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Summary

Light propagation in matter is described by vibration eigenstates, called modes, which
characterize the light-matter interaction. In the speci�c case of random media, according
to the strength of the disorder, the modes can be either extended over the whole system
or spatially localized. This disorder-based con�nement is called Anderson's localization.
In the �rst part, we introduce basic notions used along this manuscript. In particular
the light-matter interaction requires a semiclassical approach: The electromagnetic �eld
is described by Maxwell's equations while the quantum natureof matter must be con-
sidered. In this thesis open media are studied. In such systems the modal description
requires a speci�c analytic treatment di�erent from closed problems. In the second part,
we focus on Anderson-localized modes in open passive random media. Any change of
the disorder induces modi�cations of modes. Therefore, it enables the control over the
light properties. Moreover, when inserting an emitter inside an Anderson-localized mode,
strong light-matter interaction regimes can be reached. In the third part, active random
media, commonly called random lasers, are introduced. Using ourexperimental achieve-
ments, characteristics of random lasers are presented. The notion of mode enables us to
describe complex mechanisms involved in the lasing emission. Last, we demonstrate both
experimentally and numerically that a non-uniform excitation of random lasers can lead
to a control of the properties of the emission. In particular a multimode spectrum for a
uniform pumping can be turned into single-mode using an adapted pumping.
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Introduction

In principle, con�ning light can be easily achieved by two mirrors facing each other. As
simple as it might seem, this �classical� cavity is the cornerstone of many physical sys-
tems such as Fabry-Perot spectrometer and lasers. In an ideal optical cavity, a photon
will remain trapped for ever. The system is isolated from the restof the universe and said
hermitian. The electromagnetic �eld describing the light oscillates at speci�c frequencies:
These oscillations de�ne the modes of the close cavity. In this ideal description, the modes
are independent vibrations. The hermitian cavity allows both to address theoretical ques-
tions and to o�er interesting prospects. As an illustration, we mention Quantum Electro
Dynamic (QED) cavities, where a two-level atom is inserted between two mirrors. On the
one hand it o�ers elementary veri�cation of quantum mechanics. On the other hand, it
paves the way to many interesting physical applications, in particular in quantum com-
putational processing. Unfortunately, satisfying hermitian conditions sometimes requires
tremendous e�orts. For instance, Serge Haroche developed a very high-Q cavity based on
two superconducting niobium mirrors at low temperature. Wineland's group used single
ions in ultra vacuum between to gold electrodes.

When the dimensions of the cavity are down-scaled, ensuring thehermiticity of the cavity
becomes even harder. In contrast, novel science-driven cavities with complex geometries
have risen much interest. Among them, we can mention open dielectric micro-disks and
micro-spheres or photonic crystal slab defect mode. In all thesesystems, because of
openness or absorption, energy leaks out of the cavity. This energy loss couples the
system to the rest of the universe: The system is said non-hermitian.Unfortunately,
di�erent theories of hermitian physics, such as Random Matrix Theory, fail badly to
describe non-hermitian problems. In non-hermitian system, theelectromagnetic �eld is
still described by privileged vibration, commonly referred as resonances. But unlike closed
cavity, these non-hermitian modes are no-longer independent vibrations and energy can
be transferred from one mode to another. The new Physics involved in non-hermitian
systems has triggered strong theoretical interest, raising manyquestions: Is it possible
the adapt or extend standard approaches of hermitian Physics toopen systems? What
are the speci�c properties that these open systems may o�er?

A random scattering medium is another example of an open system.In such a medium,
the photon dwell time is enhanced by multiple scattering. Depending on the disorder
strength, light may explore the entire system and escape from it or may be trapped for
a long time by the disordered structure. In the �rst case, the systemis said di�usive,
whereas in the second case, di�usion is inhibited and the wave islocalized. In the last
case, if the system is large enough, all the good properties of hermitian systems are
recovered. The openness is simply driven by the degree of disorder. A random system
is therefore an interesting playground to explore systems ranging from hermitian to non-
hermitian. This unique characteristic has led to the exploration of many questions related
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to light-matter interaction, such as non-linear physics, QED orlasing. In the work that
we present here, some aspects of light-matter interaction in random scattering media have
been investigated. Our aim is to exemplify how the complexityof these systems o�ers
new degree of freedom to explore fundamental questions as well as new applications.

The document is organized in four parts and eight chapters, that we brie�y introduce.

Part I - From microscopic light-matter interaction to modes in open random
media

In Chapter I, we review the basic notions of light-matter interaction in the semiclassical
formalism. Starting from microscopic Maxwell's equations, we derive the propagation of
light in macroscopic dielectric systems. In particular, we describe the scattering of light
by inhomogeneities. The matter is described quantum-mechanically by discrete levels of
energy. We review the di�erent mechanisms allowing a transferfrom one level to another.
More speci�cally, we consider the two-level and four-level atoms.

In Chapter II, we introduce the concept of modes in non-hermitian systems. Starting
from a simple example in physics, modes are de�ned as a resonance in non-hermitian
problems, instead of stationary wave in the hermitian case. Wepresent some fundamental
di�erences between hermitian and non-hermitian modes. Then,we consider the case
of open systems. We discuss the conditions allowing to expandthe electric �eld along
the modes and the related mathematical formalism. Finally, weintroduce modes for the
speci�c case of disordered open systems.

Part II - Managing light-matter interaction in passive rand om media

In Chapter III, we explore mode interaction and exceptionalpoints in a non-hermitian
system. We �rst derive the evolution with any variation of the dielectric constant of
modes in a 2D system. In a general 2D dielectric system, we derivethe exact evolution of
modes when the permittivity distribution is modi�ed. In the speci�c case of localization by
disorder, we induce the coalescence of two modes for a speci�c modulation of the disorder.
In the vicinity of this so-called exceptional point, we study the mechanism of coalescence
and in particular the role played by other modes. We con�rm theoretical predictions by
numerical simulations.

In Chapter IV, we investigate theoretically the interaction between a two-level atom with
a localized mode. For small intensity of the electric �eld, the interaction is described by
a linear polarization of the atom. In contrast, a high intensity gives rise to non-linear
polarization. In the linear regime, we study the electric �eld evolution and recover the
strong coupling condition between the emitter and the mode.Then, we investigate the
condition of a non-linear response of the emitter. We propose experimental observation
of both e�ects. Our predictions are con�rmed by numerical simulations.
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Part III - Active random media: The random laser

In Chapter V, we introduce the random laser and present our experimental achievements
of micro�uidic devices. Starting from a textbook description of a conventional laser, we
de�ne the random laser and model it in the di�usion approximation. Then, after describ-
ing the technique we developed to make micro�uidic lasers, we characterize 1D and 2D
devices. We explain why the di�usion model is inadequate to describe such a random laser
and conclude that a more accurate description should be based on a modal description

In Chapter VI, we analytically derive the modes of the random laser from the modes of
the underlying random structure, the so-called passive system. The presence of a thresh-
old in the lasing emission requires to consider two distinctregimes, namely below and
above threshold. Below threshold, we derive the evolution ofthe modes and a perturba-
tion expansion allows to investigate the linear coupling between modes. Above threshold,
we derive the lasing mode using a similar approach and exhibit the linear and non-linear
mechanisms involved in the lasing.

Part IV - Control of random lasers

In Chapter VII, we propose a new method to control random laser emission based on the
shaping of the pump pro�le. Using an iterative approach, thespatial distribution of the
pump pro�le is progressively tuned to control the random laser characteristics. We o�er
some analytical insights to understand the role played by the pump pro�le on mode mixing
and we propose further investigations for a complete description.

In Chapter VIII, we experimentally demonstrate the control of an opto�uidic random
laser. Using a spatial light modulator, the pump �uence is modulated and an iterative
procedure adjusts the pump pro�le to drive the multimode laser to single-mode operation
at a desired wavelength. We investigate the in�uence of pumppro�le on linear and non-
linear mixing. Finally a similar approach to control the directivity of the random laser
emission is proposed.
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The most complete description of light-matter interaction isprovided by a quantum me-
chanic description, where both electromagnetic �eld and matter are quantized. However,
many phenomena can be understood within the framework of the semiclassical theory of
light-matter interaction, where the light is described by a classic electromagnetic �eld,
while the quantum nature of matter is considered.

In this chapter, we introduce basic notions of the semiclassicaltheory that will be used
in this manuscript. Starting from Maxwell's equations, we �rst derive the propagation
equations of the electromagnetic �eld in media with homogeneous and inhomogeneous
refractive index at macroscopic scale. Then, we consider the propagation of the �eld
when scattered by a particle. Finally, we present brie�y the quantum description of
matter and introduce the di�erent mechanisms of energetic transition.
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1.1 Light-Matter interaction: Light propagation in
matter

In this section, we remind the evolution of electromagnetic �eld in 1D and 2D dielectric
inhomogeneous media. This section is mostly based on lecture notes [1, 2]. First, we recall
the microscopic description of the electromagnetic �eld provided by Maxwell's equations.
Then, we derive the Maxwell's equations for matter at a macroscopic scale. Finally, the
Lorentz's oscillator model is used to de�ne the susceptibility of dielectric material and
derive the equation of propagation in 1D and 2D dielectric media, namely Helmholtz
equation.

1.1.1 Light at microscopic scale

Maxwell's equations in vacuum

Light propagation is described by the electromagnetic �eld (E(r; t ); B (r; t )), where r and
t stand for spatial and temporal coordinates (see Fig. 1.1). Vector electric �eld and
magnetic �eld, E and B ful�l two constitutive equations

div B(r; t ) = 0 (1.1)

rot E (r; t ) = �
@B
@t

(r; t ) (1.2)

known as Maxwell-Thomson's and Maxwell-Faraday's equations [3]. For propagation in
vacuum, the electric �eld obeys to Maxwell-Gauss's equation

div E(r; t ) = 0 (1.3)

and the magnetic �eld Maxwell-Ampère equation

rot B (r; t ) = � 0� 0
@E
@t

(r; t ) (1.4)

The universal constants� 0 and � 0 are respectively the permeability and permittivity of
vacuum.

B

E

Figure 1.1: Schematic representation of light propagating in vacuum: Light is described
by the oscillations of the electromagnetic �eld (E(r; t ); B (r; t ))



6 Chapter 1. Light-Matter Interaction

Maxwell's equations in matter at microscopic scale

At microscopic scale, the matter is assumed to be composed of pointchargesqi at position
r i (t) (as sketched in Fig.1.2). The corresponding density� m (r; t ) reads

� m (r; t ) =
X

qi � (r � r i (t)) (1.5)

B

E

q1 q2q3

q4

q5

q6

q7

q8

� m

j m

Figure 1.2: Electromagnetic in matter at microscopic scale: Here we consider point charges
qi located at r i .

The motion of the charges induces a current densityj m (r; t )

j m (r; t ) =
X

qi
dr i

dt
(t)� (r � r i (t)) =

X
qi v i (t)� (r � r i (t)) (1.6)

This charges and currents in�uence the evolution of the electromagnetic �eld by giving
rise to discrete source terms in Maxwell's eq. (1.1-1.4)

div B (r; t ) = 0 (1.7)

rot E (r; t ) = �
@B
@t

(r; t ) (1.8)

div E(r; t ) =
� m (r; t )

� 0
(1.9)

rot B (r; t ) = � 0j m (r; t ) + � 0� 0
@E
@t

(r; t ) (1.10)

1.1.2 Light at macroscopic scale

From micro to macroscopic scale

At macroscopic scale, we can no longer consider point charges (as sketched in Fig. 1.3).
The gap between microscopic and macroscopic scales can be bridged by performing a
spatial average [1, 2, 4]. For a function,F (r; t ), the macroscopic average reads

hF (r; t )i =
Z

w(r � r 0)F (r 0; t)dr0 (1.11)

wherew(r ) the regularization function is
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� normalized :
R

w = 1

� real and positive

� bounded, in such way that @
@rhF (r; t )i = h@

@rF (r; t )i 1

Macroscopic Maxwell's equations

Maxwell's eq. (1.7) and (1.8) are easily derived at macroscale:

div hB i (r; t ) = 0 (1.12)

rot hEi (r; t ) = �
@hB i

@t
(r; t ) (1.13)

For eq. (1.9) and (1.10), macroscopic expressions are complicated by the presence of

B

E

h� m i
hj m i

Figure 1.3: Schematic representation of light propagation in matter at macroscopic scale:
The charges and currents are continuous functions.

averaged source written ash� m i and hj m i

div hEi (r; t ) =
h� m i

� 0
(1.14)

rot hB i (r; t ) = � 0hj m i + � 0� 0
@hEi

@t
(r; t ) (1.15)

Let us �rst consider the macroscopic charge densityh� m i . We assume that the medium
is made of atoms and we focus on an atom (at) at position rat (see Fig. 1.4(a) ). For
sake of simplicity, position of the charges are expressed in the atomic frame and temporal
dependency is removed. The charge density of this atom reads

� at m (r ) =
X

qi � (r � rat � r i ) (1.16)

leading to a macroscopic average

h� at m i (r ) =
X

qi

Z
w(r � r 0)� (r 0 � rat � r i )dr0 =

X
qi w(r � rat � r i ) (1.17)

1The derivative of the spatial average reads@hF i
@r =

R @w(r � r 0;t )
@r F (r 0; t)dr0 = �

R @w(r � r 0;t )
@r0 F (r 0; t)dr0.

