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Summary

Light propagation in matter is described by vibration eigenstates, called modes, which
characterize the light-matter interaction. In the specific case of random media, according
to the strength of the disorder, the modes can be either extended over the whole system
or spatially localized. This disorder-based confinement is called Anderson’s localization.
In the first part, we introduce basic notions used along this manuscript. In particular
the light-matter interaction requires a semiclassical approach: The electromagnetic field
is described by Maxwell’s equations while the quantum nature of matter must be con-
sidered. In this thesis open media are studied. In such systems the modal description
requires a specific analytic treatment different from closed problems. In the second part,
we focus on Anderson-localized modes in open passive random media. Any change of
the disorder induces modifications of modes. Therefore, it enables the control over the
light properties. Moreover, when inserting an emitter inside an Anderson-localized mode,
strong light-matter interaction regimes can be reached. In the third part, active random
media, commonly called random lasers, are introduced. Using our experimental achieve-
ments, characteristics of random lasers are presented. The notion of mode enables us to
describe complex mechanisms involved in the lasing emission. Last, we demonstrate both
experimentally and numerically that a non-uniform excitation of random lasers can lead
to a control of the properties of the emission. In particular a multimode spectrum for a
uniform pumping can be turned into single-mode using an adapted pumping.
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Introduction

In principle, confining light can be easily achieved by two mirrors facing each other. As
simple as it might seem, this ”classical” cavity is the cornerstone of many physical sys-
tems such as Fabry-Perot spectrometer and lasers. In an ideal optical cavity, a photon
will remain trapped for ever. The system is isolated from the rest of the universe and said
hermitian. The electromagnetic field describing the light oscillates at specific frequencies:
These oscillations define the modes of the close cavity. In this ideal description, the modes
are independent vibrations. The hermitian cavity allows both to address theoretical ques-
tions and to offer interesting prospects. As an illustration, we mention Quantum Electro
Dynamic (QED) cavities, where a two-level atom is inserted between two mirrors. On the
one hand it offers elementary verification of quantum mechanics. On the other hand, it
paves the way to many interesting physical applications, in particular in quantum com-
putational processing. Unfortunately, satisfying hermitian conditions sometimes requires
tremendous efforts. For instance, Serge Haroche developed a very high-Q cavity based on
two superconducting niobium mirrors at low temperature. Wineland’s group used single
ions in ultra vacuum between to gold electrodes.

When the dimensions of the cavity are down-scaled, ensuring the hermiticity of the cavity
becomes even harder. In contrast, novel science-driven cavities with complex geometries
have risen much interest. Among them, we can mention open dielectric micro-disks and
micro-spheres or photonic crystal slab defect mode. In all these systems, because of
openness or absorption, energy leaks out of the cavity. This energy loss couples the
system to the rest of the universe: The system is said non-hermitian. Unfortunately,
different theories of hermitian physics, such as Random Matrix Theory, fail badly to
describe non-hermitian problems. In non-hermitian system, the electromagnetic field is
still described by privileged vibration, commonly referred as resonances. But unlike closed
cavity, these non-hermitian modes are no-longer independent vibrations and energy can
be transferred from one mode to another. The new Physics involved in non-hermitian
systems has triggered strong theoretical interest, raising many questions: Is it possible
the adapt or extend standard approaches of hermitian Physics to open systems? What
are the specific properties that these open systems may offer?

A random scattering medium is another example of an open system. In such a medium,
the photon dwell time is enhanced by multiple scattering. Depending on the disorder
strength, light may explore the entire system and escape from it or may be trapped for
a long time by the disordered structure. In the first case, the system is said diffusive,
whereas in the second case, diffusion is inhibited and the wave is localized. In the last
case, if the system is large enough, all the good properties of hermitian systems are
recovered. The openness is simply driven by the degree of disorder. A random system
is therefore an interesting playground to explore systems ranging from hermitian to non-
hermitian. This unique characteristic has led to the exploration of many questions related
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to light-matter interaction, such as non-linear physics, QED or lasing. In the work that
we present here, some aspects of light-matter interaction in random scattering media have
been investigated. Our aim is to exemplify how the complexity of these systems offers
new degree of freedom to explore fundamental questions as well as new applications.

The document is organized in four parts and eight chapters, that we briefly introduce.

Part I - From microscopic light-matter interaction to modes in open random
media

In Chapter I, we review the basic notions of light-matter interaction in the semiclassical
formalism. Starting from microscopic Maxwell’s equations, we derive the propagation of
light in macroscopic dielectric systems. In particular, we describe the scattering of light
by inhomogeneities. The matter is described quantum-mechanically by discrete levels of
energy. We review the different mechanisms allowing a transfer from one level to another.
More specifically, we consider the two-level and four-level atoms.

In Chapter II, we introduce the concept of modes in non-hermitian systems. Starting
from a simple example in physics, modes are defined as a resonance in non-hermitian
problems, instead of stationary wave in the hermitian case. We present some fundamental
differences between hermitian and non-hermitian modes. Then, we consider the case
of open systems. We discuss the conditions allowing to expand the electric field along
the modes and the related mathematical formalism. Finally, we introduce modes for the
specific case of disordered open systems.

Part II - Managing light-matter interaction in passive random media

In Chapter III, we explore mode interaction and exceptional points in a non-hermitian
system. We first derive the evolution with any variation of the dielectric constant of
modes in a 2D system. In a general 2D dielectric system, we derive the exact evolution of
modes when the permittivity distribution is modified. In the specific case of localization by
disorder, we induce the coalescence of two modes for a specific modulation of the disorder.
In the vicinity of this so-called exceptional point, we study the mechanism of coalescence
and in particular the role played by other modes. We confirm theoretical predictions by
numerical simulations.

In Chapter IV, we investigate theoretically the interaction between a two-level atom with
a localized mode. For small intensity of the electric field, the interaction is described by
a linear polarization of the atom. In contrast, a high intensity gives rise to non-linear
polarization. In the linear regime, we study the electric field evolution and recover the
strong coupling condition between the emitter and the mode. Then, we investigate the
condition of a non-linear response of the emitter. We propose experimental observation
of both effects. Our predictions are confirmed by numerical simulations.
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Part III - Active random media: The random laser

In Chapter V, we introduce the random laser and present our experimental achievements
of microfluidic devices. Starting from a textbook description of a conventional laser, we
define the random laser and model it in the diffusion approximation. Then, after describ-
ing the technique we developed to make microfluidic lasers, we characterize 1D and 2D
devices. We explain why the diffusion model is inadequate to describe such a random laser
and conclude that a more accurate description should be based on a modal description

In Chapter VI, we analytically derive the modes of the random laser from the modes of
the underlying random structure, the so-called passive system. The presence of a thresh-
old in the lasing emission requires to consider two distinct regimes, namely below and
above threshold. Below threshold, we derive the evolution of the modes and a perturba-
tion expansion allows to investigate the linear coupling between modes. Above threshold,
we derive the lasing mode using a similar approach and exhibit the linear and non-linear
mechanisms involved in the lasing.

Part IV - Control of random lasers

In Chapter VII, we propose a new method to control random laser emission based on the
shaping of the pump profile. Using an iterative approach, the spatial distribution of the
pump profile is progressively tuned to control the random laser characteristics. We offer
some analytical insights to understand the role played by the pump profile on mode mixing
and we propose further investigations for a complete description.

In Chapter VIII, we experimentally demonstrate the control of an optofluidic random
laser. Using a spatial light modulator, the pump fluence is modulated and an iterative
procedure adjusts the pump profile to drive the multimode laser to single-mode operation
at a desired wavelength. We investigate the influence of pump profile on linear and non-
linear mixing. Finally a similar approach to control the directivity of the random laser
emission is proposed.
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4 Chapter 1. Light-Matter Interaction

The most complete description of light-matter interaction is provided by a quantum me-
chanic description, where both electromagnetic field and matter are quantized. However,
many phenomena can be understood within the framework of the semiclassical theory of
light-matter interaction, where the light is described by a classic electromagnetic field,
while the quantum nature of matter is considered.

In this chapter, we introduce basic notions of the semiclassical theory that will be used
in this manuscript. Starting from Maxwell’s equations, we first derive the propagation
equations of the electromagnetic field in media with homogeneous and inhomogeneous
refractive index at macroscopic scale. Then, we consider the propagation of the field
when scattered by a particle. Finally, we present briefly the quantum description of
matter and introduce the different mechanisms of energetic transition.
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1.1 Light-Matter interaction: Light propagation in
matter

In this section, we remind the evolution of electromagnetic field in 1D and 2D dielectric
inhomogeneous media. This section is mostly based on lecture notes [1, 2]. First, we recall
the microscopic description of the electromagnetic field provided by Maxwell’s equations.
Then, we derive the Maxwell’s equations for matter at a macroscopic scale. Finally, the
Lorentz’s oscillator model is used to define the susceptibility of dielectric material and
derive the equation of propagation in 1D and 2D dielectric media, namely Helmholtz
equation.

1.1.1 Light at microscopic scale

Maxwell’s equations in vacuum

Light propagation is described by the electromagnetic field (E(r, t),B(r, t)), where r and
t stand for spatial and temporal coordinates (see Fig. 1.1). Vector electric field and
magnetic field, E and B fulfil two constitutive equations

div B(r, t) = 0 (1.1)

rot E(r, t) = −∂B
∂t

(r, t) (1.2)

known as Maxwell-Thomson’s and Maxwell-Faraday’s equations [3]. For propagation in
vacuum, the electric field obeys to Maxwell-Gauss’s equation

div E(r, t) = 0 (1.3)

and the magnetic field Maxwell-Ampère equation

rot B(r, t) = µ0ǫ0
∂E
∂t

(r, t) (1.4)

The universal constants µ0 and ǫ0 are respectively the permeability and permittivity of
vacuum.

B

E

Figure 1.1: Schematic representation of light propagating in vacuum: Light is described
by the oscillations of the electromagnetic field (E(r, t),B(r, t))
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Maxwell’s equations in matter at microscopic scale

At microscopic scale, the matter is assumed to be composed of point charges qi at position
ri(t) (as sketched in Fig.1.2). The corresponding density ρm(r, t) reads

ρm(r, t) =
∑

qiδ(r − ri(t)) (1.5)

B

E
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q2
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q6

q7

q8

ρm
jm

Figure 1.2: Electromagnetic in matter at microscopic scale: Here we consider point charges
qi located at ri.

The motion of the charges induces a current density jm(r, t)

jm(r, t) =
∑

qi
dri
dt

(t)δ(r − ri(t)) =
∑

qivi(t)δ(r − ri(t)) (1.6)

This charges and currents influence the evolution of the electromagnetic field by giving
rise to discrete source terms in Maxwell’s eq. (1.1-1.4)

div B(r, t) = 0 (1.7)

rot E(r, t) = −∂B
∂t

(r, t) (1.8)

div E(r, t) =
ρm(r, t)
ǫ0

(1.9)

rot B(r, t) = µ0jm(r, t) + µ0ǫ0
∂E
∂t

(r, t) (1.10)

1.1.2 Light at macroscopic scale

From micro to macroscopic scale

At macroscopic scale, we can no longer consider point charges (as sketched in Fig. 1.3).
The gap between microscopic and macroscopic scales can be bridged by performing a
spatial average [1, 2, 4]. For a function, F (r, t), the macroscopic average reads

〈F (r, t)〉 =
∫

w(r − r′)F (r′, t)dr′ (1.11)

where w(r) the regularization function is
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• normalized :
∫

w = 1

• real and positive

• bounded, in such way that ∂
∂r

〈F (r, t)〉 = 〈 ∂
∂r
F (r, t)〉 1

Macroscopic Maxwell’s equations

Maxwell’s eq. (1.7) and (1.8) are easily derived at macroscale:

div 〈B〉(r, t) = 0 (1.12)

rot 〈E〉(r, t) = −∂〈B〉
∂t

(r, t) (1.13)

For eq. (1.9) and (1.10), macroscopic expressions are complicated by the presence of

B

E

〈ρm〉
〈jm〉

Figure 1.3: Schematic representation of light propagation in matter at macroscopic scale:
The charges and currents are continuous functions.

averaged source written as 〈ρm〉 and 〈jm〉

div 〈E〉(r, t) =
〈ρm〉
ǫ0

(1.14)

rot 〈B〉(r, t) = µ0〈jm〉 + µ0ǫ0
∂〈E〉
∂t

(r, t) (1.15)

Let us first consider the macroscopic charge density 〈ρm〉. We assume that the medium
is made of atoms and we focus on an atom (at) at position rat (see Fig. 1.4(a)). For
sake of simplicity, position of the charges are expressed in the atomic frame and temporal
dependency is removed. The charge density of this atom reads

ρatm(r) =
∑

qiδ(r − rat − ri) (1.16)

leading to a macroscopic average

〈ρatm〉(r) =
∑

qi

∫

w(r − r′)δ(r′ − rat − ri)dr′ =
∑

qiw(r − rat − ri) (1.17)

1The derivative of the spatial average reads ∂〈F 〉
∂r

=
∫

∂w(r−r′,t)
∂r

F (r′, t)dr′ = −
∫

∂w(r−r′,t)
∂r′

F (r′, t)dr′.

Using an integration by parts, ∂〈F 〉
∂r

= 〈 ∂F
∂r

〉. Because the function is bounded w(±∞, t) = 0. As a result
∂〈F 〉

∂r
= 〈 ∂F

∂r
〉.
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The regularization function w is extremely smooth at atom scale. Eq. (1.17) can be
expanded at first order around the position r − rat and reads

〈ρatm〉(r) ≈
∑

qiw(r − rat) −
∑

qiri.grad f(r − ra) (1.18)

Defining
∑
qi = qat the atomic charge and

∑
qiri = pat the atomic dipole moment

〈ρatm〉(r) ≈ qatw(r − rat) − pat.grad f(r − ra) (1.19)

Consequently, even for a neutral atomic charge (qat = 0), if the atomic dipole moment
pat 6= 0, a macroscopic charge 〈ρatm〉 exists. For instance, some neutral molecules (e.g.
H2O, CO) have permanent dipole moment or atoms can polarized when coupled to the
electric field (see example in Fig. 1.4(b)).

(a)

rat

ri

0

(b)

r+ r−

p

Eext

Figure 1.4: (a) The atomic frame (position rat): In this example a positive nucleus at
position rat is surrounded by electrons at position ri. (b) Example of neutral particle ex-
hibiting a dipole moment p: An atom is placed in a external electric field Eext. Barycentre
of positive (q at r+) and negative (−q at r−) charges are spatially separated, leading to
the appearance of a dipole moment ||p||= q(r+ − r−) 6= 0.

Now, since we perform similar operation on all atoms, the total macroscopic density reads

〈ρm〉(r) ≈
∑

qatw(r − rat) −
∑

pat.grad f(r − ra)

=
∑

qatw(r − rat) − div
∑

pat f(r − ra)
(1.20)

Defining P =
∑

patf(r − ra) as the polarization density of the medium, the averaged
charge density reads

〈ρm〉(r, t) = ρfree(r) − div P(r, t) (1.21)

As a result, at macroscopic scale, the charge density is the sum of two terms

• ρfree(r) =
∑
qatw(r − rat), referred to as the free charge density

• −div P(r) = −∑
pat.grad f(r − ra), referred to as the polarization charge density

Hence, Maxwell-Gauss’s eq. (1.14) reads

div 〈E〉(r) =
ρfree(r) − div P(r, t)

ǫ0
(1.22)

In the scope of this manuscript we will consider material with zero macroscopic charge
i.e. ρfree = 0. Maxwell-Ampere’s eq. (1.15) can be derived by a similar approach and be
written

rot 〈B〉(r) = µ0

(

jfree +
∂P
∂t

+ rot M

)

+ µ0ǫ0
∂〈E〉
∂t

(1.23)
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where M is the magnetization of the medium.

From now on, we will only consider the macroscopic quantities and remove the average
notation: 〈F 〉 = F .

1.1.3 Propagation in dielectric media

Lorentz’s oscillator model

In Fig. 1.4(b) we presented an example of polarization mechanism when an atom is
placed in the electric field. This example stresses that the polarization P in eq. (1.22)
is imposed by the nature of the material. In this manuscript, we will consider dielectric
media composed of atoms modelled as Lorentz’s oscillators.

(a) (b)

r + r0

V

e −e
mr + r0

r0

Figure 1.5: (a) Lorentz oscillator model: An electron (−e,m) is connected to a fixed
nucleus (e) by a spring. (b) Interaction potential between electron and nucleus. The
system evolves in the vicinity of the equilibrium position r0.

An electron of mass m and charge −e is elastically linked to the nucleus of an atom (see
Fig. 1.5(a)). This nucleus is heavy and assumed fixed. The interaction potential V (r+r0)
versus the distance nucleus/electron (r0 + r) is sketched in Fig. 1.5(b). The motion of
the electron is achieved in the vicinity of the equilibrium position (r0). As a result, the
force deriving from the potential in the vicinity of r0 acts like a spring

Fn→e = −gradV ≈ −mω2
0r (1.24)

We assume non-relativistic electrons and therefore we neglect the magnetic force. More-
over, a damping force is opposed to electron motion (coefficient Γ). Finally, because the
wavelength is much larger than atom size, the electric field is assumed uniform.

As a result, the dynamic relation reads

m
d2r
dt2

= −eE(r = 0) −mω2
0r −mΓ

dr
dt

(1.25)

For a monochromatic problem (single frequency ω), solution of the form r(t) = r(ω)e−iωt

can be used as an ansatz. The solution of eq. (1.25) reads

r(ω) =
−eE(ω)/m

ω2
0 − ω2 − iΓω

(1.26)
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As a result, the dipole moment reads

p(ω) = −er(ω) =
e2E(r = 0)/m
ω2

0 − ω2 − iΓω
= ǫ0α0(ω)E(ω) (1.27)

where α0(ω) is the polarizability of the particle2. At macroscopic scale, for n identical
particles, the polarization density reads3

P(ω) = n〈p〉(ω) = ǫ0χ(ω)E(ω) (1.28)

where χ(ω) is the material susceptibility.

Helmholtz equation in a uniform dielectric media

In this manuscript, we will consider propagation of light in dielectric media, without
magnetic moment or current. First, we consider a uniform medium. In the spectral
domain, the Maxwell’s equations read

div B(r, ω) = 0 (1.29)

rot E(r, ω) = iωB(r, ω) (1.30)

div E(r, ω) =
−div P(r, ω)

ǫ0
(1.31)

rot B(r, ω) = −µ0iωP(r, ω) − µ0ǫ0iωE(r, ω) (1.32)

For a susceptibility χ(ω), eq. (1.31) reads

div (ǫ0E(r, ω) + P(r, ω)) = div (ǫ0E(r, ω) + ǫ0χ(ω)E(r, ω)) = 0 ⇒ div E(r, ω) = 0 (1.33)

Combining eq. (1.29-1.33)

rot rot E(r, ω) = grad div E(r, ω) − ∆E(r, ω) = iωrot B(r, ω)

= iω(−µ0iωP(r, ω) − µ0ǫ0iωE(r, ω))
(1.34)

Hence, the electric field fulfils

∆E(r, ω) + µ0ǫ0ω
2(1 + χ(ω))E(r, ω) = 0 (1.35)

If we define the index of refraction n(ω) =
√

1 + χ(ω), the field is driven by an equation
known as the uniform Helmhotz’s equation

∆E(r, ω) + µ0ǫ0ω
2n(ω)2E(r, ω) = 0 (1.36)

2The sign ”0” on the notation of the polarizability α0 means we consider the static limit ω → 0 (see
Appendix A).

3This relation is only true in the quasi-static limit (ω → 0). Otherwise, the polarizability of a single
atom and the susceptibility of the material are not proportional. A complete description requires a
correction factor we will recall in Appendix A.
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Helmholtz equation in a non-uniform dielectric media

Now, we consider the propagation of light in 1D or 2D dielectric inhomogeneous media
characterized by non uniform susceptibilities χ(r = (x, y), ω) (composed of different di-
electric materials, see Fig. 1.6 as example). In such systems, the zero divergence of the
electric field (div E = 0) in eq. (1.33) is not fulfilled

div (ǫ0E(r, ω)) + div (ǫ0χ(r, ω)E(r, ω)) =ǫ0(1 + χ(r, ω))div E(r, ω)

+ ǫ0gradχ(r, ω).E(r, ω) = 0
(1.37)

We decompose the electric field into a Transverse Electric (TE) and a Transverse Magnetic
(TM) components (see Fig.1.6). If we consider the TE component of the electric field
ETE = ETE(x, y)z, where z is the direction orthogonal to the 2D system, eq. (1.37) reads

ǫ0 (1 +χ(r, ω))div ETE(r, ω) + ǫ0gradχ(r, ω).ETE(r, ω) = ǫ0(1 +χ(r, ω))div ETE(r, ω) = 0
(1.38)

Inserting eq. (1.38), into Maxwell’s eq. (1.29-1.32) and projecting along z leads to Helmholtz
equation in non-uniform media

∆ETE(r, ω) + µ0ǫ0ω
2n(r, ω)2ETE(r, ω) = 0 (1.39)

where n(r, ω)2 = 1 + χ(r, ω).

ETE

ETM

n1

n2

z

Figure 1.6: Electric field E in an inhomogeneous medium composed of material of index
of refraction n1 and n2: The electric field can be expanded in a TE and a TM component.

In the case of piecewise constant refractive index distribution (for instance see Fig. 1.6), a
similar equation can be derived for BTM and the TM part of the electric field ETM can be
obtained thanks to Maxwell-Faraday’s eq. (1.30) [5]. As a result, the total electromagnetic
field is derived from a single scalar equation

∆U(r, ω) + µ0ǫ0ω
2n(r, ω)2U(r, ω) = 0 (1.40)

where U is the electric or magnetic field in transverse configuration.

In the scope of this manuscript, we will consider 1D or 2D dielectric media, where either
the electric field is TE or the refractive index is piecewise. Noting µ0ǫ0 = c−2, the
electromagnetic field in our media will be derived from the scalar Helmholtz equation

∆E(r, ω) +
ω2

c2
n(r, ω)2E(r, ω) = 0 (1.41)
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1.2 Light scattering by a particle

We derived in section 1.1.3 the evolution of the electric field in inhomogeneous media.
Eq. (1.41) emphasizes the influence on light propagation of a modification in the index
of refraction. In particular, when light encounters a rapid variation in the index of re-
fraction, its propagation is affected: The wave is scattered. In this section, we introduce
briefly the scattering. First we consider scattering by single particle and its effect on the
electromagnetic field. Then we focus on scattering with a large number of particles and
introduce averaged descriptions. More details can be found in [1, 6, 7].

1.2.1 Introduction

We consider the case of a plane wave (characterized by an electric field E0 = E0x at
wavelength λ) incident on a particle (length scale L, see Fig. 1.7(a)). When crossing the
particle, the electric field spreads in many directions: The particle scatters the incident
field. The resulting field Es is referred to as the scattered field. Far away from this
scatterer, in the far field approximation (distance ≫ L2/λ), this field reads

Es(u) = S(u)E0
ei

2π
λ
r

r
(1.42)

where u is the scattering direction and S(u) the scattering matrix. The scattering matrix
stands for the modification of the incident polarization (x in Fig. 1.7(a)). From an
electromagnetic point of view, the particle acts as a passive emitting source. When the
medium is stricken by light (see Fig. 1.7(b)), the electric field induces motion of charges
(free or polarization). This displacements lead to the build-up of a current density 〈jm〉
(see section 1.1.2) and these currents will radiate an electromagnetic field, referred to as
the scattering field. As a result, the scattered wave and the scattering matrix are set by
the geometrical shape and the material of the particle. As sketched in Fig. 1.7(c), the
directional scattering pattern can be rather complex and non-isotropic.

In the Helmholtz equation we derived in eq. (1.41), a scatterer is represented by a rapid
change in the index of refraction. For instance, in the example provided in Fig. 1.7, the
electric field satisfies

∆E(r, ω) +
ω2

c2
n(r)2E(r, ω) = 0 (1.43)

where n = 1 outside the particle and n = nmat inside (nmat is the index of refraction of
the material).

Now, we consider the total intensity scattered on the whole space. Using eq. (1.42), this
intensity reads

Is =
∫

r→+∞
|Es|2dS =

∫

r→+∞
|S(u)|2 |E0|2

r2
r2 sin θdθdφ (1.44)

where θ and φ stand for angular coordinates. Noting dΩ = sin θdθdφ the solid angle,
eq. (1.44) reads

Is = I0

∫

4π
|S(u)|2dΩ (1.45)
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where I0 = |E0|2 stands for the incident plane wave intensity per unit surface area.
Therefore, we can define from eq. (1.45) a surface called the scattering cross section

σs =
Is
I0

=
∫

4π
|S(u)|2dΩ (1.46)

This scattering cross section gives an averaged quantity measuring the scattering strength
of the particle.

(c)
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Is(u) = |Es(u)|2
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Es(u)

ux

L

(b)

〈jm〉

Figure 1.7: (a) The incident electric field E0 is scattered by a particle. The resulting
field Es is spread in all directions. (b) The scattered field results from the appearance of
local currents in the particle induced by E0. (c) Scattering diagram: The scattered field
is non-isotropic.

1.2.2 Scattering media

In section 1.2.1, we treated the scattering by a single particle. In scattering media, the
propagation of the electric field is still described by Helmholtz equation (see for instance
eq. (1.43)). Nevertheless, in media where the density of scattering is important, many
scattering events occur, which makes the scattering of the incident electric field difficult
to handle. In this section, we aim at introducing different approaches we use in Chapter 5
instead of the Helmholtz equation.

For instance, we will consider the case of a plane wave incident on a plane interface (see
schematic drawing of Fig. 1.8). In this problem, each time the light is scattered, the
intensity in the incident direction decays.

The decay is exponential and satisfies the Beer’s law

Is = I0e
− x

ls (1.47)

where ls defines the scattering length or mean free path. ls stands for the typical scattering
length-scale of the incident intensity. From ls we can define the transport length or mean
free path lt.

lt =
ls

1 − g
(1.48)
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x

Is

Is(x) ∝ exp(− x
ls

)

Figure 1.8: Schematic representation of light scattering: The intensity decays according
to the Beer’s law.

This relation between both lengths includes the asymmetry coefficient g = 〈cos(θ)〉 stand-
ing for the averaged angular scattering of particles constituting the medium (see for in-
stance Fig. 1.7(c)). lt stands for the length after which the direction of propagation of
the photon is randomized or the incident direction is lost. For an isotropic scattering g =
0 and for a directional scattering g → 1. In diluted systems, these lengths can be related
to the notion of cross section introduced in section 1.2.1. For instance the scattering cross
section σs reads

σs =
1
ρls

(1.49)

where ρ is the scatterer density. As a result, in this specific configuration, the multiple
scattering is easily related to single scattering quantity.

More generally, for 3D problems with a typical length-scale L much longer than the
scattering length ls (L ≫ ls), the light propagation will be described by a diffusion
equation. If we assume no absorption, the diffusion of the intensity I(r, t) will read

∂I

∂t
(r, t) −D∆I(r, t) +

1
ls
cI(r, t) = 0 (1.50)

where c is the speed of light in the medium and D = 1
3clt the diffusion constant (expression

only valid in 3D).

1.3 Light-Matter interaction: Matter excitation

In the first two sections, we investigated electric field evolution when interacting with
matter. In this section, we rather focus on the medium itself. First, we introduce the
discrete Bohr’s description of energy of particle [8] and the different transition mechanisms
between levels [9, 10]. Then, we investigate the static and the dynamic regimes of a two-
level atom in the electric field (see [9, 10]). Finally, we consider a four-level atom and
demonstrate how it can provide stimulated amplification (see [9, 10, 11]).
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1.3.1 Energy conversion transfer

Bohr’s hypothesis states [8] that the total energy of a particle (an atom for instance) can
only exhibit a discrete set of values. Hence, energy can only be modified by ”quantum
jumps” described by Einstein’s electromagnetic/matter interaction [12]. To introduce
the different scenarii of conversion, we consider an atom with two levels of energy (see
Fig. 1.9).

First, as sketched in Fig. 1.9(a), the atom can be excited from state 1 to state 2 via an
external input of energy. This is the pumping or external excitation. External energy can
be brought in various forms (e.g. chemical, optics, electrical).

The atom can decay from energy state 2 to 1 by spontaneous emission (see Fig. 1.9(b)).
The decay of energy is subsequently converted into a photon of similar energy hν0 =
E2 − E1 called the resonance transition. This emission is usually isotropic and happens
randomly. However, for an initially excited system, the probability of spontaneous emis-
sion decays exponentially versus time (see section 1.3.2).

Pr

(a)
2

1

E2

E1

Pumping

hν0

(b)

Spont. emission

hν

(c)

Absorption

hν
hν

(d)

Stim. emission

(e)

NR decay

Figure 1.9: Energy transfers: (a) Pumping/Excitation by an external source. (b) Spon-
taneous emission of a photon. (c) Absorption of an incident photon. (d) Stimulated
emission driven by an incident photon. (e) Non radiative (NR) decay.

The atom, initially in state 1, can also be excited into state 2 by absorption of an incident
photon at energy hν ≈ E2 −E1 (see Fig. 1.9(c)). The incident light beam is thus depleted
and looses a photon each time an absorption event occurs.

The atom initially in state 2, can also decay into level 1 by stimulated emission [13](see
Fig. 1.9(d)). The incident photon energy hν ≈ E2−E1 being close to resonance transition,
the atom emits a photon identical to the incident one. The photons are duplicated by
stimulated emission.

Last, the atom initially in state 2 decays to level 1 by non radiative transition (see
Fig. 1.9(e)). No photon is emitted and energy can be transferred via different non radia-
tive effects (e.g. vibration, collision, phonon).
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1.3.2 A two-level atom in an electromagnetic field

Population equations

Here we consider the textbook case (e.g. [9, 10]) of a total population of N two-level
atoms placed in the electromagnetic field. With the development of quantum dots acting
like artificial two-level atoms, this model is currently used in many fields of research (e.g.
in quantum information). In particular, it will be considered in Chapter 4.

The two levels are assumed non-degenerated i.e. there is one quantum state for each
energy level. This set of atoms acts like a single emitter with two energetic levels 1 and
2. No pumping is considered and we assume that all the conversion are radiative. Thus,
populations of different levels N1 and N2 read

dN1

dt
= A21N2 −B12N1u(ν) +B21N2u(ν) (1.51)

dN2

dt
= −dN1

dt
= −A21N2 +B12N1u(ν) −B21N2u(ν) (1.52)

where u(ν) is the photonic density at frequency ν. In eq. (1.51) and (1.52), A21 stands
for spontaneous decay from 2 to 1, B12N1u(ν) for absorption from 1 to 2 and B21u(ν) for
stimulated emission from 2 to 1. Moreover, the particle conservation reads

N = N1 +N2 (1.53)

In this specific case of non-degenerated atoms, absorption and stimulated coefficients fulfil

B12 = B21 (1.54)

Leading to population equations

dN1

dt
= A21N2 +B21(N2 −N1)u(ν) (1.55)

dN2

dt
= −dN1

dt
= −A21N2 −B21(N2 −N1)u(ν) (1.56)

Steady state regime

In the steady state regime, eq. (1.55) and (1.56) read

0 = A21N2 −B12N1u(ν) +B21N2u(ν) (1.57)

0 = −dN1

dt
= −A21N2 +B12N1u(ν) −B21N2u(ν) (1.58)

As a result, for a non-degenerated problem

A21N2 +B21u(ν)(N2 −N1) = 0 (1.59)

With conservation relation of eq. (1.53), eq. (1.59) reads

A21N2 +B21u(ν)(2N2 −N) = 0 (1.60)
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u(ν)

N1 N2

N

N/2

0

Figure 1.10: Steady state population Ni,ss: They evolve linearly for low energy. Both
populations converge to N/2 for high energy.

Leading to steady state expressions of the populations

N1,ss = N
A21 +B21u(ν)
A21 + 2B21u(ν)

(1.61)

N2,ss = N
B21u(ν)

A21 + 2B21u(ν)
(1.62)

In Fig. 1.10, we plot the evolution of the population in the steady state versus the photonic
density.

Fig. 1.10 highlights that, for a two-level atom, high energy population (N2) is smaller than
lower energy population (N1). The inversion population is negative: ∆N = N2 − N1 <
0. Moreover, we know from eq. (1.55) that stimulated emission and absorption coexist.
This is emphasized by the right-hand side term B21u(ν)(N2 −N1) in eq. (1.55). Hence, to
achieve a photonic amplification with stimulated emission, we need to impose a positive
inversion population ∆N to compensate for the absorption. As a result, the two-level
atom cannot be used as an amplifying medium.

If at low u(ν) the populations evolve linearly with the energy, Fig. 1.10 also stresses the
convergence of populations at high energy. This phenomenon is called the saturation of
the emitter (see Chapter 6) and is related to the finite energy that the emitter can provide.

Dynamic regime

In Chapter 4, we will investigate the evolution of a two-level emitter in a electromagnetic
field in the time domain. To give an overview of two-level atom temporal dynamic, we
consider the situation of atoms excited in the steady state regime for t < 0. At t = 0, the
field excitation is turned-off (u(ν) = 0).

At initial time (t = 0), the high energy population reads N2(0) = N2,ss. After the
excitation has been switched-off, the temporal evolution of N2 is given by

dN2

dt
= A21N2 ⇒ N2(t) = N2,sse

−A21t (1.63)
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t

N2

N2,ss

τS00

(a) (b)

ω = 2πν

I

ΓS = 1
τS

ν0
00

Figure 1.11: (a) High energy population N2 versus time: The population decreases expo-
nentially with a characteristic time τS. (b) Atoms are emitting photons by spontaneous
emission: The resulting emission spectrum is centred in the transition frequency ν0 and
the linewidth is fixed by the time τS.

As a result, the population of excited atoms will be progressively depleted by spontaneous
emission of photons. This decay is characterized by a time τS = 1/A21 (see Fig. 1.11(a)).
As shown in Fig. 1.11(b), the resulting spectrum has a Lorentzian shape centred at
ν0 (ν0 is the resonant frequency between the two states). The temporal decay τS of
excited atoms population (N2) fixes the linewidth of emission in the spectral domain
(ΓS = 1/τS). In this particular case, we have omitted non-radiative transition. In presence
of non-radiative transitions, some atoms in populationN2 decay without emitting photons.
Hence, the resulting spontaneous emission will be modified. Both radiative and non-
radiative transitions affect the spectral linewidth ΓS = 1/τS, which reads

ΓS = ΓRS + ΓNRS (1.64)

where ΓRS stands for radiative decay and ΓNRS for non-radiative.

1.3.3 Four-level atomic system

Achievement of laser sources relies on the duplication of photons via stimulated emission
(see Chapters 5-8). We demonstrated in section 1.3.2 that a two-level atom cannot be
used to perform stimulated amplification. A more complex medium is required.

In the scope of this manuscript, we will consider media composed of four-level atoms (see
for instance [9, 10, 14]). The four-level description is widely used for modelling amplifying
media (e.g. Rhodamine or Ti:Sapphire). As sketched in Fig. 1.12, the atom is described
by four levels of energy, namely levels 0, 1, 2 and 3. The system is pumped (Wp) by an
external source of energy, which brings atoms from level 0 to 3. Transition from level 2 to
1 provides the stimulated emission. Transitions from 3 to 2 and 1 to 0 are assumed non-
radiative and extremely fast. Hence, levels 3 and 1 are empty. As a result, the population
of different levels read

dN3

dt
≈ 0 = WpN0 − A32N3 (1.65)

dN2

dt
= A32N3 − A21N2 −B21(N2 −N1)u(ν) (1.66)

dN1

dt
≈ 0 = −A10N1 + A21N2 +B21(N2 −N1)u(ν) (1.67)
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Figure 1.12: Four-level atom: Level 0 is pumped to level 3. Transitions between 3 and 2
and 1 and 0 are non-radiative. Transitions between levels 1 and 2 are radiative.

dN0

dt
= −WpN0 + A10N1 (1.68)

From eq. (1.65) and N1 ≈ 0 we deduce

dN2

dt
= WpN0 − A21N2 −B21N2u(ν) (1.69)

and
dN0

dt
= −WpN0 + A21N2 +B21N2u(ν) (1.70)

Using the conservation relation N0 +N2 = N , eq. (1.69) reads

dN2

dt
= Wp(N −N2) − A21N2 −B21N2u(ν) (1.71)

Therefore, the inversion population ∆N = N2 −N1 ≈ N2 fulfils

d∆N
dt

=
1
τ

(

∆N0 − ∆N − u(ν)
usat

∆N

)

(1.72)

where

τ = (WP + A21)−1 (1.73)

∆N0 = N
Wp

Wp + A21
(1.74)

usat =
Wp + A21

B21
(1.75)

Solution of eq. (1.72) in steady state regime reads

∆N =
∆N0

1 + u(ν)
usat

= N
Wp

(Wp + A21)
(

1 + u(ν)
usat

) (1.76)

As a result, the inversion population is positive and its amplitude is triggered by the
pump intensity. Hence, in four-level media, stimulated amplification can be achieved.
Eq. (1.76) also highlights the inversion population saturates for high energy u(ν). We will
investigate in Chapter 6 the role played by saturation on amplification process. In the
rest of this manuscript we will consider the gain media as four-level atomic systems.
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1.4 Summary

In the present chapter, we have introduced basic notions required to study light-matter
interaction in a semiclassical approach. In 1D and 2D dielectric media, the electromag-
netic field is studied in a classical way and is described by a scalar linear equation, namely
the Helmholtz equation. This equation conveniently describes electromagnetic field prop-
agation in media with homogeneous and inhomogeneous refractive index. We have also
briefly introduced the scattering of electromagnetic field by a discontinuity embedded in
the medium. We have stressed the manifestations of the scattering at particle scale and
macro-scale. Finally, we have stated that the matter is described with quantized levels of
energy and the ”jumps” between levels are achieved with various mechanisms that we in-
troduced. Starting from this description, we have investigated the static and the dynamic
evolution of two-level and four-level systems. We have demonstrated that a photonic am-
plification cannot be performed on two-level atom and requires a more complex system
such as four-level atoms.
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In physics, a wave is described as a propagation of energy through time and space.
Its study is complicated by the intrinsic dependency of time and space. The aim of the
modal description is to simplify the description of wave by carrying out its expansion along
specific vibrational states of the problem. These vibrational states define the modes of the
system. The notion of mode has been widely used in quantum as well as in classical physics
[15, 9]. However, the nature of modes differs when the system is energy-conservative
(hermitian) or non-conservative (because of absorption or openness). For non-hermitian
problems, the modes are associated with the resonances. Because the resonances represent
specific signatures of the system, their study is of fundamental interest in various domains
of application such as biophotonics [16, 17] for single molecule fluorescence detection,
antennas [18, 19] and photonic crystals [20, 21]. Hence, finding the vibrational states
of open structures with non-trivial geometries is thus of great theoretical and practical
interest.

In this chapter, we investigate the description of modes in open problem and consider the
specific case of disordered systems. First, we introduce the concept of modal expansion in
hermitian and non-hermitian systems. Because, vibrational states are of different nature,
the characteristics of the modes differ from hermitian to non-hermitian. Then, we describe
the modes in the specific case of open systems. The openness requires to define a different
mathematical formalism, which differs from hermitian physics. Finally, we consider the
specific case of disordered open systems. The study of resonances provides an interesting
tool to investigate the mechanism of wave localization by disorder, namely the Anderson
localization.
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2.1 Introduction to Modes in hermitian/non-hermitian
systems

The aim of this section is to introduce the concept of modes in hermitian and non-
hermitian systems using the guideline example of the Melde’s string. For an energy-
conservative (hermitian) system, the modes are defined as the stationary solutions of the
problem. When losses are introduced, the problem becomes non-hermitian. In other
words, stationary solutions no longer exist and the modes correspond to the resonances
of the problem. Because, hermitian and non-hermitian modes are of distinct nature, they
exhibit different properties. Among them, the mode degeneracy is a specific signature of
each case.

