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Introduction

Context

Nowadays several important technologies rely on high-energy electron accelerators. This includes
for instance nondestructive testing, in the industry, as well as high-energy colliders and intense
x-ray sources, in fundamental research. In these examples, the electrons are accelerated to high
energies by radiofrequency accelerators. However, because the accelerating field is intrinsically
limited in a radiofrequency accelerator, these devices require a considerable acceleration distance
– which can reach the kilometer scale for very high energies.

Laser-wakefield acceleration (LWFA), on the other hand, is a developing acceleration tech-
nique, which is considerably different from conventional radiofrequency acceleration. In a laser-
wakefield accelerator, a high-power femtosecond laser pulse is focused into a gas jet, where it
generates a powerful accelerating structure. Inside this structure, the accelerating field can exceed
100 GV.m−1 – which is three orders of magnitude higher than the maximum field of conventional
radiofrequency accelerators. As a result, laser-wakefield acceleration is characterized by shorter
acceleration distances, and opens up interesting prospects towards more compact accelerators1.

Over the past ten years, the development of LWFA has reached several major landmarks.
These landmarks include for example the observation of the first quasi-monoenergetic beam
[Mangles et al., 2004; Faure et al., 2004; Geddes et al., 2004], the production of more tunable
and more stable beams [Faure et al., 2006], and the production of the first beam beyond 1 GeV
[Leemans et al., 2006]. This evolution was only made possible by the development of high-power
femtosecond laser systems in the 90s, and has been closely tied to their continued improvement
since then. Today LWFA is still undergoing a rapid evolution, as recently-available Petawatt laser
systems provide ever increasing laser power and allow to reach unprecedented electron energies
[Kim et al., 2013; Wang et al., 2013].

In parallel to these experimental achievements, the theoretical understanding of LWFA has
also progressed considerably. The theory of laser-wakefield acceleration has indeed largely ben-
efited from numerical simulation tools, and especially from particle-in-cell (PIC) algorithms.
As computational capabilities steadily rised during the last decade, two-dimensional and three-
dimensional PIC simulations have become increasingly wide-spread, and are now a key research
tool in laser-wakefield acceleration.

Thanks to the above-mentioned developments, several practical applications of LWFA are
now being considered. In addition to their compactness, laser-wakefield accelerators produce
interesting beams with a short duration, a small transverse size, and a high peak intensity.

1One should not forget, however, that the overall size of a laser-wakefield accelerator is not only determined
by the acceleration distance, but also by the size of the associated femtosecond laser system.
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Introduction

These specificities have inspired many prospective applications, ranging from electron diffraction
in crystals [He et al., 2013] to biological phase-contrast imaging [Fourmaux et al., 2011] and high-
resolution gamma radiography [Ben-Ismail et al., 2011]. In addition, laser-wakefield accelerators
are also considered for the design of more compact linear colliders and x-ray sources (especially
synchrotrons and free-electron lasers). While these technologies currently require expensive large-
scale facilities, their compact LWFA-based counterparts could be more affordable, and would thus
open new opportunities in many fields of research.

This is particularly true for free-electron-lasers (FELs). FELs are by far the brightest existing
X-rays sources, and they are instrumental in many areas of research, including atomic physics,
solid-state physics, fundamental chemistry and biochemistry. However, the existing X-ray FELs
are kilometer-size facilities, and there are only a few of them world-wide. This has spurred a
global effort in the LWFA community towards the development of more compact LWFA-based
FELs. At the Laboratoire d’Optique Appliquée (LOA) for instance, this effort is particularly
present and is currently supported by a European Research Council grant. In addition, LOA
is part of the Lunex5 collaboration, which aims to demonstrate the operation of a soft X-ray
LWFA-based FEL.

However, there are still important challenges to overcome for the development of compact
FELs – and more generally for the development of the above-mentioned applications. Many of
these challenges are related to the imperfect quality of LWFA beams. In spite of their interesting
specificities, LWFA beams are also characterized by a large energy spread, a large divergence
and a certain lack of stability. Although much work has already been done in order to enhance
the quality of LWFA beams (e.g. [Faure et al., 2006; Rechatin et al., 2009b; Gonsalves et al.,
2011]), it is currently still necessary to improve the energy spread, divergence and stability of
the beams.

Objective and outline of this thesis

In this context, the objective of this thesis is to propose different solutions in order to further
improve the quality of LWFA beams. The main motivation behind this is the development of
compact FELs, and thus the implications of the proposed solutions for this goal are emphasized.
Moreover, this work is carried out mostly through particle-in-cell simulations and analytical
models. Nevertheless, care has been taken to propose experimentally realistic solutions, and to
briefly discuss their practical implementation. On the whole, the manuscript is organized as
follows.

Chapter 1 introduces the main theoretical concepts that underpin laser-wakefield acceleration,
and which I draw upon in the rest of the manuscript. In particular, the concept of emittance,
which is key to the quality of the beam, is defined.

Chapter 2 describes the principle of PIC simulations. Moreover, it is shown in this chapter
that PIC simulations can sometimes overestimate the emittance and divergence of LWFA beams.
Since emittance and divergence are paramount properties in our case, I propose a modified PIC
algorithm which limits this overestimation.

Using this modified algorithm, a first method towards higher beam quality is studied in
chapter 3. This method focuses on injection, i.e. the process by which an electron bunch is
generated before being accelerated. In this chapter, I show that a new regime of colliding-pulse
injection could lead to high-quality beams having a low emittance.

2



Even with a low emittance, the divergence of the beam may still be too high. Therefore,
chapter 4 proposes a second method, which further reduces the divergence of the beam after it
exits the accelerator. This method uses a second well-calibrated gas jet, which acts like a lens
and collimates the electrons.

Finally, chapter 5 puts the results of chapter 3 and chapter 4 into context by discussing
the development of compact LWFA-based FELs. In this chapter, I consider the combination
of a laser-wakefield accelerator with different types of undulator. In particular, an innovative
millimeter-scale nanowire undulator is proposed, and it is shown that this undulator could be
advantageously combined with the beams obtained in chapter 3.

In addition, the appendices A, B, C and D gather the somewhat more technical results and
derivations that are used inside the chapters. Finally, appendix E is a list of my publications
and conference contributions.
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Chapter 1

Physics of laser-wakefield acceleration

This chapter sums up the main theoretical results behind laser-wakefield acceleration,
which will then be used in the rest of this manuscript. It is first shown that an intense
laser pulse can drive a strong wakefield, when it propagates through a gas. This wake-
field is characterized by extremely strong electric fields, which can be used to accelerate
electrons over very short distances. I describe the main steps involved when accelerat-
ing electrons in this way. Since much of this manuscript deals with the emittance of
the accelerated beam, I also define emittance in this chapter, and detail its principal
sources of degradation.
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Chapter 1. Physics of laser-wakefield acceleration

1.1 Generation of a plasma wakefield by a laser pulse

1.1.1 Qualitative picture

When a femtosecond high-power laser pulse (∼> 10 TW) is focused into a low-density gas (∼ 1018

– 1019 atoms per cm−3), it produces a wake characterized by strong electric and magnetic fields.
This section explains qualitatively how this wake is generated.

Figure 1.1: Representation of the laser pulse and wakefield in the copropagating coordinate
system (z − ct,x). The laser pulse, which propagates to the right, is displayed in red and
yellow, while the electron density is represented in blue tones. The black lines correspond to the
trajectories of a few typical electrons in the copropagating coordinates.

Figure 1.1 shows an image of such a laser pulse, propagating in a gas. For such a hig-intensity
laser pulse, the peak electric field is usually well above the ionization threshold of the gas, and
therefore ionization occurs well ahead of the maximum of the pulse. This separates the atoms
into electrons and positively charged ions, and thereby generate a plasma. The ions are heavier
than the electrons by several orders of magnitude, and hence they are essentially motionless on
the timescales of interest. The wake is therefore mainly due to the motion of the electrons, and
for this reason only the density of the electrons is displayed in fig. 1.1.

In order to understand this density pattern, the trajectory of typical electrons are shown
in fig. 1.1. These trajectories are plotted as a function of the copropagating coordinate z − ct
(where z is the spatial coordinate along the axis of propagation), since the laser pulse remains
essentially stationary in this coordinate system.1. Once the electrons are reached by the pulse,
their motion can be decomposed on two timescales. On a short timescale, the electrons feel the
oscillating electric and magnetic field of the laser pulse and respond by wiggling at the frequency
of the laser. On a longer timescale, the average result of these oscillations is to push the electrons
away from the pulse2. Since only the electrons are pushed away (the ions remain again mostly
motionless), this creates a zone of rarefied electron density but unchanged ion density behind
the laser pulse. This global charge separation generates strong electric fields, which pull the

1For a laser wavelength of the order of 1 µm and for the plasma densities considered here (1018 – 1019 electrons
per cm−3), the plasma is underdense and the laser pulse has a group velocity close to c (see e.g. Kruer [2003]).

2This average effect is explained in section 1.1.2 and appendix A.
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1.1. Generation of a plasma wakefield by a laser pulse

electrons back. As can be seen in fig. 1.1, the electrons rush back but tend to overshoot, and
thus generate quasi-periodic plasma oscillations behind the pulse.

The aim of the next sections is to describe this wakefield quantitatively, and in particular to
show that it can be used to accelerate relativistic electrons.

1.1.2 Ponderomotive formalism

From the previous qualitative picture, the electromagnetic fields and the trajectories of the elec-
trons are the superposition of a fast, oscillating component, which is driven by the laser pulse,
and slowly-varying component, which is driven by the charge separation. The total electro-
magnetic fields (i.e. the superposition of these two components) can be determined from the
dimensionless potentials atot = eAtot/mc and φtot = eΦtot/mc

2, which – in the Lorenz gauge –
verify the following equations(

∇2 − 1

c2

∂2

∂t2

)
atot = −4πre(ji,tot − je,tot) (1.1)(

∇2 − 1

c2

∂2

∂t2

)
φtot = −4πre(ni,tot − ne,tot) (1.2)

1

c

∂φtot
∂t

+ ∇ · atot = 0 (1.3)

where re is the classical radius of the electron3. ni,tot = ρi,tot/e and ji,tot = J i,tot/ec are the
normalized density and current associated with the ions and ne,tot = ρe,tot/(−e) and je,tot =
Je,tot/(−ec) are those associated with the electrons of the plasma4. As mentioned previously,
the ions can be considered motionless on the timescale of interest (thus ji,tot ≈ 0), and have
a uniform density ni,tot = n0. However the electrons do move, and each electron satisfies the
equations of motion

1

c

dxtot
dt

=
utot
γtot

(1.4)

1

c

dutot
dt

=
1

c

∂atot
∂t

+ ∇φtot −
utot
γtot
× (∇× atot) (1.5)

where γtot is its Lorentz factor, utot = ptot/mc its normalized momentum, and where the sub-
script tot again refers to the supersition of a fast oscillation and a slowly-varying motion.

The general system of eqs. (1.1) to (1.5) can be simplified by a few approximations. First, as
suggested previously, it is assumed that the laser pulse and the corresponding wakefield propagate
very close to the speed of light, and they are essentially stationary during the time it takes for a
plasma electron to slip through the laser pulse (quasi-static approximation). Thus all quantities
in the wakefield are assumed to depend on z and t only through ξ = ct − z. In this case, it
turns out that it is convenient to distinguish the components of a along z and perpendicular
to it, and to use the gauge-invariant pseudo-potential ψ = φ − az instead of az (a can thus be
expressed as a = a⊥+(φ−ψ)ez, where ez is the unit vector along z). The fields and velocities are
furthermore decomposed into their rapidly oscillating part and slowly-varying part. For instance,
for any electron, utot = us +uf where the subscript s or f denote respectively the slow and fast
component.

3Equations (1.1) to (1.3) are valid both in SI and Gaussian units, with re = e2/4πε0mc
2 [SI] =

e2/mc2 [Gaussian] = 2.82× 10−15 m.
4In these notations, ni > 0 and ne > 0.
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Chapter 1. Physics of laser-wakefield acceleration

By linearity of the Maxwell equations, it possible to separate the equations for the slow and
fast components. Hence, the slow components for instance satisfy

∇2
⊥a⊥,s = 4πreje,⊥,s

∇2
⊥φs = 4πre(ne,s − n0)

∇2
⊥ψs = 4πre(ne,s − n0 − je,z,s)

∂ψs
∂ξ

+ ∇⊥ · a⊥,s = 0

However, due to nonlinearities in the equations of motion, it is less straightforward to derive the
slow components of eqs. (1.4) and (1.5). Mora and Antonsen [1997] showed that they become
(See appendix A for a short version of the derivation) 5

1

c

dxs

dt
=
us
γs

(1.6)

1

c

dus
dt

=
1

c

∂as
∂t

+ ∇φs −
us
γs
× (∇× as)−

1

2γs
∇〈a2

⊥,f 〉 (1.7)

where the brackets denote an average over one laser period, and where

γs =
√

1 + u2
s + 〈a2

⊥,f 〉 (1.8)

In addition, Noether’s theorem provides an integral of motion (see appendix A), which reads :

γs − uz,s = 1 + ψs (1.9)

Importantly, the equations of motions for the slow components (eqs. (1.6) and (1.7)) are the
same as that for the total components (eqs. (1.4) and (1.5)), except for the extra inertial term
eq. (1.9), and the extra ponderomotive force term −∇〈a2

⊥,f 〉/(2γs) in eq. (1.7). As evidenced by
its expression, the ponderomotive force repells the electrons from the regions of strong oscillating
electromagnetic field (typically, the area covered by the laser pulse).

In the rest of this section, we are mostly interested in the slowly-varying components of the
motion and the fields, since they directly represent the shape and amplitude of the wake and of its
accelerating fields. For this reason, we hereafter drop the subscript s – so that e.g. u implicitly
refers to us. We also relabel a⊥,f as al since this quantity essentially represents the laser field.
Furthermore, because the intensity of the laser pulse is usually cylindrically symmetric, it can
be assumed that all the quantities of the corresponding wakefield are cylindrically symmetric.
Finally, using the relation dξ/dt = 1− βz = (γ − uz)/γ = (1 +ψ)/γ, the equation of motion can
be rewritten as a function of ξ instead of t. Taking these elements into account, the final set of
wakefield equations is, after some algebra :

∂

∂r

(
1

r

∂ (r ar)

∂r

)
= 4πreje,r (1.10)

1

r

∂

∂r

(
r
∂ φ

∂r

)
= 4πre(ne − n0) (1.11)

1

r

∂

∂r

(
r
∂ ψ

∂r

)
= 4πre(ne − n0 − je,z) (1.12)

5Notice that the motion of the electrons is studied here from a Lagrangian point of view. The alternative
Eulerian point of view is also commonly used in plasma physics, but is better adapted to cases in which there is a
well-defined value of the velocity at each point in space (e.g. for collisional plasmas, or for cold plasmas without
trajectory crossing). This is not the case here, since the plasma is non-collisional (the mean free path is a few tens
of microns long at typical densities) and since trajectory crossing does occur in certain regimes (see section 1.1.4).
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1.1. Generation of a plasma wakefield by a laser pulse

∂ψ

∂ξ
+

1

r

∂(rar)

∂r
= 0 (1.13)

dr

dξ
=

ur
1 + ψ

(1.14)

dur
dξ

=
∂ar
∂ξ

+
∂φ

∂r
+

(
γ

1 + ψ
− 1

)
∂ψ

∂r
− 1

2(1 + ψ)

∂〈a2
l 〉

∂r
(1.15)

γ =
1 + u2

r + 〈a2
l 〉+ (1 + ψ)2

2(1 + ψ)
(1.16)

uz = γ − 1− ψ (1.17)

where eq. (1.16) results from the combination of eqs. (1.8) and (1.9). Notice that the longitudinal
components of eqs. (1.6) and (1.7) are not included in the final set of equations, due to their
redundancy with the integral of motion eq. (1.17).

Finally, the more meaningful fields E and B can be obtained from the potentials ψ, φ and
ar using the relations

E =
mc2

e

(
∂ψ

∂ξ

)
ez −

mc2

e

(
∂φ

∂r
+
∂ar
∂ξ

)
er B =

mc

e

(
∂(ψ − φ)

∂r
− ∂ar

∂ξ

)
eθ (1.18)

In particular, the force that the wakefield exerts on a relativistic electron with βz ≈ 1 and
βx, βy � 1 is F ≈ −e(E + cez ×B), and it can be expressed simply as

F = −mc2∂ψ

∂ξ
ez +mc2∂ψ

∂r
er (1.19)

The aspect of the wakefield described by the above set of equations in fact strongly depends
on the strength of the laser pulse 〈a2

l 〉. In pratice, two limiting cases are particularly insightful :
the linear regime and the blow-out regime.

1.1.3 Linear regime

If 〈a2
l 〉 � 1 even at the peak of the pulse, then the wake is weakly driven, and it can be treated

as small perturbation of the quiescent background plasma. In particular, the electron density is
weakly perturbed, and can be written as ne = n0 + δn, with |δn| � n0. In this linear regime
[Gorbunov and Kirsanov, 1987; Sprangle et al., 1988], 〈a2

l 〉, uz, ur,ψ, φ, δn and ar are small
and can be considered as first-order quantities. Moreover, with these assumptions, the Taylor
development up to first order of γ yields γ = 1 + 〈a2

l 〉/2.
Also, in this linear regime, the trajectories of the electrons are laminar (i.e. there are no

trajectory crossing) and cold fluid theory can thus be used. Therefore, ur, uz and γ – which
were previously seen as Lagrangian variables – can now also be seen as Eulerian variables. In
this case, eq. (1.14) can be replaced by the equation of conservation ∂tne + ∇ · (neu/γ) = 06.
With our assumptions, this equation can be rewritten as

∂

∂ξ

ne(1 + ψ)

γ
+

1

r

∂

∂r

(
rneur
γ

)
= 0

6Stricly speaking, in order to use this equation, one should first show that it is indeed valid for the slow
components of ne,tot, utot and γtot. See Mora and Antonsen [1997] for a demonstration.
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Chapter 1. Physics of laser-wakefield acceleration

The linearized set of equation then becomes :

∂

∂r

(
1

r

∂ (r ar)

∂r

)
= 4πren0ur (1.20)

1

r

∂

∂r

(
r
∂ φ

∂r

)
= 4πreδn (1.21)

1

r

∂

∂r

(
r
∂ ψ

∂r

)
= 4πre

(
δn+ n0ψ −

n0〈a2
l 〉

2

)
(1.22)

∂ψ

∂ξ
+

1

r

∂(rar)

∂r
= 0 (1.23)

∂δn

∂ξ
+
n0

r

∂(rur)

∂r
= −n0

∂ψ

∂ξ
+
n0

2

∂〈a2
l 〉

∂ξ
(1.24)

∂ur
∂ξ

=
∂ar
∂ξ

+
∂φ

∂r
− 1

2

∂〈a2
l 〉

∂r
(1.25)

These equations can be combined into an equation for the density perturbation.

∂2δn

∂ξ2
+ k2

pδn =
n0

2
∇2〈a2

l 〉
(
≡ n0

2

∂2〈a2
l 〉

∂ξ2
+
n0

2

1

r

∂

∂r

(
r
∂ 〈a2

l 〉
∂r

) )
(1.26)

where k2
p = 4πren0 is the plasma wavevector (and ωp ≡ ckp is the corresponding plasma fre-

quency). This equation is that of a driven harmonic oscillator. In this case, the driver is the
ponderomotive force of the laser pulse, which according to eq. (1.26) generates a periodic oscil-
lation of the electron density, with a wavelength λp = 2π/kp.

Combining eq. (1.26) with eq. (1.22), one finds a corresponding equation for ψ.7

∂2ψ

∂ξ2
+ k2

pψ =
k2
p〈a2

l 〉
2

(1.27)

which can be solved by using Green functions.

ψ =
kp
2

∫ ξ

−∞
〈a2

l (ξ
′)〉 sin[ kp(ξ − ξ′) ] dξ′ (1.28)

The above expression of ψ entirely determines the wakefield, since Ez = mc2(∂ξψ)/e, uz =
γ− 1−ψ = 〈a2

l 〉/2−ψ and since it can be shown from eqs. (1.20), (1.23), (1.25) and (1.27) that
Er = −mc2(∂rψ)/e, Bθ = 0, and ur = −(∂ξ∂rψ)/k2

p.
Let us express these fields explicitly in the case where the driver is a femtosecond laser pulse.

In this case, al can be modeled by the following expression.

|al| = a0 cos[ k0(z − ct+ ξl) ] exp

(
− r

2

w2

)
h(z − ct+ ξl)

where w and a0 are the waist and the peak amplitude of the pulse, and where ξl characterizes
the position of its centroid. In the above expression, h is a bell-shaped function that accounts

7More precisely, eqs. (1.22) and (1.26) lead to 1
r
∂r(r∂rf) − k2

pf = 0, with f = ∂2
ξψ + k2

pψ − k2
p〈a2

l 〉/2. The
solution to the differential equation for f is f = C1K0(kpr) +C2I0(kpr), where I0 and K0 are the modified Bessel
functions. However, due to the respective divergence of K0 and I0 at r = 0 and r =∞, the only physical solution
is f = 0.
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1.1. Generation of a plasma wakefield by a laser pulse

for the longitudinal profile of the pulse. It is common to take either a Gaussian function or a
sine-like function for h:

h(x) = exp

(
−2 log(2)

x2

c2τ2

)
(Gaussian)

h(x) =

{
cos
(
π
2
x
cτ

)
if |x| < cτ

0 otherwise
(Sine− like)

where τ is the FWHM8 duration of the intensity profile of the pulse. (These profiles are repre-
sented in the left panel of fig. 1.2.) With these expressions, the wakefield variables behind the
pulse (ξ > ξl + cτ) are

ψ =
η a2

0

4
sin[ kp(ξ − ξl) ] exp

(
−2r2

w2

)
Ez =

η a2
0

4

mcωp
e

cos[ kp(ξ − ξl) ] exp

(
−2r2

w2

)
Er = η a2

0

mc2r

ew2
sin[ kp(ξ − ξl) ] exp

(
−2r2

w2

)
δn

n0
= −η a2

0

(
1

4
+

2

k2
pw

2
− 4r2

k2
pw

4

)
sin[ kp(ξ − ξl) ] exp

(
−2r2

w2

)
uz = −η a

2
0

4
sin[ kp(ξ − ξl) ] exp

(
−2r2

w2

)
ur = η a2

0

r

kpw2
cos[ kp(ξ − ξl) ] exp

(
−2r2

w2

)
where η is a dimensionless coefficient that depends on the longitudinal profile of the laser pulse.

η =
1

1− (ωpτ/π)2
sin(ωpτ) for a sine− like pulse

η =

√
π

4 log(2)
(ωpτ) exp

(
− (ωpτ)2

16 log(2)

)
for a Gaussian pulse

(1.29)

The coefficient η quantifies how efficiently the laser pulse excites the wakefield, and it essentially
depends on the pulse duration τ . As shown in fig. 1.2, there is in fact a resonance which makes
the wakefield maximal for τ ≈ 2.5ω−1

p . For a density n0 ∼ 1018 cm−3, this imposes to use a laser
pulse having a duration τ ∼ 40 fs in order to optimally drive the wakefield.

Let us now focus on the force experienced by a relativistic electron, if it traveled along with
the wakefield. The transverse component of this force is F⊥ = −e(Er − βzcBθ)er = −eErer.
According to the expression of Er and as represented in fig. 1.3, this force is focusing in the
first half-wavelength of the wakefield (0 < kp(ξ − ξl) < π) and defocusing in the second half-
wavelength (π < kp(ξ − ξl) < 2π). Similarly, the longitudinal force is Fz = −eEz, and it is
decelerating in the first quarter-wavelength (0 < kp(ξ−ξl) < π/2) and accelerating in the second
quarter-wavelength (π/2 < kp(ξ−ξl) < π). On the whole, the second quarter-wavelength is both
accelerating and focusing, and thus, if relativistic electrons traveled along in this region, they
would be accelerated while being maintained transversely inside the wakefield. Incidentally, the
accelerating electric field Ez can be evaluated by using the above wakefield formulas. Considering

8FWHM is the abbreviation of full width at half maximum.
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Chapter 1. Physics of laser-wakefield acceleration
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η
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Figure 1.2: Left panel: Plots of the longitudinal profile of a Gaussian and a sine-like pulse. Right
panel: Plot of the quantity η as a function of ωpτ (as given by eq. (1.29)). Both curves exhibits
a distinct resonance for ωpτ ≈ 2.5.

Figure 1.3: Colormaps of the density perturbation δn, the radial electic field Er and the longitu-
dinal electric field Ez in the linear wakefield, as infered from eq. (1.28). The red and yellow spot
on the first plot represents the laser pulse. The dashed green lines delimit the second quarter-
wavelength, which is both focusing and accelerating. Because the wakefield is plotted here as a
function of ξ = ct− z, the respective positions of the laser pulse and of its wakefield are inverted
compared to fig. 1.1, which was plotted as a function of z − ct.

a density n0 = 1018 cm−3 and a resonant laser pulse (η ≈ 1.5), the maximum accelerating field
in the wake is

|Ez,max| = 36× a2
0 GV.m−1

Thus the accelerating field rapidly increases when a0 increases. However, when a0 approaches
unity, the linear approximation is not valid anymore and the nature of the wakefield changes.

1.1.4 Blow-out regime

In the linear regime (a2
0 � 1), the electron density in the wakefield is only weakly perturbed.

However, this is no longer true when a2
0 > 1. In fact, when a2

0 � 1 and moreover kpw ' 2
√
a0 [Lu

et al., 2006b], the transverse ponderomotive force is so strong that it can expell all the electrons
from the first bucket of the wakefield. This regime is known as the blow-out (or bubble) regime
[Pukhov and Meyer-ter Vehn, 2002; Lu et al., 2006b,a] and is represented in fig. 1.4. In this
case, the laser pulse effectively acts as a snowplow for the electron density, and creates a bare
ion cavity. As can be seen in fig. 1.4, the expelled electrons tend to gather in a thin sheath, that
surrounds the ion cavity. These electrons are then pulled towards the axis by the electric field
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1.1. Generation of a plasma wakefield by a laser pulse

Figure 1.4: Representation of the wakefield in the blow-out regime. The laser pulse is displayed
in red and yellow, while the electron density is represented in blue tones.

of the ion cavity, and eventually close the cavity.
This regime is highly non-linear, and in particular it exhibits considerable trajectory crossing

for the electrons. As a result, cold fluid theory cannot be used, and instead strong assumptions
have to be made regarding ne and je,z. Yet these assumptions have to be consistent with the
equation of conservation ∂tρ + ∇ · J = 0, at least on a global level. In our case, this equation
can be integrated to yield9 : ∫ ∞

0
r(ne − n0 − je,z) dr = 0 (1.30)

which holds for any ξ. In agreement with this condition and the qualitative picture of the bubble,
the density and currents at a given ξ are modeled by the following expression

ne = 0 je = 0 for r < rb(ξ) (bare ion cavity)
ne = n0 je = 0 for r > rb(ξ) + ∆ (unperturbed plasma)

ne − je,z = n0rb(ξ)
2∆ for rb(ξ) < r < rb(ξ) + ∆ (electron sheath)

where rb(ξ) is the radius of the ion cavity (or bubble) at the position ξ, and ∆ is the width of the
sheath, and where it has been furthermore assumed that ∆ � rb(ξ) (thin sheath). With these
assumptions, the electromagnetic potentials can be deduced from eqs. (1.11) to (1.13), and the
resulting expressions inside the bubble (i.e. for r < rb(ξ)) are

ψ = −
k2
pr

2

4
+
k2
p

4
rb(rb + ∆) (1.31)

φ = −
k2
pr

2

4
+ φ0(ξ) (1.32)

ar = −
k2
pr

8

d

dξ
rb(rb + ∆) (1.33)

9More specifically, in our case the equation of conservation can be rewritten as ∂ξ(ne−n0−je,z)+ 1
r
∂r(r∂rje,r) =

0, and then integrated radially : dξ
∫∞

0
r(ne − n0 − je,z) dr = 0. Since ne − n0 − je,z is zero ahead of the pulse

(unperturbed neutral plasma), eq. (1.30) holds for any ξ.
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Chapter 1. Physics of laser-wakefield acceleration

where φ0(ξ) is a constant of integration. According to eq. (1.18), the resulting fields inside the
bubble are :

Ez =
mω2

p

2e

(
rb +

∆

2

)
d rb
dξ

(1.34)

Er =
mω2

pr

2e
+
mω2

pr

8e

(
d2

dξ2
rb(rb + ∆)

)
(1.35)

Bθ =
mω2

pr

8ec

(
d2

dξ2
rb(rb + ∆)

)
(1.36)

According to eq. (1.19), for a relativistic electron that travels inside the cavity with βz ≈ 1
and βx, βy � 1, the transverse force associated with these fields is F⊥ = mc2∂rψ = −mω2

pr/2.
Contrary to the force of the linear wakefield, this force is always focusing, always linear in r,
and is independent of ξ. Similarly, the longitudinal force is Fz = −mc2∂ξψ ≈ −mω2

prbdξrb/2
and it does not depend10 on r. This force is zero near the maximum of the cavity (dξrb = 0),
decelerating in the first half of the cavity (dξrb > 0) and accelerating in the second half of the
cavity (dξrb < 0).

A more detailed calculation of the longitudinal electric field requires the knowledge of rb,
which is determined by the equation of motion for the electrons of the sheath. Combining
eqs. (1.14) to (1.16), this equation reads :

d

dξ
(1+ψ)

d rb
dξ

=
∂ar
∂ξ

+
∂φ

∂r
+

1

2(1 + ψ)2

(
1 + 〈a2

l 〉+ (1 + ψ)2

[(
drb
dξ

)2

− 1

])
∂ψ

∂r
− 1

2(1 + ψ)

∂〈a2
l 〉

∂r

(1.37)
If we are only interested in the evolution of rb behind the laser pulse, then 〈a2

l 〉 ≈ 0. Moreover,
according to eqs. (1.31) to (1.33), ψ(r = rb) = k2

prb∆/4, and thus the equation of motion
simplifies to :(

1 +
3

8
k2
prb∆ +

1

4
k2
pr

2
b

)
d2rb
dξ2

= −
k2
prb

4

[
1 +

1

(1 + k2
prb∆/4)2

+

(
drb
dξ

)2(
2 +

∆

rb

)]
For strong blowouts, one has k2

prb∆� 1 [Lu et al., 2006b]. Using this and the relation ∆� rb,
the equation of motion can be rewritten as :

d

dξ
rb
drb
dξ

= −1−
(
drb
dξ

)2

(1.38)

Let us denote by ξm the position where rb is maximal. Then in the neighborhood of ξm, dξrb � 1,
and the above equation yields rbdξrb = −(ξ − ξm). Since Ez ≈ mω2

prbdξrb/2e, one has, in the
neighborhood of ξm :

Ez = −
mω2

p

2e
(ξ − ξm)

Using this last relation, one can evaluate the order of magnitude of the accelerating field inside
the cavity. The typical length of the cavity is 4

√
a0 × c/ωp [Lu et al., 2007], and thus the

accelerating field at the back of the cavity evaluates as

|Ez| ∼
mcωp
e

√
a0 ∼ 96×

√
a0 GV.m−1 (for n0 ∼ 1018 cm−3)

10This can be seen as a consequence of the Panofsky-Wenzel theorem, which states that ∂rEz = −∂ξ(Er−cBθ),
for an electromagnetic structure propagating at c.
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1.2. Principle of the laser-wakefield accelerator

1.2 Principle of the laser-wakefield accelerator

The last section demonstrated that a laser-wakefield constitutes a suitable accelerating structure
(with fields that are both accelerating and focusing), and that its accelerating electric field can
be as high as several tens of GV.m−1. This is three orders of magnitude higher than the maximal
accelerating field that can be reached in a conventional accelerators (i.e. accelerators that use
radio-frequency cavities). It implies that a laser-wakefield accelerator requires a much shorter
acceleration distance than a conventional one, for the same final electron energy. Considering the
size (and cost) of current high-energy accelerators, a corresponding laser-wakefield accelerator
would thus be an interesting alternative. The idea of the laser-wakefield accelerator (LWFA)
was first proposed by Tajima and Dawson [1979], and evolved considerably since then. The next
sections describe the successive stages that are involved when using a laser-wakefield to accelerate
electrons.

1.2.1 Injection and beamloading

In a laser-wakefield accelerator, the electrons that are to be accelerated must have a relativistic
velocity along z once they are in the accelerating and focusing part of the wakefield. A resting
electron would indeed slip back with respect to the propagating wakefield, and would therefore
experience a succession of accelerating and decelerating fields, with no net energy gain. The
acceleration scheme thus starts with an injection process, i.e. a process by which a fraction of
the electrons of the plasma are placed inside the accelerating and focusing region, with enough
initial speed that they can then remain in it.