Using an integration by parts, @hF i
@r = h@F

@r i . Because the function is boundedw(�1 ; t) = 0. As a result
@hF i

@r = h@F
@r i .
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The regularization function w is extremely smooth at atom scale. Eq. (1.17) can be
expanded at �rst order around the positionr � rat and reads

h� at m i (r ) �
X

qi w(r � rat ) �
X

qi r i :grad f (r � ra) (1.18)

De�ning
P

qi = qat the atomic charge and
P

qi r i = pat the atomic dipole moment

h� at m i (r ) � qat w(r � rat ) � pat :grad f (r � ra) (1.19)

Consequently, even for a neutral atomic charge (qat = 0), if the atomic dipole moment
pat 6= 0, a macroscopic chargeh� at m i exists. For instance, some neutral molecules (e.g.
H2O, CO) have permanent dipole moment or atoms can polarized when coupled to the
electric �eld (see example in Fig. 1.4(b) ).

(a)

r at

r i

0

(b)

r + r �

p

Eext

Figure 1.4: (a) The atomic frame (position rat ): In this example a positive nucleus at
position rat is surrounded by electrons at positionr i . (b) Example of neutral particle ex-
hibiting a dipole momentp: An atom is placed in a external electric �eldEext . Barycentre
of positive (q at r+ ) and negative (� q at r � ) charges are spatially separated, leading to
the appearance of a dipole momentjjpjj= q(r+ � r � ) 6= 0.

Now, since we perform similar operation on all atoms, the total macroscopic density reads

h� m i (r ) �
X

qat w(r � rat ) �
X

pat :grad f (r � ra)

=
X

qat w(r � rat ) � div
X

pat f (r � ra)
(1.20)

De�ning P =
P

pat f (r � ra) as the polarization density of the medium, the averaged
charge density reads

h� m i (r; t ) = � f ree (r ) � div P(r; t ) (1.21)

As a result, at macroscopic scale, the charge density is the sum of two terms

� � f ree (r ) =
P

qat w(r � rat ), referred to as the free charge density

� � div P(r ) = �
P

pat :grad f (r � ra), referred to as the polarization charge density

Hence, Maxwell-Gauss's eq. (1.14) reads

div hEi (r ) =
� f ree (r ) � div P(r; t )

� 0
(1.22)

In the scope of this manuscript we will consider material with zero macroscopic charge
i.e. � f ree = 0. Maxwell-Ampere's eq. (1.15) can be derived by a similar approach and be
written

rot hB i (r ) = � 0

 

j f ree +
@P
@t

+ rot M

!

+ � 0� 0
@hEi

@t
(1.23)
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whereM is the magnetization of the medium.

From now on, we will only consider the macroscopic quantities and remove the average
notation: hF i = F .

1.1.3 Propagation in dielectric media

Lorentz's oscillator model

In Fig. 1.4(b) we presented an example of polarization mechanism when an atomis
placed in the electric �eld. This example stresses that the polarization P in eq. (1.22)
is imposed by the nature of the material. In this manuscript, wewill consider dielectric
media composed of atoms modelled as Lorentz's oscillators.

(a) (b)

r + r0

V

e � e

mr + r0

r0

Figure 1.5: (a) Lorentz oscillator model: An electron (� e; m) is connected to a �xed
nucleus (e) by a spring. (b) Interaction potential between electron and nucleus. The
system evolves in the vicinity of the equilibrium positionr0.

An electron of massm and charge� e is elastically linked to the nucleus of an atom (see
Fig. 1.5(a) ). This nucleus is heavy and assumed �xed. The interaction potential V(r + r0)
versus the distance nucleus/electron (r0 + r ) is sketched in Fig. 1.5(b) . The motion of
the electron is achieved in the vicinity of the equilibrium position (r0). As a result, the
force deriving from the potential in the vicinity of r0 acts like a spring

Fn! e = � grad V � � m! 2
0r (1.24)

We assume non-relativistic electrons and therefore we neglectthe magnetic force. More-
over, a damping force is opposed to electron motion (coe�cient �). Finally, because the
wavelength is much larger than atom size, the electric �eld isassumed uniform.

As a result, the dynamic relation reads

m
d2r
dt2

= � eE(r = 0) � m! 2
0r � m�

dr
dt

(1.25)

For a monochromatic problem (single frequency! ), solution of the form r (t) = r (! )e� i!t

can be used as an ansatz. The solution of eq. (1.25) reads

r (! ) =
� eE(! )=m

! 2
0 � ! 2 � i � !

(1.26)
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As a result, the dipole moment reads

p(! ) = � er (! ) =
e2E(r = 0) =m
! 2

0 � ! 2 � i � !
= � 0� 0(! )E(! ) (1.27)

where � 0(! ) is the polarizability of the particle2. At macroscopic scale, forn identical
particles, the polarization density reads3

P(! ) = nhpi (! ) = � 0� (! )E(! ) (1.28)

where� (! ) is the material susceptibility.

Helmholtz equation in a uniform dielectric media

In this manuscript, we will consider propagation of light in dielectric media, without
magnetic moment or current. First, we consider a uniform medium. In the spectral
domain, the Maxwell's equations read

div B(r; ! ) = 0 (1.29)

rot E (r; ! ) = i! B (r; ! ) (1.30)

div E(r; ! ) =
� div P(r; ! )

� 0
(1.31)

rot B (r; ! ) = � � 0i! P(r; ! ) � � 0� 0i! E(r; ! ) (1.32)

For a susceptibility � (! ), eq. (1.31) reads

div ( � 0E(r; ! ) + P(r; ! )) = div ( � 0E(r; ! ) + � 0� (! )E(r; ! )) = 0 ) div E(r; ! ) = 0 (1.33)

Combining eq. (1.29-1.33)

rot rot E (r; ! ) = grad div E(r; ! ) � � E(r; ! ) = i! rot B (r; ! )

= i! (� � 0i! P(r; ! ) � � 0� 0i! E(r; ! ))
(1.34)

Hence, the electric �eld ful�ls

� E(r; ! ) + � 0� 0! 2(1 + � (! ))E(r; ! ) = 0 (1.35)

If we de�ne the index of refractionn(! ) =
q

1 + � (! ), the �eld is driven by an equation
known as the uniform Helmhotz's equation

� E(r; ! ) + � 0� 0! 2n(! )2E(r; ! ) = 0 (1.36)

2The sign �0� on the notation of the polarizability � 0 means we consider the static limit ! ! 0 (see
Appendix A).

3This relation is only true in the quasi-static limit ( ! ! 0). Otherwise, the polarizability of a single
atom and the susceptibility of the material are not proportional. A complete description requires a
correction factor we will recall in Appendix A.
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Helmholtz equation in a non-uniform dielectric media

Now, we consider the propagation of light in 1D or 2D dielectricinhomogeneous media
characterized by non uniform susceptibilities� (r = ( x; y); ! ) (composed of di�erent di-
electric materials, see Fig. 1.6 as example). In such systems, the zero divergence of the
electric �eld (div E = 0) in eq. (1.33) is not ful�lled

div ( � 0E(r; ! )) + div ( � 0� (r; ! )E(r; ! )) = � 0(1 + � (r; ! ))div E(r; ! )

+ � 0grad � (r; ! ):E(r; ! ) = 0
(1.37)

We decompose the electric �eld into a Transverse Electric (TE) anda Transverse Magnetic
(TM) components (see Fig.1.6). If we consider the TE componentof the electric �eld
ET E = ET E (x; y)z, wherez is the direction orthogonal to the 2D system, eq. (1.37) reads

� 0 (1 + � (r; ! ))div ET E (r; ! ) + � 0grad � (r; ! ):ET E (r; ! ) = � 0(1 + � (r; ! ))div ET E (r; ! ) = 0
(1.38)

Inserting eq. (1.38), into Maxwell's eq. (1.29-1.32) and projecting alongz leads to Helmholtz
equation in non-uniform media

� ET E (r; ! ) + � 0� 0! 2n(r; ! )2ET E (r; ! ) = 0 (1.39)

wheren(r; ! )2 = 1 + � (r; ! ).

ET E

ET M

n1

n2

z

Figure 1.6: Electric �eld E in an inhomogeneous medium composed of material of index
of refraction n1 and n2: The electric �eld can be expanded in a TE and a TM component.

In the case of piecewise constant refractive index distribution(for instance see Fig. 1.6), a
similar equation can be derived forB T M and the TM part of the electric �eld ET M can be
obtained thanks to Maxwell-Faraday's eq. (1.30) [5]. As a result, the total electromagnetic
�eld is derived from a single scalar equation

� U(r; ! ) + � 0� 0! 2n(r; ! )2U(r; ! ) = 0 (1.40)

whereU is the electric or magnetic �eld in transverse con�guration.

In the scope of this manuscript, we will consider 1D or 2D dielectric media, where either
the electric �eld is TE or the refractive index is piecewise. Noting � 0� 0 = c� 2, the
electromagnetic �eld in our media will be derived from the scalar Helmholtz equation

� E(r; ! ) +
! 2

c2
n(r; ! )2E(r; ! ) = 0 (1.41)



12 Chapter 1. Light-Matter Interaction

1.2 Light scattering by a particle

We derived in section 1.1.3 the evolution of the electric �eldin inhomogeneous media.
Eq. (1.41) emphasizes the in�uence on light propagation of a modi�cation in the index
of refraction. In particular, when light encounters a rapidvariation in the index of re-
fraction, its propagation is a�ected: The wave is scattered.In this section, we introduce
brie�y the scattering. First we consider scattering by single particle and its e�ect on the
electromagnetic �eld. Then we focus on scattering with a large number of particles and
introduce averaged descriptions. More details can be found in[1, 6, 7].

1.2.1 Introduction

We consider the case of a plane wave (characterized by an electric �eld E0 = E0x at
wavelength� ) incident on a particle (length scaleL, see Fig. 1.7(a) ). When crossing the
particle, the electric �eld spreads in many directions: The particle scatters the incident
�eld. The resulting �eld Es is referred to as the scattered �eld. Far away from this
scatterer, in the far �eld approximation (distance� L2=� ), this �eld reads

Es(u) = S(u)E0
ei 2�

� r

r
(1.42)

whereu is the scattering direction andS(u) the scattering matrix. The scattering matrix
stands for the modi�cation of the incident polarization (x in Fig. 1.7(a) ). From an
electromagnetic point of view, the particle acts as a passive emitting source. When the
medium is stricken by light (see Fig. 1.7(b) ), the electric �eld induces motion of charges
(free or polarization). This displacements lead to the build-up of a current densityhj m i
(see section 1.1.2) and these currents will radiate an electromagnetic �eld, referred to as
the scattering �eld. As a result, the scattered wave and the scattering matrix are set by
the geometrical shape and the material of the particle. As sketched in Fig. 1.7(c) , the
directional scattering pattern can be rather complex and non-isotropic.

In the Helmholtz equation we derived in eq. (1.41), a scattereris represented by a rapid
change in the index of refraction. For instance, in the example provided in Fig. 1.7, the
electric �eld satis�es

� E(r; ! ) +
! 2

c2
n(r )2E(r; ! ) = 0 (1.43)

where n = 1 outside the particle and n = nmat inside (nmat is the index of refraction of
the material).

Now, we consider the total intensity scattered on the whole space.Using eq. (1.42), this
intensity reads

I s =
Z

r ! + 1
jEsj2dS =

Z

r ! + 1
jS(u)j2

jE0j2

r 2
r 2 sin�d�d� (1.44)

where � and � stand for angular coordinates. Notingd
 = sin �d�d� the solid angle,
eq. (1.44) reads

I s = I 0

Z

4�
jS(u)j2d
 (1.45)
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where I 0 = jE0j2 stands for the incident plane wave intensity per unit surface area.
Therefore, we can de�ne from eq. (1.45) a surface called the scattering cross section

� s =
I s

I 0
=

Z

4�
jS(u)j2d
 (1.46)

This scattering cross section gives an averaged quantity measuring the scattering strength
of the particle.

(c)
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I s(u) = jEs(u)j2

(a)

E0

Es(u)

ux

L

(b)

hj m i

Figure 1.7: (a) The incident electric �eld E0 is scattered by a particle. The resulting
�eld Es is spread in all directions.(b) The scattered �eld results from the appearance of
local currents in the particle induced byE0. (c) Scattering diagram: The scattered �eld
is non-isotropic.

1.2.2 Scattering media

In section 1.2.1, we treated the scattering by a single particle. In scattering media, the
propagation of the electric �eld is still described by Helmholtz equation (see for instance
eq. (1.43)). Nevertheless, in media where the density of scattering is important, many
scattering events occur, which makes the scattering of the incident electric �eld di�cult
to handle. In this section, we aim at introducing di�erent approaches we use in Chapter 5
instead of the Helmholtz equation.