2.1.1 Stationary solutions of hermitian systems

The Melde’s string

To introduce the concept of mode, we consider the example of the Melde’s string (see
Fig. 2.1). A string of length L is excited by an electromagnet (frequency ν and a small
amplitude a) at one edge and maintained static by a mass at the other. The height,
h(x, t), varies in time and space, defining a wave (see Fig. 2.1). In this academic example,
losses are neglected and energy is conserved through time: The system is said hermitian.
The corresponding relation of motion, with a wave celerity v, is given by the Alembert’s

xb

M

h(x, t)

acos (2πνt)

Figure 2.1: Melde’s string loss free: A string of length L is excited by an electromagnet
at the one edge (x = 0). The amplitude and frequency of the excitation are respectively
a and ν. A wave described by the height of the string h(x, t) propagates. The presence
of a heavy mass forces the wave to be zero at the edge x = L.

equation
∂2h

∂x2
(x, t) − 1

v2

∂2h

∂t2
(x, t) = 0 (2.1)

This equation is a second order derivative, thus requires two boundary conditions. Because
the system is excited at one edge and clamped at the other one, these boundary conditions
read

h(0, t) = a cos (2πνt) & h(L, t) = 0 (2.2)

The system is loss free, thus eq. (2.1) can be solved using stationary solutions. From
a mathematical point of view, solving a problem by adopting stationary waves consists
in adopting a trial solution of the form h(x, t) = f(x)g(t), where f, g ∈ R

2. Physically
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speaking, this is equivalent to considering time and space separately: The spatial distri-
bution of the wave remains identical whatever the time and vice versa. Adopting this
approach, eq. (2.1) can be solved in the stationary regime and any solution reads

h(x, t) = a
sin(k(L− x))

sin(kL)
cos(2πνt) = |h(x)|ν cos(2πνt) (2.3)

where |h(x)|ν is the wave amplitude, k stands for spatial frequency related to spectral
excitation frequency by the simple dispersion relation k = 2πν

v
. Now, we assume that the

excitation frequency ν spans the frequency space. In Fig. 2.2(a), we record the response of
the Melde’s string with respect to the excitation frequency. For a discrete set of frequency

ν

(a) (b)
|h(x)|ν

ν1 ν2 ν3 ν4 ν5 ν6
h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

h6(x)

Figure 2.2: (a) Amplitude of wave |h(x)|ν with respect to the excitation frequency ν:
When approaching frequencies νp amplitude diverges. (b) Spatial distributions hp(x) of
the wave at specific frequencies νp.

(νp), the amplitude of the wave diverges

|h(x)|ν=νp → +∞
∣
∣
∣ νp =

vp

2L
(2.4)

At these particular frequencies, an infinitesimal excitation of the system (a → 0) will
make the string oscillate for ever. In the spatial domain, the wave will simultaneously
describes oscillations

hp(x) = sin

(

2πνp(L− x)
v

)

(2.5)

Hence, each couple of frequency and spatial distribution ((νp, hp(x)), see Fig. 2.2) repre-
sents an eigensolution or eigenstates of eq. (2.1). In wave physics, these sets of stationary
solutions defined by couples of eigenvalue/eigenvector are referred to as the (hermitian)
modes of the system. These modes define privileged vibrations in time and space of the
string.

Modal expansion in hermitian problem

Now, the electromagnet responsible for the excitation is switched off. The system is
turned into a string clamped at both extremities. When a wave propagates through the
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string, it can be expanded into a sum of stationary waves solution of eq. (2.1). Hence,
any wave h(x, t) is a linear combination of the modes (νp, hp(x)) described in section 5.1.1

h(x, t) =
∑

p

aphp(x) cos (2πνpt) (2.6)

where ap are expansion coefficients. In the Fourier’s domain, eq. (2.6) leads to a discrete
spectrum

H(x, ν) =
∑

p

aphp(x)δ(ν − νp) (2.7)

Because the spectral components are infinitely thin, there is no spectral overlap between
the modes (see Fig. 2.3). In the space domain, defining the scalar product

ν

|H(x)|ν

ν1

a1

ν2

a2

ν3

a3

ν4

a4

ν5

a5

ν5

a6

Figure 2.3: Example of a hermitian wave spectrum: The spectrum is discreet and com-
posed of an infinite number of modes at frequencies νp.

〈u|v〉 =
∫

L
u(x)∗v(x)dx (2.8)

it turns out that all the spatial distribution of the modes hp(x) (see Fig. 2.2) are orthogonal

〈hp|hq〉 = δpq (2.9)

Hence, there is neither spatial nor temporal overlap between the modes. From a physical
point of view, a wave propagating in a hermitian system can be described by a linear su-
perposition of independent vibrations. There is no exchange of energy between hermitian
modes.

2.1.2 Resonances of non-hermitian systems

The Melde’s string... with losses

When the total energy of the system is not conserved over time, the system is said non-
hermitian. For non-hermitian problems, because energy escapes from the system through
time, defining the modes as stationary vibrations (time independent) is not possible. In
this manuscript, we consider losses of two kinds

• The presence of a complex potential: energy (wave) is absorbed or amplified.

• The openness of the system: energy (wave) leaks at the edges of the system.
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To carry on with the Melde’s string experiment, we introduce absorption with a damping
coefficient α affecting the first order in eq. (2.1):

∂2h

∂x2
(x, t) − α

∂h

∂t
(x, t) − 1

v2

∂2h

∂t2
(x, t) = 0 (2.10)

Because of the absorption, waves described by eq. (2.10) can no longer be considered as
stationary solutions. We measure the amplitude of the wave versus excitation frequency ν
in a similar manner to the hermitian case (see Fig. 2.4(a)). The amplitude of the spectral
response no longer diverges. Because of absorption, each excitation will be attenuated
in time until it disappears: The system no longer exhibits divergences resulting from
stationary solutions. However, even if the amplitude does not diverge, some maxima
remain at specific frequencies. These frequencies also correspond to privileged oscillations
called the resonances of the system. Compared with stationary solutions, resonances are
attenuated in time. This attenuation is directly related to the broadening of resonances in
the spectral domain (see Fig. 2.4(b)). As a result, the definition of resonances differs from
stationary solutions: A resonance is defined by a spatial distribution (hp(x)), a central
frequency (νp) and a spectral linewidth (∆νp). Similar to the hermitian case and the
stationary solutions, it is possible to define frequency for resonances, but these frequencies
are now complex (Ωp = 2πνp − i2π∆νp

2 ) as initially suggested by Gamov [22]. In wave
physics, the sets of complex frequency Ωp and spatial distribution hp(x), are referred to
as the quasi-modes or non-hermitian modes of the system. Hence, in hermitian systems,

(a)

ν

|h(x)|ν

ν1 ν2 ν3 ν4 ν5 ν6

∆ν1 ∆ν2 ∆ν3 ∆ν4 ∆ν5 ∆ν6

(b)

ν

|H(x)|ν

ν1 ν2 ν3 ν4 ν5 ν6

Figure 2.4: (a) Amplitude of the wave |h(x)|ν according to the frequency excitation
ν: The response exhibits specific maxima referred to the resonances. Each resonance
is characterized by a central frequency νp and a linedwith ∆νp. (b) Example of wave
decomposition in the spectral domain: The spectrum is continuous. Each maximum is
related to a resonance of the system.

modes are derived from stationary solutions, while in non-hermitian systems, modes are
related to resonances. However, in both cases, the modes are related to a privileged
vibrational frequencies and thus stand for eigenstates of the problem.

Modal expansion in non-hermitian system

Similar to the hermitian case, the wave in non-hermitian systems can be expanded along
the modes of the system. But unlike the hermitian case, the modes are not independent
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and influence each other. By way of illustration, if we perform the modal expansion in
the case of the Melde’s string, any wave solution of eq. (2.10) reads

h(x, t) =
∑

p

aphp(x) cos (2πνpt) e− ∆νp
2
t (2.11)

where ap are simple coefficients. Each component is now damped. Eq. (2.11) leads to a
continuous spectrum in the spectral domain (see Fig. 2.4(b))

H(x, ν) =
∑

p

aphp(x)
1

iω − iΩp

(2.12)

Moreover, this damping also affects the spatial distribution of the modes and breaks there
orthogonality

〈hp|hq〉 6= δpq (2.13)

Hence, non-hermitian modes have spatial and spectral overlap.

From a physical point of view, this basic example highlights that non-hermitian modes
are not independent vibrations. Energy can be exchanged between modes, which makes
them different from hermitian modes. The field is described by a superposition of non
independent vibrations. Hence, the properties of non-hermitian modes will differ from
the hermitian case. Mathematically speaking, the non-orthogonality of modes affects the
completeness of the set of spatial distribution (hp(x))p in infinite dimension problem. In
others words, the uniqueness of the coefficients in eq. (2.11) is no longer guaranteed and
is problem-dependent.

2.1.3 Fingerprint of hermitian/non-hermitian systems

As stated in sections 2.1.1 and 2.1.2, modes in hermitian or non-hermitian systems have
different properties. To highlight their differences, we propose to investigate a simple
example of Quantum Mechanics problem: The electron in a double quantum well.

Two-mode interaction in a hermitian system

First, we consider two independent quantum wells L and R far away from each other.
In hermitian quantum mechanics, the stationary solutions of this problem are given by
the eigenstates (eigenvalues/eigenvectors) of the energy operator called the Hamiltonian.
The two quantum wells are considered distant and independent (see Fig. 2.5(a)). Each
quantum well is characterized by a spatial distribution |ΦL/R〉 and a real energy EL/R.
Hence, the problem can be reduced in the form of a Hamiltonian H0:

H0 =

(

EL 0
0 ER

)

(2.14)

In this simple case, the eigenstates of the full problem correspond to the eigenstates of
each individual well

(

EL/R, |ΦL/R〉
)

.

Now, the two wells are brought closer to each other (see Fig. 2.5(b)). The interaction
between the two wells is introduced by adding a hermitian perturbation described by an
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(a) (b)

...

E

EL

ER

ΦL ΦR

E

E+

E−

Φ+ Φ−

Figure 2.5: (a) Two quantum wells R/L are considered independently: They define
eigenstates equivalent to stationary solutions (ER/L,ΦR/L). (b) When the two eigenstates
interact, they create new eigenstates (E±,Φ±).

operator T responsible for tunnelling from one well to the other. The new Hamiltonian
H writes

H = H0 + T =

(

EL 0
0 ER

)

+

(

0 TLR
TRL 0

)

H =

(

EL TLR
TRL ER

)

(2.15)

where TLR = 〈ΦL|T |ΦR〉 ∈ R, TRL = 〈ΦR|T |ΦL〉 = TLR. In this case, the Hamiltonian
describing the electron evolution is hermitian: By extension the problem is said hermitian.
Because H is hermitian, its eigenstates are described by real energy E±

E± =
EL + ER

2
±
√

(EL − ER)2

4
+ |TRL|2 ∈ R (2.16)

And defining the inner product

〈a|b〉 = [a∗
1a

∗
2] [b1b2]

T (2.17)

the eigenvectors Φ± are orthogonal

Φ± =

[
TLR

±
√

(EL−ER)2

4 + |TRL|2 − EL−ER

2

]

& 〈Φ+|Φ−〉 = 0 (2.18)

Similar to the case of the Melde’s string, the wave function of the electron will infinitely
”oscillate” at real frequencies E± along non interacting spatial distributions Φ±. Thus,
the total energy of the system will be conserved over time. These eigenstates (E±,Φ±)
(see Fig. 2.5(b)) are analogue to eigenmodes introduced in section 5.1.1 for the hermitian
problem.

Hermitian degeneracy: Diabolic Point

Carrying on the previous example of the double hermitian quantum well, we assume that
the different parameters (EL, ER and TRL) can be modified by playing with the depths
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of wells and the gap between them. We assume that these parameters are independent,
which means that they can be varied without influencing each other. We consider a
configuration where eigenvalues become degenerated

E+ = E− = (EL + ER)/2 (2.19)

In the present case, the problem is non-dissipative with time-reversal symmetry, thus H
is real and symmetric [23]. We need to fix the two real parameters (e.g. for a given EL
we will modify ER and TRL) to achieve the degeneracy suggested in eq. (2.19)

ER = EL & TRL = 0 ⇒ E+ = E− (2.20)

The problem is said of co-dimension 2 [23]. For hermitian but complex hamiltonian (non-
dissipative without time-reversal symmetry), three parameters are needed (co-dimension
3 [24]).

If eigenvalues can become identical at a specific point in the parameter space (ER, TRL),
the spatial distribution of the modes remain orthogonal at degeneracy because the system
is hermitian. This specific configuration introduced by Berry and Wilkinson [25], where
eigenvalues are identical and eigenvectors are orthogonal, is called a Diabolic Point. The
origin of the appellation comes from geometry of the Riemann’s sheets of eigenvalues
E± in the parameter space. They describe a double cone (diabolo) connected at the
degeneracy [25]. As a matter of illustration, we plot in Fig. 2.6 the evolution of the real
eigenvalues (E±) of the double-quantum well in the parameter space (ER, TRL). Diabolic
Point can also appear in non-hermitian systems but its observation is hindered by the
required number of independent parameters (at least a co-dimension of 4). Hence, with
2 independent parameters, the observation of a Diabolic Point is specific to hermitian
problems.

TRL

ER

E±

Figure 2.6: Evolution of the real eigenvalue E± in the parameter space (ER, TRL). The
eigenvalues evolve along Riemann’s sheet intersecting at a single point: The Diabolic
Point. The two sheets describe cones connected like a diabolo.

One of the major manifestation of the Diabolic Point is its influence on the Berry’s phase
[26]. The Berry’s phase is of geometrical origin. When a system (indifferently quantum



30 Chapter 2. Modes In Open Random Media

or classical) undergoes an adiabatic transformation, it acquires a residual phase due to its
evolution within the parameter space. The Berry’s phase has been observed in quantum
optics [27], classical optics [28] and even microwave cavity [29]. When a Diabolic Point is
encircled within the parameter space, the Berry’s phase accumulates a π phase [30].

Two-mode interaction in a non-hermitian system

The hermiticity is related to the conservation of the energy and breaks down when losses
are introduced. Here, we consider the double quantum well with complex energies EL/R−
iΓL/R, where ΓL/R are due to absorption introduced within each well. The problem being
non-hermitian, its Hamiltonian is non-hermitian and TRL = TLR ∈ C:

H =

(

EL − iΓL TLR
TRL ER − iΓR

)

(2.21)

The eigenstates are now defined by eigenvalues:

E± =
(EL + ER) − i(ΓL + ΓR)

2
±
√

((EL − ER) + i(ΓL − ΓR))2

4
+ T 2

RL ∈ R (2.22)

The eigenvectors Φ±:

Φ+ =

[
TLR

√
((EL−ER)+i(ΓL−ΓR))2

4 + T 2
RL − (EL−ER)+i(ΓL−ΓR)

2

]

Φ− =

[
TRL

−
√

((EL−ER)+i(ΓL−ΓR))2

4 + T 2
RL − (EL−ER)+i(ΓL−ΓR)

2

]

(2.23)

And the scalar product between Φ± is no longer zero

〈Φ+|Φ−〉 6= 0 (2.24)

Similar to the example of the Melde’s string developed in sections 2.1.1 and 2.1.2, the
introduction of losses makes the eigenvalues complex and the spatial distribution non-
orthogonal. The complex eigenvalues and the spatial non-orthogonality of modes remain
valid if openness is responsible for the losses instead of absorption.

Non-hermitian degeneracy: Exceptional Point

In non-hermitian systems, varying different parameters can also bring to a degeneracy
of energies E± = E. However, unlike hermitian case, in non-hermitian systems the
eigenvectors are a priori non-orthogonal. Hence, within the parameter space, both the
eigenvalues and the eigenvectors of the Hamiltonian can become identical at a specific
position. For instance, in the eigenstates derived in eq. (2.22) and (2.23)

((EL − ER) + i(ΓL − ΓR))2

4
+ T 2

RL = 0 ⇒ E+ = E− & Φ+ = Φ− (2.25)

Introduced by Kato in 1966 [31], this ”non-hermitian degeneracy” is called an Excep-
tional Point. At Exceptional Point, rather than leading to a simple degeneracy, the two
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eigenstates coalesce and become indistinguishable. For complex non-hermitian Hamilto-
nian, only 2 independent parameters are required to reach this non-hermitian degeneracy.
Eq. (2.25) is fulfilled by imposing both the real and the imaginary parts of TRL: The
problem is of co-dimension 2.

From a mathematical point of view, at Exceptional Point, the space formed by eigenstates
is incomplete. At this specific position, both eigenstates merge to form a Jordan’s Matrix:

H@EP ∼
[

E 1
0 E

]

(2.26)

The paradox of this matrix is to be diagonalizable and thus to be equivalent to the identity

H@EP ∼ E

[

1 0
0 1

]

(2.27)

Because no matrix is equivalent to the identity (except the identity itself), the Jordan’s
matrix cannot be diagonalizable. Hence, the 2 dimensional space described by the matrix
is incomplete and equivalent to a single point. For that reason, an Exceptional Point
can be understood like a topological default. To emphasize this statement, we plot the
real and imaginary parts of eigenvalues E± in Fig. 2.7(a) and (b). In the vicinity of an
Exceptional Point, the eigenvalues (or complex frequencies) exhibit an intricate topology.
The real and imaginary parts of the eigenvalues define intersecting Riemann’s sheets.
Thus Exceptional Point is of a totally different nature from Diabolic Point.

Re(TRL)

Im(TRL)

Re(E±)

Re(TRL)

Im(TRL)

Im(E±)(a) (b)

Figure 2.7: Riemann’s sheets described by eigenvalues E± in the vicinity of the Excep-
tional Point in the parameter space (Re(TRL), Im(TRL)): (a) Real parts of E± are identical
along a blue stripe. (b) Imaginary parts are similar along the red stripe. At Exceptional
Point, both complex eigenvalues are identical and eigenvectors are collinear.

We stressed in section 2.1.3 that Diabolic Point could be observed in non-hermitian prob-
lems, but for a co-dimension 4 at least. Hence, we explained that in co-dimension 2 it
stands for a signature of hermitian problems. Here the situation is unambiguous: Ex-
ceptional Point cannot be observed in hermitian systems. The Exceptional Point is the
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fingerprint of non-hermitian systems. The non-trivial evolution of eigenvalues close to
the Exceptional Point (see Fig. 2.7) also involves a geometrical phase when encircling the
Exceptional Point in the parameter space [32, 33]. However, unlike the Diabolic Point,
four round trips are needed to restore the eigenstates. Moreover, because both eigenvalues
and eigenvectors coalesce, discerning one mode from the other becomes impossible, which
leads to problem with mode labelling [34, 35, 36].

Exceptional Points have a certain robustness, which makes them rather easy to investi-
gate than Diabolic Point. Remarkably enough, they appeared to be involved directly or
indirectly in a several physical effects. For instance, they are related to level repulsion
[37], mode hybridization [38], quantum phase transition [39] or even strong coupling [35].
In fact, Exceptional Point appears to be a convenient tool to give a new insight to many
effects.

2.2 Modes in open system

In section 2.1.2, we have introduced the concept of modes in non-hermitian problems,
where absorption was responsible for losses. In open systems, the derivation of the modes
is different because the wave is not necessarily bounded and can propagate outside the
system. This propagation inducing striking difficulties, different approaches have been
proposed to overcome them. In this section we derive the modes of an open cavity using
the Siegert’s approach, also known as quasi-bound states, quasi-normal modes or Siegert
states. Then, we emphasize the limitation of the Siegert’s description of resonances.
Finally, we introduce the biorthogonal formalism required to develop linear algebra with
Siegert states.

2.2.1 Deriving modes in open media

The Siegert states

In many physical applications, the electrical field, like many other waves, cannot be
confined spatially and propagates outside the system. In this kind of problem, the non-
conservation of the energy is due to system openness. Therefore, the standard approaches
for the introduction of modes and quantization based on eigenvectors of Hermitian op-
erators are not applicable in this situation [40]. To overcome this difficulty, different ap-
proaches have been proposed: The Fox-Li modes [41], the Siegert states [42], the modes of
the universe, the natural modes [43] or more recently the Constant Flux modes [44]. All
those sets of modes have benefits and drawbacks and their use is often case-dependent. In
the study of highly open systems, the modes are commonly derived thanks to the Siegert
states or the Constant Flux modes. In the present work, we choose the Siegert states
approach1.

In his seminal paper [42], Siegert investigated the resonances in atomic and molecular
systems and proposed to describe the resonances in a way similar to field quantization in

1For Constant Flux modes, the outside propagation is characterised by a real frequency ω and a
constant flux of energy. Unfortunately the frequency of oscillation ω is driven by a numerical parameter.
The introduction of this parameter highly complicates the formalism we aim at developing here.
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quantum optics. To derive them, he solved the Schrödinger’s equation with a boundary
condition at infinity containing only outgoing waves and no incoming incident waves.
This outgoing condition is referred today as the Siegert’s condition or Gamov-Siegert’s
condition [22]. Noting (Ωp,Φp(r)) the mode corresponding to this resonance, kp = Ωp/c
the wave vector and r the spatial coordinate, the Siegert’s condition reads

Φ(r → ∞) ∝ eikpr ⇔ ∂Φ
∂r

(r → ∞) = ikpΦ(r → ∞) (2.28)

Modes of a 1D slab

As a guideline example, we consider the case of a 1D slab of index n and length L. A
perfect mirror is placed at its left edge x = 0 whereas its right edge x = L is open in
vacuum (see Fig. 2.8(a)). For such dielectric problem in dimension 1 or 2, the electrical
field E(r, t) fulfils Helmholtz equation:

∆E(r, t) − n(r)2∂
2E

∂t2
(r, t) = 0 (2.29)

where r stands for spatial coordinates, n(r) the refractive index distribution and the speed
of light of vacuum is fixed to 1 for sake of notation compactness. Eq. (2.29) reads in the
frequency domain

∆E(r, ω) + n(r)2k2E(r, ω) = 0 (2.30)

where the dispersion relation imposes Ω = kc = k. Hence, in this one dimension problem,
each mode (Ωp,Φp(x)) fulfils:

d2Φp

dx2
(x) + n(x)2Ω2

pΦp(x) = 0 (2.31)

With the boundary conditions enforced by the mirror and the Siegert’s condition for each
mode

Φp(0) = 0 &

(

d

dx
− iΩp

)

Φp

∣
∣
∣
∣
∣
x→∞

= 0 (2.32)

Eq. (2.31) gives the motion of modes inside the cavity Φp,in:

(a)

x
n 1

x

(b)

|Φ2(x)|2

|Φ3(x)|2

Figure 2.8: (a) 1D slab open medium of length L with a uniform index of refraction n.
(b) Intensity of different modes derived with the Siegert’s approch. The red ellipses point
out the divergence of intensity outside the medium.

Φp,in(x) = Aine
inΩpx +Bine

−inΩpx (2.33)
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where Ain and Bin correspond respectively forward and backward propagation coefficients.
From eq. (2.32), we can easily deduce that Bin = −Ain and

Φp,in(x) = 2iAin sin(nΩpx) (2.34)

In this particular case, the outgoing condition is fulfilled as soon as the mode escapes
from the cavity i.e. when x ≥ L. Hence, the mode outside the cavity Φp,out reads

Φp,out(x) = Aoute
iΩpx (2.35)

To link inside and outside expressions, we use the energy continuity:

Φp,in(L) = Φp,out(L) &
dΦp,in

dx
(L) =

dΦp,out

dx
(L) (2.36)

Using expressions of mode inside and outside (eq. (2.34) and (2.35)):

2iAin sin(nΩpL) = Aoute
iΩpL & 2inΩpAin cos(nΩpL) = iΩpAoute

iΩpL (2.37)

leading to

tan(nΩpL) = −in ⇔ −ei2ΩpL =
n+ 1
n− 1

(2.38)

Hence, we find an infinite set of mode frequencies referred to as Ωp:

Ωp =
(2p+ 1)π

2nL
− i

1
2nL

ln
(
n+ 1
n− 1

)

∀p (2.39)

and the corresponding spatial distributions Φp(x):

Φp,in ∝ ei
(2p+1)πx

2L e
x

2L
ln( n+1

n−1
) − e−i (2p+1)πx

2L e− x
2L
ln( n+1

n−1
)

Φp,out ∝ ei
(2p+1)πx

2nL e
x

2nL
ln( n+1

n−1
)

(2.40)

The Siegert’s approach solve the eigenvalue problem defined by eq. (2.29) using a specific
boundary condition. The complex frequency Ωp = kpc and related spatial distribution
Φp(x) are derived for each mode.

2.2.2 Limits of Siegert’s modes

Infinite spatial energy

Carrying on the example of the 1D slab, we plot the spatial evolution of the modes inside
and outside the cavity in Fig. 2.8(b). Unlike hermitian modes, the non-hermitian modes
have a complex frequency as shown in eq. (2.39). The imaginary part of the complex fre-
quency, standing for the linewidth of the resonance, has to be negative to ensure temporal
decay of the field intensity. The spatial amplitude of the modes is bounded inside the slab
(see Fig. 2.8(b)). However, because of negative imaginary part of the complex frequency,
the amplitude of all modes exponentially diverges outside the system (see Fig. 2.8(b)).
Physically, this exponential divergence corresponds to a wavefront excited at past times
and propagating away from the system. The infinite energy can be understood as the
accumulation of the energy radiated from the open system to the rest of the universe.
This point stresses that space and time cannot be separately considered like in hermitian
stationary cases: The spatial divergence is compensated by a temporal ”damping”. This
spatial divergence of Siegert’s modes stands for the main limitation of Siegert states and
requires specific mathematical investigations.
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Inner product

One of the major limitation of a diverging spatial energy is the impossibility of using the
conventional inner product

〈u|v〉 =
∫

u∗(x)v(x)dx (2.41)

Because of this divergence, the integral of eq. (2.41) between two modes requires a special
investigation: The modes are not square integrable. To overcome that difficulty, several
solutions have been proposed. A possible solution consists in correcting the spatial dis-
tribution of the modes, by imposing for instance the outgoing condition at a well-defined
finite distance [45, 46], or considering separately the mode behaviour inside and outside
the cavity [43]. Another approach relies on carrying out a suitable mathematical trans-
form (as initially suggested by Zeldovich [47]). Zeldovich’s idea consisted in compensating
for the divergence by defining a regularized inner product. He historically proposed the
function F (x) = e−ǫx2

to define a new inner product:

〈u|v〉 → 〈u|F |v〉 =
∫

u∗(x)F (x)v(x)dx (2.42)

The negative exponent in x2 overcomes the divergence of the modes at infinity. To avoid
any loss of physical information, Zeldovich proposed to take the limit case where ǫ → 0.
Many other transforms have been proposed, which recast the space coordinates and per-
form what is called complex scaling (see [48] for a complete description). The basic idea
of these transforms is to use complex coordinates to compensate for the exponential diver-
gence of the mode and make the inner product integrable. In the rest of this manuscript,
we will assume that the inner products are regularized using Zeldovich’s approach

〈u|v〉 ⇔ limǫ→0

∫

u∗(x)e−ǫx2

v(x)dx (2.43)

Completeness of modal expansion

In some cases, the divergence of the mode also implies the non-completeness of the Siegert
states basis. When the modal expansion requires an infinite set of modes, its coefficients
may not be unique. In such cases, the set of modes must be completed to allow a correct
modal description [49]. The study of completeness of the modes in open systems is still an
active field of research for both mathematicians and physicists and turns out to be case
dependent. In particular, Leung et al. [50, 51, 52, 53] demonstrated that the completeness
of the modal expansion in dielectric open systems is ensured if

• the index distribution has a discontinuity (L in the present case), which provides a
natural demarcation of the system

• the index is constant (n = 1) outside the system (x > L), so that outgoing waves
are not scattered back into the system

In the example of the 1D slab experiment, these conditions (known as the discontinuity
and no tail conditions, respectively) are fulfilled and the modal expansion can be per-
formed. In this document, all the systems under study will respect these two conditions
and allow a complete modal expansion of the field.
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2.2.3 Biorthogonal formalism

Introduction to the biorthogonal formalism

In non-hermitian problems, the modes Φp are not orthogonal

〈Φp|Φq〉 6= δpq (2.44)

However, a projection operator is needed to develop linear algebra with non-hermitian
modes. In non-hermitian problems it is possible to introduce a different product known
as the biorthogonal product [54, 55]. The biorthogonal product relies on a very simple
idea: The orthogonality of left and right eigenvectors of a linear operator.

If we consider a non-hermitian matrix A, with eigenstates (λi, |Xi〉):

∀i A|Xi〉 = λi|Xi〉 (2.45)

Eigenvectors |Xi〉 are referred to ”right eigenvectors”. Corresponding ”left eigenvectors”
〈Yi| are associated with similar eigenvalues and fulfil:

∀i 〈Yi|A = λi〈Yi| (2.46)

Now we can write

〈Yi|A|Xj〉 = λi〈Yi|Xj〉 = λj〈Yi|Xj〉 (2.47)

Hence, in the case of non degenerated eigenstates

〈Yi|Xj〉 = δij (2.48)

And if A is symmetric (but non-hermitian), eq. (2.48) becomes

〈X∗
i |Xj〉 = δij (2.49)

This biorthogonal product can replace the conventional inner product of hermitian physics,
assuming that no modes are degenerated. In particular, assuming the completeness of the
eigenstates, a closure relation can be defined

∑

p

|Xq〉〈X∗
q | = I (2.50)

where I stands for matrix identity. Any vector Φ can be written down as a unique
superposition of the eigenvectors

Φ =
∑

p

〈X∗
p |Φ〉

〈X∗
p |Xp〉

|Xp〉 (2.51)

A complete mathematical formalism is derived from the biorthogonal product. This
product leads to the definition of linear algebra tools for non-hermitian modes.
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The biorthogonal product in a 1D slab

We carry on the example of the 1D slab developed in section 2.2.1. In this problem, the
field fulfils the Helmholtz eq. (2.29) and each mode (Ωp,Φp(x)) reads

d2Φp

dx2
(x) + n(x)2Ω2

pΦp(x) = 0 (2.52)

The weak formulation2 of eq. (2.52) along another spatial distribution Φq (p 6= q) reads

∫ L

0

d2Φp

dx2
(x)Φq(x)dx+

∫ L

0
n(x)2Ω2

pΦp(x)Φq(x)dx = 0 (2.53)

Using an integration by parts

−
[

dΦp

dx
(x)Φq(x)

]L

0

+
∫ L

0

dΦp

dx
(x)

dΦq

dx
(x)dx = Ω2

p

∫ L

0
n(x)2Φp(x)Φq(x)dx (2.54)

Using a second integration by parts

− dΦp

dx
(L)Φq(L) +

[

Φp(x)
dΦq

dx
(x)

]L

0

−
∫ L

0
Φp(x)

d2Φq

dx2
(x)dx = Ω2

p

∫ L

0
n(x)2Φp(x)Φq(x)dx

(2.55)
Using eq. (2.52) for mode (Ωq,Φq(x)), eq. (2.55) reads

Φp(L)
dΦq

dx
(L) − dΦp

dx
(L)Φq(L) = (Ω2

p − Ω2
q)
∫ L

0
n(x)2Φp(x)Φq(x)dx (2.56)

Using the Siegert’s condition dΦq,q

dx
(L) = iΩp,qΦp,q(L), eq. (2.56) reads

− i(Ωp + Ωq)
∫ L

0
n(x)2Φp(x)Φq(x)dx+ Φp(L)Φq(L) = 0 (2.57)

Now, we apply to modes (Ωq,Φq(x)) and (Ωp,Φp(x)) the biorthogonal product, with the
Zeldovich’s regularization introduced in section 2.2.2

〈Φ∗
q|Φp〉 = limǫ→0

∫ +∞

0
n(x)2e−ǫx2

Φp(x)Φq(x)dx (2.58)

Eq. (2.57) can be split into an inside and an outside integral terms

〈Φ∗
q|Φp〉 =

∫ L

0
n(x)2Φp(x)Φq(x)dx+ limǫ→0

∫ +∞

L
e−ǫx2

Φp(x)Φq(x)dx (2.59)

Outside the system (x ≤ L), we know that modes read Φp(x) ∝ eiΩpx. Using an integration
by part, the outside integral term reads

limǫ→0

∫ +∞

L
e−ǫx2

Φp(x)Φq(x)dx ∝ limǫ→0

∫ +∞

L
e−ǫx2

ei(Ωp+Ωq)xdx

= limǫ→0

[

e−ǫx2
ei(Ωp+Ωq)x

i(Ωp + Ωq)

]+∞

L

+ ǫ
∫ +∞

L
2x
e−ǫx2

ei(Ωp+Ωq)x

i(Ωp + Ωq)
dx = − ei(Ωp+Ωq)L

i(Ωp + Ωq)
(2.60)

2For a function f(x) = 0, whatever the function g included in a Banach space, we can write
∫

f(x)g(x)dx = 0.
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Leading to

〈Φ∗
q|Φp〉 =

∫ L

0
n(x)2Φp(x)Φq(x)dx− Φp(L)Φq(L)

i(Ωp + Ωq)
(2.61)

Using the relation derived in eq. (2.57), the modes (Ωq,Φq(x)) and (Ωp,Φp(x)) fulfil the
biorthogonal relation:

〈Φ∗
q|Φp〉 = δpq (2.62)

Application of the biorthogonal formalism

We demonstrated in section 2.2.3 the existence of a biorthogonal relation between modes
derived from the Siegert’s condition in a 1D uniform slab. This biorthogonal relation can
be easily generalized to non-uniform refractive index distribution and 2D problems. The
general definition of the biorthogonal product reads

〈Φ∗
p|Φq〉 =

∫

n(r)2ΦpΦq = δpq (2.63)

Hence, for 1D and 2D systems fulfilling the no-tail and discontinuity condition ensuring
the completeness of the modal expansion (see section 2.2.2), the biorthogonal formalism
developed in section 2.2.3 can be applied. The closure relation can be defined between
modes and reads

∑

p

|Φq〉〈Φ∗
q| = I (2.64)

Any spatial distribution Φ(x) reads

Φ(x) =
∑

p

〈Φ∗
p|Φ〉

〈Φ∗
p|Φp〉

|Φp〉 =
∑

p

∫

n(r)2Φp(x)Φ(x)dx
∫

n(r)2Φ2
p(x)dx

Φp(x) (2.65)

The modal expansion of the electric field

E(x, t) =
∑

p

apΦp(x)e−iΩpt (2.66)

is complete and coefficients ap are unique. In the rest of the document, we will consider
open systems where the biorthogonal formalism can be applied.

2.3 Anderson-localized modes

We shown in section 2.2.1 how modes can be derived in any open system using the Siegert’s
condition. In this section, we consider an open system with a disordered refractive index
distribution, where the random scattering may lead to the spatial confinement of light.
First, we briefly review the history of this physical effect known as Anderson localization.
Then, using a 1D example, we show that modes can be extended or spatially localized,
depending on the strength of the disorder. Finally, we summarize the different numerical
methods that we have developed to compute these modes in disordered media.
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2.3.1 A brief introduction to Anderson localization

In his seminal paper [56], Anderson was inspired by experiments performed by George
Feher [57], where anomalous relaxation times of electron were observed in semiconduc-
tors. Using a quantum tight binding model of a lattice with a random potential in each
site, he demonstrated that diffusion of electrons can go to a zero when disorder becomes
important enough. In particular, this model has been used to explain why a metal can
turn into an insulator when the density of impurities increases. In the eighties, the gap
was bridged between quantum and classical waves. After an early prediction of existence
of localized waves in classical systems [58], Anderson localization was demonstrated for
classical waves in several experiments [59, 60, 61]. It is now recognized that Anderson
localization originates from the interference between multiple scattering paths and plays
also an essential role in classical wave physics.

A naive picture of localization mechanism is proposed in Fig. 2.9(a). We consider an
incoming wave propagating in a 1D random potential. The wave is scattered each time
it encounters a step in the random potential (see explanation in Chapter 1). The wave is
spilt into a transmitted (forward-scattering) and a reflected wave (backscattering). The
amplitude of the backscattering is triggered by the height of the step in the random poten-
tial. The backscattered wave interferes with the incoming wave. If the wave encounters
many steps of various amplitudes, the backscattering leads to a localization of the wave
by constructive interference (see Fig. 2.9(a)). This spatial localization, known as Ander-
son localization, differs from trapping where light is confined because of presence of walls
(see Fig. 2.9(b)). Localization is rather understood as the result of many reflections of
moderate amplitude.
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Figure 2.9: (a) An incoming wave propagates through a random potential: Each step in
the potential scatters the incoming wave. The backscattering interferes with the incoming
wave and the resulting field spatially localizes into the system. (b) Incoming wave trapped
within a well: The wave is localized because of the presence of high potentials.

Anderson localization has been observed in different areas of classical waves physics
(acoustics [62]) or quantum wave physics (e.g. Wave matter [63]). For optical waves,
if localization has been observed for 1D and 2D systems, the 3D localization of light is
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still an open issue [64]. In this manuscript we will restrict ourself to optical systems of
dimension 1 or 2.

2.3.2 Modes in localized/weakly scattering regimes

As stated in section 2.3.1, the Anderson localization is triggered by the disorder. To em-
phasize this influence, we introduce disorder into an uniform 1D system and progressively
increase its ”strength”. In this 1D example, we differentiate between two different kinds
of modes resulting from Anderson localization.

A uniform 1D problem

We consider a 1D uniform medium of index of refraction n and length L open at both
edges (see Fig. 2.10(a)). In this problem, the field’s evolution is driven by the uniform
Helmholtz equation

d2E

dx2
(x, ω) + n2Ω2E(x, ω) = 0 (2.67)

Using the Siegert’s approach (see section 2.2.1), we can derive the amplitude of the mode

(a) (b)

n

x x

L |Φp(x)|2

Figure 2.10: (a) A uniform 1D slab of length L and with an index of refraction n. (b)
The spatial distribution intensity of one mode |Φp(x)|2 inside the system: The mode has
been derived using the Siegert’s approach.

inside this cavity. The frequency of mode p reads

Ωp = p
π

nL
− i

nL
ln
(
n+ 1
n− 1

)

(2.68)

And the corresponding spatial distribution

|Φp,in(x)|2 ∝
(
n− 1
n

)2

exp
(2x
L
ln
(
n+ 1
n− 1

))

+
(
n+ 1
n

)2

exp
(

−2x
L
ln
(
n+ 1
n− 1

))

+ 2

(

n2 − 1
n2

)

cos
(

pπ
x

L

) (2.69)

As shown in Fig. 2.10(b), the modes are extended all over the system.
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Introduction of disorder

To introduce disorder in the 1D slab, we randomly introduce slices of a different material
(see Fig. 2.11(a)). The system is now composed of slabs of refractive index n and n+∆n.
The index of refraction becomes random and given by n2(x) = n̄2 + ∆n2p(x), where ∆n
is the index difference, p(x) the location of the new material and n̄ the average refractive
index. The evolution of the field is now driven by the non-uniform Helmholtz equation

d2E

dx2
(x, ω) + (n̄2 + ∆n2p(x))Ω2E(x, ω) = 0 (2.70)

To understand the influence of the disorder, we can write eq. (2.70) in a form similar to
the Schrödinger equation

− d2E

dx2
(x, ω) − ∆n2p(x)Ω2E(x, ω) = n̄2Ω2E(x, ω) (2.71)

It turns out that the disorder term ∆n2p(x)Ω2 plays a role similar to the interaction
potential in the Schrödinger equation. Like a well, this ”random potential” scatterers the
wave. Remarkably, the ”strength” of this ”random potential” is triggered by the variance
of ∆n2p(x) [65]. Hence, the random scattering strength will be important for high index
contrast and strong fluctuations of the position p(x).