Injection does not happen in the stationary wakefield described in the previous section. In
the linear regime for example, all the electrons slip through the wakefield, while in the blow-out
regime, the electrons simply go around the cavity without entering it. Triggering injection thus
requires an extra physical phenomenon. One way through which injection commonly occurs is
by a sudden expansion of the plasma wavelength (in the linear regime) or of the ion cavity (in
the blow-out regime) [Kalmykov et al., 2009; Kostyukov et al., 2010; Yi et al., 2011]. In this
case, the electrons that are inside the accelerating region at the time of this expansion can stay
longer inside it than they would normally do. They can thereby be accelerated longer and reach
a sufficient velocity to remain in this region. In this case, the electrons are typically injected at
the back of the cavity.

In practice, this sudden expansion can spontaneously occur in standard experimental condi-
tions. This is because, when a high-power laser propagates in a gas of density ∼ 1019 cm−3, its
transverse size (or waist) does not remain stationary. In fact, the leading edge of the generated
wakefield exerts a feedback on the laser pulse and effectively acts as a focusing lens [Sprangle
et al., 1991, 1987]. As a consequence, the laser pulse self-focuses to a waist w0 of a few microns,
its strength 〈a2

l 〉 correspondingly increases, and the strength of the ponderomotive force term
−∂r〈a2

l 〉 ∝ 〈a2
l 〉/w0 in eq. (1.37) also increases. This pushes the electrons further away from

the axis and results in a larger ion cavity. This mecanism is known as self-injection. However,
self-injection lacks stability, and it is sometimes preferable to controllably trigger the injection.
There are several methods for doing so (e.g. by using a density downramp, or a colliding laser
pulse), and these methods will be described in more details in section 3.1.

When the injected charge is very high, the bunch can even alter the accelerating and focusing
fields of the wake – a phenomenon known as beamloading. This happens because a highly-charged
electron bunch radially repells the plasma electrons (due to its space-charge forces) and can thus
drive a wakefield of its own, within the laser wakefield. The altered accelerating and focusing
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fields can be calculated by using the ponderomotive formalism of section 1.1.2, and by separating
the electron population into a low-energy population (the plasma electrons) and a localized,
quasistatic population of relativistic electrons (the bunch). For instance, when 〈a2

l 〉 � 1 and
when the density of the bunch is relatively low (nb � n0), the counterpart of the linear wakefield
equation eq. (1.26) is

∂2δn

∂ξ2
+ k2

pδn =
n0

2
∇2〈a2

l 〉 − k2
pnb

where nb is the density of the bunch, and where, as before, δn is the perturbation in the density
of the plasma electrons. Thus the presence of an accelerated beam leads to an additional driving
term −k2

pnb in the wakefield equation. The total wakefield is the linear superposition of the
laser-driven wakefield and the beam-driven wakefield. This also implies that the tail of the
bunch effectively feels the wakefield that the head drives, and hence experiences different fields
than in the absence of beamloading. In the presence of beamloading, the accelerating force
experienced by the tail is typically lower [Katsouleas et al., 1987], while the focusing force is
higher.

The consequences of beamloading are significantly different in the blow-out regime (〈a2
l 〉 > 1).

Beamloading in the blow-out regime can be analyzed by rederiving the equations of section 1.1.4
with an additional relativistic electron population [Tzoufras et al., 2008, 2009]. When doing so,
it appears that the expression of ψ as a function of rb (eq. (1.31)) is unchanged11. Since the
force on a relativistic electron is F = −mc2∂ξψez +mc2∂rψer (eq. (1.19)), the expression of the
accelerating and focusing forces are also unchanged : Fz = −mω2

prb(dξrb)/2 and Fr = −mω2
pr/2.

However, the trajectory of the electrons of the sheath rb does change, and eq. (1.38) is replaced
by

d

dξ
rb
drb
dξ

= −1−
(
drb
dξ

)2

+
4

k2
pr

2
b

I(ξ)

IA

where IA = ec/re = 17 kA and where I(ξ) is the instantaneous current of the accelerated bunch
at the position ξ.12 The effect of the additional term 4I/(k2

pr
2
bIA) is to push the electron sheath

further away from the axis. This is represented in the upper panel of figure fig. 1.5.
The above equation also implies that, if the electron bunch is in the accelerating part of the

laser-driven cavity (dξrb < 0), then it can flatten (or even invert) the evolution of rbdξrb with
ξ, and thereby reduce the variations of Fz = −mω2

prb(dξrb)/2 with ξ. (See the lower panel of
figure fig. 1.5.) However, contrary to the linear regime, the focusing force in the blow-out regime
F⊥ = −mω2

pr/2 er is not modified by beamloading.

1.2.2 Acceleration and betatron oscillations

Once the electrons are injected, they start being accelerated. Moreover, since these electrons
can be injected off-axis, or with an initial non-zero transverse velocity, they will oscillate trans-
versely in the focusing wakefield [Esarey et al., 2002]. These oscillations are known as betatron
oscillations.

Let us study these oscillations in case of the blow-out regime. The motion of the injected
electrons satisfies

d pµ

dτ
=

q

m
pνF

µν (1.39)

11This is because n − jz ≈ 0 for a relativistic bunch. As a consequence, the source terms associated with the
relativistic bunch cancel out in the equation 1

r
∂r(r∂rψ) = −4πre(n− jz) (eq. (1.12)).

12Here we adopt the convention I > 0 for an electron bunch.
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1.2. Principle of the laser-wakefield accelerator

Figure 1.5: Upper panel: Representation of the wakefield in the blow-out regime, when a high-
charge accelerated bunch is present (represented as a rectangle near the back of the cavity).
The dashed black lines represents the shape of the sheath rb(ξ) in the absence of this bunch.
Lower panel: Plot of the corresponding accelerating field. The red and black curves correspond
respectively to the case with and without an electron bunch. The deformation of the sheath
by the bunch in the upper panel leads to a modification in the evolution of Ez with ξ. From
Tzoufras et al. [2008]

The transverse components of this equation yield

dp⊥
dt

= −e(E⊥ + c(β ×B)⊥) ≈ −e(E⊥ + cez ×B⊥)

where the approximation comes from the fact that the injected electrons have βz ≈ 1 and
βx, βy � 1. In the blow-out regime, −e(E⊥+ cez ×B⊥) ≈ −mω2

px⊥/2, and the equation of the
transverse motion becomes

d2 x⊥
dt2

+

(
1

γ

d γ

dt

)
dx⊥
dt

+
ω2
p

2γ
x⊥ = 0 (1.40)

where dtγ is given by the 0th component of eq. (1.39) :

d γ

dt
= − e

mc
β ·E ≈ −eEz

mc

When the electrons are accelerated (dtγ > 0), eq. (1.40) is the equation of a damped harmonic
oscillator, whose characteristic frequency ωβ = ωp/

√
2γ progressively decreases. For 50 MeV

electrons and a density n0 ∼ 1018 cm−3, the adiabaticity parameter ω2
β/dtωβ is of the order of

102, meaning that this change of frequency is slow compared to the oscillations themselves. In
this case, the WKB approximation can be used, and the solutions of eq. (1.40) are of the form :

x = x0

(
γ0

γ(t)

)1/4

cos

(∫ t

t0

ωβ(t′)dt′ + ϕx

)
y = y0

(
γ0

γ(t)

)1/4

cos

(∫ t

t0

ωβ(t′)dt′ + ϕy

)
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This implies that, on average, the transverse size of a bunch decreases as γ−1/4 during acceler-
ation. The above expressions can also be used to find the angle of the electron trajectory with
respect to the propagation axis : θx ≈ dtx/c, θy ≈ dty/c.

θx = − kpx0√
2γ0

(
γ0

γ

)3/4

sin

(∫ t

t0

ωβ(t′)dt′ + ϕx

)
θy = − kpy0√

2γ0

(
γ0

γ

)3/4

sin

(∫ t

t0

ωβ(t′)dt′ + ϕy

)
This in turn implies that the divergence of the beam evolves on average as γ−3/4.

Since the electrons oscillate transversally, they emit a corresponding electromagnetic radiation
[Esarey et al., 2002; Kostyukov et al., 2003]. As a consequence of their relativistic speed, the
radiation is collimated along the trajectory and Doppler-shifted [Jackson, 1998], its characteristic
frequency ωr being of the order of ωβ/(1 − β) ≈ 2γ2ωβ . In this regard, betatron radiation can
be viewed as a millimeter-scale counterpart of the large-scale synchrotron sources, which use
relativistic electrons and magnetic wigglers to produce intense X-rays. An estimation of the
characteristic photon energy (for 200 MeV electrons and n0 ∼ 1019 cm−3) yields h̄ωr ∼ 1 keV,
which is indeed also in the X-ray range. A more detailed description of the spectral and angular
distribution of this radiation requires a rigorous analysis of the radiated Lienard and Wiechert
fields. This analysis leads to the following expression for the radiated energy per unit frequency
and solid angle, in the direction n [Jackson, 1998]

d2I

dωdΩ
=
mcre
4π2

∣∣∣∣∣
∫ ∞
−∞

eiω(t−n·r(t)/c)n× [ (n− β)× β̇]

(1− n · β)2
dt

∣∣∣∣∣
2

(1.41)

In practice, because of the complexity of the motion (evolution of γ and of the amplitude of
oscillation), this expression is integrated numerically [Thomas, 2010; Chen et al., 2013].

1.2.3 Termination of the acceleration

The acceleration process can be terminated by several phenomena, which therefore limit the
maximal energy that can be reached.

One of these limiting phenomena is electron dephasing, which is due to the fact that the
group velocity of the laser pulse is in fact slightly lower than c. For instance, in the linear
regime, the group velocity of the pulse satisfies vg/c ≈ 1− ω2

p/2ω
2
0 where ω0 is the frequency of

the laser and ωp the plasma frequency. For a plasma density n0 = 1019 cm−3 and a laser having
a central wavelength λ0 = 0.8µm, one has 1− vg/c ≈ 3× 10−3. On the contrary, the accelerated
electrons typically have a velocity that is much closer to c. For 50 MeV electrons for instance,
1 − βz ≈ 5 × 10−5. Therefore the electrons progressively catch up with the laser pulse during
the acceleration process. Once they are at a quarter-wavelength distance from the laser pulse
(in the linear regime) or once they reach the maximum of the cavity (in the blow-out regime),
they enter the decelerating zone and therefore do not gain energy anymore. Although electron
dephasing cannot be avoided, the moment at which the electrons stop gaining energy can at least
be delayed, for instance by using a low density gas. 1 − vg/c is indeed proportional to n0 and
thus the pulse propagates faster at lower density.

Another common cause why acceleration may cease is that the laser simply becomes too weak
to drive a substantial accelerating wakefield. This can happen either through pulse diffraction or
pulse depletion. In pulse diffraction, the laser pulse that was focused into the gas progressively
defocuses. Because its waist then increases, 〈a2

l 〉 decreases and the driven wakefield becomes
weak. This phenomenon can happen quickly, as the typical Rayleigh length in the experiments
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is of the order of a few hundreds of microns. Diffraction can however be prevented, for example
by performing laser-wakefield acceleration inside a preformed plasma channel [Steinhauer and
Ahlstrom, 1971; Johnson and Chu, 1974; Esarey et al., 1994], which then guides the laser pulse
like an optical fiber. In this case, pulse depletion becomes the dominant phenomenon. Depletion
occurs because the laser constantly loses energy to generate the wakefield. This constant loss
progressively damps the amplitude of the laser and hence that of the wakefield. Like electron
dephasing, pulse depletion cannot be avoided, but its consequences can be delayed, for example
by using a laser pulse with higher initial energy.

1.2.4 Experimental demonstration

The generation of a wakefield described in the previous sections requires both an extremely
intense (∼100 TW) and extremely short (∼ 30 fs) laser pulse. These specifications are very
demanding, and were only made possible by the invention of chirped-pulse amplification (CPA)
[Strickland and Mourou, 1985]. Using this technology, an initial low-intensity femtosecond pulse
can be amplified by several successive passes in laser-pumped cristals. Titanium:Sapphir cristals
are commonly used, because of their ability to amplify light over the wide range of wavelengths
that necessarily composes a femtosecond pulse. In this case, the central wavelength of the
amplified pulse is λ0 ≈ 0.8µm.

By using CPA lasers, laser-wakefield acceleration was first observed with externally injected
electrons [Clayton et al., 1993; Nakajima et al., 1995; Amiranoff et al., 1998] (i.e. electrons
that were pre-accelerated by a conventional device and synchonized with the laser pulse). In
these experiments, the length of the injected bunch was longer than a plasma wavelength, and
the wakefield induced a large energy spread on the accelerated bunch. Similarly, in the first
experiments relying on self-injection [Modena et al., 1995; Umstadter et al., 1996a; Leemans
et al., 2002; Malka et al., 2002], the accelerated bunch typically had a thermal energy distribution,
with most electrons at low energy (<10 MeV). Yet in 2004, three groups first demonstrated the
possibility to accelerate a quasimonoenergetic bunch of electrons up to ∼100 MeV [Mangles
et al., 2004; Faure et al., 2004; Geddes et al., 2004]. They used a laser energy Elaser ∼ 1 J and
a gas density n0 ∼ 1019 cm−3, and reached better beam quality through a better control of self-
injection and of the dephasing length. However, the produced bunches typically lacked stability,
and controlled injection methods were later shown to improve the stability and tunability of
the beams [Faure et al., 2006; Geddes et al., 2008; Gonsalves et al., 2011]. In parallel, betatron
radiation from an LWFA was first measured by Rousse et al. [2004] and successfully compared
with numerical predictions [Phuoc et al., 2005; Albert et al., 2008]. The existence of beamloading
was also experimentally demonstrated [Rechatin et al., 2009a], through the associated alteration
of the accelerating field.

The first GeV beam (1.0 GeV) was produced in 2006 [Leemans et al., 2006] by using a plasma
channel to guide the laser pulse over a 3 cm acceleration distance. A low density n0 ∼ 1018 cm−3

was also used in order to avoid electron dephasing. Recently, two groups demonstrated multi-
GeV energies [Kim et al., 2013; Wang et al., 2013] (with respectively 2 GeV and 3 GeV). This
was made possible by using state-of-the-art PetaWatt-class lasers, which produce femtosecond
pulses with considerably higher laser energy (Elaser = 30 J in the experiments of Wang et al.
[2013], Elaser = 150 J in those of Kim et al. [2013]).

The research effort is now mainly focused on two objectives: increasing the maximal energy
of the electrons and improving the quality and stability of the beams. By a good beam quality,
one usually means a high charge per bunch, a low energy dispersion and short bunch duration
(longitudinal quality), as well as a low divergence and low transverse beam size (transverse
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quality). Since this manuscript deals with several concepts that aim at improving the transverse
quality, this notion is detailed further in the next section.

1.3 Transverse quality of an electron bunch

Transverse quality (low divergence, low transverse size) is crucial for a number of potential
applications of laser-wakefield accelerators. For instance, it is hoped that LWFA can be used to
build compact high-energy colliders [Schroeder et al., 2010]. One of the key requirements here
is to have a high luminosity, which in turn requires a small transverse size [Humphries, 1990].
LWFA are also considered as a potential source of X-rays (for instance using betatron radiation)
for single-shot phase-contrast imaging [Fourmaux et al., 2011]. In this case, the resolution of the
image is directly related to the size of the source i.e. the transverse size of the bunch. Finally,
transverse quality is even more critical for a prospective LWFA-based free-electron laser (FEL)
[Nakajima, 2008]. The FEL mechanism indeed requires both a small transverse size (so as to
preserve the high intensity of the bunch) and a low divergence (for coherence purposes).

Yet transverse size and divergence are no intrinsic properties of the bunch. As shown in
section 1.2.2, the transverse size and divergence of a bunch are clearly modified during the
acceleration. Moreover, these quantities can further be manipulated after the acceleration, by
the use of drift spaces and focusing devices (e.g. quadrupole lenses). There is however a more
intrinsic measurement of transverse quality, which is known as emittance.

1.3.1 Emittance and transverse quality

Emittance along the transverse x and y axes is defined as

εx ≡
1

mc

√
〈x2〉〈p2

x〉 − 〈xpx〉2 εy ≡
1

mc

√
〈y2〉〈p2

y〉 − 〈ypy〉2 (1.42)

where the brackets denote an average over the electron bunch. The relevance of emittance lies in
the fact that, under certain conditions, it remains constant throughout acceleration and further
beam manipulation [Reiser, 2008]. The conditions for this to hold true are the monoenergicity
of the bunch (i.e. all electrons have the same γ) and the linearity of the transverse forces (i.e.
the transverse forces must be of the form Fx = −Kx, Fy = −K ′y). This latter assumption is
indeed quite natural, since it is verified by the forces of the ion cavity (K = K ′ = mω2

p/2), by
those of quadrupole lenses (with K = −K ′) and even by drift spaces (K = K ′ = 0).

The fact that emittance is constant has important implications for the transverse properties
of the bunch. This is most easily seen by noticing that eq. (1.42) implies

〈x2〉〈p2
x〉 ≥ ε2xm2c2 (1.43)

For a monoenergetic bunch, this becomes 〈x2〉〈θ2
x〉 ≥ ε2x/γ

2. Thus emittance imposes a funda-
mental limit on the beam size and divergence that can be reached by beam manipulation. For
instance, a drift space followed by a quadrupole lens can be used to reduce the divergence of
a bunch. However, equation eq. (1.43) shows that this necessarily comes at the cost of larger
beam size, and that for a given value of this beam size, there is a lower bound for the minimal
divergence that can be achieved.

More insight can be gained into the meaning of emittance (e. g. along x) by interpreting it
in relation with the x-px phase space. Emittance is sometimes interpreted as the area covered
by the electron bunch in this 2D space. Yet, it is more rigorous to see emittance as the product
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Figure 1.6: Illustration of equation (1.44). The plots represent the x-px phase space for two
given electron bunches. (Each blue dot represents an individual electron.) In each case, the
thick red line corresponds to the best linear fit (px = αbestx) of the phase space. The thin red
lines correspond to the distances of the electrons from this best fit. The RMS of these (algebraic)
distances is also depicted (σpx−αbestx). In case a, the area occupied by the bunch in phase space
is relatively large. In case b, the area in phase space is low, but because of the non-linearities in
the particle distribution, the RMS distance to the best linear fit is still large, and the emittance
is comparable to that of case a.

of the RMS size of the bunch (along x) by the RMS distance (along px) of the electrons from the
best linear fit of the phase space :

εx = σx × σpx−αbestx where σx ≡
√
〈x2〉 σpx−αbestx ≡

√
〈 (px − αbest x)2 〉 (1.44)

where αbest is the coefficient of the best linear fit to the phase space13. This is represented14

in fig. 1.6. Equation (1.44) shows that emittance depends on the extent of the bunch in phase
space (see fig. 1.6a ), which is indeed related to the area. However, it also takes into account the
nonlinear distortions of phase space (see fig. 1.6b ).

1.3.2 Sources of emittance degradation

As explained in the last section, under a certain number of assumptions, emittance is constant
and is thus determined at injection. However, when these assumptions break down, emittance
can evolve. Although emittance can in principle decrease, in practice this evolution usually
corresponds to an increase (i.e. a degradation of transverse quality). This degradation can have
several origins [Reiser, 2008]. The most common ones for LWFA are the following.

13Here the best linear fit is defined as that which minimizes χ2(α) = 〈 (px − αx)2 〉. From this definition, it is
easy to show that the α which corresponds this best fit is αbest = 〈xpx〉/〈x2〉. Injecting this expression into the
definition of σpx−αbestx demonstrates equation eq. (1.44).

14For the clarity of fig. 1.6, the number of represented electrons was chosen irrealistically low ; typical bunches
contain ∼ 108 − 109 elelectrons.
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Figure 1.7: Schematic representation of the decoherence phenomenon, for a bunch containing
electrons with energies from γ = 100 to γ = 200. Left-hand panel: initial distribution of the
electrons in phase space. Right-hand panel: distribution in phase space at a later time, after a
fraction of a betatron oscillation. The low-energy electrons rotate faster than the high-energy
electrons in phase space, and this increases the emittance of the bunch.

Degradation by a finite energy spread : When a bunch is not strictly monoenergetic,
its emittance varies according to dtε

2
x = 2(〈p2

x〉〈xpx/γ〉 − 〈p2
x/γ〉〈xpx〉)/m3c2. In the case of

betatron motion, this evolution of emittance can be intuitively interpreted in phase-space. When
performing betatron oscillations, the individual electrons rotate around the origin of the x− px
phase space, with a frequency ωβ = ωp/

√
2γ. However, since ωβ depends on γ, this frequency

varies across the bunch (low-energy electrons rotate faster). As represented in fig. 1.7, if the
electrons are initially all distributed along the same straight line (low emittance bunch), then
this spread in frequencies results in an increased emittance at a later time. This phenomenon is
known as decoherence [Michel et al., 2006].

Degradation by a ξ-dependent focusing force : It can happen that, in addition to being
linear in the transverse variable x and y, the focusing forces also depend on the longitudinal
variable ξ. (i.e. Fx = −K(ξ)x, Fy = −K ′(ξ)y). This is the case of the focusing forces of the
laser-wakefield in the linear regime, close to the axis. In this case, the electrons at different ξ
rotate with different frequencies in phase space. This can again lead to decoherence, which is due
here to the finite length of the beam along ξ instead of the finite spread in γ, and can degrade the
emittance of the bunch [Mehrling et al., 2012]. However, in the case of a ξ-dependent focusing
force, the slice emittance is said to be preserved, meaning that the emittance of a thin slice of
the bunch located at a given ξ is still constant in time.

Degradation by nonlinear forces : Focusing forces that are not linear in the transverse
variables x and y can also degrade emittance. In this case, the rotating frequency of individual
electrons in phase space depend on their transverse coordinate. As a result, if the electrons
of a bunch are initially distributed along a straight line, their distribution in phase space later
becomes distorted, and will look similar to that of fig. 1.6b.
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Nonlinear forces can appear in various focusing systems, especially when electrons travel very
far from the axis. Common examples include the aberrations of quadrupole lenses, but also the
focusing fields of a linear laser-wakefield at high radius (due to the term exp(−2r2/w2

0)). This
does not happen however in the blow-out regime, for which the focusing forces are always linear
in r (and independent of ξ) as long as the electrons remain inside the ion cavity.

Another important source of nonlinearities are the space charge forces that the beam exerts
on itself. Unless the beam is transversely uniform, these space charge forces are indeed always
nonlinear in r. For a monoenergetic, axisymmetric beam, the associated growth in emittance
was calculated by Wangler et al. [1985] and yields

dε2x
dt

= −〈x
2〉

4γ

I

IA

dU

dt
(1.45)

where IA ≡ ec/re = 17 kA is the Alfvén current, I is the instantaneous current of the beam,
and where U is an dimensionless parameter which depends on the transverse distribution of the
bunch :

U ≡ 4

∫ ∞
0

(
Iint(r)

2

I2
−
Iunif (r)2

I2

)
dr

r

Here Iint(r) denotes the current of the beam through a disk of radius r (thus Iint(0) = 0 and
Iint(∞) = I) and Iunif (r) denotes the current (through a disk of radius r) of a transversely
uniform beam having the same total current I and the same RMS radius 〈r2〉 as the actual
beam.15 U is zero when the actual beam is transversely uniform, and strictly positive for any
other distribution. (In the case of a transversely Gaussian beam for instance, U = 0.154.) Thus
eq. (1.45) implies that the emittance of a beam grows as its distribution evolves towards a uniform
distribution, under the action of space charge forces.

It should however be noticed that, according to eq. (1.45), this increase in emittance is
significant only for low-energy, wide bunches. In the case of LWFA bunches, which are very
narrow (

√
〈x2〉 ∼ 1µm), the degradation of emittance due to space-charge forces is usually

negligible. For instance, if we consider an LWFA bunch with γ = 400 and I = 30 kA that evolves
from a Gaussian profile to a uniform profile while keeping

√
〈x2〉 ≈ 1µm, the corresponding

increase in emittance is ∆ε2x = 1.6 × 10−4 mm2.mrad2. If the initial emittance of the bunch is
0.100 mm.mrad, then the final emittance is close to 0.101, and thus the degradation in emittance
is indeed barely noticeable.

15Since Iint(r) and Iunif (r) approach I as r approaches infinity, the integral definition of U does converges.
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Chapter 2

A Cherenkov-free PIC algorithm

Although some aspects of laser-wakefield acceleration were modeled analytically in
chapter 1, many phenomena – such as self-focusing and self-injection – are still too in-
tricate to be captured by simple analytical formulas. Therefore, numerical simulations
are often needed when studying laser-wakefield acceleration. This chapter focuses on
the Particle-In-Cell (PIC) algorithm, which is a common simulation tool in this con-
text. After explaining the working principle of the PIC algorithm, I show that PIC
simulations of laser-wakefield acceleration are subject to an important numerical arti-
fact, known as the numerical Cherenkov effect. This artifact should be avoided, since
it indirectly leads to a spurious growth of emittance during the simulations. In order
to reduce this unphysical growth of emittance, I propose a modified PIC algorithm
which is not subject to the numerical Cherenkov effect. This algorithm is validated in
typical LWFA simulations, and it indeed reduces – and in some cases suppresses – the
unphysical growth of emittance. Because an accurate evaluation of emittance is crucial
in chapter 3 and chapter 4, this Cherenkov-free algorithm will be largely used in these
chapters.
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Chapter 2. A Cherenkov-free PIC algorithm

2.1 The Particle-In-Cell algorithm

2.1.1 Overview of the algorithm

As mentioned in the previous chapter, the governing equations of laser-wakefield acceleration
are the Maxwell equations and the equations of dynamics. The Maxwell equations capture how
charged particles generate electromagnetic fields, while the equations of motion describe how
these fields act back on the particles (and possibly accelerate some of them). In chapter 1,
these equations were written in terms of the potentials φ and a. However, when solving them
numerically, it is more common to use the fields E and B. The system of equation to solve is
thus:

∇ ·E =
ρ

ε0
∇ ·B = 0 ∇×E = −∂B

∂t
∇×B = µ0J +

1

c2

∂E

∂t
(2.1)

dxl
dt

= vl
dpl
dt

= ql (E + vl ×B) (2.2)

where the equations of dynamics eq. (2.2) apply to each particle of the plasma (these particles
are indexed by l), with vl = pl/

√
m2
l + p2

l /c
2. Moreover, in the Maxwell equations, ρ and J

are defined by ρ =
∑

l qlδ(x − xl), J =
∑

l qlvlδ(x − xl). The next paragraphs describes how
these equations are implemented in the Particle-In-Cell (PIC) algorithm [Hockney and Eastwood,
1988; Birdsall and Langdon, 2004].

Numerical implementation of the equations of dynamics. In theory, eq. (2.2) should
be integrated for every single particle of the plasma. However, in practice this would be very
computationally demanding, even for current supercomputers. For instance, when simulating a
3D volume 100µm ×100µm ×100µm with a plasma of density n0 = 1019 cm−3, one would need
to track about 1013 particles. In order to avoid this unnecessary computational load, particles
that are close to each other in phase space are grouped into a macroparticle. Each macroparticle
is then treated as a solid body having a definite momentum pm but having a certain spatial
extent about its average position xm:

dxm
dt

= vm =
pm√

m2
m + p2

m/c
2

dpm
dt

= qm[ Ē(xm) + vm × B̄(xm) ] (2.3)

where Ē =

∫
dx′ g(x′ − xm)E(x′) B̄ =

∫
dx′ g(x′ − xm)B(x′) (2.4)

ρ(x) =
∑
m

Nmqm g(x− xm) J(x) =
∑
m

Nm qmvmg(x− xm) (2.5)

where m indexes the macroparticles, and where g is a bounded-support, normalized function
(
∫
g(x)dx = 1) which represents the spatial extent of one macroparticle. (Thus according to

eq. (2.4), Ē and B̄ are the averages of the fields over the extent of a macroparticle.) Nm is
the number of real particles that are represented by a macroparticle, while qm and mm are
the charge and mass of a single real particle. (All the real particles represented by a given
macroparticle have the same mass and charge.) Notice that although xm and pm evolve in time,
the spatial extent of the macroparticle g remains constant, and it always keeps a well-defined
momentum. This is an approximation, since both the spatial extent and the momentum spread
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2.1. The Particle-In-Cell algorithm

of the corresponding set of real particles can certainly evolve1. However, if the real particles
represented by one macroparticle are close enough in phase space, this approximation has little
impact.

The motion of the macroparticles is integrated in time, by discretizing eq. (2.3) over successive
timesteps tn = n∆t. A leap-frog method is generally used, and thus the positions are defined at
integer timesteps n∆t while the momenta are defined at half-timesteps (n+1/2)∆t. Section 2.1.2
explains how the equation of motion is discretized and integrated in practice.

Discretization of the Maxwell equations. The Maxwell equations are also discretized in
time according to a leap-frog scheme. Here, E is defined at integer timesteps n∆t andB is defined
at half-integer timesteps (n+ 1/2)∆t. Yet the Maxwell equations also have to be discretized in
space, and hence the fields E, B, J and ρ are defined at specific points across a Cartesian grid.
For reasons that will be clear in the next section, the different components of these fields are in
fact defined at different points in space. The configuration of these fields is known as the Yee
lattice [Yee, 1966], and it is detailed in fig. 2.1, along with the field notations which will be used
in section 2.1.2.

The evolution of the fields on the grid is tightly coupled with the motion of the charged
macroparticles through this grid. This coupling requires some values to be communicated be-
tween the macroparticles and the grid. In particular, the charge and current of the macroparticles
have to be projected onto the grid (through the discretized version of eq. (2.5)), and conversely
the fields of the grid have to be interpolated to the macroparticles (through the discretized version
of eq. (2.4)). The discretization of these equations will be described in the next section.

2.1.2 The PIC cycle

After this general overview, let us examine in more details how the fields and the positions and
momenta of the macroparticles are advanced in time. This is done by recursively updating the
macroparticles quantities (xm, pm) and the fields (E, B), over successive timesteps. One single
update of xm, pm, E, B (over one timestep) is know as a PIC cycle. This section describes the
operations involved in a PIC cycle.

Let us thus assume, as a starting configuration for the PIC cycle, that the fields Bn−1/2,
En and Bn+1/2 are known on the whole grid, as well as the positions of the macroparticles at
time n∆t (denoted as xnm) and their momenta at time (n − 1/2)∆t (denoted as pn−1/2

m ). This
configuration is represented in the following sketch. (Integer times are represented as white
dots, while half-integer times are represented in black ; the quantities that are unknown yet are
represented in gray.)

1It is sometimes said that the macroparticle method solves the Vlasov equation ∂tf + v ·∇xf + q(E + v ×
B) ·∇pf = 0. Here the expression of f corresponding to e.g. one macroparticle is f = Nmg(x− xm)δ(p− pm),
where the evolution of pm and xm are given by eq. (2.3). Strictly speaking, this is not an exact solu-
tion of the Vlasov equation, precisely because of the approximation that g does not change in time and
that the distribution in p remains a delta-function. It is nonetheless a solution of the reduced equation∫
U(g)

dx [ ∂tf + v ·∇xf + q(E + v ×B) ·∇pf ] = 0, where U(g) represents the bounded support of g.
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Figure 2.1: Representation of the Yee lattice. The table shows at which position each component
of the fields is defined (i,j,k and n are integers ; ∆x, ∆y, ∆z are the spatial steps of the grid).
The above sketch represents one grid cell, and the positions of the fields within it.
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Let us see how the same configuration can be obtained at the next iteration (n → n + 1). In
other words, we will examine how the unknown quantities pn+1/2

m , xn+1
m , En+1 and Bn+3/2 can

be obtained from the known quantities pn−1/2
m , xnm, B

n−1/2, En and Bn+1/2. The successive
steps that are involved in this process are represented in fig. 2.2.

a) Interpolation (see fig. 2.2a). As explained in the previous section, the equations of
motion for the macroparticles require the knowledge of Ē(xm) and B̄(xm), which are defined by
eq. (2.4). These fields have to be interpolated from the grid, and therefore eq. (2.4) is replaced
by its discretized version

Ē
n
(xnm) =

∑
i,j,k

[ Si+ 1
2
,j,k(x

n
m)Ex

n
i+ 1

2
,j,k
ex

+ Si,j+ 1
2
,k(x

n
m)Ey

n
i,j+ 1

2
,k
ey

+ Si,j,k+ 1
2
(xnm)Ez

n
i,j,k+ 1

2

ez ] (2.6)

B̄
n
(xnm) =

∑
i,j,k

[ Si,j+ 1
2
,k+ 1

2
(xnm)

1

2

(
Bx

n+ 1
2

i,j+ 1
2
,k+ 1

2

+Bx
n− 1

2

i,j+ 1
2
,k+ 1

2

)
ex

+ Si+ 1
2
,j,k+ 1

2
(xnm)

1

2

(
By

n+ 1
2

i+ 1
2
,j,k+ 1

2

+By
n− 1

2

i+ 1
2
,j,k+ 1

2

)
ey

+ Si+ 1
2
,j+ 1

2
,k(x

n
m)

1

2

(
Bz

n+ 1
2

i+ 1
2
,j+ 1

2
,k

+Bz
n− 1

2

i+ 1
2
,j+ 1

2
,k

)
ez ] (2.7)

The interpolation factors Si′,j′,k′ (which are also known as shape factors) are defined by

Si′,j′,k′(x
n
m) ≡

∫ (i′+ 1
2

)∆x

(i′− 1
2

)∆x
dx

∫ (j′+ 1
2

)∆y

(j′− 1
2

)∆y
dy

∫ (k′+ 1
2

)∆z

(k′− 1
2

)∆z
dz g(x− xnm) (2.8)

where i′,j′,k′ can be integers or half-integers.2 In eqs. (2.6) and (2.7), the sums over i,j,k
correspond to sums over all grid cells. However, because g has a bounded support, the shape
factors are zero for most of the cells. In fact, the support of g typically spans a few grid cells, and
thus only the grid cells that are in the immediate neighborhood of the macroparticles contribute
to the interpolation. There are canonical expressions for g and S (e.g. [Hockney and Eastwood,
1988]), for which these non-zero contributions involve one neighbor (nearest-grid-point method,
or NGP), two neighbors (cloud-in-cell, or CIC) or three neighbors (triangular-shaped-cloud, or

2Equations (2.6) and (2.7) can be derived from eq. (2.4) by considering that the fields E and B are piecewise
constant in between the grid points.
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b) Discretized equations of motion
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d) Discretized Maxwell equations
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Figure 2.2: Schematic representation of the different steps within a PIC cycle. See paragraphs
a), b), c) and d) in the text for an explanation.
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TSC) along each dimension3. The choice of the interpolation method is a trade-off between
numerical noise and computational cost. An interpolation involving many neighbors (such as
TSC) typically reduces the noise, but requires of course more operations.