For instance, we will consider the case of a plane wave incident on a plane interface (see
schematic drawing of Fig. 1.8). In this problem, each time thelight is scattered, the
intensity in the incident direction decays.

The decay is exponential and satis�es the Beer's law

I s = I 0e� x
l s (1.47)

wherels de�nes the scattering length or mean free path.ls stands for the typical scattering
length-scale of the incident intensity. Fromls we can de�ne the transport length or mean
free path l t .

l t =
ls

1 � g
(1.48)
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x

I s

I s(x) / exp(� x
ls

)

Figure 1.8: Schematic representation of light scattering: The intensity decays according
to the Beer's law.

This relation between both lengths includes the asymmetry coe�cient g = hcos(� )i stand-
ing for the averaged angular scattering of particles constituting the medium (see for in-
stance Fig. 1.7(c) ). l t stands for the length after which the direction of propagation of
the photon is randomized or the incident direction is lost. For an isotropic scatteringg =
0 and for a directional scatteringg ! 1. In diluted systems, these lengths can be related
to the notion of cross section introduced in section 1.2.1. For instance the scattering cross
section� s reads

� s =
1

�l s
(1.49)

where � is the scatterer density. As a result, in this speci�c con�guration, the multiple
scattering is easily related to single scattering quantity.

More generally, for 3D problems with a typical length-scaleL much longer than the
scattering length ls (L � ls), the light propagation will be described by a di�usion
equation. If we assume no absorption, the di�usion of the intensity I (r; t ) will read

@I
@t

(r; t ) � D � I (r; t ) +
1
ls

cI (r; t ) = 0 (1.50)

wherec is the speed of light in the medium andD = 1
3clt the di�usion constant (expression

only valid in 3D).

1.3 Light-Matter interaction: Matter excitation

In the �rst two sections, we investigated electric �eld evolution when interacting with
matter. In this section, we rather focus on the medium itself. First, we introduce the
discrete Bohr's description of energy of particle [8] and the di�erent transition mechanisms
between levels [9, 10]. Then, we investigate the static and thedynamic regimes of a two-
level atom in the electric �eld (see [9, 10]). Finally, we consider a four-level atom and
demonstrate how it can provide stimulated ampli�cation (see [9, 10, 11]).
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1.3.1 Energy conversion transfer

Bohr's hypothesis states [8] that the total energy of a particle (an atom for instance) can
only exhibit a discrete set of values. Hence, energy can only be modi�ed by �quantum
jumps� described by Einstein's electromagnetic/matter interaction [12]. To introduce
the di�erent scenarii of conversion, we consider an atom with two levels of energy (see
Fig. 1.9).

First, as sketched in Fig. 1.9(a) , the atom can be excited from state 1 to state 2 via an
external input of energy. This is the pumping or external excitation. External energy can
be brought in various forms (e.g. chemical, optics, electrical).

The atom can decay from energy state 2 to 1 by spontaneous emission(see Fig. 1.9(b) ).
The decay of energy is subsequently converted into a photon of similar energy h� 0 =
E2 � E1 called the resonance transition. This emission is usually isotropic and happens
randomly. However, for an initially excited system, the probability of spontaneous emis-
sion decays exponentially versus time (see section 1.3.2).

Pr

(a)
2

1

E2

E1

Pumping

h� 0

(b)

Spont. emission

h�

(c)

Absorption

h�
h�

(d)

Stim. emission

(e)

NR decay

Figure 1.9: Energy transfers:(a) Pumping/Excitation by an external source. (b) Spon-
taneous emission of a photon.(c) Absorption of an incident photon. (d) Stimulated
emission driven by an incident photon.(e) Non radiative (NR) decay.

The atom, initially in state 1, can also be excited into state 2 byabsorption of an incident
photon at energyh� � E2 � E1 (see Fig. 1.9(c) ). The incident light beam is thus depleted
and looses a photon each time an absorption event occurs.

The atom initially in state 2, can also decay into level 1 by stimulated emission [13](see
Fig. 1.9(d) ). The incident photon energyh� � E2� E1 being close to resonance transition,
the atom emits a photon identical to the incident one. The photons are duplicated by
stimulated emission.

Last, the atom initially in state 2 decays to level 1 by non radiative transition (see
Fig. 1.9(e) ). No photon is emitted and energy can be transferred via di�erent non radia-
tive e�ects (e.g. vibration, collision, phonon).
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1.3.2 A two-level atom in an electromagnetic �eld

Population equations

Here we consider the textbook case (e.g. [9, 10]) of a total population of N two-level
atoms placed in the electromagnetic �eld. With the development of quantum dots acting
like arti�cial two-level atoms, this model is currently used in many �elds of research (e.g.
in quantum information). In particular, it will be considered in Chapter 4.

The two levels are assumed non-degeneratedi.e. there is one quantum state for each
energy level. This set of atoms acts like a single emitter with two energetic levels 1 and
2. No pumping is considered and we assume that all the conversion are radiative. Thus,
populations of di�erent levels N1 and N2 read

dN1

dt
= A21N2 � B12N1u(� ) + B21N2u(� ) (1.51)

dN2

dt
= �

dN1

dt
= � A21N2 + B12N1u(� ) � B21N2u(� ) (1.52)

where u(� ) is the photonic density at frequency� . In eq. (1.51) and (1.52),A21 stands
for spontaneous decay from 2 to 1,B12N1u(� ) for absorption from 1 to 2 andB21u(� ) for
stimulated emission from 2 to 1. Moreover, the particle conservation reads

N = N1 + N2 (1.53)

In this speci�c case of non-degenerated atoms, absorption and stimulated coe�cients ful�l

B12 = B21 (1.54)

Leading to population equations

dN1

dt
= A21N2 + B21(N2 � N1)u(� ) (1.55)

dN2

dt
= �

dN1

dt
= � A21N2 � B21(N2 � N1)u(� ) (1.56)

Steady state regime

In the steady state regime, eq. (1.55) and (1.56) read

0 = A21N2 � B12N1u(� ) + B21N2u(� ) (1.57)

0 = �
dN1

dt
= � A21N2 + B12N1u(� ) � B21N2u(� ) (1.58)

As a result, for a non-degenerated problem

A21N2 + B21u(� )(N2 � N1) = 0 (1.59)

With conservation relation of eq. (1.53), eq. (1.59) reads

A21N2 + B21u(� )(2N2 � N ) = 0 (1.60)
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u(� )

N1 N2

N

N=2

0

Figure 1.10: Steady state populationN i;ss : They evolve linearly for low energy. Both
populations converge toN=2 for high energy.

Leading to steady state expressions of the populations

N1;ss = N
A21 + B21u(� )
A21 + 2B21u(� )

(1.61)

N2;ss = N
B21u(� )

A21 + 2B21u(� )
(1.62)

In Fig. 1.10, we plot the evolution of the population in the steady state versus the photonic
density.

Fig. 1.10 highlights that, for a two-level atom, high energypopulation (N2) is smaller than
lower energy population (N1). The inversion population is negative: �N = N2 � N1 <
0. Moreover, we know from eq. (1.55) that stimulated emission and absorption coexist.
This is emphasized by the right-hand side termB21u(� )(N2 � N1) in eq. (1.55). Hence, to
achieve a photonic ampli�cation with stimulated emission, we need to impose a positive
inversion population � N to compensate for the absorption. As a result, the two-level
atom cannot be used as an amplifying medium.

If at low u(� ) the populations evolve linearly with the energy, Fig. 1.10also stresses the
convergence of populations at high energy. This phenomenonis called the saturation of
the emitter (see Chapter 6) and is related to the �nite energy that the emitter can provide.

Dynamic regime

In Chapter 4, we will investigate the evolution of a two-levelemitter in a electromagnetic
�eld in the time domain. To give an overview of two-level atomtemporal dynamic, we
consider the situation of atoms excited in the steady state regime for t < 0. At t = 0, the
�eld excitation is turned-o� ( u(� ) = 0).

At initial time ( t = 0), the high energy population readsN2(0) = N2;ss. After the
excitation has been switched-o�, the temporal evolution ofN2 is given by

dN2

dt
= A21N2 ) N2(t) = N2;sse� A 21 t (1.63)
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t
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Figure 1.11: (a) High energy populationN2 versus time: The population decreases expo-
nentially with a characteristic time � S. (b) Atoms are emitting photons by spontaneous
emission: The resulting emission spectrum is centred in the transition frequency� 0 and
the linewidth is �xed by the time � S.

As a result, the population of excited atoms will be progressively depleted by spontaneous
emission of photons. This decay is characterized by a time� S = 1=A21 (see Fig. 1.11(a) ).
As shown in Fig. 1.11(b) , the resulting spectrum has a Lorentzian shape centred at
� 0 (� 0 is the resonant frequency between the two states). The temporaldecay � S of
excited atoms population (N2) �xes the linewidth of emission in the spectral domain
(� S = 1=�S). In this particular case, we have omitted non-radiative transition. In presence
of non-radiative transitions, some atoms in populationN2 decay without emitting photons.
Hence, the resulting spontaneous emission will be modi�ed. Both radiative and non-
radiative transitions a�ect the spectral linewidth � S = 1=�S, which reads

� S = � R
S + � NR

S (1.64)

where � R
S stands for radiative decay and �NR

S for non-radiative.

1.3.3 Four-level atomic system

Achievement of laser sources relies on the duplication of photons via stimulated emission
(see Chapters 5-8). We demonstrated in section 1.3.2 that a two-level atom cannot be
used to perform stimulated ampli�cation. A more complex medium is required.

In the scope of this manuscript, we will consider media composed of four-level atoms (see
for instance [9, 10, 14]). The four-level description is widely used for modelling amplifying
media (e.g. Rhodamine or Ti:Sapphire). As sketched in Fig. 1.12, the atom is described
by four levels of energy, namely levels 0, 1, 2 and 3. The system is pumped (Wp) by an
external source of energy, which brings atoms from level 0 to 3. Transition from level 2 to
1 provides the stimulated emission. Transitions from 3 to 2 and 1 to 0 are assumed non-
radiative and extremely fast. Hence, levels 3 and 1 are empty. Asa result, the population
of di�erent levels read

dN3

dt
� 0 = WpN0 � A32N3 (1.65)

dN2

dt
= A32N3 � A21N2 � B21(N2 � N1)u(� ) (1.66)

dN1

dt
� 0 = � A10N1 + A21N2 + B21(N2 � N1)u(� ) (1.67)



1.3. Light-Matter interaction: Matter excitation 19

Wp

NR

NR
0

1

2

3

B12 A21

Figure 1.12: Four-level atom: Level 0 is pumped to level 3. Transitions between 3 and 2
and 1 and 0 are non-radiative. Transitions between levels 1 and 2 are radiative.

dN0

dt
= � WpN0 + A10N1 (1.68)

From eq. (1.65) andN1 � 0 we deduce

dN2

dt
= WpN0 � A21N2 � B21N2u(� ) (1.69)

and
dN0

dt
= � WpN0 + A21N2 + B21N2u(� ) (1.70)

Using the conservation relationN0 + N2 = N , eq. (1.69) reads

dN2

dt
= Wp(N � N2) � A21N2 � B21N2u(� ) (1.71)

Therefore, the inversion population �N = N2 � N1 � N2 ful�ls

d� N
dt

=
1
�

 

� N0 � � N �
u(� )
usat

� N

!

(1.72)

where

� = ( WP + A21)� 1 (1.73)

� N0 = N
Wp

Wp + A21
(1.74)

usat =
Wp + A21

B21
(1.75)

Solution of eq. (1.72) in steady state regime reads

� N =
� N0

1 + u(� )
usat

= N
Wp

(Wp + A21)
�
1 + u(� )

usat

� (1.76)

As a result, the inversion population is positive and its amplitude is triggered by the
pump intensity. Hence, in four-level media, stimulated ampli�cation can be achieved.
Eq. (1.76) also highlights the inversion population saturates for high energyu(� ). We will
investigate in Chapter 6 the role played by saturation on ampli�cation process. In the
rest of this manuscript we will consider the gain media as four-level atomic systems.
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1.4 Summary

In the present chapter, we have introduced basic notions required to study light-matter
interaction in a semiclassical approach. In 1D and 2D dielectric media, the electromag-
netic �eld is studied in a classical way and is described by a scalarlinear equation, namely
the Helmholtz equation. This equation conveniently describes electromagnetic �eld prop-
agation in media with homogeneous and inhomogeneous refractive index. We have also
brie�y introduced the scattering of electromagnetic �eld by a discontinuity embedded in
the medium. We have stressed the manifestations of the scatteringat particle scale and
macro-scale. Finally, we have stated that the matter is described with quantized levels of
energy and the �jumps� between levels are achieved with various mechanisms that we in-
troduced. Starting from this description, we have investigated the static and the dynamic
evolution of two-level and four-level systems. We have demonstrated that a photonic am-
pli�cation cannot be performed on two-level atom and requires a more complex system
such as four-level atoms.
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In physics, a wave is described as a propagation of energy through time and space.
Its study is complicated by the intrinsic dependency of time and space. The aim of the
modal description is to simplify the description of wave by carrying out its expansion along
speci�c vibrational states of the problem. These vibrational states de�ne the modes of the
system. The notion of mode has been widely used in quantum as wellas in classical physics
[15, 9]. However, the nature of modes di�ers when the system is energy-conservative
(hermitian) or non-conservative (because of absorption or openness). For non-hermitian
problems, the modes are associated with the resonances. Because the resonances represent
speci�c signatures of the system, their study is of fundamental interest in various domains
of application such as biophotonics [16, 17] for single molecule �uorescence detection,
antennas [18, 19] and photonic crystals [20, 21]. Hence, �nding the vibrational states
of open structures with non-trivial geometries is thus of great theoretical and practical
interest.