Extended and localized modes

As an illustration, we consider a given realization of disorder of 39 slabs of index of
refraction n and 39 slabs of index n + ∆n. The mean thickness of the slabs is 150 nm,
and the thickness of each slab follows a uniform distribution of amplitude 50 nm (see
Fig. 2.11(a) for a schematic description). As explained by eq. (2.71), the strength of
the randomness is triggered by the index contrast between the two media. The modes
resulting from this non-uniform distribution of refractive index are numerically computed
using the Transfer Matrix approach (introduced in section 2.3.3). This numerical method
rigorously derives the modes fulfilling the Siegert’s condition. In Fig. 2.11, we compute a
particular mode Φn for a low and a high index contrast (respectively ∆n = 0.1 and 1.0).

In Fig. 2.11(b), the disorder is weak and the modes are extended over the system. Nev-
ertheless, the spatial distribution is already strongly modified as compared to the case of
a system with a uniform index (see Fig. 2.10(b)). In Fig. 2.11(c), the disorder is strong
and the mode is confined within the system. The envelope of the mode is exponentially
confined around a central position

|Φn|2 ∝ exp

(

−|x|
ξ

)

(2.72)

where ξ defines the localization length. The modes plotted in Fig. 2.11(b) and 2.11(c),
represent the two different regimes of disordered modes. For low disorder, the system is
in the weakly localized regime: The mode is extended over the medium but the disor-
der influences its spatial distribution. For high disorder, the system is in the strongly
scattering regime: The mode is trapped/localized by disorder inside the medium. In 1D
and 2D, a mode will be localized if the size of the system is smaller than the localization
length of the mode (here ξ < L). In 3D, a mobility edge is predicted. Nevertheless, if its
existence for scalar waves was confirmed, in polarized waves however, its observation is
still an open issue [64].
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(a)

(b)

(c)

n n
+

∆
n

x

x

x

|Φn|2 ∝ e−x/ξ

L

Figure 2.11: (a) Schematic description of the 1D random system: Superposition of slabs
of indexes n and n+ ∆n. (b) Spatial mode distribution in the weakly scattering regime
(∆n = 0.1): The mode is extended all over the device but differs from the uniform case.
(c) Mode in the strong scattering regime (∆n = 1.0): The mode is spatially localized
inside the system.

2.3.3 Numerical computation of modes

In disordered systems, the derivation of modes cannot be analytic but requires numerical
computations. In this subsection, we briefly summarize the different numerical methods
that we developed.

The Transfer Matrix approach

The Transfer Matrix approach has been widely used to study Anderson localization prob-
lems in 1D systems [66]. This technique solves Helmholtz equation in the frequency do-
main in 1D system with the Siegert’s condition. Within numerical accuracy, the Transfer
Matrix provides the exact Siegert states (Φp,Ωp) fulfilling

d2Φp

dx2
(x) + n(x)2Ω2

pΦp(x) = 0 &

(

d

dx
− iΩp

)

Φp

∣
∣
∣
∣
∣
r→∞

= 0 (2.73)

The modes shown in Fig. 2.11(b) and (c) were computed with this method.

The principle of the method can be exposed using, for instance, a system made of two
materials (as in Fig. 2.11(a)). In a 1D system, the field can be expanded into a forward
P and a backward Q part:

E(x, ω) =

[

P (x, ω)
Q(x, ω)

]

(2.74)

When propagating through the system the field can:
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• Propagate through medium of index n

• Cross the interface from n to n+ ∆n

• Propagate through medium of index n+ ∆n

• Cross the interface from n+ ∆n to n

Combining these four operations, we can derive a matrix M connecting the electric field
on the left edge E(0, ω) and the right edge E(L, ω):

[

P (L, ω)
Q(L, ω)

]

= M(ω)

[

P (0, ω)
Q(0, ω)

]

(2.75)

This matrix represents the Helmholtz equation in the 1D system. The Siegert’s condition
enforces:

E(0, ω) =

[

P (0, ω)
0

]

& E(L, ω) =

[

0
Q(L, ω)

]

(2.76)

Imposing eq. (2.76) onto eq. (2.75) can only be satisfied for a discrete set of Ωn. These Ωn

and the corresponding spatial distribution Φn define the modes of the problem fulfilling
the Siegert’s condition.

Finite Elements Method

A Finite Element Method can be used to solve Helmholtz’s. In the scope on this study,
a Finite Element Method code has been developed to solve Helmholtz equation in 2D

∆E(r) + n(r)2Ω2E(r) = 0 (2.77)

The 2D systems are composed of circular pillars in a host medium (see Fig. 2.12). The
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Figure 2.12: 2D random system composed of pillars randomly distributed. The system is
surrounded by a numerical boundary condition.

physical system (see Fig. 2.12) is enclosed by numerical boundary conditions (Absorbing
Boundary Conditions or Perfectly Matched Layer [67]) to ensure the decay of electric
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field outside the system. The system is spatially discretized and test functions are used
to build a matrix from eq. (2.77)

A+ Ω2B = 0 (2.78)

Then, a generalized eigenvalue solver is used to find the eigensolutions (Ω2, Φ) of eq. (2.78)
corresponding to the modes of the 2D open system (see Fig. 2.13 as example). Unlike the
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Figure 2.13: (a) Complex frequency Ωp of modes computed by Finite Element Method
on system described in Fig. 2.12. (b) A spatial distribution of the intensity of a mode
|Φp|2 computed by Finite Element Method.

Transfer Matrix method, a numerical boundary condition is imposed outside the medium
instead of the Siegert’s condition. Hence, the modes computed with the Finite Element
Method correspond to an approximation of the modes fulfilling the Siegert’s condition.
The Siegert states and the modes will be similar inside the system but will differ outside.

Finite Difference Time Domain

In this manuscript, we will also present computation of 2D systems (see Fig. 2.12) in the
temporal domain. For that matter, we use a Finite Difference Time Domain technique
allowing the resolution of Maxwell’s equation

∇ × E(r, t) = −µ0
∂H
∂t

(r, t)

∇ ×H(r, t) = ǫ0n(r)2 ∂E
∂t

(r, t)
(2.79)

Using the intricate spatial and temporal sampling, the evolution of electric and magnetic
field (namely E and H) can be computed in time and space. The spatial distribution
of the modes and their complex frequency can be obtained from E(r, t). A complete
description of the method can be find in [68].

2.4 Summary

Here, we have introduced the concept of mode and developed this notion for non energy-
conservative systems, also called non-hermitian systems.
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Generally speaking, modes are associated with privileged vibrational states of the system.
For hermitian problem, the modes correspond to the stationary solutions, where time and
space are separable. In non-hermitian problems, no stationary solution exists and the
modes are defined by resonances. In particular, we have introduced the modes of open
systems and presented an approach to derive them, using the Siegert’s radiative condition.
The resulting modes are physically relevant inside the cavity and diverge in amplitude
outside. Nevertheless, we have demonstrated the existence of a rigorous formalism to
describe the electric field using these modes. In the scope of this manuscript, we will focus
on open systems with constitutive disorder encoded in the index of refraction distribution.
We have explained in such systems the mechanism of Anderson localization, in which the
disordered leads to a spatial localization of the modes. For strong disorder, the system is in
the localized regime and the modes are confined within the system, while for low disorder
the system is in the weakly scattering regime and the modes are spatially extended. We
have briefly presented different numerical methods used to compute them.

In the rest of this manuscript, we will investigate light-matter interaction in random
systems. The electric field will be expressed in term of modes (Anderson-localized or
extended) computed with numerical techniques and the biorthogonal formalism will be
applied.





Part II

Managing light-matter interaction in
passive random media





Chapter 3

Coalescence of Anderson-localized
modes at exceptional point in
random media
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Losses are inherent to most physical systems, either because of dissipation and/or as a
result of openness. We explained in Chapter 2 that these systems are described mathe-
matically by a non-hermitian Hamiltonian, where eigenvalues are complex and eigenstates
form a nonorthogonal set. In such systems, interaction between pairs of eigenstates, when
a set of external parameters is varied, is essentially driven by the existence of Exceptional
Points (EP)(see Chapter 2). At an EP, complex eigenvalues degenerate and eigenstates
coalesce. In its vicinity, eigenvalues display a singular topology. The eigenstates become
indistinguishable [69] and encircling the EP in the parameter space leads to a residual
geometrical phase [32, 33]. Since their introduction by Kato in 1966 [31], EPs have ap-
peared to be involved in a rich variety of physical effects (e.g. level repulsion [37], mode
hybridization [38], quantum phase transition [39], lasing mode switching [70], Parity Time
(PT ) symmetry breaking [71, 72] or even strong coupling [35]). They have been observed
experimentally in different systems such as microwave billiards [34], chaotic optical mi-
crocavities [73] or two-level atoms in high-Q cavities [35]. We explained in Chapter 2 that
open random media are a particular class of non-hermitian systems. Their modal confine-
ment may be solely driven by the degree of scattering. For sufficiently strong scattering,
the spatial extension of the modes becomes smaller than the system size, resulting in
transport inhibition and Anderson localization [56]. Disordered-induced localized states
or localized modes have raised much interest. They provide with natural optical cavities
in random lasers [74, 75] and recently appeared to be good candidates for quantum elec-
trodynamics cavity [76, 77], with the main advantage of being inherently disorder-robust.
These modes can also be manipulated by a local change of the disorder and can coupled
to form necklace states [78, 79, 80], which open channels in a nominally localized system
[81, 82] and are foreseen as a key mechanism in the transition from localization to dif-
fusion regime. PT symmetry has been studied in the context of disordered media and
Anderson localization [83, 84, 85], but so far, EPs between localized modes have not been
investigated.

In this chapter, coalescence at an EP between two Anderson-localized optical modes is
demonstrated in a two dimensional dielectric random system. To bring the system in
the vicinity of an EP, the dielectric permittivity is varied at two different locations in
the random system. First, we propose a general theory to follow the spectral and spatial
evolution of modes in 2D dielectric media. Then, this theory is applied in the specific case
of Anderson-localized modes. We find excellent agreement between theoretical prediction
and Finite Element Method (FEM) simulations. Finally, we demonstrate that such a
theory requires to go beyond the standard two interacting states model and to consider
N -mode interaction. This problem can be easily implemented in an actual experiment [86,
75]. We believe that the design of an EP between modes could pave the way to a control
of Anderson localization properties and could offer a new insight to its understanding.
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3.1 Manipulation of modes via the dielectric permit-
tivity

In this section we propose a general theory, which describes the evolution of modes in an
open system in which scattering is modified. This approach relies on the biorthogonal
formalism introduced in Chapter 2 and applied to modes of 2D dielectric open systems.
We stress that this approach is not limited to disordered media but can be used for any
open inhomogeneous dielectric system. First, we define modes of a non-hermitian system
and recall the condition of the use of the biorthogonal formalism. Finally, we consider
a modification of the system and investigate the evolution of modes by deriving a linear
system.

3.1.1 A 2D open dielectric medium

We first consider the general case of a finite-size dielectric medium in 2D space, with
inhomogeneous dielectric constant distribution ǫ(r). In this chapter, for sake of notation
compactness, we will consider the dielectric permittivity ǫ(r) rather than the index of re-
fraction n(r) (ǫ(r) = n2(r)). The distribution of ǫ(r) is indifferently ordered or disordered.
In the frequency domain, the electromagnetic field follows the Helmholtz equation:

∆E(r, ω) + ǫ(r)ω2E(r, ω) = 0 (3.1)

where E(r, ω) stands for the electrical field and the speed of light, c=1. Eigensolutions of
eq. (3.1) define the modes or eigenstates of the problem:

(Ωi, |Ψi〉)i∈N | ∆|Ψi〉 + ǫ(r)Ω2
i |Ψi〉 = 0 (3.2)

Because of its openness, the system has inherent losses and is therefore described by a non-
hermitian Hamiltonian (see Chapter 2). For non-hermitian systems, modes are a priori
non-orthogonal, complex and the completeness of the expansion along the eigenvectors is
not ensured. Here, we will consider modes derived with the Siegert’s approach in open
systems with finite range potential, in which a discontinuity in the permittivity provides
a natural demarcation of the problem. We know from Chapter 2 that the completeness
of the modal expansion [51, 50, 50, 52] is ensured in such a system. Hence, the electrical
field can be expanded along the modes:

E(r, ω) =
∑

i

ai(ω)|Ψi〉 (3.3)

where ai(ω) stand for unique coefficients of the expansion along the basis. Moreover, the
biorthogonal formalism can be used provided that the eigenstates are not degenerated.
This formalism relies on a biorthogonal product between modes, which reads [87, 55]:

〈Ψ∗
p|ǫ(r)|Ψq〉 = δpq (3.4)

Nevertheless, the theory derived here can be extended to different set of modes (e.g
Constant Flux [44], Fox-Li modes [41]), assuming that the biorthogonal formalism can be
used.
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3.1.2 Modification of the permittivity

Now, we consider two locations R1 and R2, where the permittivity is varied

ǫ̃(r) = ǫ(r) + ∆ǫ1(r)p1(r) + ∆ǫ2(r)p2(r) (3.5)

where {pi(r ∈ Ri) = 1|pi(r /∈ Ri) = 0}i∈[1,2] is the location and {∆ǫi(r)}i∈[1,2] the shape of
the variation of permittivity. Eq. (3.1) becomes:

∆E(r, ω) + ω2 (ǫ(r) + ∆ǫ1(r)p1(r) + ∆ǫ2(r)p2(r))E(r, ω) = 0 (3.6)

The permittivity distribution ǫ̃(r) describes a new distribution of permittivity with new
modes (Ω̃i, |Ψ̃i〉)i∈N. Nevertheless, we can still consider the basis of the original random
system, (Ωi, |Ψi〉)i∈N, to expand the electric field as follows:

E(r, ω) =
∑

i

bi(ω)|Ψi〉 (3.7)

where bi(ω) are the new expansion coefficients. Inserting eq. (3.7) into eq. (3.6):
∑

i

bi(ω)
[

∆ + ω2 (ǫ(r) + ∆ǫ1(r)p1(r) + ∆ǫ2(r)p2(r))
]

|Ψi〉 = 0 (3.8)

Using eq. (3.2)
∑

i

bi(ω)
[

−Ω2
i ǫ(r) + ω2 (ǫ(r) + ∆ǫ1(r)p1(r) + ∆ǫ2(r)p2(r))

]

|Ψi〉 = 0 (3.9)

Projecting eq. (3.9) along 〈Ψ∗
j |

〈Ψ∗
j |
∑

i

bi(ω)
[

(ω2 − Ω2
i )ǫ(r) + ω2 (∆ǫ1(r)p1(r) + ∆ǫ2(r)p2(r))

]

|Ψi〉 = 0 (3.10)

∑

i

bi(ω)
[

(ω2 − Ω2
i )〈Ψ∗

j |ǫ(r)|Ψi〉 + 〈Ψ∗
j |∆ǫ1(r)p1(r) + ∆ǫ2(r)p2(r)|Ψi〉

]

= 0 (3.11)

Using the biorthogonal product of eq. (3.4) leads to

∀ i bi(ω)
(

Ω2
i − ω2

)

= ω2
∑

j

bj(ω)Cij (3.12)

where
Cij = 〈Ψ∗

j |∆ǫ1(r)p1(r)|Ψi〉 + 〈Ψ∗
j |∆ǫ2(r)p2(r)|Ψi〉 (3.13)

If we consider a finite set of N modes, the generalized eigenvalue problem of eq. (3.12)
can be written conveniently in a matrix form:













Ω2
1 ... 0

...
. . .

...
0 ... Ω2

N







− ω2







1 + C11 ... C1N
...

. . .
...

CN1 ... 1 + CNN













= 0 (3.14)

The eigensolutions of eq. (3.14), (Ω̃i, |Ψ̃i〉)i∈[1,N ], are the eigensolutions of eq. (3.1) for
the permittivity distribution ǫ̃(r). In eq. (3.14), the coupling coefficients, Cij, between
original modes i and j depend on the variation of the permittivity and the spatial overlap
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of the modes at the location of the permittivity modification. Noteworthily, the coupling
integral not only depends on the spatial overlap of the mode intensity profiles but also on
the overlap of their phase profile.

Remarkably, when reducing the problem to two modes, we recover a system equivalent to
2 inductance/capacitor circuits coupled via an inductance Lc (see Fig .3.1). Lc induces
the coupling of the two independent oscillators and the charges of each capacitor (namely
Q1 and Q2) fulfil

Q̈1 +
Q1

L1C1
=

LC
L1

(Q̈1 + Q̈2) (3.15)

Q̈2 +
Q2

L2C2
=

LC
L2

(Q̈1 + Q̈2) (3.16)

which can be recast in a matrix form










(
1√
L1C1

)2
0

0
(

1√
L2C2

)2




− ω2

(

1 + LC

L1

Lc

L1
Lc

L2
1 + Lc

L2

)





[

Q1

Q2

]

= 0 (3.17)

Eq. (3.14) extends this result to a number of interacting modes N > 2 and can be under-
sood as a basic linear coupling between modes playing the role of simple L/C oscillators.

C1 Lc C2

L1 L2

C1

L1

C2

L2

⇒
(a) (b)

Q1 Q1Q2 Q2

Figure 3.1: (a) Two independent inductance/capacitor (Li/Ci) oscillators uncoupled. (b)
The two systems are coupled via an inductance Lc.

3.2 Application to Anderson-localized modes: Pre-
diction of Exceptional Points

Our theory is now applied to the particular case of a disordered system in the localized
regime (see Chapter 2). First, we present the numerical 2D system that we consider to
apply our theory, in which two local modifications of the permittivity distribution are
introduced. Then, we discuss the nature of the modes of the initial system, which are
computed via Finite Elements Method (FEM) and we investigate the computation of
the biorthogonal product of eq. (3.4). Finally, we study the evolution of modes when the
permittivity is modulated at two distinct locations. When the parameter space is scanned,
we predict an EP between two specific modes and confirm its existence numerically.

3.2.1 The 2D open disorder dielectric medium

We consider a 2D random collection of 896 circular dielectric scatterers (radius 60 nm)
with dielectric permittivity, ǫ = 4.0, embedded in a host material of index ǫmat = 1.0, with
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a filling fraction of 40% (Fig. 3.2(a)). The system dimensions are L× L = 5.3 µm × 5.3
µm. The two circular regions of diameter 340 nm, R1 and R2, are shown in Fig. 3.2(a).
The dielectric permittivity of the scatterers within these regions is varied from ǫ to ǫ+∆ǫ1

and ǫ+ ∆ǫ2, respectively. This can be achieved experimentally by shining 2 laser beams
on the surface of the sample and take advantage of optical nonlinearity to change locally
the refractive index.

0 L
0

L

Re(xΩ)R)

y

14.5 15.5
-0.4

0 (1)
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Re(Ω)
Im

(Ω
)

1 90

Mode #
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(a)

(c)

(b)

(d)

Figure 3.2: (a) 2D random medium: 896 scatterers of dielectric permittivity ǫ = 4
are embedded in vacuum ǫmat = 1.0, system is open at edges. The permittivity of the
scatterers is modified in two circular domains of diameter 340nm (respectively R1 = red
circle and R2 = green circle). (b) Original eigenvalues (Ωi)i∈[1,90]: Computed by FEM in
absence of dielectric permittivity modulation and sorted in the complex plane according
the distance d(1, i). An inset focuses on eigenvalues of interest (namely Ω1 and Ω2).
(c),(d) Original eigenvectors intensities of |Ψ1〉 and |Ψ2〉 respectively.

3.2.2 Original modes and biorthogonal product

The original modes (Ωi, |Ψi〉)i∈[1,N ], which are the only input requested by eq. (3.14), can-
not be obtained analytically in such a complex random system. Here, we have developed
a FEM routine [88, 89] to compute these modes (see Chapter 2). Boundary conditions
are placed 0.4µm away from each edge of the system. We consider a frequency range in
which the localization length is estimated around ξ ≈ 1µm ≪ L1. As a result, the modes
are strongly confined within the system.

A large number of modes (N = 90) are computed for the original system (Fig. 3.2(b))
in this spectral range. We checked that modes are not degenerated (see Fig. 3.2(b)),

1In 2D problems, the localization length satisfies ξ ≈ ltexp (ωlt/c)[65]. Different methods can be used
to estimate ξ like the spatial correlation of modes or transmission measurement, see for instance [90]
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which is one of the conditions for the application of the biorthogonal formalism. Among
these modes, we consider two localized states |Ψ1〉 and |Ψ2〉 respectively at Ω1 and Ω2,
spectrally close (Fig. 3.2(b)) but spatially distinct (Fig. 3.2(c) and (d)). We define in
the complex plane the spectral distance of mode i to mode 1 as d(1, i) = |Ω1 − Ωi|. This
distance, color-coded in Fig. 3.2(b), is a measure of the spectral overlap between mode
i and mode 1. Here, mode 2 is most likely to couple to mode 1 but we will see later in
this chapter that the influence of other nearby modes cannot be neglected in the modal
interaction.

The biorthogonal product defined in eq. (3.4) corresponds to an integration over the whole
space, R2

〈Φ∗
q|ǫ(r)|Φp〉 =

∫

R2
ǫ(r)Φq(r)Φp(r)dr (3.18)

However, the computed modes are only defined over a finite spectral domain V = [−0.1µm,
5.7µm]2. To understand the relation between integral over R2 and integral over V , let us
consider the weak formulation2 of eq. (3.2) along another mode (Ωq, |Ψq〉)

∫

V
∆ΦpΦq +

∫

V
Ω2
pǫ(r)ΦpΦq = 0 (3.19)

Using an integration by parts, eq. (3.19) reads
∫

∂V
grad Φp.Φq −

∫

V
grad Φp.grad Φq +

∫

V
Ω2
pǫ(r)ΦpΦq = 0 (3.20)

where ∂V stands for the boundary of V . With a second integration by parts, eq. (3.20)
reads

∫

∂V
grad Φp.Φq −

∫

∂V
grad Φq.Φp +

∫

V
∆ΦqΦq +

∫

V
Ω2
pǫ(r)ΦpΦq = 0 (3.21)

Eq. (3.21) leads to
∫

∂V
grad Φp.Φq −

∫

∂V
grad Φq.Φp +

(

Ω2
p − Ω2

q

) ∫

V
ǫ(r)ΦqΦq = 0 (3.22)

As a result the biorthogonal relation of eq. (3.18) reads

〈Φ∗
q|ǫ(r)|Φp〉 =

∫

V
ǫ(r)Φq(r)Φp(r)dr +

1
Ω2
q − Ω2

p

(∫

∂V
grad Φp.Φq − grad Φq.Φp

)

= δpq

(3.23)
Anderson-localized modes are non-degenerated (Ωp 6= Ωq) and have a small spatial overlap
in our case. As a result, the biorthogonal relation can be approximated by

〈Φ∗
q|ǫ(r)|Φp〉 ≈

∫

V
ǫ(r)Φq(r)Φp(r)dr = δpq (3.24)

The edge term (integral along ∂V ) in the biorthogonal product can be easily neglected.
It leads to an inaccuracy of 0.8% in the position of EP3.

2For a function f(x) = 0, whatever the function g(x), performing the weak formulation of f along g
means we consider the integral

∫
f(x)g(x) = 0.

3This edge term can be inserted in the eigenvalue problem provided in eq. (3.14). It results in the
addition of extra on and off-diagonal terms in both matrices.
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3.2.3 Exceptional Point between two Anderson-localized modes

Coalescence of eigenvalues

The parameter space, (∆ǫ1,∆ǫ2), is sampled and eq. (3.14) is solved with N = 60 interact-
ing modes inorder to compute the new eigenstates (Ω̃i, |Ψ̃i〉)i∈[1,N ]. The difference between
the two eigenvalues of interest, |Ω̃1 − Ω̃2|, in the small range of parameter space is shown
in Fig. 3.3(a). This difference sharply drops to zero at (∆ǫ1,∆ǫ2)@EP = (0.939, 0.90).
The existence of an EP at this position is confirmed by plotting the real and imaginary
parts of the eigenvalues, Ω̃i∈[1,2] (Fig. 3.4(a) and (b)). The intricate topology of inter-
secting Riemann’s sheets around the singular point (∆ǫ1,∆ǫ2)@EP , is the hallmark of an
exceptional point (see explanations in Chapter 2).
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Figure 3.3: (a) The difference of eigenvalues 1 and 2 d̃(1, 2)dB = |Ω̃1 − Ω̃2|dB (arbitrary
units), canceling out close to (∆ǫ1,∆ǫ2)@EP . (b) Measure of the collinearity in the pa-
rameter space. At (∆ǫ1,∆ǫ2)@EP , both eigenvectors are collinear.

Coalescence of eigenfunctions

We now focus on the eigenfunctions (or spatial distribution) of modes. We compute the
inner product of the two eigenstates, 〈Ψ̃∗

1|Ψ̃2〉 and plot 1/(1 − |〈Ψ̃∗
1|Ψ̃2〉|), as shown in

Fig. 3.3(b). At the exact position where |Ω̃1 − Ω̃2| becomes zero, the two eigenvectors
become collinear, confirming the coalescence of the two eigenstates. The amplitude of
spatial distribution at EP is shown in Fig. 3.6(a). As a result, we have a strict coalescence
of the two eigenstates: Both eigenvalues and eigenvectors merge.

3.2.4 FEM validation

Finally, the theory is further confirmed by FEM simulation. We compute the modes of in-
terest |Ψ̃i∈[1,2]〉 in a discretized parameter space range enclosing prediction (∆ǫ1,∆ǫ2)@EP .
The resolution of the sampling is set to 0.04 along ∆ǫ1 and ∆ǫ2. The eigenvalues merge
at position (∆ǫ1,∆ǫ2) = (0.92, 0.88) ± (0.04, 0.04) and exhibit characteristic intersecting
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Figure 3.4: (a) and (b) Respectively real and imaginary parts of eigenvalues Ω̃1 and Ω̃2.
Both real and imaginary parts are identical at (∆ǫ1,∆ǫ2)@EP .

Riemann’s sheets. The collinearity of the eigenvectors ensures the existence of an EP at
this specific position. The theoretical prediction falls within the errorbar of the numerical
value of the EP. Despite the assumption made on biorthogonal product in eq. (3.24) and
inherent numerical inaccuracy, the prediction is confirmed by FEM simulation.

3.3 A complex N-mode process

The capability of our theoretical approach to predict EP between two Anderson-localized
modes has been demonstrated in the section 3.2. In this section, we investigate the
properties of the modes in the vicinity of EPs. First, we demonstrate that this problem
cannot be reduced to a two-mode interaction and appears to be a N-mode process. Then,
we show the evolution of spatial distribution of modes in the vicinity of EP. Finally,
we demonstrate the presence of multiple EPs in the parameter space and propose some
applications.

3.3.1 Mulimode process

Many observations of EP are based on weak perturbation of hermitian problems. In such
problems, the study of EP can be reduced to a two-mode interaction. Here, we consider a
strongly non-hermitian system. The influence of distant modes is tested by reproducing
the computation of (∆ǫ1,∆ǫ2)@EP for a number of modes, N ,ranging from 2 to 60 (see
Fig. 3.5). Fig. 3.5 shows that the position of the EP is not accurately predicted if only
a small number of interacting modes are considered. Actually, more than 30 modes are
required to correctly pinpoint the exact position of the coalescence of mode 1 and mode
2. However, this figure shows that the method converges for N larger than 55, which
confirms that spectrally distant modes have a vanishing influence on the interaction of
the two modes. The amplitude spatial distribution of the coalescing modes is shown in
Fig. 3.6(a), namely |Ψ̃1,2@EP 〉. Fig. 3.6(b) shows the biorthogonal projection of |Ψ̃1,2@EP 〉
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along the original modes |Ψi〉. It demonstrates the vanishing, though non negligible,
contribution of nearby modes. These results confirm the degree of complexity of modal
interaction in a disordered open system and the ability of our theoretical approach to
provide with a control of the disorder landscape to manipulate the N-mode interaction.
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Figure 3.5: Predicted EP position (∆ǫ1,∆ǫ2)@EP versus number N of original modes.
Black errors bars correspond to location of EP computed by FEM.
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Figure 3.6: (a) Amplitude of modes |Ψ̃1@EP 〉 and |Ψ̃2@EP 〉, which are identical at EP
((∆ǫ1,∆ǫ2)@EP ). (b) Absolute value of biorthogonal projection of |Ψ̃1,2@EP 〉 along the
original modes |Ψi〉.

3.3.2 Modes in the vicinity of an EP

The previous section 3.3.1 highlighted the complexity of the mode mixing. Modes can
hybridize (see Fig. 3.6(a)) and form a beaded chain, which connects both ends of the
system. Hence, as already observed in [78], the presence of EP can be used to create
necklace states [79, 80] resulting from mode hybridization.

Our calculations allows us to go further and check that |Ψ̃1〉 = ±i|Ψ̃2〉 on both sides
of the EP. In Fig. 3.7, when the EP is crossed in the parameter space, the real part of
|Ψ̃1〉 becomes the imaginary part of |Ψ̃2〉 and vice versa. This exchange is responsible
for the phase shift measured when the EP is encircled within the parameter space (see
Chapter 2).
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Figure 3.7: Pinch-line: The blue points correspond to identical real parts Re(Ω̃1) = Re(Ω̃2)
and red points to identical imaginary parts Im(Ω̃1) = Im(Ω̃2).

3.3.3 Multiple EP and potential applications

The investigation of EP can be done for different couples of modes. In Fig. 3.8, we
plot the position in the parameter space of the different EPs that we obtain for different
couples of modes. We find, for instance, that the original mode 1, |Ψ1〉, can coalesce with
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Figure 3.8: Position of different EPs in the parameter space (∆ǫ1,∆ǫ2). Each EP is
identified by the labels of the two coalescing modes.
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modes 2, 3 and 4 in the parameter range we scanned. Interestingly, we find two EPs
for the couple of original modes 1 and 2 (1/2). The two different spatial distributions
|Ψ̃1,2@EP 〉 and complex frequencies Ω̃1,2@EP are different. Each EP results from a different
combination of original modes |Ψi〉. In others words, they correspond to different mixings
of modes.

Based on this first exploration of EPs between interacting localized modes, the presence of
multiple EP paves the road to various applications. As already stated, EP could be used
to hybridize modes. The presence of multiple EPs could force a multi-hybridization of
modes and open channels via necklace states in random media. By adding multiple local
modifications in this numerical experiment, we could drive the system to EP in which three
or more modes are coalescing. Moreover, we could use the high sensitivity of eigenvalues in
the vicinity of EP. We should be able to drive the frequency of modes or achieve quality
factor improvement. This could be particularly helpful in strong coupling experiment
between an emitter and a mode, in which the frequency of the mode must be as close
as possible to the resonance of the emitter (see Chapter 4). We demonstrated in section
3.2 that this system forms a N-mode interaction platform. Hence, in a more prospective
view, it could provide a naturally disorder-robust network of interacting cavities, in which
we could perform quantum simulation [91, 92].

3.4 Summary

Here, we have developed a general theory to study the evolution of modes in a 2D open
dielectric media, while the permittivity distribution is modified. In the specific case of
Anderson-localized modes, this theory could be used to force the coalescence of modes at
a position called an Exceptional Point (EP).

Starting from modes of a 2D open system, we have developed the biorthogonal formalism
to derive a linear eigenvalue problem. This provides the modes resulting from a modi-
fication of the permittivity. Using an analogy based on L/C oscillators coupled via an
inductance, this linear system behaves like an infinite set of oscillators coupled via the
modification of the permittivity. We have stressed the nature of this coupling, which
relies on spatial and spectral overlap of the modes. We have applied this theory to the
specific case of Anderson-localized modes, in which two local spots modulate the per-
mittivity. Starting from a given disorder and corresponding FEM computed modes, we
have gone beyond the simple evolution of localized modes and predicted the coalescence
of two states. For a specific position in the modulation parameter space, namely the EP,
simultaneous merging of eigenvalues and eigenvectors have been observed. EP predic-
tion has been confirmed by FEM computations. Then, we have investigated the physical
mechanism involved in the build-up of EP and demonstrated that the nearby modes play
an important role. The merging of two states cannot be naively described by a two-mode
model. It has been also pointed out that this system provides multiple EPs. From this
EP density, we have proposed different applications relative to current active fields of
research.

Finally, we would like to emphasize that this numerical experiment could be easily imple-
mented in actual experiments. For instance, it could be achieved in 2D samples exhibiting
optical localized states with the simple use of two laser spots [86, 93].
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The development of optical devices at the micro and nanoscales allows to address funda-
mental quantum phenomena in practical experiments. One of the most striking examples
is probably quantum electrodynamics cavity (cavity QED), where an emitter is coupled
to a resonant cavity mode. When an emitter interacts with a resonant cavity mode, two
different regimes can occur. If the coupling is weak, the spontaneous decay of the emitter
is modified. The energy is irreversibly transferred from the emitter to the cavity and
immediately radiates to the far field. This alteration of spontaneous emission, is known
as the Purcell effect [94] and was observed in optics for the first time by Drexhage [95].
The strong coupling regime is characterized in the time domain by Rabi oscillations of
the electric field, or equivalently by a splitting in the frequency spectrum. The energy
is reversibly exchanged between the emitter and the cavity mode leading to quantum
effects [96]. Cavity QED is a major challenge of quantum optics in general and quantum
information technology in particular. Achievement of cavity QED is of a fundamental
interest e.g. for all-optical [97] and electro-optical [98] switching, many body quantum
simulation [99, 100], single photon sources [101] as well as photon blockade [102]. Never-
theless, their development is currently hindered by the sensitivity of cavities to fabrication
imperfections. To address this issue, an innovative approach was suggested by Lodahl’s
group [76, 103]. They proposed to use Anderson-localized modes as a cavity to perform
”inherently disorder-robust quantum information devices”. In a 1D disordered photonic
waveguide, with embedded semiconductor quantum dots, they observed a strong enhance-
ment of the spontaneous decay (the very signature of weak coupling). Their work was
completed by Gao et al. [77], who demonstrated the strong coupling regime with similar
samples. Recently, the strong coupling between a two-level system and localized modes
was numerically observed by Cazé et al. [104] in 2D.

In this chapter, we explore the dynamical response of an emitter (a two-level atom as
introduced in Chapter 1) interacting with an Anderson-localized mode. We demonstrate
that Rabi regimes of two kinds may occur and co-exist, namely the linear and non-linear
Rabi regimes. First, we consider a two-level atom in vacuum excited by a monochro-
matic electric field. At low intensity, the atomic response is linear and characterized by a
monochromatic polarization. At high intensity, Stark shifts induced by the electric field
profoundly modify the energy-level structure of the atom, leading to new resonances in the
susceptibility. The polarization is composed of three frequencies forming a triplet as pre-
dicted by [105]. Second, we investigate the linear regime of a two-level atom in the steady
state interacting with a 2D Anderson-localized mode. Linear Rabi oscillations/frequency
splitting can occur when the strong coupling regime between the atom and the mode is
reached. We express the strong coupling condition and the corresponding linear Rabi
splitting amplitude, which are consistent with the work of Cazé [104]. Then, a mode
with a high intensity is considered. The atom polarization is non-linear and exhibits non-
linear Rabi oscillation/frequency splitting. A condition as well as an expression for the
amplitude of the non-linear Rabi splitting are derived. Finally, we demonstrate that the
two regimes can co-exist and can be observed simultaneously in a temporal experiment.
Numerical computation run by Christian Vanneste with a Finite Difference Time Domain
method confirms our prediction.
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4.1 A two-level system coupled to the electric field

Here, we consider the academic case of a two-level atom excited by a monochromatic
electric field [106]. For low excitation intensity, the polarization of the atom is linear. For
high intensity, Stark shifts induce new transitions in the atomic wave function and the
polarization is non-linear.

4.1.1 Coupled levels

In this section, we consider a quantum treatment of a two-level system (as in Chapter 1).
An atom is modelled as a two-level system and characterized by a Hamiltonian H0 in free
space. Eigenstates of H0 are A = {|ua(r)〉, ~ωa} and B = {|ub(r)〉, ~ωb} respectively lower
and upper levels. The state of an electron is a linear combination of those eigenstates

Ψ(r, t) = Cae
−iωat|ua(r)〉 + Cbe

−iωbt|ub(r)〉 (4.1)

where |Ca|2 and |Cb|2 represent the probability for the particle to be respectively in state
A or B. When an electron decays from B to A a photon can be emitted at the specific
frequency ωba = ωb −ωa. The polarization P (ω) resulting from the transition of the atom
from B to A is monochromatic and oscillates at ωba. The polarization is said to be linear.

ωb, |ub(r)〉Cb

ωa, |ua(r)〉Ca

(a) (b)

ω

ωa ωb

Ψ(ω)

Figure 4.1: (a) A two-level system with eigenstates A = {|ua(r)〉, ~ωa} and B =
{|ub(r)〉, ~ωb}. (b) Example of the realization of an electron wave function composed
of eigenstate A and B. Components at ωa and ωb are monochromatic and thus have a
zero linewidth.

In free space, H0 is hermitian and thus has orthogonal eigenstates:

〈ua(r)|ub(r)〉 =
∫

u∗
a(r)ub(r) = δab (4.2)

The system is excited by an electric field Ẽ(t) = Ee−iωt+cc, where cc denotes the complex
conjugate. This field is real and oscillates at frequency ω. The wavelength of the field is
much larger than the dimensions of the atom. The electric field Ẽ(t) is thus uniform at
the scale of the atom. Hence, the interaction of the laser light with the atomic system
can be approximated in the long-wavelength or the dipole approximation by the potential
V (t) = µẼ(t), where µ is the transition dipole operator of the system [106]

µ =

[

0 −µab
−µba 0

]

(4.3)
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The Hamiltonian of the system H(t) reads

H(t) = H0 + V (t) =

[

~ωa 0
0 ~ωb

]

+

[

0 −µabẼ(t)
−µbaẼ(t) 0

]

(4.4)

Therefore the expansion coefficients of the wave function along the states A and B is also
time-dependent

Ψ(r, t) = Ca(t)e−iωat|ua(r)〉 + Cb(t)e−iωbt|ub(r)〉 (4.5)

This wave function satisfies the Schrödinger equation

i~
∂Ψ
∂t

(r, t) = HΨ(r, t) (4.6)

Inserting eq. (4.5) into eq. (4.6):

i~
(

Ċa(t)e−iωat|ua(r)〉 − iωaCa(t)e−iωat|ua(r)〉 + Ċb(t)e−iωbt|ub(r)〉 − iωbCb(t)e−iωbt|ub(r)〉
)

= Ca(t)~ωae−iωat|ua(r)〉+Cb(t)~ωbe−iωbt|ub(r)〉−µabCb(t)Ẽ(t)|ua(r)〉−µbaẼ(t)Ca(t)|ub(r)〉
(4.7)

Using the orthogonality relation of eq. (4.2) and ωba = ωb − ωa yields
{

Ċa(t) = −µab

i~
Cb(t)Ẽ(t)e−iωbat

Ċb(t) = −µba

i~
Ca(t)Ẽ(t)eiωbat

(4.8)

Inserting the expression of the electric field, eq. (4.8) transforms into
{

Ċa(t) = −µab

i~
Cb(t)(Ee−i(ωba+ω)t + E∗e−i(ωba−ω)t)

Ċb(t) = −µba

i~
Ca(t)(Eei(ωba−ω)t + E∗ei(ωba+ω)t)

(4.9)

Using the Rotating Wave Approximation, we neglect the fast oscillations. Introducing
the detuning ∆ = ω − ωba

{

Ċa(t) = −µab

i~
Cb(t)E∗ei∆t

Ċb(t) = −µba

i~
Ca(t)Ee−i∆t (4.10)

Eigenstate distributions Ci(t)i∈[1,2] are now coupled and time-dependent. The probability
density of the electron |Ci|2i∈[a,b], which was constant in free space, now fluctuates with
time.

