnd remove the average
notation: hFi = F.

1.1.3 Propagation in dielectric media
Lorentz's oscillator model

In Fig. L.4b) we presented an example of polarization mechanism when an atosn
placed in the electric eld. This example stresses that the palaation P in eq. (1.22)
is imposed by the nature of the material. In this manuscript, weavill consider dielectric
media composed of atoms modelled as Lorentz's oscillators.

(b) Vv

r+ryp

Figure 1.5: (a) Lorentz oscillator model: An electron ( e;m) is connected to a xed
nucleus €) by a spring. (b) Interaction potential between electron and nucleus. The
system evolves in the vicinity of the equilibrium positiorr.

An electron of masan and charge e is elastically linked to the nucleus of an atom (see
Fig.[L.5@) ). This nucleus is heavy and assumed xed. The interaction potgial V (r + rg)
versus the distance nucleus/electronr§ + r) is sketched in Fig.CT.%b) . The motion of
the electron is achieved in the vicinity of the equilibrium sition (ro). As a result, the
force deriving from the potential in the vicinity of ro acts like a spring

Fue= gradV m! ar (1.24)

We assume non-relativistic electrons and therefore we neglelce magnetic force. More-
over, a damping force is opposed to electron motion (coe ci¢n). Finally, because the
wavelength is much larger than atom size, the electric eld iassumed uniform.

As a result, the dynamic relation reads

dr
Mz = eE(r=0) m!'ar m — (1.25)
For a monochromatic problem (single frequency), solution of the formr(t) = r(! )e ™
can be used as an ansatz. The solution of eq.(1.25) reads
eE(! )=m
r(t)= |(2) — (1.26)
. O - .
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As a result, the dipole moment reads

pr)= e()= SEESOT - o ) (1.27)

where (! ) is the polarizability of the particldg. At macroscopic scale, fon identical
particles, the polarization density rea

P()=nhpi(')= o (1)E() (1.28)

where (!) is the material susceptibility.

Helmholtz equation in a uniform dielectric media

In this manuscript, we will consider propagation of light in delectric media, without
magnetic moment or current. First, we consider a uniform medm. In the spectral
domain, the Maxwell's equations read

divB(r;! )=0 (1.29)

rotE (r;1 ) =il B(r;!) (1.30)
dvEQ! )= —AVPrt) (1.31)

otB (;1)= ol P(51) ool E(R!) (1.32)

For a susceptibility (!), eq. (.31) reads
div( oE(r;! )+ P(r;! ) =div( oE(r;! )+ o (!)E(r;!))=0) divE(r;! )=0 (1.33)
Combining eq. [1.29-1.33)

rotrotE (r;! )= grad divE(r;!) E(r;! )= 1 rotB (r;!)

=it (ol P(i!) ol E(!)) (1.34)

Hence, the electric eld ful Is

E(;!)+ ool %1+ (1)E(;!)=0 (1.35)

q —
If we de ne the index of refractionn(! ) = 1+ (!), the eld is driven by an equation
known as the uniform Helmhotz's equation

E(r;! )+ oo %n(1)%E(r;! )=0 (1.36)

2The sign  on the notation of the polarizability o means we consider the static limit! ! 0 (see
Appendix [A).

3This relation is only true in the quasi-static limit (! ! 0). Otherwise, the polarizability of a single

atom and the susceptibility of the material are not proportional. A complete description requires a
correction factor we will recall in Appendix Al
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Helmholtz equation in a non-uniform dielectric media

Now, we consider the propagation of light in 1D or 2D dielectrimhomogeneous media
characterized by non uniform susceptibilities (r = (x;y);!) (composed of di erent di-
electric materials, see Figi_Il6 as example). In such systems, tlega@divergence of the
electric eld (div E =0) in eq. (I.33) is not ful lled

div( oE(r;! ) +div( o (51)E(R! )= oL+ (1! )divE(r!)
+ ograd (r;! ):E(r;!)=0
We decompose the electric eld into a Transverse Electric (TE) and Transverse Magnetic

(TM) components (see Fid.116). If we consider the TE componemif the electric eld
Ere = Ete(X;y)z, wherez is the direction orthogonal to the 2D system, eq[(1.37) reads

o+ (n!)divEre(rn! )+ ograd (r;! ):Ere(rn!)= o1+ (r!))divEre(r;!)=0
(1.38)

Inserting eq. (1.38), into Maxwell's eq.[(1.29-1.32) and pjecting alongz leads to Helmholtz
eqguation in non-uniform media

Ere(r;! )+ oo 2n(r;! )?Ere(r;! )=0 (1.39)

wheren(r;! )2=1+ (r;!).

(1.37)

©

Figure 1.6: Electric eld E in an inhomogeneous medium composed of material of index
of refraction n; and n,: The electric eld can be expanded in a TE and a TM component.

In the case of piecewise constant refractive index distributioffior instance see Fig_116), a
similar equation can be derived foB 1y and the TM part of the electric eld Ety can be
obtained thanks to Maxwell-Faraday's eq.[{(1.30) [5]. As a reliuthe total electromagnetic
eld is derived from a single scalar equation

ur! )+ oo ?n(r;!)2U(r;!)=0 (1.40)
whereU is the electric or magnetic eld in transverse con guration.

In the scope of this manuscript, we will consider 1D or 2D dieleat media, where either
the electric eld is TE or the refractive index is piecewise. Ning oo = ¢ 2, the
electromagnetic eld in our media will be derived from the sdar Helmholtz equation

E(r;! )+ !C;n(r;! YE(r;!)=0 (1.41)
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1.2 Light scattering by a particle

We derived in section1.1I3 the evolution of the electric eldn inhomogeneous media.
Eq. (T.41) emphasizes the in uence on light propagation of a rdocation in the index
of refraction. In particular, when light encounters a rapidvariation in the index of re-
fraction, its propagation is a ected: The wave is scatteredIn this section, we introduce
brie y the scattering. First we consider scattering by single pdicle and its e ect on the
electromagnetic eld. Then we focus on scattering with a lasynumber of particles and
introduce averaged descriptions. More details can be found [i&, [6,7].

1.2.1 Introduction

We consider the case of a plane wave (characterized by an electeld Eq = Egx at

wavelength ) incident on a particle (length scalel, see Fig[ZI.{a) ). When crossing the
particle, the electric eld spreads in many directions: The pdicle scatters the incident
eld. The resulting eld Eg is referred to as the scattered eld. Far away from this
scatterer, in the far eld approximation (distance L2= ), this eld reads

g

E+(u) = S(U)Eo—

(1.42)

whereu is the scattering direction andS(u) the scattering matrix. The scattering matrix
stands for the modi cation of the incident polarization x in Fig. L. Aa)). From an
electromagnetic point of view, the particle acts as a passivendting source. When the
medium is stricken by light (see Fig[CLib) ), the electric eld induces motion of charges
(free or polarization). This displacements lead to the buildip of a current densityhyj i
(see section1.1]2) and these currents will radiate an electragnetic eld, referred to as
the scattering eld. As a result, the scattered wave and the scattang matrix are set by
the geometrical shape and the material of the particle. As skdted in Fig.[I.4c), the
directional scattering pattern can be rather complex and neisotropic.

In the Helmholtz equation we derived in eq.[{1.41), a scatteres represented by a rapid
change in the index of refraction. For instance, in the examglprovided in Fig.[1.7, the
electric eld satis es

I 2
E(r;! )+ gn(r)zE(r;! )=0 (1.43)

wheren = 1 outside the particle andn = npy inside (hmg IS the index of refraction of
the material).

Now, we consider the total intensity scattered on the whole spacélsing eq. [1.4R), this
intensity reads
z z :
N . HJE
ls = JEsj?dS = jS(u)”
rt +1

rl +1

i2
% r2sin dd (1.44)

r

where and stand for angular coordinates. Notingd = sin dd the solid angle,
eq. (1.44) reads 7
ls=1lo jS(u)j’d (1.45)
4
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where |y = jEoj? stands for the incident plane wave intensity per unit surface aa.
Therefore, we can de ne from eq.[{1.45) a surface called the #eaing cross section
z
I . .
s = I—s = jS(u)j*d (1.46)

0 4
This scattering cross section gives an averaged quantity meaisigy the scattering strength
of the particle.

Es(u) Is(u) = jEs(u)j?
(a) (© 120 > 60

= | %ﬂx o
1X
-— 180

(b)

30

360

210 330

240 300

270

Figure 1.7: (a) The incident electric eld Eg is scattered by a particle. The resulting

eld Es is spread in all directions.(b) The scattered eld results from the appearance of
local currents in the particle induced byE,. (c) Scattering diagram: The scattered eld

IS non-isotropic.

1.2.2 Scattering media

In section[I.Z1, we treated the scattering by a single particldn scattering media, the
propagation of the electric eld is still described by Helmholt equation (see for instance
eq. (I.43)). Nevertheless, in media where the density of scattagiis important, many
scattering events occur, which makes the scattering of the ident electric eld di cult

to handle. In this section, we aim at introducing di erent appoaches we use in Chaptér 5
instead of the Helmholtz equation.

For instance, we will consider the case of a plane wave incidemt a plane interface (see
schematic drawing of Fig[C1B). In this problem, each time thdight is scattered, the
intensity in the incident direction decays.

The decay is exponential and satis es the Beer's law
ls= loe s (1.47)
wherels de nes the scattering length or mean free pathls stands for the typical scattering

length-scale of the incident intensity. Fromls we can de ne the transport length or mean
free pathl;.

|, = & (1.48)
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Is(x) /" exp( 1))

N @t o e &
AR

Figure 1.8: Schematic representation of light scattering: Tenintensity decays according
to the Beer's law.

This relation between both lengths includes the asymmetry eccient g = hcoq )i stand-
ing for the averaged angular scattering of particles constitung the medium (see for in-
stance Fig.[1.Xc)). |; stands for the length after which the direction of propagatio of
the photon is randomized or the incident direction is lost. Foan isotropic scatteringg =

0 and for a directional scatteringg! 1. In diluted systems, these lengths can be related
to the notion of cross section introduced in sectidn 1.2.1. Famstance the scattering cross
section ¢ reads

o= — (1.49)

where is the scatterer density. As a result, in this speci c con guratim, the multiple
scattering is easily related to single scattering quantity.