In this chapter, we investigate the description of modes in open problem and consider the
speci�c case of disordered systems. First, we introduce the conceptof modal expansion in
hermitian and non-hermitian systems. Because, vibrational states are of di�erent nature,
the characteristics of the modes di�er from hermitian to non-hermitian. Then, we describe
the modes in the speci�c case of open systems. The openness requiresto de�ne a di�erent
mathematical formalism, which di�ers from hermitian physics. Finally, we consider the
speci�c case of disordered open systems. The study of resonances provides an interesting
tool to investigate the mechanism of wave localization by disorder, namely the Anderson
localization.
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2.1 Introduction to Modes in hermitian/non-hermitian
systems

The aim of this section is to introduce the concept of modes in hermitian and non-
hermitian systems using the guideline example of the Melde's string. For an energy-
conservative (hermitian) system, the modes are de�ned as the stationary solutions of the
problem. When losses are introduced, the problem becomes non-hermitian. In other
words, stationary solutions no longer exist and the modes correspond to the resonances
of the problem. Because, hermitian and non-hermitian modes are of distinct nature, they
exhibit di�erent properties. Among them, the mode degeneracyis a speci�c signature of
each case.

2.1.1 Stationary solutions of hermitian systems

The Melde's string

To introduce the concept of mode, we consider the example of the Melde's string (see
Fig. 2.1). A string of length L is excited by an electromagnet (frequency� and a small
amplitude a) at one edge and maintained static by a mass at the other. The height,
h(x; t ), varies in time and space, de�ning a wave (see Fig. 2.1). In this academic example,
losses are neglected and energy is conserved through time: The system is said hermitian.
The corresponding relation of motion, with a wave celerityv, is given by the Alembert's

xb

M

h(x; t )

acos(2��t )

Figure 2.1: Melde's string loss free: A string of lengthL is excited by an electromagnet
at the one edge (x = 0). The amplitude and frequency of the excitation are respectively
a and � . A wave described by the height of the stringh(x; t ) propagates. The presence
of a heavy mass forces the wave to be zero at the edgex = L.

equation
@2h
@x2

(x; t ) �
1
v2

@2h
@t2

(x; t ) = 0 (2.1)

This equation is a second order derivative, thus requires twoboundary conditions. Because
the system is excited at one edge and clamped at the other one, these boundary conditions
read

h(0; t) = acos (2��t ) & h(L; t ) = 0 (2.2)

The system is loss free, thus eq. (2.1) can be solved using stationary solutions. From
a mathematical point of view, solving a problem by adopting stationary waves consists
in adopting a trial solution of the form h(x; t ) = f (x)g(t), where f; g 2 R2. Physically
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speaking, this is equivalent to considering time and space separately: The spatial distri-
bution of the wave remains identical whatever the time andvice versa. Adopting this
approach, eq. (2.1) can be solved in the stationary regime and any solution reads

h(x; t ) = a
sin(k(L � x))

sin(kL)
cos(2��t ) = jh(x)j � cos(2��t ) (2.3)

where jh(x)j � is the wave amplitude,k stands for spatial frequency related to spectral
excitation frequency by the simple dispersion relationk = 2��

v . Now, we assume that the
excitation frequency� spans the frequency space. In Fig. 2.2(a) , we record the response of
the Melde's string with respect to the excitation frequency. For a discrete set of frequency

�

(a) (b)
jh(x)j �

� 1 � 2 � 3 � 4 � 5 � 6
h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

h6(x)

Figure 2.2: (a) Amplitude of wave jh(x)j � with respect to the excitation frequency� :
When approaching frequencies� p amplitude diverges. (b) Spatial distributions hp(x) of
the wave at speci�c frequencies� p.

(� p), the amplitude of the wave diverges

jh(x)j � = � p ! + 1
�
�
� � p =

vp
2L

(2.4)

At these particular frequencies, an in�nitesimal excitation of the system (a ! 0) will
make the string oscillate for ever. In the spatial domain, the wave will simultaneously
describes oscillations

hp(x) = sin

 
2�� p(L � x)

v

!

(2.5)

Hence, each couple of frequency and spatial distribution ((� p; hp(x)), see Fig. 2.2) repre-
sents an eigensolution or eigenstates of eq. (2.1). In wave physics, these sets of stationary
solutions de�ned by couples of eigenvalue/eigenvector are referred to as the (hermitian)
modes of the system. These modes de�ne privileged vibrations intime and space of the
string.

Modal expansion in hermitian problem

Now, the electromagnet responsible for the excitation is switched o�. The system is
turned into a string clamped at both extremities. When a wave propagates through the
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string, it can be expanded into a sum of stationary waves solutionof eq. (2.1). Hence,
any waveh(x; t ) is a linear combination of the modes (� p; hp(x)) described in section 5.1.1

h(x; t ) =
X

p
aphp(x) cos (2�� pt) (2.6)

whereap are expansion coe�cients. In the Fourier's domain, eq. (2.6) leads to a discrete
spectrum

H (x; � ) =
X

p
aphp(x)� (� � � p) (2.7)

Because the spectral components are in�nitely thin, there is no spectral overlap between
the modes (see Fig. 2.3). In the space domain, de�ning the scalarproduct

�

jH (x)j �

� 1

a1

� 2

a2

� 3

a3

� 4

a4

� 5

a5

� 5

a6

Figure 2.3: Example of a hermitian wave spectrum: The spectrum is discreet and com-
posed of an in�nite number of modes at frequencies� p.

hujvi =
Z

L
u(x)� v(x)dx (2.8)

it turns out that all the spatial distribution of the modes hp(x) (see Fig. 2.2) are orthogonal

hhpjhqi = � pq (2.9)

Hence, there is neither spatial nor temporal overlap between the modes. From a physical
point of view, a wave propagating in a hermitian system can be described by a linear su-
perposition of independent vibrations. There is no exchange of energy between hermitian
modes.

2.1.2 Resonances of non-hermitian systems

The Melde's string... with losses

When the total energy of the system is not conserved over time, the system is said non-
hermitian. For non-hermitian problems, because energy escapes from the system through
time, de�ning the modes as stationary vibrations (time independent) is not possible. In
this manuscript, we consider losses of two kinds

� The presence of a complex potential: energy (wave) is absorbedor ampli�ed.

� The openness of the system: energy (wave) leaks at the edges of the system.



26 Chapter 2. Modes In Open Random Media

To carry on with the Melde's string experiment, we introduce absorption with a damping
coe�cient � a�ecting the �rst order in eq. (2.1):

@2h
@x2

(x; t ) � �
@h
@t

(x; t ) �
1
v2

@2h
@t2

(x; t ) = 0 (2.10)

Because of the absorption, waves described by eq. (2.10) can no longer be considered as
stationary solutions. We measure the amplitude of the wave versusexcitation frequency�
in a similar manner to the hermitian case (see Fig. 2.4(a) ). The amplitude of the spectral
response no longer diverges. Because of absorption, each excitation will be attenuated
in time until it disappears: The system no longer exhibits divergences resulting from
stationary solutions. However, even if the amplitude does not diverge, some maxima
remain at speci�c frequencies. These frequencies also correspond to privileged oscillations
called the resonances of the system. Compared with stationary solutions, resonances are
attenuated in time. This attenuation is directly related to the broadening of resonances in
the spectral domain (see Fig. 2.4(b) ). As a result, the de�nition of resonances di�ers from
stationary solutions: A resonance is de�ned by a spatial distribution (hp(x)), a central
frequency (� p) and a spectral linewidth (� � p). Similar to the hermitian case and the
stationary solutions, it is possible to de�ne frequency for resonances, but these frequencies
are now complex (
p = 2�� p � i2� � � p

2 ) as initially suggested by Gamov [22]. In wave
physics, the sets of complex frequency 
p and spatial distribution hp(x), are referred to
as the quasi-modes or non-hermitian modes of the system. Hence, in hermitian systems,

(a)

�

jh(x)j �

� 1 � 2 � 3 � 4 � 5 � 6

� � 1 � � 2 � � 3 � � 4 � � 5 � � 6

(b)

�

jH (x)j �

� 1 � 2 � 3 � 4 � 5 � 6

Figure 2.4: (a) Amplitude of the wave jh(x)j � according to the frequency excitation
� : The response exhibits speci�c maxima referred to the resonances. Each resonance
is characterized by a central frequency� p and a linedwith � � p. (b) Example of wave
decomposition in the spectral domain: The spectrum is continuous. Each maximum is
related to a resonance of the system.

modes are derived from stationary solutions, while in non-hermitian systems, modes are
related to resonances. However, in both cases, the modes are related to a privileged
vibrational frequencies and thus stand for eigenstates of theproblem.

Modal expansion in non-hermitian system

Similar to the hermitian case, the wave in non-hermitian systems can be expanded along
the modes of the system. But unlike the hermitian case, the modesare not independent



2.1. Introduction to Modes in hermitian/non-hermitian systems 27

and in�uence each other. By way of illustration, if we performthe modal expansion in
the case of the Melde's string, any wave solution of eq. (2.10) reads

h(x; t ) =
X

p
aphp(x) cos (2�� pt) e�

� � p
2 t (2.11)

whereap are simple coe�cients. Each component is now damped. Eq. (2.11) leads to a
continuous spectrum in the spectral domain (see Fig. 2.4(b) )

H (x; � ) =
X

p
aphp(x)

1
i! � i 
 p

(2.12)

Moreover, this damping also a�ects the spatial distribution ofthe modes and breaks there
orthogonality

hhpjhqi 6= � pq (2.13)

Hence, non-hermitian modes have spatial and spectral overlap.

From a physical point of view, this basic example highlights that non-hermitian modes
are not independent vibrations. Energy can be exchanged between modes, which makes
them di�erent from hermitian modes. The �eld is described by a superposition of non
independent vibrations. Hence, the properties of non-hermitian modes will di�er from
the hermitian case. Mathematically speaking, the non-orthogonality of modes a�ects the
completeness of the set of spatial distribution (hp(x))p in in�nite dimension problem. In
others words, the uniqueness of the coe�cients in eq. (2.11) isno longer guaranteed and
is problem-dependent.

2.1.3 Fingerprint of hermitian/non-hermitian systems

As stated in sections 2.1.1 and 2.1.2, modes in hermitian or non-hermitian systems have
di�erent properties. To highlight their di�erences, we propose to investigate a simple
example of Quantum Mechanics problem: The electron in a double quantum well.

Two-mode interaction in a hermitian system

First, we consider two independent quantum wellsL and R far away from each other.
In hermitian quantum mechanics, the stationary solutions of this problem are given by
the eigenstates (eigenvalues/eigenvectors) of the energy operator called the Hamiltonian.
The two quantum wells are considered distant and independent (see Fig. 2.5(a) ). Each
quantum well is characterized by a spatial distributionj� L=R i and a real energyEL=R .
Hence, the problem can be reduced in the form of a HamiltonianH0:

H0 =

 
EL 0
0 ER

!

(2.14)

In this simple case, the eigenstates of the full problem correspond to the eigenstates of
each individual well

�
EL=R ; j� L=R i

�
.

Now, the two wells are brought closer to each other (see Fig. 2.5(b) ). The interaction
between the two wells is introduced by adding a hermitian perturbation described by an
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(a) (b)

...

E

EL

ER

� L � R

E

E+

E �

� + � �

Figure 2.5: (a) Two quantum wells R=L are considered independently: They de�ne
eigenstates equivalent to stationary solutions (ER=L ; � R=L ). (b) When the two eigenstates
interact, they create new eigenstates (E � ; � � ).

operator T responsible for tunnelling from one well to the other. The new Hamiltonian
H writes

H = H0 + T =

 
EL 0
0 ER

!

+

 
0 TLR

TRL 0

!

H =

 
EL TLR

TRL ER

!