4.1.2 Oscillation of populations

Eq. (4.10) can be readily solved by adopting a trial solution of the form Ca(t) = Ke−iXt.






Ca(t) = Ke−iXt

Cb(t) = − ~λK
µabE∗

e−i(∆+X)t

Ċb(t) = −µba

i~
Ca(t)Ee−i∆t

(4.11)

Eq. (4.11) leads to the polynomial expression

X(X + ∆) =
|µab|2|E|2

~2
(4.12)
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With solutions

X± = −1
2

∆ ± 1
2

√
∣
∣
∣
∣2
µabE

~

∣
∣
∣
∣

2

+ ∆2 (4.13)

Using

Ω =
∣
∣
∣
∣2
µabE

~

∣
∣
∣
∣ (4.14)

We can derive the expressions

{

Ca(t) = ei
1
2

∆t(A+e
−i 1

2

√
Ω2+∆2t + A−e

i 1
2

√
Ω2+∆2t)

Cb(t) = e−i 1
2

∆t(B+e
−i 1

2

√
Ω2+∆2t +B−e

i 1
2

√
Ω2+∆2t)

(4.15)

where A± and B± are fixed by the initial conditions. Hence, the wave function of the
electron is now made up of four components (see Fig. 4.2) [105, 107]. The atom can be
treated as a four-level system. These ”virtual” electronic levels are equally spaced around
the eigenstates of the free space Hamiltonian H0 (see Fig. 4.2). From a physical point of
view, the electronic populations of states A and B read

{

|Ca(t)|2 = |A+e
−i 1

2

√
Ω2+∆2t + A−e

i 1
2

√
Ω2+∆2t|2

|Cb(t)|2 = |B+e
−i 1

2

√
Ω2+∆2t +B−e

i 1
2

√
Ω2+∆2t|2 (4.16)

Populations oscillate over time and create ”virtual” states on the electronic wave function.
Hence, as sketched in Fig. 4.2, three resonance transitions are now allowed:

• (1): ωba − 2
√

Ω2 + ∆2

• (2): ωba

• (3): ωba + 2
√

Ω2 + ∆2

These three transitions correspond to three different frequencies within the polarization
of the atom. They form a triplet [105]. Nevertheless, this triplet should not be mistaken
for the Mollow triplet of resonance fluorescence [108] which requires a quantization of
the electric field. As explained in Chapter 1, these transitions have a linewidth, which is
driven by the spontaneous decay between the different levels.

ωb, |ub(r)〉

ωa, |ua(r)〉

Ee−iωt + cc ωb −
√

Ω2 + ∆2

ωb +
√

Ω2 + ∆2

ωa −
√

Ω2 + ∆2

ωa +
√

Ω2 + ∆2

(1) (2) (3)

(a) (b)

ω

ωa ωb

Ψ(ω)

Figure 4.2: (a) Two-level system under an external field excitation Ee−iωt + cc. Two
”virtual states” appear around the eigenstates of the free space Hamiltonian H0. (b)
Example of the wave function Ψ(ω) of an electron composed of 4 different states.
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4.1.3 Linear vs nonlinear polarization

Virtual states condition

If eq. (4.15) demonstrates the appearance of several components in the atomic polariza-
tion, it is of common knowledge that the observation of a triplet is an exception rather
than the rule. In practice, to discern the appearance of the triplet, the spectral distance
between the ”side frequencies” must be larger than the linewidth of the central frequency
(see Fig. 4.3). The central linewidth is given by the linewidth of the emitter embed-

ω

ωba

P (ω)
4
√

Ω2 + ∆2 > 2FpΓs 4
√

Ω2 + ∆2 > 2FpΓs

ω

ωba

P (ω)
4
√

Ω2 + ∆2 < 2FpΓs

ω

ωba

P (ω)

E

Figure 4.3: Frequency spectrum of the polarization of the atom: Excitation field amplitude
increases from right to left. When the spectral distance between the two ”side frequencies”
is smaller than the central linewidth, the triplet can no longer be observed.

ded within the medium (see Chapter 1 for explanation). Compared to free space, the
spontaneous decay of the emitter reads

2FpΓs (4.17)

where Γs = ΓRs + ΓNRs is the spontaneous decay rate in vacuum of the emitter, which can
be separated into a radiative (R) and a non-radiative (NR) component. Fp is the Purcell
factor standing for modification of the decay rate due to the medium [94]. The system
has no loss. Hence, for a single atom, the decay rate is purely radiative and is driven by
the transition time T1 between the two levels of the atom

Γs =
1
T1

= ΓRs

For a collection of atoms, the decoherence time T2p resulting from atom interactions must
be taken into account as a non-radiative component

Γs =
1
T1

+
2
T2p

= ΓRs + ΓNRs

The triplet is observable if the electric field is strong enough to satisfy

FpΓs < 2
√

Ω2 + ∆2 = 2

√
∣
∣
∣
∣2
µabE

~

∣
∣
∣
∣

2

+ ∆2 (4.18)
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Linear and non-linear polarization regimes

As sketched in Fig. 4.3, the polarization of the atom has two different regimes depending
on eq. (4.18).

If eq. (4.18) is not fulfilled, the electric field amplitude is relatively small, and only one
frequency remains in the polarization. Both the polarization and the electric field are
monochromatic. The emitter is in the linear regime and its polarization reads

P (ω) = χs(ω)E(ω) (4.19)

where χs(ω) is the two-level susceptibility (see Appendix A).

In the non-linear regime, the polarization is made up of three components: ω, ω −
2
√

Ω2 + ∆2, ω + 2
√

Ω2 + ∆2. This polarization can be expressed in terms of a non-linear
susceptibility [106]. However, in this chapter, we will not need the complete expression of
the polarization and therefore simply use the notation

P (ω) = PNL(ω) (4.20)

4.2 Linear Rabi regime: Strong coupling

Here we consider a two-level atom interacting with a 2D Anderson-localized mode (see
Chapter 2). The two-level atom evolves in the linear regime and no external excitation
is considered. Using modal expansion and the corresponding biorthogonal formalism (see
Chapter 2), we derive the strong coupling condition of [104] and the linear Rabi splitting.
This approach offers a new insight into the strong coupling condition and serves as a
benchmark for our approach.

4.2.1 A two-level system coupled to a 2D Anderson-localized
mode

We consider a 2D open disordered system of finite dimensions, with a position-dependent
index of refraction n(r) (see Fig. 4.4). In the absence of a source, the electric field fulfils
the source-free Helmholtz equation (see Chapter 1)

∆E(~r, ω) − ω2n2(~r)E(~r, ω) = 0 (4.21)

Modes are defined as the eigensolutions of Helmholtz eq. (4.21):

Ωi = ωi − i
Γi
2

| ∆|Ψi〉 − n2(~r)Ω2
i |Ψi〉 = 0 (4.22)

If the scattering is strong enough, these modes are spatially localized within the system
limits, as in Fig. 4.4(b).

Let us now consider a two-level system of polarization P (ω) embedded at the position ra
(see Fig. 4.4(a)). No external excitation is considered. The electric field is thus driven
by Helmholtz equation with a right-hand side term

∆E(~r, ω) − ω2n2(~r)E(~r, ω) = ω2P (ω)δ(r − ra) (4.23)
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Figure 4.4: (a) A 2D scattering medium of refractive index distribution n(r). The system
is open at the edges. The red dot is the location of the atom ra. (b) The spatial
distribution of mode M , |ΦM(r)〉.

The susceptibility of the emitter is given by (see Appendix A)

χs(ω) =
2
ω2

ΓRs
ωs − ω − iΓNRs /2

(4.24)

where ΓRs /ΓNRs stand for radiative/non-radiative decays of the emitter respectively and
ωs is the central frequency of the mode. Hence the polarization P (ω) of the emitter reads

P (ω) =
2
ω2

ΓRs
ωs − ω − iΓNRs /2

E(ω) (4.25)

For the rest of the chapter we consider a specific localized mode (ΩM = ωM − iΓM

2 , |ΨM〉)
(presented in Fig. 4.4), and assume its central frequency is equal to the transition of the
emitter:

ωM = ωs (4.26)

4.2.2 Strong coupling and Rabi oscillations

Expansion of the field along the modes

As stated in Chapter 2, the electric field can be expanded along the modes of the system.
Thus, the electric field reads

E(~r, ω) =
∑

i

ai(ω)
−iω + iΩi

|Ψi〉 (4.27)

Using this expansion in eq. (4.23) and (4.24), we write

∑

i

∆
ai(ω)

−iω + iΩi

|Ψi〉−ω2n2(r)
∑

i

ai(ω)
−iω + iΩi

|Ψi〉 =
2ΓRs

ωs − ω − iΓNRs /2

∑

i

ai(ω)
−iω + iΩi

|Ψi〉δ(r−ra)

(4.28)
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Inserting the definition of mode given by eq. (4.22), eq. (4.28) reads

∑

i

ai(ω)
−iω + iΩi

(Ω2
i − ω2)n2(r)|Ψi〉 =

2ΓRs
ωs − ω − iΓNRs /2

∑

i

ai(ω)
−iω + iΩi

|Ψi〉δ(r − ra) (4.29)

As in Chapter 2, we define a biorthogonal product:

〈Ψ∗
j |n(r)2|Ψi〉 =

∫

R2
Ψj(r)Ψi(r)n(r)2 = δji (4.30)

Using the biorthogonal product of eq. (4.30) along the mode 〈Φ∗
M | leads to

aM(ω)
−iω + iΩM

(Ω2
M − ω2) =

2ΓRs
ωs − ω − iΓNRs /2

∑

i

ai(ω)
−iω + iΩi

Ψi(ra)ΨM(ra) (4.31)

Some reasonable assumptions

The modes used for the field expansion are Anderson-localized and thus have a very weak
spectral overlap. Moreover, we assume that the spectral distance between two modes is
larger than the linewidth of the susceptibility. The susceptibility of the emitter can be
considered very narrow and centred on the central frequency of mode M . Hence, on the
right-hand side of eq. (4.31) only the contribution of mode M remains

aM(ω)
−iω + iΩM

(Ω2
M − ω2) =

2ΓRs
ωM − ω − iΓNRs /2

aM(ω)
−iω + iΩM

Ψ2
M(ra) (4.32)

And if j 6= M
aj(ω)

−iω + iΩj

= 0 (4.33)

Then, eq. (4.32) is now equivalent to a polynomial

(Ω2
M − ω2)(ωM − ω − iΓNRs /2) = 2Ψ2

M(ra)ΓRs (4.34)

Eq. (4.34) is simplified using the Rotating Wave Approximation

Ω2
M − ω2 ≈ 2ΩM(ΩM − ω) (4.35)

Leading to

(ΩM − ω)(ωM − ω − iΓNRs /2) = Ψ2
M(ra)

ΓRs
ΩM

(4.36)

Since the modes are localized, they have high Q-factor QM

QM =
ωM
ΓM

≫ 1 ⇒ ΓRs
ΩM

=
ΓRs
ωM

1
1 − i 1

2QM

≈ ΓRs
ωM

(4.37)

As a result

(ΩM − ω)(ωM − ω − iΓNRs /2) = Ψ2
M(ra)

ΓRs
ωM

(4.38)
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Linear Rabi oscillations and splitting

Eq. (4.38) is now a simple polynomial of degree 2

ω2−ω
(

2ωM − i

2
(ΓM + ΓNRs )

)

+ω2
M−ωM

i

2
(ΓM+ΓNRs )−ΓMΓNRs

4
−Ψ2

M(ra)
ΓRs
ωM

= 0 (4.39)

Defining the discriminant ∆ of eq. (4.39):

∆ = (2ωM − i

2
(ΓM + ΓNRs ))2 − 4

(

ω2
M − ωM

i

2
(ΓM + ΓNRs ) − ΓMΓNRs

4
− Ψ2

M(ra)
ΓRs
ωM

)

= −1
4

(

ΓM + ΓNRs
)2

+ ΓMΓNRs + 4Ψ2
M(ra)

ΓRs
ωM

= −
(

ΓNRs
2

− ΓM
2

)2

+ 4Ψ2
M(ra)

ΓRs
ωM

(4.40)

The two frequencies fulfilling eq. (4.39) are:

ω± = ωM ±
[

Ψ2
M(ra)

ΓRs
ωM

− (ΓNRs − ΓM)2

16

]1/2

− i

2

(

ΓNRs
2

+
ΓM
2

)

(4.41)

And defining

g2
c = Ψ2

M(ra)
ΓRs
ωM

(4.42)

leads to

ω± = ωM ±
[

g2
c − (ΓNRs − ΓM)2

16

]1/2

− i

2

(

ΓNRs
2

+
ΓM
2

)

(4.43)

Hence, the electric field can be expressed in the temporal domain (with constants E±) as
the superposition of two components

E(r, t) =
(

E+e
−iω+t + E−e

−iω−t
)

|ΨM(r)〉 (4.44)

We must emphasize that mode M has a high Q-factor (small leakage at the edges, see
Fig. 4.4). For that reason, Ψ2

M(ra) is almost a real value and so is g2
c . Assuming g2

c satisfies

g2
c >

(ΓNRs − ΓM)2

16
(4.45)

thus, we can define a real value called the ”linear Rabi splitting”

ΩL
R =

ω+ − ω−
2

=

[

g2
c − (ΓNRs − ΓM)2

16

]1/2

∈ R (4.46)

The envelope of the electric field oscillates over time and simultaneously the field in the
spectral domain is split into two peaks (see Fig. 4.5). This phenomenon is called Rabi
oscillation (in time), or Rabi splitting (in frequency) and is the footprint of strong coupling
between an emitter and a cavity, a mode in the present case. Before going any further,
we must emphasize that eq. (4.43,4.45,4.46) are consistent with the approach based on
Local Density of States (LDOS) developed in [104]. There, a similar splitting is predicted

with a different definition of gc, derived from a LDOS formalism, g2
c = ΓS

RΓMFp

4 , where Fp
is the Purcell factor. In order to differentiate between linear and non-linear cases, we will
refer to this Rabi oscillation/splitting as the linear Rabi regime.
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(a)
|E(t, rs)| ∝ 1

2ΩL
R

t

(b)

ω
ωM

2ΩL
R|E(ω, rs)|

ΓNR
s

2 + ΓM

2

Figure 4.5: (a) Field amplitude at rs exhibiting linear Rabi oscillations in time: The fast
oscillation at optical frequency ωM is modulated by the oscillation of the envelope at ΩL

R.
(b) Spectral field amplitude exhibiting linear Rabi splitting: The spectrum is split into
two components.

4.2.3 Linear Rabi regime condition

As already stated, the linear Rabi regime corresponds to the very signature of strong
coupling between the emitter and the cavity. The term g2

c , defined in eq. (4.42), directly
triggers the linear Rabi splitting, thus stands for the strength of the spatio/temporal
coupling between the emitter and the mode. Spatial coupling is efficient if the emitter is
placed at a position where the field intensity Ψ2

M(ra) is large. Spectrally, the radiative
rate of the emitter, ΓRs , needs to be sufficiently high to inject energy into the mode.

However, the condition driven by eq. (4.45) is not sufficient to observe a linear Rabi
regime. For Rabi oscillations to be discernible, we must ensure the Rabi splitting is larger
than the linewidth of each peak (see Fig. 4.5). The linewidth is directly given by the
imaginary part of eq. (4.43). Leading to

2ΩL
R ≥ ΓNRs + ΓM

2
(4.47)

Hence, the necessary condition for linear Rabi regime is

g2
c ≥ ΓNRs

2 + ΓM
2

8
(4.48)

If eq. (4.48) is fulfilled linear Rabi regime is reached.

4.3 Non-linear Rabi regime

Unlike the linear Rabi regime, the two-level atom is here submitted to an intense electric
field. In this section, we derive the condition for the observation of the triplet and predict
the amplitude of the non-linear Rabi splitting. We refer to this situation as the non-linear
Rabi regime. Rather than considering a non-linear susceptibility for the atom as in Ref.
[106], we propose a different approach. Here we use an external source to neglect the
influence of the non-linear polarization of the atom, and thus make the problem linear.
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4.3.1 A two-level atom in an Anderson-localized mode ... with
external excitation

First, we consider a two-level atom embedded in the same random medium as in section
4.2 (see Fig. 4.4). We know from section 4.1 that if the electric field is intense, the
polarization of the two-level atom exhibits new resonances. Consequently this polarization
is non-linear and noted PNL. The electric field is driven by a non-linear version of the
Helmholtz equation

∆E(~r, ω) − ω2n2(~r)E(~r, ω) = ω2PNL(ω)δ(r − ra) (4.49)

Nevertheless, the study of this problem is made more complex by the need for a non-linear
susceptibility to link the electric field and the non-linear polarization. Moreover, we know
from section 4.1 that the amplitude of the non-linear Rabi splitting is directly triggered
by the amplitude of the field at the position of the atom (eq. (4.14)). Taking into account
these two observations, we propose an alternative approach to eq. (4.49).

In this section, we will insert an external monochromatic source with amplitude Pext
at frequency ωext and positioned at rext (see Fig. 4.6(a)). Unlike the linear problem of
section 4.2, here we consider an emitter providing for the external excitation at rext and
the two-level atom at ra. Eq. (4.49) is now transformed into

∆E(~r, ω) − ω2n2(~r)E(~r, ω) = ω2PNL(ω)δ(r − ra) + ω2Pextδ(r − rext)δ(ω − ωext) (4.50)
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Figure 4.6: (a) 2D scattering medium with dielectric refractive index distribution n(r).
The system is open at the edges, the red dot is the location of the atom ra and the green
dot the location of the excitation rext. (b) Spatial distribution of Anderson-localized
mode M , |ΦM(r)〉.

The amplitude of the electric field is the superposition of a first component due to the
non-linear polarization of the atom at ra and a second one due to the excitation source
at rext

E(r, ω) = ENL(r, ω) + Eext(r, ω) (4.51)
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where ENL is driven by the non-linear polarization of the atom and Eext by the external
excitation.

Here we consider the case where the external excitation is much stronger than the non-
linear polarization of the atom and the amplitude of the non-linear Rabi oscillations is
mostly forced by Eext(r, ω).

4.3.2 Non-linear Rabi regime

Expansion along the modes

When the non-linear polarization is neglected in eq. (4.50), it reads

∆Eext(~r, ω) − ω2n2(~r)Eext(~r, ω) ≈ ω2
extPextδ(r − rext) (4.52)

Starting from eq. (4.52), it is possible to perform modal expansion of Eext along the
Anderson-localized modes:

∑

i

ai,ext(ω)
−iω + iΩi

(∆|Ψi〉 − ω2n2(r)|Ψi〉) = ω2
extPextδ(r − rext)δ(ω − ωext) (4.53)

As in the previous section, we consider here the localized mode M (see Fig. 4.6(b)). Using
the mode definition and the biorthogonal relation along 〈Ψ∗

M |:

aM,ext(ω)
−iω + iΩM

(Ω2
M − ω2) = ω2

extΨM(rext)Pextδ(ω − ωext) (4.54)

Some reasonable assumptions

The modes are Anderson-localized and thus their spectral overlap is weak. The external
excitation is tuned to match the central frequency of mode M

ωext = ωM

As a result, only mode M is excited. The electric field reads

Eext(ω, r) =
aM,ext(ω)

−iω + iΩM

|ΨM〉 (4.55)

Using eq. (4.54)

Eext(ω, r) = Pext
ΨM(rext)ω2

M

Ω2
M − ω2

δ(ω − ωM)|ΨM(r)〉 = Pext
ΨM(rext)ω2

M

Ω2
M − ω2

M

|ΨM(r)〉 (4.56)

Now, we perform the Rotating Wave Approximation

Ω2
M − ω2

M ≈ 2ωM(ΩM − ωM) = −iωMΓM

We obtain the electric field driven by the external excitation

Eext(ω, r) = iPextΨM(rext)
ωM
ΓM

|ΨM(r)〉 (4.57)
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Non-linear Rabi splitting/oscillations

According to eq. (4.13), the amplitude of the non-linear Rabi splitting ΩNL
R is triggered

by the amplitude of the electric field at the position of the atom

ΩNL
R = 2

√
Ω2 + ∆2 = 2

√
√
√
√

∣
∣
∣
∣
∣
2
µabE(ra, ω)

~

∣
∣
∣
∣
∣

2

+ ∆2 (4.58)

With the expression of the electric field derived in eq. (4.57)

|E(ra, ω)| ≈ |Eext(ra, ω)| = PextQMΨM(rext)ΨM(ra) (4.59)

where QM = ωM

ΓM
is the quality factor of mode M . Hence, the non-linear Rabi splitting

reads in our case:

ΩNL
R = 2

√
∣
∣
∣
∣2
µab
~
PextQMΨM(rext)ΨM(ra)

∣
∣
∣
∣

2

+ ∆2 (4.60)

If we assume there is no detuning (i.e.) ∆ = ωs − ωM = 0:

ΩNL
R = 4

µab
~
PextQMΨM(rext)ΨM(ra) (4.61)

The spectrum of the field is split (see Fig. 4.7). This splitting in the frequency domain is
equivalent to oscillations in the temporal domain (with constants Ai)

|E(r, ω)| ≈ A−1e
−i(ωM −ΩNL

R )t + A0e
−iωM t + A1e

−i(ωM +ΩNL
R )t (4.62)

As shown in Fig. 4.7(a), the envelope of the electric field has a non-sinusoidal shape.
These oscillations differ from the linear Rabi oscillations and will be referred to as the
non-linear Rabi oscillation. In the frequency domain (Fig. 4.7(b)), the splitting of the
field in three components will be referred to as the non-linear Rabi splitting. Both effects
characterize the non-linear Rabi regime.

(a)
|E(t, r)| ∝ 1

ΩNL
R

t

(b)

ω
ωM

2ΩNL
R|E(ω, r)|

Figure 4.7: (a) Field amplitude time evolution exhibits non-linear Rabi oscillations: A
fast oscillation at optical frequency ωM is modulated by a non-sinusoidal oscillation of
the envelope at ΩNL

R . (b) Spectral field amplitude exhibits non-linear Rabi splitting: The
spectrum splits into three components.
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4.3.3 Non-linear Rabi regime condition

Existence condition

As stated in section 4.1, the non-linear Rabi regime is effective when

FpΓs < ΩNL
R (4.63)

In the case of no detuning, referring to eq. (4.61)

FpΓs < 4
µab
~
PextQMΨM(rext)ΨM(ra) (4.64)

Using [104], the Purcell factor is given by the ratio of the local density of state at the
atom’s position and the local density of state in vacuum

Fp =
ρ(ra, ωM)

ρ0
=

4
c2

Im(G(ra, ra, ωM)) (4.65)

Noting that c2 = 1 and

Im(G(ra, ra, ωM)) = Im

(

ΨM(ra)2

Ω2
M − ω2

M

)

≈ ΨM(ra)2

ωMΓM
(4.66)

where G is the Green function of the system. Hence, the non-linear Rabi regime condition
reads

ΨM(ra)Γs < ω2
ext

µab
~
PextΨM(rext) (4.67)

As predicted in section 4.1, the non-linear Rabi regime is enforced by an external excitation
(i.e. PextΨM(rext)).

Linear vs non-linear conditions

Remarkably enough, existence conditions for linear and non-linear Rabi oscillations may
oppose each other. Indeed, using eq. (4.42,4.45) the linear and non-linear conditions read







Ψ2
M(ra)

ΓR
s

ωext
> ΓNR

s
2+ΓM

2

8 linear
ΨM(ra)Γs < ω2

ext
µab

~
PextΨM(rext) non-linear

(4.68)

Unlike the non-linear case, the linear regime requires a large amplitude of the mode at the
position of the atom ΨM(ra). The non-linear case needs a small decay rate Γs = ΓRs +ΓNRs ,
while in the other regime the non-radiative must be low and the radiative part must be
important. Hence, these remarks emphasize the fact that the two regimes of oscillation
are related to different mechanisms.

In the linear regime (strong coupling), energy is reversibly exchanged between the mode
and the emitter. This exchange is possible if the radiative transfer from the emitter
(namely ΓRS ) is well coupled to the mode intensity (namely ΨM(ra)2). This coupling
condition is exemplified by the left-hand-side term of eq. (4.68). To be effective, this
reversible exchange must be stronger than the losses provided by the right-hand side of
eq. (4.68) (namely ΓNRs

2 + ΓM
2).
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In the non-linear regime the amplitude of the splitting is driven by the amplitude of atom
population oscillations. This is triggered by the interaction potential between the atom
and the field present in the right-hand side of non-linear eq. (4.68)(namely µabΨM(rext)).
The non-linear Rabi splitting must be larger than the linewidth of the emitter encoded
in ΨM(ra)Γs.

4.4 Coexistence of both regimes in a realistic exper-
iment in the temporal domain

In this section, we consider a realistic experiment in the temporal domain. A two-level
atom is placed in a localized mode. The system is excited by a point source. When the
excitation is turned-off, the amplitude of the electric field at the position of the atom
decays. During this decay, the atom can successively exhibit non-linear and linear Rabi
regimes.

4.4.1 Setup

We consider a 2D dielectric random medium similar to the one considered in sections 4.2
and 4.3. The modes are Anderson-localized and among them the mode M is excited by a
source placed at position rext (see Fig. 4.8(a)). The point source emits a polarization pulse
Pext(rext, t) of duration Text oscillating at frequency ωext matching mode M : ωext = ωM .
The source is located inside mode M and its duration Text is assumed to be long enough
so that only mode M is excited (see Fig. 4.8(b)). Numerically, instead of a single atom,
we insert a collection of Ntot two-level atoms in mode M at location ra (see Fig. 4.8(a)).
The linewidth of the emitters is thus given by Γs = ΓRs + ΓNRs = 1

T1
+ 2

T2p
as stated in

section 4.1.3. The atomic central frequency ωs matches the mode, and thus

ωM = ωext = ωs (4.69)

4.4.2 Linear/Non-linear regimes in the transient regime

Transient regime

The linear and non-linear Rabi regimes considered in the previous sections 4.2 and 4.3
have been studied in their steady states. In the present case, we are investigating the
transient response when the excitation is switched off and the electric field intensity is
decaying. Intensity stored in mode M is driven by ΓM :

|E(r, t)|2env ∝ e−ΓM t (4.70)

where |E(r, t)|2env stands for the envelope of the intensity.

Regarding the linear Rabi regime, this temporal evolution of the field intensity has no
influence. Indeed, as emphasized in eq. (4.32) and (4.34), the amplitude of mode M is
suppressed from the derivation of the linear Rabi splitting ΩL

R. From a physical point
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(a) (b)

(c) |E(r, t)|2env
∝ e−ΓM t
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Figure 4.8: (a) 2D scattering medium of dielectric refractive index distribution n(r). The
system is open at the edges, the red dot is the location of the atom ra and the green dot
the location of the excitation rext. (b) Shape of the envelope of the temporal excitation
of duration Text and amplitude Pext, Pext(rext, t)env (c) Evolution of the envelope of the
intensity of the electric field stored in mode M , |E(r, t)|2env.

of view, the strong coupling achieved between the two-level emitter and the mode is
similar to two coupled springs. Therefore, this coupling mechanism is only affected by
the coupling strength and the frequencies of both oscillators.

Unlike the linear regime, the non-linear Rabi splitting is directly driven by the field
intensity (see eq. (4.14) in section 4.1). Hence, the amplitude of the non-linear Rabi
splitting will progressively decay whit the intensity.

Linear/Non-linear splittings

The evolution of the electric field Eext(ω, r) is given by eq. (4.57) in the steady state.
Therefore, we can easily derive its value in the transient regime

Eext(ω, ra) → Eext(t, ra) = iNtotPextΨM(rext)ΨM(ra)
ωM
ΓM

︸ ︷︷ ︸

E(ra,ωM )

e− ΓM
2
t (4.71)

The use of a collection of atoms is responsible for the factor Ntot.

By inserting the field evolution in eq. (4.58), it is now possible to obtain the expression
of the non-linear Rabi splitting versus time

ΩNL
R (t) = 2

√
Ω2 + ∆2 = 2

√
√
√
√

∣
∣
∣
∣
∣
2
µabE(ra, ωM)e−ΓM t

~

∣
∣
∣
∣
∣

2

+ ∆2 (4.72)

The linear Rabi splitting remains identical to the one derived in section 4.2. Assuming
there is no detuning (i.e. ∆ = 0, ωM = ωext) and if the coupling is strong (g2

c ≫ ΓNRs ,ΓM),
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the linear and non-linear splittings read

ΩL
R =

√

NtotΨ2
M(ra)

ΓRs
ωM

(4.73)

ΩNL
R (t) = 4

∣
∣
∣
∣
∣

µabNtotPextΨM(rext)ΨM(ra)ωM
ΓM~

∣
∣
∣
∣
∣
e− ΓM

2
t (4.74)

Hence, assuming that both regimes can be reached, the non-linear Rabi splitting decreases
over time while the linear one remains identical. Therefore, we must observe successively
the non-linear and the linear regime. In Fig. 4.9, we plot the schematic evolution of the
spectral peaks with respect to time. When the excitation is turned-off, both regimes are
present. Then, the non-linear Rabi splitting quickly decays and only the linear regime
remains.

2ΩNL
R

2ΩL
R

ωM
ω

t

Linear + Non-linear

Linear

Figure 4.9: Evolution over time of linear splitting ΩL
R and non-linear splitting ΩNL

R . When
the non-linear splitting vanishes, the linear splitting is observed.

4.4.3 Numerical investigation

Numerical setup

To observe the prediction of section 4.4.2 we present Finite Difference Time Domain
(FDTD) simulations (see Chapter 2) performed by Christian Vanneste1. The 2D system
is made of a collection of circular dielectric scatterers with radius r = 60 nm and optical
index n = 2 embedded in a background medium of index n = 1. The volume fraction
is 40 % and the system size is L2 = 6.6 × 6.6 µm2. We insert a source at position
rext = (2.10µm, 2.78µm) (see Fig. 4.10(a)) and atoms at ra = (2.04µm, 2.80µm). The
localized mode M (ωM − iΓM

2 = 14.1548 − 1.95.10−4i µm−1, with c = 1) is shown in
Fig. 4.10(b). Mode M is excited by the external source at position rext during Text =
100 ps. There are Ntot = 3 1024 atoms, with a decay time T1 = 1 ns and a decoherence
time T2p = 1 ns. The electric field and the population difference at the position of the
atom, namely E(ra, t) and ∆N(t), are computed with the FDTD method coupled to the

1Laboratoire de Physique de la Matière Condensée, CNRS UMR 3776, Université de Nice-Sophia
Antipolis, Parc Valrose, 06108 Nice Cedex 02, France
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Figure 4.10: (a) 2D random system made of dielectric pillars of index n = 2 in vacuum:
The excitation source rext is marked by a green dot and the atoms by a red dot. (b)
Mode M distribution |ΦM(r)〉 considered for the numerical experiment (computed by
Finite Element Method).

population equations of the two-level atomic structure [109, 110, 111] (see Fig.4.11). In
Fig. 4.11(a) we plot the envelope of the excitation at rext (Pext(rext, t)env), the average
population difference (〈∆N〉) in Fig. 4.11(b) and the electric field envelope at the position
of the atom (|E(ra, t)|env) in Fig. 4.11(c). When the excitation is turned-off, the transient

(a)

(b)

(c)

t

〈∆N〉

t

|E(ra, t)|

t

〈Pext(rext)〉

Text

∝ e−ΓM t

∝ e− ΓM
2
t

−Ntot

0

Zone of interest

Figure 4.11: (a) The envelope of the excitation Pext(rext). (b) Averaged population
difference 〈∆N〉. (c) Envelope of the electric field at the atoms’ position |E(ra, t)|.
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regime starts and the average population difference decays like the intensity of mode M
(see Fig. 4.11(b)). The electric field decreases and we observe oscillations of its envelope
in a temporal range (referred to as the Zone of interest in Fig. 4.11(c)).

Successive observation of non-linear and linear Rabi splittings

We now plot in Fig. 4.12(a) the electric field envelope in the final stage of its decay (the
Zone of interest in Fig. 4.11(c)). As explained in sections 4.2 and 4.3 we can distin-
guish between two different regimes of oscillations corresponding to non-linear and linear
Rabi oscillations. To identify these two regimes, we compute the Fourier transform of

t

|E(ra, t)|

Rabi NL Rabi L

(a)

(b) (c)

2ΩNL
R

2ΩL
R

ωM ωM
ω

|E(ra, ω)|dB

ω

|E(ra, ω)|dB

* *

*: Another Anderson
mode also excited by Pext

Figure 4.12: (a) Electric field envelope at ra in the transient regime, exhibiting succes-
sively non-linear and linear oscillations. (b) Spectrum of the electric field in the non-linear
regime: Observation of the triplet. (c) Spectrum of the electric field in the linear regime:
Observation of linear Rabi splitting. The * in both spectra points out the presence of
another Anderson-localized mode excited by the external excitation. This mode has no
influence on the different Rabi regimes.

the electric field within each temporal domain (see Fig. 4.12(b) and (c)). At early time,
the spectrum is made of three components in the electric spectrum forming the triplet.
Afterwards, only two components are present and characterize the strong coupling regime
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between the emitter and the mode. An extra peak is present in both spectra and corre-
sponds to another Anderson-localized mode of the system, which was also excited by the
source (its amplitude is very low and only appears because a log-scale is used in Fig. 4.12).

Spectra presented in Fig. 4.12(b) and (c) validate the prediction derived in section 4.4.2.
When the field intensity decreases, successively non-linear and linear Rabi regimes occur.
This observation of both regimes is made possible by exponential decay over time of the
non-linear Rabi splitting and the time independence of the linear Rabi splitting.

4.5 Summary

Here, we have investigated the interaction between a two-level emitter and an Anderson-
localized mode.

First, we have recalled the two different regimes of interaction between a two-level atom
and the electric field, namely the linear and the non-linear regimes. At low intensity of
the electric field, the polarization of the atom is linear: A monochromatic electric field
induces a monochromatic polarization of the atom. At high intensity the polarization
becomes non-linear: A monochromatic electric field induces a non-monochromatic polar-
ization characterized by three frequency components. This triplet is observable under
conditions we have recalled. Then we have considered the linear regime of interaction in
the specific case of an electric field supported by a single Anderson-localized mode. Using
the biorthogonal formalism of Chapter 2, a condition for strong coupling between the
emitter and the mode as well as the resulting linear Rabi splitting have been obtained.
Afterwards, we have investigated the non-linear regime of interaction for a similar system,
but in presence of an external excitation. In this specific configuration, the condition for
the observation of the triplet and the amplitude of the non-linear Rabi splitting have been
derived. Finally, the co-existence of both regimes in a temporal experiment has been pre-
dicted. Different decay time-scales lead to the consecutive observation of non-linear and
linear regimes. This prediction was confirmed numerically by a FDTD computation.

If the strong coupling regime between an Anderson-localized mode and a two-level emitter
was to be expected from early works [76, 103, 104, 77], the observation of three components
originating from Stark shifts can be seen as the major output of this work. We demonstrate
here the possibility of achieving strong light matter interaction using Anderson-localized
modes. Therefore, we can think of reaching different strong light matter interaction effects.
For instance, Anderson-localized could be used to force the resonance fluorescence of two-
level atoms [108]. The sidebands of the generated Mollow triplet are known to emit
photons with a particular statistic and specific correlation, and could be used as single-
photon sources [112, 113, 114, 115, 116]. Moreover their brightness combined with the
easy frequency-tuning of the non-linear Rabi splitting make them good candidates for
quantum light spectroscopy.
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Introduction to random laser: Basic
concepts and experimental
achievements
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A laser is composed of two parts: A gain medium and an optical cavity. The role of
the gain medium is to achieve a photonic amplification using stimulated emission (see
Chapter 1). In order to illustrate this photonic amplification mechanism, let’s consider
a flask in which was inserted a four-level system (e.g. Rhodamine diluted in ethanol).
When pumped by an external laser, photons are generated by spontaneous emission inside
the flask and are amplified before exiting the medium (the term ”Amplified Spontaneous
Emission” (ASE) is used to describe that phenomenon). The emitted intensity is isotropic
and defined by a spectrally broadband emission, which narrows with the pump excitation.
Now, let us assume that the medium is embedded in the following optical cavity: Two
parallel mirrors, one totally reflecting and the other just partially. This cavity provides
a feedback mechanism: The photons make several round trips in the amplifying medium
before exiting. The presence of the cavity deeply affects the emission properties. The light
amplification is spatially confined to the cavity (e.g. the two mirrors) and the emission
direction is fixed (e.g. by the partially reflecting mirror). We know from Chapter 2
that a cavity defines privileged vibrations called modes. These modes ”select” photons
at specific frequencies, which are duplicated by stimulated emission: Resulting photons
are similar or coherent. Hence, only several frequencies could oscillate and the emission
intensity is characterized by sharps peaks narrowing with the pump excitation. These
peaks are observed when the stimulated emission of coherent photons is predominant,
when it compensates for the losses of the cavity (e.g. the partially reflecting mirror).
As a result, the lasing intensity exhibits a threshold according to the pump excitation.
In the late 1960s, Lethokov [117] proposed to replace the optical cavity by a scattering
medium. Instead of creating this feedback mechanism using mirrors, he suggested to
embed scatterers within the active medium. Because of multiple scattering, the lifetime
of photons inside the gain medium is enhanced and the amplification can compensate
for optical cavity losses. He suggested that an amplification similar to ”conventional
laser” could be achieved in this ”random laser”. Nevertheless his approach relied on
an ASE description. In 1999, Professor Hui Cao [118, 119] observed for the first time
characteristics similar to conventional laser (see Fig. 5.5) in a random laser device.

In this chapter, we first introduce the model proposed by Letokhov [117] to give a de-
scription of the random laser in the framework of the diffusion approximation. Then,
we present the optofluidic random laser, a random laser we have developed [120] and in-
tensively used in the studies presented in this document. Experimental observations will
illustrate the limitations of the diffusive model and the requirement of a modal expansion
approach as described in Chapter 2.
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5.1 The ”photonic bomb” model

In this section, we introduce a simple model based on the diffusion approximation to
describe the random laser. First we compare the features of a random laser with those of
a conventional laser and emphasize their characteristics. Then, we derive the diffusion of
photons in a gain medium.

5.1.1 From conventional to random laser

Conventional laser

The standard laser is composed of an externally pumped medium and an optical cavity.
In the schematic of Fig. 5.1, the optical cavity is formed by two parallel mirrors. One
mirror is totally reflecting while the other is only partially reflecting. A simple description

Pump

Iout

Figure 5.1: Schematic description of an ordinary laser: A gain medium (in gray) is excited
by an external pump. The cavity of length L is made of two mirrors, one perfectly
reflecting and another partially. This cavity forces the light to experience an amplification
several time before escaping. Finally, when amplification reaches the losses, the laser
intensity Iout is emitted.

of the amplification in the steady state reads

dI

dz
(z) = I(z)(α− g) ⇒ I(z) = I0e

(g−α)z (5.1)

where I is the lasing intensity inside the medium, α the losses and g the gain. The gain
g is directly related to the pump intensity while the losses depend on the openness of the
cavity. From eq. (5.1), it is clear that if the gain becomes larger than the losses (g > α),
the lasing emission occurs. Let us assume that the photons make N round trips on average
on the cavity of length (L) before exiting. Thus, the average intensity of the laser output
reads

Iout = I(z = 2NL) = I0e
(g−α)2NL (5.2)

Eq. (5.2) carries two main messages. First, the emitted intensity versus pump energy
exhibits a threshold (see Fig. 5.2(a)). Second, the amplification increases exponentially
with the time spent by photons inside the gain medium.