More generally, for 3D problems with a typical length-scalé. much longer than the
scattering length Ig (L ls), the light propagation will be described by a diusion
equation. If we assume no absorption, the di usion of the intensitl (r;t) will read

gkr;t) D I(r;t)+|1cl(r;t):O (1.50)

wherec s the speed of light in the medium and = 3cl; the di usion constant (expression
only valid in 3D).

1.3 Light-Matter interaction: Matter excitation

In the rst two sections, we investigated electric eld evolution when interacting with

matter. In this section, we rather focus on the medium itself. ifst, we introduce the

discrete Bohr's description of energy of particlé[8] and thd drent transition mechanisms

between levels’[9, 10]. Then, we investigate the static and tlidgnamic regimes of a two-
level atom in the electric eld (seel[9/"10]). Finally, we conder a four-level atom and
demonstrate how it can provide stimulated ampli cation (see[910,[11]).
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1.3.1 Energy conversion transfer

Bohr's hypothesis states[]8] that the total energy of a partiel (an atom for instance) can
only exhibit a discrete set of values. Hence, energy can only be aned by quantum
jumps described by Einstein's electromagnetic/matter interation [1Z]. To introduce
the di erent scenarii of conversion, we consider an atom with ta levels of energy (see
Fig. [L9).

First, as sketched in Fig[ZI.Ba), the atom can be excited from state 1 to state 2 via an
external input of energy. This is the pumping or external extation. External energy can
be brought in various forms (e.g. chemical, optics, electal).

The atom can decay from energy state 2 to 1 by spontaneous emiss{sae Fig.[1.¥b) ).
The decay of energy is subsequently converted into a photon ofndliar energy h ¢ =
E, E; called the resonance transition. This emission is usually isotrigpand happens
randomly. However, for an initially excited system, the probaitity of spontaneous emis-
sion decays exponentially versus time (see section 113.2).

(a) (b) (c) (d) (e)

2 fEZ -1 - A -1
AVAVAV.S

NN\~ AVAVAV AVAVAV.
Pr h 0 h h ,\/\/\/"

h

1 — E: —

Pumping Spont. emission Absorption Stim. emission NR decay

Figure 1.9: Energy transfersi(a) Pumping/Excitation by an external source. (b) Spon-
taneous emission of a photon.(c) Absorption of an incident photon. (d) Stimulated
emission driven by an incident photon.(e) Non radiative (NR) decay.

The atom, initially in state 1, can also be excited into state 2 byabsorption of an incident
photon at energyh E, E; (see Fig[1.®c)). The incident light beam is thus depleted
and looses a photon each time an absorption event occurs.

The atom initially in state 2, can also decay into level 1 by stimlated emission[[13](see
Fig.[L.9(d) ). The incident photon energyh E, E; being close to resonance transition,
the atom emits a photon identical to the incident one. The phimns are duplicated by
stimulated emission.

Last, the atom initially in state 2 decays to level 1 by non radiave transition (see
Fig.[I.9(e)). No photon is emitted and energy can be transferred via di erg non radia-
tive e ects (e.g. vibration, collision, phonon).
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1.3.2 A two-level atom in an electromagnetic eld
Population equations

Here we consider the textbook case (e.gl][9,110]) of a total poatibn of N two-level

atoms placed in the electromagnetic eld. With the developmant of quantum dots acting
like arti cial two-level atoms, this model is currently used n many elds of research (e.g.
in quantum information). In particular, it will be considered in Chapter 4.

The two levels are assumed non-degeneratéd. there is one quantum state for each
energy level. This set of atoms acts like a single emitter witwb energetic levels 1 and
2. No pumping is considered and we assume that all the conversior aadiative. Thus,
populations of di erent levelsN; and N, read
dN,
T AN>  BiaNau( )+ BarNou( ) (1.51)
dN,  dN;
dt ~—  dt
where u( ) is the photonic density at frequency . In eq. (I51) and [I.5R),A,; stands
for spontaneous decay from 2 to 1B 1,N,u( ) for absorption from 1 to 2 andB,;u( ) for
stimulated emission from 2 to 1. Moreover, the particle conseran reads

= ANz + BoNau( ) BaiNou( ) (1.52)

N = N1+ N2 (153)

In this speci ¢ case of non-degenerated atoms, absorption andrstilated coe cients ful |

BlZ = BZl (154)
Leading to population equations
dN
ditl = A21N2 + B21(N2 - Np)u( ) (1.55)
dN dN
ditz = ditl = ANz Ba(N2 Nyu() (1.56)

Steady state regime

In the steady state regime, eq.[(1.55) and(1.56) read
0= ANz BpaNiu( )+ BarNou( ) (1.57)

dN
0= ditl = AxaN2+ BoNgu( ) B2iNou( ) (1.58)
As a result, for a non-degenerated problem
ANz + Bau( )(N2  Nj) =0 (1.59)
With conservation relation of eq. [1.5B), eq.[{1.39) reads

A21N2 + sz_U( )(2N2 N) =0 (160)
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Figure 1.10: Steady state populatiorN;ss: They evolve linearly for low energy. Both
populations converge taN=2 for high energy.

Leading to steady state expressions of the populations

Az + Bau( )
Az +2Bou( )
Bau( )

Nooe = N 1.62
28 Az +2Bou( ) ( )

(1.61)

In Fig. .10, we plot the evolution of the population in the stady state versus the photonic
density.

Fig. [L.T0 highlights that, for a two-level atom, high energyopulation (N,) is smaller than
lower energy population N;). The inversion population is negative: N = N, N; <
0. Moreover, we know from eq.[{I.55) that stimulated emission drabsorption coexist.
This is emphasized by the right-hand side ternB,,;u( )(N> N;) in eq. (I.55). Hence, to
achieve a photonic ampli cation with stimulated emission, we eed to impose a positive
inversion population N to compensate for the absorption. As a result, the two-level
atom cannot be used as an amplifying medium.

If at low u( ) the populations evolve linearly with the energy, Figl_LI@lso stresses the
convergence of populations at high energy. This phenomenincalled the saturation of
the emitter (see Chaptei6) and is related to the nite energyhat the emitter can provide.

Dynamic regime

In Chapter [, we will investigate the evolution of a two-leveemitter in a electromagnetic
eld in the time domain. To give an overview of two-level atomtemporal dynamic, we
consider the situation of atoms excited in the steady state regerfort< 0. At t = 0, the
eld excitation is turned-o ( u( ) =0).

At initial time ( t = 0), the high energy population readsN,(0) = Njg. After the
excitation has been switched-o , the temporal evolution oN, is given by

dN,

dat = AzN2) Ny(t) = Npge A2 (1.63)
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(a) (b)

0,

Figure 1.11:(a) High energy populationN, versus time: The population decreases expo-
nentially with a characteristic time s. (b) Atoms are emitting photons by spontaneous
emission: The resulting emission spectrum is centred in the transih frequency o and
the linewidth is xed by the time s.

As a result, the population of excited atoms will be progressiwetiepleted by spontaneous
emission of photons. This decay is characterized by a timg = 1=A,; (see Fig[I.1a) ).
As shown in Fig.[I.IIb), the resulting spectrum has a Lorentzian shape centred at

o ( o Is the resonant frequency between the two states). The tempordecay s of
excited atoms population ;) xes the linewidth of emission in the spectral domain
( s =1=5). Inthis particular case, we have omitted non-radiative trasition. In presence
of non-radiative transitions, some atoms in populatioiN, decay without emitting photons.
Hence, the resulting spontaneous emission will be modi ed. Botradiative and non-
radiative transitions a ect the spectral linewidth g = 1= g, which reads

s= §+ §° (1.64)

where R stands for radiative decay and ¥R for non-radiative.

1.3.3 Four-level atomic system

Achievement of laser sources relies on the duplication of ploois via stimulated emission
(see Chapterd®48). We demonstrated in section_1.B.2 that a tievel atom cannot be
used to perform stimulated ampli cation. A more complex medim is required.

In the scope of this manuscript, we will consider media composefifour-level atoms (see
for instance [9/ 10/ 14]). The four-level description is widelsed for modelling amplifying
media (e.g. Rhodamine or Ti:Sapphire). As sketched in Fig._P1the atom is described
by four levels of energy, namely levels 0, 1, 2 and 3. The systesnpumped W) by an
external source of energy, which brings atoms from level 0 to Bransition from level 2 to
1 provides the stimulated emission. Transitions from 3 to 2 and Dt0 are assumed non-
radiative and extremely fast. Hence, levels 3 and 1 are empty. Agesult, the population
of di erent levels read

dN
d—t3 0=W,No AsNs (1.65)
dN,
e ANz ANy Bai(N2  Npu( ) (1.66)
dN¢
0= ApNi+ ANy + Bai(N2  Nyu( ) (1.67)

dt
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1
)§ NR
0
Figure 1.12: Four-level atom: Level 0 is pumped to level 3. @nsitions between 3 and 2
and 1 and O are non-radiative. Transitions between levels 1 &2 are radiative.

dN
di'[o = WpNO + A]_()Nl (168)
From eq. (I.6%) andN; 0 we deduce
dN
g = WeNo  AzNz  BaiNau( ) (1.69)
and
dNg
o W,No + A2iN2 + BoiNou( ) (1.70)
Using the conservation relatiorNy + N, = N, eq. (I.69) reads
dN,
el Wo(N  Nz) ANz BaiNou( ) (1.71)

Therefore, the inversion population N = N, Nj; N fulls
[

d N 1 u( )
= — N N N 1.72
dt 0 uSat ( )
where
= (Wp + Ap) * (1.73)
W
No = N—F 1.74
0 Wt Ag (1.74)
W, + A
Usat = an (1.75)
21
Solution of eq. [I.7R) in steady state regime reads
N W
N = 5 =N 5 (1.76)
1+@ (Wp + Az) 1+Q