(2.15)

where TLR = h� L jT j� R i 2 R, TRL = h� R jT j� L i = TLR . In this case, the Hamiltonian
describing the electron evolution is hermitian: By extensionthe problem is said hermitian.
BecauseH is hermitian, its eigenstates are described by real energyE �

E � =
EL + ER

2
�

s
(EL � ER)2

4
+ jTRL j2 2 R (2.16)

And de�ning the inner product

hajbi = [ a�
1a�

2] [b1b2]T (2.17)

the eigenvectors �� are orthogonal

� � =

"
TLR

�
q

(EL � ER )2

4 + jTRL j2 � EL � ER
2

#

& h� + j� � i = 0 (2.18)

Similar to the case of the Melde's string, the wave function of the electron will in�nitely
�oscillate� at real frequenciesE � along non interacting spatial distributions � � . Thus,
the total energy of the system will be conserved over time. These eigenstates (E � ; � � )
(see Fig. 2.5(b) ) are analogue to eigenmodes introduced in section 5.1.1 for the hermitian
problem.

Hermitian degeneracy: Diabolic Point

Carrying on the previous example of the double hermitian quantum well, we assume that
the di�erent parameters (EL , ER and TRL ) can be modi�ed by playing with the depths
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of wells and the gap between them. We assume that these parameters are independent,
which means that they can be varied without in�uencing each other. We consider a
con�guration where eigenvalues become degenerated

E+ = E � = ( EL + ER)=2 (2.19)

In the present case, the problem is non-dissipative with time-reversal symmetry, thusH
is real and symmetric [23]. We need to �x the two real parameters (e.g. for a givenEL

we will modify ER and TRL ) to achieve the degeneracy suggested in eq. (2.19)

ER = EL & TRL = 0 ) E+ = E � (2.20)

The problem is said of co-dimension 2 [23]. For hermitian but complex hamiltonian (non-
dissipative without time-reversal symmetry), three parameters are needed (co-dimension
3 [24]).

If eigenvalues can become identical at a speci�c point in the parameter space (ER , TRL ),
the spatial distribution of the modes remain orthogonal at degeneracy because the system
is hermitian. This speci�c con�guration introduced by Berry and Wilkinson [25], where
eigenvalues are identical and eigenvectors are orthogonal, is called a Diabolic Point. The
origin of the appellation comes from geometry of the Riemann's sheets of eigenvalues
E � in the parameter space. They describe a double cone (diabolo) connected at the
degeneracy [25]. As a matter of illustration, we plot in Fig. 2.6 the evolution of the real
eigenvalues (E � ) of the double-quantum well in the parameter space (ER , TRL ). Diabolic
Point can also appear in non-hermitian systems but its observation is hindered by the
required number of independent parameters (at least a co-dimension of 4). Hence, with
2 independent parameters, the observation of a Diabolic Pointis speci�c to hermitian
problems.

TRL

ER

E �

Figure 2.6: Evolution of the real eigenvalueE � in the parameter space (ER , TRL ). The
eigenvalues evolve along Riemann's sheet intersecting at a single point: The Diabolic
Point. The two sheets describe cones connected like a diabolo.

One of the major manifestation of the Diabolic Point is its in�uence on the Berry's phase
[26]. The Berry's phase is of geometrical origin. When a system (indi�erently quantum
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or classical) undergoes an adiabatic transformation, it acquires a residual phase due to its
evolution within the parameter space. The Berry's phase has been observed in quantum
optics [27], classical optics [28] and even microwave cavity [29]. When a Diabolic Point is
encircled within the parameter space, the Berry's phase accumulates a� phase [30].

Two-mode interaction in a non-hermitian system

The hermiticity is related to the conservation of the energy and breaks down when losses
are introduced. Here, we consider the double quantum well withcomplex energiesEL=R �
i � L=R , where � L=R are due to absorption introduced within each well. The problem being
non-hermitian, its Hamiltonian is non-hermitian andTRL = TLR 2 C:

H =

 
EL � i � L TLR

TRL ER � i � R

!

(2.21)

The eigenstates are now de�ned by eigenvalues:

E � =
(EL + ER) � i (� L + � R)

2
�

s
((EL � ER) + i (� L � � R))2

4
+ T2

RL 2 R (2.22)

The eigenvectors �� :

� + =

"
TLRq

(( EL � ER )+ i (� L � � R )) 2

4 + T2
RL � (EL � ER )+ i (� L � � R )

2

#

� � =

"
TRL

�
q

(( EL � ER )+ i (� L � � R )) 2

4 + T2
RL � (EL � ER )+ i (� L � � R )

2

#

(2.23)

And the scalar product between �� is no longer zero

h� + j� � i 6= 0 (2.24)

Similar to the example of the Melde's string developed in sections 2.1.1 and 2.1.2, the
introduction of losses makes the eigenvalues complex and the spatial distribution non-
orthogonal. The complex eigenvalues and the spatial non-orthogonality of modes remain
valid if openness is responsible for the losses instead of absorption.

Non-hermitian degeneracy: Exceptional Point

In non-hermitian systems, varying di�erent parameters can alsobring to a degeneracy
of energiesE � = E. However, unlike hermitian case, in non-hermitian systems the
eigenvectors area priori non-orthogonal. Hence, within the parameter space, both the
eigenvalues and the eigenvectors of the Hamiltonian can become identical at a speci�c
position. For instance, in the eigenstates derived in eq. (2.22) and (2.23)

((EL � ER) + i (� L � � R))2

4
+ T2

RL = 0 ) E+ = E � & � + = � � (2.25)

Introduced by Kato in 1966 [31], this �non-hermitian degeneracy� is called an Excep-
tional Point . At Exceptional Point, rather than leading to a simple degeneracy, the two
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eigenstates coalesce and become indistinguishable. For complex non-hermitian Hamilto-
nian, only 2 independent parameters are required to reach this non-hermitian degeneracy.
Eq. (2.25) is ful�lled by imposing both the real and the imaginary parts of TRL : The
problem is of co-dimension 2.

From a mathematical point of view, at Exceptional Point, the space formed by eigenstates
is incomplete. At this speci�c position, both eigenstates merge to form a Jordan's Matrix:

H@EP �

"
E 1
0 E

#

(2.26)

The paradox of this matrix is to be diagonalizable and thus tobe equivalent to the identity

H@EP � E

"
1 0
0 1

#

(2.27)

Because no matrix is equivalent to the identity (except the identity itself), the Jordan's
matrix cannot be diagonalizable. Hence, the 2 dimensional space described by the matrix
is incomplete and equivalent to a single point. For that reason, an Exceptional Point
can be understood like a topological default. To emphasize this statement, we plot the
real and imaginary parts of eigenvaluesE � in Fig. 2.7(a) and (b) . In the vicinity of an
Exceptional Point, the eigenvalues (or complex frequencies)exhibit an intricate topology.
The real and imaginary parts of the eigenvalues de�ne intersecting Riemann's sheets.
Thus Exceptional Point is of a totally di�erent nature from Di abolic Point.

Re(TRL )

Im(TRL )

Re(E � )

Re(TRL )

Im(TRL )

Im(E � )(a) (b)

Figure 2.7: Riemann's sheets described by eigenvaluesE � in the vicinity of the Excep-
tional Point in the parameter space (Re(TRL ); Im(TRL )): (a) Real parts ofE � are identical
along a blue stripe.(b) Imaginary parts are similar along the red stripe. At Exceptional
Point, both complex eigenvalues are identical and eigenvectors are collinear.

We stressed in section 2.1.3 that Diabolic Point could be observedin non-hermitian prob-
lems, but for a co-dimension 4 at least. Hence, we explained that in co-dimension 2 it
stands for a signature of hermitian problems. Here the situation is unambiguous: Ex-
ceptional Point cannot be observed in hermitian systems. The Exceptional Point is the
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�ngerprint of non-hermitian systems. The non-trivial evolution of eigenvalues close to
the Exceptional Point (see Fig. 2.7) also involves a geometrical phase when encircling the
Exceptional Point in the parameter space [32, 33]. However, unlike the Diabolic Point,
four round trips are needed to restore the eigenstates. Moreover, because both eigenvalues
and eigenvectors coalesce, discerning one mode from the otherbecomes impossible, which
leads to problem with mode labelling [34, 35, 36].

Exceptional Points have a certain robustness, which makes them rather easy to investi-
gate than Diabolic Point. Remarkably enough, they appearedto be involved directly or
indirectly in a several physical e�ects. For instance, they are related to level repulsion
[37], mode hybridization [38], quantum phase transition [39]or even strong coupling [35].
In fact, Exceptional Point appears to be a convenient tool to give a new insight to many
e�ects.

2.2 Modes in open system

In section 2.1.2, we have introduced the concept of modes in non-hermitian problems,
where absorption was responsible for losses. In open systems, the derivation of the modes
is di�erent because the wave is not necessarily bounded and can propagate outside the
system. This propagation inducing striking di�culties, di�ere nt approaches have been
proposed to overcome them. In this section we derive the modes of an open cavity using
the Siegert's approach, also known as quasi-bound states, quasi-normal modes or Siegert
states. Then, we emphasize the limitation of the Siegert's description of resonances.
Finally, we introduce the biorthogonal formalism required to develop linear algebra with
Siegert states.

2.2.1 Deriving modes in open media

The Siegert states

In many physical applications, the electrical �eld, like manyother waves, cannot be
con�ned spatially and propagates outside the system. In this kind of problem, the non-
conservation of the energy is due to system openness. Therefore, the standard approaches
for the introduction of modes and quantization based on eigenvectors of Hermitian op-
erators are not applicable in this situation [40]. To overcome this di�culty, di�erent ap-
proaches have been proposed: The Fox-Li modes [41], the Siegert states [42], the modes of
the universe, the natural modes [43] or more recently the Constant Flux modes [44]. All
those sets of modes have bene�ts and drawbacks and their use is often case-dependent. In
the study of highly open systems, the modes are commonly derived thanks to the Siegert
states or the Constant Flux modes. In the present work, we choose the Siegert states
approach1.

In his seminal paper [42], Siegert investigated the resonancesin atomic and molecular
systems and proposed to describe the resonances in a way similar to �eld quantization in

1For Constant Flux modes, the outside propagation is characterised by a real frequency ! and a
constant �ux of energy. Unfortunately the frequency of oscillation ! is driven by a numerical parameter.
The introduction of this parameter highly complicates the formalism we aim at developing here.
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quantum optics. To derive them, he solved the Schrödinger's equation with a boundary
condition at in�nity containing only outgoing waves and no incoming incident waves.
This outgoing condition is referred today as the Siegert's condition or Gamov-Siegert's
condition [22]. Noting (
 p; � p(r )) the mode corresponding to this resonance,kp = 
 p=c
the wave vector andr the spatial coordinate, the Siegert's condition reads

�( r ! 1 ) / eik p r ,
@�
@r

(r ! 1 ) = ik p�( r ! 1 ) (2.28)

Modes of a 1D slab

As a guideline example, we consider the case of a 1D slab of indexn and length L. A
perfect mirror is placed at its left edgex = 0 whereas its right edgex = L is open in
vacuum (see Fig. 2.8(a) ). For such dielectric problem in dimension 1 or 2, the electrical
�eld E(r; t ) ful�ls Helmholtz equation:

� E(r; t ) � n(r )2 @2E
@t2

(r; t ) = 0 (2.29)

wherer stands for spatial coordinates,n(r ) the refractive index distribution and the speed
of light of vacuum is �xed to 1 for sake of notation compactness. Eq. (2.29) reads in the
frequency domain

� E(r; ! ) + n(r )2k2E(r; ! ) = 0 (2.30)

where the dispersion relation imposes 
 =kc = k. Hence, in this one dimension problem,
each mode (
p; � p(x)) ful�ls:

d2� p

dx2
(x) + n(x)2
 2

p� p(x) = 0 (2.31)

With the boundary conditions enforced by the mirror and the Siegert's condition for each
mode

� p(0) = 0 &

 
d

dx
� i 
 p

!

� p

�
�
�
�
�
x!1

= 0 (2.32)

Eq. (2.31) gives the motion of modes inside the cavity �p;in :

(a)

x
n 1

x

(b)

j� 2(x)j2

j� 3(x)j2

Figure 2.8: (a) 1D slab open medium of lengthL with a uniform index of refraction n.
(b) Intensity of di�erent modes derived with the Siegert's approch. The red ellipsespoint
out the divergence of intensity outside the medium.

� p;in (x) = A in ein 
 p x + B in e� in 
 p x (2.33)
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whereA in and B in correspond respectively forward and backward propagation coe�cients.
From eq. (2.32), we can easily deduce thatB in = � A in and

� p;in (x) = 2 iA in sin(n
 px) (2.34)

In this particular case, the outgoing condition is ful�lled as soon as the mode escapes
from the cavity i.e. when x � L. Hence, the mode outside the cavity �p;out reads

� p;out (x) = Aout ei 
 p x (2.35)

To link inside and outside expressions, we use the energy continuity:

� p;in (L) = � p;out (L) &
d� p;in

dx
(L) =

d� p;out

dx
(L) (2.36)

Using expressions of mode inside and outside (eq. (2.34) and (2.35)):

2iA in sin(n
 pL) = Aout ei 
 p L & 2in 
 pA in cos(n
 pL) = i 
 pAout ei 
 p L (2.37)

leading to

tan(n
 pL) = � in , � ei 2
 p L =
n + 1
n � 1

(2.38)

Hence, we �nd an in�nite set of mode frequencies referred to as 
p:


 p =
(2p + 1) �

2nL
� i

1
2nL

ln
� n + 1

n � 1

�

8p (2.39)

and the corresponding spatial distributions �p(x):

� p;in / ei (2 p+1) �x
2L e

x
2L ln ( n +1

n � 1 ) � e� i (2 p+1) �x
2L e� x

2L ln ( n +1
n � 1 )

� p;out / ei (2 p+1) �x
2nL e

x
2nL ln ( n +1

n � 1 )
(2.40)

The Siegert's approach solve the eigenvalue problem de�ned by eq. (2.29) using a speci�c
boundary condition. The complex frequency 
p = kpc and related spatial distribution
� p(x) are derived for each mode.