The stimulated emission responsible for the lasing emission is a coherent process: Photons
are duplicated. As sketched in Fig. 5.2(b), because of light coherence, narrow peaks
appear in the emission spectrum. These peaks are regularly spaced in the spectrum and
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the mode spacing is fixed by the cavity length, L. These peaks also become spectrally
narrower when pumping is increased. To summarize, a lasing emission is characterized

g

Iout

α

(a) (b)

ω

Iout(ω)
∆ω = πc

L

Figure 5.2: (a) Lasing output intensity Iout versus gain. (b) Spectrum of emitted laser
intensity Iout: It is composed of peaks regularly spaced.

by three main properties:

• A threshold of the emission intensity

• The presence of peaks within the emission spectrum

• A narrowing of peak spectral linewidth

Random laser

In his seminal paper, Letokhov [117] suggested to fill the gain medium with scatterers (see
Fig. 5.3) to provide with feedback. In conventional lasers, the time spend by photons in
the amplification medium is critical to achieve lasing. In a similar way, in random lasers,
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Figure 5.3: Schematic view of random lasing process: A gain medium (in gray) is filled
with scatterers (black dots). Photons generated (e.g. in the center of the system) are
scattered several times before exiting the medium and thus are amplified, which results
in amplification.

the presence of scatterers increases that time. Here the feedback is provided by scattering
instead of mirror reflection.
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To give a naive picture of the gain mechanism in this system (see Fig. 5.3), we consider
a photon emitted by spontaneous emission at the centre of the gain medium. In absence
of scatterers, this photon will directly exit from the medium and be hardly amplified. In
the presence of scatterers, it will be scattered and therefore spend a very long time before
leaving the system [121]. As sketched in Fig. 5.3, if the gain overcomes the losses lasing
emission occurs.

As a result, in a similar way to ordinary lasers, if the emission is coherent, this emission
should be characterized by a threshold and peaks narrowing with the pump excitation.
Unlike ordinary lasers, because the system is disordered, its peaks would be randomly
distributed.

Early achievements: Incoherent/coherent random lasers

The first experimental observation of random lasing was made by Gouedard et al. [122] in
1993, using a neodymium powder. In this system, gain and scattering were provided by
the powder. One year later, Lawandy et al. [123], in a controversial experiment [124, 125],
observed random lasing emission in a colloidal suspension (see Fig. 5.4). Similarly to a

Figure 5.4: First observations of incoherent random lasing in a colloidal suspension by
Lawandy et al. [123]: a Rhodamine fluoresence emission in methanol. b and c Rhodamine
in methanol filled with TiO2 particles below and above threshold of emission.

classical laser, they observed a threshold for the emission and a narrowing of the spectral
linewidth. But unlike standard cavity lasers, they observed a single broadband peak in
the spectrum. This type of lasing has been identified as incoherent random lasing, which
is similar to ASE.

In 1998-1999, Hui Cao et al. demonstrated coherent random lasing in disordered semi-
conductor powder and polycrystalline films [126, 118] (see Fig. 5.5). In this sample where
the disorder was frozen, they observed multiple narrow peaks in the emission. These ex-
periments show that coherent lasing emission can be achieved. In other words, disordered
media can emit lasing light with properties similar to conventional lasers.
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(a) (b)

Figure 5.5: First observation of coherent random lasing in ZnO based disordered media
by Cao et al. [118]. (a) They measured a threshold in the emission characteristic. (b)
Above the threshold, they observed multiple randomly distributed peaks in the emission
spectrum narrower than the linewidth of the ASE.

5.1.2 A scattering process ... with gain

Different scattering regimes

The simple description of section 5.1.1, points out that the random lasing process is
based on multiple scattering. One can expect that depending on the scattering strength,
different scattering regimes can occur as well as different random lasing regimes.

Here we consider the general case of a light beam of intensity I0 impinging on a scatter-
ing sample (see Fig. 5.6). When the light penetrates through the sample, photons are
scattered in many different directions. A convenient approach to investigate this problem
consists in averaging the scattering over all directions. The average scattered energy can
be described by a 1D quantity

〈I(x, y, z)〉R = I(z) (5.3)

where R is the radius of the sphere used to average the scattered intensity (see Fig. 5.6).

This scattering problem can now be treated like a 1D slab problem (similar to Chapter 1).
The intensity of the incident beam decreases as a function of depth inside the sample
according to the Beer’s law, which reads

I(z) = I0e
− z

ls (5.4)

where ls is the scattering mean free path. In a dilute system, it reads

ls =
1
ρσs

(5.5)

where σs is the scattering cross section of the scattering particles and ρ their density. We
saw in Chapter 1, that the transport mean free path can be defined from the scattering
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I0

R

z

Figure 5.6: A medium is enlightened by an incoming beam of intensity I0: Part of the
photons are scattered back at the interface while others are scattered inside the medium
within all directions.

mean free path

lt =
ls

1 − 〈cos θ〉 (5.6)

where 〈cos θ〉 is the average angle describing the anisotropy of the scattering.

Comparing the transport mean free path with the length of the system allows to classify
different regimes of propagation. If the characteristic size of the system L is smaller than
the transport mean free path (L < lt), the system is in the ballistic regime. Part of the
photons are scattered, while some manage to travel through the system without being
scattered. The light keeps memory of the incident direction. When λ < lt < L, the light
is in the diffusive regime (λ is the light wavelength). Photons follow a random walk inside
the system before exiting. A third regime exists, in which the light is spatially localized
in the medium. As stated in Chapter 2, in 1D and 2D this regime occurs as soon as the
size of the system is larger than the localization length. In 3D, because light is a polarized
wave, the possibility of achieving Anderson’s localization is still debated [64]. Assuming
localization can be performed in 3D, it occurs if the Ioffe-Regel criterion [127, 58, 128] is
satisfied

lt ∼ λ

2π
(5.7)

The ”photonic bomb” model

In his seminal work, Letokhov [117] considered a scattering system with a photon mean
free path much smaller than the size of the system, therefore placing his theory in the
diffusive regime. Similar to a thermal problem, the photons are driven by a diffusion
equation (see Chapter 1)

∂W

∂t
(r, t) = D∇2W (r, t) +

vW (r, t)
lg

(5.8)

where W (r, t) is the photonic energy density, v the light celerity, D the diffusion constant
and lg the amplification length-scale within the medium. The gain is provided by the term
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vW (r,t)
lg

standing for the medium amplification. This gain must compensate the leakage of
energy due to diffusion to the outside.

The diffusion constant D fulfills in 3D

D =
1
3
vlt (5.9)

and the diffusion length ldiff is defined as

ldiff =
vL2

D
(5.10)

It describes the averaged length spent by a photon in the system. Eq. (5.10) leads to the
time scale

τdiff =
ldiff
v

(5.11)

The gain time scale τg is driven by the length scale lg

τg =
lg
v

(5.12)

To achieve photonic amplification, the time spent by the photon inside the system (τdiff )
must be important enough to allow for the generation of a least one extra photon (τg),
which reads

τdiff > τg (5.13)

The amplification condition of eq. (5.13) reads

L2

1
3vlt

>
lg
v

⇒ 3L2 > ltlg (5.14)

Therefore, when the excited system reaches a critical value, the photonic energy density
explodes. This ”photonic bomb” effect, occurs at a threshold limit

Lc =

√

ltlg
3

(5.15)

This simple model similar to Letokhov’s approach [117] defines a critical value for the
lasing to happen. It can be understood like the threshold of the random laser emission.
This resulting threshold is required in neutron scattering to observe nuclear fission [129],
hence is sometimes named ”photon bomb”.

5.2 The optofluidic random laser

Various random laser devices have been proposed in the literature based on a large variety
of technical processes [130, 131]. In this section, we present microfluidic-based random
lasers developed in collaboration with Shivakiran Bhaktha and Xavier Noblin [120]. Using
routine techniques in microfluidic engineering, we achieve on-demand 1D and 2D random
lasers with controlled disorder strength. First, we recall the advantages of optofluidic
devices and introduce the fabrication process of microfluidic random lasers. Then we
present the characterization of a 1D optofluidic random laser. Finally, we perform similar
study on 2D optofluidic random lasers.
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5.2.1 Advantages of optofluidic devices

Optofluidic devices are an innovative and emerging field. Indeed, manipulating light
at micro-scale is particularly attractive for all set of lab-on-chip applications and opens
avenues for sensing applications [132, 133]. In particular, developing optofluidic lasers is
of major interest for micro-scale optical systems.

An optofluidic laser source is composed of a micro-channel filled with dye (in many ap-
plications optically pumped). Unlike solid states lasers, optofluidic lasers have great fab-
rication flexibility, which makes them experimentally convenient. For instance, because
they are produced from a mold, the bulk material can be easily changed and they can be
reproduced with a good accuracy. The circulating dye can be removed and its concentra-
tion can be adjusted by enhancing the pressure. As a result, they can be re-configured
on-demand. Moreover, their fabrication can lead to almost any 1D or 2D patterns and
such devices can be arranged to create optofluidic networks. Because a flow circulation
is enforced inside the microchannel, the dye is continuously replaced, which precludes
the bleaching of dye molecules. Finally, in the specific case of optofluidic random laser
devices, disordered is naturally achieved as a result of the limited accuracy of the pho-
tolithographic process. The scattering is fixed by the pattern and the index contrast
between the bulk material and the dye solvent. Consequently, the disorder strength can
be precisely adjusted.

5.2.2 Fabrication process

Different microfluidic channels have been fabricated following the soft lithography protocol
described by Xia and Whitesides [134]. For instance, Fig. 5.7 shows a 1D serpentine-like
channel and a 2D random device. Two types of bulk material have been used for their
different optical properties.

First, for each pattern, a structured mask is used to form the corresponding thick negative
photoresist SU-8 mold. The mask is unlighted by a UV lamp at 365 nm. Its resolution is
of 25,400 dpi. The diffraction at 365nm and imperfect adhesion of the mask on the resin
limit the resolution of the photolithography process leading to fluctuations in the mold
vertical walls position. At the optical scale, the structures are therefore not periodic as it
may appear to the naked eye in Fig. 5.7 but totally random. The mold is used to replicate
the microstructures.

Polydimethylsiloxane (PDMS) or resin (OE-7620, from Dow Corning) is poured into the
mold and then degassed before being cured. After perforating holes in the device for the
inlets, the microchannel is bonded on glass slides by plasma treatment. Rhodamine 6G
dye solution in ethanol circulates into the microchannel through the tubes connected to
the inlets. Index of refraction of the dye is ndye = 1.36 and refractive index of the polymer
and the resin are respectively nPDMS = 1.42 and nOE = 1.60.

5.2.3 1D optofluidic random laser

One dimensional random lasing is achieved using the serpentine pattern of Fig. 5.7(a) in
polymer PDMS filled with Rhodamine dye of concentration 2.5 mM in ethanol. The re-
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(a)

(b)

(c)

Figure 5.7: (a) and (b) A 1D serpentine pattern: The dye flows in a channel designed
into resin or PDMS bulk. An auxiliary channel (Imaginary channel) is present to collect
light emitted from the laser. (c) A 2D optofluidic random laser: The dye flows in the
central part between the pillars made in resin or PDMS. Two auxiliary channels surround
the central structure to collect light.

sulting refractive index contrast is ∆n = nPDMS−ndye = 0.06. As sketched in Fig. 5.7(b),
the period of the pattern is 40 µm, the polymer pegs are 10 µm thick and 20 µm-long.
The microchannel is 28 µm-deep and the fluctuation on pegs thickness is ± 0.65 µm.
The total length of the structure is 2.8 mm long and is much smaller than the transport
mean free path (of several cm)1. The system is in the ballistic regime of scattering. The
second harmonic (@532 nm) of a Q-switched Nd:YAG laser (6 ns pulsewidth, 20Hz rep-
etition rate) is used to excite the system. A cylindrical lens turns the pump beam into
a 3 mm-long and 4 µm-thick stripe (see Fig. 5.8(a)). Only one part of the serpentine
is pumped. The narrow stripe pump provides uniform illumination and forces the dye
emission along the length of the channel. The emission spectrum is recorded with the
fiber probe of a HR4000 (Ocean Optics) spectrometer having a spectral resolution of 0.11
nm. During the experiments, the random optofluidic channel is imaged with the help
of a Zeiss Axioexaminer microscope and a Hamamatsu Orca-R2 silicon CCD camera, to
ensure perfect alignment of the pump stripe with the channel (see Fig. 5.8(a)).

Due to the inherent disorder of the structure, the stimulated photons, channelized by the
pump stripe, are multiply scattered at each PDMS-dye interface and eventually exhibit
random laser action when the losses are overcome. In Fig. 5.8(b), the emission intensity
of the optofluidic random laser is plotted against the input fluence. Inset to the left
is a photograph of the emission of the dye-filled optofluidic channel when pumped by
a green laser. In Fig. 5.8(c), the emission spectrum is recorded at a pump fluence of
233µJ/mm2. The pulse to pulse variations of the spectrum and the average spectrum
are plotted. Fig. 5.8 exhibits clear signatures of coherent random lasing emission. We
observe a threshold of lasing emission, which is determined to be about 80 µJ/mm2.
We point out that this threshold value is comparable with values found in the literature
for precisely designed optofluidic lasers. Single shot spectra are shown in Fig. 5.8(c),

1We use a Transfer Matrix approach (introduced in Chapter 6) to estimate numerically the mean free
path.
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(b)

(a) (c)

Figure 5.8: (a) A part of a 1D serpentine channel PDMS made and filled with Rhodamine
diluted in ethanol is pumped by a stripe laser line (white line). (b) Emission occurs in the
direction of the stripe line and is collected by a fiber. The integrated intensity exhibits
a clear threshold characteristic of lasing emission. (c) Shot-to-shot spectra and average
spectrum: All acquisitions exhibit peaks at the same positions in the spectrum.

together with the 100-pulse averaged spectrum. The emission spectrum is composed of
randomly distributed peaks with a linewidth of about 0.3 nm. Since this corresponds to
the instrument resolution limit, the actual emission spectrum is expected to be denser
and the laser peaks to be sharper. Fig. 5.8(c) shows that the spectral position of the
peaks does not vary from shot to shot. As a result, we can claim that the random lasing
emission is coherent.

5.2.4 2D optofluidic random laser

Random laser are cavity free sources, thus their emission is not spatially constrained. To
investigate the directional properties of the emission, we developed a 2D sample as shown
in Fig. 5.7(c).

In this 2D device, the losses occur in all the directions and are not restricted to a line
(as in 1D device). To compensate for this increase of losses, we use a resin (OE-7620,
Dow Corning) instead of the PDMS to achieve higher scattering. The resulting refractive
index contrast is ∆n = nOE − ndye = 0.18 and the system is in the ballistic regime of
scattering.

The 2D design of Fig. 5.7(c), is composed of a central part and two auxiliary channels.
The central part of diameter 500 µm contains 201 pillars of radius 10 µm, leading to
a filling fraction of φ = 0.32. A flow of Rhodamine dye (emitting around 565 nm) of
concentration 2.5 mM in ethanol provides for the gain. The excitation is achieved by
the second harmonic (@532 nm) of an EKSPLA diode-pumped high energy mode-locked
Nd:YAG laser (30 ps pulsewidth, 50 Hz repetition rate). The two auxiliary channels, filled
with a Nile Blue dye of concentration 2.5 mM in ethanol remain non pumped. Nile blue
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absorption bandwidth is centred around 625 nm (with a Full Width at Half Maximum of
80 nm) in ethanol solution. Thus the scattering of the pump (532 nm) is not absorbed
within the channels, while the emission from the random laser (≈ 565 nm) is. Hence,
light emitted in the channels is a direct signature of the random lasing emission.

The system is imaged using a Hamamatsu Orca-R2 silicon CCD camera microscope. The
emission is collected via an optical fibre connected to a Horiba iHR550 imaging spec-
trometer equipped with a 2,400 l.mm−1 grating and a liquid nitrogen-cooled Symphony
II camera (sampling rate 1 MHz, 1,024 × 56 pixels, 26 µm pixel pitch). The entrance
slit is 50 µm. The resulting spectral resolution is 20 pm. The integrating time is 1 s. In
Fig. 5.9(a), the emission intensity is integrated over the spectrum plotted for different
input pump fluences. We also plot in Fig. 5.9(b), the emitted spectra for different pump
fluences.
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Figure 5.9: (a) Emission intensity integrated over the whole spectrum. (b) Random laser
spectrum for different pump intensities.

Emission properties of the device are similar to the 1D system and characteristics of a co-
herent random laser. The emission intensity exhibits a clear threshold at 420 µJ/mm2 (see
Fig. 5.9(a)). The spectrum is composed of randomly positioned peaks (see Fig. 5.9(b)).
Using the auxiliary channels, images of the random lasing emission are taken below and
above threshold in Fig. 5.10(a) and 5.10(b). Below threshold, the emission within the
channel is only spontaneous emission: The emission pattern is smooth and isotropic.
Above threshold, the pattern becomes structured and exhibits rays.

Therefore, this 2D device also provides the characteristics of a lasing emission. Moreover,
it represents an interesting platform to investigate spatial properties of random lasing
emission.
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(a) (b)

Figure 5.10: (a) Image of the random lasing system below threshold: The light absorbed
and re-emitted from the imaginary channels is isotropic. (b) Random lasing above thresh-
old: Light in the imaginary channels is non-isotropic and exhibits some stripes.

5.3 An energetic model for random laser ... an in-
complete description

Experimental observations presented in section 5.2 cannot be described in the framework
of the Letokhov model of random lasing. In this section, we complete this approach by
introducing gain medium population equations (see the four-level medium description in
Chapter 1). This energetic model gives an intuitive overview of the light-matter inter-
action involved in random lasing emission. Nevertheless, a complete understanding of
random lasing requires to go beyond this basic energetic approach. The wave nature of
the field and its modal expansion must be considered for an accurate description.

5.3.1 An energetic model

The ”photonic bomb” model is not valid above threshold. As we observed experimentally,
the lasing intensity increases progressively with the pump intensity. Indeed, because the
gain medium only provides a finite amplification, the gain length-scale (lt) decreases above
the threshold. The gain saturates until a balance is found. Moreover, this model does
not explain the narrowing of emission peaks. To give a more complete description of
the random lasing mechanism, the gain medium saturation must be considered. Several
approaches have been proposed in the past [135, 136, 14, 137, 138, 139] in order to model
experimental observations. Here, we consider early descriptions suggested by Wiersma et
al. [14].

In this approach, they considered a gain medium similar to a four-level system optically
pumped in the diffusive regime, able to give a simplified description of gain media (e.g.
Rhodamine, Ti/Sapphire) (see Chapter 1 and Fig. 5.11). Populations for each level are
referred to as {Ni(r, t)}i∈[1,4]. In this medium, the transitions from (3) to (2) and (1)
to (0) are extremely fast compared to the radiative transition (2) to (1). This radiative
transition is characterized by an emitting cross section σem, an absorbing cross section
σabs and a spontaneous decay τe (see Chapter 1 for explanation). Noting Ntot the total
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density of carrier
Ntot ≈ N2(t) −N0(t) (5.16)

and thus the population can simply be derived from the evolution ofN2(t). They suggested

(2)

(1)

(3)

(0)

✻

WP

❍❍❍❥ fast

✟✟✟✙ fast

❍❍❍❥ fast

❄

σem

❄

✻

σabs, τe

Figure 5.11: The gain medium described by a four-level system: The pump WP excites
carriers from state (0) to the upper level (3). Non-radiative decays from (3)/(2) and
(1)/(0) are much faster than the radiative transition (2)/(1).

to consider two different energy densities, respectively WP for the pump and WF for the
random lasing emitted energy. To mimic the incoming energy due to the optical pump,
they used an incident beam Icoll. The complete set of equations reads

∂N2

∂t
(z, t) = σabsv(Ntot −N2)Wp − σemvN2WF − 1

τe
N2 (5.17)

∂WP

∂t
(z, t) = D∇2WP − σabsv(Ntot −N2)WP +

1
ls(1 − g)

Icoll(z, t) (5.18)

∂WF

∂t
(z, t) = D∇2WF + σemvN2WF +

1
τe
N2 (5.19)

The model proposed in eq. (5.17-5.19) completes the Letokhov’s description. The ”pho-
tonic bomb” gain length lg introduced in eq. (5.8) reads

lg =
1

σemN2
(5.20)

The gain is directly triggered by the density of excited atoms N2, which is linked to
the pump excitation by eq. (5.17-5.18). When the lasing intensity increases, the excited
population N2 decreases, leading to a longer amplification length lt. Photons need to
spend more time in the medium to be duplicated: The amplification saturates.

5.3.2 Incoherent random laser

Steady state description

In the steady state regime, the incident beam is scattered in the sample according to the
Beer’s law given in eq. (5.4)

Icoll(z, t) = I0e
− z

ls (5.21)

The incident beam Icoll is converted into pump photons via eq. (5.18). The pump photons
density WP is absorbed by the gain medium σabsv(Ntot − N2)Wp and excites population
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N2. These excited carriers give rise to random laser photons WF , by either stimulated
σemvN2WF or spontaneous emission 1

τe
N2. This leads to an increase in the lasing energy

density WF . The amplitude of the incident beam I0 triggers N2, which is responsible for
the gain length. Hence, using a reasoning similar to the one developed in section 5.1, we
can derive a excitation threshold I0,th for I0.

The spectral narrowing observed by Lawandy et al. [123] (see section 5.1.1), can also be
described by introducing a frequency-dependent emission cross section. More amplifica-
tion will be provided at light frequencies closest to the atomic resonance frequency, the
gain at these frequencies will be first to match the loss as the pumping rate is increased.
Outside this frequency region, amplification is still lower than the loss rate. With a max-
imum amplification close to the maximum of the gain curve, the spectral width of the
emission peak will narrow.

Dynamic description

This model allows to go beyond the steady state regime and to describe temporal oscilla-
tions of the emission density WF (see Fig. 5.12). For that matter, we model the incoming
pump by a pulse

Icoll(z, t) = I0e
− z

ls e− (t−z/v)2

2c2 (5.22)

where I0 ≫ Ith.

Figure 5.12: Evolution of WF over time for different input pulse intensities I0 [14]: Dashed
curves N2(t) and solid curves WF (t). For high pump intensity the emission fluence oscil-
lates over time.

For large input pulse, because the laser density WF needs some time to build-up, the
population N2 overshoots above its steady state value, inducing a sharp increase in lasing
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emission WF . Because WF is multiply scattered, it needs some time to exit the system,
which induces a new overshoot of N2, leading to a new temporal lasing peak etc. Hence,
the lasing intensity oscillates.

5.3.3 Coherent random laser: Need of a modal description

In conventional lasers the feedback is provided by the mirrors, which reflect the electric
field. The cavity responsible for the feedback defines privileged oscillations of the electric
field called modes. The amplification of these modes by the gain medium leads to peaks
in the lasing spectrum and the emitted light is coherent.

In section 5.2, we shown that random lasers can exhibit similar peaks randomly dis-
tributed. Hence, the gain amplifies the modes of the underlying disordered system. Like
in conventional lasers, the modes of the random laser result from a feedback on the electric
field provided by the scattering. Such lasers are called lasers with coherent feedback in
contrast to random lasers with incoherent feedback (see section 5.1.1).

The energetic model derived from eq. (5.17-5.18) considers the total lasing energy. More
specifically, the photonic density is described by a diffusion process. It assumes that
the scattering performs an incoherent or intensity feedback. As a result, the presence of
peaks in the microfluidic spectra observed in section 5.2 cannot be described with an ener-
getic approach which ignores the phase. A description of coherent feedback amplification
requires to consider the modes of the disordered system.

5.4 Summary

In the present chapter, we have introduced the concept of random laser and presented
microfluidic devices we have developed.

We have explained that in random lasers, the necessary feedback for lasing to occur is
provided by the presence of scatterers. The scattering increases the photons dwell time
inside the system leading to their amplification. A diffusion model describes the explosion
of the photon density above a certain amplification and introduces a threshold. Early
experimental achievements of random lasers have been reminded, where two distinct kinds
of random lasers emerged, namely the coherent and incoherent random lasers. Then we
have presented an innovative technique to process on-demand microfluidic random lasers.
1D and 2D structures with precisely controlled scattering have been fabricated and allow
to investigate random lasing properties (e.g. randomly distributed spectral modes, non-
directive emission). Finally, we have completed the diffusion model by studying the
saturation of the gain medium we have considered as a four-level atomic system. This
model emphasizes the necessity of a modal expansion of the electric field is required to
describe the coherent random laser emission.
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Lasing requires the combination of amplification and feedback. In random lasers, the
feedback is provided by scattering instead of optical cavity for ordinary lasers. We stated
in Chapter 5 that the description of coherent random laser requires to go beyond the
simple energy diffusion process and to consider the modes of the electric field. In a
similar way to ordinary laser, the gain medium ”feeds” the modes of the random passive
system. After the first historical achievement of maser and laser in the late 50’s and early
60’s [140, 141, 142, 143, 144, 145], theoretical description was developed independently
by Haken and Sauermann on one hand [146] and Lamb and coworkers on the other hand
[147, 148]. In this so-called semiclassical approach, the electric field is derived from
classical electromagnetism with Maxwell’s equation, while the medium is described by
quantum equations of motion (see Chapter 1). The amplification of modes is achieved via a
non-linear polarization of the gain medium. The semiclassical description was consistently
used to describe both numerically and analytically many non-linear effects of standard
lasers [9]. After the pioneer work of Hui Cao and coworkers [118], this model was applied
numerically to random lasers [149, 109, 66, 110]. Effects observed in conventional laser,
such as mode competition, gain saturation and temporal oscillations, were predicted in
coherent random lasers [150, 151]. Nevertheless, the physics of regular and random lasers
modes is not necessarily the same. Indeed, in conventional lasers, the passive modes
of the cavity have large quality factors. Hence, these modes are ”almost hermitian”,
which means that they are ”almost orthogonal” vibrations (see Chapter 2). Precluding
any pulling effect due to the gain medium, one can say that they are hardly affected
by the gain medium. By contrast, passive modes in random lasers are provided by the
disordered system, which is open and therefore non-hermitian. Consequently random
lasers naturally experiment coupling (see Chapter 3 for an illustration) and they are
highly affected by the pumping. The study of conventional lasers can be understood
as an ”almost hermitian” problem in term of modes, whereas random lasers must be
investigated within the scope of non-hermitian physics. In the theoretical understanding
of random laser, the works of Deych [152, 153, 40] stands for a major step forward. Using
the biorthogonal formalism, he derived the semiclassical model in the scope of the cubic
approximation used by Haken and Sauermann in their seminal paper [146]. Turecï et al.
[44] developed a numerical/analytical description based on a set of modes, named the
constant flux states. This allowed them to go beyond the cubic approximation.

In this chapter, we carry on the original approach of Deych [152] and analytically investi-
gate the modes of random lasers. In the scope of this manuscript, we apply this approach
in the specific case where modal expansion is achieved with the Siegert states and the cor-
responding biorthogonal formalism introduced in Chapter 2. Furthermore, a perturbation
expansion is performed to derive the complex frequencies and the spatial distributions of
the modes. The results proposed in this chapter are preliminary. The purpose of that
study is to bring a theoretical insight to Chapters 7 and 8. First, we stress the necessity
of considering two distinct regimes of random lasing, requiring two distinct descriptions.
When no mode is lasing, the laser is below threshold and the evolution of the electric field
resulting from light-matter interaction is described by linear coupling of passive modes.
Above threshold, the evolution of the electric field is non-linear because of hole-burning
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effect and modes couple non-linearly. Then, using the biorthogonal formalism, we inves-
tigate the evolution of mode below threshold and describe the mode mixing. Finally, we
consider the evolution above threshold in the cubic approximation. The modes couple
both linearly and non-linearly and a balance between gain and loss stabilizes the lasing
emission.
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6.1 Below and Above threshold description of ran-
dom lasers

The lasing emission is a non-linear process characterized by the presence of a threshold
in emission intensity versus pump excitation. In this manuscript, we make a distinction
between the non-lasing and the lasing modes: Modes below and above threshold are re-
ferred to as active and lasing, respectively. In the present chapter we aim at expressing
these modes in term of passive modes i.e. modes of the unpumped/passive system. In
this section, we first introduce the descriptions of random laser below and above thresh-
old. Then, we model the random laser in both regimes using the semiclassical theory as
proposed in [152, 44].

6.1.1 Introduction

Active modes, below threshold

In the ”photonic bomb” model (see Chapter 2) introduced by Letokhov [117], the random
laser was understood as a gain medium filled with scatterers. In the modal description, the
random laser is rather the superposition of a passive system amplified by a gain medium.

As a guideline example, we consider the case of a 1D random system (see Fig. 6.1). This
passive system is composed of slabs of random size, made of dielectric components with
refractive indicee n and n + ∆n. The electromagnetic modes of the passive system are

n

L

n
+

∆
n

x

(a)

Re(ω)
Im(ω)

b
b

b

b

b

x

L

Ωp

|Φp〉

(b) (c)

Figure 6.1: (a) Schematic representation of a 1D random medium of length L: Superpo-
sition of slabs of indices n and n + ∆n. (b) Spatial distribution of one specific passive
mode |Φp〉. This mode has been computed with a Transfer Matrix Approach we present
later on in section 6.2.4. (c) The position of the passive complex frequencies within the
complex plane.

determined by the random structure. In the example of spatial distribution and complex
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frequency proposed of Fig. 6.1(b) and (c), the mode is extended as the disordered system
is weakly scattering (see Chapter 2).

Now, within the system, we introduce some gain described by a linear susceptibility χg(ω).
This linear susceptibility affects the refractive index of the system. The refractive indices
ñ and ñ + ∆ñ are now complex and frequency dependent. This new distribution gives
rise to new modes referred to as active modes (see Fig. 6.2). The complex frequency Ω̃p

and spatial distribution |Φ̃p〉 of active modes differ from the passive ones (see Fig. 6.2).
As sketched in Fig. 6.2(a), active modes are determined by the superposition of passive
system and gain.
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Figure 6.2: (a) Schematic description of the active modes: Gain is added to the passive
system and resulting modes are called actives modes when below threshold. (b) Spa-
tial distribution of one specific active mode |Φ̃p〉. (c) The position of active complex
frequencies within the complex plane.

The susceptibility of the gain medium depends on the pump excitation. When the pump
excitation is increased, complex frequency of the active modes are brought closer to the
real axis. If the complex frequency crosses the real axis, its amplitude diverges in time.
This divergence, similar to the Letokhov’s ”photonic bomb” (see Chapter 5), mimics
the lasing emission for each mode. For each individual active mode, the corresponding
excitation necessary to bring the mode to the real axis defines its threshold. Below
threshold, all the modes are non-lasing and called active: The modes are free of non-
linear amplification and mode competition.

Lasing modes above threshold

Above threshold, the divergence of mode amplitude (see section 6.1.1) is impeded by the
saturation of the gain. Mathematically, in the complex plane, the imaginary part of the
eigenvalue remains strictly zero when the threshold is reached. Physically, the carrier
density providing the amplification saturates and a balance between losses and gain sets
the amplitude of the mode. As a result, the gain medium can no longer be described
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by a linear susceptibility and the evolution of the mode is non-linear. In Fig. 6.3, we
draw the schematic evolution of the mode in the complex plane for an increasing pump
excitation. The modes start lasing successively and their complex frequencies remain
purely real. Therefore, the random laser will be in the above threshold regime as soon as
the first mode starts lasing. Thus, the gain is non-linear above threshold and decreases.
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Figure 6.3: (a) Schematic example of complex frequencies of modes for an increasing
excitation: When below real axis modes are not emitting and referred to as active. When
modes reach the real axis they start lasing and referred to as lasing modes. Their imag-
inary parts remain zero. (b) Schematic evolution of the emission spectrum for different
excitations.

This is the so-called saturation of the gain, due to spatial hole burning. The physical
origin of hole-burning is related to the finite density of carrier, in other words the finite
amplification that the medium can provide. The saturation affecting the thresholds of
other modes, it may either forbid modes to lase or lead to complex transient regimes
[154]. Nevertheless, the saturation is required to stabilise the lasing emission as we will
see below.

6.1.2 Modelling the random laser

The passive system

The passive system is modelled by a dielectric medium characterized by a non-uniform
distribution of the refractive index n(r) (see Fig. 6.1(a)). In the semiclassical approach,
the electric field is considered classic and requires no quantization. As demonstrated in
Chapter 1, its evolution in 1D or 2D passive systems satisfies the Helmholtz equation

∆E(r, ω) + n2(r)ω2E(r, ω) = 0 (6.1)
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The modes of the passive system are derived using Siegert’s approach developed in Chap-
ter 2
(

Φp,Ωp = ωp − i
Γp
2

)

| ∆|Φp〉 + n2(r)Ω2
p|Φp〉 = 0 &

d

dr
|Φp〉 − iΩp|Φp〉

∣
∣
∣
∣
∣
r→∞

= 0

(6.2)
Furthermore, the refractive index distribution is assumed to fulfil the no-tail and disconti-
nuity conditions required to apply the biorthogonal description introduced in Chapter 2.
Hence the set of passive modes defines a complete basis and the biorthogonal product can
be used to derive the expansion coefficients along them (see Chapter 2)

E(r, t) =
∑

ape
−iΩpt|Φp〉 ⇔ E(r, ω) =

∑

ap
1

iΩp − iω
|Φp〉 (6.3)

The gain

In the semiclassical model, the gain is assumed to be provided by four-level quantum
emitters (see description in Chapter 1). The introduction of gain into the system leads
to a polarization term in Helmholtz equation (6.1), which translates the light-matter
interaction

∆E(r, ω) + n2(r)ω2E(r, ω) = −ω2P (r, ω) (6.4)

The different population of the four levels Ni are given by the population equations

dN3

dt
= PrN0 − N3

τ32
(6.5)

dN2

dt
=
N3

τ32
− Im(EP ∗)

~
− N2

τ21
(6.6)

dN1

dt
=
N2

τ21
+

Im(EP ∗)
~

− N1

τ10
(6.7)

dN0

dt
=
N1

τ10
− PrN0 (6.8)

where Pr is the pump rate, τ21 is the spontaneous emission decay, τ10 and τ32 are the
non-radiative decays and Im(EP ∗)

~
stands for the stimulated emission. The stimulated

term is both proportional to the electric field at the atom position and the polarization.
Assuming that the electric field is not too intense, the polarization is linearly derived from
the electric field using the Lorentz’s oscillator model introduced in Chapter 1

∂2P

∂t2
+ ∆ωa

∂P

∂t
+ ω2

aP = −2ωa
~
d2∆NE (6.9)

where, ωa is the atomic frequency, d the dipole moment, ∆ωa the linewidth of the atomic
response and ∆N = N2 − N1 the population difference of the radiative transition. The
evolution of the polarization can be simplified using the Rotating Wave Approximation.
In this assumption, the oscillations of the polarization are assumed close to the atomic
frequency ωa. Hence, eq. (6.9) reads in the frequency domain

P (r, ω) = − 2ωa
~(−ω2 − iω∆ωa + ω2

a)
d2(∆N ⋆E)(r, ω) ≈ ωa

~(ω − ωa + i∆ωa

2 )
d2(∆N ⋆E)(r, ω)

(6.10)
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where the symbol ⋆ is the convolution product defined by

(A ⋆ B)(t) =
∫

A(t− u)B(u)du (6.11)

As a result, the polarization can be expressed in term of a susceptibility χg(ω)

P (r, ω) = χg(ω).(∆N ⋆ E)(r, ω) ⇔ P (r, t) = (χg ⋆ (∆N.E))(t) (6.12)

Because of the ∆N dependency, the polarization expression in eq. (6.12) is a priori non-
linear in the frequency domain. This population difference can be derived assuming that
the non-radiative transitions are extremely fast compared to the radiative transition.
Populations N3 and N1 are instantaneously depleted (see Chapter 1), leading to

d∆N(r, t)
dt

=
1
τ

(

∆N0(r, t) − ∆N(r, t) − 2
Im(EP ∗)(r, t)

~

)

(6.13)

where N = N2 +N0 is the total density of emitters, in which ∆N0 reads

∆N0 =
NPr

Pr + 1
τ21

(6.14)

and τ the time decay of the population difference reads

τ =
1

Pr + 1
τ21

(6.15)

For pump excitation fulfilling τ21Pr ≪ 1, ∆N0 is proportional to the pump excitation

∆N0 ≈ Nτ21Pr (6.16)

Hence, the electromagnetic problem is reduced to three physical quantities E, P and ∆N ,
fulfilling eq. (6.4, 6.12, 6.13), respectively.

Stationary Inversion Approximation and steady state

We consider the case of a Continuous Wave (CW) pump regime (Pr is constant in time):
The system is in steady state. In a similar way to the problem studied in Chapter 4, the
time-scale of population difference ∆N is much longer than the time scale of E and P .
As a result, the temporal fluctuations of the population difference can be neglected, and
thus eq. (6.13) reads

d∆N(r, t)
dt

≈ 0 =
1
τ

(

∆N0(r, t) − ∆N(r, t) − 2
Im(EP ∗)(r, t)

~

)

(6.17)

The approximation of a time-independent inversion population, originally introduced by
Haken [146] and referred to as the Stationary Inversion Approximation (SIA), is only valid
in the steady state regime: ∆N ≈ cst. We also assume the pump to be uniform in time
and space, leading to a constant ∆N0. Hence, the population difference reads

∆N(r, t) =
∆N0

1 + 2 Im(E(χg⋆E)∗)(r,t)
~

(6.18)



6.2. Active mode, below threshold 109

If ∆N(r, t) is assumed constant in time, we can replace it by its averaged value

〈∆N(r, t)〉T =

〈

∆N0

1 + 2 Im(E(χg⋆E)∗)(r,t)
~

〉

T

(6.19)

The population difference is responsible for the lasing amplification. If some modes are
lasing, the denominator of eq. (6.18) and (6.19) increases with the amplitude of the inten-
sity of the field. This leads to a reduced amplification, also referred to as gain saturation
(see section 6.1.1). This mechanism is responsible for the non-linearity arising above
threshold. Below threshold (BT), no mode is lasing and thus the population difference
reads

∆NBT = 〈∆N(r, t)〉T = ∆N0 (6.20)

Above threshold (AT), it reads

∆NAT = 〈∆N(r, t)〉T =

〈

∆N0

1 + 2 Im(E(χg⋆E)∗)(r,t)
~

〉

T

(6.21)

Eq. (6.20) and (6.21) point out that the amplification is triggered by the population
difference between the two states of the radiative transition (see Chapter 1). As expected
from Chapter 1, the population difference must be positive to achieve the stimulated
amplification. Below threshold, the population difference is considered as static: The
gain is said linear. Above threshold, it is assumed triggered by the amplitude of the
lasing modes: The gain is non-linear and saturates.

6.2 Active mode, below threshold

Below threshold, the absence of gain saturation leads to a linear amplification of the
modes. Here, we expand the electric field along the passive modes of the system via the
biorthogonal formalism of Chapter 2. Using a perturbation expansion, we analytically
derive the complex frequency and spatial distribution of each active mode.