As a result, the inversion population is positive and its amplitde is triggered by the
pump intensity. Hence, in four-level media, stimulated amplication can be achieved.
Eq. (I.76) also highlights the inversion population saturateof high energyu( ). We will
investigate in Chapter[® the role played by saturation on ampkation process. In the
rest of this manuscript we will consider the gain media as fouevel atomic systems.
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1.4 Summary

In the present chapter, we have introduced basic notions regad to study light-matter
interaction in a semiclassical approach. In 1D and 2D dielectrimedia, the electromag-
netic eld is studied in a classical way and is described by a scalimear equation, namely
the Helmholtz equation. This equation conveniently descrilseelectromagnetic eld prop-
agation in media with homogeneous and inhomogeneous refrae index. We have also
brie y introduced the scattering of electromagnetic eld bya discontinuity embedded in
the medium. We have stressed the manifestations of the scatteriag particle scale and
macro-scale. Finally, we have stated that the matter is descrdal with quantized levels of
energy and the jumps between levels are achieved with vams mechanisms that we in-
troduced. Starting from this description, we have investigad the static and the dynamic
evolution of two-level and four-level systems. We have demonsted that a photonic am-
pli cation cannot be performed on two-level atom and requis a more complex system
such as four-level atoms.
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In physics, a wave is described as a propagation of energy thrbugme and space.
Its study is complicated by the intrinsic dependency of time ah space. The aim of the
modal description is to simplify the description of wave by caying out its expansion along
speci c vibrational states of the problem. These vibrational sites de ne the modes of the
system. The notion of mode has been widely used in quantum as vadlin classical physics
[15,79]. However, the nature of modes diers when the system is e¥gy-conservative
(hermitian) or non-conservative (because of absorption or opeess). For non-hermitian
problems, the modes are associated with the resonances. Becausedsonances represent
speci ¢ signatures of the system, their study is of fundamental farest in various domains
of application such as biophotonics [16, 17] for single moléeuuorescence detection,
antennas [[18/ 19] and photonic crystal$ [20, 121]. Hence, ndjrthe vibrational states
of open structures with non-trivial geometries is thus of geg theoretical and practical
interest.

In this chapter, we investigate the description of modes in opegroblem and consider the
speci c case of disordered systems. First, we introduce the concgbtmodal expansion in
hermitian and non-hermitian systems. Because, vibrational stas are of di erent nature,
the characteristics of the modes di er from hermitian to norhermitian. Then, we describe
the modes in the speci c case of open systems. The openness requoe® ne a di erent
mathematical formalism, which di ers from hermitian physics. Finally, we consider the
speci c case of disordered open systems. The study of resonances iges/an interesting
tool to investigate the mechanism of wave localization by disder, namely the Anderson
localization.
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2.1 Introduction to Modes in hermitian/non-hermitian
systems

The aim of this section is to introduce the concept of modes inehmitian and non-
hermitian systems using the guideline example of the Melde's stg. For an energy-
conservative (hermitian) system, the modes are de ned as the $ianary solutions of the
problem. When losses are introduced, the problem becomes rt@rmitian. In other
words, stationary solutions no longer exist and the modes corresp to the resonances
of the problem. Because, hermitian and non-hermitian modeseaof distinct nature, they
exhibit di erent properties. Among them, the mode degeneracis a speci ¢ signature of
each case.

2.1.1 Stationary solutions of hermitian systems
The Melde's string

To introduce the concept of mode, we consider the example ofettMelde's string (see
Fig. 2.1). A string of length L is excited by an electromagnet (frequency and a small
amplitude a) at one edge and maintained static by a mass at the other. The Iyit,
h(x;t), varies in time and space, de ning a wave (see Fig.2.1). In thiacademic example,
losses are neglected and energy is conserved through time: Thetey is said hermitian.
The corresponding relation of motion, with a wave celerity, is given by the Alembert's

h(x;1t)
acos(2 t )} ! D X

Figure 2.1: Melde's string loss free: A string of length is excited by an electromagnet
at the one edge X = 0). The amplitude and frequency of the excitation are respéwely
aand . A wave described by the height of the strindh(x;t) propagates. The presence
of a heavy mass forces the wave to be zero at the edge L.

equation
@h 1 @h
@% vz @1
This equation is a second order derivative, thus requires twamundary conditions. Because
the system is excited at one edge and clamped at the other oneg#le boundary conditions
read

(x;t)=0 (2.2)

h(0;t) = acos(2t ) & h(L;t)=0 (2.2)

The system is loss free, thus eq[({2.1) can be solved using statignaolutions. From
a mathematical point of view, solving a problem by adopting stionary waves consists
in adopting a trial solution of the form h(x;t) = f (x)g(t), wheref;g 2 R?. Physically
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speaking, this is equivalent to considering time and space seaily: The spatial distri-
bution of the wave remains identical whatever the time andice versa Adopting this
approach, eq.[[Z11) can be solved in the stationary regime andyasolution reads

sin(k(L X))

Xt = a=—ghkD)

cos(2t )= jh(x)] cos(2t ) (2.3)
where jh(x)] is the wave amplitude, k stands for spatial frequency related to spectral
excitation frequency by the simple dispersion relatiok = 2—. Now, we assume that the

excitation frequency spans the frequency space. In Fig.4&) , we record the response of
the Melde's string with respect to the excitation frequency. &r a discrete set of frequency

(a) (b)
ih(0] ()

hs(x)
ha(x)

ha(x)

h2(x)

> hy(x)

Figure 2.2: (a) Amplitude of wave jh(x)j with respect to the excitation frequency :
When approaching frequencies, amplitude diverges. (b) Spatial distributions h,(x) of
the wave at speci ¢ frequencies,.

( p), the amplitude of the wave diverges

_wp

jh(x)j = , ! +1 P= o

(2.4)
At these particular frequencies, an in nitesimal excitation & the system @ ! 0) will
make the string oscillate for ever. In the spatial domain, the we will simultaneously
describes oscillations I

2 oL x)
v

hp(X) = sin (2.5)
Hence, each couple of frequency and spatial distribution (f; hy(x)), see Fig.[Z2) repre-
sents an eigensolution or eigenstates of efl.{2.1). In wave plogsithese sets of stationary
solutions de ned by couples of eigenvalue/eigenvector areferred to as the (hermitian)
modes of the system. These modes de ne privileged vibrations time and space of the
string.

Modal expansion in hermitian problem

Now, the electromagnet responsible for the excitation is swited o. The system is
turned into a string clamped at both extremities. When a wave mpagates through the
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string, it can be expanded into a sum of stationary waves solutioof eq. (Z.1). Hence,
any waveh(x;t) is a linear combination of the modes (,; h,(x)) described in sectiori 5.1]1

h(x;t) = X aphp(x)cos (2 pt) (2.6)
p

wherea, are expansion coe cients. In the Fourier's domain, eq.[{Z]6)dlads to a discrete
spectrum

HOG )= aphg() () 2.7)
p

Because the spectral components are in nitely thin, there ismspectral overlap between
the modes (see Fid.213). In the space domain, de ning the scalaroduct

jJHX)] a1 & a & as a.6
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1 2 3 4 5 5

Figure 2.3: Example of a hermitian wave spectrum: The spectruns discreet and com-
posed of an in nite number of modes at frequencies,.

z
hujvi = ) u(x) v(x)dx (2.8)

it turns out that all the spatial distribution of the modes h,(x) (see Fig[Z.2) are orthogonal
Mhpjhgi = pq (2.9)

Hence, there is neither spatial nor temporal overlap betweehé modes. From a physical
point of view, a wave propagating in a hermitian system can be deribed by a linear su-
perposition of independent vibrations. There is no exchangé energy between hermitian
modes.

2.1.2 Resonances of non-hermitian systems
The Melde's string... with losses

When the total energy of the system is not conserved over time, éhsystem is said non-
hermitian. For non-hermitian problems, because energy escageom the system through
time, de ning the modes as stationary vibrations (time indegndent) is not possible. In
this manuscript, we consider losses of two kinds

The presence of a complex potential: energy (wave) is absorb@dampli ed.

The openness of the system: energy (wave) leaks at the edges ef shistem.
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To carry on with the Melde's string experiment, we introduce bsorption with a damping
coecient aecting the rst order in eq. (Z1):

@h @? 1 @h
—(x;t) —(x;t) ——=
@% @ vz @4
Because of the absorption, waves described by ed.(2.10) can owger be considered as
stationary solutions. We measure the amplitude of the wave versegcitation frequency

in a similar manner to the hermitian case (see Fi§._44) ). The amplitude of the spectral
response no longer diverges. Because of absorption, each exoitatvill be attenuated
in time until it disappears: The system no longer exhibits divergnces resulting from
stationary solutions. However, even if the amplitude does not wkrge, some maxima
remain at speci c frequencies. These frequencies also corregptmprivileged oscillations
called the resonances of the system. Compared with stationary stbns, resonances are
attenuated in time. This attenuation is directly related to the broadening of resonances in
the spectral domain (see Fig.2{®) ). As a result, the de nition of resonances di ers from
stationary solutions: A resonance is de ned by a spatial distribubn (hy(x)), a central
frequency (p) and a spectral linewidth (). Similar to the hermitian case and the
stationary solutions, it is possible to de ne frequency for resomaes, but these frequencies
are now complex (, =2 |, 2 —*") as initially suggested by Gamov[]22]. In wave
physics, the sets of complex frequency, and spatial distribution hy(x), are referred to
as the quasi-modes or non-hermitian modes of the system. Henecehermitian systems,

(a) (b)
jh(>r<)j JH (X)]

x;t) =0 (2.10)

!

Figure 2.4: (a) Amplitude of the wave jh(x)j according to the frequency excitation

. The response exhibits speci c maxima referred to the resonamsce Each resonance
is characterized by a central frequency, and a linedwith . (b) Example of wave
decomposition in the spectral domain: The spectrum is continus. Each maximum is
related to a resonance of the system.

modes are derived from stationary solutions, while in non-heitian systems, modes are

related to resonances. However, in both cases, the modes are eglato a privileged
vibrational frequencies and thus stand for eigenstates of th@oblem.