2.2.2 Limits of Siegert's modes

In�nite spatial energy

Carrying on the example of the 1D slab, we plot the spatial evolution of the modes inside
and outside the cavity in Fig. 2.8(b) . Unlike hermitian modes, the non-hermitian modes
have a complex frequency as shown in eq. (2.39). The imaginarypart of the complex fre-
quency, standing for the linewidth of the resonance, has to be negative to ensure temporal
decay of the �eld intensity. The spatial amplitude of the modesis bounded inside the slab
(see Fig. 2.8(b) ). However, because of negative imaginary part of the complex frequency,
the amplitude of all modes exponentially diverges outside the system (see Fig. 2.8(b) ).
Physically, this exponential divergence corresponds to a wavefront excited at past times
and propagating away from the system. The in�nite energy can beunderstood as the
accumulation of the energy radiated from the open system to therest of the universe.
This point stresses that space and time cannot be separately considered like in hermitian
stationary cases: The spatial divergence is compensated by a temporal �damping�. This
spatial divergence of Siegert's modes stands for the main limitation of Siegert states and
requires speci�c mathematical investigations.
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Inner product

One of the major limitation of a diverging spatial energy is the impossibility of using the
conventional inner product

hujvi =
Z

u� (x)v(x)dx (2.41)

Because of this divergence, the integral of eq. (2.41) between two modes requires a special
investigation: The modes are not square integrable. To overcome that di�culty, several
solutions have been proposed. A possible solution consists in correcting the spatial dis-
tribution of the modes, by imposing for instance the outgoing condition at a well-de�ned
�nite distance [45, 46], or considering separately the mode behaviour inside and outside
the cavity [43]. Another approach relies on carrying out a suitable mathematical trans-
form (as initially suggested by Zeldovich [47]). Zeldovich'sidea consisted in compensating
for the divergence by de�ning a regularized inner product. Hehistorically proposed the
function F (x) = e� �x 2

to de�ne a new inner product:

hujvi ! h ujF jvi =
Z

u� (x)F (x)v(x)dx (2.42)

The negative exponent inx2 overcomes the divergence of the modes at in�nity. To avoid
any loss of physical information, Zeldovich proposed to take the limit case where� ! 0.
Many other transforms have been proposed, which recast the spacecoordinates and per-
form what is called complex scaling (see [48] for a complete description). The basic idea
of these transforms is to use complex coordinates to compensate for the exponential diver-
gence of the mode and make the inner product integrable. In the rest of this manuscript,
we will assume that the inner products are regularized using Zeldovich's approach

hujvi , lim � ! 0

Z
u� (x)e� �x 2

v(x)dx (2.43)

Completeness of modal expansion

In some cases, the divergence of the mode also implies the non-completeness of the Siegert
states basis. When the modal expansion requires an in�nite set of modes, its coe�cients
may not be unique. In such cases, the set of modes must be completed to allow a correct
modal description [49]. The study of completeness of the modes in open systems is still an
active �eld of research for both mathematicians and physicistsand turns out to be case
dependent. In particular, Leunget al. [50, 51, 52, 53] demonstrated that the completeness
of the modal expansion in dielectric open systems is ensured if

� the index distribution has a discontinuity (L in the present case), which provides a
natural demarcation of the system

� the index is constant (n = 1) outside the system (x > L ), so that outgoing waves
are not scattered back into the system

In the example of the 1D slab experiment, these conditions (known as the discontinuity
and no tail conditions, respectively) are ful�lled and the modal expansion can be per-
formed. In this document, all the systems under study will respect these two conditions
and allow a complete modal expansion of the �eld.
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2.2.3 Biorthogonal formalism

Introduction to the biorthogonal formalism

In non-hermitian problems, the modes �p are not orthogonal

h� pj� qi 6= � pq (2.44)

However, a projection operator is needed to develop linear algebra with non-hermitian
modes. In non-hermitian problems it is possible to introduce a di�erent product known
as the biorthogonal product [54, 55]. The biorthogonal product relies on a very simple
idea: The orthogonality of left and right eigenvectors of a linear operator.

If we consider a non-hermitian matrixA, with eigenstates (� i ; jX i i ):

8i A jX i i = � i jX i i (2.45)

EigenvectorsjX i i are referred to �right eigenvectors�. Corresponding �left eigenvectors�
hYi j are associated with similar eigenvalues and ful�l:

8i hYi jA = � i hYi j (2.46)

Now we can write

hYi jAjX j i = � i hYi jX j i = � j hYi jX j i (2.47)

Hence, in the case of non degenerated eigenstates

hYi jX j i = � ij (2.48)

And if A is symmetric (but non-hermitian), eq. (2.48) becomes

hX �
i jX j i = � ij (2.49)

This biorthogonal product can replace the conventional inner product of hermitian physics,
assuming that no modes are degenerated. In particular, assumingthe completeness of the
eigenstates, a closure relation can be de�ned

X

p
jX qihX �

q j = I (2.50)

where I stands for matrix identity. Any vector � can be written down as a unique
superposition of the eigenvectors

� =
X

p

hX �
p j� i

hX �
p jX pi

jX pi (2.51)

A complete mathematical formalism is derived from the biorthogonal product. This
product leads to the de�nition of linear algebra tools for non-hermitian modes.
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The biorthogonal product in a 1D slab

We carry on the example of the 1D slab developed in section 2.2.1. In this problem, the
�eld ful�ls the Helmholtz eq. (2.29) and each mode (
p; � p(x)) reads

d2� p

dx2
(x) + n(x)2
 2

p� p(x) = 0 (2.52)

The weak formulation2 of eq. (2.52) along another spatial distribution �q (p 6= q) reads

Z L

0

d2� p

dx2
(x)� q(x)dx +

Z L

0
n(x)2
 2

p� p(x)� q(x)dx = 0 (2.53)

Using an integration by parts

�

"
d� p

dx
(x)� q(x)

#L

0

+
Z L

0

d� p

dx
(x)

d� q

dx
(x)dx = 
 2

p

Z L

0
n(x)2� p(x)� q(x)dx (2.54)

Using a second integration by parts

�
d� p

dx
(L)� q(L) +

"

� p(x)
d� q

dx
(x)

#L

0

�
Z L

0
� p(x)

d2� q

dx2
(x)dx = 
 2

p

Z L

0
n(x)2� p(x)� q(x)dx

(2.55)
Using eq. (2.52) for mode (
q; � q(x)), eq. (2.55) reads

� p(L)
d� q

dx
(L) �

d� p

dx
(L)� q(L) = (
 2

p � 
 2
q)

Z L

0
n(x)2� p(x)� q(x)dx (2.56)

Using the Siegert's conditiond� q;q

dx (L) = i 
 p;q� p;q(L), eq. (2.56) reads

� i (
 p + 
 q)
Z L

0
n(x)2� p(x)� q(x)dx + � p(L)� q(L) = 0 (2.57)

Now, we apply to modes (
q; � q(x)) and (
 p; � p(x)) the biorthogonal product, with the
Zeldovich's regularization introduced in section 2.2.2

h� �
qj� pi = lim � ! 0

Z + 1

0
n(x)2e� �x 2

� p(x)� q(x)dx (2.58)

Eq. (2.57) can be split into an inside and an outside integral terms

h� �
qj� pi =

Z L

0
n(x)2� p(x)� q(x)dx + lim � ! 0

Z + 1

L
e� �x 2

� p(x)� q(x)dx (2.59)

Outside the system (x � L), we know that modes read �p(x) / ei 
 p x . Using an integration
by part, the outside integral term reads

lim � ! 0

Z + 1

L
e� �x 2

� p(x)� q(x)dx / lim � ! 0

Z + 1

L
e� �x 2

ei (
 p +
 q )xdx

= lim � ! 0

"
e� �x 2

ei (
 p +
 q )x

i (
 p + 
 q)

#+ 1

L

+ �
Z + 1

L
2x

e� �x 2
ei (
 p +
 q )x

i (
 p + 
 q)
dx = �

ei (
 p +
 q )L

i (
 p + 
 q)
(2.60)

2For a function f (x) = 0, whatever the function g included in a Banach space, we can writeR
f (x)g(x)dx = 0.
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Leading to

h� �
qj� pi =

Z L

0
n(x)2� p(x)� q(x)dx �

� p(L)� q(L)
i (
 p + 
 q)

(2.61)

Using the relation derived in eq. (2.57), the modes (
q; � q(x)) and (
 p; � p(x)) ful�l the
biorthogonal relation:

h� �
qj� pi = � pq (2.62)

Application of the biorthogonal formalism

We demonstrated in section 2.2.3 the existence of a biorthogonal relation between modes
derived from the Siegert's condition in a 1D uniform slab. This biorthogonal relation can
be easily generalized to non-uniform refractive index distribution and 2D problems. The
general de�nition of the biorthogonal product reads

h� �
pj� qi =

Z
n(r )2� p� q = � pq (2.63)

Hence, for 1D and 2D systems ful�lling the no-tail and discontinuity condition ensuring
the completeness of the modal expansion (see section 2.2.2), thebiorthogonal formalism
developed in section 2.2.3 can be applied. The closure relation can be de�ned between
modes and reads

X

p
j� qih� �

qj = I (2.64)

Any spatial distribution �( x) reads

�( x) =
X

p

h� �
pj� i

h� �
pj� pi

j� pi =
X

p

R
n(r )2� p(x)�( x)dx
R

n(r )2� 2
p(x)dx

� p(x) (2.65)

The modal expansion of the electric �eld

E(x; t ) =
X

p
ap� p(x)e� i 
 p t (2.66)

is complete and coe�cientsap are unique. In the rest of the document, we will consider
open systems where the biorthogonal formalism can be applied.

2.3 Anderson-localized modes

We shown in section 2.2.1 how modes can be derived in any open system using the Siegert's
condition. In this section, we consider an open system with a disordered refractive index
distribution, where the random scattering may lead to the spatial con�nement of light.
First, we brie�y review the history of this physical e�ect known as Anderson localization.
Then, using a 1D example, we show that modes can be extended or spatially localized,
depending on the strength of the disorder. Finally, we summarize the di�erent numerical
methods that we have developed to compute these modes in disordered media.
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2.3.1 A brief introduction to Anderson localization

In his seminal paper [56], Anderson was inspired by experiments performed by George
Feher [57], where anomalous relaxation times of electron were observed in semiconduc-
tors. Using a quantum tight binding model of a lattice with a random potential in each
site, he demonstrated that di�usion of electrons can go to a zerowhen disorder becomes
important enough. In particular, this model has been used to explain why a metal can
turn into an insulator when the density of impurities increases.In the eighties, the gap
was bridged between quantum and classical waves. After an early prediction of existence
of localized waves in classical systems [58], Anderson localization was demonstrated for
classical waves in several experiments [59, 60, 61]. It is now recognized that Anderson
localization originates from the interference between multiple scattering paths and plays
also an essential role in classical wave physics.

A naive picture of localization mechanism is proposed in Fig. 2.9(a) . We consider an
incoming wave propagating in a 1D random potential. The waveis scattered each time
it encounters a step in the random potential (see explanation in Chapter 1). The wave is
spilt into a transmitted (forward-scattering) and a re�ected wave (backscattering). The
amplitude of the backscattering is triggered by the height ofthe step in the random poten-
tial. The backscattered wave interferes with the incoming wave. If the wave encounters
many steps of various amplitudes, the backscattering leads to alocalization of the wave
by constructive interference (see Fig. 2.9(a) ). This spatial localization, known as Ander-
son localization, di�ers from trapping where light is con�ned because of presence of walls
(see Fig. 2.9(b) ). Localization is rather understood as the result of many re�ections of
moderate amplitude.
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Figure 2.9: (a) An incoming wave propagates through a random potential: Each step in
the potential scatters the incoming wave. The backscatteringinterferes with the incoming
wave and the resulting �eld spatially localizes into the system.(b) Incoming wave trapped
within a well: The wave is localized because of the presence of high potentials.

Anderson localization has been observed in di�erent areas of classical waves physics
(acoustics [62]) or quantum wave physics (e.g. Wave matter [63]). For optical waves,
if localization has been observed for 1D and 2D systems, the 3D localization of light is
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still an open issue [64]. In this manuscript we will restrict ourself to optical systems of
dimension 1 or 2.