6.2.1 Modal expansion

Expansion along the passive modes

Because the passive system fulfils the no-tail and the discontinuity conditions, the passive
modes derived from the Siegert’s approach in eq. (6.2) form a complete set (see Chapter 2).
The electric field reads

E(r, ω) =
∑

p

ap
1

−iω + iΩp

Φp(r) =
∑

p

ap(ω)Φp(r) (6.22)

where coefficients ap(ω) are introduced for sake of notation compactness. Inserting the
electric field expansion into eq. (6.4)

∆
∑

p

ap(ω)Φp(r) + ǫ(r)ω2
∑

p

ap(ω)Φp(r) = −ω2P (r, ω) (6.23)
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Using the definition of the passive modes of eq. (6.2) and the expression of ∆NBT

∑

p

ap(ω)ǫ(r)Ω2
pΦp(r) − ǫ(r)ω2

∑

p

ap(ω)Φp(r) = −ω2∆N0

∑

p

ap(ω)Φp(r) (6.24)

The biorthogonal product between passive modes reads (see Chapter 2)

〈Φ∗
q|Φp〉 =

∫

ǫ(r)Φq(r)Φp(r) = δpq (6.25)

The biorthogonal product of eq. (6.24) applied along 〈Φ∗
p| reads

ap(ω)(Ω2
p − ω2) = ω2χg(ω)∆N0

∑

q

aq(ω)
∫

Φp(r)Φq(r) (6.26)

Eq. (6.26) defines an eigenvalue problem, considering a finite number of passive modes
N , we can recast the system in a matrix form







Ω2
1 . . . 0

...
. . .

...
0 . . . Ω2

N







= ω2







1 + ∆N0χg(ω)V11 . . . ∆N0χg(ω)V1N
...

. . .
...

∆N0χg(ω)VN1 . . . 1 + ∆N0χg(ω)VNN







(6.27)

where
Vij(ω) =

∫

Φp(r)Φq(r) (6.28)

are the spatial overlap coefficients introduced by Deych [152, 40] standing for linear cou-
pling of the modes. Now, using definition of χg(ω) of eq. (6.12), eq. (6.27) reads







Ω2
1 . . . 0

...
. . .

...
0 . . . Ω2

N







= ω2









1 + ∆N0ωad2

~(ω−ωa+i∆ωa
2 )V11 . . . ∆N0ωad2

~(ω−ωa+i∆ωa
2 )V1N

...
. . .

...
∆N0ωad2

~(ω−ωa+i∆ωa
2 )VN1 . . . 1 + ∆N0ωad2

~(ω−ωa+i∆ωa
2 )VNN









(6.29)

Therefore, the active modes of random lasers are the eigensolutions of a non-linear eigen-
value problem derived in eq. (6.29). Each active mode will be associated with a complex
frequency Ω̃p = ω̃p − i Γ̃p

2 and a spatial distribution Φ̃p.

Mode mixing

Eq. (6.27) and (6.29) emphasize that the active modes of a random laser differ from the
modes of the passive system. Passive modes mix to yield a new set of active modes:
Active modes read like a linear combination of the passive modes. This mixing is directly
triggered either by the spatial overlap or coupling encoded in coefficients Vij.

When the passive modes are Anderson-localized, the terms Vi6=j are weak because the
modes have a small spatial overlap. Hence, in the localized regime, the active modes
correspond as expected [109, 110, 155] to the passive modes of the system. As a matter
of illustration, we can consider the example of localized modes in Fig. 6.4(a), in which
we plot the passive mode and the corresponding active mode. As expected, both modes
are identical because no mode mixing is performed. However, in the weakly scattering
regime, because the modes are extended and strongly overlap, the coupling is important.
For a weakly scattering system (see Fig. 6.4(b)), the coupling between passive modes is
important. Thus, the active mode spatial distribution is very different from the passive
one.
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(a) (b)

Figure 6.4: (a) Spatial distribution of a passive mode Φp and the corresponding active
mode Φ̃p in a localized system: The coupling between passive modes is very low and no
mode-mixing is performed. (b) Similar case for a weakly scattering system: Φp and Φ̃p

differ because the coupling of passive modes induces a linear mixing.

6.2.2 Broadband gain medium

A linear eigenvalue problem

As explained in section 6.2.1, the active modes are solutions of the non-linear eigenvalue
problem of eq. (6.29). The non-linearity of the problem results from the frequency de-
pendence of the susceptibility of the gain medium χg(ω). Many amplifying media, such
as Rhodamine (see Chapter 5) or Ti:Sapphire, are broadband (large ∆ωa). Thus, consid-
ering active modes with frequency close to the central frequency ωa, we can assume an
almost constant susceptibility

ω − ωa ≪ ∆ωa ⇒ χg(ω) = χg(ωa) (6.30)

Consequently, the non-linear eigenvalue problem of eq. (6.29) can be assumed linear






Ω2
1 . . . 0

...
. . .

...
0 . . . Ω2

N







= ω2







1 + ∆N0χg(ωa)V11 . . . ∆N0χg(ωa)V1N
...

. . .
...

∆N0χg(ωa)VN1 . . . 1 + ∆N0χg(ωa)VNN







(6.31)

where

χg(ω) ≈ χg(ωa) = −i2d
2ωa

~∆ωa
(6.32)

Noting λ = 1/Ω and ∆Ñ0 = ∆N0χg(ωa), eq. (6.31) reads

λ2 =







λ2
1(1 + ∆Ñ0V11) . . . λ2

1∆Ñ0V1N
...

. . .
...

λ2
N∆Ñ0VN1 . . . λ2

N(1 + ∆Ñ0VNN)







(6.33)

Perturbation expansion

The linear eigenvalue problem defined by eq. (6.33) has no analytical solution. Since
modes are normalised, |Vij| < 1. If we preclude high energy pumping, we can assume
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that ∆Ñ0|Vij| ≪ 1. This excludes the case of weakly diffusive random lasers, where
high excitation is required to reach lasing [156]. Thus, we can perform a perturbation
expansion of the linear system in eq. (6.33), which reads

λ2 =







λ2
1 . . . 0
...

. . .
...

0 . . . λ2
N







+







λ2
1V11∆Ñ0 . . . λ2

1V1N∆Ñ0
...

. . .
...

λ2
NVN1∆Ñ0 . . . λ2

NVNN∆Ñ0







(6.34)

Eq. (6.34) can be understood as a passive system perturbed by a matrix resulting from
the coupling between the passive modes and proportional to the pump. Hence, we can
derive the perturbation expansion of the active modes (see Appendix C)

λ̃2
p = λ2

p + λ2
pVpp∆Ñ0 +

∑

q 6=p

λ2
pλ

2
q

λ2
p − λ2

q

V 2
pq∆Ñ

2
0 (6.35)

Leading to:

Ω̃p =
Ωp

√

1 + Vpp∆Ñ0 +
∑

q 6=p
λ2

q

λ2
p−λ2

q
V 2
pq∆Ñ

2
0

(6.36)

Approximated by:

Ω̃p ≈ Ωp



1 − Vpp
2

∆Ñ0 − 1
2

∑

q 6=p

λ2
q

λ2
p − λ2

q

V 2
pq∆Ñ

2
0 +

3
8
V 2
pp∆Ñ

2
0



 (6.37)

Equivalent to:

Ω̃p ≈ Ωp



1 − Vpp
2

∆Ñ0 +
∑

m6=n

Ω2
p

Ω2
q − Ω2

p

V 2
pq∆Ñ

2
0 +

3
8
V 2
pp∆Ñ

2
0



 (6.38)

And the corresponding spatial distribution

Φ̃p = Φp +
∑

q 6=p

Ω2
q

Ω2
q − Ω2

p

Vpq∆Ñ0Φq (6.39)

Eq. (6.38) and (6.39) show the active modes corresponding to the mode of the passive
system plus a perturbation. This perturbation, which is a linear combination of the
passive modes, stands for the mixing of passive modes. They also emphasize that the
mixing of passive modes to build active modes not only depends on a spatial overlap or
coupling (Vij) but also results from a spectral overlap, namely 1/(Ω2

i − Ω2
j). Moreover,

this amplitude of the mixing is directly triggered by the excitation (∆N0): The stronger
the pump fluence, the stronger the perturbation and thus the mixing.

In this approach of small excitation, the active and passive modes are in one-to-one
correspondence. The active mode is understood like a perturbation of the passive mode.
When higher pumping is required [156], the coupling is more important (Vij) and the
correspondence no longer holds.
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The lasing threshold

Eq. (6.38) gives the evolution of the modes in the complex plane when the excitation
of the gain medium varies. When the excitation increases, the saturation of population
inversion ∆Ñ0 increases too (see eq. (6.14)). This leads to a diminution of the imaginary
part of the active mode in the complex plane as it gets closer to the real axis. For a given
active mode p, the threshold is reached when the pump excitation cancels the imaginary
part of its complex frequency. This threshold ∆Ñ0p,th reads

∆Ñ0p,th | Im(Ω̃p) = 0 (6.40)

Considering only first order of eq. (6.38) and Ωp = ωp − iΓp

2 , we can derive the lasing
threshold of mode p

0 = −Γp
2

+ Im
(

Ωp∆Ñ0,th
Vpp
2

)

(6.41)

Inserting the complete expression of Vpp and the relation ∆Ñ0 = ∆N0
2d2ωa

~∆ωa
, equation

(6.41) reads

0 = −Γp
2

+ ∆N0,th
2d2ωa
~∆ωa

Re(Ωp

∫

Φ2
p) (6.42)

Leading to

∆N0p,th =
~∆ωaΓp

4d2ωaRe(Ωp

∫

Φ2
p)

(6.43)

Assuming the quality factor of mode p fulfils Qp = ωp

Γp
≫ 1

∆N0p,th ≈ ~∆ωa
4d2ωaQpRe(

∫

Φ2
p)

(6.44)

Eq. (6.44) simply shows that a high-Q passive mode will give rise to a low threshold
active mode. Moreover, the threshold of the mode is also triggered by its spatial extent
Re(

∫

Φ2
p).

6.2.3 Narrow gain medium

When the susceptibility cannot be assumed constant in frequency anymore, the eigenvalue
problem of eq. (6.29) becomes non-linear. Assuming the excitation is limited, we can
perform a perturbation expansion on eq. (6.29).

If we consider the non matrix form of eq. (6.29)

ap(ω)(Ω2
p − ω2) = ω2∆N0

∑

q

aq(ω)χg(ω)
∫

Φp(r)Φq(r) (6.45)

where we assume ∆N0 to be small. Under this assumption, frequencies ω̃n of the active
modes will remain close to the frequencies of the passive ones ωn. Thus, we can perform
a Taylor expansion of χg(ω) close to the passive frequency, and eq. (6.45) reads

ap(ω)(Ω2
p − ω2) ≈ ω2∆N0

∑

q

aq(ω)

(

χg(ωp) + ∆N0
∂χg
∂∆N0

(ωp)

)

Vpq (6.46)
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As a result, eq. (6.46) is recast in the form






Ω2
1 . . . 0

...
. . .

...
0 . . . Ω2

N







= ω2







1 + ∆N0χg(ω1)V11 . . . ∆N0χg(ωN)V1N
...

. . .
...

∆N0χg(ω1)VN1 . . . 1 + ∆N0χg(ωN)VNN







+ ω2∆N2
0







∂χg

∂∆N0
(ω1)V11 . . . ∂χg

∂∆N0
(ωN)V1N

...
. . .

...
∂χg

∂∆N0
(ω1)VN1 . . . ∂χg

∂∆N0
(ωN)VNN







(6.47)

The perturbation to first order of eq. (6.47) reads for complex frequency

Ω̃p ≈ Ωp

(

1 − Vpp
2

∆N0χg(ωp)
)

(6.48)

And the corresponding spatial distribution

Φ̃p ≈ Φp +
∑

q 6=p

Ω2
q

Ω2
q − Ω2

p

Vpqχg(ωp)∆N0Φq (6.49)

It is thus possible to derive the threshold of modes

∆N0,th = − Γp
Im(ΩpVppχg(ωp)

≈ − 1
QpIm(Vppχg(ωp))

(6.50)

The threshold in eq. (6.50) differs from the one derived for a broadband gain medium
(eq. 6.37). The susceptibility in the denominator χg(ωp) being not purely imaginary,
this will affect the threshold value and induce some shift in the real part of the complex
frequency.

6.2.4 Numerical computation

As stated in eq. (6.33), the derivation of active modes (below threshold) relies on a
non-linear eigenvalue problem. To solve it numerically, we have developed a numerical
code based on the Transfer Matrix Approach (see Chapter 2). In passive system, this
method numerically derives the modes using the Siegert’s condition in 1D structure (see
Chapter 2). For instance, if we carry on the example of section 6.1.1, the passive modes
(Φp,Ωp) fulfil

d2Φp

dx2
(x) + n(x)2Ω2

pΦp(x) = 0 &

(

d

dx
− iΩp

)

Φp

∣
∣
∣
∣
∣
x→∞

= 0 (6.51)

Below threshold, the gain is modelled by a linear susceptibility, which reads

χg(ω) =
d2ωa

~

(

ω − ωa + i∆ωa

2

) (6.52)

As a result, the active modes (Φ̃p, Ω̃p) are numerically derived from

d2Φ̃p

dx2
(x) +

(

n(x)2 + ∆N0χg(ω)
)

Ω̃2
pΦ̃p(x) = 0 &

(

d

dx
− iΩ̃p

)

Φ̃p

∣
∣
∣
∣
∣
x→∞

= 0 (6.53)
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where, ∆N0 mimics the pump excitation. Eventually, the active modes can be either
defined by a complex frequency Ω̃p = ω̃p + i Γ̃p

2 or by (ω̃p,∆N0p,th), where ∆N0p,th is the
threshold fulfilling

∆N0p,th | Im(Ω̃p) = 0 (6.54)

The spatial distributions of Fig. 6.1 and 6.2 have been computed with a Transfer Matrix
approach.

6.3 Lasing modes, above threshold

In this section, we derive the evolution of modes above threshold by performing the modal
expansion of the field. Using a perturbation approach, we derive complex frequency and
spatial distribution of the active modes. Then, assuming that the number of lasing modes
is known, we write the expressions of the lasing modes. Finally the single-mode and
two-mode regimes are investigated.

6.3.1 Modal expansion

The expansion along the passive mode

Above threshold, the electric field evolution is driven by eq. (6.4) and reads

∆E(r, ω) + ǫ(r)ω2E(r, ω) = −ω2χg(ω)∆NATE(r, ω) (6.55)

where ∆NAT reads

∆NAT =

〈

∆N0

1 + 2
~
Im(E.(χg ⋆ E)∗(r, t))

〉

T

(6.56)

In a similar way to section 6.2, the electric field is expanded along the passive modes of
the system

E(r, ω) =
∑

p

ap
1

−iω + iΩp

Φp(r) =
∑

p

ap(ω)Φp(r) ⇔ E(r, t) =
∑

p

ape
−iΩptΦp(r)

(6.57)
Inserting expansion of eq. (6.57) into eq. (6.56) reads

∆NAT =

〈

∆N0

1 + 2
~
Im(

∑

p,q apa∗
qΦp(r)Φq(r)∗e−iΩpt(eiΩqt ⋆ χg(t)∗))

〉

T

(6.58)

Eq. (6.58) can be simplified assuming

e−iΩpt(eiΩqt ⋆ χg(t)∗)) = TF−1
(

TF
(

e−iΩpt(eiΩqt ⋆ χg(t)∗)
))

≈ TF−1 (δ(ω − ωp) ⋆ (δ(ω − ωq)χg(ω)∗)) = TF−1 (δ(ωp − ωq)χg(ωq)∗) = δpq χg(ωq)∗

(6.59)
As a result, eq. (6.58) reads

∆NAT ≈ ∆N0

1 + 2
~

∑

p |apΦp(r)|2Im(χg(ωp)∗)
(6.60)
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Using the electric field expansion of eq. (6.57) in (6.55)

∆
∑

p

ap(ω)Φp(r) + ǫ(r)ω2
∑

p

ap(ω)Φp(r) = −ω2χg(ω)∆N0

∑

p ap(ω)Φp(r)
1 + 2

~

∑

p |apΦp(r)|2Im(χg(ωp)∗)
(6.61)

Inserting passive mode definition of eq. (6.2), eq. (6.61) reads

∑

p

ap(ω)ǫ(r)(Ω2
p − ω2)Φp(r) = ω2χg(ω)∆N0

∑

p ap(ω)Φp(r)
1 + 2

~

∑

p |apΦp(r)|2Im(χg(ωp)∗)
(6.62)

The passive modes conserve the biorthogonal relation of eq. (6.25). Using the biorthogonal
projection along 〈Φ∗

p|, eq. (6.62) reads

∑

p

ap(ω)(Ω2
p − ω2) = ω2χg(ω)∆N0

∑

q

∫ aq(ω)Φp(r)Φq(r)
1 + 2

~

∑

l |alΦl(r)|2Im(χg(ωl)∗)
(6.63)

In a similar way to the regime below threshold, the electric field is described by a non-
linear eigenvalue problem. However, the non-linearity arises here via non-linear wave
mixing function of the intensity of each mode (|ap|2). This system is similar to a Non-
Linear Schrödinger equation.

Linear versus non-linear mode mixing

Eq. (6.63) emphasizes the complexity of the modal description above threshold. The
appearance of hole burning and the resulting saturation of the gain is responsible for
non-linear mixing of passive modes. To simplify eq. (6.63), we choose to carry on the idea
of Haken and Sauermann [146] and perform a Taylor expansion of the saturation term at
third order: The so called cubic approximation. For small intensity of the lasing intensity
we can assume

∑

p

ap(ω)(Ω2
p − ω2) ≈ ω2χg(ω)∆N0

∑

q

∫

aq(ω)Φp(r)Φq(r)

− ω2χg(ω)∆N0

∑

q

∫

aq(ω)Φp(r)Φq(r)
2
~

∑

l

|alΦl(r)|2Im(χg(ωl)∗) (6.64)

Under this assumption, eq. (6.64) shows that we can separate the linear and non-linear
wave mixings. The linear contribution results from the expression below threshold. Thus,
the gain saturation and the regime above threshold can be understood like a non-linear
correction. Moreover, eq. (6.64) can be recast in a matricial form







Ω2
1 . . . 0

...
. . .

...
0 . . . Ω2

N







= ω2







1 + ∆N0χg(ω)V11 . . . ∆N0χg(ω)V1N
...

. . .
...

∆N0χg(ω)VN1 . . . 1 + ∆N0χg(ω)VNN







− ω2∆N0
2χg(ω)

~







∑

p |ap|2A11pp . . .
∑

p |ap|2A1Npp
...

. . .
...

∑

p |ap|2AN1pp . . .
∑

p |ap|2ANNpp







(6.65)

where non-linear coupling coefficients Apqrs [152] reads

Apqrs =
∫

Φp(r)Φq(r)Φr(r)Φs(r)∗Im(χg(ωs)∗) (6.66)
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Therefore, the saturation induces the apparition of non-linear coupling, characterized in
eq. (6.66). The combination of passive modes resulting from these coefficients will be
called non-linear mixing.

6.3.2 Perturbation expansion

As for below threshold, we perform a perturbation expansion of eq. (6.65) to derive the
modes of the random laser. Noting λ = 1/ω eq. (6.65) reads

λ2 =







λ2
1 . . . 0
...

. . .
...

0 . . . λ2
N







+ ∆N0







λ2
1χg(ω)V11 . . . λ2

1χg(ω)V1N
...

. . .
...

λ2
Nχg(ω)VN1 . . . λ2

Nχg(ω)VNN







− ∆N0
2χg(ω)

~







λ2
1
∑

p |ap|2A11pp . . . λ2
1
∑

p |ap|2A1Npp
...

. . .
...

λ2
N

∑

p |ap|2AN1pp . . . λ2
N

∑

p |ap|2ANNpp







(6.67)

At first order (see Appendix C), eigenvalues of eq. (6.67) read

λ̃2
p = λ2

p

(

1 + ∆N0χg(ωp)Vpp − ∆N0
2χg(ωp)

~

∑

p

|ap|2Aqqpp
)

(6.68)

Leading to a complex frequency of mode p

Ω̃p = Ωp

(

1 − ∆N0χg(ωp)
2

Vpp +
∆N0χg(ωp)

~

∑

p

|ap|2Aqqpp
)

(6.69)

where we will note

• |ap|2Apppp the self-saturation term

• ∑

p 6=q |ap|2Aqqpp the cross-saturation term

and spatial distributions of the modes read

Φ̃p = Φp + ∆N0χg(ωp)
∑

q 6=p

Ω2
q

Ω2
q − Ω2

p

(

Vpq − 2
~

∑

p

|ap|2Aqqpp
)

Φp (6.70)

Complex frequency derived in eq. (6.69) gives an insight into the role played by satura-
tion in the lasing emission. Below threshold, no mode is lasing and the amplification in
increased by the term ∆N0χg(ωp)

2 Vpp. When the threshold is reached, modes start lasing
and increase the saturation term ∆N0χg(ωp)

~

∑

p |ap|2Aqqpp. Physically, the saturation term
compensates for the amplification and leads to an balance between the energy required
by modes to lase and the energy the medium can provide. Mathematically, the saturation
enforces a zero imaginary part of complex frequency. In others words, the saturation is
required to stabilize the lasing emission. Moreover, the cross-saturation will also forbid
some modes to reach their threshold. The spatial distribution of eq. (6.70) emphasizes the
influence of the pump excitation (mimicked by ∆N0), which triggers the mode mixing.
Here, in addition to the linear mode mixing below threshold, a non-linear mixing of modes
is performed.



118 Chapter 6. Modes In Random Lasers

6.3.3 Lasing modes

Method

Here, using a common method used in conventional lasers, we derive intensity of lasing
modes above threshold. Expressions of the modes proposed in eq. (6.69) and (6.70) made
no distinction between the modes below and above threshold, namely the active and lasing
modes. Lasing modes have a real frequency and a non-zero intensity, whereas active mode
have a complex frequency and zero intensity. We note Ip = |ap|2 the intensity of each
mode, and we sort the modes to fulfil

lasing modes: p ≤ Nl ⇒ Ip > 0 & Im(Ω̃p) = 0

active modes: p > Nl ⇒ Ip = 0 & Im(Ω̃p) < 0

where Nl is the number of lasing modes. Inserting the definition of the lasing modes into
eq. (6.69)

∀p ≤ Nl | 0 = Im



Ωp − Ωp
∆N0χg(ωp)

2
Vpp + Ωp

∆N0χg(ωp)
~

∑

q≤Nl

IqAppqq



 (6.71)

Using the complex frequency definition Ωp = ωp − iΓp

2 , eq. (6.71) is equivalent to

∀p ≤ Nl | 0 = −Γp
2

+ ∆N0Re

(

Ωp
iχg(ωp)

2
Vpp

)

− ∆N0Re



Ωp
iχg(ωp)

~

∑

q≤Nl

IqAppqq





(6.72)
Noting

Bp = Re

(

Ωp
iχg(ωp)

2
Vpp

)

(6.73)

And

Dpq = Re

(

Ωp
iχg(ωp)

~
Appqq

)

(6.74)

We can derive a linear system






D11 . . . D1Nl

...
. . .

...
DNl1 . . . DNlNl













I1
...
INl







=







B1 − Γ1

2∆N0
...

BNl
− ΓNl

2∆N0







(6.75)

By solving the system of eq. (6.75), we obtain the intensity of each mode to achieve the
balance required by lasing in the steady state. Then, we insert the intensities of the
different lasing modes in complex frequency and spatial distribution given in eq. (6.69)
and (6.70). Thus, we can fully characterize the modes above threshold: The different
non-linear effects (e.g. mode competition, hole burning) are encoded in eq. (6.75).

Application to the single-mode regime

If we consider the case of one lasing mode, the linear system of eq. (6.75) reads

D11I1 = B1 − Γ1

2∆N0
(6.76)
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Hence the steady state intensity of the lasing mode reads

I1 =
1
D11

(

B1 − Γ1

2∆N0

)

(6.77)

The self-saturation in eq. (6.77) is encoded in D11 and is necessary in this description.
As already stated, the pump strength drives ∆N0. Because the mode intensity must
fulfil I1 > 0, the mode intensity exhibits a threshold according to the pump strength.
According to eq. (6.77) the threshold ∆N0,1th can be derived

∆N0,1th

∆N0

I1

Figure 6.5: Mode1 intensity I1 versus ∆N0 mimicking the pump excitation: The threshold
corresponds to the one obtained in the below threshold regime.

∆N0,1th =
Γ1

2B1
=

Γ1

Re (Ω1iχg(ω1)V11)
(6.78)

In the case of a single-mode laser, the threshold is similar to the one derived below
threshold (see eq. (6.50) and Fig. 6.5). It emphasizes that the approach used below
threshold assumes the modes to be independent. If the quality factor of the mode is high
enough Q1 ≫ 1, eq. (6.78) reads

I1(∆N0) =
B1

D11
− 1
Q1Re(iχg(ω1)A1111)∆N0

(6.79)

Hence the slope of mode intensity versus the excitation (∆N0,1th) is directly triggered by
the quality factor of the passive mode and the non-linear coupling term A1111.

Application to the two-mode regime

Now, we consider the case of two modes lasing simultaneously. Eq. (6.75) reads
[

D11 D12

D21 D22

] [

I1

I2

]

=

[

B1 − Γ1

2∆N0

B2 − Γ2

2∆N0

]

(6.80)

The steady state evolutions of the two lasing modes read

I1 =
1
∆

(

D22B1 −D12B2 − D22Γ1 −D12Γ2

2∆N0

)

(6.81)

I2 =
1
∆

(

D11B2 −D21B1 − D11Γ2 −D21Γ1

2∆N0

)

(6.82)
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where
∆ = D11D22 −D12D21 (6.83)

As expected, the thresholds are modified compared to the single mode (or below threshold)
because of the cross-saturation terms encoded in D12 and D21

∆N0,1th =
D22Γ1 −D12Γ2

2(D22B1 −D12B2)
(6.84)

∆N0,2th =
D11Γ2 −D21Γ1

2(D11B2 −D21B1)
(6.85)

As sketched in Fig. 6.6, the saturation also affects the slopes with regards to the single-
mode case. The system described by eq. (6.80) gives an interesting insight on mechanisms

∆N0,1th ∆N0,2th

I2

∆N0

I1

Figure 6.6: Mode1 and Mode2 intensities (I1,I2) versus ∆N0 mimicking the pump excita-
tion: When the second mode reaches the threshold, the slope of the first mode is modified
because of cross-saturation terms.

above threshold in conventional and random lasers. The off-diagonal terms D12 and D21

(driven by the cross-saturation) couple intensities I1 and I2. For a system with no cross-
saturation, D12 = D21 = 0 and the two modes evolve independently.

Moreover, these off-diagonal terms are directly triggered by the hole-burning cross-saturation
A1122 and A2211:

Dpq = Re

(

Ωp
iχg(ωp)

~
Appqq

)

(6.86)

In conventional lasers, because the system is ”almost hermitian”, the mode coupling
between passive modes is weak and their spatial distribution is almost real

Appqq =
∫

Φp(r)2|Φq(r)2|Im(χg(ωs)∗) ≈
∫

|Φp(r)|2|Φq(r)2|Im(χg(ωq)∗) =
Im(χg(ωq)∗)
Im(χg(ωp)∗)

Aqqpp

(6.87)
The non-linear coupling between modes is thus almost symmetric. In the case of ran-
dom laser, the modes in the weakly scattering regime are highly non-hermitian and thus
complex

Appqq =
∫

Φp(r)2|Φq(r)2|Im(χg(ωs)∗) 6=
∫

|Φp(r)|2Φq(r)2Im(χg(ωq)∗) =
Im(χg(ωq)∗)
Im(χg(ωp)∗)

Aqqpp

(6.88)
Therefore, the non-hermiticity breaks down the symmetry of the cross-saturation terms.
In other words, in an hermitian system, there is a mutual competition between modes
which cross-saturate each other with the same strength. By contrast, in non-hermitian
systems, one mode can saturate other modes while remaining unaffected by the presence
of these other modes (see Chapter 7).
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6.4 Summary

Here, we have derived an analytical expression of the complex frequency and spatial
distribution of random laser modes below and above threshold. This has been achieved
by using the modal expansion along the Siegert states of the disordered passive system in
the semiclassical approach. These results are only preliminary and will be used to offer
an analytical insight to Chapters 7 and 8.

Emission threshold enforces two distinct regimes, namely below and above threshold. No
mode can lase below threshold, while increasing the amplification modifies the modes
of the random laser (referred to as active modes). Above threshold, at least one mode
is emitting. The emitting modes are referred to as lasing modes. We have modelled
the electric field evolution in the scope of the semiclassical theory (similar to [152, 44]).
Below threshold, the population inversion, which triggers the amplification, is assumed
static. Above threshold, the lasing modes lead to a saturation of the population difference.
Then, we have carried on the approach developed in [152, 44] and expanded the electric
field along the Siegert states of the passive random system. We have proposed to go
beyond this description and have derived the modes by using a perturbation expansion.
The passive modes linearly combine/mix to make up the active modes. This mixing is
triggered by the linear coupling between the passive mode. Finally, above threshold, we
have considered the cubic approximation, where four-wave mixing between passive modes
may come into play. The modes have been also derived via a perturbation expansion. It
turns out that the modes are the result of the linear and non-linear mixing of the passive
modes. The non-linear mixing is induced by a non-linear coupling coefficients. Then,
we have presented an approach common in laser physics to derive the intensity of lasing
modes. It highlights that the threshold and the spatial distribution of active and lasing
modes are strongly affected by the non-linear mixing. This approach stresses the existence
of physical differences in non-linear mechanisms in conventional and random lasers.
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Designing lasers at nano or microscale is extremely challenging, while assembling several
nanometer particles makes a perfect random laser. Therefore, random lasers offer many
potential applications. Random lasers can be used for medical application or as a unique
and irreproducible coding key [157, 130]. Moreover, it was demonstrated recently that
they could serve as speckle free lasing source [158]. They also offer surprising possibilities
in bio-imaginary as a powerful and coherence-manageable source. However, since random
lasers are highly multimode with unpredictable lasing frequencies and polydirectional
output, their prospects are strongly hindered by the absence of emission control. Ma-
nipulation of the underlying random structure [159, 160, 161, 162, 163] and recent works
constraining the range of lasing frequencies [164, 165] resulted in significant progress to-
ward possible control. However, these different approaches do not allow the choice of a
specific frequency in generic random lasing systems. In Chapter 6, we demonstrated the
role played by linear and non-linear mixing of passive modes in the build-up of random
lasers emission. The use of a non-uniform spatial profile for the pump is an interesting
degree of freedom to modulate this mode-mixing and thus paves the road to a possible
control of laser emission. In a regime of very strong scattering where the modes of the
random system are spatially localized [56], local pumping allows the selection of spatially
non-overlapping modes [109, 110]. In weaker scattering media (e.g. [166, 167, 168]),
several hurdles appear toward achieving fine control. Selecting modes is hampered by a
narrow distribution of lasing thresholds [169, 170] and spatial mode overlap. Increased
pumping required in these lossy systems begins to alter the random laser itself. More-
over, modifying the shape of the pump introduces changes to both spatial and spectral
properties of lasing modes [171, 172, 173]. Such difficulties are typically absent in more
conventional lasers, which employ pump shaping (both electrically [174, 175] and optically
[176]) to select favorable lasing modes. This raises the question whether the shaping of
the incident pump field can achieve some degree of control of random lasers?

In this chapter, we exercise control over the distribution of lasing thresholds via the pump
geometry to choose the random laser emission frequency. The numerical work we report
here was published in [177]. First, the early achievements on partial pumping are reviewed.
Then, the method is applied to 1D random lasers both in the weakly scattering and in
the localized regimes to select specific mode in the emission spectrum. Optimization in
the localized regime confirms that modes can be addressed by local pumping and serves
as a benchmark for our method [109, 110]. In the weakly scattering regime, where modes
overlap and spatial selectivity is no more possible, similar mode selection is achieved
with a non-trivial pump profile. Finally, we explain this method in terms of mode-
mixing. Using the analytical approach developed in Chapter 6, we give some insights
to the optimization mechanism and propose some research perspectives we will aim at
pursuing in future works.
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7.1 Early achievements of local pumping

After Hui Cao’s pioneer work [118], many numerical approaches were developed to inves-
tigate the nature of random laser modes [149, 109]. In random lasers, the pump excita-
tion is not geometrically constrained. In the localized regime, Sebbah et al. [110] used
this property to address the lasing modes individually via a local pumping (see Fig. 7.1).
They demonstrated the weak spatial and spectral interactions between Anderson-localized
modes (see Chapter 6 and [155]). In turn, random lasers are shown to be good candidates
for the investigation of localized modes. Following a preliminary work of Wu et al. [172],
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Figure 7.1: (a) 2D random laser in the localized regime Sebbah et al. [110]. (b) Selectively
excited individual modes with local pump spots (circles).

the idea of local pumping was extended to the weakly scattering regime by Andreasen
et al. [171]. They computed the modes of a 1D random laser using a Transfer Matrix
Method (see Chapter 2 and 6) and investigated the evolution of the active modes in case
of a gradual reduction of the extension of the pump (see Fig. 7.2). The authors observed
modifications in the complex frequency and the spatial distribution of the active modes.
Finally, they demonstrated that this partial pumping performed a linear-mixing of the

(a) (b)

Figure 7.2: (a) 1D random medium (in the weakly scattering regime) used by Andreasen
et al. [171]. Partial pumping was achieved with a uniform stripe of variable length: (1)
red curve: A mode for a full pumping of the system and black curve: the corresponding
mode for a pumping restricted to 0 ≤ x ≤ 14 µm (14 µm large pump stripe) (2) Trav-
elling components of previous modes (see Appendix B) (3) Stationary components. (b)
Evolution of modes within the complex plane for an increasing size of the pump. The
color-scale maps the pump stripe length.
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passive modes. This is highlighted in Fig. 7.3 where they expanded the active modes ob-
tained in Fig. 7.2 along the passive modes. The complete excitation of the system leads to
an active mode close (but not similar) to a passive mode, while the partial pumping leads
to the presence of several passive modes. In other words, the partial pumping achieves a
different linear combination or mixing of the passive modes.

Figure 7.3: Decomposition along the passive mode of the system: Crosses stand for the
decomposition of the mode obtained for a uniform pumping (Red curve on Fig. 7.2(a)).
Dots stand for the decomposition of the mode obtained for a partial pumping (Black curve
on Fig. 7.2(a)).

7.2 Taming random laser emission through the pump
profile: Threshold optimization

In this section we extend the previous achievements on partial-pumping and present the
first control of a random laser through the optimization of the pump excitation [177].
The pump profile is iteratively shaped to select one mode in the spectral emission. The
threshold of this targeted mode becomes lower than others thresholds, thus achieving a
single-mode emission. The modes are computed with a Transfer Matrix Approach. As this
method is, strictly speaking, only valid at or below threshold, non-linearities are neglected.
First, we present the numerical model and the influence of the pump profile. Then, we test
our method on a random laser in the localized regime. Finally, we demonstrate emission
control in the more difficult case of a random laser in the weakly scattering regime.

7.2.1 Numerical system

A 1D random random laser

We consider a one dimensional random laser represented by a stack of 161 dielectric layers
(optical index n1) separated by air gaps (n0) (see Fig. 7.4). Randomness is introduced
in the thickness of each layer d0,1 = 〈d0,1〉(1 + ηζ), where 〈d0,1〉 is the average thickness,
0 < η < 1 the degree of randomness, and ζ is a uniformly distributed random number.
The position along the system is x ∈ [0, L], where L is the total length. We impose 〈d1〉
= 100 nm for the dielectric layers and 〈d0〉 = 200 nm for air, giving a total average length
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〈L〉 = 48.1 µm. The degree of randomness is set to η = 0.9. The scattering strength is
directly triggered by the contrast index ∆n = n1 − n0. Depending on the value of the
index contrast, the studied random laser can either be in the strongly scattering regime,
where light is confined within the random system, or in the weakly scattering regime (see
Chapter 2), where modes are extended.

Figure 7.4: Principle of a 1D random laser pump profile optimization. The black slabs
represent the dielectric material, which is also the gain medium. The optical pumping
(small arrows) is transverse to the structure and amplitude modulated. In real experiment,
this spatial modulation may be provided by a Spatial Light Modulator. Lasing (red
arrows) occurs along the structure and will depend on the pump profile.

The gain is inserted into the dielectric medium. The dielectric medium is thus described
by a frequency dependent susceptibility (see Chapter 6)

χg(ω)∆N0 =
d2ωa

~(ω − ωa + i∆ωa

2 )
∆N0 (7.1)

where d2 is a material-dependent constant, ∆N0 is the density of excited atoms when the
system is uniformly pumped, ωa is the atomic transition and ∆ωa is the spectral linewidth
of the atomic resonance. For numerical reasons, the light celerity is fixed unitary (c = 1),
thus ω = kc = k1. The electric field is described by the below threshold equation

∆E(r, ω) + n2(r)ω2E(r, ω) ≈ −ω2χg(ω)∆N0(r)E(r, ω) (7.2)

As a result, eq. (7.2) satisfies a non-linear eigenvalue problem

∆E(r, ω) + n2(r, ω)ω2E(r, ω) = 0 (7.3)

where the index of refraction n(r, ω) is now frequency dependent, with value n0 in air and
√

n2
1 + χg(ω)∆N0 in dielectric. We fix the transition frequency ωa = 10.25µm−1 (typical

of a solution of Rhodamine 590) and the spectral linewidth ∆ωa = 0.25µm−1 (598-628
nm). We use a Transfer Matrix Method (see Chapters 2 and 6) to compute the active
modes. As stated in Chapter 6, rather than the complex frequency of each active mode
(ωr + iωi), we equivalently consider its real frequency and threshold (ωr,∆Ni).

1The numerical routine we propose in this section relies on an optimization algorithm. Such algorithm
needs an important numerical precision on ω to converge. Fixing c = 1 provides more significant digits
on ω and a better convergence.
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Introduction of the pump profile

The pump profile fE(x) spatially modulates the density of excited atoms ∆N0. The
non-uniform density of excited atoms reads

fE(x)∆N0 (7.4)

where x is the position of the layer. The function fE(x) fulfils the constraint

0 < fE(x) < 1 (7.5)

to mimic, for instance, the amplitude modulation of the pump beam by a spatial light
modulator (see Fig. 7.4). In the present case, for numerical reasons, fE(x) is discretized
in 161 pixels in one-to-one correspondence with the dielectric slabs. The value of each
pixel stands for the amplitude of fE within the slab. This pump profile changes the gain
provided by each dielectric layer, giving possible control over the active modes of the
random laser.

Optimization algorithm

Here, we aim at selecting a particular active mode by optimizing the pump profile (as
proposed in section 7.3.1). Experimentally, a lasing mode Modei will be selectively excited
if its threshold, Ni, is sufficiently low and significantly lower than that of all other modes.
Hence, we introduce the rejection rate

RRi =
minj 6=i(Nj)

Ni

(7.6)

which compares the threshold of Modei with the lowest threshold minj 6=i(Nj).

Selection of Modei is achieved whenRRi > 1 provided its threshold, Ni remains reasonably
low. We therefore modify the pump profile fE to minimize

C =
1

RRi

+ αNi (7.7)

with α properly chosen to balance each term. This optimization of the criterion C defined
in eq. (7.7) is performed using an algorithm based on a projected gradient method. At
each iteration, the gradient of C is computed with respect to the pump profile fE(x). In
the present case, we estimate the derivative of C with respect to the 161 pixels of the
pump profile. Then, the pump profile is tuned along the direction where the previous
derivative is maximum. Finally, the resulting pump profile is projected into [0, 1] to fulfil
the constraint of eq. (7.5). Convergence is reached if its relative variation is less than
10−4.