Modal expansion in non-hermitian system

Similar to the hermitian case, the wave in non-hermitian systemcan be expanded along
the modes of the system. But unlike the hermitian case, the modase not independent
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and in uence each other. By way of illustration, if we performthe modal expansion in
the case of the Melde's string, any wave solution of ed.(Z110)ads

h(x;t) = X ahp(x)cos(2 pt)e =t (2.11)
p

where a, are simple coe cients. Each component is now damped. Eq.{Z]11¢dds to a
continuous spectrum in the spectral domain (see Fig_2ZB) )

HOG )= aghy() (2.12)
p : p

Moreover, this damping also a ects the spatial distribution othe modes and breaks there
orthogonality
hhpjhgi & g (2.13)

Hence, non-hermitian modes have spatial and spectral overlap.

From a physical point of view, this basic example highlights tht non-hermitian modes
are not independent vibrations. Energy can be exchanged besvemodes, which makes
them di erent from hermitian modes. The eld is described by a sperposition of non
independent vibrations. Hence, the properties of non-hernmain modes will di er from
the hermitian case. Mathematically speaking, the non-orthamality of modes a ects the
completeness of the set of spatial distributionh;(x)), in in nite dimension problem. In
others words, the uniqueness of the coe cients in eq{2.1l1) i longer guaranteed and
is problem-dependent.

2.1.3 Fingerprint of hermitian/non-hermitian systems

As stated in sectiong”2.T]1 and2.1.2, modes in hermitian or nbermitian systems have
di erent properties. To highlight their di erences, we propcse to investigate a simple
example of Quantum Mechanics problem: The electron in a dolgbquantum well.

Two-mode interaction in a hermitian system

First, we consider two independent quantum well& and R far away from each other.
In hermitian quantum mechanics, the stationary solutions of tts problem are given by
the eigenstates (eigenvalues/eigenvectors) of the energy oaer called the Hamiltonian.
The two quantum wells are considered distant and independensde Fig[ZZ%a)). Each
guantum well is characterized by a spatial distributionj -ri and a real energyE -r.
Hence, the problem can be reduced in the form of a Hamiltoniat,:
|
EL O

Ho= o g

(2.14)

In this simple case, the eigenstates of the full problem correspbto the eigenstates of
each individual well E -gr;j =ri -

Now, the two wells are brought closer to each other (see Fig_&%). The interaction
between the two wells is introduced by adding a hermitian pairbation described by an
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(@ E (b) E

2\
N

e -
e N //><
Er E
E. E.

Figure 2.5: (a) Two quantum wells R=L are considered independently: They de ne
eigenstates equivalent to stationary solutionsHg-, ; r-.). (b) When the two eigenstates
interact, they create new eigenstatesH ; ).

operator T responsible for tunnelling from one well to the other. The new Hhailtonian
H writes ! !

_ _ E. O 0 Tr
H=Ho+T= 5 B * T 0
|
EL TLR
H = 2.15
Te. En (2.15)

whereT,r = h |jT] ri2 R, Tre = h jjTj i = Tr. In this case, the Hamiltonian
describing the electron evolution is hermitian: By extensiothe problem is said hermitian.
BecauseH is hermitian, its eigenstates are described by real energy

S
E.+E E. Er)2, .. .
E == (E. Z Ry T2 2 R (2.16)

And de ning the inner product
hejbi = [a,8,] [bibs]" (2.17)
the eigenvectors are orthogonal

#
TLR . .
= q — & h.,j i=0 (2.18)
(EL 4ER)2 + ]TRLJZ EL ZER +

Similar to the case of the Melde's string, the wave function ohe electron will in nitely
oscillate at real frequenciesg along non interacting spatial distributions . Thus,
the total energy of the system will be conserved over time. These@enstates € ; )
(see Fig[Z¥b) ) are analogue to eigenmodes introduced in sectibn 5]1.1 fhethermitian
problem.

Hermitian degeneracy: Diabolic Point

Carrying on the previous example of the double hermitian queum well, we assume that
the di erent parameters (E., Er and Tg.) can be modi ed by playing with the depths
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of wells and the gap between them. We assume that these paramstare independent,
which means that they can be varied without in uencing each ther. We consider a
con guration where eigenvalues become degenerated

E.=E = (EL + ER):Z (219)

In the present case, the problem is non-dissipative with time-versal symmetry, thusH
is real and symmetric[[2B8]. We need to x the two real parameter(e.g. for a givenE_
we will modify Er and Tg, ) to achieve the degeneracy suggested in e. (2.19)

ER = E|_ & TRL = O) E. = E (220)

The problem is said of co-dimension 27[23]. For hermitian but ogplex hamiltonian (non-
dissipative without time-reversal symmetry), three parametey are needed (co-dimension

3 [24]).

If eigenvalues can become identical at a speci c point in thegpameter space Egr, Tr ),
the spatial distribution of the modes remain orthogonal at degneracy because the system
Is hermitian. This speci ¢ con guration introduced by Berry and Wilkinson [25], where
eigenvalues are identical and eigenvectors are orthoganalcalled a Diabolic Point. The
origin of the appellation comes from geometry of the Riemafmsheets of eigenvalues
E in the parameter space. They describe a double cone (diabol@noected at the
degeneracy([25]. As a matter of illustration, we plot in Fig—8 the evolution of the real
eigenvalues E ) of the double-quantum well in the parameter spacelR, Tr. ). Diabolic
Point can also appear in non-hermitian systems but its observain is hindered by the
required number of independent parameters (at least a co-dansion of 4). Hence, with
2 independent parameters, the observation of a Diabolic Poim$ specic to hermitian
problems.

Figure 2.6: Evolution of the real eigenvalu& in the parameter space Er, Tr. ). The
eigenvalues evolve along Riemann's sheet intersecting at agéen point: The Diabolic
Point. The two sheets describe cones connected like a diabolo.

One of the major manifestation of the Diabolic Point is its inuence on the Berry's phase
[26]. The Berry's phase is of geometrical origin. When a systenmdi erently quantum
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or classical) undergoes an adiabatic transformation, it acqes a residual phase due to its
evolution within the parameter space. The Berry's phase has ée observed in quantum
optics [27], classical optics [28] and even microwave caviBE]. When a Diabolic Point is

encircled within the parameter space, the Berry's phase acculates a phase([30].

Two-mode interaction in a non-hermitian system

The hermiticity is related to the conservation of the energy iad breaks down when losses
are introduced. Here, we consider the double quantum well witbmplex energie&, -r

I =r, Where _-r are due to absorption introduced within each well. The probha being
non-hermitian, its Hamiltonian is non-hermitian andTg. = T\gr 2 C:

H = gt . (2.21)

The eigenstates are now de ned by eigenvalues:

_(EL+Egr) i( L+ Rr) ) (EL Er)+i( L R))

2
+T3 2R (2.22)

E
2 4
The eigenvectors
#
_q Tir
+ ((EL ER)+4|( L rR)? 4 TI%L (EL ER)+2l( L R)
#
_ g TR 2.23
- (EL Er)*i(L r)D* 4 T2 (EL Er)*i( 1L Rr) (2.23)
A RL 2
And the scalar product between is no longer zero
h.j 160 (2.24)

Similar to the example of the Melde's string developed in seotis[2Z.1.1 and_Z.112, the
introduction of losses makes the eigenvalues complex and theasgl distribution non-
orthogonal. The complex eigenvalues and the spatial non-bdgonality of modes remain
valid if openness is responsible for the losses instead of absomptio

Non-hermitian degeneracy: Exceptional Point

In non-hermitian systems, varying di erent parameters can alsdring to a degeneracy
of energiese = E. However, unlike hermitian case, in non-hermitian systems the
eigenvectors area priori non-orthogonal. Hence, within the parameter space, both the
eigenvalues and the eigenvectors of the Hamiltonian can bew® identical at a specic
position. For instance, in the eigenstates derived in ed._(Zlpand (Z.23)

(EL Er)*+i( v R))

2
2 +T3 =0) E,=E & .= (2.25)

Introduced by Kato in 1966 [31], this non-hermitian degenecy is called an Excep-
tional Point . At Exceptional Point, rather than leading to a simple degenexcy, the two
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eigenstates coalesce and become indistinguishable. For compien-hermitian Hamilto-
nian, only 2 independent parameters are required to reachithnon-hermitian degeneracy.
Eq. (2.29) is ful lled by imposing both the real and the imaginay parts of Tg.: The
problem is of co-dimension 2.

From a mathematical point of view, at Exceptional Point, the sjace formed by eigenstates
is incomplete. At this speci ¢ position, both eigenstates meggto form a Jordan's Matrix:

" #
E 1
Heep 0 E (2.26)
The paradox of this matrix is to be diagonalizable and thus tbe equivalent to the identity
" #
10
Heer E 0 1 (2.27)

Because no matrix is equivalent to the identity (except the idntity itself), the Jordan's
matrix cannot be diagonalizable. Hence, the 2 dimensional sgadescribed by the matrix
is incomplete and equivalent to a single point. For that reasqgran Exceptional Point
can be understood like a topological default. To emphasize shstatement, we plot the
real and imaginary parts of eigenvalueg in Fig. Z-4a) and (b) . In the vicinity of an
Exceptional Point, the eigenvalues (or complex frequenciesxhibit an intricate topology.
The real and imaginary parts of the eigenvalues de ne interséng Riemann's sheets.
Thus Exceptional Point is of a totally di erent nature from Diabolic Point.

(@) ReE ) (b) Im(E )

Re(Tre ) Re(Tre )

Figure 2.7: Riemann's sheets described by eigenvalues in the vicinity of the Excep-
tional Point in the parameter space (Re(r. ); Im(Tr.)): () Real parts ofE are identical
along a blue stripe.(b) Imaginary parts are similar along the red stripe. At Exceptionh
Point, both complex eigenvalues are identical and eigenvecs are collinear.