Note that the leap-frog algorithm for the equations of motion requires the knowledge of B̄
at the integer time n∆t, whereas B is known at half-integer times on the grid. For this reason,
B also needs to be interpolated in time. This is done by simply averaging Bn+1/2 and Bn−1/2

in eq. (2.7).

b) Advancing the macroparticles in time (see fig. 2.2b). Once the fields Ēn and B̄n are
known, the equations of motion can be used to obtain pn+1/2 from pn−1/2. Several choices can
be made regarding the discretization of the equation of motion eq. (2.2). The most common4

choice is known as the Boris pusher [Boris, 1970; Hockney and Eastwood, 1988] and reads:

p
n+1/2
m − pn−1/2

m

∆t
= qm

[
Ē
n

+

(
p
n+1/2
m + p

n−1/2
m

2γn

)
× B̄n

]
γn ≡

√√√√1 +

(
p
n−1/2
m + p

n+1/2
m

2mmc

)2

(2.9)
Notice that this equation is implicit (pn+1/2

m appears on both sides of the equation). Therefore,
in practice, a specific algorithm is needed in order to extract pn+1/2

m (see [Boris, 1970; Hockney
and Eastwood, 1988]). Once pn+1/2

m is known, xn+1
m can be directly obtained from xnm, through

the discretized equation
xn+1
m − xnm

∆t
=

pn+1/2√
m2
m + (p

n+1/2
m )2/c2

(2.10)

c) Projection (see fig. 2.2c). The Maxwell equations require the current and charge density
to be known on the grid, at time (n + 1/2)∆t and (n + 1)∆t respectively. This is done by
projecting the charge and currents of the macroparticles onto the grid, through eq. (2.5). In the
case of the charge density, ρn+1 is obtained by calculating the average of ρ (from eq. (2.5)) over
each grid cell:

ρn+1
i,j,k =

1

∆x∆y∆z

∫ (i+ 1
2

)∆x

(i− 1
2

)∆x
dx

∫ (j+ 1
2

)∆y

(j− 1
2

)∆y
dy

∫ (k+ 1
2

)∆z

(k− 1
2

)∆z
dz ρ(x) =

1

∆x∆y∆z

∑
m

NmqmSi,j,k(x
n+1
m )

3More precisely, Si′,j′,k′(x) is typically of the form Si′,j′,k′(x) = s(x−i
′∆x

∆x
) s( y−j

′∆y
∆y

) s( z−k
′∆z

∆z
) where:

s(u) =

{
1 if |u| < 1/2
0 otherwise

for NGP s(u) =

{
1− |u| if |u| < 1
0 otherwise

for CIC

s(u) =


3
4
− u2 if |u| < 1/2

1
2

(
3
2
− |u|

)2
if 1/2 < |u| < 3/2

0 otherwise

for TSC

4Another popular choice is the Vay pusher [Vay, 2008], which reads:

pn+1/2
m − pn−1/2

m

∆t
= qm

[
Ē
n

+
1

2

(
pn+1/2
m

γn+1/2
+
pn−1/2
m

γn−1/2

)
× B̄n

]
γn±1/2 ≡

√√√√1 +

(
p
n±1/2
m

mmc

)2

The Boris pusher intrinsically ensures that the kinetic energy of the particle remains constant when no electric
field is present (i.e. when E = 0 and B 6= 0), while the Vay pusher ensures that there is no spurious force on the
particle when the electric and magnetic fields compensate (i.e. when E + v ×B = 0).
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where the shape factor Si,j,k is again given by eq. (2.8). In principle, a similar averaged expression
could be used to obtain Jn+1/2 on the grid. However, such an expression would not automatically
satisfy the discretized equation of continuity (i.e. the discretized version of ∂tρ+ ∇ · J = 0):

ρn+1
i,j,k − ρ

n
i,j,k

∆t
+
Jx

n+ 1
2

i+ 1
2
,j,k
− Jx

n+ 1
2

i− 1
2
,j,k

∆x
+
Jy
n+ 1

2

i,j+ 1
2
,k
− Jy

n+ 1
2

i,j− 1
2
,k

∆y
+
Jz
n+ 1

2

i,j,k+ 1
2

− Jz
n+ 1

2

i,j,k− 1
2

∆z
= 0 (2.11)

For this reason, Jn+ 1
2 is instead commonly obtained by the Esirkepov algorithm [Esirkepov,

2001], which intrinsically satisfies eq. (2.11).

d) Updating the fields Knowing Jn+1/2 allows En+1 to be determined from En. This is
done through the discretized Maxwell-Ampère equation.
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The numerical operators Dx, Dy, Dz are defined (for any field F ) by

(DxF )i′,j′,k′ =
Fi′+ 1

2
,j′,k′ − Fi′− 1

2
,j′,k′

∆x
(2.15)
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(2.16)
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2
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2

∆z
(2.17)

where i′, j′ and k′ can be integers or half-integers. Using the same notations, the discretized
version of the Maxwell-Faraday equation is
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2
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When replacing n by n + 1, eqs. (2.18) to (2.20) can be used to obtain Bn+3/2 from Bn+1/2

and En+1. In the above discretized equations, all the numerical derivatives are time-centered
and space-centered, and therefore they are second-order accurate. This is indeed the reason why
the fields were defined at staggered positions in space and time, in the Yee lattice (fig. 2.1).
Notice also that, when calculating En+1 and Bn+3/2, only two of the four Maxwell equations
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are used. However, when B is updated with eqs. (2.12) to (2.14), its numerical divergence is
automatically conserved. Therefore, if this divergence is initially zero, it remains zero throughout
the simulation:

(DxB
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2
x )i+ 1

2
,j+ 1

2
,k+ 1

2
+ (DyB

n+ 1
2

y )i+ 1
2
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2

z )i+ 1
2
,j+ 1

2
,k+ 1

2
= 0

Thus the discretized Maxwell equation corresponding to ∇ · B = 0 is automatically satisfied.
The remaining discretized Maxwell equation reads

(DxE
n
x )i,j,k + (DyE

n
y )i,j,k + (DzE

n
z )i,j,k −

ρni,j,k
ε0

= 0 (2.21)

Under the condition that the discretized equation eq. (2.11) is satisfied, it can be shown that
updating E preserves the left-hand side of the above equation. Thus, if the numerical divergence
of E is initially equal to ρ, then eq. (2.21) is automatically satisfied throughout the simulation.
Again, this occurs only under the condition that eq. (2.11) is satisfied, which motivates the use
of the Esirkepov algorithm. When other algorithms are used to calculate Jn+1/2, then additional
corrections have to be applied to E so as to explicitly impose eq. (2.21). (The corresponding
correcting algorithms are known as Poisson correctors.)

2.1.3 Calder Circ, a quasi-cylindrical PIC code

Although full PIC codes are powerful tools, which capture a wide range of physical phenomena,
they also require large computational ressources. This is partly due to the use of a 3D Cartesian
grid, which leads to a very large number of grid cells. (Typical 3D simulations of laser-wakefield
acceleration require ∼ 106–108 grid cells.) For this reason, these algorithms need to be highly
parallelized, and high-resolution simulations can only be run on costly large-scale computer fa-
cilities. However, when the laser pulse is cylindrically-symmetric, it is possible to take advantage
of the symmetry of the problem to reduce the computational cost of the algorithm. This idea
was implemented by Lifschitz et al. [2009] at LOA, and resulted in the PIC code Calder Circ.
This section explains the principle of this reduced PIC code.

Azimuthal decomposition In order to explain the principle of Calder Circ, let us consider
the fieldsE,B, J and ρ in cylindral coordinates (r, θ, z). By definition these fields are 2π-periodic
in θ and therefore they can be expressed as a Fourier series:

F (r, θ, z) = Re

[ ∞∑
`=0

F̃`(r, z)e
−i`θ

]
(2.22)

with F̃` = C`

∫ 2π

0
dθ F (r, θ, z)ei`θ and

{
C0 = 1/2π
C` = 1/π for ` > 0

(2.23)

where F represents any of the quantities Er, Eθ, Ez, Br, Bθ, Bz, Jr, Jθ, Jz are ρ, and where the
F̃` are the associated Fourier components (` is the index of the corresponding azimuthal mode).
In the general case, this azimuthal decomposition does not simplify the problem, since an infinity
of modes have to be considered in eq. (2.22). However, in the case of a cylindrically-symmetric
laser pulse, only the very first modes have non-zero components. For instance, the wakefield
is represented exclusively by the mode ` = 0. (This is because the quantities Er, Eθ, Ez, Br,
Bθ, Bz, Jr, Jθ, Jz and ρ associated with the wakefield are independent of θ.) On the other
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hand, the field of the laser pulse does depend on θ, in cylindrical coordinates. For example, for a
cylindrically-symmetric pulse propagating along z and polarized along eα = cos(α)ex+sin(α)ey:

E = E0(r, z)eα

= E0(r, z)[ cos(α)(cos(θ)er − sin(θ)eθ) + sin(α)(sin(θ)er + cos(θ)eθ) ]

= Re[ E0(r, z)eiαe−iθ ]er + Re[ −iE0(r, z)eiαe−iθ ]eθ

Here the amplitude E0 does not depend on θ because the pulse was assumed to be cylindrically
symmetric. In this case, the above relation shows that the fields Er and Eθ of the laser are
represented exclusively by the mode ` = 1. A similar calculation shows that the same holds for
Br and Bθ. On the whole, only the modes ` = 0 and ` = 1 are a priori necessary to model
laser-wakefield acceleration. This is the basic idea of Calder Circ. In this algorithm, the
infinite sum in eq. (2.22) is truncated at a chosen `max. In principle, `max = 1 is sufficient for
laser-wakefield acceleration. However, `max is kept as a free parameter in the algorithm, in order
to verify that higher modes are negligible, as well as to allow for less-symmetric configurations.
Because Calder Circ is able to take into account the modes with ` > 0, it is said to be quasi-
cylindrical (in contrast to cylindrical codes, which assume that all fields are independent of θ,
and thus only consider the mode ` = 0).

Discretized Maxwell equations When the Fourier expressions of the fields are injected
into the Maxwell equations (written in cylindrical coordinates), the different azimuthal modes
decouple. In this case, the Maxwell-Ampère and Maxwell-Faraday equations – which are needed
to update the fields in the PIC cycle – can be written separately for each azimuthal mode `:

∂B̃r,`
∂t

=
i`

r
Ẽz,` +

∂Ẽθ,`
∂z

∂B̃θ,`
∂t

= −
∂Ẽr,`
∂z

+
∂Ẽz,`
∂r

∂B̃z,`
∂t

= −1

r

∂(rẼθ,`)

∂r
− i`

r
Ẽr,`

1

c2

∂Ẽr,`
∂t

= − i`
r
B̃z,` −

∂B̃θ,`
∂z

− µ0J̃r,`

1

c2

∂Ẽθ,`
∂t

=
∂B̃r,`
∂z

−
∂B̃z,`
∂r

− µ0J̃θ,`

1

c2

∂Ẽz,`
∂t

=
1

r

∂(rB̃θ,`)

∂r
+
i`

r
B̃r,` − µ0J̃z,`

In order to discretize these equations, each azimuthal mode is represented on a two-dimensional
grid. (The two dimensions correspond to r and z.) Figure 2.3 summarizes the positions of the
different fields within one grid cell, as well as the corresponding notations for these fields. Using
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Figure 2.3: Representation of the lattice in Calder Circ. The table shows at which position
each component of the fields is defined (j,k and n are integers ; ∆r and ∆z are the spatial steps
of the grid). The above sketch represents one grid cell, and the positions of the fields within it.
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these notations, the discretized Maxwell-Ampère and Maxwell-Faraday equations are
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The numerical operator Dr and Dz are defined by

(DrF )j′,`,k′ =
Fj′+ 1

2
,`,k′ − Fj′− 1

2
,`,k′

∆r

(DzF )j′,`,k′ =
Fj′,`,k′+ 1

2
− Fj′,`,k′− 1

2

∆z

where j′ and k′ can be integers or half-integer. Notice that these discretized Maxwell equations
are not valid on-axis (i.e. for j = 0), due to singulatities in some of the terms. Therefore, on
the axis, these equations are replaced by specific boundary conditions, which are based on the
symmetry properties of the fields (see Lifschitz et al. [2009]).

In a 3D Cartesian PIC code, there is typically∼100 grid points along each tranverse dimension
(x and y). In the case of Calder Circ, this is replaced by ∼100 grid points along the r direction,
for each of the azimuthal modes (usually only the two modes ` = 0 and ` = 1). The total number
of field variables is therefore ∼50 times lower in Calder Circ than in a 3D PIC code. This also
implies that the computational ressources needed for a Calder Circ simulation are typically
one order of magnitude below those needed by a 3D PIC code.

Interaction with the macroparticles Although the Maxwell equations are integrated in
cylindrical coordinates, the motion of the particles is still integrated in Cartesian coordinates.
Thus the discretized equations of motion eqs. (2.9) and (2.10) are unchanged. On the other
hand, the projection and interpolation operations have to be modified, so as to take into account
the specific representation of the fields in Calder Circ. In order to facilitate these operations,
the shape function of the macroparticles g(x) is assumed to be of the form g(x) = g̃(r, z)δ(θ).
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In this case, the interpolation operations read

Ē
n
(xnm) = Re
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)
where the sums run over the grid points and over the azimuthal modes. Here the interpolation
factors S̃j′,k′ are defined by

S̃j′,k′(rm, zm) ≡
∫ (j′+ 1

2
)∆r

(j′− 1
2

)∆r
r dr

∫ (k′+ 1
2

)∆z

(k′− 1
2

)∆z
dz g̃(r − rm, z − zm).

Similarly, the charge density of the macroparticles has to be projected onto the grid points and
the azimuthal modes (using eq. (2.23)):

ρ̃j,`,k =
1

2πj∆r2∆z

∑
m

qmNmC`e
i`θmS̃j,k(rm, zm)

where C` is defined in eq. (2.23). As in the case of 3D PIC codes, a similar formula can be
used to calculate J̃ on the grid, but then it necessarily entails the use of a Poisson corrector.
Alternatively, the Esirkepov algorithm (when adapted to a quasi-cylindrical grid [Davidson et al.,
2014]) can be used to project the currents. The Poisson corrector of Calder Circ was developed
by Agustin Lifschitz at LOA, while the Esirkepov algorithm was recently adapted to Calder
Circ by Xavier Davoine at CEA.

The assumption that motivates Calder Circ (i.e. that only the modes ` = 0 and ` = 1 are
non-zero) was tested by varying `max for the same simulation [Lifschitz et al., 2009]. As expected,
modifying `max barely changes the results as long as `max ≥ 1, and the fields of the modes ` > 1
are almost zero. These simulation results were also compared with those of a full 3D Cartesian
code, and an excellent agreement was found. Thus Calder Circ appears to be a good solution
for cylindrically-symmetric situation, since it requires only limited computational ressources but
provides excellent physical accuracy. In particular, contrary to 2D Cartesian codes, Calder
Circ correctly captures 3D effects like diffraction and self-focusing.5

5In 2D, the intensity of a laser pulse evolves as I ∝ 1/w instead of I ∝ 1/w2, where w is the waist of the laser.
Thus any phenomenon that involves a large change in w (like diffraction or self-focusing) will lead to unphysical
intensity values, in 2D simulations.
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2.1.4 Numerical dispersion relation in vacuum

Although both the Cartesian and quasi-cylindrical PIC algorithms are second-order accurate
in ∆t, ∆x, ∆y, ∆z, the discretization inevitably introduces numerical artifacts. One of these
artifacts is numerical dispersion. In order to illustrate this concept, let us consider the discretized
Maxwell equations in vacuum (J = 0, ρ = 0). In the case of 3D Cartesian PIC codes, the
discretized equations eqs. (2.12) to (2.14) and (2.18) to (2.21) can be combined into propagation
equations.
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The solutions of these equations are plane waves of the form Ex, Ey, Ez ∝ ei(kxx+kyy+kzz−iωt)

with (kx, ky, kz) ∈ [− π
∆x ,

π
∆x ] × [− π

∆y ,
π

∆y ] × [− π
∆z ,

π
∆z ] 6. However, instead of satisfying the

physical dispersion relation ω2 = c2(k2
x + k2

y + k2
z), these waves satisfy the numerical dispersion

relation
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(2.24)

(This relation can be readily obtained by injecting the form ei(kxx+kyy+kzz−iωt) into the discretized
equations of propagation.) This dispersion relation reduces to the physical one for ω∆t� 1 and
kx∆x, ky∆y, kz∆z � 1, but can considerably depart from it otherwise.

One consequence of the numerical dispersion relation eq. (2.24) is that ∆t cannot be chosen
arbitrarily high. If ∆t is so high that 1/(c2∆t2) < 1/∆x2+1/∆y2+1/∆z2, then eq. (2.24) implies
that ω is a purely imaginary number for k = π

∆xex + π
∆yey + π

∆zez. This in turn entails that
the corresponding solution of the form eik·x−iωt can grow exponentionally in time. In practice,
this leads to a numerical instability in the simulations. In order to avoid this instability, ∆t
must be small enough that 1/(c2∆t2) ≥ 1/∆x2 + 1/∆y2 + 1/∆z2, a condition known as the
Courant-Friedrichs-Lewy (CFL) condition.

Another consequence of the numerical dispersion relation is that the vacuum phase velocity
vφ of the electromagnetic waves differs from c in the simulations. According to eq. (2.24),
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where k =
√
k2
x + k2

y + k2
z . It can be shown7 that this expression implies vφ ≤ c. Thus in the

simulations, the electromagnetic waves propagate with a phase velocity lower than c in vacuum.
6The highest wavectors that the simulation grid can support are kx = π/∆x, ky = π/∆y, kz = π/∆z. For this

reason, the wavenumbers k that are considered are always in the domain [− π
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7This can be shown by remarking that the function x → sin2(
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2.2. Numerical Cherenkov radiation in LWFA simulations

As will be shown in the next section, this numerical artifact can have a serious impact on the
results of the simulations.

In the case of Calder Circ, the discretized equations of propagation are more complicated
than in the Cartesian case, and the complete set of solutions (or eigenmodes) of these equations
could not be found analytically. In particular, plane waves of the form ei(kxx+kyy+kzz−iωt) are not
solutions of the discretized Maxwell equations (essentially because their expression does not cor-
respond to one single azimuthal mode). The only exceptions are the plane waves that propagate
purely along the z axis (kx = ky = 0). These waves can be written as Er = Re[ E0e

ikzz−iωt−iθ ],
Eθ = Re[ −iE0e

ikzz−iωt−iθ ], Br = Re[ iE0/c × eikzz−iωt−iθ ], Bθ = Re[ E0/c × eikzz−iωt−iθ ],
Ez = Bz = 0, and therefore they are entirely contained in the mode ` = 1. These expressions
are indeed solutions of the discretized Maxwell equation, provided that ω and kz satisfy

1

c∆t
sin
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ω∆t

2

)
=

1

∆z
sin

(
kz∆z

2

)
.

Thus the quasi-cylindrical algorithm of Calder Circ is also subject to numerical dispersion.
In fact, the above equation shows that the waves that propagate purely along the z axis (kx = 0,
ky = 0) have the same dispersion relation in Calder Circ and in 3D Cartesian codes.

2.2 Numerical Cherenkov radiation in LWFA simulations

The fact that the phase velocity is spuriously lower than c in the simulations can sometimes
have a substantial impact. In particular, it can lead to numerical Cherenkov radiation. In this
section, we will see that numerical Cherenkov radiation can have important consequences for
LWFA simulations.

2.2.1 Physical and numerical Cherenkov radiation

Numerical Cherenkov radiation is related to the well-known Cherenkov effect [Jackson, 1998].
The Cherenkov effect can occur whenever a relativistic charged particle travels through a medium
in which the phase velocity of light vφ is lower than c. In this case, if the particle travels faster
than this phase velocity (v > vφ), it will emit a characteristic radiation. The exact expression of
this radiation can be calculated analytically [Jackson, 1998], but its main angular and spectral
features can by obtained simply from the resonance condition

ω = v · k (2.25)

where v is the velocity of the particle. More specifically, when decomposing the emitted radiation
into waves of the form eik·x−iωt, the waves with the highest amplitude will be those which
satisfy eq. (2.25). Qualitatively, this resonance condition corresponds to the particle remaining
constantly in phase with the emitted wave (k · x− ωt = const.).

The condition eq. (2.25) can only be met if ω < |v||k|, and thus we find again the necessary
condition v > vφ. Notice that this necessary condition can be met in dielectric media (such as air
or water), but not in vacuum (vφ = c) and not in plasmas (vφ > c). In the case of laser-wakefield
acceleration, the accelerated bunch is relativistic, but it is surrounded either by a plasma (in
the linear regime) or by an effective vacuum (in the blow-out regime, as the ions of the cavity
have a negligible impact on the propagation of light). Thus the Cherenkov effect cannot occur
in situations of laser-wakefield acceleration. However, it can occur in numerical simulations of
laser-wakefield acceleration, due to numerical dispersion (vφ ≤ c). In this case, the Cherenkov
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Chapter 2. A Cherenkov-free PIC algorithm

effect is an unphysical numerical artifact, and it is therefore known as the numerical Cherenkov
effect.

The above considerations are illustrated in fig. 2.4, in the case of a relativistic particle prop-
agating along the z axis in vacuum. In this figure, the yellow and red surfaces represent the
physical dispersion relation (ω2 = c2k2 ; left panel) and numerical dispersion relation (eq. (2.24)
; right panel). (In principle, ω should be plotted as a function of kx, ky and kz but this would
require 4D visualization. For this reason, we restricted ourselves to ky = 0 in fig. 2.4 and plot-
ted ω as a function of kx and kz only.) The resonance condition eq. (2.25) is represented as
a translucid plane in fig. 2.4. According to the above analysis, resonant Cherenkov radiation
appears wherever the plane and the surfaces intersect. In the case of the physical dispersion
relation (left panel), they do not intersect and thus we find again that, physically, there is no
Cherenkov radiation in vacuum. On the other hand, these surfaces do intersect in the case of the
numerical dispersion relation, thereby leading to numerical Cherenkov radiation. Importantly,
this figure shows that the intersection occurs only for certain wavevectors k. The exact equation
that these wavevectors satisfy can be found by combining eqs. (2.24) and (2.25).
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The corresponding pattern in k space can be considered as a signature of numerical Cherenkov
radiation. This fact will be used in the next section to identify Cherenkov radiation in the
simulations.

Figure 2.4: Representation of the numerical Cherenkov effect. Left panel: physical dispersion
relation as a function of kx and kz, for ky = 0. Right panel: Numerical dispersion relation as a
function of kx and kz, for ky = 0, ∆x = ∆z and ∆t = 0.5∆z. The translucid plane represents
the resonance condition eq. (2.25). (Adapted from Xu et al. [2013].)

Numerical Cherenkov radiation is a known artifact in the PIC community [Godfrey, 1974].
In particular, it leads to a dramatic numerical instability in flowing-plasma simulations (i.e.
simulations in which the whole plasma is moving at a relativistic speed) [Xu et al., 2013]. These
simulations include for instance simulations of astrophysical shocks (e.g. Spitkovsky [2008];
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Keshet et al. [2009]), as well as boosted-frame simulations [Vay, 2007; Martins et al., 2010].
However, numerical Cherenkov radiation is less conspicuous in standard simulations of LWFA,
in which only a small part of the plasma (the injected bunch) has an ultra-relativistic speed. For
this reason, the numerical Cherenkov effect was not suspected to have a significant impact for
LWFA up to now.

2.2.2 Impact in LWFA simulations

In order to illustrate the impact of this artifact in standard LWFA simulation, let us consider
a typical simulation of self-injection. In this simulation, a 1.5 J laser pulse with 35 fs FWHM
duration is focused in a plasma of density 1.0 × 1019 cm−3. The laser self-focuses and leads to
the self-injection and acceleration of a 250 pC bunch. I ran the simulation with the 3D Cartesian
code Calder 3D [Lefebvre et al., 2003], using a resolution ∆z = 0.032µm, ∆x = ∆y = 0.25µm
and c∆t = 0.96∆z8.

Figure 2.5 is a snapshot of the simulation box after 250 µm of acceleration. The overall
picture of the bubble (left panel) exhibits nothing unusual. However, zooming on the bunch
and rescaling the fields (right panel) reveals that the bunch is surrounded by a high-frequency
radiation. The typical field of this radiation (∼ 1 TV.m−1) is much lower than that of the laser
(∼ 15 TV.m−1), which explains that it could not be seen on the left panel of fig. 2.5. Notice
also that the right panel shows Ex − cBy instead of Ex. This is done in order to cancel the
strong space-charge field that would otherwise dominate the figure9. The quantity Ex − cBy is
interesting also because it corresponds approximatively to the force felt by an ultrarelativistic
electron propagating along the z axis (Fx = −e(Ex − vBy) ≈ −e(Ex − cBy)).

Figure 2.5: Snapshot of the Calder 3D simulation, after 250 µm of acceleration. Left panel:
Representation of the electron density (blue) and the electric field (orange, superimposed with
partial transparency). Right panel: Representation of the fields in the vicinity of bunch. The
shaded areas correspond to zones of high electron density (here mainly the electron bunch and
the back of the sheath).

8∆z is typically chosen to be small so as to resolve the wavelength of the laser (λ = 0.8µm). ∆x and ∆y can
be larger, since the characteristic lengths that need to be resolved transversely are much larger than λ.

9For a relativistic beam, the space charge electric field Esp and the self-generated magnetic field Bsp cancel
each other almost entirely – in the sense that |Esp + v ×Bsp| � |Esp|. [Jackson, 1998].
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Chapter 2. A Cherenkov-free PIC algorithm

Although the observed radiation is less intense than the laser, it has nonetheless a significant
amplitude. The fact that it directly surrounds the bunch suggests that it may be due to the
numerical Cherenkov effect. In order to confirm this hypothesis, the 2D spatial Fourier transform
of Ex − cBy is represented in fig. 2.6 (orange and dark tones). The dashed blue line represent
the wavenumbers k that satisfy the equation
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2
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(2.26)

with v = 0.9999c, i.e. the resonant wavenumbers k of the numerical Cherenkov effect. (The
double-parabola shape of the dashed curves is directly related to the shape of the intersection
in the right panel of fig. 2.4.) As can be seen, the wavevectors predicted by the above equation
correspond exactly to those which have a substantial amplitude in the simulation. This confirms
that the high-frequency fields of the simulation are due to the numerical Cherenkov effect, and
thus that they are unphysical.
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Figure 2.6: Amplitude of the Fourier transform of the fields Ex − cBy corresponding to fig. 2.5.
The blue dashed curves materialize the solutions of eq. (2.26). The two black spots at kz =
±0.1π/∆z correspond to the laser pulse.

Simultaneously with the emission of this radiation, the emittance of the bunch is observed
to grow considerably during the acceleration. This is represented in fig. 2.7. In this figure,
only the electrons in the quasimonoenergetic peak of the spectrum are selected (left panel),
and their emittance is plotted as a function of the acceleration distance (right panel). The
growth of emittance is considerable, and reaches an average slope of 6 mm.mrad per mm of
acceleration. Here the accelerated electrons are in a fully-evacuated cavity, characterized by linear
focusing fields, and thus this growth of emittance could only be explained either by the energy-
spread or by the space-charge effects (see section 1.3). However, when evaluating10 these effects,

10The impact of the finite energy-spread on the emittance was evaluated by calculating ∆ε2x =∫
dt 2(〈p2

x〉〈xpx/γ〉 − 〈p2
x/γ〉〈xpx〉)/m3c2 for the macroparticles of the bunch, throughout the simulation (see

section 1.3 ; the brackets denote an average over the macroparticles). The impact of space-charge was evalu-
ated by using eq. (1.45), with the bunch parameters obtained in the PIC simulation: I = 130 kA, γ ∼ 200,√
〈x2〉 = 0.5µm.
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2.2. Numerical Cherenkov radiation in LWFA simulations

the predicted increase in emittance is ∆ε ≈ 0.08 mm.mrad for the energy-spread effects and
∆ε ∼ 10−3 mm.mrad for space-charge effects – which is much lower than the increase observed
in fig. 2.7 (∆ε ≈ 2 mm.mrad). Also, the observed growth of emittance could potentially be
explained by the interaction of the electrons with the back of the laser pulse [Németh et al.,
2008]. However, the laser is linearly polarized along the x direction in this simulation, and the
fact that εx and εy grow at the same rate is in contradiction with this potential explanation.
Thus the observed spectacular growth of emittance appears to be unphysical.
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Figure 2.7: Left panel: Energy spectrum in the Calder 3D simulation, after 400 µm of accel-
eration. The shaded area corresponds to the selected part of the bunch. Right panel: Emittance
of the selected electrons in the x and y directions, as a function of the acceleration distance.

The same phenomena – emission of numerical Cherenkov radiation and unphysical growth of
emittance – are observed in simulations run with the quasi-cylindrical code Calder Circ. Here
this is illustrated by a simulation of a somewhat different situation than in the case of Calder
3D. A 1 J laser pulse with 30 fs FWHM duration is focused into a gas jet having a density of
2.6 × 1018 cm−3. The injection is triggered by a colliding counterpropagative laser pulse, and
leads to the acceleration of a 25 pC bunch. The simulation was run in Calder Circ with two
azimuthal modes (` = 0 and ` = 1) and with ∆z = 0.008µm, ∆r = 0.16µm and c∆t = 0.96∆z.
(Because Calder Circ considerably reduces the computional cost of a simulation compared to
Calder 3D, it was possible to use a much smaller ∆z.)

Figure 2.8 displays a snapshot of the simulation. Again a strong high-frequency radiation
is seen to surround the bunch. In parallel, fig. 2.9 shows the evolution of the emittance, for a
selected fraction of the bunch. The emittance is also observed to grow, although with a lower
slope than in the 3D simulation.

Importantly, both the emission of numerical Cherenkov radiation and the unphysical growth
of emittance depend largely on the charge density of the bunch. (These effects are virtually
absent for bunches with less than 20 pC of charge.) I thus hypothesized that both phenomena are
related, i.e. that the relatively strong field of the numerical Cherenkov radiation (∼ 1 TV.m−1)
scatters the electrons transversely and leads to a spurious growth of emittance. In order to
confirm this hypothesis, I modified the PIC codes Calder 3D and Calder Circ so as to
prevent the numerical Cherenkov effect.
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Chapter 2. A Cherenkov-free PIC algorithm

Figure 2.8: Snapshot of the Calder Circ simulation, after 300 µm of acceleration. Left panel:
Representation of the electron density (blue) and the electric field (orange, superimposed with
partial transparency). Right panel: Representation of the fields in the vicinity of bunch. The
shaded areas correspond to zones of high electron density.
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Figure 2.9: Left panel: Energy spectrum in the Calder Circ simulation, after 450 µm of
acceleration. The shaded area corresponds to the selected part of the bunch. Right panel:
Emittance of the selected electrons in the x and y directions, as a function of the acceleration
distance.