2.3.2 Modes in localized/weakly scattering regimes

As stated in section 2.3.1, the Anderson localization is triggered by the disorder. To em-
phasize this in�uence, we introduce disorder into an uniform 1D system and progressively
increase its �strength�. In this 1D example, we di�erentiate between two di�erent kinds
of modes resulting from Anderson localization.

A uniform 1D problem

We consider a 1D uniform medium of index of refractionn and length L open at both
edges (see Fig. 2.10(a) ). In this problem, the �eld's evolution is driven by the uniform
Helmholtz equation

d2E
dx2

(x; ! ) + n2
 2E(x; ! ) = 0 (2.67)

Using the Siegert's approach (see section 2.2.1), we can derive the amplitude of the mode

(a) (b)

n
x x

L j� p(x)j2

Figure 2.10: (a) A uniform 1D slab of length L and with an index of refraction n. (b)
The spatial distribution intensity of one modej� p(x)j2 inside the system: The mode has
been derived using the Siegert's approach.

inside this cavity. The frequency of modep reads


 p = p
�

nL
�

i
nL

ln
� n + 1

n � 1

�

(2.68)

And the corresponding spatial distribution

j� p;in (x)j2 /
� n � 1

n

� 2

exp
� 2x

L
ln

� n + 1
n � 1

��

+
� n + 1

n

� 2

exp
�

�
2x
L

ln
� n + 1

n � 1

��

+ 2

 
n2 � 1

n2

!

cos
�

p�
x
L

� (2.69)

As shown in Fig. 2.10(b) , the modes are extended all over the system.



2.3. Anderson-localized modes 41

Introduction of disorder

To introduce disorder in the 1D slab, we randomly introduce slices of a di�erent material
(see Fig. 2.11(a) ). The system is now composed of slabs of refractive indexn and n +� n.
The index of refraction becomes random and given byn2(x) = �n2 + � n2p(x), where � n
is the index di�erence,p(x) the location of the new material and �n the average refractive
index. The evolution of the �eld is now driven by the non-uniform Helmholtz equation

d2E
dx2

(x; ! ) + (�n2 + � n2p(x))
 2E(x; ! ) = 0 (2.70)

To understand the in�uence of the disorder, we can write eq. (2.70) in a form similar to
the Schrödinger equation

�
d2E
dx2

(x; ! ) � � n2p(x)
 2E(x; ! ) = �n2
 2E(x; ! ) (2.71)

It turns out that the disorder term � n2p(x)
 2 plays a role similar to the interaction
potential in the Schrödinger equation. Like a well, this �random potential� scatterers the
wave. Remarkably, the �strength� of this �random potential� is triggered by the variance
of � n2p(x) [65]. Hence, the random scattering strength will be importantfor high index
contrast and strong �uctuations of the positionp(x).

Extended and localized modes

As an illustration, we consider a given realization of disorder of 39 slabs of index of
refraction n and 39 slabs of indexn + � n. The mean thickness of the slabs is 150 nm,
and the thickness of each slab follows a uniform distribution ofamplitude 50 nm (see
Fig. 2.11(a) for a schematic description). As explained by eq. (2.71), the strength of
the randomness is triggered by the index contrast between the two media. The modes
resulting from this non-uniform distribution of refractive index are numerically computed
using the Transfer Matrix approach (introduced in section 2.3.3). This numerical method
rigorously derives the modes ful�lling the Siegert's condition. In Fig. 2.11, we compute a
particular mode � n for a low and a high index contrast (respectively �n = 0:1 and 1:0).

In Fig. 2.11(b) , the disorder is weak and the modes are extended over the system.Nev-
ertheless, the spatial distribution is already strongly modi�edas compared to the case of
a system with a uniform index (see Fig. 2.10(b) ). In Fig. 2.11(c) , the disorder is strong
and the mode is con�ned within the system. The envelope of the mode is exponentially
con�ned around a central position

j� n j2 / exp

 

�
jxj
�

!

(2.72)

where � de�nes the localization length. The modes plotted in Fig. 2.11(b) and 2.11(c) ,
represent the two di�erent regimes of disordered modes. For lowdisorder, the system is
in the weakly localized regime: The mode is extended over themedium but the disor-
der in�uences its spatial distribution. For high disorder, thesystem is in the strongly
scattering regime: The mode is trapped/localized by disorderinside the medium. In 1D
and 2D, a mode will be localized if the size of the system is smallerthan the localization
length of the mode (here� < L ). In 3D, a mobility edge is predicted. Nevertheless, if its
existence for scalar waves was con�rmed, in polarized waves however, its observation is
still an open issue [64].
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(a)

(b)

(c)
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Figure 2.11: (a) Schematic description of the 1D random system: Superposition ofslabs
of indexesn and n + � n. (b) Spatial mode distribution in the weakly scattering regime
(� n = 0:1): The mode is extended all over the device but di�ers from the uniform case.
(c) Mode in the strong scattering regime (�n = 1:0): The mode is spatially localized
inside the system.

2.3.3 Numerical computation of modes

In disordered systems, the derivation of modes cannot be analytic but requires numerical
computations. In this subsection, we brie�y summarize the di�erent numerical methods
that we developed.

The Transfer Matrix approach

The Transfer Matrix approach has been widely used to study Anderson localization prob-
lems in 1D systems [66]. This technique solves Helmholtz equation in the frequency do-
main in 1D system with the Siegert's condition. Within numerical accuracy, the Transfer
Matrix provides the exact Siegert states (�p; 
 p) ful�lling

d2� p

dx2
(x) + n(x)2
 2

p� p(x) = 0 &

 
d
dx

� i 
 p

!

� p

�
�
�
�
�
r !1

= 0 (2.73)

The modes shown in Fig. 2.11(b) and (c) were computed with this method.

The principle of the method can be exposed using, for instance, asystem made of two
materials (as in Fig. 2.11(a) ). In a 1D system, the �eld can be expanded into a forward
P and a backwardQ part:

E(x; ! ) =

"
P(x; ! )
Q(x; ! )

#

(2.74)

When propagating through the system the �eld can:
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� Propagate through medium of indexn

� Cross the interface fromn to n + � n

� Propagate through medium of indexn + � n

� Cross the interface fromn + � n to n

Combining these four operations, we can derive a matrixM connecting the electric �eld
on the left edgeE(0; ! ) and the right edgeE(L; ! ):

"
P(L; ! )
Q(L; ! )

#

= M (! )

"
P(0; ! )
Q(0; ! )

#

(2.75)

This matrix represents the Helmholtz equation in the 1D system. The Siegert's condition
enforces:

E(0; ! ) =

"
P(0; ! )

0

#

& E(L; ! ) =

"
0

Q(L; ! )

#

(2.76)

Imposing eq. (2.76) onto eq. (2.75) can only be satis�ed for a discrete set of 
 n . These 
 n

and the corresponding spatial distribution �n de�ne the modes of the problem ful�lling
the Siegert's condition.

Finite Elements Method

A Finite Element Method can be used to solve Helmholtz's. In the scope on this study,
a Finite Element Method code has been developed to solve Helmholtz equation in 2D

� E(r ) + n(r )2
 2E(r ) = 0 (2.77)

The 2D systems are composed of circular pillars in a host medium (see Fig. 2.12). The
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Figure 2.12: 2D random system composed of pillars randomly distributed. The system is
surrounded by a numerical boundary condition.

physical system (see Fig. 2.12) is enclosed by numerical boundaryconditions (Absorbing
Boundary Conditions or Perfectly Matched Layer [67]) to ensure the decay of electric



44 Chapter 2. Modes In Open Random Media

�eld outside the system. The system is spatially discretized and testfunctions are used
to build a matrix from eq. (2.77)

A + 
 2B = 0 (2.78)

Then, a generalized eigenvalue solver is used to �nd the eigensolutions (
 2, �) of eq. (2.78)
corresponding to the modes of the 2D open system (see Fig. 2.13 as example). Unlike the
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Figure 2.13: (a) Complex frequency 
p of modes computed by Finite Element Method
on system described in Fig. 2.12.(b) A spatial distribution of the intensity of a mode
j� pj2 computed by Finite Element Method.

Transfer Matrix method, a numerical boundary condition is imposed outside the medium
instead of the Siegert's condition. Hence, the modes computedwith the Finite Element
Method correspond to an approximation of the modes ful�llingthe Siegert's condition.
The Siegert states and the modes will be similar inside the system but will di�er outside.

Finite Di�erence Time Domain

In this manuscript, we will also present computation of 2D systems(see Fig. 2.12) in the
temporal domain. For that matter, we use a Finite Di�erence Time Domain technique
allowing the resolution of Maxwell's equation

r � E(r; t ) = � � 0
@H
@t(r; t )

r � H (r; t ) = � 0n(r )2 @E
@t(r; t )

(2.79)

Using the intricate spatial and temporal sampling, the evolution of electric and magnetic
�eld (namely E and H ) can be computed in time and space. The spatial distribution
of the modes and their complex frequency can be obtained fromE(r; t ). A complete
description of the method can be �nd in [68].

2.4 Summary

Here, we have introduced the concept of mode and developed this notion for non energy-
conservative systems, also called non-hermitian systems.
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Generally speaking, modes are associated with privileged vibrational states of the system.
For hermitian problem, the modes correspond to the stationarysolutions, where time and
space are separable. In non-hermitian problems, no stationary solution exists and the
modes are de�ned by resonances. In particular, we have introduced the modes of open
systems and presented an approach to derive them, using the Siegert's radiative condition.
The resulting modes are physically relevant inside the cavity and diverge in amplitude
outside. Nevertheless, we have demonstrated the existence of a rigorous formalism to
describe the electric �eld using these modes. In the scope of this manuscript, we will focus
on open systems with constitutive disorder encoded in the index of refraction distribution.
We have explained in such systems the mechanism of Anderson localization, in which the
disordered leads to a spatial localization of the modes. For strong disorder, the system is in
the localized regime and the modes are con�ned within the system, while for low disorder
the system is in the weakly scattering regime and the modes are spatially extended. We
have brie�y presented di�erent numerical methods used to compute them.

In the rest of this manuscript, we will investigate light-matter interaction in random
systems. The electric �eld will be expressed in term of modes (Anderson-localized or
extended) computed with numerical techniques and the biorthogonal formalism will be
applied.
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Managing light-matter interaction in
passive random media





Chapter 3

Coalescence of Anderson-localized
modes at exceptional point in
random media
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Losses are inherent to most physical systems, either because of dissipation and/or as a
result of openness. We explained in Chapter 2 that these systems aredescribed mathe-
matically by a non-hermitian Hamiltonian, where eigenvalues are complex and eigenstates
form a nonorthogonal set. In such systems, interaction between pairs of eigenstates, when
a set of external parameters is varied, is essentially driven bythe existence of Exceptional
Points (EP)(see Chapter 2). At an EP, complex eigenvalues degenerate and eigenstates
coalesce. In its vicinity, eigenvalues display a singular topology. The eigenstates become
indistinguishable [69] and encircling the EP in the parameter space leads to a residual
geometrical phase [32, 33]. Since their introduction by Katoin 1966 [31], EPs have ap-
peared to be involved in a rich variety of physical e�ects (e.g. level repulsion [37], mode
hybridization [38], quantum phase transition [39], lasing mode switching [70], Parity Time
(PT ) symmetry breaking [71, 72] or even strong coupling [35]). They have been observed
experimentally in di�erent systems such as microwave billiards [34], chaotic optical mi-
crocavities [73] or two-level atoms in high-Q cavities [35]. We explained in Chapter 2 that
open random media are a particular class of non-hermitian systems. Their modal con�ne-
ment may be solely driven by the degree of scattering. For su�ciently strong scattering,
the spatial extension of the modes becomes smaller than the systemsize, resulting in
transport inhibition and Anderson localization [56]. Disordered-induced localized states
or localized modes have raised much interest. They provide with natural optical cavities
in random lasers [74, 75] and recently appeared to be good candidates for quantum elec-
trodynamics cavity [76, 77], with the main advantage of being inherently disorder-robust.
These modes can also be manipulated by a local change of the disorder and can coupled
to form necklace states [78, 79, 80], which open channels in a nominally localized system
[81, 82] and are foreseen as a key mechanism in the transition from localization to dif-
fusion regime. PT symmetry has been studied in the context of disordered media and
Anderson localization [83, 84, 85], but so far, EPs between localized modes have not been
investigated.

In this chapter, coalescence at an EP between two Anderson-localized optical modes is
demonstrated in a two dimensional dielectric random system. To bring the system in
the vicinity of an EP, the dielectric permittivity is varied at two di�erent locations in
the random system. First, we propose a general theory to follow the spectral and spatial
evolution of modes in 2D dielectric media. Then, this theoryis applied in the speci�c case
of Anderson-localized modes. We �nd excellent agreement between theoretical prediction
and Finite Element Method (FEM) simulations. Finally, we demonstrate that such a
theory requires to go beyond the standard two interacting states model and to consider
N -mode interaction. This problem can be easily implemented inan actual experiment [86,
75]. We believe that the design of an EP between modes could pavethe way to a control
of Anderson localization properties and could o�er a new insight to its understanding.
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3.1 Manipulation of modes via the dielectric permit-
tivity

In this section we propose a general theory, which describes theevolution of modes in an
open system in which scattering is modi�ed. This approach relies on the biorthogonal
formalism introduced in Chapter 2 and applied to modes of 2D dielectric open systems.
We stress that this approach is not limited to disordered media but can be used for any
open inhomogeneous dielectric system. First, we de�ne modes ofa non-hermitian system
and recall the condition of the use of the biorthogonal formalism. Finally, we consider
a modi�cation of the system and investigate the evolution of modes by deriving a linear
system.