We stressed in section”Z.1.3 that Diabolic Point could be observadnon-hermitian prob-
lems, but for a co-dimension 4 at least. Hence, we explained that ¢o-dimension 2 it
stands for a signature of hermitian problems. Here the situatiorsiunambiguous: Ex-
ceptional Point cannot be observed in hermitian systems. The Exg#gonal Point is the
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ngerprint of non-hermitian systems. The non-trivial evolution of eigenvalues close to
the Exceptional Point (see Fig[’Z7) also involves a geometrigahase when encircling the
Exceptional Point in the parameter space [3Z, 33]. However, uke the Diabolic Point,
four round trips are needed to restore the eigenstates. Moreoybecause both eigenvalues
and eigenvectors coalesce, discerning one mode from the othecomes impossible, which
leads to problem with mode labelling[[34, 3%, 36].

Exceptional Points have a certain robustness, which makes therather easy to investi-
gate than Diabolic Point. Remarkably enough, they appearetb be involved directly or

indirectly in a several physical e ects. For instance, they areelated to level repulsion
[37], mode hybridization [38], quantum phase transition [39]r even strong coupling[[35].
In fact, Exceptional Point appears to be a convenient tool toige a new insight to many
e ects.

2.2 Modes in open system

In section[Z1.2, we have introduced the concept of modes inmbermitian problems,

where absorption was responsible for losses. In open systems, thevdéan of the modes

is di erent because the wave is not necessarily bounded and caropagate outside the
system. This propagation inducing striking di culties, di ere nt approaches have been
proposed to overcome them. In this section we derive the moddsam open cavity using

the Siegert's approach, also known as quasi-bound states, quasrmal modes or Siegert
states. Then, we emphasize the limitation of the Siegert's degmtion of resonances.
Finally, we introduce the biorthogonal formalism required & develop linear algebra with
Siegert states.

2.2.1 Deriving modes in open media
The Siegert states

In many physical applications, the electrical eld, like manyother waves, cannot be
con ned spatially and propagates outside the system. In this kih of problem, the non-
conservation of the energy is due to system openness. Therefohe standard approaches
for the introduction of modes and quantization based on eigeectors of Hermitian op-
erators are not applicable in this situation[[40]. To overcomthis di culty, di erent ap-
proaches have been proposed: The Fox-Li modes| [41], the Siegtates [42], the modes of
the universe, the natural modes [43] or more recently the Comstt Flux modes [44]. All
those sets of modes have bene ts and drawbacks and their use ienfcase-dependent. In
the study of highly open systems, the modes are commonly derivethhks to the Siegert
states or the Constant Flux modes. In the present work, we chooseetlSiegert states
approacl{ﬂ.

In his seminal paper([42], Siegert investigated the resonandesatomic and molecular
systems and proposed to describe the resonances in a way similar étd quantization in

lFor Constant Flux modes, the outside propagation is characterised by a realréquency! and a
constant ux of energy. Unfortunately the frequency of oscillation ! is driven by a numerical parameter.
The introduction of this parameter highly complicates the formalism we aim at developing here.
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guantum optics. To derive them, he solved the Schrédinger's @ation with a boundary
condition at in nity containing only outgoing waves and no ncoming incident waves.
This outgoing condition is referred today as the Siegert'soadition or Gamov-Siegert's
condition [22]. Noting ( ,; p(r)) the mode corresponding to this resonancé, = ,=C
the wave vector andr the spatial coordinate, the Siegert's condition reads

(r11 )/ é&er | i;#rll )=ikp(r!t1 ) (2.28)

Modes of a 1D slab

As a guideline example, we consider the case of a 1D slab of inge&and lengthL. A
perfect mirror is placed at its left edgex = O whereas its right edgex = L is open in
vacuum (see Fig[Zka) ). For such dielectric problem in dimension 1 or 2, the electrat
eld E(r;t) fulls Helmholtz equation:

E(r:t) n(r)z@ég(r;t) =0 (2.29)

wherer stands for spatial coordinatesn(r) the refractive index distribution and the speed
of light of vacuum is xed to 1 for sake of notation compactness. EqZ.29) reads in the
frequency domain

E(r:! )+ n(r)?k%E(r;! )=0 (2.30)

where the dispersion relation imposes =kc = k. Hence, in this one dimension problem,
each mode (p; p(x)) fulls:

dx2

With the boundary conditions enforced by the mirror and the &gert's condition for each

mode I

d
©0=0 & — | =0 (2.32)
p dX p p "

Eq. (Z31) gives the motion of modes inside the cavity iy :

(x) + n(x)? S n(X)=0 (2.31)

i a(x)j?

() (b)
; . /\/\/\ N

i 2(x)j?

\ JAVANIECN

N

Figure 2.8: (a) 1D slab open medium of lengthiL with a uniform index of refraction n.
(b) Intensity of di erent modes derived with the Siegert's apprah. Thered ellipsespoint
out the divergence of intensity outside the medium.

pin(X) = Ajp€" P+ Bje " #X (2.33)
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whereA;, and B, correspond respectively forward and backward propagationeaients.
From eq. (Z32), we can easily deduce th&;, = A, and

pin (X) = 2iA 4, sin(n - px) (2.34)

In this particular case, the outgoing condition is ful lled & soon as the mode escapes
from the cavity i.e. whenx L. Hence, the mode outside the cavity .o, reads

prout (X) = Aoutei pX (2.35)
To link inside and outside expressions, we use the energy contiyuit
d pi d
pin(L) = pou(L) & = FH(L)= =—2(L) (2.36)
Using expressions of mode inside and outside (e. (2.34) ahd (P)35)
2iA1 sin(n pL) = Agw€ - & 2in LA cosh pL) =i pAon€ Pt (2.37)
leading to 1
. +
tan(n ,L)= in, e2et= h (2.38)
Hence, we nd an in nite set of mode frequencies referred to as;:
2p+1) 1 n+1
= I 8 2.39
P 2nL 'l n 1 P (2:39)

and the corresponding spatial distributions p(x):

- (2p+l) x
p;in / el 2L

- (2p+l) x
p;out [ € et

n+1 - (2p+l) x X n+l
In (5= e e an(F7)

X
ez
X_|n ( 2+11)

(2.40)

The Siegert's approach solve the eigenvalue problem de neg bq. (Z.29) using a speci c
boundary condition. The complex frequency , = kpc and related spatial distribution
n(X) are derived for each mode.

2.2.2 Limits of Siegert's modes
In nite spatial energy

Carrying on the example of the 1D slab, we plot the spatial evdilon of the modes inside
and outside the cavity in Fig..2Z&b) . Unlike hermitian modes, the non-hermitian modes
have a complex frequency as shown in e@. (2.39). The imaginga&rt of the complex fre-
guency, standing for the linewidth of the resonance, has to begative to ensure temporal
decay of the eld intensity. The spatial amplitude of the modess bounded inside the slab
(see Fig[Z:8b) ). However, because of negative imaginary part of the complesefjuency,
the amplitude of all modes exponentially diverges outside ¢hsystem (see Fig_2(®) ).
Physically, this exponential divergence corresponds to a wdkent excited at past times
and propagating away from the system. The in nite energy can benderstood as the
accumulation of the energy radiated from the open system to theest of the universe.
This point stresses that space and time cannot be separately coresield like in hermitian
stationary cases: The spatial divergence is compensated by a tesrgd damping. This
spatial divergence of Siegert's modes stands for the main ltation of Siegert states and
requires speci ¢ mathematical investigations.
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Inner product

One of the major limitation of a diverging spatial energy is tlk impossibility of using the

conventional inner product 7

hujvi = u (X)v(x)dx (2.41)

Because of this divergence, the integral of ed.(2141) betwet®vo modes requires a special
investigation: The modes are not square integrable. To overoe that di culty, several
solutions have been proposed. A possible solution consists in cotirey the spatial dis-
tribution of the modes, by imposing for instance the outgoing calition at a well-de ned
nite distance [45, [46], or considering separately the mode ba¥iour inside and outside
the cavity [43]. Another approach relies on carrying out a suable mathematical trans-
form (as initially suggested by Zeldovich[47]). Zeldovichi&lea consisted in compensating
for the divergence by de ning a regularized inner product. Héaistorically proposed the
function F(x) = e x* to de ne a new inner product:

Z
hujvi' h ujFjvi = u (X)F (X)v(x)dx (2.42)

The negative exponent inx? overcomes the divergence of the modes at in nity. To avoid
any loss of physical information, Zeldovich proposed to take ¢hlimit case where ! 0.
Many other transforms have been proposed, which recast the spawmrdinates and per-
form what is called complex scaling (see [48] for a complete dgstoon). The basic idea
of these transforms is to use complex coordinates to compensatethe exponential diver-
gence of the mode and make the inner product integrable. Inefrest of this manuscript,
we will assume that the inner products are regularized using Zelvich's approach

Z
hujvi, lim, o u (x)e * v(x)dx (2.43)

Completeness of modal expansion

In some cases, the divergence of the mode also implies the nongleteness of the Siegert
states basis. When the modal expansion requires an in nite set ofades, its coe cients
may not be unique. In such cases, the set of modes must be completediow a correct
modal description [49]. The study of completeness of the modesopen systems is still an
active eld of research for both mathematicians and physicistand turns out to be case
dependent. In particular, Leunget al. [50,[51/52] 53] demonstrated that the completeness
of the modal expansion in dielectric open systems is ensured if

the index distribution has a discontinuity (L in the present case), which provides a
natural demarcation of the system

the index is constant f = 1) outside the system & > L ), so that outgoing waves
are not scattered back into the system

In the example of the 1D slab experiment, these conditions (knm as the discontinuity

and no tail conditions, respectively) are ful lled and the moal expansion can be per-
formed. In this document, all the systems under study will respéthese two conditions

and allow a complete modal expansion of the eld.
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2.2.3 Biorthogonal formalism
Introduction to the biorthogonal formalism

In non-hermitian problems, the modes , are not orthogonal
h o o & pq (2.44)

However, a projection operator is needed to develop lineargabra with non-hermitian
modes. In non-hermitian problems it is possible to introduce ai drent product known
as the biorthogonal product [54/°55]. The biorthogonal practt relies on a very simple
idea: The orthogonality of left and right eigenvectors of aiear operator.