2.3 A proposed Cherenkov-free algorithm

As mentioned in section 2.2.1, numerical Cherenkov is a known artifact in the case of flowing-
plasma simulations, and a number of solutions have already been developed in this context.
However, these solutions are not well adapted in the case of standard LWFA simulations.

For instance, one solution is to use digital filtering [Birdsall and Langdon, 2004] in order to
heavily damp the spurious high-frequency fields [Greenwood et al., 2002, 2004; Vay et al., 2011].
However, any high-frequency digital filter inevitably damps the lower-frequency fields as well –
albeit by a lesser amount. In simulations of laser-wakefield acceleration, these lower-frequency
fields include for instance the laser pulse, and thus digital filtering can result in an unphysical
progressive damping of the laser – with dramatic consequences for the physics of the simulation.
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Another solution consists in modifying the discretization of the Maxwell equation, so as to
alter the corresponding numerical dispersion relation. For instance, Pukhov [1999]; Karkkainen
et al. [2006] adapted the discretization in such a way that the CFL condition is modified and
allows to choose c∆t = ∆z. In this case, the waves propagating along the z axis verify vφ = c in
vacuum and as a result the numerical Cherenkov effect can potentially be eliminated. However,
Vay et al. [2011] showed that chosing c∆t = ∆z leads to the accumulation of numerical noise
at the Nyquist frequency kz = π/∆z. This numerical noise can rapidly grow to intolerable
levels, and again requires digital filtering. Finally, Greenwood et al. [2004] developed a set
of numerical schemes which can eliminate the numerical Cherenkov effect without requiring
c∆t = ∆z. In principle, these schemes are not subject to Nyquist noise and they could be a
good solution for LWFA simulations. Yet these schemes were developed only for an isotropic
Cartesian grid (∆x = ∆y = ∆z), whereas LWFA simulations are typically run on anisotropic
grids (∆z < ∆x,∆y).

Thus in sections 2.3.1 and 2.3.2, I propose two numerical schemes that are similar to that of
Greenwood et al. [2004], but are adapted to an anisotropic Cartesian grid (section 2.3.1) and to a
quasi-cylindrical grid (section 2.3.2). These numerical schemes efficiently suppress the numerical
Cherenkov effect and lead to less Nyquist noise than the algorithms of Pukhov [1999]; Karkkainen
et al. [2006].

2.3.1 Presentation of the algorithm for a 3D Cartesian grid

In the proposed scheme, the discretization of the Maxwell equations is altered. The fields are still
defined at the same position as in the Yee lattice, but the discretization of the space derivatives in
the Maxwell-Faraday equation is modified. (The discretization of the Maxwell-Ampère remains
however unchanged11.) The corresponding discretized equations thus read
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11Modifying the Maxwell-Ampère equation would impose to also modify the Esirkepov algorithm, which
indeed relies on this Maxwell equation in order to ensure ∇ · E = ρ/ε0. However, modifying the Esirke-
pov algorithm can be quite intricate, and for this reason the Maxwell-Ampère equation is left unchanged.
Notice also that, because the Maxwell-Faraday equation is modified in the proposed scheme, the condition
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where Dx, Dy and Dz represent the standard space-centered operators defined in eqs. (2.15)
to (2.17), but where D∗x, D∗y and D∗z represent modified operators which are defined by
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and by similar relations for D∗x and D∗y. Thus these modified operators correspond to a weighted
sum over the neighboring grid points, with weights given by the α, β and δ coefficients. These
neighboring fields and their weights are represented graphically in fig. 2.10. With these defini-
tions, the numerical operators are second-order accurate in ∆x, ∆y and ∆z, provided that the
coefficients satisfy the condition

αx + 2βx,y + 2βx,z + 3δx = 1
αy + 2βy,x + 2βy,z + 3δy = 1
αz + 2βz,x + 2βz,y + 3δz = 1

Thus, once the β and δ coefficients are chosen, the α coefficients are fixed by the above condition.
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Figure 2.10: Schematic representation of the grid points that are used when calculating D∗xF ,
along with their respective weights.
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The numerical dispersion relation of this scheme can be found by injecting waves of form
eik·x−iωt in the discretized Maxwell equations. This yields
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where st = sin(ω∆t/2) and su = sin(ku∆u/2) for u = x, y, z. When the β and δ coefficients
are zero, the operators D∗x, D∗y, D∗z reduce to Dx, Dy, Dz (as defined by eqs. (2.15) to (2.17)).
In this case, the above dispersion relation reduces to that of the standard scheme (eq. (2.24)),
which was shown to lead to numerical Cherenkov radiation in the last section. Conversely, for
well-chosen non-zero coefficients, the numerical dispersion relation can be tailored so as to avoid
the numerical Cherenkov effect. Notice that, since the accelerated beam travels mainly along
the z axis, the numerical Cherenkov effect needs only to be avoided for v = vez. In other words,
the β and δ coefficients should be chosen in such a way that the numerical dispersion relation
(eq. (2.33)) and the resonance condition ω = vkz cannot be simultaneously satisfied. I found
that this condition is satisfied for the following coefficients (see appendix B for a derivation of
these coefficients):
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and the corresponding dispersion relation is:
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This numerical dispersion relation is represented in the left panel of fig. 2.11 (in the particular
case ky = 0). For comparison the numerical dispersion relation of the standard scheme (i.e.
with zero β and δ coefficients) is represented in the right panel of fig. 2.11 (again for ky = 0).
As desired, the surface representing the resonant condition ω = vkz and that representing the
numerical dispersion relation do not intersect in the case of the proposed scheme. Importantly,
the same occurs for any other value of ky, and thus this scheme is in principle Cherenkov-free
(for particles traveling parallel to the z axis12). This will be confirmed by the simulations of
section 2.4.

12It is important to notice that, for particles traveling with an angle relative to the z axis (e.g. v = v cos(θ)ez +
v sin(θ)ex), the scheme is not Cherenkov-free anymore (as can be seen by plotting the intersection between the
curve of ω(k) and k ·v = vkz cos(θ)+vkx sin(θ) for v ' c). This is not a problem for simulations of laser-wakefield
acceleration, since the relativistic particles travel with a very small angle relative to the z axis, and thus the scheme
is very close from being Cherenkov-free for these particles. (As a consequence, the emitted Cherenkov radiation
is negligible, as will be shown in section 2.4.) However, in other physical situations (such as fully-developped
relativistic shocks for instance), relativistic particles may travel with a large angle relative to the z axis, and thus
this scheme may not be very well suited.
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Figure 2.11: Left panel: representation of the dispersion relation given by eq. (2.34) (for ky = 0).
Right panel: representation of the dispersion relation for the standard scheme (eq. (2.24)). The
translucid plane represents the resonant condition ω = vkz (with v = 0.9999c).

Finally, an analysis of the modified dispersion relation (eq. (2.34)) reveals that the standard
CFL condition should be replaced by the condition
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2.3.2 Presentation of the algorithm for a quasi-cylindrical grid

The quasi-cylindrical numerical scheme of Calder Circ is modified in a similar way as for the
Cartesian scheme of Calder 3D. Again the discretization of the Maxwell-Faraday equation is
modified, while the Maxwell-Ampère equation is left unchanged. The modified Maxwell-Faraday
equation reads
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where the numerical operator D∗z , D∗θ and D∗r are defined13 by:
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with the condition 
αz + 3δz = 1
αθ + 2βθ,z = 1
αr + 2βr,z = 1

for these operators to be second-order accurate. These operators are represented in figure fig. 2.12.
Again, when the β and δ coefficients are zero, this scheme reduces to the standard scheme of
Calder Circ.
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Figure 2.12: Schematic representation of the grid points that are used when calculating D∗zF ,
D∗θF and D∗rF , along with their respective weights.

As mentioned earlier, the numerical dispersion relation can only be found for waves that
propagate along the z axis, and therefore the obtention of the β and δ coefficients is less rigorous
than in the Cartesian case. Yet by using a heuristic approach and drawing upon an analogy with
the Cartesian case (see appendix B), I proposed the following coefficients
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which were then found to efficiently suppress the numerical Cherenkov effect in practice (see
section 2.4).

2.3.3 Nyquist noise and velocity of the laser pulse

Notice that in both the proposed Cartesian Cherenkov-free algorithm and the proposed quasi-
cylindrical algorithm, c∆t/∆z is a free parameter – insofar as ∆t satisfies the modified Courant-
Friedrichs-Lewy (CFL) condition. In test simulations, it was found that choosing c∆t/∆z = 1
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leads to a high level of numerical noise at the Nyquist frequency kz = π/∆z. This is similar to
what was observed by Vay et al. [2011], also for c∆t/∆z = 1. Unless it is strongly filtered, this
noise rapidly grows to unacceptable levels. Fortunately, reducing c∆t/∆z was observed to lead
to substantial reduction of this noise. In practice, choosing c∆t = 0.96 is usually sufficient for
this noise to remain at a limited level, and in that case filtering is not needed.

On the other hand, the ratio c∆t/∆z should not be reduced much below the above fiducial
value. This is because a low c∆t/∆z can spuriously modify the velocity of the laser pulse. In fact
this holds for both the standard numerical scheme and the Cherenkov-free scheme. Using the
numerical dispersion relations of these scheme, it is possible to show that the phase and group
velocities of the laser pulse in vacuum are
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for the Cherenkov−free scheme

In the above equations, k = klaserez is the mean wavevector of the laser pulse, and the approxi-
mation klaser∆z � 1 was used (meaning that the wavelength of the laser pulse is well resolved).
Importantly, these expressions are valid for both the quasi-cylindrical and Cartesian algorithms.

According to the above relation, the numerical group velocity vg is lower than c in the
standard scheme, and higher than c in the Cherenkov-free scheme. (Physically, the group velocity
should be exactly c, and thus both scheme introduce unphysical dispersion.) When simulating
laser-wakefield acceleration, it is important to ensure that the numerical alteration of the group
velocity (|vg − c| ∼ (1 − c∆t/∆z)(klaser∆z)

2) is negligible compared to the physical alteration
caused by the plasma (|vg − c| ∼ k2

p/k
2
laser). In other words, the criterion

1− c∆t

∆z
�

k2
p

k4
laser∆z

2

should be satisfied, and this prevents c∆t/∆z from being too far from 1.
In conclusion of this section, the choice of c∆t/∆z is a tradeoff between reducing the Nyquist

noise and limiting the alteration of the laser velocity. Once this parameter is well chosen, the
proposed algorithm appears to be a good solution to the numerical Cherenkov effect, and one
which does not require additional numerical filtering. This is confirmed in the next section.

2.4 Validation of the algorithm and implications for LWFA sim-
ulations

2.4.1 Validation of the Cherenkov-free algorithm

In order to validate the proposed algorithm, the simulations of section 2.2.2 were re-run with
the Cherenkov-free algorithm. The same physical and numerical parameters were used for these
simulations, and in particular the value of the ratio c∆t/∆z was also 0.96.
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Figure 2.13 compares the standard and Cherenkov-free algorithms in the case of the Calder
3D simulation. On a global level, the aspect of the laser pulse and of the accelerating cavity
is very similar (see the left panels), but the laser pulse has a slight advance (∼ 1µm) in the
case of the Cherenkov-free algorithm. This advance is due to the numerical dispersion relation,
which was shown to increase the laser speed in the Cherenkov-free scheme and decrease it in the
standard scheme. Apart from this slight difference in velocity, the physics of the simulation is
the same with both algorithm, and in particular the self-injected charge differs by less than 5 %.

Important differences are however observed when zooming on the accelerated bunch (right
panels). First, a trailing high-frequency noise is observed in the case of the Cherenkov-free
scheme. This is the Nyquist noise which was observed also by Vay et al. [2011]. Here I did not
attempt to filter this noise, but it nonetheless remains at a relatively low level. (Again, this
is a consequence of c∆t/∆z < 1.) The main result however is that the numerical Cherenkov
radiation is entirely eliminated in the case of the proposed algorithm. Since no numerical filtering
was used here, this is entirely due to the modified numerical dispersion relation. On the whole,
the fact that the numerical Cherenkov radiation was suppressed without affecting the rest of the
physics validates the proposed Cherenkov-free algorithm.

Figure 2.14 shows the evolution of the transverse emittance in both schemes. The spurious
growth of emittance is substantially reduced with the Cherenkov-free algorithm. This confirms
that the observed growth of emittance was partly caused by the unphysical Cherenkov radiation,
which randomly scattered the electrons of the bunch. However it is unclear what causes the
remaining growth of emittance (that which subsists with the Cherenkov-free algorithm). The
corresponding variation of emittance (∆ε ≈ 1 mm.mrad) is still above the theoretical estimates
introduced in section 2.2.2, and thus we suspect that it is unphysical.

Similar results are obtained in the case of the Calder Circ simulation. Figure 2.15 repre-
sents a snapshot of the simulation with both schemes. Again the laser pulse and the cavity are
nearly identical in both schemes, and the injected charge was observed to differ by less than 10
%. The right panels show that the Cherenkov radiation is entirely suppressed by the proposed
algorithm. This comes at the cost of some additional noise on-axis. This noise might be due to
the fact that the on-axis boundary conditions of Calder Circ may not be well adapted to the
modified numerical scheme. At any rate, this noise seems to have little impact on the physics
at stake here. This is confirmed by the plots of the emittance in fig. 2.16. This figure shows
that the emittance is almost constant in the case of the Cherenkov-free scheme, which is what
is expected physically. (The fact that the emittance is constant in the Cherenkov-free Calder
Circ simulation but still grows in the Cherenkov-free Calder 3D simulation may be due to the
higher resolution of the Calder Circ simulation.) The results of fig. 2.16 imply that the growth
of emittance in the standard scheme was entirely due to the numerical Cherenkov radiation.

Since the proposed Cherenkov-free algorithms have proved to have an overall beneficial im-
pact on the simulations, they have been permanently added as an option in the codes Calder
3D and Calder Circ. In addition, the Cartesian Cherenkov-free algorithm was implemented
in the PIC codes Osiris and PIConGPU, through collaborations with research teams at the
Instituto Superior Técnico (Lisbon) and at the Helmholtz-Zentrum Dresden-Rossendorf (Dres-
den) respectively. This algorithm and its impact on emittance also lead to a recent publication
[Lehe et al., 2013].
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Chapter 2. A Cherenkov-free PIC algorithm

Figure 2.13: Snapshot of the Calder 3D simulation after 250 µm of acceleration, in the case of
the standard algorithm and of the Cherenkov-free algorithm.
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Figure 2.14: Evolution of the emittance in the Calder 3D simulation, for the bunch defined in
fig. 2.7. The emittance along the x (left panel) and y (right panel) direction are represented, and
the standard algorithm (dashed line) and Cherenkov-free algorithm (solid line) are compared.
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Figure 2.15: Snapshot of the Calder Circ simulation after 300 µm of acceleration, in the case
of the standard algorithm and of the Cherenkov-free algorithm.
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Figure 2.16: Evolution of the emittance in the Calder Circ simulation, for the bunch defined in
fig. 2.9. The emittance along the x (left panel) and y (right panel) direction are represented, and
the standard algorithm (dashed line) and Cherenkov-free algorithm (solid line) are compared.
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Chapter 2. A Cherenkov-free PIC algorithm

2.4.2 Implications of the spurious growth of emittance

The results of the previous section prove that the growth of emittance in standard PIC simulations
is largely unphysical (since it is partly due to unphysical Cherenkov radiation). This implies
that standard PIC codes tend to spuriously overestimate the final emittance of the bunch. This
artifact has important implications, that must be kept in mind when analyzing the results of the
simulations.

For instance, as a direct consequence of this artifact, the transverse size and divergence of
the beam also tend to be overestimated by the simulations. This is a serious issue, since the size
and divergence of the beam are crucial parameters for many applications of LWFA (including
for instance prospective linear colliders, phase-contrast imagers and free electron lasers). The
divergence of the beam is also paramount when designing a Compton source (e.g. [Ta Phuoc
et al., 2012]), i.e. a source in which a counterpropagating laser pulse collides with the relativistic
electrons in order to produce X-ray radiation. In these sources, the wavelengths emitted by each
individual electron are directly related to the angle of propagation of the electron considered.
Therefore, in PIC simulations of Compton sources, the unphysically high divergence may result
in an spuriously broad spectrum.

Finally, the divergence and size of the beam are even more crucial when estimating the
emitted betatron radiation (see section 1.2.2). This is because, in the case of betatron radiation,
the size and divergence also determine the wiggling parameter of the trajectory (e.g. [Corde
et al., 2013a]). In order to illustrate this point, the emitted betatron radiation was calculated
for the Calder Circ simulations of the previous section. This is done for both the simulation
with the standard scheme and that with the Cherenkov-free scheme. In both cases, the energy
emitted per unit frequency and solid angle d2I

dωdΩ is calculated by using a post-processing code
developed by Igor Andriyash (which numerically evaluates eq. (1.41)).

The results are shown in fig. 2.17 and fig. 2.18. In the case of the standard scheme (spuri-
ously growing emittance), the radiation appears to have a wider angular spread than with the
Cherenkov-free scheme (constant emittance). This is a direct consequence of the larger divergence
in the standard scheme. In addition, the radiation extends to higher photon energies in fig. 2.17,
which is a consequence of the higher wiggling parameter. On the whole, the total emitted energy
seems to be higher in the case of the standard scheme, and the numerical calculation indeed
reveals that it is about twice larger than in the Cherenkov-free scheme. These results show that
the spurious growth of emittance in PIC codes can directly lead to a gross overestimation of the
betatron radiation.

54



2.4. Validation of the algorithm and implications for LWFA simulations

Figure 2.17: Representation of the emitted betatron energy per unit frequency and solid angle
d2I
dωdΩ in the x − z plane. θx represents the angle between the z axis and the line of sight. The
colorscale is the same on the left and right panel.

Figure 2.18: Representation of the betatron profile d I
dΩ

(
≡
∫

d2I
dωdΩdω

)
. θx and θy are the angle

between the z axis and the line of sight. The colorscale is identical on the left and right panel.
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Chapter 3

Optical transverse injection

This chapter focuses on an interesting new mechanism of injection. Injection is a de-
cisive step in a laser-wakefield accelerator as it largely determines the quality of the
accelerated bunch. After briefly reviewing the different existing methods of injection,
I show numerical evidence for a new mechanism of colliding-pulse injection – which is
referred to here as optical transverse injection. In fact, previously known mechanisms
of colliding-pulse injection were essentially longitudinal and conceptually relied on a
small, local perturbation of the wakefield. On contrary, optical transverse injection is
transverse in nature and relies on a global expansion of the whole accelerating cav-
ity. Moreover, by using the Cherenkov-free algorithm of chapter 2, it is shown that
this injection mechanism can lead to high-quality bunches, which are characterized in
particular by a very low emittance.
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Chapter 3. Optical transverse injection

3.1 Injection in the laser-wakefield

Injection was introduced in section 1.2.1, and consists in modifying the trajectory of some elec-
trons so that they can remain inside the accelerating part of the wakefield instead of slipping
through it. The injection process is in fact a crucial step in a laser-wakefield accelerator, since it
determines several important properties of the accelerated bunch. For instance, the charge of the
bunch is determined at the time of injection and, insofar as emittance is conserved during the
acceleration, so is the transverse quality of the bunch. Moreover, injection determines the initial
energy spread and duration of bunch, which then largely determines the final energy spread at
the exit of the accelerator.

Thus all these properties crucially depend on the particular method of injection that is used,
in a given experiment. From the conceptual point of view, the different methods of injection can
be divided into two categories: those that rely on a local perturbation of an otherwise stationary
wakefield, and those that rely on a global deformation of the wakefield. The next sections give a
brief overview of these two categories.

3.1.1 Injection by a local perturbation in a stationary wakefield

In this type of injection, a local perturbation is applied to the wakefield and thus only a small
fraction of the electrons have their trajectories modified, while the other electrons are unaffected.
In particular, the wakefield as a whole is considered to remain stationary throughout the pertur-
bation, and in particular its fields φ, ψ,a depend on z and t only through z − cβpt where βp is
the group velocity of the driving pulse1. Moreover, the perturbation is usually maximal on axis,
and as a consequence, the injected electrons originate mostly from on-axis positions. Therefore
their motion in the wakefield is essentially longitudinal, i.e. their transverse momentum and
transverse position can be neglected (ux, uy ' 0, x, y ' 0).

In these conditions, the trajectory of each electron is determined only by two variables: its
longitudinal momentum uz and its longitudinal position in the stationary wakefield z − cβpt.
These trajectories can thus be plotted in a two-dimensional phase space (z − cβpt , uz), and, as
explained in the next paragraphs, injection is determined by a two-dimensional separatrix within
this phase space.

Injection and the separatrix. In fact, with the above hypotheses, the trajectories of the
electrons in the phase space (z − cβpt , uz) can be calculated analytically. In the absence of any
perturbation, it is indeed possible to show2 that each trajectory is characterized by a constant
of motion H, which reads

H = γ − βpuz − (φ− βpaz) ' γ − βpuz − ψ (3.1)

where γ and uz are the slow components (i.e. averaged over one laser period) of the Lorentz
factor and of the longitudinal momentum, and are related by γ =

√
1 + 〈a2

l 〉+ u2
z. Similarly, φ

and a are the slow components of the dimensionless scalar and vector potential in the wakefield,
and ψ = φ − az. Notice that, in the right-hand side of eq. (3.1), βp was approximated to 1 in
the term (φ− βpaz). It is however possible to use the same approximation for γ− βpuz, since uz

1Notice here that, although the pulse was considered to propagate at the speed of light (βp = 1) in section 1.1.2,
here we take into account the fact that its group velocity inside the plasma is actually lower (βp ∼< 1). Even though
this slight difference between 1 and βp has little impact on the calculation of the fields φ, ψ,a of section 1.1.2, it
is however paramount when calculating the trajectories of the injected electrons.

2This is a consequence of the Noether theorem, for a stationary wakefield propagating at the velocity βp.
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3.1. Injection in the laser-wakefield

can be very to close to γ for a high-energy electron, and thus the difference between βp and 1 is
important in this particular expression.

Once ψ is known in the wakefield, the trajectories of the electrons in phase space can be
obtained3 from eq. (3.1). These trajectories are shown in fig. 3.1 for different values of H. The
blue trajectory corresponds to H = 1, while the gray trajectories correspond to H < 1. In
some of these trajectories (those enclosed within the black curve), the electron can go from a low
energy (uz ∼ 1) to a high energy (uz ∼ 200). These trajectories are those in which the electron is
trapped in the wakefield and accelerated. However, because the electrons of the plasma are all at
rest before the laser reaches them, they all have H = 1 initially, and thus they all follow the blue
trajectory. In this trajectory, the electrons simply slip through the wakefield, and the variations
of their momentum uz corresponds to the longitudinal plasma oscillations of the wakefield.
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Figure 3.1: Representation of the possible trajectories for the electrons inside the wakefield, in
the phase space (z − cβpt , uz). (In order to be able to display both the low negative values and
high positive values of uz, the left axis represents 1 + uz in logarithmic scale.) The red curve
represents the amplitude 〈a2

l 〉 of the laser pulse (see the right axis). The black line corresponds
to the separatrix, while the blue line represents the trajectory followed by the electrons that are
initially at rest (H = 1).

The black curve – which is known as the separatrix – separates the trajectories for which the
electrons are accelerated from the trajectories for which they slip through the wakefield. Thus
the injection process consists in modifying the motion of some of the plasma electrons, in such
a way that they cross the separatrix. This is what happens for instance in ionization injection,
and in warm and cold optical injection.

Ionization injection. In ionization injection [Pak et al., 2010; McGuffey et al., 2010], this
modified motion is due to the fact that some electrons can be separated from their atoms much
later than the others. In order to provoke this effect, a small amount of high-Z gas (such as N2)

3More precisely, eq. (3.1) can be combined with the relation γ =
√

1 + 〈a2
l 〉+ u2

z to yield

uz = γ2
p

[
βp(H+ ψ) ± |H+ ψ|

√
1−

1 + 〈a2
l 〉

γ2
p(H+ ψ)2

]

where γp = 1/
√

1− β2
p . It is this expression which is plotted in fig. 3.1.
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is mixed with the usual low-Z gas of the gas jet (H2 or He). The low-Z atoms, as well as the
L-shell of the high-Z atoms, are ionized well ahead of the peak of the pulse. However the K-shell
of the high-Z atoms has a higher ionization potential, and it is ionized only later, near the peak
of the pulse.

The trajectory of the electrons that originate from this shell is represented in fig. 3.2. In
this figure, the dashed blue line represents the trajectory of an electron while it is still attached
to an only partially-ionized ion. Since this ion is very heavy, its momentum is not significantly
modified by the ponderomotive force of the laser (uz ' 0). At some point, the K-shell of this
ion is finally ionized (red dot in fig. 3.2). When this happens, the electron can be released inside
the separatrix, and it can then be accelerated by the wakefield.
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Ionization injection

Figure 3.2: Schematic representation of ionization injection. The blue dashed curve corresponds
to the trajectory of a partially-ionized ion, and the red dot marks the position were it becomes
fully ionized. The subsequent trajectory of the released electron is represented by a thin blue
line.

Although ionization injection is relatively easy to implement experimentally, it suffers from
the fact that new electrons are continuously being injected by this process, as the driving laser
propagates through the gas jet. This continuous injection typically results in a large energy spread
for the final electron bunch. This is because the electrons that are injected at the beginning of
the jet are accelerated for a longer time than those that are injected at the end of the jet. Thus,
although some solutions have been suggested in order to avoid this problem [Pollock et al., 2011;
Bourgeois et al., 2013], ionization injection is not naturally well-adapted for low energy spreads.

Warm and cold optical injection. In optical injection, a second laser pulse is used in order
to locally perturb the wakefield. In this case, the time of interaction between this injection pulse
and the wakefield is usually very short. As a consequence, the injection is localized in time and
can thus result in a low energy spread.

The first theoretical works on optical injection proposed to use two othogonally crossing pulses
[Umstadter et al., 1996b] or two copropagating pulses and an additional counter-propagating
pulse [Esarey et al., 1997; Schroeder et al., 1999]. However, the geometry that is now perhaps
most commonly considered – and the first one which was successfully implemented in experiments
[Faure et al., 2006] – is that of two colliding pulses [Fubiani et al., 2004; Kotaki et al., 2004]. In
this colliding-pulse geometry, the first pulse is a high-intensity pulse which drives the wakefield,
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3.1. Injection in the laser-wakefield

while the second pulse is a relatively low-intensity counter-propagating pulse. The polarizations
of the pulses are chosen to be either both linear and parallel or both circular and opposite, so
that they can produce a standing interference pattern as they overlap. When neglecting the
envelopes of the pulses, the total laser field can indeed be written as

al =a0[
√

1− ε cos(k0z − ω0t)ex +
√
ε sin(k0z − ω0t)ey ]

+ a1[
√

1− ε cos(k0z + ω0t)ex −
√
ε sin(k0z + ω0t)ey ] (3.2)

where a0 and a1 are the amplitude of the driving pulse and the injection pulse respectively, and
where ε ∈ [0, 1] determines their polarizations (linear and parallel for ε = 0 or ε = 1 ; circular
and opposite for ε = 0.5). In this case, the intensity pattern is

〈a2
l 〉 =

a2
0 + a2

1

2
+ a0a1 cos(2k0z)

and corresponds to a standing modulated intensity as a function of z. This modulated pattern
induces a longitudinal ponderomotive force, which pushes the electrons away from the local
maxima of intensity. This force which can have two effects on the motion of the plasma electrons.

The first effect is to trap the electrons in the minima of the intensity pattern. As a con-
sequence, instead of being pushed forward by the ponderomotive force of the envelope (see the
increase of uz at the position of the laser, for the blue curve of fig. 3.3), they remain on averge at
a fixed z position (〈uz〉 ' 0). Note that, when the electrons are trapped by the intensity pattern,
they typically oscillate around this average fixed z, and thus their momentum uz oscillates on
a short timescale. However – for circularly polarized pulses – once the collision of the pulses is
over, the electrons leave the driving pulse with no net gain in momentum [Davoine et al., 2010].
Thus the first possible effect of the pulse collision is to dephase the electrons with respect to the
wakefield, with no net momentum gain. (This is represented by a red arrow in the left panel of
fig. 3.3.) As a result, the electrons can cross the separatrix, and they can be accelerated by the
wakefield. This mechanism is known as cold optical injection [Davoine et al., 2009].
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Cold optical injection
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Warm optical injection

Figure 3.3: Schematic representation of cold optical injection (left panel) and warm optical
injection (right panel). The red arrows represents the pertubation of the motion of some electrons,
during the collision of the two laser pulses. (Adapted from [Davoine et al., 2010]).

In the case of a linearly-polarized pulse however, the ponderomotive force can have second
effect. Due to the complex motion of the electrons in a linearly-polarized pulse (e.g. [Rax, 1992]),
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the electrons can experience stochastic heating in the modulated intensity pattern [Sheng et al.,
2002; Fubiani et al., 2004]. As a result, the electrons can gain a net momentum, as they are
being dephased. Thus, depending on the intensity of this heating and depending on the vertical
position of the separatrix, the electrons can also cross the separatrix vertically – in which case
the mechanism is known as warm optical injection (see the right panel of fig. 3.3). Notice that,
if on the other hand this heating is too weak or if the separatix is too high vertically (which is
the case at low density), the cold injection mechanism can still happen with linearly polarized
pulses [Davoine et al., 2010].

3.1.2 Injection through a global deformation of the wakefield

In the mechanisms of the previous section, it was assumed that only a small fraction of the
electrons was perturbed and that their motion was essentially longitudinal. As a consequence,
it was possible to interpret the injection by using a separatrix in a two-dimensional phase space.
However, this is no longer valid for the injection methods in which the wakefield as a whole is
considerably affected. In this case, it is not possible to use the separatrix for two reasons. Firstly,
some of the injected electrons can have a substantial transverse motion, and as a consequence,
their trajectory is not determined only by z−cβpt and uz, but rather by the full three components
of r and the full three components of u. As a consequence, the separatrix is a five-dimensional
hypersurface within a six-dimensional space, and cannot be represented anymore in the two-
dimensional phase space (z − cβpt , uz). Secondly, the wakefield is not stationary anymore, and
thus the stucture of the phase-space trajectories evolves in time. In particular, the shape of the
separatrix evolves in time and it cannot be represented on a stationary plot.

For these methods of injection, the mechanism is thus interpreted differently. In fact in these
methods, the global deformation of the wakefield usually corresponds to a transient expansion
of the plasma period (in the linear regime) or of the ion cavity (in the blow-out regime). As
mentioned in section 1.2.1, the electrons that travel through the wakefield at the time of this
expansion can then remain slightly longer inside the accelerating region. They can thereby
acquire a high enough velocity for them to permanently remain in this region, instead of slipping
through it. Note that this qualitative explanation can be cast into a more quantitative formalism,
so as to derive the minimal rate of expansion that allows injection (see [Kalmykov et al., 2009;
Kostyukov et al., 2010; Yi et al., 2011]). On the whole, this formalism confirms that an expanding
cavity can trigger injection. Experimentally, the expansion of the cavity can be caused by
different effects, which thus correspond to different methods of injection.

Longitudinal and transverse self-injection. As mentioned in section 1.2.1, the expansion of
the cavity can occur spontaneously under certain experimental conditions. If the plasma density
is high enough (n0 ∼ 1019 cm−3), then the laser pulse self-focuses as it propagates in the gas
jet, and its peak amplitude a0 correspondingly increases. In the blow-out regime, this increase
in a0 leads to stronger ponderomotive force, and thus to a larger ion cavity. (As mentioned in
section 1.1.4, the length of the cavity scales as 4k−1

p
√
a0.4) The injection associated with this

expansion of the cavity is known as self-injection.

4Note that, even when the wakefield is not in the blow-out regime (i.e. when the waist of the laser w is much
larger than 2k−1

p

√
a0 ; see section 1.1.4), the plasma period still increases with a0 [Esarey et al., 2009]. In this

case, the lengthening of the plasma period is not directly due to the transverse ponderomotive force, but rather
to nonlinear relativistic effects. (Note that these nonlinear effects were not taken into account in the linear model
of section 1.1.3.) Thus, in this regime also, a sudden increase in a0 can lead to injection.
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3.1. Injection in the laser-wakefield

This effect is illustrated in fig. 3.4, which shows the results of a PIC simulation published in
[Corde et al., 2013b]. In this simulation, a 30 fs laser pulse with an initial a0 of 2 propagates
through a gas jet with n0 ' 1 × 1019 cm−3. The left panel of fig. 3.4 shows the variations of
a0 during this propagation. In this panel, a0 first rises (as a consequence of self-focusing) and
then exhibits several oscillations (due to a competition between self-focusing and the natural
diffraction of the pulse). As predicted by the above mechanism, self-injection is observed only
when a0 increases.