7.2.2 Optimization in the localized regime

A random laser in the localized regime

We consider a disorder induced by an index contrast ∆n = 0.6. Over the spectral range
10.0µm−1 < ω < 10.5µm−1, we find a localization length2 ξ = 1.7µm < L. The system

2In 1D systems, the localization length and the mean free path are identical [65]. As a result, the
transmission T depends on the system length L and ξ. More precisely, T ∝ exp(−L/ξ). Since ξ only
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is therefore in the localized regime and the active modes are spatially confined within
the system (see Chapter 2). As explained in section 7.1, mode selection is achieved by
local pumping at the location of modes of the passive system [109, 110]. The localized
case serves here as a test case for our iterative algorithm, to check whether modes can be
selected without any prior knowledge of their spatial location.

The pump profile is initialized with a uniform profile, which is the natural pumping scheme
for broad area gain lasers. The threshold and optical frequency of the active modes are
thus computed with the profile, fE(x) = 1. Ten active modes are found in the spectral
window of interest. They are positioned in the frequency-threshold plane and represented
as crosses in Fig. 7.5(a). Four active modes with reasonably low thresholds and partial
spatial overlap are chosen for demonstration. Their spatial profiles are shown Fig. 7.5(b),
together with the profile of a higher threshold active mode at ω = 10.4µm−1, associated
with a lossy mode confined on the left end of the sample.
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Figure 7.5: (a) Frequency vs threshold of the active modes at successive iterations, when
the optimization routine is applied to select Mode2. Crosses represent initial positions for
uniform pumping. (b)(1) Spatial distributions of five modes. The mode profile on the
left edge corresponds to the leaky mode with the highest threshold at ω = 10.4µm−1 (2)
Spatial distribution of Mode2 after optimization (3) Resulting optimized spatial pump
profile fE(x).

Optimization

We consider Mode2 (ω = 10.22µm−1). Its rejection rate for uniform pumping is RR2 =
0.45 < 1, meaning it would not lase first at threshold. We now apply the iterative process
to select this active mode, with α = 10. Its rejection rate increases rapidly as shown in
Fig. 7.7(b). It is larger than unity after 10 iterations and converges to RR2 = 5.4 after
57 iterations. The relative increase of threshold of Mode2 is less than 50%. In contrast,

depends on the refractive index contrast, we vary L (by adding layers) to find T and we use it to find
ξ. 1-For each L, we generate 10000 random structures. 2-For each structure, we find T as a function of
frequency T (ω) for the passive system by computing the field at both edges with the Transfer Matrix
Method. 3- We take the natural logarithm of each spectrum separately to get ln(T (ω)). 4-We average
ln(T (ω)) over all structures to obtain 〈ln(T (k))〉 for each L. 5-We use a linear fit to get the slope
(ξ=-1/slope). 6-In the end, we obtain ξ(ω).
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for all other modes, the threshold increases by at least one order of magnitude. This is
illustrated in Fig. 7.5(a) showing the evolution of the spectrum in the frequency-threshold
plane. Mode2 is efficiently selected and will be the first to lase above threshold. Single
mode operation is robust even at relatively high pumping rate since RR2 is large. The
optimization algorithm has been successfully applied to all computed modes (respectively
Modei∈[1−4], see Fig. 7.6)

Mode1 Mode2 Mode3 Mode4

RRi0 0.02 0.45 0.76 1.51
RRi∞ 2.1 5.4 50.9 30.3
Ni0 0.031 0.012 0.007 0.005
Ni∞ 0.057 0.017 0.013 0.01
Cf i∞ 0.67 0.82 0.77 0.76

Figure 7.6: Values of the rejection rate (respectively threshold) before optimization (uni-
form pumping), RRi0 (respectively Ni0), and after convergence, RRi∞ (respectively Ni∞),
as well as the correlation, Cf i∞, with the final pump profile, fE(x), when the iterative
process is applied successively to each mode, Modei∈[1−4]. Values in second column cor-
respond to the optimized case of figure 7.5.

Interpretation of the pump profile

The optimized pump profile, fE(x), obtained for Mode2 is shown in Fig. 7.5(b)(3). As ex-
pected [109, 110], it is similar to the active mode spatial distribution (see Fig. 7.5(b)(2)).
The degree of similarity is measured by the spatial correlation between the pump profile
and the spatial distribution of Φi(x)

Cfi = 〈(fE − 〈fE〉)(Φi − 〈Φi〉)〉 (7.8)

where fE and Φi have been normalized by their variance. For Mode2, the correlation is
close to one since Cf2 = 0.82 at the last iteration. The solution reached by the algorithm
is therefore consistent with the predicted efficiency of a local pumping in the localized
regime, even in the presence of moderate overlap [109, 110]. It is also worth to note that
the change of pump profile barely affects the frequency (see Fig. 7.5(a)) and spatial profile
(see Fig. 7.5(b)(2)) of the active modes, as expected in the localized regime [178].

To give a better insight into the optimization process, we examine the evolution of the
correlations Cfi∈[1−4] relative to the number of iterations. As the optimization routine is
applied, Cf2 consistently increases, while correlations of the other modes tend to zero, as
shown in Fig. 7.7(a). This results in increased thresholds for these modes. The crosses
in Fig. 7.7(a) indicate the mode with the lowest threshold, minj 6=2(Nj), entering the
calculation of RR2 at a given iteration. After having worked alternatively on Mode3

and Mode4, the algorithm works exclusively on the rejection of Mode4. This mode has
the largest overlap with Mode2; a fine tuning of the pump profile is therefore required
to increase its threshold without greatly increasing the threshold of Mode2. Actually,
this optimization mechanism emphasizes that the modes can be addressed individually in
the localized regime. For that matter, the pump profile must correlate with the spatial
distribution of the targeted mode.
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Figure 7.7: (a) Spatial correlations functions, Cf i, between pump profile and Modei.
Crosses indicate the mode with lowest threshold entering the calculation of RR2. (b)
Rejection rate, RR2, and threshold N2 for selected mode.

7.2.3 Optimization in the weakly scattering regime

A random laser in the weakly scattering regime

We now consider the more difficult case of a weakly scattering random laser. For an index
contrast of ∆n = 0.05, the localization length is ξ ≈ 200µm > L over the frequency
range 10.0µm−1 < ω < 10.5µm−1. The threshold and optical frequency of the active
modes are thus computed with the profile, fE(x) = 1. Twelve active modes are found
in the spectral window of interest. They are positioned in the frequency-threshold plane
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Figure 7.8: (a) Frequency vs threshold of the active modes at successive iterations, when
the optimization routine is applied to select Mode2. Crosses represent initial positions for
uniform pumping. (b)(1) Spatial profile of Mode1 (envelope) and Mode2 (full) (2) Sta-
tionary component of Mode2 before (envelope) and after optimization (full) (3) Resulting
optimized spatial pump profile.

and represented as crosses in Fig. 7.8(a). As in the localized regime, we consider four
active modes with reasonably low thresholds, namely Modei∈[1−4]. Spatial distributions
of Mode1 and Mode2 are shown in Fig. 7.10(b)(1). Modes are now overlapping over the
whole system precluding spatial selection of the mode by local pumping.
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Optimization

The optimization procedure is applied to the Mode2, with α = 0.3. For a uniform pump
profile, this mode is characterized by a rejection rate RR2 = 0.86 and a frequency ω =
10.23µm−1.

The algorithm converges after 320 iterations with a final rejection rate RR2 = 2.47.
Although more modest than in the localized regime, this increase is significant enough
to consider single-mode operation of the random laser at this selected frequency. Similar
results are obtained for all other modes tested (see Fig. 7.9)

Mode1 Mode2 Mode3 Mode4

RRi0 0.75 0.86 1.17 0.74
RRi∞ 1.26 2.11 2.53 1.24
Ni0 0.70 0.12 0.53 0.72
Ni∞ 0.81 0.28 0.74 0.81
Cf i∞ 0.20 0.28 0.21 0.31

Figure 7.9: Values of the rejection rate (respectively threshold) before optimization (uni-
form pumping), RRi0 (respectively Ni0), and after convergence, RRi∞ (respectively Ni∞),
as well as the correlation, Cf i∞, with the final pump profile, fE(x), when the iterative
process is applied successively to each mode, Modei∈[1−4]. Values in second column cor-
respond to the optimized cases of Fig. 7.8.

Fig. 7.8(a) shows the impact of the iterative process on Mode2. As the thresholds in-
crease, this active modes experience a spectral shift as well as a spatial deformation (see
Fig. 7.8(b)), in contrast to the localized regime.

Interpretation of the pump profile

Fig. 7.8(b)(3) shows that the optimized pump profile is rather unpredictable.
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Figure 7.10: (a) Spatial correlation functions, Cf i, between pump profile and station-
ary part of Modei. Crosses indicate the mode with the lowest threshold entering the
calculation of RR2. (b) Rejection rate, RR2, and threshold N2 for selected mode.

A small but significant correlation Cf2 = 0.28 (see Fig. 7.10(a)) is found only when com-
paring the stationary component of Mode2 (see Fig. 7.8(b)(2)) and the pump profile
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(see Appendix B). The subtlety of the optimization process, which is successfully demon-
strated for all modes, is exemplified in Fig. 7.10(a). The ceaseless switching between
modes Modei∈[1;3;4] (crosses) forces reduced correlation, and even anticorrelation between
the rejected modes and the pump profile.

7.3 Below threshold modal expansion

In section 7.2, we numerically demonstrated the optimization of random lasing emission.
However, if the optimized pump profile obtained in the localized regime is well understood,
its shape in the weakly scattering regime is rather unpredictable. In this section, we
investigate the previous optimization in term of mixing of passive modes. First, we
include the non-uniform pump profile in the below threshold modal expansion that we
derived in Chapter 6. We highlight the influence of mode mixing in localized and weakly
scattering regimes. The observations made in the following paragraphs will be further
studied in future work. Finally, we explain that similar control can be achieved on spatial
distribution of modes as recently shown numerically [179].

7.3.1 Principle of the below threshold pump profile optimization

Introduction of the non uniform pump profile

In Chapter 6, we demonstrated that the electric field for a uniform pumping reads

∆E(r, ω) + ǫ(r)ω2E(r, ω) ≈ −ω2χg(ω)∆N0E(r, ω) (7.9)

As stated in section 7.2, the non-uniform pump profile fE(r) modulates the density ∆N0.
Hence, eq. (7.9) reads

∆E(r, ω) + ǫ(r)ω2E(r, ω) ≈ −ω2χg(ω)∆N0fE(r)E(r, ω) (7.10)

The electric field is expanded along the passive modes (Ωi,Φi)

E(r, ω) =
∑

p

ap(ω)Φp(r) (7.11)

Using the biorthogonal product between the passive modes, eq. (7.10) reads

ap(ω)(Ω2
p − ω2) = ω2χg(ω)∆N0

∑

q

aq(ω)
∫

fE(r)Φp(r)Φq(r) (7.12)

Eq. (7.12) defines a non-linear eigenvalue problem. Considering a finite number of passive
modes N , we can recast the system in a matrix form







Ω2
1 . . . 0

...
. . .

...
0 . . . Ω2

N







= ω2







1 + ∆N0χg(ω)V11 . . . ∆N0χg(ω)V1N
...

. . .
...

∆N0χg(ω)VN1 . . . 1 + ∆N0χg(ω)VNN







(7.13)

where
Vij =

∫

fE(r)Φp(r)Φq(r) (7.14)
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are referred to as spatial overlap coefficients. These coefficients stand for the interaction,
the coupling between the passive modes. The active modes of the random laser are the
eigenmodes of the non-linear eigenvalue problem derived in eq. (7.13). Each active mode
will be associated with a complex frequency Ω̃p = ω̃p − i Γ̃p

2 and a spatial distribution Φ̃p.

Perturbation expansion

We perform the first order perturbation expansion of eq. (7.13). This expansion of the ac-
tive modes is similar to the one performed in Chapter 6. For a non-constant susceptibility,
the complex frequency at first order reads

Ω̃p ≈ Ωp



1 − ∆N0Vpp + ∆N2
0

∑

q 6=p

Ω2
p

Ω2
q − Ω2

p

V 2
pq +

3
8

∆N2
0V

2
pp



 (7.15)

And the corresponding spatial distribution reads

Φ̃p ≈ Φp + ∆N0

∑

q 6=p

Ω2
q

Ω2
q − Ω2

p

χg(ωp)
(∫

fE(u)Φp(u)Φq(u)du
)

Φq(r)

= Φp + ∆N0

∑

q 6=p

Ω2
q

Ω2
q − Ω2

p

χg(ωp)VpqΦq(r) (7.16)

We stated in Chapter 6 that eq. (7.15) and (7.16) emphasize that the linear mixing
is responsible for the active modes. A non-uniform pump profile affects the coupling
coefficients Vpq and in turn changes the mixing of passive modes thus giving rise to the
active modes. Hence, different non-uniform pump profiles achieve different linear mode
mixing.

Managing the mode mixing

Eq. (7.15) and (7.16) offer an interesting insight to the optimization process.

(a)

(b)

(c)

Re(ω)
Im(ω)

n1n0 +

Figure 7.11: (a) A 1D random laser below threshold with a non-uniformly pumping. (b)
Complex frequencies when the pumping is uniform. The arrows mimic their evolution
when the pump profile is modified. (c) The spatial distribution results from a linear
mixing of modes obtained for a uniform pumping.
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A non-uniform profile fE, as sketched in Fig. 7.11, is responsible for new coefficients
Vpq. These new coefficients induce a new linear mixing of the passive modes. As shown
in Fig. 7.11(a) and (b), the complex frequencies and spatial distribution of the active
modes are changed. Therefore, an adapted pump profile consists in finding the ”good”
coefficient Vpq to change the active mode toward a certain criterion.

7.3.2 Threshold optimization

Localized regime

In the localized regime, the spatial overlap between modes is weak

Vpq ∝ δpq (7.17)

System described by eq. (7.13) has no off-diagonal terms, the coupling between passive
modes is null. Hence, according to eq. (7.16), the spatial distribution of the active modes
is identical to the passive one

Φ̃p = Φp (7.18)

In the localized regime, active modes are similar to passive modes and are not affected
by the pump profile (as expected from Chapter 6). This absence of mode coupling is also
observed in Fig. 7.5(a), where the different modes are not frequency shifted.

Performing a derivation proposed in Chapter 6, the threshold of each mode can be derived
from eq. (7.15)

∆N0p,th ≈ − Γp
Im

(

Ωpχg(Ωp)
∫

fE(u)Φ2
p(u)du

) (7.19)

For localized modes, because the losses are weak, both the passive complex frequencies
and the spatial distributions are almost real. Thus, equation (7.19) reads

∆N0p,th ≈ − 1/Qp
(∫

fE(u)Φ2
p(u)du

)

Im (χg(Ωp))
(7.20)

Eq. (7.20) emphasizes the fact that in the localized regime, the threshold of the mode
is directly triggered by the correlation between the pump profile fE(x) and the intensity
of the mode Φ2

p. The energy is transferred from the pump to the mode via the intensity
of the field. As a result, because modes do not overlap, the optimization of one specific
threshold consists in correlating the pump profile with the intensity of the mode. For
instance, during optimization in the localized regime of section 7.2 (see Fig. 7.7), the
correlation of the pump profile with Mode2 intensity increases to a value close to one. In
the same time, the correlation of mode profile with other modes converges to zero.

Weakly scattering regime

In the weakly scattering regime, the presence of spatial overlap induces a coupling of the
passive modes responsible for non zero Vpq. This coefficients ensure a mixing of passive
modes to build-up active modes. The spatial distributions of the active modes read

Φ̃p = Φp + ∆N0

∑

q 6=p

Ω2
q

Ω2
q − Ω2

p

χg(ωp)VpqΦq(r) (7.21)
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Hence, when the pump profile is modified, the mixing between the passive modes changes.
For instance, as shown in Fig. 7.5(b) in section 7.2, during the optimization of Mode2 the
shape of its spatial distribution is strongly altered.

Like in the localized regime, the threshold of the different active modes reads

∆N0p,th ≈ − Γp
Im

(

Ωpχg(Ωp)
∫

fE(u)Φ2
p(u)du

) (7.22)

However, unlike localized case, the passive modes have important leakage in the weakly
scattering regime. As a result, spatial distributions and complex frequencies of passive
modes are complex. If we consider the example proposed in section 7.2, the quality factors
of the passive modes are ≈ 10 and Ωp ≈ ωp. Assuming modes are close to the center of
the gain curve χg(ω) ≈ −i|χg(ωa)|. Threfore, the thresholds read

∆N0p,th ≈ 1/Qp

|χg(Ωp)|Re
(∫

fE(u)Φ2
p(u)du

) =
1/Qp

|χg(Ωp)|
∫

fE(u)Re(Φ2
p(u))du

(7.23)

The threshold of active mode in the weakly scattering regime is triggered by the overlap
between the pump profile and the real part of the complex intensity Re(Φ2

p) = Re(Φp)2 −
Im(Φp)2 instead of the intensity itself (|Φp|2 = Re(Φp)2 + Im(Φp)2). The RR of Modep in
the weakly scattering regime reads

RRp ∝ Re (
∫

fE(u)Φ2
i (u)du)

Re
(∫

fE(u)Φ2
p(u)du

) (7.24)

where Modei is the mode with the lowest threshold apart from Modep. Eq. (7.24) high-
lights the complexity of the optimization. In the same time the pump profile must correlate
with Re(Φ2

p(u)) and decorrelate with Re(Φ2
q(u)). Moreover, in the numerical experiment

we presented in section 7.2, this optimization is complicated by the presence of a non-
uniform gain curve.

Future work

Sections 7.3.2 and 7.3.2 provide preliminary observations made via the formalism intro-
duced in Chapter 6. In these two sections, we only aimed to propose some analytical
insights. In particular we wanted to stress the difference between the optimization of
quasi-hermitian modes (localized system) and highly non-hermitian modes (weakly scat-
tering system).

In future work, we will try to adapt this approach to 1D and 2D optimizations. This
analytical approach, could be helpful to address reverse problems and thus achieve a strong
control of random laser properties. We could also try to investigate the minimal number
of ”pixels” (the discretization steps in the numerical pump profile of section 7.2) which
are needed in order to optimize a pump profile. Otherwise, more exotic optimizations
could be tried (e.g. two modes, a single-mode laser with a control of the frequency of the
mode).
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7.3.3 Directivity optimization

When modifying the mode coupling, the pump does not only affect the complex frequen-
cies of active modes, it also affects its spatial distribution. According to eq. (7.16), the
spatial distribution of mode reads

Φ̃p = Φp + ∆N0

∑

q 6=p

Ω2
q

Ω2
q − Ω2

p

χg(ωp)
(∫

fE(u)Φp(u)Φq(u)du
)

Φq(r) (7.25)

In a similar way to threshold optimization, the pump profile can be adapted to select
a specific spatial emission. Hence fE can be iteratively shaped to constrain the spatial
distribution Φ̃p, via the coupling terms

∫

fE(u)ΦpΦq.

Such control of the emission directivity was achieved in 2013 by Hisch et al. [179]. Using
Finite Element Method computation, they iteratively shaped emission pattern of a specific
mode (see Fig. 7.12) and consequently forced emission in a given direction.

Figure 7.12: Schematic view of the directivity optimization of a random laser emission:
A 2D circular random laser is modelled via FEM computation (below threshold compu-
tation). The linear mixing of modes modifies the emission pattern to emit in a particular
direction [179].

7.4 Summary

We have demonstrated numerically the possibility of controlling random laser properties
by adaptive shaping of the pump profile.

Starting from early observations relative to local pumping, we have stressed the possibility
of controlling the linear-mixing between the modes of the passive system. By iteratively
shaping the pump profile, different properties of random lasing emission can be tuned
and controlled. We have applied this approach in a numerical experiment, where a 1D
multimode random laser has been computed using a Transfer Matrix Approach. We have
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investigated the possibility of achieving a single-mode emission via a control of mode
thresholds based on an optimization routine. For localized modes, we have obtained pump
profiles overlapping with the spatial extent of the selected mode. In the weakly scattering
regime, despite the strong spatial overlap between modes, we have demonstrated that such
optimization is still possible. Nevertheless, the adapted pump profile is rather complex.
We have brought an analytical insight to this mechanism by inserting the pump profile
within the modal description of random laser proposed in Chapter 6. As expected from
numerical observations, the optimization of localized mode consists in correlating with its
spatial distribution. In the weakly scattering regime, the pump profile results in a subtle
mechanism.
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The modes of random lasers result from a mixing/combination of the modes of the
passive system (see Chapter 6). Chapter 7 shown that a non-uniform distribution of the
gain affects the mode mixing. The influence of the pump profile on mode mixing was
used to control the active modes (i.e. below threshold) in a numerical experiment. In
particular, an adapted pump profile can be designed to force single-mode emission of a
random laser. This control can be extended to other characteristics of the modes, offering
meanwhile interesting prospects and potential applications. We aim in the present chapter
at demonstrating this laser control in an actual experiment.

Nevertheless, this optimization faces many challenges in practice and differs from the
numerical approache developed in Chapter 7. For instance, the single-mode optimization
will be performed on spectral peaks of the intensity rather than on mode thresholds. The
optimization algorithm used in Chapter 7 cannot be used here. Indeed, in addition to
experimental fluctuations, the intensity peaks naturally fluctuate because of the chaotic
nature of random lasers [180]. Moreover, we must propose a solution to achieve a robust
and precise modulation of the pump excitation. We also have to ensure that the laser is
above threshold, whatever the pump profile. From a theoretical point of view, the modes
observed experimentally differ from the ones considered numerically. Indeed, Chapter 6
hightlights the difference between active and lasing modes, below and above threshold,
respectively. We stated that above threshold, the lasing modes result from complex linear
and non-linear mixing of the passive modes. Therefore, the optimization that we intend
to perform here relies on a different mechanism, where non-linear effects play a major
role.

In this chapter, the control of spectral and spatial emissions is achieved using an optofluidic
random laser similar to the laser described in Chapter 5. First, we perform the spectral
control of a 1D random laser by modulation of the pump intensity via a spatial light
modulator (SLM) [181]. By actively shaping the optical pump within the random laser,
single-mode operation at any selected wavelength is achieved with spectral selectivity
down to 0.06 nm and more than 10 dB side-lobe rejection. The analytical development
of Chapter 6 is used to give a simple description of the optimization and to highlight the
crucial quantities to consider for further investigations. Finally, we present preliminary
experimental results concerning the control of the directivity of a 2D optofluidic source.
Using similar approach, we force the direction of the emission.
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8.1 1D optimization

The purpose of this section is to achieve the control of the spectral emission of a 1D
microfluidic random laser. We show that the method proposed in the case of the numerical
optimization presented in Chapter 7 is adapted to experimental conditions. First, the
experimental setup and the numerical routine of optimization are presented. Then, we
show an experimental optimization and discuss the reliability of the method. Finally,
the description of Chapter 6 is used to offer an insight of the mechanism involved in the
optimization.

8.1.1 Experimental Setup

1D random laser

We consider the optically pumped one-dimensional (1D) random laser described in Fig. 8.1.
This laser is inspired from the device introduced in Chapter 5 and published in [120] for an
easy integration of lasers into complex optofluidic structures [182]. The gain medium is a
2.5×10−3 M ethanolic solution of Rhodamine 6G circulating in a 2.8 mm-long PDMS mi-
crochannel made of a linear chain of randomly distributed rectangular pillars (see Fig. 8.1).
This alternation of 70 layers, with two different indices of refraction (npolymer =1.42 and
ndye =1.36), provides multiple scattering and necessary feedback to achieve random las-
ing emission. As sketched in Fig. 8.1(c), the microchannel is 80 µm wide and 15 µm
deep. The pillars are 12 µm thick and 40 µm long. Their random positions are uniformly
chosen in the range ±6 µm around an arrangement having a period of 40 µm. Actually,
this spatial disorder is not mandatory and artificial: Indeed, the limited accuracy of the
photolithographic process results in a 1 µm tolerance in the position and thickness of the
pillars, providing the necessary disorder at the optical scale (as explained in Chapter 5
and [120]). Because the random structure is static and the dye solution flows continu-
ously within the microfluidic channel, dye-bleaching is reduced, making the lasing modes
stable and the results reproducible over several hours. An auxiliary microchannel circu-
lated by another dye (5.0×10−3 M ethanolic solution of Nile Blue) serves to image laser
radiation scattered out by the structured channel (see Fig. 8.1(d) and (e)). The small
index contrast between the polydimethylsiloxane (PDMS) pillars and the dye solution,
∆n = 1.42 - 1.36 = 0.06, results in weak scattering. From numerical simulations (see
Chapter 2) we find a localization length ξ = 22 mm at 560 nm, much longer than the
sample size (2.8 mm). In this regime, modes are extended over the whole system and
therefore strongly overlap with each other. This is confirmed in Fig. 8.1(e), in which light
is emitted all along the structure. Therefore, we are investigating optimization of random
lasing emission in the weakly scattering regime.

Pump modulation and acquisition

As sketched in Fig. 8.2, the pumping is achieved by a laser beam from a frequency-
doubled Q-switched Nd:YAG laser (Quantum Ultra: @532 nm, 10 ns pulse duration,
maximum output energy 30 mJ, repetition rate 10 Hz). The pump beam is expanded
to uniformly illuminate the surface of the SLM (Holoeye LC 2002), in order to perform
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(a) (b)

(c) (d)

(e)

Figure 8.1: (a) 3D partial view of the microchannel device, (b) complete top view. (c)
The microchannel is structured into a 1D-random distribution of 12 µm-thick rectangular
pillars separated on average by 28 µm gaps. Geometrical dimensions are given in µm. A
dye solution (Rhodamine 6G in ethanol) flows through the structured PDMS microchan-
nel, which is plasma-bonded on a glass slide partially represented in (a). A pressure
differential at the two outlets forces dye flow between the scattering pillars and prevents
dye bleaching. The structure is pumped by a Q-switched Nd:YAG laser at 532nm shaped
into a 1.4mm-long stripe line (green line in (b)). (d) Imaging of the in-plane scattered
laser emission. Dye (Nile blue) solution circulates in an 80 µm-wide auxiliary microchan-
nel parallel to and at a distance of 10 µm from the structured channel and fluoresces at
the laser emission wavelength. (e) Laser emission along the whole auxiliary channel.

spatial modulation of the excitation. The SLM itself, which sits between crossed polarizers
to work in amplitude modulation, is placed in the object plane of a telescope with 5×
reduction and is imaged on the sample after compression through a cylindrical lens with
focal length f = 6 mm. This setup provides a 1.4 mm-long, 4 µm-thick laser stripe
line with nearly diffraction-free modulation down to 1 µm-large rectangular pixels (see
Fig. 8.1(b)).

We chose to tightly focus the pump beam to a narrow line in order to enforce single
transverse mode laser operation. The length of 1.4 mm has been chosen to limit the
amplified spontaneous emission (ASE) and to provide a manageable modal density. We
checked experimentally that doubling the length increases the ASE by a factor of three and
the number of modes by a factor of two. The microchannel is precisely aligned with the
laser stripe line under a Zeiss Axioexaminer microscope and imaged using a Hamamatsu
Orca-R2 silicon CCD camera microscope. The laser emission is collected via an optical
fiber connected to a Horiba iHR550 imaging spectrometer equipped with a 2,400 l.mm−1

grating and a liquid nitrogen-cooled Symphony II camera (sampling rate 1MHz, 1,024×56
pixels, 26 µm pixel pitch). The entrance slit is 50 µm for a resulting spectral resolution of
20 pm and the integrating time is 1 s. An example of emission spectrum is illustrated in
Fig. 8.4. Measured spectral linewidth is 0.03 nm (full-width at half-maximum) and not
limited by the 20 pm-resolution of the imaging spectrometer.
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Figure 8.2: Experimental setup: The pump laser is polarized (P1) and expanded on the
SLM by a beam expander (BE1). The SLM is imaged into the sample via a second
beam expander (BE2). A second polarized (P2) performs the amplitude modulation. A
cylindrical lens (CL2) is used to compress the image in 1D and achieves the pump profile
fE(x). Random lasing light (Red arrows) is guided by the 1D structure, collected by the
monochromator (iHR550) and the sample is imaged via a CCD camera protected by a
notch filter (@ 532 nm) mounted on a Zeiss microscope.

Optimization method

In this work, we control the random lasing emission by enforcing a single mode emission
and therefore confirm the numerical optimization proposed in Chapter 7. The 1D pump
profile, fE(x), is made up of 32 lines (as sketched in Fig. 8.2). Each line is grey-scale-
coded on 256 levels and imaged onto the sample to form a 46 µm-long, 4 µm-thick pixel.
We chose the 32-column vectors Xi of the 32×32 binary Hadamard matrix [183] as the
initial vertices to initiate the optimization procedure (see Fig. 8.3 and Appendix D).
Consequently, the pump profile is expressed as a linear combination of 32 basis elements
proposed in Fig. 8.3. Starting from any other basis on which an arbitrary pump profile
can be decomposed should lead to convergence. We tested the alternate ”stripe basis”
with vectors formed by contiguous on-pixels, all others being off. The algorithm also
converges, but to a different solution. Our choice of the Hadamard basis is practical, as
all elements (except the first one) have the same mean amplitude. Therefore, they require
a constant and reasonable pump fluence to reach threshold. Furthermore, to preclude any
below threshold pumping, we set a minimum uniform background illumination (α0). The
pump profile is written as

fE(x) =
1

255

[

α0 +
∑

1→32

αiXi

]

(8.1)

where the αi take discrete values in the range [0,135] and the uniform background α0 =
120. Each vector (Xi)i∈[1,32] corresponds to a particular pump profile associated with a
particular emission spectrum I(λ).
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X1 ... X32

Figure 8.3: The Hadamard basis: Each column stands for a vector of the basis, Xi. For
each pixel of the Xi, black squares stand for unitary value and white for zero value.

I(λ0)

I(λ1)

Figure 8.4: Rejection rate definition R(λ0): The intensity of targeted mode I(λ0) is
divided by the highest other intensity I(λ1).

To achieve single-mode operation at a targeted wavelength, λ0, we need to find the coef-
ficients (αi)i∈[1,32] which maximize the rejection rate defined as

αi → R(λ0) =
I(λ0)
I(λ1)

(8.2)

where λ1 corresponds to the wavelength of the lasing mode with highest intensity, apart
from the mode at λ0 (an illustration is proposed in Fig. 8.4).

To perform optimization of eq. (8.2), we use the Nelder-Mead simplex (direct search)
method implemented in the fminsearch function of Matlab (see Appendix D). We mod-
ified this function by setting the initial step (usual_delta parameter in fminsearch)
to 0.5 to explore a large region of the 32-dimensional space. Because of inherent strong
fluctuations of the random lasing emission, we chose this derivative-free algorithm to pre-
clude any derivative computation. The number of pixels (32) has been determined for
the best trade-off between sensitivity and computation time. A power of two has to be
chosen for the definition of the Hadamard basis.



8.1. 1D optimization 147

8.1.2 Optimization results

Optimization procedure

Experimentally, five spectra integrayed over ten shots are acquired every second and then
averaged for a given pump profile fE(x). The typical shot-to-shot variance of the lasing
peaks is around 10%. Hence, averaging over 50 shots reduces spectrum fluctuations to
roughly 1.4. Such accuracy is needed when the denominator in

R(λ0) =
I(λ0)
I(λ1)

(8.3)

becomes small. Between successive acquisitions, the system is uniformly pumped (fE(x) =1)
to ”clean up” the gain medium from any memory effect due to possible residual thermal
perturbation from previous pump profiles. A typical optimization lasts 20 min.

Optimized pump profile

0

7000

I(
λ)

Uniform high−pump profile

557 559 561 563 565 567
0

7000

I(
λ)

561.77

Wavelength λ (nm)

(b)

(a)

Figure 8.5: (a) Laser emission spectrum for uniform pumping above threshold. Symbols
correspond to the modes shown in Fig. 8.4. (b) Emission spectrum after the optimization
process to select laser emission at λ0 = 561.77nm. Single-mode operation is achieved after
228 iterations. The corresponding non-uniform pump profile as displayed on the spatial
light modulator (SLM) is shown in the inset. The grey scale ranges from 0 (black) to 255
(white).

The random laser is initially pumped uniformly in the multimode regime. The spectrum
is shown in Fig. 8.5(a). The optimization algorithm is then performed on the targeted
mode λ0 = 577.11 nm marked by a red dot in Fig. 8.5(a). This lasing mode is not the
first to lase under an uniform pumping, R(λ0)init =0.4.

After 228 iterations (see Fig. 8.5(b)), the algorithm has converged to an optimized pump
profile. We obtain R(λ0) = 13.1 after optimization, which corresponds to a sideband
rejection of 11.4 dB.
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We also check that no mode-hoping between laser lines occurs during the optimization
process. Therefore, we ensure that the mode selected corresponds to the mode initially
targeted at λ = 577.11 nm (see Fig. 8.6). Indeed, because the optimization procedure
constantly explores new regions of the parameter space, it is not possible to assert that no
other mode has been selected instead of the mode initially targeted. Starting from the final
pump profile of Fig. 8.5(b), we progressively increase the baseline value α0. Therefore,
we obtain the spectral emission from optimized to uniform pumping. The evolution of
the modes (marked by dots in the plan frequency/peak intensity) is plotted in Fig. 8.6.
The crosses stand for the uniform profile and the red marks for the optimized one. The
targeted mode is clearly progressively optimized without any frequency shift, precluding
any mode hoping. Actually, it is possible by this method to optimize almost any of the
lasing modes present in the multi-mode spectrum measured with uniform pumping.

560 561 562 563 564 565
0

4000

Wavelength λ (nm)

I(
λ)

α0 = 255

α0 = 120

(a) (b)

Figure 8.6: (a) Intensity of modes when the pump profile baseline decreases from α0 =
255 (blue) to 120 (red): The pump profile is shaped from uniform profile to adapted
profile (optimization presented in Fig. 8.5). The arrows point out that the intensity
of the targeted mode increases, while other intensities progressively decrease. (b) The
different pump profiles when the baseline is decreased (down, α0 = 255) (up, α0 = 120).

Convergence and reliability

In Fig. 8.7(a), we plot the evolution of R(λ0) and the correlation of the pump profile dur-
ing the optimization proposed in section 8.1.2. The correlation is measured between the
pump profile at the current iteration i and the previous iteration i− 1. A unitary corre-
lation means that convergence has been reached. During the optimization, the algorithm
explores the parameter space and progressively moves in the direction of highest R(λ0).
At iteration i = 103, a large value of R(λ0) is reached. The corresponding pump profile
is chosen and progressively shaped to increase the rejection rate. Beyond 200 iterations,
the optimization has converged.

To test the reliability of our method, we perform optimization over the whole emission
bandwidth (see Fig. 8.7(b)). After several hours, ethanol infiltrates the PDMS and spec-
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tral shift becomes significant relative to the spectral precision of the measurement. This
explains why different data sets are collected in Fig. 8.7(b). Remarkably enough, high
R(λ0) are found in the whole spectrum. Optimization is efficient even away from the
centre of the Rhodamine gain curve (typically ≈ 562 nm), where modes are provided with
less gain. Moreover, even with extremely small initial amplitude for uniform pumping
(Rinit ≈ 0.3 %), modes are optimized significantly (see Fig. 8.7(b)).
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Figure 8.7: (a) Convergence characteristics of optimization presented in Fig. 8.5: Solid
blue curve is the evolution of the criterion R(λ0) and red dots stand for correlation between
two successive pump profiles. (b) R(λ0) versus wavelength before (open symbols: R(λ0) <
1) and after (full symbols: R(λ0) ≫ 1) optimization of 15 lasing modes. The logarithmic
representation gives R(λ0) in dB. The different symbols correspond to different sets of
experiments.

Spectral selectivity

The optimization procedure allows to address the modes individually as soon as a mode
is associated to a distinct peak in the spectrum. Hence, spectrally, the technique is only
limited by the resolution of the spectrometer. To illustrate the spectral selectivity of

0 1.4
0

128

256

Position (mm)

Pump profile

560.5 561 561.5
0

3000

N
or

m
al

iz
ed

 In
te

ns
ity

 (
a.

u.
)

Wavelength (nm)

0 1.4
0

128

256

Position (mm)

Pump profile

560.5 561 561.5
0

3000

Wavelength (nm)

(a) (b)

Figure 8.8: Optimizations at respectively λ0 = 561.08 nm (a) and λ0 = 561.14 nm.
(b) The corresponding optimized pump profile is plotted versus position and the pattern
displayed on the spatial light modulator is shown on a grey scale.
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our method, we independently select two lasing modes separated only by 0.06 nm, as
shown in Fig. 8.8. The optimization process clearly leads to two distinct pump profiles,
associated with two different modes at λ0 = 561.08 nm and λ0 = 561.14 nm. This example
emphasizes that all the modes can be addressed individually.

8.1.3 Optimization mechanism

The complexity of optimization mechanism: Influence of non-linear mixing

In Chapter 7, similar optimization was investigated with a numerical approach below
threshold. We neglected gain non-linearities (also referred to as non-linear mode mixing)
and restricted the description to linear mixing of modes. In this case, optimization was
expressed in terms of mode threshold. To emphasize the difference between our previous
numerical work and the current experimental optimization, we plot in Fig. 8.9 the thresh-
olds characteristics for both a uniform pump profile and the pump profile obtained from
the optimization presented in Fig. 8.5(b).
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Figure 8.9: Uniform pumping (a) and optimized pumping (b) for the optimization routine
carried out at λ0 = 561.77 nm. The pump profile as displayed on the spatial light
modulator is shown above each plot. For the targeted mode at λ0 = 561.77 nm (full red
circles), the threshold increased slightly from 21 to 28 µJ.mm−2. For the mode which lases
first under uniform pumping at λ1 = 562.50 nm (blue squares), the threshold doubled
from 21 to 50 µJ.mm−2. Green stars indicate another mode at λ2 = 563.4 nm. Lines are a
linear fit to the stimulated regimes. (b) The x-axis shows the actual fluence impinging on
the sample (which is different from the fluence of the incident pump beam when pumping
is not uniform).

As expected from our numerical investigation, the threshold of the optimized modes re-
mains at similar value while others are significantly increased. Threshold of the targeted
mode (red dots, λ0 = 561.77 nm) increases from 21 to 28 µJ and threshold of the highest
intensity mode apart from λ0 (blue dots, λ1 = 562.20 nm) is increased from 21 µJ to
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50 µJ. Nevertheless, the mode selection is rather due to slope efficiency than threshold
inversion. As stated in Chapter 6, this slope efficiency is imposed by non-linear mixing
provided by the hole burning effect. Moreover, it is worth noting the influence of adapted
pump profile on cross-saturation. In Fig. 8.9(a) all the modes saturate more or less simul-
taneously close to 100 µJ.mm−1. This effect is totally removed for an adapted pumping
in Fig. 8.9(b).

The observations made in Fig. 8.9 highlight the difference between below threshold op-
timization and the present case. The optimization achieved in the present experiment
cannot be explained exclusively in terms of linear mixing. The non-uniform pump profile
has an important influence on non-linear mode mixing.

Analytical investigation

Here, we give preliminary theoretical insights on the physics of non-linear mode mixing
involved in the optimization. Chapter 6 approached this issue analytically. The model
below is more qualitative than quantitative and paves the road to further investigations.