If we consider a non-hermitian matrixA, with eigenstates (i;jX;i):

EigenvectorsjXii are referred to right eigenvectors. Corresponding left egenvectors
hy;j are associated with similar eigenvalues and ful I

8i hY;jA = ;hyjj (2.46)
Now we can write
hYijAjXji = ihYijX;i = jhYijX;i (2.47)
Hence, in the case of non degenerated eigenstates
hYijX;i = (2.48)
And if A is symmetric (but non-hermitian), eq. [2.48) becomes

X X0 = (2.49)

This biorthogonal product can replace the conventional ingr product of hermitian physics,
assuming that no modes are degenerated. In particular, assumitig completeness of the
eigenstates, a closure relation can be de ned

X
iXgihX gj = | (2.50)
p

where | stands for matrix identity. Any vector can be written down as a unique
superposition of the eigenvectors

Ml 1 (2.51)
o PXiXoi P '

A complete mathematical formalism is derived from the biortbgonal product. This
product leads to the de nition of linear algebra tools for na-hermitian modes.
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The biorthogonal product in a 1D slab

We carry on the example of the 1D slab developed in sectibn 221t this problem, the
eld ful Is the Helmholtz eq. (2.29) and each mode ( p; (X)) reads

2

dxzp(x)+ n(x)? 5 p(x)=0 (2.52)

The weak formulatiorl of eq. (Z52) along another spatial distribution 4 (p 6 ) reads
Z d? Z
dx2p (X) q(x)dx + . n(x)? 5 p(x) q(x)dx=0 (2.53)

Using an integration by parts

#oooz

9oy () + o
dx q o

(x)c:jxq(x)dx: 2 . n(x)? p(x) o(x)dx (2.54)

“d
o dx

Using a second integration by parts

dp d 4 oz & q 2ZL 2
o (B L)+ p(x)- 7 (X) o p(X) gz )X =" . n(X)" p(X) q(x)dx
(2.55)
Using eq. [Z52) for mode (4; (X)), €q. (Z55) reads
z
(WA LA (D=2 D N7 00 qdx  (256)
Using the Siegert's conditiondd%(L) =1 pq po(L), €0. (Z56) reads
z
i( pt ¢ OL n(x)? p(X) o(X)dx+ L) 4L)=0 (2.57)

Now, we apply to modes (4; ¢(X)) and ( p; p(X)) the biorthogonal product, with the
Zeldovich's regularization introduced in sectioff Z.212
Z,,

hgi pf =lim o n(x)%e ** ,(x) 4(x)dx (2.58)

ol
Eq. (Z57) can be split into an inside and an outside integral term

Z Z i
h g o = . n(x)>? p(X) (X)dx+ Ilim , ¢ ] e X p(X) q(x)dx (2.59)

Outside the systemk L), we know that modes read ,(x) / € ¢*. Using an integration
by part, the outside integral term reads
Z,, Z,,
imyo e X ) q()dx [ lim g e x*d ot axqy

" . 1 7 , .
) e Xzel( pt )X +1 e X e'( pt )X e'( pt o)L

=lim, ¢ — + 2X — dx= — (2.60)
iCpt a) | L i( pt q) i( pt o

2For a function f(x) = 0, whatever the function g included in a Banach space, we can write
f (x)g(x)dx = 0.
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Leading to

o h (L) ofL)
h o ol = o n(x)% p(x) q(x)dx ﬁ

Using the relation derived in eq.[(Z.57), the modes (; 4(X)) and ( ,; p(x)) full the
biorthogonal relation:

(2.61)

h gl pl = pg (2.62)

Application of the biorthogonal formalism

We demonstrated in sectiom 2.2]3 the existence of a biorthogdmalation between modes
derived from the Siegert's condition in a 1D uniform slab. Tta biorthogonal relation can
be easily generalized to non-uniform refractive index disbrution and 2D problems. The
general de nition of the biorthogonal product reads

Z
hojgi= n()? o q= pg (2.63)

Hence, for 1D and 2D systems ful lling the no-tail and discontinity condition ensuring
the completeness of the modal expansion (see section 2.2.2), biethogonal formalism
developed in sectioi 2,213 can be applied. The closure relatioan be de ned between
modes and reads

X
j qh =1 (2.64)
P
Any spatial distribution ( x) reads
. R
X ohj i X n(r)? p(x)( x)dx
X) = e = R-_P X 2.65
The modal expansion of the electric eld
X .
E(xt)=  a p(x)e’ (2.66)

p

is complete and coe cientsa, are unique. In the rest of the document, we will consider
open systems where the biorthogonal formalism can be applied.

2.3 Anderson-localized modes

We shown in sectioi Z.Z2]1 how modes can be derived in any open systrsing the Siegert's
condition. In this section, we consider an open system with a distered refractive index
distribution, where the random scattering may lead to the spadil con nement of light.
First, we brie y review the history of this physical e ect known as Anderson localization.
Then, using a 1D example, we show that modes can be extended ortely localized,
depending on the strength of the disorder. Finally, we summaegzthe di erent numerical
methods that we have developed to compute these modes in disenetd media.
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2.3.1 A brief introduction to Anderson localization

In his seminal paper([56], Anderson was inspired by experimenterformed by George
Feher [57], where anomalous relaxation times of electron mweobserved in semiconduc-
tors. Using a quantum tight binding model of a lattice with a ranadm potential in each

site, he demonstrated that di usion of electrons can go to a zenohen disorder becomes
important enough. In particular, this model has been used toxplain why a metal can

turn into an insulator when the density of impurities increaseslin the eighties, the gap

was bridged between quantum and classical waves. After an earlgegdiction of existence
of localized waves in classical systemis [58], Anderson locali@gatwas demonstrated for
classical waves in several experimenis [59, 60] 61]. It is nowagnized that Anderson
localization originates from the interference between mile scattering paths and plays

also an essential role in classical wave physics.

A naive picture of localization mechanism is proposed in Fi.%a). We consider an
incoming wave propagating in a 1D random potential. The waves scattered each time
it encounters a step in the random potential (see explanatiomiChapter[1). The wave is
spilt into a transmitted (forward-scattering) and a re ected wave (backscattering). The
amplitude of the backscattering is triggered by the height ahe step in the random poten-
tial. The backscattered wave interferes with the incoming wee. If the wave encounters
many steps of various amplitudes, the backscattering leads tolacalization of the wave
by constructive interference (see Fig.—2(8) ). This spatial localization, known as Ander-
son localization, di ers from trapping where light is con nad because of presence of walls
(see Fig.[Z®b) ). Localization is rather understood as the result of many re éions of
moderate amplitude.

(@) Incoming Wave (b) Incoming Wave
= IAVAVAVAVAVIEEE- A VAVA VAVAV
c c
(¥} [}
o o
o o
=2 2
(2] n
c c
£ =

Figure 2.9: (a) An incoming wave propagates through a random potential: Eachegb in
the potential scatters the incoming wave. The backscatterinigterferes with the incoming
wave and the resulting eld spatially localizes into the system(b) Incoming wave trapped
within a well: The wave is localized because of the presence @jthpotentials.

Anderson localization has been observed in dierent areas ofaskical waves physics
(acoustics [[62]) or quantum wave physics (e.g. Wave matter [$3 For optical waves,
if localization has been observed for 1D and 2D systems, the 3D dbzation of light is
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still an open issuel[64]. In this manuscript we will restrict ourskko optical systems of
dimension 1 or 2.

2.3.2 Modes in localized/weakly scattering regimes

As stated in section”Z.311, the Anderson localization is triggedeéby the disorder. To em-
phasize this in uence, we introduce disorder into an uniform system and progressively
increase its strength. In this 1D example, we di erentiate between two di erent kinds
of modes resulting from Anderson localization.

A uniform 1D problem

We consider a 1D uniform medium of index of refractiom and length L open at both
edges (see Fig.Z.18)). In this problem, the eld's evolution is driven by the uniform
Helmholtz equation

OI2—E(x-l Y+ n? 2E(x;!1)=0 (2.67)
o %! ;! :
Using the Siegert's approach (see sectipn Z2J2.1), we can derive amplitude of the mode
(@) L (b) j p(X)j?

X

Figure 2.10: (a) A uniform 1D slab of lengthL and with an index of refractionn. (b)
The spatial distribution intensity of one modej ,(x)j? inside the system: The mode has
been derived using the Siegert's approach.

inside this cavity. The frequency of mode reads

i n+1
-p— 2.
= PrL nLI n 1 (2.68)
And the corresponding spatial distribution
| pin ()j? n—12ex X, n+lo on+d 2ex X nrl
I pin LX) n P n1 n o P n1
P (2.69)
+2 D ! cos p X
n2 L

As shown in Fig.[2Z.1{b) , the modes are extended all over the system.
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Introduction of disorder

To introduce disorder in the 1D slab, we randomly introduce sl&s of a di erent material
(see Fig[ZI1a) ). The system is now composed of slabs of refractive indexandn+ n.
The index of refraction becomes random and given by?(x) = n>+ n?p(x), where n
Is the index di erence, p(x) the location of the new material andn the average refractive
index. The evolution of the eld is now driven by the non-unibrm Helmholtz equation
d’E
dx?
To understand the in uence of the disorder, we can write eq[{Z0) in a form similar to
the Schrodinger equation
d’E
dx?
It turns out that the disorder term n?p(x) 2 plays a role similar to the interaction
potential in the Schrodinger equation. Like a well, this raadom potential scatterers the
wave. Remarkably, the strength of this random potential is triggered by the variance
of n?p(x) [65]. Hence, the random scattering strength will be importantor high index
contrast and strong uctuations of the position p(x).

(x;!)+(n%+ n?p(x)) %E(x;!)=0 (2.70)

(x;!) n?p(x) 2E(x;! )= n? 2E(x;!) (2.71)

Extended and localized modes

As an illustration, we consider a given realization of disorderfd9 slabs of index of
refraction n and 39 slabs of indexh + n. The mean thickness of the slabs is 150 nm,
and the thickness of each slab follows a uniform distribution adimplitude 50 nm (see
Fig. 2Z1Xa) for a schematic description). As explained by eq[{ZI71), the stngth of
the randomness is triggered by the index contrast between thevd media. The modes
resulting from this non-uniform distribution of refractive index are numerically computed
using the Transfer Matrix approach (introduced in section 2.3). This numerical method
rigorously derives the modes ful lling the Siegert's condion. In Fig. 211, we compute a
particular mode |, for a low and a high index contrast (respectively n =0:1 and 10).