In addition, this simulation shows that the variations of a0 can produce both longitudinal
and transverse injection. In longitudinal injection (middle panel of fig. 3.4), the injected elec-
trons are originally on-axis, and they go through the wakefield without a substantial transverse
motion. On the contrary, in transverse injection (right panel), the electrons originate from off-
axis positions, and they travel along the sheath and around the cavity before being injected.
Thus, although the trajectories were essentially longitudinal in the case of a local perturbation
(section 3.1.1), this figure shows that the injected trajectories can be transverse in the case of
a global perturbation. In fact, transverse injection largely dominates over longitudinal injection
in the case of fig. 3.4. The simulation indeed reveals that transverse injection leads to a 200 pC
bunch whereas longitudinal injection leads only to 2 pC.
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Figure 3.4: Results from a PIC simulation of self-injection. Left panel: Evolution of a0 as the
laser propagates in the gas jet. The colored areas correspond to several successive self-injections.
Middle and right panels: representation of the aspect of the wakefield and of a typical injection
trajectory during the first (middle panel) and second (right panel) injections. From [Corde et al.,
2013b].

On the whole, the advantage of self-injection is that it is easy to obtain experimentally, since
it can occur spontaneously. However, as suggested from the erratic variations of a0 in fig. 3.4,
self-injection is intrinsically difficult to control, and therefore it lacks stability. For this reason,
it is sometimes preferable to controllably trigger the expansion of the ion cavity.

Density ramp injection. One way through which this expansion can be controlled is by
forming a density downramp in the gas jet [Bulanov et al., 1998]. Because the length of the
cavity scales as 4k−1

p
√
a0 (∝ n

−1/2
0 ), the cavity expands as the laser pulse propagates into a

lower density, and thus injection can occur. Notice that this mechanism is also possible in the
linear regime, since the length of the plasma period in this regime is also proportional to n−1/2

0 .
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Chapter 3. Optical transverse injection

The density downramp can correspond to the natural gradient at the end of the gas jet [Gonsalves
et al., 2011; Geddes et al., 2008] or it can be purposedly created and tailored inside the gas jet.
This has been done for instance by placing a knife edge [Schmid et al., 2010] or a thin wire [Burza
et al., 2013] inside the gas jet, as well as by triggering a local thermal expansion with a second,
transversely-propagating laser pulse [Chien et al., 2005; Faure et al., 2010].

Magnetic gradient injection. Another way to trigger a deformation of the cavity is through
an external, transverse magnetic field [Vieira et al., 2011, 2012]. A transverse magnetic field can
indeed induce an asymmetric deformation of the cavity. (In this case, one side of the cavity is
shorter than the other.) Thus, when the laser pulse propagates in a magnetic downramp, this
deformation progressively relaxes. As a result, one side of the cavity expands and triggers an
asymmetric injection.

3.2 The mechanism of optical transverse injection

According to the previous section, several situations can lead to an expansion of the accelerating
cavity and to a subsequent injection, but the situation of two colliding laser pulses was not
considered to be one of them. As explained in section 3.1.1, the mechanism of colliding-pulse
injection is indeed generally considered to happen in a stationary wakefield, which is only locally
perturbed by the injection pulse. This is somewhat mitigated by the fact that, in some situations
of colliding-pulse injection, the wakefield was observed to be non-stationary [Rechatin et al.,
2007]. Yet in these cases, the deformation of the wakefield tends to prevent the injection rather
than to enhance it – due to an effect known as wakefield inhibition.

On the contrary, it is shown here that there is a regime in which the accelerating cavity
is strongly affected by the pulse collision, and in which this deformation leads to a new type
of injection. In this regime, the colliding pulse indeed induces a transient expansion of the
cavity, which then naturally triggers injection. This regime is thus considerably different from
the previously-known mechanisms of optical injection, and in particular it leads to a transverse
injection instead of a longitudinal one. For this reason, this new regime is referred to as optical
transverse injection in the rest of this section.

3.2.1 Injection due to an expansion of the cavity

In order to illustrate this regime, fig. 3.5 shows the evolution of the cavity in a corresponding
PIC simulation. This PIC simulation was run with the quasi-cylindrical code Calder Circ,
using two azimuthal modes (` = 0 and ` = 1) and a resolution defined by ∆z = 0.016µm,
∆r = 0.16µm and c∆t = 0.96∆z. Moreover, in order to avoid the spurious growth of emittance
associated with the numerical Cherenkov effect, the Cherenkov-free algorithm of section 2.3.2
was used. In this simulation, a 1.0 J laser pulse with an FWHM duration τ0 = 30 fs is focused to
a waist w0 = 7.7µm inside a gas jet of density n0 = 1.75 × 1018 cm−3. With these parameters,
this laser pulse drives a strong, blown-out wakefield in the gas jet. Near its focal plane, this
pulse collides with a counter-propagating pulse having the same waist and duration (τ1 = τ0,
w1 = w0), but a much lower amplitude and thus a lower energy (2.5 mJ). The driving pulse and
the counter-propagating pulse have opposite circular polarizations (i.e. their fields correspond to
eq. (3.2) with ε = 0.5), with a0 = 4 and a1 = 0.2 respectively. As a consequence, they produce
a standing intensity modulation as they overlap. For convenience, the above parameters are
grouped in table 3.1.
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3.2. The mechanism of optical transverse injection

Laser energy FWHM duration Waist at focus Amplitude at focus
Driving pulse 1.0 J τ0 = 30 fs w0 = 7.7µm a0 = 4
Injection pulse 2.5 mJ τ1 = 30 fs w1 = 7.7µm a1 = 0.2

Table 3.1: Parameters of the two laser pulses in the PIC simulation of fig. 3.5.

Figure 3.5: Top panel: Evolution of the size of the cavity in the transverse direction (dashed
line) and longitudinal direction (solide line) versus time. Lower panels: Snapshots of the electron
density and the driving laser pulse at different times. (The collision occurs at t = 0.) Notice
that, because the counter-propagating pulse has a much lower amplitude than the driving pulse,
it is not visible on these snapshots. The black dashed lines are visual aids that help evaluate
the deformation of the cavity. The red and black curves represent the trajectory of an electron
injected by cold optical injection (black line) and by optical transverse injection (red line).

65



Chapter 3. Optical transverse injection

As mentioned previously, the cavity is strongly affected by the pulse collision. Figure 3.5
displays the evolution of the transverse diameter (dashed line) and the longitudinal length (solid
line) of the cavity (upper panel), along with four snapshots of the simulation corresponding to
four different times. (The pulse collision occurs at t = 0.) As can be seen in both the upper panel
and the snapshots, the cavity successively shrinks and reexpands – first radially (from t = 40 fs
to t = 80 fs) and then longitudinally (from t = 100 fs to t = 150 fs). This traveling deformation
is due to the electrons that were inside the laser pulse at t = 0 (i.e. during the collision) and
then traveled along the sheath, towards the back of the cavity. The modified trajectory of these
sheath electrons will be analyzed in the next section.

Note that two different types of injection occur shortly after the pulse collision. A typical
trajectory for each of these two types of injection is represented in the fig. 3.5. In the first type
of injection (black curve), the electron is injected just before the longitudinal expansion of the
cavity, and its trajectory is essentially longitudinal (i.e. the electron was initially on-axis and
went through the laser pulse, with relatively low variation of its transverse coordinate). This
injection does not rely on the expansion of the cavity (since it occurs before this expansion), and
it can in fact be interpreted by the mechanism of cold optical injection (see section 3.1.1). On
the contrary, in the second injection (red curve), the trajectory is transverse and the electron
reaches the back of the cavity exactly as the cavity expands. Moreover, no further injection
occurs once the cavity stops expanding. This suggests that this injection is directly caused by
the expansion of the cavity, and that its mechanism is very similar to that of density-ramp
injection and transverse self-injection (see section 3.1.2). It is this second type of injection which
is referred to as optical transverse injection.

Figure 3.6: Representative sample of the trajectories of all the injected electrons, in the simulation
corresponding to table 3.1. The trajectories corresponding to optical transverse injection and
to cold optical injection have been colored in red and black respectively. Notice that, in the
simulation, these trajectories are distributed in three dimensions around the cavity, with circular
symmetry. Yet for a clearer visualization, they are all represented in the same plane here.

In addition, fig. 3.6 shows a representative sample of all the injected trajectories in the sim-
ulation. As can be seen in this figure, these trajectories can be divided into two well-separated
groups, which correspond to the two above-mentioned mechanisms and have been colored ac-
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3.2. The mechanism of optical transverse injection

cordingly. This confirms that these two mechanisms are different in nature, and not just two
limiting cases of a unique and continuous mechanism.

All in all, this simulation shows that a pulse collision can lead to a transient deformation
of the cavity, and that this can trigger an injection mechanism similar to that of density-ramp
injection. However, while the expansion of the cavity in a density ramp is well-understood,
it was not known that a pulse collision could cause the cavity to shrink and reexpand. This
phenomenon is explained in the next section.

3.2.2 The laser-induced cavity expansion

In fact, the deformation of the cavity happens because, as will be shown in the rest of this
section, the pulse collision transiently reduces the impact of the transverse ponderomotive force.
As a result, the electrons that are inside the pulse at the time of the collision reach a lower
transverse velocity than they would in the absence of a counter-propagating pulse. Therefore
these electrons also reach a lower radius (i.e. the cavity shrinks transversely) and are also
pulled faster towards the axis by the focusing fields of the cavity (and thus the cavity shrinks
longitudinally). Once the collision is over, the ponderomotive force retrieves its initial impact,
and the cavity recovers its orginal shape, i.e. it reexpands.

Origin of the reduced impact of the ponderomotive force. In order to explain the
reduced impact of the transverse ponderomotive force during the collision, let us consider the
equations of motion of a given background electron, inside the laser pulses. (In order to simplify
the problem, the forces associated with the wakefield are neglected here.) When projected onto
the radial and longitudinal direction (and when averaged over one laser period), the equations
of motion read5

1

c

dz

dt
=
uz
γ

1

c

duz
dt

= − 1

2γ

∂〈a2
l 〉

∂z
(3.3)

1

c

dr

dt
=
ur
γ

1

c

dur
dt

= − 1

2γ

∂〈a2
l 〉

∂r
(3.4)

with γ =
√

1 + u2 + 〈a2
l 〉 and where u is the slow component of the momentum of the electron

considered. In these expressions, al represents the sum of the potential vectors of the two laser

5 In eqs. (3.3) and (3.4), the expression F = − 1
2γ

∇〈a2
l 〉 was used for the ponderomotive force. However,

this expression is not entirely rigorous here, since it was originally derived in the case of one single laser pulse
(see section 1.1.2 and appendix A), and not in the case of two counter-propagating pulses. In order to verify the
validity of eqs. (3.3) and (3.4), the trajectories derived from eqs. (3.3) and (3.4) were compared with the numerical
integration of the more fundamental system of equations
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(where the subscript tot refers to the sum of the slow and fast components of the motion), and a good agreement
was found for the slow components of the motion. Thus this suggests that eqs. (3.3) and (3.4) are indeed valid
for circular, counter-propagating pulses.
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pulses, and it can be written as6:

al =
a0√

2
[ cos(k0z − ω0t)ex − sin(k0z − ω0t)ey ]e

− (z−ct)2

c2τ ′2
− r2

w2
0

+
a1√

2
[ cos(k0z + ω0t)ex + sin(k0z + ω0t)ey ]e

− (z+ct)2

c2τ ′2
− r2

w2
1

with τ ′ = τ/
√

2 log(2) where τ denotes the FWHM duration of the pulse. (It is assumed that
both pulses have the same duration here, although they can still have different waists.) Using
this expression, the intensity pattern is given by:
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where the first two terms correspond to the envelopes of each pulse, and where the last term
corresponds to the intensity modulation associated with their interference.

The equations of motion eqs. (3.3) and (3.4) can be simplified in two asymptotic cases. Firstly,
long before and long after the collision (t � −τ ′ or t � τ ′), the colliding pulse is absent from
the region of the driving pulse (c(t − τ ′) < z < c(t + τ ′)), and the last two terms of equation
eq. (3.5) can be neglected when considering the motion of the electrons inside the driving pulse.
Therefore, in this region, the ponderomotive force only depends on r and ξ = ct− z. As a result,
γ − uz is a constant of motion7, which equals 1 since the electrons are initially at rest. This
in turn implies that dξ/dt = c/γ and thus the transverse equation of motion eq. (3.4) can be
written in the form:
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Conversely, during the collision (−τ ′ < t < τ ′ and −cτ ′ < z < cτ ′), the colliding pulse cannot
be neglected anymore and in fact the longitudinal ponderomotive force ∂z〈a2

l 〉 is dominated by
the derivative of the third term of eq. (3.5). (This is because the contribution of the third term
to ∂z〈a2

l 〉 is of order k0a0a1, whereas that of the first term is of order a2
0(z − ct)/(cτ ′)2, with

1/cτ ′ � k0.) This longitudinal ponderomotive force corresponds to the longitudinal modulations
of the intensity, and holds the electrons in the minimas of the interference pattern. Therefore,
dz/dt ' 0 and dξ/dt ' c. On the other hand, the radial ponderomotive force ∂r〈a2

l 〉 is still
dominated by the derivative of the first term of eq. (3.5) as long as a0 � a1, and thus eq. (3.4)
can be written as:
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Both eq. (3.6) (which applies before and after the pulse collision) and eq. (3.7) (which applies
during the collision) have to be integrated from the moment when an electron enters the pulse
(ξ < −cτ ′) to the moment when it exits the pulse (ξ > cτ ′). However, due to the factors γ > 1

6Notice that, in this expression, the difference between the group velocity of the laser and the speed of light
is neglected (i.e. βp = 1), whereas it was shown previously that this difference is important when studying the
injection in the wakefield. In reality, here the expression of al is used only for the motion of the electrons inside
the laser pulses, and not for their subsequent injection in the wakefield. The difference between βp and 1 is thus
unimportant here.

7This is again a consequence of Noether’s theorem. The set of equation eqs. (3.3) and (3.4) can indeed be
derived from the Lagrangian L = −

√
1 + 〈a2

l 〉 ×
√

1− v2/c2. In the case where no collision pulse is present, this
Lagrangian is invariant under the transformation (z, ct)→ (z + ε, ct+ ε) and thus Noether’s theorem applies.

68



3.2. The mechanism of optical transverse injection

in eq. (3.7), the electrons will exit the pulse with a lower transverse momentum ur and a lower
radius r, during the collision. Thus, eq. (3.6) corresponds to the regular impact of the transverse
ponderomotive force (before and after the collision), while eq. (3.7) corresponds to a reduced
impact of the transverse ponderomotive force (during the collision).

In essence, this reduced impact is simply due to the fact that the background electrons travel
faster through the driving laser pulse during the collision (dξ/dt = c) than before or after the
collision (dξ/dt = c/γ). Thus the electrons experience the transverse ponderomotive force for a
shorter time during the collision, and its impact is therefore reduced.

Confirmation in PIC simulations. This interpretation is confirmed by PIC simulations.
Figure 3.7 compares the trajectory of an electron of the sheath in two simulations: one in which
a colliding pulse was present (solid line) and one in which there was no colliding pulse (dashed
line).

The left panel of fig. 3.7 compares the longitudinal motion of the electron in these two cases.
The colormap indicates the on-axis longitudinal profile of the laser as a function of time, in
the case where a collision pulse is present. The standing intensity modulations are distinctively
visible. In the case of a colliding pulse (solid line), the electron is trapped by the longitudinal
ponderomotive force of these modulations, and remains roughly at the same z position. This is
consistent with the hypothesis of our semi-quantative interpretation (i.e. dz/dt = 0, dξ/dt = c
in the case of a colliding-pulse). On the other hand, in the absence of a colliding pulse (dashed
line), there are no standing intensity modulations, and the electron is pushed forward by the
longitudinal ponderomotive force associated with the envelope of the pulse (dξ/dt = c/γ, in our
semi-quantitative interpretation).

In parallel, the right panel of fig. 3.7 compares the radial motion of the same electron as
a function of the copropagating coordinate z − ct (= −ξ). As predicted by the factors 1/γ in
eq. (3.7), r increases more slowly as a function of ξ in the presence of a colliding pulse than
without it. As a consequence, the electron has a lower maximal radius, and it is then pulled
faster towards the axis. On the whole, this confirms that the ponderomotive force is less effective
during the pulse collision, and that this causes the cavity to shrink.

3.2.3 Conditions of existence

The existence of optical transverse injection is controlled by the different parameters of the laser
pulses and of gas. In fact, it was found in the simulations that these parameters must satisfy
two conditions for optical injection to occur.

Existence of a fully evacuated cavity. The first condition is that the driving laser pulse
be intense and focused enough to generate a clear-cut, fully evacuated cavity (i.e. a2

0 � 1 and
kpw0 ∼ 2

√
a0, according to section 1.1.4). This condition can be interpreted again by the fact

that the pulse collision reduces the impact of the transverse ponderomotive force. In the case
where the cavity is fully evacuated, the consequence of this reduced impact is to transiently
reduce the size of the cavity, as described in section 3.2.2. On the other hand, in the case where
the cavity in only partially evacuated, the reduced impact of the ponderomotive force causes
the cavity to be even less evacuated, and may in fact transiently prevent the generation of the
wakefield. This effect, which is known as wake inhibition [Rechatin et al., 2007], is detrimental
to the injection and should be avoided.
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Figure 3.7: Longitudinal and transverse motion of one of the electrons that form the sheath,
during the pulse collision (solid curve) and when no colliding pulse is present (dashed curve).
The colormap in the left panel represents the on-axis laser intensity and its interference pattern
– in the case where a colliding pulse is present. The position of the centroid of each pulse is
materialized by a doted line. (Note that, in the case without a colliding pulse (dashed curve),
the driving pulse is at the same position, but there is of course no interference pattern.) Right
panel: The colormap represents the driving laser pulse in the (z, r) plane.

Perturbation of the whole cavity. Provided that the driving pulse satisfies the above con-
dition, it is also necessary that the counter-propagating injection pulse provokes a deformation
of the whole cavity. In the simulations, it was found that a global deformation of the cavity did
occur under the condition a1 ∼> 0.1 and w1 ∼> w0. The first condition simply expresses the fact
that the counter-propagating pulse should be intense enough, while the second condition ensures
that this pulse is wide enough to affect the motion of the off-axis electrons that will then form the
sheath. If this second condition is not satisfied (i.e. w1 < w0), these off-axis electrons are weakly
affected and the cavity hardly deforms at all. As a consequence, optical transverse injection is
suppressed. Note however that, since the near-axis electrons are still affected by the collision for
w1 < w0, cold optical injection is still present. Thus w1 controls the transition between a regime
in which only cold optical injection is present (w1 < w0) to a regime in which the two types of
injection coexist (w1 ∼> w0). Incidentally, in this latter case, optical transverse injection tends to
dominate in terms of charge. (For instance, in the simulation corresponding to the parameters
of table 3.1, the charges injected through optical transverse injection and cold injection were 50
pC and 13 pC respectively.)

Importantly, as long as the two above conditions are satisfied, optical transverse injection
was observed with both linear and circular polarizations (i.e. with ε = 0.5 and ε = 1 in eq. (3.2)).

3.3 Bunch quality in optical transverse injection

While the last section focused on the mechanism of optical transverse injection, this section
emphasizes the properties of the bunches generated through this process. In particular, we
explore the impact of the laser parameters on the final bunch quality.
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3.3. Bunch quality in optical transverse injection

3.3.1 General properties of the bunches in optical transverse injection

Let us thus start by summarizing the characteristics of the bunch obtained in the simulation
corresponding to table 3.1. These characteristics will then serve as a reference when varying the
laser parameters.

Figure 3.8 shows the longitudinal phase space of the injected electrons in this simulation,
after 150 µm of acceleration. As can be seen, the phase space consists of a well-defined peak
around 27 MeV and a long, diffuse distribution between 16 and 26 MeV. A comparison of the
longitudinal positions in fig. 3.6 and in the left panel of fig. 3.8 reveals that the peak is due to
optical transverse injection, while the diffuse distribution corresponds to cold optical injection.
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Figure 3.8: Phase space distribution of the injected electrons in the PIC simulation corresponding
to table 3.1, after 150 µm of acceleration. The coordinates on the x axis of the left panel are the
same as in fig. 3.6.

A further analysis of the electrons generated by optical transverse injection (i.e. those in the
peak) showed that they present high-quality features. The RMS duration of the peak is 3 fs,
its absolute RMS energy spread is 0.46 MeV (1.7 % relative energy spread at 27 MeV), and as
mentioned before its total charge is 50 pC. Moreover, these electrons are characterized by a very
low emittance: εx ' εy ' 0.17 mm.mrad. By comparison, the emittance of the electrons between
16 MeV and 26 MeV is 1.9 mm.mrad. Notice also that the observation of a such a low emittance
in the simulation was made possible only because the Cherenkov-free scheme of section 2.3.2 was
used. (The emittance is otherwise observed to rapidly grow above this initial value.)

Thus optical transverse injection can produce electron bunches which have simultaneously a
high charge, a short duration, a low energy spread and a low emittance. In fact, meeting all these
requirements at the same time is generally considered to be challenging with other methods of
injection. Since the low value of emittance obtained here is particularly remarkable, we give an
interpretation of this value and study its dependence on the laser parameters in the next section.

3.3.2 Conditions for a low emittance

Here we suggest that the low emittance obtained in optical transverse injection is related to the
fact that the electrons are injected at the very back of the cavity (see fig. 3.6). At the back
of the cavity, the boundaries are not very wide apart, and the electrons may only perform low-
amplitude betaton oscillations. Thus, the electrons that reach the back of the cavity with a high
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radius or a high radial momentum are eventually ejected, since their betatron motion would not
fit within the transverse boundaries of the cavity. This effect is illustrated in fig. 3.9, where the
trajectories of a few electrons from the simulation of table 3.1 are represented. In this figure, the
electrons having a low radius and a low momentum at the back of the cavity are injected (red
trajectories), while the others are ejected (blue trajectories). Thus, this phenomenon effectively
filters the particle and selects those which have a low-amplitude betatron motion, resulting
thereby in a low emittance. Incidentally, this filtering effect can also explain why the electrons
between 16 MeV and 26 MeV in fig. 3.8 have a large emittance (1.9 mm.mrad). As represented
in fig. 3.6, these electrons are injected relatively far from the back of the cavity, where the
boundaries are wider apart and lead to a lesser selection.
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Figure 3.9: Trajectories of some particles in the simulation corresponding to table 3.1. The
trajectories of the particles that are eventually injected (resp. ejected) are colored in red (resp.
blue). The colored areas correspond to the values of the radial field Er − cBθ – which is approx-
imately equal to the radial force felt by the particles: the areas of focusing (resp. defocusing)
radial force are represented in blue (resp. red).

This interpretation also implies that the cavity should be as narrow as possible at its back,
in order to have a low emittance. In the simutations, the profile of the back of the cavity was
found to crucially depend on w0 and a0. This is illustrated in the left panel of fig. 3.10, which
represents the profile of the back of the cavity for various values of w0 (and a constant value of
a0). The back of the cavity is observed to grow wider and wider as w0 increases. In parallel, the
right panel shows the evolution of the emittance of the injected bunch when w0 is increased. In
agreement with the presumed filtering mechanism, the emittance grows as the back of the cavity
becomes wider. Importantly, a similar evolution was found when varying a0 (for a0 > 4, and
for a constant w0). A high a0 was observed to lead to a wide cavity, and to a relatively high
emittance.

On the whole, these simulation results imply that the driving pulse should be focused to a
low waist (w0 ∼ 8µm) in order to obtain a low emittance. In principle, one could operate at high
gas density and rely on self-focusing in order to reach such a low waist. However, there is a risk
that this would also trigger an undesired self-injection, on top of the optical injection. Therefore,
it is in fact preferable to operate at low density – where both self-focusing and self-injection are
much less important. At low density, one can rely only on the focusing optics of the laser system
in order to reach w0 ∼ 8µm. Although this waist is low, it is within the focusing capabilities of
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Figure 3.10: Results of PIC simulations, in which w0 was gradually increased (while keeping
a0 = 4, a1 = 0.2 and w0 = w1). Left panel: Profile of the back of the cavity for different values of
w0. The shaded area represents the typical area where electrons can be injected through optical
transverse injection. Right panel: Emittance of the bunch injected through optical transvese
injection, as a function of w0.

existing laser system.

3.3.3 Final energy and final energy spread

In addition to the low emittance of the bunch, its low absolute energy spread is also an important
feature. In fact, it is in a sense surprising to obtain a low energy spread here, since the electrons
are injected at the very back of the cavity. At the back of the cavity, the electric field is indeed
known to be very inhomogeneous [Lu et al., 2006b] and would normally cause the energy spread
to increase. However, in our case the longitudinal electric field flattens out due to beamloading,
and it can therefore preserve a low energy spread. This is illustrated in fig. 3.11, which compares
the on-axis longitudinal electric field before and after the injection. (The position of the injected
bunch is represented by red dots.)

The flattening of the electric field is however not perfect and the energy spread does increase
– albeit slowly – at later times. There are solutions to avoid its increase, if the energy spread is
to be preserved on a long acceleration distance. For instance, one could use a two-stage profile
for the gas jet, whereby the density in the second stage is slighty lower than in the first stage. In
this setup, the pulse collision occurs in the first stage, and the bunch is then mostly accelerated
in the second stage. Because of the lower density in the second jet, the cavity is slightly larger
than in the first jet and this effectively brings the electron bunch out of the zone in which the
electric field is very inhomogenous.

Another important feature of optical transverse injection is that the final energy of the bunch
is relatively low, in comparison with standard values for LWFA (∼ 100 MeV – 1 GeV). This is
because the driving laser pulse quickly diffracts after the pulse collision, as a consequence of its
low waist and of the low density of the gas. This reduces the acceleration distance and limits the
maximal energy of the electrons to a few tens of MeV. If a high energy is desired, this issue could
in principle be avoided by guiding the laser pulse after the collision (for instance with a plasma
channel). However, here we point out that low-energy bunches may also be of interest for certain
applications. This is particularly true when designing compact free-electron laser scheme, for
which a low-energy electron bunch can lead to a more robust growth than a high-energy bunch.
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Figure 3.11: Representation of the on-axis longitudinal electric field in the simulation corre-
sponding to table 3.1. The black (resp. red) line represents the electric field before (resp. after)
the injection. The red dots represent the positions of a few injected electrons in longitudinal
phase space (see the right axis).

This prospect is discussed further in chapter 5.

3.4 Conclusion

In conclusion, this section presented a new mechanism of colliding-pulse injection, which cannot
be described with the concept of the two-dimensional separatrix. In this mechanism, the pulse
collision transiently reduces the impact of the transverse ponderomotive force, and causes the
accelerating cavity to temporarily shrink and reexpand. As the cavity reexpands, it triggers a
sudden transverse injection.

Two conditions have to be met in order for this mechanism to occur. Firstly the driving
pulse should be intense and focused enough to produce a fully-evacuated cavity, and secondly
the counter-propagating pulse should be able to cause a global deformation of the cavity. These
conditions are summarizing by the following inequalities

a2
0 � 1 kpw0 ∼ 2

√
a0 a1 ∼> 0.1 w1 ∼> w0.

Moreover, within the range of parameters that satisfy the above conditions, it is preferable to
choose relatively low values for w0 and a0, since this leads to a lower emittance. Finally, the
density of the gas should be low enough for self-focusing and self-injection to be negligible. In
practice, optical transverse injection was observed in simulations with densities ranging from
2× 1018 cm−3 to 2× 1017 cm−3, with no substantial self-focusing and no self-injection.

On the whole, the parameters required for this type of injection are within the reach of existing
laser facilities. (In particular, the required energy and the required waist at focus have realistic
values.) We note here that this regime of parameters has not yet been explored experimentally,
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and that, compared with our simulations, previous experiments were carried out at higher density
and with larger waists [Faure et al., 2006].

Finally, if the above conditions are met, optical transverse injection can lead to high-quality
bunches with high charge, low energy spread and low emittance at the same time. Morever,
this injection operates at low density and does not rely on self-focusing, which may make it
more stable than other methods of injection. As will be shown in chapter 5, optical transverse
injection can thus be particularly interesting for the design of innovative radiation sources. Yet
here it should also be noted that, in spite of their low emittance, the bunches retain a relatively
high divergence (∼ 4 mrad in the simulations), which can be detrimental to these applications.
Therefore, we address the general issue of beam divergence in the next chapter.
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Chapter 4

The laser-plasma lens

In the previous chapter, transverse optical injection was shown to produce electron
beams with a very low emittance, but with a relatively large divergence (several mil-
liradians). It is in fact common for LWFA beams to have a large divergence – even
with other injection methods. Yet for some applications, a high divergence can be a
strong drawback, and thus the beam typically needs to be collimated. In this chapter,
we propose a collimating scheme – the laser-plasma lens – which involves a second
gas jet and takes advantage of the presence of the driving laser pulse. This scheme is
studied through analytical models and PIC simulations. However, it is found that it is
subject to several aberrations, and one of them (transverse beamloading) is modeled
in details here. In order to avoid these aberrations, an alternative scheme involving
two laser pulses is also proposed. In the end, simulations show that both schemes can
substantially reduce the divergence in realistic experimental conditions, and thus the
laser-plasma lens appears to be an interesting solution to the high divergence of LWFA
beams.
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Chapter 4. The laser-plasma lens

4.1 Motivations for a laser-plasma lens

One of the most interesting features of LWFA bunches is their extremely high charge density.
This high charge density is a direct consequence of both the small transverse size (∼1 µm) and
short duration (∼1 fs) of these bunches, and it is in fact challenging for conventional accelerators
to produce a similar density. As a result, it has been proposed to take advantage of this specificity
of LWFA to produce very bright synchrotron sources. Here the idea is to send the accelerated
electrons into a magnetic undulator (i.e. a series of alternating magnets which wiggle the electrons
transversely), and thereby to force them to emit high-frequency radiation [Schlenvoigt et al.,
2008]. In this situation, the brightness of the radiation is proportional to the charge density of
the electrons. In fact, if the charge density is high enough, it can even give rise to a free electron
laser effect, which dramatically enhances the brightness of the radiation. (This effect is discussed
in more details in chapter 5.)

However, due to their large divergence, LWFA bunches naturally expand after exiting the
accelerator, and their high charge density is very rapidly lost. For instance, a bunch having an
initial transverse size σx = 1µm and an RMS divergence θx = 1 mrad at the exit of the accelerator
will see its transverse size increase ten-fold after only 1 centimeter of propagation. This implies
that the charge density of the beam typically decreases by several orders of magnitude before
entering the magnetic undulator, and as a consequence, the brightness of the emitted radiation
is relatively low. Moreover, a large divergence further spoils the properties of the radiation by
inducing a large angular and spectral distribution.

Because of this, it is paramount to reduce the divergence of the electron beam (i.e. to
collimate the beam) before sending it into the undulator. For instance, Fuchs et al. [2009]
collimated the bunch by using quadrupole lenses. However, this setup is not without drawbacks.
First, a quadrupole lens (or a quadrupole doublet [Reiser, 2008]) is not convenient because the
electrons are focused differently in the two transverse directions. In addition, because of the
relatively low focusing fields of a quadrupole, the focal length of the device is typically tens
of centimeter long. This means that the quadrupole lens has to be placed tens of centimeters
behind the exit of the accelerator, and that the electrons will propagate freely over this distance.
However, Khachatryan et al. [2007]; Migliorati et al. [2013] showed that the emittance of the
beam can considerably degrade over such a long free propagation, especially if the energy spread
of the beam is large. Moreover, after ten centimeters, the size of the beam is so large that it
starts experiencing the high-radius aberrations of the quadupole lens, which results in a further
increase in emittance. Thus, ideally, the beam should be collimated much sooner, i.e. before its
transverse size and emittance increase too much.

A plasma lens [Chen, 1987] could a priori provide a solution to this issue. In a plasma lens,
the electron bunch is sent into a gas jet, where its strong space-charge field ionizes a fraction
of the atoms of the gas and radially expells the electrons produced. As a result, the bunch is
surrounded by a focusing ion cavity, which can then collimate it. One advantage of the plasma
lens is that its focusing fields are much higher than those of a quadrupole lens, and thus the
corresponding focal length is much shorter. Plasma lenses have been studied extensively in the
context of conventional accelerators [Chen et al., 1990; Su et al., 1990; Rosenzweig et al., 1991;
Nakanishi et al., 1991; Hairapetian et al., 1994; Barov et al., 1998; Govil et al., 1999; Ng et al.,
2001; Thompson et al., 2010]. However, they may not be appropriate in the case of laser-wakefield
accelerators. This is because, in a plasma lens, there is always a finite length at the head of the
bunch over which the focusing fields are very weak [Thompson et al., 2010; Barov et al., 1998;
Rosenzweig et al., 1991]. This length corresponds to the distance that it takes to expell the
plasma electrons. In the case of laser-wakefield acceleration, the bunch is so short that its length
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can be comparable to that finite distance. In this case, a plasma lens would not be able to
properly collimate the bunch.