For uniform pumping, the intensity of the modes can be derived from a non-linear problem
(see Chapter 6)
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where linear coupling terms Bp read

Bp = Re

(

Ωp
iχg(ωp)

2
Vpp

)

(8.5)

non-linear coupling terms Dpq read

Dpq = Re

(

Ωp
iχg(ωp)

~
Appqq

)

(8.6)

and ∆N0 is proportional to the pump fluence. In a similar way to the optimization below
threshold (developed in Chapter 7), the non uniform pump (fE) modulates the spatial
overlap between passive modes. This overlap is expressed in terms of linear mixing

Vpp =
∫

fE(u)Φp(u)2du (8.7)

and non-linear mixing coefficients

Appqq =
∫

fE(u)Φp(u)2|Φq(u)|2Im(χg(ωq)∗)du (8.8)

where Φp(u) are passive mode spatial distributions, ωq frequency of the passive mode and
χg(ω) the medium susceptibility. For sake of simplicity we will consider two lasing modes.
Their intensities read (see Chapter 6)

I1 ≈ 1
∆
D22B1 −D12B2

∆Nth,1
(∆N0 − ∆Nth,1) =

1
2∆

D22Γ1 −D12Γ2

∆N2
th,1

(∆N0 − ∆Nth,1) (8.9)
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I2 ≈ 1
∆
D11B2 −D21B1

∆Nth,2
(∆N0 − ∆Nth,2) =

1
2∆

D11Γ2 −D21Γ1

∆N2
th,2

(∆N0 − ∆Nth,2) (8.10)

where the threshold ∆Nth,ii∈[1,2] read

∆Nth,1 =
D22Γ1 −D12Γ2

2(D22B1 −D12B2)
(8.11)

∆Nth,2 =
D11Γ2 −D21Γ1

2(D11B2 −D21B1)
(8.12)

and
∆ = D11D22 −D12D21 (8.13)

In this two-mode regime, we assume I1 to be the intensity of the optimized mode (targeted
mode λ0 = 561.77 nm in Fig. 8.5) and I2 the intensity of another mode (for instance
λ1 = 562.50 nm in Fig. 8.5).

First, eq. (8.9 - 8.12) highlight that the threshold and the slope of each mode are strongly
related. When the slope is increased (or decreased), the threshold is decreased (or in-
creased). Therefore, this confirms the validity of the numerical optimization made in
Chapter 7. The mode with the lowest threshold will give rise to the highest intensity.

Nevertheless, the optimization cannot be restricted to a linear description. We observed
in Fig. 8.9(b) that the optimization strongly decreases the slope of I2. This diminution
cannot be explained by the simple increase of threshold. Indeed, the slope of I2 is reduced
by approximatively a factor 20 and its threshold is only doubled. Therefore, the pump
profile satisfies

D11B2 −D21B1 → 0 (8.14)

From eq. (8.14) we deduce that the slope reduction responsible for the optimization is
driven by a subtle relation between non-linear coupling terms (Dij) and linear ones (Bij).
As a result, we cannot separate the influence of linear and non-linear effects in the opti-
mization process.

Finally, we observed in Fig. 8.9 (b) the absence of break in the slope of I1. These breaks
result from cross-saturation effects (see Chapter 6). When a mode starts lasing, it uses
part of the gain and reduces the slopes of already lasing modes. Therefore, the cross-
saturation of I2 on I1 is zero (see eq. (8.9))

D12 ≈ 0 (8.15)

This absence of cross-saturation leads to an ”important” slope for I1.

To summarize, the pump profile is shaped to satisfy eq. (8.14) in order to decrease I2.
Simultaneously, it fulfils eq. (8.15) in order to ensure a large intensity I1. As a result, the
pump profile disymmetrizes the cross-saturation terms which read D12 ≈ 0 and D21 ≈
D11B2/B1, respectively.

In future works, we will aim at pursuing this preliminary investigations. For instance, we
wish to use a numerical model above threshold (e.g. FDTD) to confirm the evolution of
the different coupling terms.
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8.2 2D optimization

Below threshold, the control of the directivity of the emission was demonstrated numeri-
cally by Hisch et al.[179]. In this section, we briefly present a work in progress, where we
aim at performing similar optimization in 2D optofluidic random laser (see Chapter 5).
First, we explain the experimental setup and the pump modulation that we perform.
Then we present some preliminary results of optimization.

8.2.1 Experimental setup

2D optofluidic random laser

Here, we consider the 2D random laser introduced in Chapter 5 (see Fig. 8.10). The
sample is composed of a 500 µm central part, where 201 pillars of radius 10 µm are
embedded for a filling fraction of Φ = 0.32. The scattering forces an in plane lasing [161]
and the problem can be assumed 2D. The gain is provided by an ethanolic solution of
Rhodamine 6G dye at concentration 2.5×10−3M. The bulk is made of a resin of index
nresin = 1.60 and the resulting index contrast between dye flow and pillars is ∆n =
nresin − ndye = 1.54 − 1.36 = 0.18. The central part of the sample is surrounded by
two auxiliary channels filled with Nile blue dye at concentration 2.5×10−3M to perform
imaging of the emission pattern (see explanation in Chapter 5). The index contrast and

θ0

∆θ0

∆θback

Figure 8.10: 2D microfluidic random laser: The central part of the sample is filled with
Rhodamine, while Nile blue dye circulates into auxiliary channels. These channels are
used to image the emission path. We define two angular domains, respectively ∆θ0 and
∆θback. ∆θ0 is direction where the emission must be enforced. ∆θback serves to preclude
obvious solutions.

the 2D geometry ensure that the system is operating in the weakly scattering regime. In
the present section, we aim at completing control performed below threshold in [179] and
presented in Chapter 7.
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Pump modulation and acquisition

For 2D samples, the losses are significantly increased and modes have higher thresholds.
Hence, the pump excitation is performed by a picosecond source providing higher instan-
taneous power: 532 nm Q-switched Nd:YAG laser (30 ps pulsewidth, 50 Hz repetition
rate). The modulation of the pump is achieved by a similar setup as the one proposed in
Fig. 8.2 in section 8.1.1, in which the cylindrical length used to compress the SLM image
in 1D has been removed. The sample, as well as the auxiliary channels, are imaged by a
Hamamatsu Orca-R2 silicon CCD camera fixed on a Zeiss Axioexaminer microscope.

Optimization method

To perform the directivity optimization of our 2D system, the pump profile is modulated
using a set of 100 Zernike polynomials (see Fig. 8.11). This basis is used to study optical
aberrations in 2D lenses [184]. Unlike Hadamard basis used in 1D, Zernike polynomials
are continuous functions particularly adapted to the ”circular” shape of the problem.
Thus, the pump profile is a linear combination of these 100 vectors grey-scale-coded on
256 levels. To ensure the lasing emission for all the different modulations, we enforce a

Z0 Z1 Z2

Z3 Z4 Z5

Z6 Z7 Z8

Figure 8.11: Zernike basis vector: The nine first elements of the basis. Their circular
symmetry is used to modulate efficiently the pump profile.

background illumination (α0). As a result, the pump profile reads

f(r) = α0 +
∑

1→100

αiZi(r) (8.16)

where r is the 2D spatial coordinate.

We aim at selecting the set of coefficients αi enforcing the emission in a specific angular
direction ∆θ0 (see Fig. 8.10). For that matter, we define a directivity criterion D, reading

αi → D(θ0) =
I∆θ0

I2π
− I2π

I∆θback

(8.17)
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where I∆θ0 is the emission in the angular range ∆θ0 and I∆θback
in the range ∆θback (see

Fig. 8.10). The intensity I2π corresponds to the intensity integrated over the whole angular
space and is used to normalize the different intensities. In eq. (8.16) the presence of I∆θback

precludes obvious solutions (e.g. stripe line or any symmetric solution).

The optimization of eq. (8.17) is achieved using the Nelder-Mead simplex (direct search)
method proposed in section 8.1 for 1D optimization. Like in the 1D optimization, the
number of polynomials used for the optimization results from a trade-off between compu-
tation time and sensitivity.

8.2.2 Experimental results

Experimentally, images are integrated over 1 second and averaged over 10 times. Between
two consecutive pump profiles, we apply a uniform pumping to clean up any undesired
effects. Optimizations are performed for angular range of 30◦ and take approximatively
15 minutes.

We first consider the uniform pumping of Fig. 8.12. The pump diameter is voluntarily

Figure 8.12: 2D random laser emission for a uniform pump profile: The central part of
the image has been removed and replaced by the pattern printed onto the SLM.

chosen smaller than random laser size to preclude the obvious solution of a local pumping
close to the edge. We define the criterion function D(θ0) of eq. (8.17) to enforce the
emission around θ0 = - 45◦. The final pump profile and the resulting emission pattern
are provided by Fig. 8.13(a). As expected, the optimization is forced in the angular
range imposed by the criterion. In Fig. 8.14(a) and (b), we plot respectively the criterion
evolution and the correlation for the pump profile during the optimization. The correlation
is defined as the correlation product between two successive pump profile patterns. The
optimization converges after approximatively 250 iterations.

Remarkably enough, the final pump profile is non trivial. The pumping energy is spread
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(a) (b)

Figure 8.13: (a) Emission for an adapted pettern to for θ0 = −45◦ and ∆θ0 = 30◦ . (b)
Emission for an adapted pettern to for θ0 = 0◦ and ∆θ0 = 30◦

over the whole system. The pumping along the edges does not create emission in specific
direction. This suggests that the emission pattern results from mixing of the modes.
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Figure 8.14: (a) Inverse criterion evolution during the optimization: The criterion pro-
gressively converges. (b) Evolution of the correlation between two successive pump profile.
A unitary correlation points out the convergence of the optimization.

Fig. 8.13(b) shows another optimization performed for θ0 =0◦ with an angular range
∆θ0 =30◦

8.2.3 Remarks and further work

In the work of Hisch et al. [179], the optimization was performed for a single mode emis-
sion and below threshold. In the present experiment, the random laser is multimode.
Therefore, in further work we will record the evolution of the spectrum during the opti-
mization. In particular, we wish to understand if the spatial distribution of the modes
is modified by the pump profile as in [179]. We want to investigate the mode mixing as
expected from Chapter 6 and aim at exploring the role played by non-linearities. Finally
we wish to investigate the performances of the method (e.g. the minimal angular range,
the required number of modes).
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8.3 Summary

Here, we have performed experimental optimization of the emission of microfluidic based
random lasers.

For 1D devices, we have developed an experimental setup, in which the pump excitation
is modulated via a SLM and a simple cost function is defined from spectral acquisition.
The optimization of the cost function turns the multimode random laser into single mode
with more than 10 dB sideband rejection. This method is efficient, reliable and applicable
over the whole spectrum. We have also investigated the relation between the actual
experiment and the numerical optimization of Chapter 7. The threshold characteristics
of uniform and adapted pump profiles highlight the complexity of the mechanism. From
these observations, we have deduced that the linear description of Chapter 7 does not
provide a complete understanding of the optimization. The analytical model developed
in Chapter 6 emphasizes the simultaneous effect of linear and non-linear mixing. We wish
to investigate this subtle mechanism in a future work. Finally, our preliminary results
show that this method can be extended to 2D devices. Using two auxiliary channels,
the spatial emission of lasing light is recorded by a camera. The pump is modulated
by a different spatial decomposition and a simple cost function is defined from camera
acquisition. From isotropic for a uniform pumping, the random lasing emission is forced
into a particular angular range for an adapted profile.

The method proposed here is very general. We demonstrated its application to spectral
and spatial control. However, it could be extended to other random laser characteristics
(e.g. brightness or pulse duration). Moreover, this method could find nice applications
in regular lasers. For instance it could reduce filamentation problem in broad-area lasers
in which strong injection leads to filamentation issue [185]. Finally, it is noteworthy that
our approach has already been applied for the control of semiconductor microdisk lasers
[186].





Conclusion

In this thesis, we have developed theoretical, numerical and experimental approaches to
address few issues on light-matter interaction in open random media. The light in such
systems is supported by modes, either localized or extended according to the strength
of the disorder. Based on the non-hermitian nature of these systems, we have explored
both regimes and demonstrated that the modes provide an interesting platform to manage
light-matter interaction in disordered media. Here, we summarize the main results and
present some perspectives and potential applications.

• In Chapters I and II, we have recalled basic notions of light-matter interaction in
the semiclassical description. More precisely, we have introduced the concept and
the properties of modes in non-hermitian systems. In particular, we have focused on
open systems and proposed a method to derive their modes. The complete biorthog-
onal formalism related to these modes as well as its application conditions have been
reviewed. This approach can be applied to the specific case of disordered media. In
such systems, since random multiple scattering may confine spatially all or part of
the field, the resulting modes are either Anderson-localized or extended.

• In Chapter III, we have shown that the light-matter interaction in disorder media
can be controlled by local manipulations. For that matter, a theory predicting the
mode-coupling induced by any variation of the permittivity in open systems has been
developed. This theory has been applied in the particular case of Anderson-localized
modes, in which the merging of two states can be forced at a specific position called
an exceptional point. Remarkably, this coalescence results from a complex multi-
mode interaction. In the parameter space, the modes are characterized by a singular
topology in the vicinity of an exceptional point. The density of exceptional points
provided by this system offers interesting perspectives. Spectrally, the repulsion
close to an exceptional point could be used to match the mode frequency with an
emitter or to enhance mode confinement. Spatially, the hybridization of modes
could serve to create necklace states and reach non-trivial transport regimes. The
generality of the theory paves the road towards an experimental achievement.

• In Chapter IV, it has been shown that Anderson-localized modes could be used
as high-Q cavities and induce regime of strong light-matter interaction. For small
intensity of the electric field, the strong coupling regime can be reached between a
two-level atom and a mode. Based on the biorthogonal formalism, we have derived
both the strong coupling condition and the amplitude of resulting linear Rabi oscil-
lations of the polarization. For high intensity, the electric field induces Stark shifts
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in the energy levels of the atom and the apparition of a triplet in the polarization.
Using an external source to excite the modes, we have derived the condition of ob-
servation and the amplitude of the corresponding non-linear Rabi oscillations. Con-
ditions of simultaneous observation of both regimes being not incompatible, we have
predicted different oscillations in an experiment confirmed by FDTD simulations.
If strong coupling with Anderson-localized modes was expected, the formation of a
triplet originating from Strak shifts is a major result. This observation confirms that
Anderson-localized modes can serve as a playground to study strong light-matter
interaction problems. For instance, purely quantum-mechanical effects such as reso-
nance fluoresence (characterized by a Mollow triplet) should be achieved using such
modes. This paves the road to many practical applications since the sidebands of
the Mollow triplet are known to behave like non-classical sources. As a perspective,
the manipulation of Anderson-localized modes proposed in Chapter III could be
used to create controllable non-classical light. More generally, this theoretical work
suggests that Anderson-localized modes may replace high-Q cavities, with the main
advantage of being intrinsically disorder-robust.

• In Chapter V, lasers based on disordered systems, the so-called random lasers, have
been presented. The concept of random lasers has been introduced in parallel to
the academic description of conventional lasers. A model based on diffusion in gain
medium has been derived and explains the presence of a threshold in the random
laser emission. We have presented a particular laser developed in collaboration with
Xavier Noblin in Nice: the microfluidic random laser. 1D and 2D geometries have
been characterized and appear to be interesting platforms for the study of emission
properties. The diffusion model of the random laser has been completed to consider
the saturation of the amplifying medium. From observations of microfluidic random
lasers, it has been deduced that a complete understanding requires a modal expan-
sion of the electric field.

• In Chapter VI, a modal description of random laser based on semiclassical descrip-
tion has been proposed. In random lasers, like in conventional lasers, the presence
of a threshold in the emission requires to consider two distinct regimes, namely be-
low and above threshold. Below threshold, the modes of the random laser satisfy a
system of equations derived from the linear coupling of the passive modes. We have
performed a perturbation expansion to derive their complex frequency and spatial
distribution in term of mixing of passive modes. Above threshold, the modes result
from combination of linear and non-linear mixing of passive modes, described by
a non-linear Schrödinger system of equations. Using a perturbation expansion has
allowed us to obtain the complex frequency and spatial distribution of the modes
and to highlight the role of saturation terms. Finally, a method to derive the inten-
sity of lasing modes has been proposed and applied to the case of single-mode and
two-mode lasers.

• In Chapter VII, the control of the random lasing emission has been achieved via an
adapted profile of the pump excitation. We have considered a numerical 1D random
laser, in which the gain is spatially modulated. An optimization has been performed
to select one mode by increasing the difference between its threshold and others.
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This routine has been successfully applied to random laser in both localized and
weakly scattering regime. In the localized regime, in which the spatial overlap is
weak, the mode is selected when the pump profile matches the spatial distribution
of the mode. In the more challenging case of extended modes, optimization remains
possible but the optimal pump profile is rather unpredictable. We have proposed
preliminary interpretations in term of linear mode-mixing based on the model of
Chapter VI.

• In Chapter VIII, the numerical method proposed in Chapter VII has been exper-
imented on microfluidic random lasers introduced in Chapter V. A spatial light
modulator has been used to shape the intensity profile of the pump laser. This
pump profile has been iteratively modulated to drive the multimode random laser
to single-mode lasing. This mode selection can be achieved for all modes of the
multimode spectrum. Remarkable spectral discrimination is achieved between very
close-by modes. The two-mode model of Chapter VI has been used to identify the
origin of the process. It points out a subtle compromise between linear and non-
linear mixing of the passive modes. Further investigations are needed for a complete
understanding. We have also presented preliminary results concerning the control
of spatial distributions of the modes. Similar shaping of the pump for 2D optoflu-
idic devices allows to control the directivity of the emission. We believe that this
method could be extrapolated in many applications for different laser sources. For
instance, in high energy lasers, filamentation of the gain medium may be hindered
by a non-uniform pumping.

In passive media, the theory developed in Chapter III and its application to localized
modes offer nice perspectives. From a fundamental point of view, this theory is an in-
teresting playground to investigate the influence of exceptional point in Anderson’s lo-
calization. Thus, different questions can be addressed: Does the density of exceptional
points influence the confinement by disorder? Could we obtain exceptional point for weak
disorder and extended modes? What is the role of coupling in localization? For practical
applications, the exceptional point repulsion in complex frequency plane could be used
either to increase Q-factor of modes or match the frequency of a mode with the resonance
of an emitter. Hybridization resulting from multiple exceptional points could create neck-
lace states, open channels in highly disordered media and reach non-trivial light transport
regimes. The observation of a triplet originating from Strak effect is another application
of Anderson-localized modes in passive media. We stated that disorder should be used to
achieve interesting source of light. In further work, we will investigate the development
of a pure quantum approach to demonstrate the possibility of creating a Mollow triplet
emission with Anderson-localized modes.

In active media, the control of random lasers also offers theoretical and practical prospects.
It could be used to optimize different properties of random lasers (e.g. brightness, tempo-
ral response) and could be extended to any kind of laser. In terms of theoretical question,
a controlled pump profile would allow us to investigate the influence of non-linearities on
Anderson-localized modes. We might achieve mode locking between modes, by controlling
their spectral positions. Moreover, it could be used to explore non-hermitian physics (e.g.
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exceptional points in random lasers). In further work, we aim at investigating the role
played by pump profile on non-linearities (cross and self-saturations). We will also pursue
our experimental work related to directivity optimization in 2D random media.
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Appendix A

Polarizability and susceptibility of a
particle in 2D

In Chapter 1, we explained that the dipole moment p of a particle at microscopic scale
and the polarization density P at macroscopic scale read respectively

p(ω) = ǫ0α0(ω)E(ω) (A.1)

P(ω) = np(ω) = ǫ0χS(ω)E(ω) (A.2)

where n is the total number of particles, α0(ω) the polarizability of the particle and χS(ω)
the material susceptibility. However, we stressed that eq. (A.2) is only true in the static
limit (ω → 0).

In this appendix we aim at deriving the dynamic polarizability α(ω) of the particle and
the dynamic susceptibility χs(ω) of a material composed of such particles. We consider
a 2D problem with a TE electric field (similar to the system studied in Chapter 4). We
know from the Lorentz’s oscillator model introduced in Chapter 1 that the polarizability
reads

α(ω) ∝ 1/ω
ω2

0 − ω2 − iΓω
(A.3)

In the Rotating Wave Approximation, we assume the optical frequency ω close to the
resonant frequency of the particle ω0

ω2
0 − ω2 ≈ 2ω(ω0 − ω) (A.4)

Hence, eq. (A.3) reads

α(ω) ∝ 1
ω2(ω0 − ω − iΓ

2 )
(A.5)

If we consider the specific case of a two-level atom in a 2D problem with a TE electric
field excitation, we can complete eq. (A.5) [187, 188] and the polarizability reads

α(ω) =
2ΓRS

ω2(ω0 − ω − iΓS

2 )
(A.6)

where ΓS = ΓRS + ΓNRS is the atomic linewidth, ΓRS the radiative part of this linewidth and
ΓNRS the non-radiative part (see Chapter 1).
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In the dynamic regime, the static assumption made in eq. (A.2) must be corrected, this
is the so-called ”radiative correction” [187, 188]. In our 2D problem with a TE electric
field, the dynamic version of eq. (A.2) reads

P(ω) = nǫ0
α0(ω)

1 − iω
2

4 α0(ω)
E(ω) = nǫ0α(ω)E(ω) & α0(ω) ∝ χS(ω) (A.7)

From eq. (A.6) and (A.7), we derive

ω2

(

ω0 − ω − i
ΓS
2

)

χS(ω) =

(

1 − i
ω2

4
χS(ω)

)

2ΓRS (A.8)

We can recast eq. (A.8) in the form

χS(ω)

(

ω2

(

ω0 − ω − i
ΓS
2

)

+ i
ω2

4
2ΓRS

)

= 2ΓRS (A.9)

Eq. (A.9) reads

χS(ω)ω2

(

ω0 − ω − i
ΓNRS

2

)

= 2ΓRS (A.10)

Therefore, the susceptibility of the material reads

χS(ω) =
2
ω2

ΓRS
ω0 − ω − i

ΓNR
S

2

(A.11)



Appendix B

Transfer Matrix Approach:
Stationary and Travelling
components

In this appendix, we present a method which enables to decompose numerically modes
into stationary and travelling components. The stationary wave stands for the part of
the mode remaining trapped inside the system. The travelling wave stands for the leaky
part of the mode.

To introduce this method, we consider the case of a 1D open passive system (without
pumping) shown in Fig. B.1(a). It can be very easily extended to active medium by
considering a complex index of refraction. We know from Chapter 2 that each mode
(Ωn,Ψn) reads

Ψn(x) = pn(x)eiΩnn(x)x + qn(x)e−iΩnn(x)x (B.1)

where x is direction of propagation, n(x) = n or n + ∆n the refractive indices and pn
and qn respectively the forward and backward propagation coefficients. Let us consider
the field within a single layer and fix the index of refraction arbitrarily to 1 in order to
simplify the notation. The following results will be valid within any layer. Inside the
layer the forward and backward coefficients pn and qn are constant and eq. (B.1) reads

Ψn(x) = pne
iΩnx + qne

−iΩnx (B.2)

We now introduce

pn = Pne
iφ (B.3)

qn = Qne
iψ (B.4)

where Pn/Qn are the real amplitudes and φ/ψ the phases of pn and qn, respectively.
Hence, eq. (B.2) reads

Ψn(x) = eiΦ
(

Pne
i(Ωnx+∆) +Qne

−i(Ωnx+∆)
)

(B.5)

where Φ = (φ + ψ)/2 and ∆ = (φ + ψ)/2. Within each layer, we can fix arbitrarily the
phase and enforce Φ = 0 in order to simplify notation. As a result, eq. (B.5) reads

Ψn(x) = e
Γn
2
xPne

i(ωnx+∆) +Qne
− Γn

2
xe−i(ωnx+∆) (B.6)
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(a)

(b)

(c)

(d)

n n
+

∆
n

x

x

x

x

Figure B.1: (a) Schematic description of the 1D random system: Superposition of slabs
of indices n and n + ∆n. (b) Spatial mode distribution in the weakly scattering regime
(∆n = 0.1). (c) The stationary part of the mode. (d) The travelling part of the mode.

The first term of the right-hand side of eq. (B.6), namely e
Γn
2
xPne

i(ωnx+∆) diverges at
x → +∞. The second term diverges at x → −∞.

We can artificially define two standing components from eq. (B.6), namely

Ψs,pn = Pne
Γn
2
x
(

ei(ωnx+∆) +
(

ei(ωnx+∆)
)∗)

= 2Pne
Γn
2
x cos(ωnx+ ∆) (B.7)

Ψs,qn = Qne
− Γn

2
x
(

e−i(ωnx+∆) +
(

e−i(ωnx+∆)
)∗)

= 2Qne
− Γn

2
x cos(ωnx+ ∆) (B.8)

In a similar way, we can define travelling components as the remaining part of the mode

Ψt,pn = Ψn − Ψs,pn =
(

Qne
− Γn

2
x − Pne

Γn
2
x
)

e−i(ωnx+∆) (B.9)

Ψt,qn = Ψn − Ψs,qn =
(

Pne
Γn
2
x −Qne

− Γn
2
x
)

ei(ωnx+∆) (B.10)

We see that eq. (B.9) stands for a left-going propagation, while eq. (B.10) stands for a
right-going one. Consequently, to numerically build the travelling part of the mode (i.e.
exiting the system), we consider the left-going propagation when the backward amplitude
coefficient Qn prevails over the forward amplitude Pn and vice versa. Simultaneously we
deduce the corresponding stationary part.



Appendix C

Perturbation Expansion of
non-hermitian eigenvalue problem

In the scope of Chapter 6, we need to perform perturbation expansion of linear and non-
linear eigenvalue problems. In this appendix we derive the perturbation expansion in both
cases.

C.1 Perturbation expansion in the below threshold
regime: Linear eigenvalue problem

For a broad gain curve, the below threshold regime is described by a linear eigenvalue
problem reading

λ2 =







λ2
1 . . . 0
...

. . .
...

0 . . . λ2
N







+







λ2
1V11∆Ñ0 . . . λ2

1V1N∆Ñ0
...

. . .
...

λ2
NVN1∆Ñ0 . . . λ2

NVNN∆Ñ0







(C.1)

Eq. (C.1) can be understood as a passive system perturbed by a matrix resulting from the
coupling between the passive modes. We assume this perturbation to be weak Ñ0 ≪ 1.
For sake of notation compactness we note λ2

i = Xi, and eq. (C.1) reads

X =







X1 . . . 0
...

. . .
...

0 . . . XN







+ ∆Ñ0







X1V11 . . . X1V1N
...

. . .
...

XNVN1 . . . XNVNN







= H0 + ∆Ñ0H1 (C.2)

We are looking for the eigenvalues of the matrix

H = H0 + ∆Ñ0H1 (C.3)

The set of eigenvalues and eigenvectors in perturbation expansion read

|Ψn〉 = |Ψ(0)
n 〉 + ∆Ñ0|Ψ(1)

n 〉 + ∆Ñ2
0 |Ψ(2)

n 〉 + ... (C.4)

Xn = X(0)
n + ∆Ñ0X

(1)
n + ∆Ñ2

0X
(2)
n + ... (C.5)

where n ∈ [1, N ]. Eigensolutions satisfy

(H0 + Ñ0H1)|Ψn〉 = Xn|Ψn〉 (C.6)
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Using the perturbation expansion, eq. (C.6) reads

(H0 + Ñ0H1)(|Ψ(0)
n 〉 + Ñ0|Ψ(1)

n 〉 + Ñ2
0 |Ψ(2)

n 〉 + ...)

= (X(0)
n + Ñ0X

(1)
n + Ñ2

0X
(2)
n + ...)(|Ψ(0)

n 〉 + Ñ0|Ψ(1)
n 〉 + Ñ2

0 |Ψ(2)
n 〉 + ...) (C.7)

By expanding eq. (C.7), the identification of different Ñ0 orders read

Ñ0
0 : H0|Ψ(0)

n 〉 = X(0)
n |Ψ(0)

n 〉 (C.8)

Ñ1
0 : (H0 −X(0)

n )|Ψ(1)
n 〉 = −H1|Ψ(0)

n 〉 +X(1)
n |Ψ(0)

n 〉 (C.9)

Ñ2
0 : (H0 −X(0)

n )|Ψ(2)
n 〉 = −H1|Ψ(1)

n 〉 +X(1)
n |Ψ(1)

n 〉 +X(2)
n |Ψ(0)

n 〉 (C.10)

First order Ñ1
0 :

Using Ñ1
0 relation of eq. (C.8) and the biorthogonal projection along 〈Ψ(0)∗

n′ |

∀n′ 〈Ψ(0)∗
n′ |H0 −X(0)

n |Ψ(1)
n 〉 = −〈Ψ(0)∗

n′ |H1|Ψ(0)
n 〉 +X(1)

n 〈Ψ(0)∗
n′ |Ψ(0)

n 〉 (C.11)

Moreover, the left eigenvectors 〈Ψ(0)∗
n′ | fulfil

〈Ψ(0)∗
n′ |H0 = X

(0)
n′ 〈Ψ(0)∗

n′ | (C.12)

Hence, if n = n′, eq. (C.11) reads

〈Ψ(0)∗
n |H0 −X(0)

n |Ψ(1)
n 〉 = 0 = −〈Ψ(0)∗

n′ |H1|Ψ(0)
n 〉 +X(1)

n 〈Ψ(0)∗
n′ |Ψ(0)

n 〉 (C.13)

As a result
X(1)
n = 〈Ψ(0)∗

n |H1|Ψ(0)
n 〉 (C.14)

Otherwise, if n′ 6= n, eq. (C.11) reads

(X(0)
n′ −X(0)

n )〈Ψ(0)∗
n′ |Ψ(1)

n 〉 = −〈Ψ(0)∗
n′ |H1|Ψ(0)

n 〉 +X(1)
n 〈Ψ(0)∗

n′ |Ψ(0)
n 〉 = −〈Ψ(0)∗

n′ |H1|Ψ(0)
n 〉
(C.15)

Therefore

∀n′ 6= n 〈Ψ(0)∗
n′ |Ψ(1)

n 〉 =
〈Ψ(0)∗

n′ |H1|Ψ(0)
n 〉

X
(0)
n −X

(0)
n′

(C.16)

Using the biorthogonal normalization

〈Ψ∗
n|Ψn〉 = 1 = 〈Ψ∗(0)

n + Ñ0Ψ∗(1)
n + ...|Ψ(0)

n + Ñ0Ψ(1)
n + ...〉

= 1 + Ñ0(〈Ψ∗(0)
n |Ψ(1)

n 〉 + 〈Ψ∗(1)
n |Ψ(0)

n 〉) + Ñ2
0 + ... (C.17)

Noting the symmetry of the biorthogonal product

〈Ψ∗(0)
n |Ψ(1)

n 〉 =
∫

Ψ(0)
n Ψ(1)

n =
∫

Ψ(1)
n Ψ(0)

n = 〈Ψ∗(1)
n |Ψ(0)

n 〉 (C.18)

Hence, eq. (C.17) reads
1 ≈ 1 + 2Ñ0〈Ψ∗(1)

n |Ψ(0)
n 〉 (C.19)

and we deduce
〈Ψ∗(0)

n |Ψ(1)
n 〉 = 0 (C.20)

We obtain the first order component of the eigenvector

Ψ(1)
n =

∑

n′ 6=n
〈Ψ(0)∗

n′
|H1|Ψ(0)

n 〉
X

(0)
n −X(0)

n′

|Ψ(0)
n′ 〉 (C.21)
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Second order Ñ2
0 :

Projecting the second order eq. (C.11) along 〈Ψ(0)∗
n | reads

〈Ψ(0)∗
n |(H0 −X(0)

n )|Ψ(2)
n 〉 = −〈Ψ(0)∗

n |H1|Ψ(1)
n 〉 +X(1)

n 〈Ψ(0)∗
n |Ψ(1)

n 〉 +X(2)
n 〈Ψ(0)∗

n |Ψ(0)
n 〉 (C.22)

Using definition of left eigenvectors

0 = −〈Ψ(0)∗
n |H1|Ψ(1)

n 〉 +X(1)
n 〈Ψ(0)∗

n |Ψ(1)
n 〉 +X(2)

n (C.23)

Using previous expression of |Ψ(1)
n 〉 in eq. (C.23) reads

X(2)
n = 〈Ψ(0)∗

n |H1

∑

n′ 6=n

〈Ψ(0)∗
n′ |H1|Ψ(0)

n 〉
X

(0)
n −X

(0)
n′

|Ψ(0)
n′ 〉 (C.24)

As a result

X(2)
n =

∑

n′ 6=n
〈Ψ(0)∗

n′
|H1|Ψ(0)

n′
〉〈Ψ(0)∗

n |H1|Ψ(0)

n′
〉

X
(0)
n −X(0)

n′

(C.25)

And corresponding eigenvector reads

|Ψ(2)
n 〉 =

∑

n′ 6=n
〈Ψ(0)∗

n′
|H1|Ψ(1)

n 〉
X

(0)
n −X(0)

n′

|Ψ(0)
n′ 〉 (C.26)

For sake of clarity, we will only consider eigenvector at first order.

C.2 Perturbative approach above threshold: non-linear
case

In the above threshold regime, for a broadband gain curve, the lasing modes are the
eigenvalues of a non-linear eigenvalue problem. This problem is equivalent to a Non-
Linear Schrödinger equation system, which reads

λ2 =







λ2
1 . . . 0
...

. . .
...

0 . . . λ2
N







+ ∆Ñ0







λ2
1V11 . . . λ2

1V1N
...

. . .
...

λ2
NVN1 . . . λ2

NVNN







− ∆Ñ0
2
~







λ2
1
∑

p |ap|2A11pp . . . λ2
1
∑

p |ap|2A1Npp
...

. . .
...

λ2
N

∑

p |ap|2AN1pp . . . λ2
N

∑

p |ap|2ANNpp







(C.27)

where Ñ0 = N0χg(ω). Noting Xi = λ2
i , eq. (C.27) reads

X =







X1 . . . 0
...

. . .
...

0 . . . XN







+ ∆Ñ0







X1V11 . . . X1V1N
...

. . .
...

XNVN1 . . . XNVNN







− ∆Ñ0
2
~







X1
∑

p |ap|2A11pp . . . X1
∑

p |ap|2A1Npp
...

. . .
...

XN
∑

p |ap|2AN1pp . . . XN
∑

p |ap|2ANNpp







(C.28)
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Eq. (C.28) is equivalent to

H = H0 + Ñ0(H1 +H3(
∑

|Ψn〉)) = X (C.29)

The perturbation reads
(

H0 + ∆Ñ0

(

H1 +H3(
∑

q

|Ψ(0)
q 〉 + Ñ0|Ψ(1)

q 〉 + Ñ2
0 |Ψ(2)

q 〉 + ...)

))

(

|Ψ(0)
n 〉 + Ñ0|Ψ(1)

n 〉 + Ñ2
0 |Ψ(2)

n 〉 + ...
)

=
(

X(0)
n + Ñ0X

(1)
n + Ñ2

0X
(2)
n + ...)(|Ψ(0)

n 〉 + Ñ0|Ψ(1)
n 〉 + Ñ2

0 |Ψ(2)
n 〉 + ...

)

(C.30)

By expanding eq. (C.30), the identifiaction of different Ñ0 orders read

Ñ0
0 : H0|Ψ(0)

n 〉 = X(0)
n |Ψ(0)

n 〉 (C.31)

Ñ1
0 : (H0 −X(0)

n )|Ψ(1)
n 〉 = −(H1 +H

(0)
3 |Ψ(0)

n 〉 +X(1)
n |Ψ(0)

n 〉 (C.32)

where
H

(0)
3 = H3(

∑

p

|Ψ(0)
q 〉) (C.33)

First order Ñ1
0 :

Performing the projection of eq. (C.32) along 〈Ψ(0)∗
n | reads

〈Ψ(0)∗
n |H0|Ψ(1)

n 〉 + 〈Ψ(0)∗
n |H1|Ψ(0)

n 〉 + 〈Ψ(0)∗
n |H(0)

3 |Ψ(0)
n 〉 = X(1)

n +X(0)
n 〈Ψ(0)∗

n |Ψ(1)
n 〉 (C.34)

Leading to:

X(1)
n = 〈Ψ(0)∗

n |H1 +H
(0)
3 |Ψ(0)

n 〉 (C.35)

In the scope of this manuscript, we do not use the eigenvectors.
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Optimization via Simplex Algorithm

Here, we introduce the non-linear Simplex algorithm used in Chapter 8 for the opti-
mization of random laser emission. This algorithm aims at minimising or maximising a
non-linear function f , which reads

x → f(x) | R
N → R (D.1)

where x is the parameter space of dimension N . Main advantage of this algorithm, also
called Nelder-Mead algorithm, is to be derivative free. Deriving the gradient or comput-
ing its estimate is not required. As a result, this routine is often used in optimization
procedure in which the noise is important. As guideline example, we will consider the
function f provided by Fig. D.1(a). In this example, we aim at maximising f .

The Simplex relies on N+1 initial vertices, namely x(0)
i∈[1,N+1]. For instance, in Fig. D.1(a),

three vertices x(0)
i∈[1,3] are distributed in the parameter space. At each iteration the function

f is evaluated for all the vertices. These evaluations are sorted and the smaller value is
removed (for a maximization). Then, the algorithm derives a new vertex to replace the
previous one (Fig. D.1(a)). As a result, the algorithm converges in the direction of the
vertices providing the highest values of f .

The cornerstone of the method is the choice of the new vertex at each iteration. For
instance, we carry on the example of Fig. D.1(a) and consider the distribution provided
in Fig. D.1(b). The vertices are sorted to fulfil

f(x1) > f(x2) > f(x3) (D.2)

Hence, x3 is the vertex to be replaced. Now, we introduce x∗, the barycentre of the N
best vertices, which reads

x∗ =
1
N

∑

i∈[1,N ]

xi (D.3)

In our guideline example, x∗ is placed at mid-distance between x1 and x2. If the new
vertex is chosen along the line (x3x∗), four operations (positions) are possible

• The Reflection: x3 → xR = 2x∗ − x3

• The Expansion: x3 → xE = 3x∗ − 2x3

• The External Contraction: x3 → xEC = 3
2x∗ − 1

2x3
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x(0)
3

x(0)
1

x(0)
2

x(1)
3x(2)

3

x1x3

x2

x∗

xIC

xEC
xR

xE

→
x1x3

x2

(b) (c)

(a)

Figure D.1: (a) Example of optimization procedure. (b) Different transformations used
to compute the new vertex. (c) When no choice of vertex is satisfying, the distribution
is shrink.

• The Internal Contraction: x3 → xIC = 1
2x∗ + 1

2x3

Otherwise, because no new vertex offers an increase of f , the initial vertex distribution
xi∈[1,N+1] is shrink as sketched in Fig. D.1(c). The distribution is shrink in the direction
of the best position x1. This transformation reads

Shrink : ∀i ∈ [1, N + 1] xi → xi − xi − x1

2

We note n the current iteration of the algorithm, τ the convergence required and nmax
the maximal number of iteration. At each iteration, the new vertex is chosen among the
four positions previously introduced. The algorithm can be written formally



Initialization of the Simplex: Choice of x(0)
i∈[1,N+1];

while iteration n < nmax and f(x(n)
N+1) − f(x(n)

1 ) > τ do
if f(x(n)

R ) < f(x(n)
1 ) then

if f(x(n)
E ) < f(x(n)

R ) then
x(n+1)
N+1 = x(n)

E

else
x(n+1)
N+1 = x(n)

R

end

if f(x(n)
1 ) ≤ f(x(n)

R ) < f(x(n)
N ) then

x(n+1)
N+1 = x(n)

R

end

if f(x(n)
N ) ≤ f(x(n)

R ) < f(x(n)
N+1) and f(x(n)

EC) ≤ f(x(n)
R ) then

x(n+1)
N+1 = x(n)

EC

end

if f(x(n)
R ) ≥ f(x(n)

N+1) and f(x(n)
IC ) < f(x(n)

N+1) then
x(n+1)
N+1 = x(n)

IC

end
else

Shrink
end

end
Algorithm 1: Non-linear Simplex algorithm
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