In Fig. ZT(b) , the disorder is weak and the modes are extended over the systelNev-
ertheless, the spatial distribution is already strongly modi edas compared to the case of
a system with a uniform index (see Fig—2.0) ). In Fig. EZ11(c) , the disorder is strong
and the mode is con ned within the system. The envelope of the rde is exponentially

con ned around a central position '

i o2l e M 2.72)
where de nes the localization length. The modes plotted in Figi_ZI(b) and[ZIXc),
represent the two di erent regimes of disordered modes. For lodisorder, the system is
in the weakly localized regime: The mode is extended over tmedium but the disor-
der in uences its spatial distribution. For high disorder, thesystem is in the strongly
scattering regime: The mode is trapped/localized by disordenside the medium. In 1D
and 2D, a mode will be localized if the size of the system is smaltean the localization
length of the mode (here <L ). In 3D, a mobility edge is predicted. Nevertheless, if its
existence for scalar waves was con rmed, in polarized wavesaaver, its observation is
still an open issuel[64].
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(@)

Figure 2.11:(a) Schematic description of the 1D random system: Superposition slabs
of indexesn andn+ n. (b) Spatial mode distribution in the weakly scattering regime
( n=0:1): The mode is extended all over the device but di ers from th uniform case.
(c) Mode in the strong scattering regime (n = 1:0): The mode is spatially localized
inside the system.

2.3.3 Numerical computation of modes

In disordered systems, the derivation of modes cannot be analythut requires numerical
computations. In this subsection, we brie y summarize the di eent numerical methods
that we developed.

The Transfer Matrix approach

The Transfer Matrix approach has been widely used to study Andersdocalization prob-
lems in 1D systems[66]. This technique solves Helmholtz equatim the frequency do-
main in 1D system with the Siegert's condition. Within numerial accuracy, the Transfer

Matrix provides the exact Siegert states (,; ) ful lling
d? d |
p 2 2 — H —
e (X)+ n(x)* § p(x)=0 & dx I p p " =0 (2.73)

The modes shown in Figi_Z. Xb) and (c) were computed with this method.

The principle of the method can be exposed using, for instance,sgstem made of two
materials (as in Fig..ZI¥a)). In a 1D system, the eld can be expanded into a forward
P and a backwardQ part: " #
P(x;!)
Q(x;!)

When propagating through the system the eld can:

E(X; | ) = (274)
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Propagate through medium of indexh
Cross the interface froomton+ n
Propagate through medium of indexx+ n
Cross the interface froom+ nton

Combining these four operations, we can derive a matrid connecting the electric eld
on the left edgeE(0;! ) and the right edgeE (L;! ):
" " #
P(L:!) P©O;!)
= M(!
o) ~ M) qe;1)

This matrix represents the Helmholtz equation in the 1D system. fie Siegert's condition
enforces: " " #

#
E(;1) = P(%”) & E(L!)= Q(LO_,)

Imposing eq. (Z.76) onto eq.[{Z.75) can only be satis ed for a diete set of ,. These ,
and the corresponding spatial distribution , de ne the modes of the problem ful lling
the Siegert's condition.

(2.75)

(2.76)

Finite Elements Method

A Finite Element Method can be used to solve Helmholtz's. In the scepon this study,
a Finite Element Method code has been developed to solve Helntaagdquation in 2D

E(r)+ n(r)? 2E(r)=0 (2.77)

The 2D systems are composed of circular pillars in a host medium €sEig.[2.12). The

Figure 2.12: 2D random system composed of pillars randomly digtuted. The system is
surrounded by a numerical boundary condition.

physical system (see Fid."Z.12) is enclosed by numerical boundapnditions (Absorbing
Boundary Conditions or Perfectly Matched Layer[[6]7]) to ense the decay of electric
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eld outside the system. The system is spatially discretized and testuinctions are used
to build a matrix from eq. (Z.71)
A+ ?B=0 (2.78)

Then, a generalized eigenvalue solver is used to nd the eigehgmns ( 2, ) of eq. (Z78)
corresponding to the modes of the 2D open system (see Fig. 2.13>ale). Unlike the

@ 1m() i (I)(b)
e(!

Figure 2.13: (a) Complex frequency , of modes computed by Finite Element Method
on system described in Figi_212(b) A spatial distribution of the intensity of a mode
j pi? computed by Finite Element Method.

Transfer Matrix method, a numerical boundary condition is inposed outside the medium
instead of the Siegert's condition. Hence, the modes computedth the Finite Element
Method correspond to an approximation of the modes ful llingthe Siegert's condition.
The Siegert states and the modes will be similar inside the systemthwill di er outside.

Finite Di erence Time Domain

In this manuscript, we will also present computation of 2D system&ee Fig[Z.IPR) in the
temporal domain. For that matter, we use a Finite Di erence Tme Domain technique
allowing the resolution of Maxwell's equation

r E(nt) = o&h(rt)
(2.79)
r H(rnt) = On(r)z%'f(r;t)

Using the intricate spatial and temporal sampling, the evolutio of electric and magnetic
eld (namely E and H) can be computed in time and space. The spatial distribution
of the modes and their complex frequency can be obtained froE(r;t). A complete

description of the method can be nd in[[68].

2.4 Summary

Here, we have introduced the concept of mode and developedstiiotion for non energy-
conservative systems, also called non-hermitian systems.
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Generally speaking, modes are associated with privileged \altional states of the system.
For hermitian problem, the modes correspond to the stationargolutions, where time and
space are separable. In non-hermitian problems, no stationarylgiion exists and the
modes are de ned by resonances. In particular, we have introded the modes of open
systems and presented an approach to derive them, using the Si#¥geadiative condition.
The resulting modes are physically relevant inside the cavitynal diverge in amplitude
outside. Nevertheless, we have demonstrated the existence of aorays formalism to
describe the electric eld using these modes. In the scope of thisnuscript, we will focus
on open systems with constitutive disorder encoded in the index @fraction distribution.
We have explained in such systems the mechanism of Anderson lo@lan, in which the
disordered leads to a spatial localization of the modes. For strg disorder, the system is in
the localized regime and the modes are con ned within the systge while for low disorder
the system is in the weakly scattering regime and the modes are spHy extended. We
have brie y presented di erent numerical methods used to comyte them.

In the rest of this manuscript, we will investigate light-matte interaction in random
systems. The electric eld will be expressed in term of modes (Andsm-localized or
extended) computed with numerical techniques and the bidmbgonal formalism will be
applied.
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Losses are inherent to most physical systems, either because of diggpaand/or as a
result of openness. We explained in Chaptér 2 that these systems akescribed mathe-
matically by a non-hermitian Hamiltonian, where eigenvalugare complex and eigenstates
form a nonorthogonal set. In such systems, interaction betweenipaof eigenstates, when
a set of external parameters is varied, is essentially driven ltiye existence of Exceptional
Points (EP)(see Chapter2). At an EP, complex eigenvalues degeate and eigenstates
coalesce. In its vicinity, eigenvalues display a singular tofomy. The eigenstates become
indistinguishable [69] and encircling the EP in the parameter sge leads to a residual
geometrical phasel[3Z,"33]. Since their introduction by Katm 1966 [31], EPs have ap-
peared to be involved in a rich variety of physical e ects (e.glevel repulsion [[37], mode
hybridization [38], quantum phase transition[[30], lasing maaswitching [70], Parity Time
(PT) symmetry breaking [71/°72] or even strong coupling [35]). Thidave been observed
experimentally in di erent systems such as microwave billiarsl [34], chaotic optical mi-
crocavities [/3] or two-level atoms in high-Q cavitie§ [35We explained in Chaptei’2 that
open random media are a particular class of non-hermitian systs. Their modal con ne-
ment may be solely driven by the degree of scattering. For su cigly strong scattering,
the spatial extension of the modes becomes smaller than the systsime, resulting in
transport inhibition and Anderson localization [56]. Disordeed-induced localized states
or localized modes have raised much interest. They provide wihatural optical cavities
in random lasers|[[74, /5] and recently appeared to be good calades for quantum elec-
trodynamics cavity [/6,77], with the main advantage of beminherently disorder-robust.
These modes can also be manipulated by a local change of the disorand can coupled
to form necklace states [7&, 79, 80], which open channels in@mnally localized system
[81,182] and are foreseen as a key mechanism in the transitionniréocalization to dif-
fusion regime. PT symmetry has been studied in the context of disordered media and
Anderson localization [[83] 84, 85], but so far, EPs between loizald modes have not been
investigated.

In this chapter, coalescence at an EP between two Anderson-laezald optical modes is
demonstrated in a two dimensional dielectric random system. Toring the system in
the vicinity of an EP, the dielectric permittivity is varied at two di erent locations in
the random system. First, we propose a general theory to followehspectral and spatial
evolution of modes in 2D dielectric media. Then, this theoris applied in the speci ¢ case
of Anderson-localized modes. We nd excellent agreement be®vetheoretical prediction
and Finite Element Method (FEM) simulations. Finally, we demonstate that such a
theory requires to go beyond the standard two interacting stas model and to consider
N -mode interaction. This problem can be easily implemented en actual experiment[[85,
75]. We believe that the design of an EP between modes could pdke way to a control
of Anderson localization properties and could o er a new insigtho its understanding.
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3.1 Manipulation of modes via the dielectric permit-
tivity

In this section we propose a general theory, which describes tneolution of modes in an
open system in which scattering is modi ed. This approach releeon the biorthogonal
formalism introduced in Chapter2 and applied to modes of 2D diectric open systems.
We stress that this approach is not limited to disordered mediaui can be used for any
open inhomogeneous dielectric system. First, we de ne modesaohon-hermitian system
and recall the condition of the use of the biorthogonal formam. Finally, we consider
a modi cation of the system and investigate the evolution of mogls by deriving a linear
system.