Therefore, in this chapter we propose an alternative collimating scheme, which is referred to
as the laser-plasma lens. As desired, this laser-plasma lens has a very short focal length and can
be placed only about one millimeter behind the accelerator, and yet it does not suffer from the
drawbacks of the plasma lens.

4.2 The single-pulse laser-plasma lens

4.2.1 Principle

As shown in figure fig. 4.1, the idea of the laser-plasma lens consists in placing a second, low-
density gas jet behind the jet in which self-injection and acceleration took place. After exiting
from the first jet, the laser and the electron bunch propagate freely in a millimeter-scale drift
space. They then enter the second jet, in which the laser pulse again drives a wakefield. The
focusing fields of this wakefield can then collimate the trailing electron bunch. On the whole, the
phase space evolution of the bunch can be decomposed into three stages, which are represented
in fig. 4.1 and described in the following paragraphs. (In fig. 4.1 and in the rest of this chapter, θx
and θy denote the angles between the z axis and the velocity vector v of an individual electron,
in the x and y plane respectively.)

First jet: Acceleration and betatron. In the first jet, the laser pulse self-focuses and
the wakefield is typically in the blow-out regime. The density of this first jet is chosen high
enough for self-injection to occur (n1 ∼ 1019 cm−3). In this case, the injected electron bunch
is accelerated and focused by the fields of the ion cavity, and the individual electrons perform
transverse betatron oscillations. When viewed in phase-space, these betatron oscillations roughly
correspond to a rotation along a given ellipse. Due to the strong focusing fields of the cavity,
this ellipse is elongated in the θx direction in fig. 4.1, and as a consequence the divergence of the
bunch is typically high during these oscillations.

Drift space: Free propagation. In the drift space, the laser pulse is not self-focused anymore,
and thus it diffracts freely. Also, there is no wakefield in the drift space and hence the electrons
are not focused either. As a consequence of its high divergence, the bunch expands radially.
In phase-space, this corresponds to the bunch stretching in the x direction, but along lines of
constant θx (see fig. 4.1). As a result, the area covered by the beam becomes thinner and thinner
in the θx direction1.

Second jet: Collimation. In the second jet, the laser creates again a focusing wakefield.
For reasons that will be explicited in section 4.2.3, the density of the second jet is chosen to be
relatively low (n2 ∼ 1018 cm−3). It is also important to note that, in the second jet, the wakefield
is typically in the linear regime. This is because the typical Rayleigh length after the first jet

1In the case of a monoergetic bunch with negligible space-charge, this can be seen as a consequence of the
conservation of emittance. It is indeed easy to show that, if space-charge and energy-spread effects are negligible,
the emittance of the bunch is conserved as it travels in vacuum. Here the emittance of the bunch can be written
as εx = 1

mc
σxσpx−αbestx = γσxσθx−α′

best
x (see section 1.3.1 ; here α′best = αbest/(γmc)), where σθx−α′

best
x is

a measure of the thickness of the bunch along the θx direction, in phase-space. Since σx increases during the
expansion of the bunch, and since εx remains constant, σθx−α′

best
x necessarily decreases and the bunch becomes

thinner in phase-space.
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(ZR ∼ 200µm) is much shorter than the millimeter-scale drift space, and thus the intensity of the
laser pulse rapidly decreases before it reaches the second jet. Because the focusing fields in the
linear regime are weaker than in the blow-out regime, the bunch rotates slower and along a wider
ellipse in phase-space. At some point in this rotation, the bunch is aligned with the x axis and
the divergence is minimal. This is where the second jet should end in order to properly collimate
the beam. This shows that the length Ll of the second jet should be carefully tuned in relation
with the other parameters of the setup (the density n2 of the second jet and the drift distance
Ld), in order to reach a minimal divergence. The next section explains quantitatively how these
different parameters should be chosen. Notice also that, if these parameters are well-chosen, the
final divergence is much smaller than the initial one (as a consequence of the bunch becoming
thinner in the drift space) – which is indeed the aim of this setup.

n1

n2

Ld Ll
z

n

and betatron
Acceleration

x

θx

Free propagation

x

θx

d

Collimation

x

θx

Figure 4.1: Schematic representation of the single-pulse laser-plasma lens. The blue curves
represent the density profiles of the two jets. The above sketches represent the driving laser
pulse (red), the laser-wakefield (blue) and the electron bunch (green), as they propagate through
the two jets and the drift space. The plots in the lower panel represent the evolution of the
electron bunch in transverse phase space.

4.2.2 A model for the laser-plasma lens

In order determine how the different parameters should be tuned, I built a simple model of the
laser-plasma lens. In this simplified model, space-charge effects are neglected, and the laser-
wakefield is explicitly assumed to be in the linear regime in the second jet. Moreover, the density
gradients at the edges of the gas jets are considered to be infinitely steep. Thus the expression

80



4.2. The single-pulse laser-plasma lens

of the gas density n(z) is:

n(z) =


n1 for z < 0

0 for 0 < z < Ld

n2 for Ld < z < Ld + Ll

(By convention, the end of the first jet is taken as the origin of the z axis.) In order to evaluate the
impact of the lens on the divergence of the beam, we first study the trajectory of one individual
electron, and then generalize the results to a whole bunch.

Trajectory of an individual electron. Let us thus consider an individual electron that exits
from the first jet and let us calculate the evolution of its transverse position x and transverse
angle θx as it goes through the drift space and the second jet,. At the end of the first jet, the
initial transverse position and transverse angle of this electron are denoted as x0 and θ0.

As it travels in the drift space, the electron does not experience any force, and thus its
transverse position and angle evolve as:{

x(z) = x0 + θ0 z

θx(z) = θ0
for 0 < z < Ld (4.1)

In particular, their values at the entrance of the second jet are x(Ld) = x0+θ0 Ld and θx(Ld) = θ0.
Once this electron enters the second jet, it experiences the focusing forces of the laser-wakefield.
Thus, assuming that the laser pulse is Gaussian, one can use the linear wakefield expressions of
section 1.1.3. In this case, the equations of transverse motion in the second jet are:

d px
dt

= −ηmc2a0(z)2

w(z)2
sin(kpd)x e−2(x2+y2)/w(z)2 d x

dt
=

px
γm

(4.2)

with kp =
√

4πren2 and η =

√
π

4 log(2)
(ckpτ) exp

(
− (ckpτ)2

16 log(2)

)
where η quantifies the efficiency with which the laser pulse drives the wakefield. In the above
equations, w(z) and a0(z) are the waist and the peak amplitude of the laser pulse, and τ is its
FWHM duration. (a0 and w depend on z because the laser progressively diffracts.) The quantity
kp denotes the plasma wavector in the second jet, and d is the distance between the electron
bunch and the centroid of the laser pulse (see fig. 4.1).

These equations of motion can be integrated under a few approximations. First, since the
drift space Ld is much longer than the Rayleigh length ZR, the waist and amplitude of the laser
pulse in the second jet evolve as w(z) ' w(0) × z/ZR and a0(z) ' a0(0) × ZR/z (where a0(0)
and w(0) are the amplitude and waist of the pulse at the exit of the first jet). Moreover, the
electron is considered to travel approximately at the speed of light in the z direction (z ' ct,
px ' γmc θx), and the variations of its Lorentz factor γ are neglected in the second jet. (This
is because the accelerating electric field is relatively weak in the linear wakefield of the second
jet.) Finally, it is assumed that the electron travels close enough to the axis for the exponential
factor in eq. (4.2) to be approximated to 1 (i.e. it is assumed that x(z), y(z) � w(z)). With
these approximation, the equations of motion can be rewritten as:

d2x

dz2
= −

Z4
R

z4
k2

foc x with k2
foc =

η a0(0)2

γ w(0)2
sin(kpd) (4.3)
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Taking into account the initial conditions x(Ld) and θx(Ld), the solution of this equation is:
x(z) = χ θ0 z cos

(
kfocZ

2
R

Ld
−
kfocZ

2
R

z
+ ϕ

)
θx(z) = χ θ0

[
cos

(
kfocZ

2
R

Ld
−
kfocZ

2
R

z
+ ϕ

)
−
kfocZ

2
R

z
sin

(
kfocZ

2
R

Ld
−
kfocZ

2
R

z
+ ϕ

)] (4.4)

where χ > 0 and ϕ ∈ [0, 2π[ are defined by the relation

χeiϕ ≡
(

1 +
x0

θ0Ld

)
+ i

x0

kfocZ
2
Rθ0

(4.5)

These expressions (which are valid for Ld < z < Ld +Ll) and those of eq. (4.1) (which are valid
for 0 < z < Ld) are plotted as a function of z in fig. 4.2. In this figure, θx is indeed observed to
progressively decrease in the second jet, as is desired. Notice that the evolution of θx becomes
slower and slower as the particle travels into the jet. Mathematically, this is a consequence of
the terms 1/z in eq. (4.4), while physically this is because the laser continues diffracting in the
second jet, and because the focusing forces of the wakefield thus become weaker and weaker as
a function of z. Note also that, at some point in the trajectory of the electron, θx becomes zero.
Ideally, this is where the second jet should end. According to eq. (4.4), Ll should thus satisfy
the condition:

kfocZ
2
R

Ld + Ll
tan

(
kfocZ

2
R

Ld
−

kfocZ
2
R

Ld + Ll
+ ϕ

)
= 1 (4.6)
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Figure 4.2: Evolution of x (left panel) and θx (right panel), as given by eq. (4.1) and eq. (4.4), for
arbitrary initial conditions x0 and θ0 and for realistic parameters of the lens (γ = 200, a0(0) = 5,
w(0) = 6µm, Ld = 750µm, d = 10µm, τ = 30 fs). The white area represents the drift space,
while the blue area represents the second jet.

Evolution for an electron bunch. Yet the above condition cannot be simultaneously satisfied
for all the electrons of the bunch. This is because, according to eq. (4.5), ϕ depends on the
transverse position x0 and angle θ0 of each individual electron. Therefore, as represented in
fig. 4.3, the electrons of the bunch cannot reach θx = 0 simultaneously, and the bunch will
always have a non-zero divergence, regardless of the value of Ll. This result is not surprising
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since, at any rate, the finite emittance of the bunch always prevents it from reaching a zero
divergence.

Even though the final RMS divergence is not zero, fig. 4.3 shows that it can be considerably
smaller than its initial value – if the parameters of the lens are well-chosen. A reasonable choice
here is to adopt the parameters that satisfy the criterion

kfocZ
2
R

Ld + Ll
tan

(
kfocZ

2
R

Ld
−

kfocZ
2
R

Ld + Ll

)
= 1 (4.7)

which is the condition eq. (4.6) for ϕ = 0. This is justified by the fact that, for typical laser-
wakefield parameters, ϕ is close to zero for most of the electrons of the bunch. In practice,
eq. (4.7) can be solved graphically in order to find one of the parameters of the lens when the
others parameters are imposed. Here, this criterion is used to find the optimal length Ll of the
second jet, while imposing the same parameters as in fig. 4.3. The result is plotted as a blue line
in this figure. The divergence is indeed observed to be minimal around this position, and this
confirms the validity of the criterion eq. (4.7).
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Figure 4.3: Evolution of x and θx for several electron of the bunch, as given by eq. (4.1) and
eq. (4.4) for random values of x0 and θ0. The parameters of the lens are the same as in fig. 4.2
(γ = 200, a0(0) = 5, w(0) = 6µm, Ld = 750µm, d = 10µm, τ = 30 fs, n2 = 1.7 × 1018 cm−3).
The blue line represents the position at which the second jet should end, according to the criterion
eq. (4.7).

4.2.3 Tuning the parameters of the lens

According to the model of the last section, the parameters of the lens should be tuned so as
to satisfy eq. (4.7), in order to reach optimal collimation. Yet experimentally, several of the
quantities that are involved in eq. (4.7) are known only approximately (e.g. ZR, w(0), d), and
thus this criterion can only give an order of magnitude for the choice of the parameters. It is
nonetheless still possible to reach optimal collimation experimentally, by scanning one of the
parameters and by observing the corresponding evolution of the divergence. Experimentally, the
parameters that can be most easily scanned are the density of the second jet (n2) and the drift
distance (Ld). (The quantity Ll is less easy to vary, since it is determined by the radius of the
nozzle that produces the second jet.) It is therefore interesting to predict the evolution of the
divergence when n2 and Ld are scanned.

83



Chapter 4. The laser-plasma lens

Scan in density (n2). Figure 4.4 represents the RMS divergence of a typical electron bunch at
the exit of the lens (here Ll = 750µm), as a function of n2. This curve was obtained by generating
a random set of x0 and θ0 (which represent the initial bunch – here with

√
〈x2

0〉 = 0.5µm and√
〈θ2

0〉 = 3 mrad), and then by calculating the final θx analytically for each x0 and θ0, and by
averaging these values to find the final RMS divergence

√
〈θ2
x〉. For the values of n2 for which

k2
foc is positive, the individual θx are given by eq. (4.4). On the other hand, for negative k2

foc (i.e.
when kfoc is purely imaginary), eq. (4.4) is not valid anymore and another analytical expression2

is used.
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Figure 4.4: Top panel: Evolution of the final RMS divergence of the electron bunch (black solid
line) and of the focusing parameter k2

foc (blue dashed line) as a function of the density n2. The
other parameters are fixed (γ = 200, a0(0) = 5, w(0) = 6µm, Ld = 750µm, Ll = 750µm,
d = 10µm, τ = 30 fs). The dotted line simultaneously marks the initial RMS divergence of
the bunch

√
〈θ2

0〉 = 3 mrad (on the left axis) and the position of k2
foc = 0 (on the right axis).

The bottom panels represent the evolution of θx for a few electrons as a function of z, for three
different values of n2.

Three regimes can be observed in fig. 4.4. First, for high densities k2
foc is negative (because of

the term sin(kpd) in eq. (4.3)), and the lens is defocusing. Physically, this is due to the fact that
the plasma wavelength is very short for high values of n2, and that, as a result, the electron bunch
finds itself in the second half-period of the wakefield (d > λp/2). As mentioned in section 1.1.3,
the second half-period is defocusing. In practice, this regime should definitely be avoided, since
it results in a higher divergence than the initial one. In the experiments, this imposes to chose

2More precisely, in the case where k2
foc in negative, the solution of eq. (4.3) can be expressed with the functions

cosh and sinh: x(z) = (x0+θ0Ld)z
Ld

cosh
(
|kfoc|Z2

R
Ld

− |kfoc|Z
2
R

z

)
− x0z

|kfoc|Z2
R

sinh
(
|kfoc|Z2

R
Ld

− |kfoc|Z
2
R

z

)
and θx = dzx.
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4.2. The single-pulse laser-plasma lens

a relatively low density:
n2 <

π

4red2
(4.8)

For typical values of d (d ∼ 10µm), this yields n2 < 2 × 1018 cm−3. In the range of n2 which
satisfy this condition, k2

foc is observed to go through a maximum. This is essentially because
of the resonance of the term η in eq. (4.3) as a function of ckpτ (see section 1.1.3). Two other
regimes can be seen in this range of n2. When k2

foc is low, the bunch is not focused strongly
enough and the final divergence is relatively high. On the other hand, for a high k2

foc, the bunch
is overfocused and the final divergence can also be high. The optimal value of kfoc lies in between
these two regimes, and it is given, again, by the criterion eq. (4.7). (Notice that, because k2

foc is
not a bijective function of n2, there are two values of n2 which satisfy this criterion.)

Scan in position (Ld). As mentioned previously, it is also possible to scan the position Ld of
the second jet. When doing so however, one must first choose a n2 low enough for the electrons
to be in a focusing phase of the wakefield (i.e. eq. (4.8) should be satisfied). Provided that this
condition is satisfied, the evolution of the divergence as a function Ld will be similar to that of
fig. 4.5.
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Figure 4.5: Top panel: Evolution of the final RMS divergence of the electron bunch (black solid
line) as a function of the position of the second jet Ld. The other parameters are fixed (γ = 200,
a0(0) = 5, w(0) = 6µm, n2 = 1×1018 cm−3, Ll = 750µm, d = 10µm, τ = 30 fs). The dotted line
marks the initial RMS divergence of the bunch

√
〈θ2

0〉 = 3 mrad. The bottom panels represent
the evolution of θx for a few electrons as a function of z, for three different values of Ld.

Two regimes can be observed in this figure. For high values of Ld, the bunch is not focused
enough (see the lower right panel of fig. 4.5). This is because the laser diffracts considerably
over the long distance Ld, and because it produces a relatively weak wakefield once it reaches
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Chapter 4. The laser-plasma lens

the second jet. On the opposite, the bunch is overfocused for low values of Ld (see the lower
left panel of fig. 4.5), because the laser pulse has not diffracted enough and the wakefield is
too strong3. Again, the optimal value of Ld lies in between these two regimes, and is given by
eq. (4.7).

Conclusion on the model. On the whole, the model suggests that a laser-plasma lens can
be realistically implemented in experiments. The required parameters for the second jet (n2 ∼
1018 cm−3, Ll ∼ 1 mm) are indeed quite standard. Moreover, the fact that the final divergence
evolves smoothly as a function of n2 and Ld in figs. 4.4 and 4.5 shows that this scheme does not
require a very strong precision when tuning these parameters. Finally, according to the model,
the divergence can be expected to be reduced by a factor ∼ 6 with this scheme.

4.2.4 Confirmation by PIC simulations

In order to confirm the predictions of the model and to take into account the effects that it
neglected (such as e.g. the finite density gradient of the jets), I ran PIC simulations of the
laser-plasma lens. The simulations were run with the quasi-cylindrical code Calder Circ and,
since the transverse quality of the beam is paramount here, the Cherenkov-free algorithm of
section 2.3.1 was used (so as to limit any spurious growth of emittance). However, even with this
scheme, the transverse dynamics of the electrons was still observed to be affected by numerical
artifacts. I found that these artifacts were due to the interpolation of the B field in time, when
calculating the Lorentz force at the positions of the macroparticles (see section 2.1.2). Because
this interpolation is only second-order accurate in standard PIC codes, the electrons appeared
to have a spuriously high interaction with the back of the laser pulse. I corrected this problem
by using a third-order accurate interpolation in time (see appendix C for more details on this
point). When using this correction, the observed artifacts vanished and the transverse dynamics
of the electrons was physically consistent.

With the Cherenkov-free scheme and the third-order interpolation in time, PIC simulations
confirmed the feasibility of the laser-plasma lens. In order to illustrate this, let us consider one
of these simulations. In this particular simulation, a 0.7 J, 30 fs laser pulse is focused into a first
gas jet having a density n1 = 8.8 × 1018 cm−3, which is then followed by a second jet having a
density n2 = 1×1018 cm−3 (in accordance with the condition eq. (4.8)). The simulation was run
with a resolution ∆z = 0.03µm, ∆r = 0.2µm and c∆t = 0.96∆z, using two azimuthal modes
(` = 0 and ` = 1) and 20 macroparticles per cell.

The density profile is represented in the top panel of fig. 4.6, along with the evolution of the
laser pulse. The laser self-focuses to a waist w(0) ' 6µm in the first jet and leads to the self-
injection of a 70 pC, 1 fs electron bunch (black lines in fig. 4.6). This bunch is then accelerated
up to γ = 450 (with a 10 % RMS energy spread) and reaches the drift space. Both the bunch
and the laser pulse diverge in the drift space (the Rayleigh length of the laser is ZR = 150µm),
and the bunch is then collimated in the second jet. The evolution of the RMS divergence of
the bunch is represented in the bottom panel of fig. 4.6. The divergence oscillates in the first
jet (as a consequence of the betatron oscillations of the individual electrons), remains constant
in the drift space (as predicted by eq. (4.1)) and decreases in the second jet. In particular, as
suggested by eq. (4.4), this decrease progressively slows down as a function of z. In the end, the

3Notice here that the hypothesis that the wakefield is in the linear regime may not be valid for low values of
Ld. Therefore the results of the model may not be quantitatively exact, although the qualitative fact that the
electrons are overfocused for small values of Ld is still expected to be correct.
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Figure 4.6: Results of the PIC simulation. Upper panel: density profile (blue), laser waist (red)
and transverse positions of some of the injected electrons (black), as a function of the propagation
coordinate z. Lower panel: RMS divergence of the electrons in the x and y directions. (The
laser is polarized along x.)

final divergence is considerably smaller than the initial one, and this confirms the fact that the
proposed laser-plasma lens can realistically collimate the electrons.

However, the reduction of the divergence (which corresponds roughly to a factor of 3 here)
is not as high as one could have expected from the estimations of the model. This is due to
aberrations of the laser-plasma lens, that were not considered in the initial model.

4.2.5 Aberrations of the single-pulse lens

As mentioned in section 4.2.2, the final non-zero divergence is due to the fact that the electrons
cannot reach θx = 0 (or θy = 0) simultaneously. In the ideal model of section 4.2.2, this
is due the fact that the different electrons have different initial x and θx, and thus the final
divergence is limited by the initial emittance of the beam. Yet in reality, several aberrations
induce an additional spread in the position z at which the electrons reach θx = 0. As result,
these aberrations increase the final divergence above the value predicted by the initial emittance.
The next paragraphs describe these aberrations.

“Chromatic” aberrations. In the model of section 4.2.2, all electrons were considered to
have the same energy. Yet in reality, the bunch can have a substantial energy spread. Since
k2

foc depends on γ (see eq. (4.3)), the electrons with low energy experience a stronger focusing
than the electrons with high energy. Thus the energy spread further prevents the electrons from
simultaneously reaching θx = 0.
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Chapter 4. The laser-plasma lens

High-radius aberrations. Equation (4.2) shows that the focusing forces e.g. in the x direction
are proportional to x e−2(x2+y2)/w(z)2 . In the model of section 4.2.2, it was assumed that the
particles satisfied x, y � w(z), and thus that the factor e−2(x2+y2)/w(z)2 was close to 1. However,
in reality this assumption is not necessarily satisfied for all the electrons. Since the values of
x(z) and w(z) at the entrance of the lens (z = Ld) are x(Ld) ' θ0Ld and w(Ld) ' w(0)Ld/ZR,
the condition x(z)� w(z) in the second jet is essentially equivalent to

θ0 �
w(0)

ZR

The typical value of the right hand side is around 40 mrad, and thus the electrons of the bunch
that have a divergence of the order of 10 mrad do not satisfy this condition. As a consequence
of the factor e−2(x2+y2)/w(z)2 , these electrons effectively feel a lower k2

foc. This can be seen in
fig. 4.7, which displays the transverse phase in the PIC simulation of section 4.2.4. As shown in
this figure, the particles with a high initial divergence rotate slower in phase space than those
with low divergence. Again, because of this, the electrons cannot reach θx = 0 simultaneously,
and the final divergence is higher than expected.

Figure 4.7: Representation of the phase space in the PIC simulation of section 4.2.4 before (left
panel) and after (right panel) the lens. The dashed line represents the best linear fit to the phase
space. As can be seen, the particles in the center of the plot rotate faster than this dashed line,
while the particles with high initial divergence rotate slower.

Transverse beamloading. As the electron bunch propagates in the linear laser-wakefield of
the second jet, it can drive a wakefield of its own, and thereby give rise to beamloading effects
(see section 1.2.1). These effects are only important for long bunches with a high charge, and
they were found to be negligible for the 1 fs, 70 pC bunch of the PIC simulation in section 4.2.4.
However, they were observed in other simulations, and fig. 4.8 shows the results of one such
simulation. This simulation was similar to that of section 4.2.4, but a higher laser energy (1.6
J) was used, and lead to the injection of more charge (130 pC). The upper left panel of fig. 4.8
shows the aspect of the wakefield in the second jet. The laser is observed to drive a weak, linear
wakefield, while the high-charge bunch drives a strong wakefield of its own within the linear
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4.2. The single-pulse laser-plasma lens

wakefield. In this case, the electrons in the tail of the bunch (blue and green dots) effectively
experience the focusing wakefield generated by the head of the bunch (red dots). As a result, the
electrons in the tail undergo a stronger focusing than those in the head, and they rotate faster
in phase space. This can be seen in the left panels of fig. 4.8, which represent the transverse
phase space before and after the lens. Again, the fact that the particles rotate with different
speed in phase space prevents them from being properly collimated, and results in a higher final
divergence.

Figure 4.8: Upper left panel: Snapshot of a PIC simulation featuring a 130 pC bunch, in the
second gas jet. Lower left panel: Longitudinal phase space at the same time in the simulation.
The macroparticles in the higher energy part of the bunch (colored dots) are selected and followed
in transverse phase space. (The color corresponds to their longitudinal position in the bunch.)
Right panel: Position of these macroparticles in transverse phase space, before (upper panel)
and after (lower panel) the lens.

From this simulation, it appears that transverse beamloading can potentially be an important
aberration, but that it crucially depends on the charge and the geometry of the bunch. In
order to determine the scaling of this aberration, I developed a model for nonlinear transverse
beamloading in a linear laser-wakefield.
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Chapter 4. The laser-plasma lens

4.3 Transverse beamloading in the single-pulse lens

The aim of this section is thus to model the wakefield driven by a bunch within a linear laser-
wakefield, and to calculate the focusing force that this wakefield produces on the bunch itself.
In addition to the laser-plasma lens, this type of model can also be useful to other situations
that may occur in laser-wakefield acceleration. For instance, in the context of two-stage laser-
wakefield acceleration, it has been suggested to use a linear wakefield in the second stage, instead
of a blown-out cavity [Schroeder et al., 2010; Paradkar et al., 2013]. In this case also, the head
of the bunch can drive a wakefield which produces a focusing force on the tail of the bunch. As a
result of this inhomogeneous focusing force, the emittance of the bunch can degrade during the
acceleration (see section 1.3.2). Another important situation is that in which an unguided laser
pulse propagates in a long gas jet. In this case, experiments [Corde et al., 2011] and simulations
[Pae et al., 2010] showed that the laser-wakefield transitions from a blown-out cavity to a linear
wakefield as the laser progressively diffracts. Here again, the trailing electron bunch can drive
its own wakefield within the linear wakefield.

In view of these various situations, it is important to have a formalism to calculate the bunch-
driven wakefield, within a linear laser-wakefield. Yet to date, there is no comprehensive satisfying
formalism for this beamloading phenomenon. As mentioned in section 1.2.1, beamloading in a
linear wakefield can be described analytically when the density perturbation produced by the
bunch is small compared to the background density (linear beamloading). However, this is
clearly not the case in fig. 4.8, where the bunch produces a strongly evacuated cavity in its wake.
Alternatively, Rosenzweig et al. [1991] developed a model for this type of nonlinear bunch-driven
wakefield, but their formalism is purely electrostatic and non-relativistic. Yet in the case of
the laser-plasma lens, the bunch can be so intense that it can push the plasma electrons to
relativistic energies. As a consequence, the plasma electrons gain inertia and become sensitive
to the magnetic fields of bunch – and these effects are not taken into account in a classical and
electrostatic model. Finally, Mora and Antonsen [1997] developed a fully-relativistic and fully-
electromagnetic framework, which was summarized in section 1.1.2. Although Lu et al. [2006b];
Tzoufras et al. [2009] used this framework to describe nonlinear beamloading inside a blown-out
cavity, it has not yet been applied to nonlinear beamloading inside a linear wakefield.

Thus, in this section, I use the framework of Mora and Antonsen [1997] to describe a nonlinear
bunch-driven wakefield within a linear laser-driven wakefield.

4.3.1 Description of the model and governing equations

Overview. The situation modeled is represented schematically in fig. 4.9. A weak laser pulse
(red) precedes the bunch and drives a weak wakefield (light red), in which the bunch (green)
drives its own wakefield (light green). (Notice that the longitudinal coordinate in fig. 4.9 is
ξ = ct − z, which is why the image appears inverted when compared with the upper left panel
of fig. 4.8.) Here we are particularly interested in the region that immediately surrounds the
electron bunch, and where the bunch-driven wakefield only starts to develop.

Three species are considered in the model:

• the motionless plasma ions, whose constant and uniform density is denoted ni.

• the plasma electrons, whose density and dimensionless velocity are denoted np and βp.
Notice that, because of the presence of the laser-driven wakefield, these electrons can
already have a non-zero velocity when the bunch reaches them (i.e. at ξ ' 0 in fig. 4.9).
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4.3. Transverse beamloading in the single-pulse lens

Figure 4.9: Schematic representation of the situation modeled. The electron density is repre-
sented in blue. Within this density, the laser pulse (red) and the ultrarelativistic bunch (green)
drive their own wakefields (represented in light red and light green respectively).

• the ultrarelativistic electrons of the bunch, whose density and dimensionless velocity are
denoted nb and βb, and which satisfy βb,z ' 1. In typical LWFA situations, the bunch is
much denser than the surrounding plasma (nb � ni, np).

The laser pulse, the bunch and the wakefields are assumed to be cylindrically symmetric,
and thus the problem is studied in cylindrical coordinates r, θ, z. In addition, both the laser
pulse and the ultrarelativistic bunch are assumed to evolve on a timescale much longer than
the crossing time of the plasma electrons. Thus the whole structure propagates essentially at
the speed of light, and, when studying the motion of the electrons, all quantites are assumed to
depend on z and t only through ξ = ct − z. (This is the quasi-static approximation which was
introduced in section 1.1.2.) Finally, the trajectories of the plasma electrons are considered not
to cross in the neighborhood of the driving bunch. In fact, PIC simulations tend to show that
these trajectories usually cross a few microns behind the beam. Yet the length of the driving
bunch is usually of the order of one micron, and thus trajectory crossing can be neglected when
studying the dynamics of the driving bunch.

Governing equations With these approximations, the quasi-static ponderomotive formalism
of section 1.1.2 can be used here. From eqs. (1.10) to (1.12), the field equations of this formalism
read:

∂

∂r

(
1

r

∂ (r ar)

∂r

)
= 4πre(npβp,r + nbβb,r) (4.9)

1

r

∂

∂r

(
r
∂ φ

∂r

)
= 4πre(np + nb − ni) (4.10)

1

r

∂

∂r

(
r
∂ ψ

∂r

)
= 4πre[ np(1− βp,z) + nb(1− βb,z)− ni ] (4.11)

where φ and a are the dimensionless scalar potential and vector potential and where ψ = φ−az.
Compared to eqs. (1.10) to (1.12), the electron density ne has been replaced by the sum of the
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density of the plasma electrons np and the density of the electrons of the bunch nb. Similarly,
je has been replaced by jp + jb, and moreover jp and jb have been written as npβp and nbβb
respectively. This is because, since there is no trajectory crossing, there is a unique, well-defined
velocity βp (resp. βb) at each point in space.

Similarly, the motion of the plasma electrons in this quasi-static formalism is given by
eqs. (1.14) and (1.15). These two equations can be combined into the following equation4:

d

dξ
(1 + ψ)

d rp
dξ

=
∂ar
∂ξ

+
∂φ

∂r
+

(
γp

1 + ψ
− 1

)
∂ψ

∂r
− 1

2(1 + ψ)

∂〈a2
l 〉

∂r
(4.12)

Finally, eq. (1.19) expresses the radial focusing force experienced by the ultrarelativistic electrons
of the bunch inside the wakefield:

Fb,r = mc2∂ψ

∂r
(4.13)

Thus the field equations eqs. (4.9) to (4.11) and the equation of motion eq. (4.12) must be
integrated jointly in order to find the wakefield quantity ∂rψ, which can then be used to calculate
the force on the electrons of the bunch, through eq. (4.13). In order to do so, let us first take
into account the specificities of the problem to simplify the above equations.

4.3.2 Approximate system

Field equations. As mentioned previously, the electron bunch is much denser than the plasma,
i.e. nb � np, ni. This allows to neglect the terms np and ni in the equation for φ (eq. (4.10)).
On the other hand, because the bunch is ultrarelativistic (1 − βb,z � 1), the term nb(1 − βb,z)
is typically negligible compared to np(1− βp,z) in the equation for ψ (eq. (4.11)). For instance,
a 200 MeV, 100 pC bunch with a transverse and longitudinal size of 1 µm has a density nb =
2×1020 cm−3, but nb(1−βb,z) = 2×1015 cm−3. By comparison, in the situations of interest here,
the plasma has a density np ∼ 1018 cm−3 and PIC simulations show that, in realistic conditions,
(1− βp,z) > 10−1. Therefore, equations eqs. (4.9) to (4.11) are simplified in the following way:

∂

∂r

(
1

r

∂ (r ar)

∂r

)
= 4πre(npβp,r + nbβb,r) (4.14)

1

r

∂

∂r

(
r
∂ φ

∂r

)
= 4πrenb (4.15)

1

r

∂

∂r

(
r
∂ ψ

∂r

)
= 4πre[ np(1− βp,z)− ni ] (4.16)

According to the above set of equations, φ corresponds to the space-charge fields that would be
created by the ultrarelativistic bunch if it was in vacuum, while ψ represents the fields generated
by the presence of the perturbed plasma (i.e. the wakefield).