3.1.1 A 2D open dielectric medium

We �rst consider the general case of a �nite-size dielectric medium in 2D space, with
inhomogeneous dielectric constant distribution� (r ). In this chapter, for sake of notation
compactness, we will consider the dielectric permittivity� (r ) rather than the index of re-
fraction n(r ) ( � (r ) = n2(r )). The distribution of � (r ) is indi�erently ordered or disordered.
In the frequency domain, the electromagnetic �eld follows the Helmholtz equation:

� E(r; ! ) + � (r )! 2E(r; ! ) = 0 (3.1)

whereE(r; ! ) stands for the electrical �eld and the speed of light,c=1. Eigensolutions of
eq. (3.1) de�ne the modes or eigenstates of the problem:

(
 i ; j	 i i ) i 2 N j � j	 i i + � (r )
 2
i j	 i i = 0 (3.2)

Because of its openness, the system has inherent losses and is therefore described by a non-
hermitian Hamiltonian (see Chapter 2). For non-hermitian systems, modes area priori
non-orthogonal, complex and the completeness of the expansion along the eigenvectors is
not ensured. Here, we will consider modes derived with the Siegert's approach in open
systems with �nite range potential, in which a discontinuity in the permittivity provides
a natural demarcation of the problem. We know from Chapter 2 that the completeness
of the modal expansion [51, 50, 50, 52] is ensured in such a system. Hence, the electrical
�eld can be expanded along the modes:

E(r; ! ) =
X

i

ai (! )j	 i i (3.3)

whereai (! ) stand for unique coe�cients of the expansion along the basis. Moreover, the
biorthogonal formalism can be used provided that the eigenstates are not degenerated.
This formalism relies on a biorthogonal product between modes, which reads [87, 55]:

h	 �
pj� (r )j	 qi = � pq (3.4)

Nevertheless, the theory derived here can be extended to di�erent set of modes (e.g
Constant Flux [44], Fox-Li modes [41]), assuming that the biorthogonal formalism can be
used.



52 Chapter 3. Exceptional Point

3.1.2 Modi�cation of the permittivity

Now, we consider two locationsR1 and R2, where the permittivity is varied

~� (r ) = � (r ) + � � 1(r )p1(r ) + � � 2(r )p2(r ) (3.5)

wheref pi (r 2 Ri ) = 1 jpi (r =2 Ri ) = 0 gi 2 [1;2] is the location andf � � i (r )gi 2 [1;2] the shape of
the variation of permittivity. Eq. (3.1) becomes:

� E(r; ! ) + ! 2 (� (r ) + � � 1(r )p1(r ) + � � 2(r )p2(r )) E(r; ! ) = 0 (3.6)

The permittivity distribution ~� (r ) describes a new distribution of permittivity with new
modes (~
 i ; j ~	 i i ) i 2 N. Nevertheless, we can still consider the basis of the original random
system, (
 i ; j	 i i ) i 2 N, to expand the electric �eld as follows:

E(r; ! ) =
X

i

bi (! )j	 i i (3.7)

wherebi (! ) are the new expansion coe�cients. Inserting eq. (3.7) into eq.(3.6):
X

i

bi (! )
h
� + ! 2 (� (r ) + � � 1(r )p1(r ) + � � 2(r )p2(r ))

i
j	 i i = 0 (3.8)

Using eq. (3.2)
X

i

bi (! )
h
� 
 2

i � (r ) + ! 2 (� (r ) + � � 1(r )p1(r ) + � � 2(r )p2(r ))
i

j	 i i = 0 (3.9)

Projecting eq. (3.9) alongh	 �
j j

h	 �
j j

X

i

bi (! )
h
(! 2 � 
 2

i )� (r ) + ! 2 (� � 1(r )p1(r ) + � � 2(r )p2(r ))
i

j	 i i = 0 (3.10)

X

i

bi (! )
h
(! 2 � 
 2

i )h	 �
j j� (r )j	 i i + h	 �

j j� � 1(r )p1(r ) + � � 2(r )p2(r )j	 i i
i

= 0 (3.11)

Using the biorthogonal product of eq. (3.4) leads to

8 i bi (! )
�

 2

i � ! 2
�

= ! 2
X

j

bj (! )Cij (3.12)

where
Cij = h	 �

j j� � 1(r )p1(r )j	 i i + h	 �
j j� � 2(r )p2(r )j	 i i (3.13)

If we consider a �nite set ofN modes, the generalized eigenvalue problem of eq. (3.12)
can be written conveniently in a matrix form:

2

6
6
4

0

B
B
@


 2
1 ::: 0

...
. . .

...
0 ::: 
 2

N

1

C
C
A � ! 2

0

B
B
@

1 + C11 ::: C1N
...

. . .
...

CN 1 ::: 1 + CNN

1

C
C
A

3

7
7
5 = 0 (3.14)

The eigensolutions of eq. (3.14), (~
 i ; j ~	 i i ) i 2 [1;N ], are the eigensolutions of eq. (3.1) for
the permittivity distribution ~� (r ). In eq. (3.14), the coupling coe�cients, Cij , between
original modesi and j depend on the variation of the permittivity and the spatial overlap
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of the modes at the location of the permittivity modi�cation. Noteworthily, the coupling
integral not only depends on the spatial overlap of the mode intensity pro�les but also on
the overlap of their phase pro�le.

Remarkably, when reducing the problem to two modes, we recover a system equivalent to
2 inductance/capacitor circuits coupled via an inductanceL c (see Fig .3.1). L c induces
the coupling of the two independent oscillators and the charges of each capacitor (namely
Q1 and Q2) ful�l

•Q1 +
Q1

L1C1
=

LC

L1
( •Q1 + •Q2) (3.15)

•Q2 +
Q2

L2C2
=

LC

L2
( •Q1 + •Q2) (3.16)

which can be recast in a matrix form
2

6
4

0

B
@

�
1p

L 1C1

� 2
0

0
�

1p
L 2C2

� 2

1

C
A � ! 2

 
1 + L C

L 1

L c
L 1

L c
L 2

1 + L c
L 2

!
3

7
5

"
Q1

Q2

#

= 0 (3.17)

Eq. (3.14) extends this result to a number of interacting modesN > 2 and can be under-
sood as a basic linear coupling between modes playing the role of simple L=C oscillators.

C1 L c C2

L1 L2

C1

L1

C2

L2

)

(a) (b)

Q1 Q1Q2 Q2

Figure 3.1: (a) Two independent inductance/capacitor (L i =Ci ) oscillators uncoupled.(b)
The two systems are coupled via an inductanceL c.

3.2 Application to Anderson-localized modes: Pre-
diction of Exceptional Points

Our theory is now applied to the particular case of a disorderedsystem in the localized
regime (see Chapter 2). First, we present the numerical 2D system that we consider to
apply our theory, in which two local modi�cations of the permittivity distribution are
introduced. Then, we discuss the nature of the modes of the initial system, which are
computed via Finite Elements Method (FEM) and we investigate the computation of
the biorthogonal product of eq. (3.4). Finally, we study the evolution of modes when the
permittivity is modulated at two distinct locations. When the parameter space is scanned,
we predict an EP between two speci�c modes and con�rm its existence numerically.

3.2.1 The 2D open disorder dielectric medium

We consider a 2D random collection of 896 circular dielectricscatterers (radius 60 nm)
with dielectric permittivity, � = 4:0, embedded in a host material of index� mat = 1:0, with
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a �lling fraction of 40% (Fig. 3.2(a) ). The system dimensions areL � L = 5:3 � m � 5.3
� m. The two circular regions of diameter 340 nm,R1 and R2, are shown in Fig. 3.2(a) .
The dielectric permittivity of the scatterers within these regions is varied from� to � +� � 1

and � + � � 2, respectively. This can be achieved experimentally by shining 2 laser beams
on the surface of the sample and take advantage of optical nonlinearity to change locally
the refractive index.

0 L
0

L

Re(x
) R)

y

14.5 15.5-0.4

0 (1)

(2)

Re(
)
Im

(

)

1 90
Mode #

(1)

(2)

(a)

(c)

(b)

(d)

Figure 3.2: (a) 2D random medium: 896 scatterers of dielectric permittivity� = 4
are embedded in vacuum� mat = 1:0, system is open at edges. The permittivity of the
scatterers is modi�ed in two circular domains of diameter 340nm (respectivelyR1 = red
circle and R2 = green circle). (b) Original eigenvalues (
i ) i 2 [1;90]: Computed by FEM in
absence of dielectric permittivity modulation and sorted in the complex plane according
the distance d(1; i ). An inset focuses on eigenvalues of interest (namely 
1 and 
 2).
(c) ,(d) Original eigenvectors intensities ofj	 1i and j	 2i respectively.

3.2.2 Original modes and biorthogonal product

The original modes (
 i ; j	 i i ) i 2 [1;N ], which are the only input requested by eq. (3.14), can-
not be obtained analytically in such a complex random system. Here, we have developed
a FEM routine [88, 89] to compute these modes (see Chapter 2). Boundary conditions
are placed 0:4�m away from each edge of the system. We consider a frequency range in
which the localization length is estimated around� � 1�m � L1. As a result, the modes
are strongly con�ned within the system.

A large number of modes (N = 90) are computed for the original system (Fig. 3.2(b) )
in this spectral range. We checked that modes are not degenerated (see Fig. 3.2(b) ),

1In 2D problems, the localization length satis�es � � l t exp(!l t =c)[65]. Di�erent methods can be used
to estimate � like the spatial correlation of modes or transmission measurement, see for instance [90]



3.2. Application to Anderson-localized modes: Prediction of Exceptional Points 55

which is one of the conditions for the application of the biorthogonal formalism. Among
these modes, we consider two localized statesj	 1i and j	 2i respectively at 
 1 and 
 2,
spectrally close (Fig. 3.2(b) ) but spatially distinct (Fig. 3.2 (c) and (d) ). We de�ne in
the complex plane the spectral distance of modei to mode 1 asd(1; i ) = j
 1 � 
 i j. This
distance, color-coded in Fig. 3.2(b) , is a measure of the spectral overlap between mode
i and mode 1. Here, mode 2 is most likely to couple to mode 1 but we will see later in
this chapter that the in�uence of other nearby modes cannot be neglected in the modal
interaction.

The biorthogonal product de�ned in eq. (3.4) corresponds to an integration over the whole
space,R2

h� �
qj� (r )j� pi =

Z

R2
� (r )� q(r )� p(r )dr (3.18)

However, the computed modes are only de�ned over a �nite spectral domainV = [ � 0:1�m;
5:7�m ]2. To understand the relation between integral overR2 and integral overV, let us
consider the weak formulation2 of eq. (3.2) along another mode (
q; j	 qi )

Z

V
�� p� q +

Z

V

 2

p� (r )� p� q = 0 (3.19)

Using an integration by parts, eq. (3.19) reads
Z

@V
grad � p:� q �

Z

V
grad � p:grad � q +

Z

V

 2

p� (r )� p� q = 0 (3.20)

where@Vstands for the boundary ofV. With a second integration by parts, eq. (3.20)
reads

Z

@V
grad � p:� q �

Z

@V
grad � q:� p +

Z

V
�� q� q +

Z

V

 2

p� (r )� p� q = 0 (3.21)

Eq. (3.21) leads to
Z

@V
grad � p:� q �

Z

@V
grad � q:� p +

�

 2

p � 
 2
q

� Z

V
� (r )� q� q = 0 (3.22)

As a result the biorthogonal relation of eq. (3.18) reads

h� �
qj� (r )j� pi =

Z

V
� (r )� q(r )� p(r )dr +

1

 2

q � 
 2
p

� Z

@V
grad � p:� q � grad � q:� p

�

= � pq

(3.23)
Anderson-localized modes are non-degenerated (
p 6= 
 q) and have a small spatial overlap
in our case. As a result, the biorthogonal relation can be approximated by

h� �
qj� (r )j� pi �

Z

V
� (r )� q(r )� p(r )dr = � pq (3.24)

The edge term (integral along@V) in the biorthogonal product can be easily neglected.
It leads to an inaccuracy of 0.8% in the position of EP3.

2For a function f (x) = 0, whatever the function g(x), performing the weak formulation of f along g
means we consider the integral

R
f (x)g(x) = 0.

3This edge term can be inserted in the eigenvalue problem provided in eq. (3.14). It results in the
addition of extra on and o�-diagonal terms in both matrices.
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