3.1.1 A 2D open dielectric medium

We rst consider the general case of a nite-size dielectric medin in 2D space, with
iInhomogeneous dielectric constant distribution(r). In this chapter, for sake of notation
compactness, we will consider the dielectric permittivity (r) rather than the index of re-
fraction n(r) ( (r) = n?(r)). The distribution of (r) is indi erently ordered or disordered.
In the frequency domain, the electromagnetic eld followshe Helmholtz equation:

E(r!)+ (N'2E(r;!)=0 (3.1)

whereE(r;! ) stands for the electrical eld and the speed of lightc=1. Eigensolutions of
ed. (3.1) de ne the modes or eigenstates of the problem:

(i iidien § Jai+ (r) §ii=0 (3.2)

Because of its openness, the system has inherent losses and is thexefescribed by a non-
hermitian Hamiltonian (see Chapter2). For non-hermitian systes, modes area priori
non-orthogonal, complex and the completeness of the expams&ong the eigenvectors is
not ensured. Here, we will consider modes derived with the Sietge approach in open
systems with nite range potential, in which a discontinuity in the permittivity provides
a natural demarcation of the problem. We know from Chaptelr]2hat the completeness
of the modal expansion[[51, 50, 50, 52] is ensured in such a systemndde the electrical
eld can be expanded along the modes:

X
E(rt)= &) il (3.3)

where g (! ) stand for unique coe cients of the expansion along the basis. Meover, the
biorthogonal formalism can be used provided that the eigensid are not degenerated.
This formalism relies on a biorthogonal product between modewhich reads[[87, 55]:

h j (i gl = pq (3.4)

Nevertheless, the theory derived here can be extended to di eteset of modes (e.g
Constant Flux [44], Fox-Li modes[[41]), assuming that the bioltogonal formalism can be
used.
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3.1.2 Modi cation of the permittivity

Now, we consider two location®R; and R,, where the permittivity is varied

~r)= (M+  ()pu(r)+  2r)paAr) (3.5)

wherefpi(r 2 Ri) = 1jpi(r 2 Ri) = 0,5 is the location andf  (r)g;, ;.5 the shape of
the variation of permittivity. Eq. (3.I) becomes:

E(t)+ 120+ a(pu(n)+  2r)paAr) E(r ) =0 (3.6)

The permittivity distribution ~ (r) describes a new distribution of permittivity with new
modes (Ti;] ~ii)i2n- Nevertheless, we can still consider the basis of the original raomd
system, ( i;] il)i2n, to expand the electric eld as follows:

E(r)= b0 i 3.7)
whereh (! ) are the new expansion coe cients. Inserting eq.(317) into eq@8):
" he ) 120+ OO+ 0P G 10 (39)
Using eq. [3:2)

h i
T )P0+ OO+ 00 | i=0 (39
Projecting eq. [3.9) alongh ]

X h i
hyi b)) ¢ DO+ )+ 200pe(r) j i =0 (3.10)

X h i
b)) (2 Dh i i+ h i e+ 2(DeAn)j i =0 (3.11)
Using the biorthogonal product of eq.[(3}4) leads to
8i b) 2 12 =12 po)g (3.12)
i
where
Cij =hj am)pu(r)j it +hj 2r)paAr)j i (3.13)

If we consider a nite set ofN modes, the generalized eigenvalue problem of elq. (3.12)
can be written conveniently in a matrix form:

20 2 0 O1+ Cui Cin e
5% § !2% : : %:0 (3.14)
0o = 2 Cni i 14 Cun

The eigensolutions of eq.[{3.14), ;] ~ii)izp:ng, are the eigensolutions of eq[{3.1) for
the permittivity distribution ~ (r). In eq. (3.12), the coupling coe cients, C;, between
original modesi andj depend on the variation of the permittivity and the spatial oerlap
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of the modes at the location of the permittivity modi cation. Noteworthily, the coupling
integral not only depends on the spatial overlap of the modetensity pro les but also on
the overlap of their phase pro le.

Remarkably, when reducing the problem to two modes, we recowe system equivalent to
2 inductance/capacitor circuits coupled via an inductancé.. (see Fig [31). L. induces
the coupling of the two independent oscillators and the chaeg of each capacitor (namely

Q1 and Qy) ful |

Q1 Lc

+ - + 3.15

Q: L,C, L, (Q1+ Q2) ( )
Q2 Le

+ - + 3.16

Q2 L,C, L, (Q1+ Q2) ( )

which can be recast in azmatrlx form1 3.,
pl_ 0 1+ ko
g8 "Tic M SN LM 81 = (3.17)
0 pﬁ 2 L2 2

Eg. (3.12) extends this result to a number of interacting modeN > 2 and can be under-
sood as a basic linear coupling between modes playing the rolesionple L=C oscillators.

Q1 Q2
Cl CZ )
Figure 3.1: (a) Two independent inductance/capacitor [;=G) oscillators uncoupled.(b)
The two systems are coupled via an inductande..

(b) Ll L2

3.2 Application to Anderson-localized modes: Pre-
diction of Exceptional Points

Our theory is now applied to the particular case of a disordereglystem in the localized
regime (see Chaptef]2). First, we present the numerical 2D systerhat we consider to
apply our theory, in which two local modi cations of the permittivity distribution are
introduced. Then, we discuss the nature of the modes of the iidt system, which are
computed via Finite Elements Method (FEM) and we investigate te computation of
the biorthogonal product of eq. [3:#). Finally, we study the eolution of modes when the
permittivity is modulated at two distinct locations. When the parameter space is scanned,
we predict an EP between two speci ¢ modes and con rm its exist@e numerically.

3.2.1 The 2D open disorder dielectric medium

We consider a 2D random collection of 896 circular dielectrgcatterers (radius 60 nm)
with dielectric permittivity, = 4:0, embedded in a host material of index, = 1:0, with
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a lling fraction of 40% (Fig. B:Z(a) ). The system dimensions aré¢ L =5:3 m 5.3

m. The two circular regions of diameter 340 nmR; and R;, are shown in Fig.[3®a).
The dielectric permittivity of the scatterers within these regions is varied from to + ;
and + ,, respectively. This can be achieved experimentally by shirgr2 laser beams
on the surface of the sample and take advantage of optical namarity to change locally
the refractive index.

@ L o

Figure 3.2: (a) 2D random medium: 896 scatterers of dielectric permittivity = 4
are embedded in vacuump, = 1:0, system is open at edges. The permittivity of the
scatterers is modi ed in two circular domains of diameter 340m (respectivelyR; = red
circleand R, = ). (b) Original eigenvalues ()i2p.90: Computed by FEM in
absence of dielectric permittivity modulation and sorted in he complex plane according
the distance d(1;i). An inset focuses on eigenvalues of interest (namely; and ).
(c) ,(d) Original eigenvectors intensities of i andj ,i respectively.

3.2.2 Original modes and biorthogonal product

The original modes ( i;j ii)i2p:ng, Which are the only input requested by eq[{3.14), can-
not be obtained analytically in such a complex random system. Herwe have developed
a FEM routine [88,[89] to compute these modes (see Chapfér 2). Bwlary conditions
are placed @ m away from each edge of the system. We consider a frequency range i
which the localization length is estimated around 1 m L. As a result, the modes
are strongly con ned within the system.

A large number of modes | = 90) are computed for the original system (Fig=3¥b) )
in this spectral range. We checked that modes are not degent@ (see Fig.[3b) ),

1In 2D problems, the localization length satis es ltexp (!l {=9[65]. Di erent methods can be used
to estimate like the spatial correlation of modes or transmission measurement, seerfinstance [90]
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which is one of the conditions for the application of the bidhogonal formalism. Among
these modes, we consider two localized statps;i and | ,i respectively at ; and »,
spectrally close (Fig[3.1fb) ) but spatially distinct (Fig. 82Z)c) and (d) ). We de ne in
the complex plane the spectral distance of modeto mode 1 asd(1;i) = 1 ij. This
distance, color-coded in Figl=3®) , is a measure of the spectral overlap between mode
I and mode 1. Here, mode 2 is most likely to couple to mode 1 but wellvgiee later in
this chapter that the in uence of other nearby modes cannot & neglected in the modal
interaction.

The biorthogonal product de ned in eq. [3.4) corresponds toraintegration over the whole
space,R? 7

h o (Nj ol = - (r) o(r) p(r)dr (3.18)

However, the computed modes are only de ned over a nite speadomainV =[ 0:1 m;
5:7 m J°. To understand the relation between integral oveR? and integral overV, let us
consider the weak formulatioB of eq. (3.2) along another mode (g;] qi)

z z

+ 2 =0 3.19
v P q v P (r) » q ( )
Using an integration by parts, eq. [3.19) reads

z z z
@Vgrad o g Vgrad plgrad o+ . 5(r) p ¢q=0 (3.20)

where @ Vstands for the boundary ofV. With a second integration by parts, eq. [(3.20)
reads

z z z z
@Vgrad b g @Vgrad @ et g at 5(r) p q=0 (3.21)

Eq. (3.21) leads to
z z z

rad rad o o+ 2 2 r =0 3.22
@vg P q @vg g p p qv()qq (3.22)

As a result the biorthogonal relation of eq.[{3.18) reads
Z 1 Z
h o (Ni pl = v (r) o(r) p(r)dr+ 2 2 @Vgrad pi g grad g p = pg
(3.23)

Anderson-localized modes are non-degenerated,(6 ) and have a small spatial overlap
in our case. As a result, the biorthogonal relation can be appriorated by

Y4
h o (N pi y (r) o(r) p(r)dr= 4 (3.24)

The edge term (integral along@V in the biorthogonal product can be easily neglected.
It leads to an inaccuracy of 0.8% in the position of =6

2For a function f (x) = 0, whatever the function g(x), performing the weak formulation of f along g
means we consider the integral f (x)g(x) =0.

3This edge term can be inserted in the eigenvalue problem provided in eq[{3.14). ltesults in the
addition of extra on and o -diagonal terms in both matrices.
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