Motion of the plasma electrons. Let us assess the importance of each term in the right-
hand side of eq. (4.12). First of all, the term proportional to ∂r〈a2

l 〉 represents the ponderomotive
force of the laser pulse. This term can be neglected here, since we aim to study the dynamics
of the plasma electrons in the immediate neighborhood of the bunch, and since the laser field is
weak or even zero in this neighborhood. Similarly, the term proportional to ∂rψ is negligible

4Here, as in chapter 1, we use the Lagrangian point of view as the natural point of view. However, the Eulerian
point of view is equally valid, and it is in fact used in section 4.3.2 in order to calculate the density np. (This is
done by using the correspondance between the Eulerian and Lagrangian point of view: βp(rp) = 1

c

drp

dt
)
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compared to ∂rφ. This is because nb � np, ni and thus, from eqs. (4.15) and (4.16), |φ| � |ψ|.
(In addition, the factor γp/(1 +ψ)− 1 is typically of order unity in realistic conditions, since the
plasma electrons are only mildy relativistic.)

Finally, let us compare the terms ∂ξar and ∂rφ by integrating eqs. (4.14) and (4.15). Using
the relations ar(r = 0) = ar(r = ∞) = 0, ∂rar(r = ∞) = 0 and ∂rφ(r = 0) = 0 as boundary
conditions, this integration leads to:

∂φ

∂r
= 4πre

(
1

r

∫ r

0
nb(r

′, ξ)r′ dr′
)

∂ar
∂ξ

= −2πre
r

∫ r

0

∂(nbβb,r + npβp,r)

∂ξ
(r′)2 dr′ − 2πrer

∫ ∞
r

∂(nbβb,r + npβp,r)

∂ξ
dr′

If β⊥ is the typical transverse velocity of the electrons of the bunch, R the typical radial size of
the bunch and L its typical length scale along ξ, the order of magnitude of the ratio of these
terms is

∂ξar
∂rφ

∼ R

L

(
β⊥ +

np
nb

)
where it was assumed that the radially expelled plasma electrons have βp,r ∼ 1. In typical
situations, β⊥ < 10−2 rad, np/nb < 10−2 and the aspect ratio of the bunch R/L usually satisfies
R/L < 10. Thus the term ∂ξar is typically negligible. On the whole, the term ∂rφ dominates
the right-hand side of eq. (4.12).

Let us now also evaluate the variation ∆ψ of the factor 1 + ψ in the left-hand side of that
equation. Note here that the quantity ψ is maximal on axis, inside the bunch-driven wakefield,
and that its highest possible value is reached if the wake is fully evacuated. One may thus find an
upper bound for |∆ψ| by calculating the value |∆ψ|max corresponding to a fully-blown wakefield
of transverse size R. By integrating eq. (4.16), one finds |∆ψ|max = πreniR

2 = k2
pR

2/4, where
kp =

√
4πreni is the plasma wavector associated with the ion density. For a bunch having a

radius R ∼ 1µm and ni = 1018 cm−3, one has |∆ψmax| ≈ 3 × 10−2. Since |∆ψ|max is an upper
bound for the variations of ψ, the factor 1 + ψ can be considered to be constant along the
trajectory of a plasma electrons, i.e. 1 + ψ = 1 + ψ0 where ψ0 is the value of ψ at ξ = 0, before
the electron has been reached by the bunch. While this approximation may be the least rigorous
of the above set of approximations, it is nonetheless confirmed by PIC simulations – as will be
seen in the next section.

Taking into account the above considerations, the equation of motion eq. (4.12) becomes

d2 rp
dξ2

=
4πre

1 + ψ0

(
1

rp

∫ rp

0
nb(r

′, ξ)r′ dr′
)

(4.17)

A striking result here is that, although the plasma electrons can be pushed to relativistic energies
by the space charge of the bunch, their equation of motion– when expressed as a function of ξ –
is very similar to that of the non-relativistic and electrostatic model of Rosenzweig et al. [1991].
In this model, the equation of motion is d2

ξrp = 4πre

(
1
rp

∫ rp
0 nb(r

′, ξ)r′ dr′
)
− 4πreni(rp − r0),

where r0 is the value of rp at ξ = 0 (i.e. before the bunch reaches the electron). However, these
two equations differ in two important ways.

• Equation (4.17) features a constant factor 1/(1 + ψ0). This factor takes into account the
fact that the plasma electrons may already be mildly relativistic when the bunch reaches
them, which slightly increases their inertia.
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• The equation obtained with the non-relativistic and electrostatic model features an addi-
tional term −4πreni(rp− r0). This term represents the impact of the restoring force of the
ions on the motion of the plasma electrons. This restoring force is not present in eq. (4.17),
essentially because the terms ni and np(1− βp,z) were neglected in eq. (4.16). Physically,
this force is important when describing the bunch-driven wakefield over a full plasma pe-
riod, as it is precisely this force which responsible for the plasma oscillations. Yet, when
describing the wakefield over the small length of the driving bunch (which is much shorter
than a plasma period), this force does not have enough time to have a substantial impact,
and thus neglecting it is a good approximation.

Focusing force on the electrons of the bunch. According to eq. (4.13), the force expe-
rienced by the electrons of the bunch is Fb,r = mc2∂rψ. The term ∂rψ can be calculated by
integrating eq. (4.16):

Fb,r = 4πremc
2

[(
1

r

∫ r

0
np(r

′, ξ) [ 1− βp,z(r′, ξ) ] r′ dr′
)
− nir

2

]
The integral in the right-hand side can be calculated by noticing that the quantity

∫ rp(ξ)
0 np(r

′, ξ) [ 1−
βp,z(r

′, ξ) ] dr′ is independent of ξ for any plasma electron trajectory rp(ξ)5. As a consequence,∫ r

0
np(r

′, ξ) [ 1− βp,z(r′, ξ) ] r′dr′ =

∫ r0(r,ξ)

0
np,0[ 1− βp,z,0 ] r′dr′

where np,0 and βp,z,0 are the values of np and βp,z at ξ = 0, and where r0(r, ξ) is the radial
position such that a plasma electron which is initially at r0(r, ξ) would reach the radial position
r at ξ. In practice, in order to find r0(r, ξ), one needs to integrate eq. (4.17) to find rp(ξ, r0) and
invert the solution. The force experienced by the electrons of the bunch is then

Fb,r = 4πremc
2

[(
1

r

∫ r0(r,ξ)

0
np,0 [ 1− βp,z,0 ] r′ dr′

)
− nir

2

]
(4.18)

This equation can be compared with the corresponding equations in other models. In the elec-
trostatic model of Rosenzweig et al. [1991], the term

∫ r0
0 np,0[ 1 − βp,z,0 ] r′ dr′ is replaced by∫ r0

0 np,0 r
′ dr′. This is because this type of model neglects the magnetic field generated by the

plasma electrons. However, if the plasma electrons are relativistic (|βp,z,0| ≈ 1), they can pro-
duce a strong magnetic field, which can alter the Lorentz force experienced by the bunch. On
the other hand, in a blown-out cavity [Lu et al., 2006b], the term

∫ r0
0 np,0[ 1 − βp,z,0 ] r′ dr′ is

neglected altogether, since the cavity is completely void of electrons. In this case, the bunch
feels a force Fb,r = −2πremc

2nir = −mc2k2
P r/2 associated with the bare ion cavity. Yet, in our

5This property is a consequence of the equation of continuity ∂tnp + ∇ · (npcβp) = 0, which can be rewritten
as ∂ξnp(1− βp,z) + 1

r
∂r(npβp,r) = 0 in the context of the quasistatic formalism that is used in this section. Using

this equation,
∫ rp(ξ)

0
np(1− βp,z) r dr can be shown to be constant:

d

dξ

∫ rp(ξ)

0

np (1− βp,z) r dr =

∫ rp(ξ)

0

∂

∂ξ
[ np (1− βp,z) ] rdr +

(
d rp
dξ

)
np(rp, ξ) [ 1− βp,z(rp, ξ) ] rp

= −
∫ rp(ξ)

0

∂

∂r
[ r np βp,r ] dr +

(
1

c

d rp
dt

)
np(rp, ξ) rp

= −rp np(rp, ξ)βp,r(rp, ξ) + βp,r(rp, ξ)np(rp, ξ) rp = 0

94



4.3. Transverse beamloading in the single-pulse lens

model, the bunch travels in a partially evacuated cavity, and the term
∫ r0

0 np,0[ 1− βp,z,0 ] r′ dr′

represents the shielding effect of the plasma electrons over the ions.
On the whole, for a given bunch profile nb(r, ξ), eq. (4.17) should be integrated, so as to find

rp(ξ, r0). Then this solution should be inverted to find r0(r, ξ) and injected into eq. (4.18). Let
us illustrate this procedure in the case of a flat-top bunch.

4.3.3 Application to a flat-top bunch in a linear laser-wakefield

Here let us consider a flat-top bunch of the form

nb(r, ξ) =

{
nb,0 if 0 < r < L and r < R

0 otherwise

which travels behind a sine-like laser pulse of the form

a =

{
a0 cos[ k0(ξ − ξlaser) ] cos

(
π
2

(ξ−ξlaser)
cτ

)
exp

(
− r2

w2

)
if |ξ − ξlaser| < cτ

0 otherwise

with ξlaser < 0 (as represented in fig. 4.9) and a2
0 � 1 (linear wakefield). As before, w denotes

the waist of the laser and τ its FWHM duration. It is further assumed that R � w, and thus
the high-radius effects that were described in section 4.2.5 are not taken into account here.

In this case, the laser-driven wakefield that forms ahead of the bunch (ξ < 0) can be calculated
analytically (see section 1.1.3). For the above model, the quantities of interest are:

βp,r =

(
η a2

0 r

kpw2

)
cos[ kp(ξ − ξlaser) ]

βp,z = −η a
2
0

4
sin[ kp(ξ − ξlaser) ]

np(1− βp,z) = ni − ni
2 η a2

0

k2
pw

2
sin[ kp(ξ − ξlaser) ]

ψ =
η a2

0

4
sin[ kp(ξ − ξlaser) ]

where η = π2 sin(ωpτ)/[ π2 − (ωpτ)2 ] quantifies how efficiently the laser drives its wakefield.
Here again, kp =

√
4πreni is the plasma wavevector associated with the background ion density

and ωp = ckp. Note that, in the above equations, the expression of the laser wakefield has been
simplified, by using the assumption R� w.

Motion of the plasma electrons. With the above hypotheses, eq. (4.17) becomes

d2 rp
dξ2

=
k′b

2

2
rp with k′b

2
=

k2
b

1 +
η a2

0
4 sin( kp|ξlaser| )

and k2
b = 4πrenb,0 (4.19)

where kb is the plasma wavevector associated with the density of the bunch, and where k′b =
kb/
√

1 + ψ0 takes into account the fact that the plasma electrons can initially be mildly rela-
tivistic, due to the laser-wakefield.6

6Here, the difference between kb and k′b may seem very small and possibly insignificant, since a2
0 � 1. However,

it turns out that k′b later appears in the argument of an exponentially-growing function (see eq. (4.20)), and thus
the small difference between kb and k′b can have a substantial impact on the final result. Consistently, we observed
that it was important to retain the term k′b in order to have a good agreement with the simulations.
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Chapter 4. The laser-plasma lens

Let us consider a plasma electron which is initially at r0 for ξ = 0. The initial value of the
derivative of rp is dξrp|ξ=0 = dtrp|ξ=0/[ c(1 − βp,z,0) ] = βp,r,0/(1 − βp,z,0). With these initial
conditions, the solution of eq. (4.19) reads

rp = r0 cosh

(
k′bξ√

2

)
+ r0

(√
2 η a2

0k
′
b

k2
bkpw

2

)
cos(kpξlaser) sinh

(
k′bξ√

2

)
(4.20)

This expression is valid as long as the electron remains inside the bunch (0 < ξ < L, rp < R). This
solution is plotted in the left panel of fig. 4.10, for different values of r0 and for the parameters
of table 4.1.

Laser parameters Bunch and plasma parameters
w = 10µm R = 1µm
cτ = 9µm L = 1µm
ξlaser = −10µm nb,0 = 2× 1020 cm−3 (Qbunch = 100 pC)
a0 = 0.5 ni = 1× 1018 cm−3

Table 4.1: Typical laser wakefield parameters, used for the analytical calculations of fig. 4.10 and
for the PIC simulations of fig. 4.11.
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Figure 4.10: Left panel: Trajectories of the plasma electrons as given by eq. (4.20) and for the
parameters of table 4.1. The gray rectangle represents the flat-top electron bunch. Right panel:
Focusing force experienced by the electrons of the bunch, at a given radius r < R (solid line).
On both panels, the head of the bunch is on the left (ξ = 0µm) and its tail is on the right
(ξ = 1µm).

Focusing force on the electrons of the bunch. In order to calculate the force Fb,r on the
electrons of the bunch, let us invert eq. (4.20):

r0(rp, ξ) =
rp

cosh
(
k′bξ√

2

)
+
√

2 η a2
0 k
′
b

k2
bkpw

2 cos(kpξlaser) sinh
(
k′bξ√

2

)
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4.3. Transverse beamloading in the single-pulse lens

When injecting this expression into eq. (4.18), along with the expression np,0(1−βp,z,0) from the
laser-wakefield formulas, the focusing force Fb,r reads:

Fb,r = −
mω2

p

2
r

1−
1 +

(
2 η a2

0
k2
pw

2

)
sin(kpξlaser)[

cosh
(
k′bξ√

2

)
+
(√

2 η a2
0k
′
b

k2
bkpw

2

)
cos(kpξlaser) sinh

(
k′bξ√

2

)]2

 (4.21)

This force is linear in r, but has on a nonlinear dependency on ξ. The variation of Fb,r as a
function of ξ is represented in the right panel of fig. 4.10. As can be seen in this figure, the
force transitions from a weak focusing force (due to the laser-driven wakefield) at the head of
the bunch (ξ = 0) to a strong focusing force (due to bunch-driven wakefield) at the tail of the
bunch (ξ = 1µm).

Confirmation by PIC simulations. In order to validate the above predictions and the cor-
responding approximations, I ran a high-resolution PIC simulation of a flat-top bunch traveling
behind a weak laser pulse. The parameters of the laser, the bunch and the plasma are those
of table 4.1. The simulation was run with the quasi-cylindrical code Calder Circ and the
Cherenkov-free algorithm of section 2.3.2. Two azimuthal modes were used, and the resolution
was ∆z = 1.3× 10−2 µm, ∆r = 2.5× 10−2 and c∆t = ∆z7.

As mentioned in section 4.3.2, the space-charge fields generated by the plasma electrons
(which are contained in ψ) are much weaker than the fields generated by the bunch (which
are contained in φ). However, in this simulation, we are particularly interested in the fields
generated by the plasma electrons, since it is those fields that determine the focusing force on
the bunch. This imposes to reduce the numerical noise as much as possible, since any source of
noise can easily exceed these weak fields. For this reason, the macro-particles were initialized
in a regularly-spaced manner – with 64 macro-particles per cell – and high-order shape factors
where used when interpolating and projecting the fields on the grid.

At the beginning of the simulation, the relativistic flat-top bunch is initialized in vacuum
(with γb = 400 and no radial velocity), and its initial space-charge fields are obtained by using
the matrix-inversion method of Cowan et al. [2013].8 Shortly after initialization, the laser and
the bunch enter a pre-ionized plasma. The trajectories of a few plasma electrons are represented
in the left panel of fig. 4.11, and compared with the theoretical predictions of eq. (4.20). As can
be seen, the agreement between the predictions and the simulation results is excellent. Notice
that the electrons do reach relativistic energies as they are expelled by the bunch (γp ∼ 3). This
justifies the relativistic approach that has been adopted throughout this section.

7In section 2.3.3, it was mentioned that c∆t = ∆z lead to a high level of Nyquist noise. However, in this
particular simulation, the Nyquist noise appeared to be relatively low, and did not impact the simulation signif-
icantly. This was probably because of the high resolution of this simulation, and because additional measures
where taken in order to reduce the overall noise of the simulation.

8More precisely, in order to initialize the space-charge fields of the bunch, Cowan et al. [2013] pointed out that
the fields of a bunch propagating at a constant speed β = βez satisfy:

∂2φ

∂x2
+
∂2φ

∂y2
+

1

γ2

∂2φ

∂z2
= 4πrene

∂2a

∂x2
+
∂2a

∂y2
+

1

γ2

∂2a

∂z2
= 4πreneβez

(These equations can be derived from the propagation equations eqs. (1.1) and (1.2) by using the fact that, for
a bunch propagating at a constant speed β: 1

c
∂φ
∂t

= −β ∂φ
∂z

and 1
c
∂a
∂t

= −β ∂a
∂z

.) The above equations can then
be discretized on the grid of a PIC code. In this case, the differential operators can be represented as matrix
operations, and the above equations can be solved for φ and a on the whole grid by using a matrix-inversion
algorithm (for instance the conjugate gradient algorithm). Finally, once φ and a are known on the grid, the fields
E andB can be obtained from the discretized version of the equations E = mc2

e

(
−∇φ+ β ∂a

∂z

)
andB = mc

e
∇×a.
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Chapter 4. The laser-plasma lens

The force felt by the electrons of the bunch is plotted in the right panel of fig. 4.11. In the
simulation, this force is evaluated by calculating the radial acceleration of the macroparticles of
the bunch: F evaluated

b,r ≡ γbmd
2
t rb. There is a significant disagreement between the simulation

results and the predictions of eq. (4.21) (solid lines) at the very head (ξ = 0µm) and the very
tail (ξ = 1µm) of the bunch. This local discrepancy is presumably due to numerical noise, which
was observed to accumulate at the edges of the bunch in the simulations. Apart from this local
discrepancy, the predictions and the simulation results are in good agreement. In particular,
eq. (4.21) predicts that the focusing force near the head of the bunch is non-zero, due to the
laser-wakefield. In order to highlight this point, fig. 4.11 also features the predictions of eq. (4.21)
in the case without a laser pulse (a0 = 0 ; dashed line in fig. 4.11). As can be seen in the figure,
the simulation results agree with the solid lines and do feature this non-zero focusing force at
the head of the bunch.
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Figure 4.11: Left panel: Trajectories of a few randomly-chosen plasma electrons in the PIC
simulation. The colored dots correspond to the successive positions of the macroparticles in the
simulations (the colorscale corresponds to the Lorentz factor γp of the electrons), while the black
line represents the prediction of eq. (4.20) based on the initial radius r0 of each macroparticle.
Right panel: Force experienced by the electrons of the bunch. The results are plotted for different
radii r, and each dot corresponds to one macroparticle. (Only the macroparticles lying close to
either r = 0.2, 0.4, 0.6 or 0.9 µm have been represented.) The predictions of eq. (4.21) are plotted
for a0 = 0.5 (solid lines) and, for comparison, for a0 = 0 (dashed lines).

On the whole, the model that was developed in this section is in good agreement with PIC
simulations. As mentioned in the introduction of this section, this model can be useful in several
situations associated with laser-wakefield acceleration, and these results were recently published
in [Lehe et al., 2014].

4.3.4 Implications for the single-pulse laser-plasma lens

Although eq. (4.21) was derived for a flat-top bunch, some of its qualitative feature can be
generalized to other bunch profiles. One of these features is the qualitative evolution of the
focusing force Fb,r along the bunch. As mentioned in the previous section, this force transitions
between two regimes depending on the value of ξ.
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4.3. Transverse beamloading in the single-pulse lens

• For kbξ � 1, a Taylor expansion of eq. (4.21) (considering also a2
0 � 1) yields:

Fb,r = −mc2ηr
a2

0

w2
sin[ kp(ξ − ξlaser) ]−mc2

k2
pk

2
b ξ

2

2
r (4.22)

In this expression, the first term represents the focusing force associated with the laser-
driven wakefield (which was also used in the model of section 4.2.2), while the second term
represents the corrections due to transverse beamloading.

• For kbξ � 1, the focusing force reduces to Fb,r = −mω2
pr/2. This is the focusing force

associated with a blown-out cavity (see section 1.1.4) – which means that the plasma
electrons have been completely evacuated at this longitudinal position ξ.

Therefore, the overall transverse dynamics of the bunch strongly depends on whether the bunch
is long enough to experience the second regime. The key parameter here is kbL, where L is the
typical length of the bunch. This parameter can be expressed as:

kbL = 2.6

(
Qbunch

100 pC

)1/2( L

1µm

)1/2( R

1µm

)−1

(4.23)

In the context of the laser-plasma lens, the parameter kbL determines the importance of the
aberrations associated with transverse beamloading. If kbL� 1, the tail of the bunch experiences
the strong fields of the bare ion cavity, while the head of the bunch experiences the weak forces
of the laser-wakefield. In this case, the head and the tail cannot be simultaneously collimated by
the lens, and the final divergence after the lens will be high. On the other hand, for kbL � 1,
eq. (4.22) applies to the whole bunch. In this equation, the correction term −mc2k2

bk
2
pξ

2/2 grows
from the head to the tail of the bunch, and thus beamloading effects may still be important if
this corrective term is comparable to the first term, at ξ = L. Therefore, for these aberrations
to have a low impact, the bunch must satisfy the criterion

kbL� 1 and kbL <
√

2η sin(kpd)
a0

kpw
(4.24)

where d is the distance from the bunch to the centroid of the laser pulse, and where the second
inequality ensures that the corrective term is negligible.

This criterion is confirmed by the PIC simulations of sections 4.2.4 and 4.2.5. In the sim-
ulation of section 4.2.4, self-injection lead to a bunch with Qbunch = 70 pC, L = 0.3µm and
R = 10µm at the entrance of the lens, for which beamloading effects were found to be negli-
gible. This is consistent with the above analysis, since kbL ' 0.1 for this bunch and thus the
above criterion is satisfied. (For this simulation,

√
2η sin(kpd) × a0/(kpw) ' 0.26 at the en-

trance of the lens.) On the other hand, another simulation in section 4.2.5 lead to a bunch with
Qbunch = 130 pC, L = 2.5µm and R = 5µm, for which beamloading aberrations were observed
to be strong. Again, this is consistent, since kbL ' 0.9 for this bunch and hence the criterion
eq. (4.24) is not satisfied.

Thus, according to this criterion, the electron bunch should have a low charge, a short
duration and a large radius in order to avoid the beamloading aberrations in the single-pulse
laser-plasma lens. However, it is not always possible for the electron bunch to satisfy these
conditions and, as will be seen in the next section, there are other means to prevent these
aberrations.
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Chapter 4. The laser-plasma lens

4.4 The two-pulse laser-plasma lens

4.4.1 Principle

In order to limit the impact of the aberrations of the single-pulse scheme, we propose an alterna-
tive scheme for the laser-plasma lens. As depicted in fig. 4.12, the idea of this alternative scheme
is to use a second, copropagating laser pulse in order to produce a blown-out cavity in the second
jet. While the first pulse (represented in red in fig. 4.12) is focused into the first gas jet, the
second pulse (represented in orange) is focused into the second gas jet. Because of its low waist
and high intensity at focus, this second pulse can thus generate a fully-evacuated cavity in the
second jet (see section 1.1.4).

In addition, this second pulse is chosen to precede the first one by a few tens of femtoseconds.9

In this way, the second pulse does not experience the strong wakefield of the first pulse in the
first jet – which would otherwise perturb its propagation and its focal position. Finally, the
second jet is chosen to have a low density (n2 ∼ 1018 cm−3), so that the blown-out cavity is large
enough to encompass the electron bunch.

n1

n2

Ld Ll
z

n

Figure 4.12: Schematic representation of the two-pulse laser-plasma lens. The blue curves repre-
sent the density profiles of the two jets. The above sketches represent the first (red) and second
(orange) laser pulse, the electron bunch (green) and the aspect of the wakefield (blue) as they
propagate through the two jets. (Although the two laser pulses are represented with different
colors here, they have physically the same wavelength λ0 = 0.8µm.)

The motivation for this two-pulse scheme is that a fully-evacuated cavity induces less aberra-
tions than the linear wakefield of the single-pulse scheme. For instance, the focusing force along
x in the cavity is exactly proportional to x (instead of x e−2(x2+y2)/w2 in the linear wakefield),
and thus there are no high-radius aberrations. In addition, since the cavity is completely void
of electrons (except from the high-energy electron bunch), the bunch itself cannot drive its own
wakefield anymore. As a consequence, the aberrations associated with transverse beamloading
are absent in the two-pulse scheme. Thus, on the whole, the two-pulse scheme is only subject to
the “chromatic” aberrations (i.e. those associated with the finite energy-spread of the bunch).

The phase space evolution of the electron bunch in this scheme is qualitatively similar to that
of the single-pulse scheme (see fig. 4.1). Yet quantitatively, the focusing forces are stronger in

9Although it is experimentally relatively challenging, producing two copropagating laser pulses separated by
only a few tens of femtoseconds is within the capabilities of current laser facilities.
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4.4. The two-pulse laser-plasma lens

the blown-out cavity than in the linear wakefield. As a result, the electrons rotate faster in phase
space in the two-pulse scheme than in the single-pulse scheme, and one should therefore make
the second jet shorter – if it is to end at the position where the electrons reach their minimal
divergence. In the next section, a model predicts how to quantitatively choose the length of the
second jet (as well as the other parameters of the lens).

4.4.2 Model and choice of parameters

Here let us follow a similar reasoning as for the single-pulse laser-plasma lens (section 4.2.2).
First, the evolution of θx is derived analytically for an individual electron, and then on this basis,
a criterion is derived which minimizes the RMS divergence

√
〈θ2
x〉 of a full bunch of electrons.

Again, space-charge effects are neglected and the density gradients are considered to be infinitely
steep. Because the second jet is short and has a low density, the variations of the electrons’ γ
factor inside this jet are also neglected.

Trajectory of an individual electron. Let us consider an individual electrons having a
transverse position x0 and a divergence θ0, as it exits from the first jet. Then, as in section 4.2.2,
the trajectory of this electron in the drift space is{

x(z) = x0 + θ0 z

θx(z) = θ0
for 0 < z < Ld (4.25)

However, the equation of transverse motion in the second jet differs from that of section 4.2.2,
since the expression of the focusing force in the blown-out cavity is different from that of the linear
wakefield. Inside the blown-out cavity, the equation of transverse motion reads (see section 1.2.2)

d2 x

dz2
= −k′foc

2 x with k′foc =
kp√
2γ

and kp =
√

4πren2

Notice that k′foc is in fact the betatron wavevector in the second jet (k′foc = ωβ/c, where ωβ is
defined in section 1.2.2). The above equation is easily integrated and, with the initial conditions
x(Ld) and θ(Ld) given by eq. (4.25), one finds x(z) = (x0 + θ0Ld) cos[ k′foc(z − Ld) ] +

θ0

k′foc

sin[ k′foc(z − Ld) ]

θx(z) = θ0 cos[ k′foc(z − Ld) ]− k′foc(x0 + θ0Ld) sin[ k′foc(z − Ld) ]

(4.26)

Thus x and θx perform sinusoidal oscillations in the second jet. Ideally, the second jet should
end at a position where the electron reaches θx = 0. According to the above expression of θx,
this corresponds to (

1 +
x0

θ0Ld

)
k′focLd tan(k′focLl) = 1 (4.27)

Choice of the parameters of the lens. However, the above relation cannot be satisfied
simultaneously by all the electrons of the bunch. This is due to the finite spread in x0 and θ0

(i.e. the finite emittance), but also to the finite spread in γ (i.e. the finite energy spread) which
induces a corresponding spread in k′foc. Nonetheless, a reasonable choice for the parameters of
the lens would be to satisfy

k̄′focLd tan( k̄′focLl ) = 1 with k̄′foc =
kp√
2〈γ〉

(4.28)
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where the brackets denote an average over the electron bunch. Note that the factor 1+x0/(θ0Ld)
of eq. (4.27) has been dropped in eq. (4.28), since, in typical LWFA bunches, this factor is close
to 1 for most electrons.

Because of the periodicity of the tangent function, the criterion eq. (4.28) has several solutions.
For instance, when searching for Ll as a function of the other parameters, one finds

Ll =
1

k̄′foc

arctan

(
1

k̄′focLd

)
+ n

π

k̄′foc

(4.29)

where n is an integer. This is confirmed by fig. 4.13, in which the formulas eq. (4.25) and
eq. (4.28) were applied to a set of randomly-distributed initial conditions x0, θ0, γ representing
a typical electron bunch. (This bunch had an initial RMS divergence

√
〈θ2

0〉 = 3 mrad, an initial
RMS transverse size

√
〈x2

0〉 = 0.5µm and a Gaussian energy distribution around γ = 800 with
a 10 % energy spread.) As can be seen in this figure, there are indeed several positions at which
the divergence is minimal. Moreover, the positions of these minima are in good agreement with
the predictions of eq. (4.29) and thus confirm the validity of the criterion eq. (4.28).
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Figure 4.13: Top and middle panel: evolution of x and θx as given by eq. (4.26) for a given bunch
of electrons. Bottom panel: evolution of their RMS divergence

√
〈θ2
x〉. The blue area represents

the second jet (here with n2 = 1 × 1018 cm−3 and Ld = 500µm). The blue dashed lines mark
the optimal values for Ll, as predicted by eq. (4.29) (for n = 0 and n = 1). (Here the bunch was
initialized with

√
〈x2

0〉 = 0.5µm,
√
〈θ2

0〉 = 3 mrad, 〈γ〉 = 800 and a 10 % energy spread.)
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4.4. The two-pulse laser-plasma lens

However, fig. 4.13 also shows that the successive local minima of the divergence are not equiv-
alent. In fact, the minimal divergence progressively grows with the index n of the minimum.
This is due to the energy spread of the electrons, and to the related spread in their individual
oscillation frequency k′foc. Because of this spread, the more oscillations the electrons perform in-
side the second jet, the more incoherent they become, and the less simultaneous are the moments
when each of them reaches θx = 0. (This effect can be seen in middle panel of fig. 4.13.) Thus,
for the sake of the final divergence, it is best to choose the solution corresponding to n = 0:

Ll =
1

k̄′foc

arctan

(
1

k̄′focLd

)
=

√
2〈γ〉
kp

arctan

(√
2〈γ〉
kpLd

)

Notice however that this solution implies that the second jet should be very short. For instance,
for 〈γ〉 = 800 and n2 = 1 × 1018 cm−3, Ll is of the order of 100 µm. Experimentally, such a
short gas jet cannot be produced with a standard nozzle. However, preliminary hydrodynamic
simulations show that it can realistically be generated with a leaking capillary. Of course, with
such a short gas jet, the density gradients at the edges of the jet become very important, and
the model – which assumes the gradients to be infinitely steep – only provides an approximative
estimate for the parameters of the lens. Therefore, experimentally, it is suggested to install a
leaking capillary with a ∼ 100µm diameter behind the first jet, and then again to scan the gas
density n2 or the drift distance Ld in order reach the optimal divergence.

Tuning the density and drift distance. Although the previous model neglects the density
gradients, it is reasonable to think that the evolution of the divergence as a function of n2 and Ld
in this model is qualitatively correct. Let us thus examine its predictions, so as to gain insight
into the evolution that may be observed experimentally.

Figure 4.14 shows the evolution of the RMS divergence of the bunch when the density n2 is
varied. Because the focusing parameter k′foc is a growing function of the density n2, the bunch
is overfocused at high density (and thus diverges), while it is not focused enough at low density
(see the lower panels of fig. 4.14). As can be predicted through eq. (4.28), the optimal density is
n2 ' 0.8× 1018 cm−3. Notice that the evolution of the divergence is qualitatively different from
that of the single-pulse scheme (fig. 4.4). This is essentially because the focusing forces increase
monotonically with n2 in the blown-out cavity of the two-pulse scheme, while they go through a
resonance for a certain n2 in the linear wakefield of the single-pulse scheme.

Similarly, fig. 4.15 displays the evolution of the divergence as a function of the drift distance
Ld. As can be seen in the lower panels, the electrons are focused too weakly for low values of
Ld, and too strongly for high values of Ld. Qualitatively, this is because the focusing force in
the second jet is proportional to the transverse coordinate x of the electrons. A large value of Ld
allows the electrons to considerably diverge in the drift space, and thus to enter the second jet
with a large transverse position x, thereby experiencing a strong focusing force. Interestingly,
this behaviour is inverted in the single-pulse scheme (fig. 4.5), where the electrons are overfocused
at low Ld and underfocused at high Ld. In the case of the single-pulse scheme, this is explained
by the fact that the intensity of the diffracting laser decreases faster than the transverse position
x increases.

Notice finally that the optimal drift distance in fig. 4.14 is quite low (Ld ' 400µm). This
short distance is rather a disadvantage, since it limits the final reduction of divergence – even
for a monoenergetic bunch. For a monoenergetic bunch one can indeed show that the final
divergence necessarily satisfies

√
〈θ2
x〉 ≥ εx/(γ

√
〈x2〉) (see section 1.3.1). Since the emittance εx

remains constant in the linear fields of the cavity, one should let
√
〈x2〉 increase in order to be
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Figure 4.14: Top panel: Evolution of the final RMS divergence of the electron bunch as a function
of n2. The other parameters are fixed (Ld = 500µm, Ll = 100µm, and the bunch is initially
characterized by

√
〈θ2

0〉 = 3 mrad,
√
〈x2

0〉 = 0.5µm, 〈γ〉 = 800, and a 10 % energy spread). The
dotted line marks the initial RMS divergence of the bunch. Bottom panel: Evolution of θx for a
few electrons as a function of z, for three different values of n2.

able to reduce
√
〈θ2
x〉. This is the role of the drift space, and thus a relatively short drift space

prevents a strong reduction of the divergence. Nonetheless, fig. 4.15 shows that, even with this
short drift space, a reduction of a factor 3 is still possible.

4.4.3 Confirmation by PIC simulations

In order to confirm the above predictions, I ran PIC simulations of the two-pulse laser-plasma
lens. There are indeed a few important effects that were not taken into account in the previous
model, but which can have a substantial impact on the two-pulse scheme. For instance, the
second pulse may experience significant self-focusing in the first jet, and that can perturb its
propagation and shift its focal plane away from the second jet. In addition, in the first jet, the
presence of the second pulse ahead of the first pulse may perturb – or even inhibit – self-injection.

In order to assess these effects, I simulated a typical two-pulse laser-plasma lens experiment.
In accordance with the results of the previous section, the second jet is chosen to have a peak
density n2 = 1× 1018 cm−3, a length Ll ' 100µm (with realistic density gradients at the edges
of the jet), and to be located 500 µm behind the first jet. (The density profiles of the two jets are
represented in the upper right panel of fig. 4.16.) The first pulse is a 1.6 J, 30 fs laser pulse, which
is focused into the first jet. The second pulse contains 1 J and is purposedly focused in such a
way that its focal plane would lie 500 µm after the second jet, if the pulse had propagated in
vacuum. (This is done in anticipation of its self-focusing in the first jet.) Finally, the simulation

104



4.4. The two-pulse laser-plasma lens

300 400 500 600 700 800 900 1000 1100

Ld (µm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

√ 〈 θ
2 x

〉 (m
ra

d
)

0 400 800 1200

z (µm)

15

10

5

0

5

10

15

θ x
(m

ra
d
)

Ld =300 µm

0 400 800 1200

z (µm)

15

10

5

0

5

10

15
θ x

(m
ra

d
)

Ld =500 µm

0 400 800 1200

z (µm)

15

10

5

0

5

10

15

θ x
(m

ra
d
)

Ld =1000 µm

Figure 4.15: Top panel: Evolution of the final RMS divergence of the electron bunch as a function
of Ld. The other parameters are fixed (n2 = 1×1018 cm−3, Ll = 100µm, and the bunch is initially
characterized by

√
〈θ2

0〉 = 3 mrad,
√
〈x2

0〉 = 0.5µm, 〈γ〉 = 800, and a 10 % energy spread). The
dotted line marks the initial RMS divergence of the bunch. Bottom panel: Evolution of θx for a
few electrons as a function of z, for three different values of n2.

is run with the quasi-cylindrical code Calder Circ, using the Cherenkov-free algorithm of
chapter 2 and a third-order accurate interpolation of the B field in time (see appendix C). Two
azimuthal modes are used (` = 0 and ` = 1), and the resolution is ∆z = 0.03µm, ∆r = 0.2µm
and c∆t = 0.96∆z.

The evolution of the laser waists in the simulation are shown in the upper right panel of
fig. 4.16. The first pulse (red line) self-focuses in the first jet and then diverges in the drift
space. The second pulse (dashed orange line) only self-focuses at the end of the first jet, and
it reaches the second jet with a low waist, as desired. Self-injection does take place in the first
jet, and leads to the acceleration of a high-charge electron bunch. This bunch has a large energy
distribution however (see fig. 4.17), and here we concentrate on the high-energy part of this
bunch (shaded area in fig. 4.17). The evolution of the divergence of this part of the bunch is
shown in the bottom right panel of fig. 4.16. As a consequence of the acceleration, the divergence
is observed to progressively decrease in the first jet (θx and θy evolve on average as γ−3/4 ; see
section 1.2.2). It then remains constant in the drift space, before suddenly dropping as the bunch
travels through the second jet. On the whole, the simulation confirms that the divergence can
be reduced by roughly a factor 3.

The very steep reduction of the divergence suggests that the electron bunch indeed experiences
the strong fields of a blown-out cavity in the second jet. This is confirmed by the left panel of
fig. 4.18, which shows that the second laser pulse is indeed able to drive a blown-out cavity in
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Figure 4.17: Energy spectrum of the electron bunch, at the entrance of the second jet. The
shaded area corresponds to the high-energy part of the bunch. It is the divergence of this part
of the bunch which is represented in fig. 4.16.

the second jet. For comparison, the right panel of fig. 4.18 shows the results of a simulation with
the same density profile, but with no second pulse. In this panel, the first pulse alone drives
only a weak, quasi-linear wakefield. As expected, while the electron bunch is able to drive a
wakefield of its own in the single-pulse case (right panel), it cannot do so in the two-pulse case
(left panel), since the blown-out cavity is entirely void of electrons. This confirms that there are
no transverse beamloading effects in the two-pulse scheme.
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Figure 4.18: Left panel: Snapshot of the PIC simulation at a time when the two pulses are in
the second jet. Right panel: Snapshot of a similar simulation, but in which there was no second
pulse.

4.5 Conclusion: pros and cons of the single-pulse and two-pulse
schemes

Let us conclude this chapter by summarizing the characteristics of each scheme, along with their
advantages and drawbacks. In the single-pulse scheme, the parameters of the lens should satisfy

kfocZ
2
R

Ld + Ll
tan

(
kfocZ

2
R

Ld
−

kfocZ
2
R

Ld + Ll

)
= 1 and n2 <

π

4red2
(4.30)

in order to properly collimate the bunch (see sections 4.2.2 and 4.2.3). The advantage of this
scheme is that it is easy to implement experimentally. However, this scheme is subject to high-
radius aberrations and beamloading aberrations, which limit the final divergence. These aberra-
tions are negligible if θ0 � w(0)

ZR
and kbL�

√
2η sin(kpd) a0

kpw(Ld) (from sections 4.2.5 and 4.3.4),
but in practice the self-injected bunch may not satisfy these conditions.

On the other hand, in the two-pulse scheme the parameters of the lens should verify

k̄′focLd tan( k̄′focLl ) = 1 (4.31)

(see section 4.4.2). This scheme is more challenging to implement experimentally, since it requires
a very short gas jet and imposes to align and synchronize two separate laser pulses. Moreover, it
may be less stable than the single-pulse scheme, due to the self-focusing of the second pulse in the
first jet and due to the impact of this pulse on self-injection. This scheme is not affected by the
high-radius aberration or the beamloading aberration, but on the other hand the final divergence
is limited by the relatively short drift space. Thus, although this scheme was originally developed
to prevent the aberrations, it may not lead to a stronger reduction of divergence in practice.
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Chapter 4. The laser-plasma lens

Both schemes are however complementary from another point of view: while the single-
pulse scheme is well-adapated to low-energy bunches (γ ∼ 200–400), the two-pulse scheme is
well-suited for high-energy bunches (γ ∼ 800). This is because the relatively weak focusing
fields of the single-pulse scheme may not be sufficient to fully collimate high-energy bunches,
due to their higher inertia (i.e. in some conditions, the first equation of eq. (4.30) cannot be
satisfied for high-energy bunches). On the other hand, the criterion eq. (4.31) imposes impractical
parameters for low-energy bunches (either Ll < 100µm which is difficult to obtain experimentally,
or n2 < 1018 cm−3 which makes the second jet so faint that it risks being eclipsed by the
potentially far-reaching end gradient of the first jet).

In the end, both schemes can realistically lead to a reduction of the divergence by a factor 3.
It is in fact currently planned to implement these schemes in future experiments at LOA.

108



Chapter 5

Towards a compact free-electron laser

This chapter focuses on the design of a prospective free-electron laser based on an
LWFA. Compact free-electron lasers are indeed one of the most interesting potential
applications of LWFA. Here, after summarizing the basics of free-electron laser physics,
we discuss the specific issues that arise when using an LWFA. In particular, the results
of previous chapters are put into context, and it is shown how they can contribute to
overcoming those issues. Finally, a new concept of ultra-compact free-electron laser
is presented (the nanowire undulator). By using a simplified model, I show that gain
lengths of ∼100 µm could in principle be obtained with this concept. However, there
are important effects that are not considered in the model, and I discuss their potential
impact at the end of the chapter.

Contents
5.1 Physics of FEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.1 Qualitative picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.1.2 Cold fluid theory of the FEL instability . . . . . . . . . . . . . . . . . . 111
5.1.3 Degrading effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.1.4 Space-charge effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.1.5 Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 A prospective study of an LWFA-based FEL . . . . . . . . . . . . . . 120
5.2.1 Motivation and specific features of an LWFA-based FEL . . . . . . . . . 120
5.2.2 Magnetic undulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.3 Laser and plasma undulator . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.4 The particular case of the CO2 laser undulator . . . . . . . . . . . . . . 125

5.3 Nanowire undulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.1 Presentation and motivation . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.2 The fields inside the undulator . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.3 Motion of the electron in the absence of radiation . . . . . . . . . . . . . 131
5.3.4 FEL amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.5 Discussion for a realistic undulator . . . . . . . . . . . . . . . . . . . . . 136

109



Chapter 5. Towards a compact free-electron laser

5.1 Physics of FEL

5.1.1 Qualitative picture

A Free Electron Laser (FEL) is a device that can produce extremely bright radiation over a wide
range of wavelengths, and in particular at very short wavelengths. In fact, some existing FELs
can even reach the hard X-ray range (down to angstrom wavelengths), and are therefore known
as XFELs. The working principle of an FEL consists in sending a relativistic electron bunch into
an undulator. The purpose of the undulator is to force the electrons to oscillate transversely, and
thereby to emit radiation. All currently operating FELs use magnetic undulators, i.e. undulators
that consist of an arrangement of alternating magnets, and which can produce a periodic magnetic
field of the order of 1 Tesla with a centimeter-scale period. Yet, many other undulator concepts
have been proposed (e.g. Whittum et al. [1990]; Joshi et al. [1987]; Gea-Banacloche et al. [1987];
Danly et al. [1987]). In particular, an interesting concept that will also be considered in this
section is that of a laser undulator [Gea-Banacloche et al., 1987], in which a counterpropagating
CO2 or Ti:Sapph laser pulse is used in order to wiggle the electrons.

The principle of an FEL is represented in fig. 5.1 (in the case of a magnetic undulator).
As the relativistic electrons are wiggled, they emit Doppler-shifted, short-wavelength radiation
along the axis of the undulator. However this radiation is relatively weak at the entrance of the
undulator. This is because the electrons are initially randomly distributed within the bunch. As
a consequence of this random distribution, the electromagnetic waves emitted by each individual
electron are randomly phased. On average, these waves do not interfere neither constructively
nor destructively, and the corresponding radiation power is relatively low.

Figure 5.1: Schematic representation of the working principle of an FEL. A relativistic electron
bunch (represented in red) travels through an undulator, and performs a transverse wiggling
motion. As a result of this motion, each electron emits an electromagnetic wave, but these waves
(which are represented by blue lines) are initially incoherent. However, as the electrons propagate
in the undulator, they progressively micro-bunch, and they eventually emit coherent high-power
radiation. From McNeil and Thompson [2010].
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However, as the radiation copropagates with the bunch in the undulator, it tends to group the
electrons into sub-bunches. (This phenomenon is known as micro-bunching.) These sub-bunches
are separated by approximately one wavelength, and thus the waves emitted by the individual
electrons interfere constructively on average. This creates a positive feedback loop and triggers
an instability in which both the radiation and the micro-bunching grow exponentially. As a
result, the coherent radiation power emitted at the end of the undulator is many orders of
magnitude higher than the incoherent power emitted at its entrance! In fact, no other existing
X-ray source matches the FEL in terms of peak power. As a consequence of this unique feature,
FELs enable unprecented applications in many areas of science, including atomic and molecular
science, biochemistry and solid-state physics.

5.1.2 Cold fluid theory of the FEL instability

Historically, the original idea of the FEL was proposed and demonstrated by J. Madey and
colleagues [Madey, 1971; Deacon et al., 1977], and it was later cast into the formalism of an
instability starting from incoherent radiation (e.g. [Kondratenko and Saldin, 1980]). Here, let us
examine the nature of this instability in the simplified case of an electron bunch with negligible
temperature [Liu and Tripathi, 1994]. In this case the dynamics of the electron bunch can be
described by cold fluid theory. The bunch is also assumed to be sufficiently long and wide for
edge effects to be neglected. Finally, we assume that space-charge effects are negligible, and
thus that the only forces that the electrons experience are those associated with the fields of the
undulator and of the emitted radiation. Both the fields of the undulator and of the radiation are
described by their vector potential A, in the Lorenz gauge.

Governing equations. Using dimensionless quantities, the equations of this system are1:

1

c

∂n

∂t
+ ∇ ·

(
nu

γ

)
= 0 (Conservation of charge) (5.1)

1

c

∂

∂t
(u− a) +

1

γ
(u ·∇)(u− a) = −1

γ
(u ·∇a) (Equation of dynamics) (5.2)

∇2a− 1

c2

∂2a

∂t2
= 4πre

nu

γ
(From the Maxwell equations) (5.3)

where n = ρ/(−e) is the electron density, u = p/mc is the normalized momentum, and a =
au + ar = eAu/mc + eAr/mc is the sum of the normalized vector potentials of the undulator
and the radiation. Here, let us consider a helical undulator of the form

au =
au,0

2
eikuz+iωut +

a∗u,0
2
e−ikuz−iωut

with au,0 = au,0(x, y)(ex + iey). Then, as a function of z, the vector potential au rotates in
the transverse plane, with a constant amplitude au,0 and with a period λu = 2π/ku. The above
expression can represent either a magnetic undulator or a counterpropagating laser. In the case of
a magnetic undulator, ωu = 0 and au,0 = eBu,0/(mcku), while in the case of a counterpropagating
laser pulse, ωu = cku.

1Here, by definition, (u ·∇a) ≡ (u · ∂xa)ex + (u · ∂ya)ey + (u · ∂za)ez. The equation of dynamics has been
obtained from the more standard equation 1

c
∂tu + 1

γ
(u ·∇)u = − e

mc2
(E + v ×B) = 1

c
∂ta − 1

γ
u × (∇ × a) by

using the vector identity u× (∇× a) = (u ·∇a)− (u ·∇)a
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Since the electron bunch travels relativistically along the axis of the undulator, the compo-
nents of u satisfy uz � |u⊥|. This implies that, in the equation of dynamics, the term (u ·∇)a
is much greater than (u ·∇a) = (u⊥ ·∇a). If, in a first approach, this latter term is neglected,
the equation of dynamics leads to2 Dt(u⊥ − a) ≈ 0 and thus u⊥ ≈ a, if the initial transverse
momentum of the bunch (before entering the undulator) is negligible. Using this relation in the
unapproximated equation of motion eq. (5.2) leads to

1

c

∂

∂t
(u− a) +

1

γ
(u ·∇)(u− a) = − 1

2γ
∇a2 (5.4)

As can be seen from the above considerations, the presence of the undulator or of the radiation
(a 6= 0) results in a transverse wiggling of the electrons (u⊥ ≈ a) and, on a longer timescale, in
a ponderomotive force term (− 1

2γ∇a
2). Depending on the transverse profile of a, the transverse

component of this ponderomotive term can focus or defocus the electron bunch. In the case of
a magnetic undulator for instance, it leads to a phenomenon known as natural focusing [Huang
and Kim, 2007]. However, since the transverse ponderomotive force acts on a long timescale and
is in fact not essential to the FEL process, it will be neglected in the rest of this section and the
discussion of its effect will be postponed until section 5.1.3. On the opposite, the longitudinal
ponderomotive force − 1

2γ (∂za
2)ez is paramount here as it is this force which micro-bunches the

electrons.

Linearized system. As explained in section 5.1.1, the radiation is initially weak, and in fact
|ar| � 1 at the entrance of the undulator. On the other hand, in standard undulators, |au| is of
order unity3. Therefore, the radiation field ar can be considered as a small perturbation on top
of the undulator field, and the system can be linearized with respect to this quantity.

In the zeroth-order system (ar = 0), the longitudinal ponderomotive force is zero, since
a2 = a2

u = au,0(x, y)2 does not depend on z. Therefore, there cannot be any micro-bunching,
and the stationary zeroth-order solution is:

uz,0 = const. (5.5)
u⊥,0 = au (5.6)

γ0 =
√

1 + a2
u,0 + u2

z,0 = const. (5.7)

βz,0 =
uz,0
γ0
≈ 1−

1 + a2
u,0

2γ2
0

= const. (5.8)

n0 = const. (5.9)

where we used the fact that a2
u,0 � uz,0, since the electron bunch is relativistic and since |au| ∼ 1.

Thus the electrons travel through the undulator with a constant longitudinal velocity βz,0, which,
incidentally, is lower than 1− 1/2γ2

0 due to their transverse wiggling.
Let us now perturb this stationary solution with ar 6= 0. In this case, a2 = (au + ar)

2

is not constant anymore and a longitudinal ponderomotive force can arise. This force affects
the longitudinal momentum and drives a density modulation: uz = uz,0 + δu, n = n0 + δn.

2By definition, the notation Dt represents the operator ∂t + 1
γ

(u ·∇).
3For instance, for a magnetic undulator with Bu,0 = 1 T and λu = 2 cm, the undulator parameter is |au| = 1.86.
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Linearizing eqs. (5.1), (5.3) and (5.4) with respect to ar, δu and δn leads to:[
1

c

∂

∂t
+ βz,0

∂

∂z

]
δn

n0
= −(1 + a2

u)

γ3
0

∂δu

∂z
+
βz,0
γ2

0

∂au · ar
∂z

(5.10)[
1

c

∂

∂t
+ βz,0

∂

∂z

]
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−
k2
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γ0

]
ar =

k2
p

γ0

δn

n0
au −

k2
p

γ3
0

(au · ar)au − βz,0
k2
p

γ2
0

δuau (5.12)

where k2
p = 4πren0.

Resonant growing mode. In order to find the eigenmodes of this linear system, we search
for ar in the form4

ar =
ar,0
2
eikz−iωt +

a∗r,0
2
e−ikz+iωt with ar,0 = ar,0(ex − iey)

Then, the ponderomotive terms in eqs. (5.10) and (5.11) are proportional to ei(k+ku)z−i(ω−ωu)t

(or its complex conjugate), and they drive density and velocity perturbations of the form

δn =
δn0

2
ei(k+ku)z−i(ω−ωu)t +

δn∗0
2
e−i(k+ku)z+i(ω−ωu)t (5.13)

δu =
δu0

2
ei(k+ku)z−i(ω−ωu)t +

δu∗0
2
e−i(k+ku)z+i(ω−ωu)t (5.14)

Substituting these expressions into eqs. (5.10) to (5.12) leads to the following dispersion relation.

ω2 − c2k2 −
c2k2

p

γ′0
=
c4k2

pa
2
u,0

4γ3
0

(
1 + a2

u,0

γ2
0

+ 2βz,0 − 2
(ω − ωu)

c(k + ku)

)(
βz,0 −

(ω − ωu)

c(k + ku)

)−2

(5.15)

where γ′0 = γ0(1 − (1 + a2
u,0)/4γ2

0)−1 ≈ γ0. The left-hand side of eq. (5.15) is essentially the
dispersion relation of an electromagnetic wave propagating in a relativistic beam of energy γ0.
The right-hand side takes into account the coupling of this type of wave with the undulator,
through the combined ponderomotive force ∝ −∂z(ar · au). However, since γ0 � au,0, this
coupling term is negligible for most values of k. In this case, the mode satisfies ω2 ≈ c2k2+c2k2

p/γ
′
0

and simply represents a wave propagating along with the beam, without any growth.
The only values of k for which there can be significant coupling are those for which the factor

βz,0−(ω−ωu)/c(k+ku) nearly cancels, and thus makes the right-hand side large. The signification
of this resonant-coupling condition can be understood by noticing that (ω − ωu)/(k + ku) is the
phase velocity of the ponderomotive force term −∂z(ar ·au). Only when this velocity equals the
velocity of the beam cβz,0 (i.e. when the ponderomotive term is stationary in the beam frame)
can the ponderomotive force have a substantial, lasting micro-bunching effect on the beam. This
resonance condition can be rewritten ω = cβz,0(k + k′u) with

k′u = ku +
ωu
cβz,0

(5.16)

4The right (ar = ar,0(ex + iey)) and left (ar = ar,0(ex − iey)) polarization are not coupled by eqs. (5.10)
to (5.12) and thus they can be treated separately. Performing the same calculations with ar = ar,0(ex + iey)
leads to no predicted growth, meaning that the right polarization is not amplified here.
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and is represented in fig. 5.2. According to the above analysis, significant coupling can only occur
for ω ≈ ωr, k ≈ kr, where kr and ωr satisfy the relations{

ωr = cβz,0(kr + k′u)
ω2
r = c2k2

r + c2k2
p/γ
′
0 ≈ c2k2

r

As represented in fig. 5.2, when βz,0 is close to 1, the solution of this system lies at a very

ω

k
ckp/

√
γ′0

Uncoupled mode

ω2 ≈ c2k2 +
c2k2

p

γ′0

cβz,0k
′
u

Resonant coupling

ω = cβz,0(k + k′u)

Significant coupling

kr

ωr

Figure 5.2: Schematic representation of the conditions for significant coupling in eq. (5.15).

high frequency kr � kp/
√
γ′0, and this justifies the approximation in the latter equation of the

system. The above system leads to

ωr =
cβz,0k

′
u

1− βz,0
≈ 2γ2

0ck
′
u

(1 + a2
u,0)

kr = ωr/c (5.17)

This result is indeed natural. Since cβz,0k′u is the frequency at which the electrons wiggle,
ωr = cβz,0k

′
u/(1−βz,0) can be interpreted as the Doppler-shifted frequency of the radiation that

they emit along the axis of the undulator. Equation (5.17) also shows that kr � ku, and as a
result that the density modulation in eq. (5.13) (i.e. the micro-bunching) have a wavelength that
is essentially equal to the radiation wavelength λr = 2π/kr.

However, ω = ωr, k = kr is not in itself a solution of eq. (5.15). Therefore, we search for a
proper solution in the form ω = ωr, k = kr + δk, where δk � k0. In this case, there are three
roots δk to the dispersion relation, of which two are complex: δk = ρk′u(1± i

√
3), with

ρ =
1

γ0

(
a2
u,0 k

2
p

32 k′2u

)1/3

(5.18)

One of these roots corresponds to an exponentially growing ar as a function of z:

ar =

[
ar,0
2
ei(kr+ρk

′
u)z−iωrt +

a∗r,0
2
e−i(kr+ρk

′
u)z+iωrt

]
exp(
√

3ρk′uz) ar,0 = ar,0(ex−iey) (5.19)
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with a corresponding Poynting flux

Π =
mcω2

ra
2
r,0

4πre
exp(z/Lg,0) Lg,0 =

1

2
√

3ρk′u
(5.20)

This solution corresponds to the radiation amplified by the FEL.

Generalization. Importantly, all the above expressions are valid both for a magnetic undulator
(k′u = ku) and for a counterpropagating laser pulse (k′u ≈ 2ku). These expressions are however
restricted to the case of a helical undulator (au,0 = a0,u(ex ± iey)). In the case of a planar
undulator (au =

au,0
2 (eikuz+iωut + e−ikuz+iωyt)ex), the analysis is complicated by the fact the

zeroth-order velocity is not constant:

βplanar
z,0 = 1−

2 + a2
u,0

4γ2
0

−
a2
u,0

4γ2
0

cos(2kuz + 2ωut) (5.21)

As a consequence of these velocity oscillations, a planar FEL can amplify radiation at several
discrete harmonics. When considering only the fundamental harmonic for instance, the above
results can be transposed by replacing eq. (5.17) and eq. (5.18) by

ωplanarr = ckplanarr =
4γ2

0ck
′
u

(2 + a2
u,0)

(5.22)

ρplanar =
1

γ0

(
a′2u,0 k

2
p

32 k′2u

)1/3

where a′u,0 = au,0

[
J0

(
a2
u,0

4 + 2a2
u,0

)
− J1

(
a2
u,0

4 + 2a2
u,0

)]
(5.23)

To summarize the results of this section, an FEL amplifies radiation at the natural Doppler-
shifted frequency ωr given in eq. (5.17) (helical undulator) or eq. (5.22) (planar undulator).
According to these expressions, the emitted frequency ωr can be rather easily tuned, either by
changing the energy γ0 of the injected electrons, or by changing the strength of the undulator
au,0. In particular, in order to reach a very high radiation frequency, XFELs need very energetic
electrons.

The radiation is amplified with a characteristic gain length Lg,0, whose expression is given
in eq. (5.20), and which crucially depends on the Pierce parameter ρ given in eq. (5.18) (helical
undulator) or eq. (5.23) (planar undulator). This exponentionally growing radiation originates
from a positive feedback loop. A small-level radiation starts micro-bunching the electrons at the
radiation wavelength λr, which therefore emit with greater coherence and produce a stronger
radiation, which in turn produce stronger micro-bunching. Physically, the energy of the emitted
radiation is taken from the kinetic energy of the electrons.

5.1.3 Degrading effects

In the previous section, it was assumed that the electron bunch was initially cold (both longitu-
dinally and transversely) and that the impact of its finite transverse and longitudinal size could
be neglected. When these assumptions are no longer valid, the gain of the FEL process tends to
be degraded (i.e. the actual gain length Lg tends to be larger than Lg,0).

One of the main impacts of transverse temperature (i.e. non-zero emittance) is that the
electron beam diverges. This can have major consequences for the FEL process, since the density
n0 of a diverging beam progressively decreases, and so does the corresponding plasma vector
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k2
p = 4πn0re and the crucial Pierce parameter ρ ∝ k

2/3
p . In order to keep the transverse size

of the beam small, transverse focusing has to be applied. In conventional magnetic undulator,
this is partly done by natural focusing (i.e. by the transverse, focusing ponderomotive force of
the magnetic field of the undulator) and partly by the use of quadrupole magnets [Huang and
Kim, 2007]. As a result of this focusing, individual electrons perform betatron oscillations while
propagating through the undulator. The strength of the focusing elements is usually tuned so
that the beam, as a whole, keeps a nearly constant transverse size throughout the undulator.
(The beam is said to be matched.) Yet, even when the transverse size of the beam is constant,
the FEL gain can still be degraded.

An exact calculation of the degrading impact of finite temperature and finite size requires
a 3D kinetic formalism (e.g. [Saldin, 1999; Huang and Kim, 2007]). Using this formalism,
Xie [2000] derived the degraded gain length in the case of a matched, cylindrically-symmetric
Gaussian beam. A convient fitting formula for his analytic results is commonly used [Huang and
Kim, 2007; Xie, 2000]:

Lg = Lg,0[ 1 + Λ(ηd, ηε, ηγ) ] where ηd =
Lg,0

2krσ2
x

ηε = 2σ2
θkrLg,0 ηγ =

1√
3ρ

σγ
γ

(5.24)
where ρ can be rewritten from eq. (5.18) and eq. (5.23), as

ρ =
1

γ0

(
a′2u,0 I

16 IA k′2u σ
2
x

)1/3

where


a′u,0 = au,0 (helical)

a′u,0 = au,0

[
J0

(
a2
u,0

4+2a2
u,0

)
− J1

(
a2
u,0

4+2a2
u,0

)]
(planar)

(5.25)
In the above expressions, Lg,0 is the ideal gain length from eq. (5.20), I is the peak curent
of the electron bunch and IA = ec/re = 17 kA, σx =

√
〈x2〉 =

√
〈y2〉 is the transverse RMS

size of the cylindrically-symmetric bunch, σθ =
√
〈θ2
x〉 =

√
〈θ2
y〉 is its RMS divergence, and

σγ =
√
〈γ2〉 − 〈γ〉2 its RMS energy spread. Λ is a growing function of ηd, ηε and ηγ , and is given

by the fitted expression:

Λ = a1 η
a2
d + a3 η

a4
ε + a5 η

a6
γ + a7 η

a8
ε η

a9
γ + a10 η

a11
d ηa12

γ + a13 η
a14
d ηa15

ε + a16 η
a17
d ηa18

ε ηa19
γ (5.26)

a1 = 0.45 a2 = 0.57 a3 = 0.55 a4 = 1.6 a5 = 3
a6 = 2 a7 = 0.35 a8 = 2.9 a9 = 2.4 a10 = 51
a11 = 0.95 a12 = 3 a13 = 5.4 a14 = 0.7 a15 = 1.9
a16 = 1140 a17 = 2.2 a18 = 2.9 a19 = 3.2

Thus the gain length equals the ideal gain length Lg,0 for ηd = ηε = ηγ = 0, and it is larger
when these quantities are non-zero (i.e. the FEL process is degraded). Let us give a qualitative
interpretation for this fact.

Diffractive loss (ηd). In section 5.1.2, the transverse profile of the radiation was ignored.
However, if the electron beam has a finite transverse size σx, the width of the radiation profile
is also of the order σx. Therefore, the radiation diffracts and its amplitude decreases on a
characteristic length ZR = krσ

2
x/2 (Rayleigh length). If ZR is short compared to Lg,0, the FEL

amplification is not fast enough to compensate for this decrease in amplitude. Therefore the
impact of diffraction is quantified by the ratio

Lg,0
ZR

=
2Lg,0
krσ2

x

∝ ηd
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Decoherence due to finite energy spread (ηγ). If the bunch has a finite energy spread, the
electrons have different longitudinal velocities. From eq. (5.8), the corresponding velocity spread
is ∆βz,0 = σγ(1+a2

u,0)/γ3
0 . Thus, if the electrons are micro-bunched at some point, this spread in

velocity tends to smear out the micro-bunching pattern at later times. This effect starts impacting
the coherence of the FEL process when the corresponding widening of the micro-bunches ∆z
is comparable to the wavelength of the density modulation: kr∆z = 1. The characteristic
propagation length Lcoh over which this happens can be found from kr∆βz,0Lcoh = 1, and yields

Lcoh =
γ3

0

(1 + a2
u,0)krσγ

There is therefore a competition between the ponderomotive force, which tends to micro-bunch
the electrons over a characteristic length Lg,0, and the energy spread, which tends to erase the
micro-bunching over a characteristic length Lcoh. The FEL process will be strongly degraded if
the ratio Lg,0/Lcoh is large. Using eq. (5.20) and the above expression,

Lg,0
Lcoh

=
1√
3ρ

σγ
γ0

= ηγ

and thus ηγ can be interpreted a measure of the degradation due to the energy spread.

Degradation by finite emittance (ηε). If an electron of energy γ0 propagates with an av-
erage5 angle θ with respect to the axis of the undulator, its longitudinal velocity is reduced and
can be expressed as

βz,0 = 1−
1 + a2

u,0

2γ2
0

− θ2

2

Therefore, the angular spread of the beam σθ also leads to a longitudinal velocity spread ∆βz,0 =
σ2
θ/2. Again, this tends to smear out the micro-bunching pattern, and coherence is lost after a

propagation distance Lcoh = 1/(∆βz,0kr) = 2/(krσ
2
θ). As before, the FEL process is strongly

affected if the characteristic distance for ponderomotive micro-bunching Lg,0 is larger than Lcoh.
The impact of the angular spread is thus quantified by the ratio

Lg,0
Lcoh

=
krLg,0σ

2
θ

2
∝ ηε

Quite importantly, all three degrading coefficients ηd, ηγ and ηε are inversely proportional
to the Pierce parameter ρ. This means that an FEL with a high Pierce parameter will be less
sensitive to diffraction, high energy spread or high emittance, i.e. that a large Pierce parameter
improves the robustness of the FEL process.

5.1.4 Space-charge effects

A large Pierce parameter requires an intense electron bunch (through the factor I/σ2
x in eq. (5.25)).

However, very intense bunches can be affected by space-charge effects (i.e. the fact that the elec-
trons of the bunch repel each other), which can also degrade the FEL process in three ways.

5Due to the transverse wiggling motion of the electron, the angle between the trajectory and the axis of the
undulator is not constant. Thus θ represents the average of this angle over one wiggling period.
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Short-range longitudinal space-charge. Longitudinally repelling space-charge forces tend
to oppose the micro-bunching ponderomotive force, through a phenomenon that is related to
the longitudinal plasma oscillations. For a relativistic bunch, the frequency of the longitudinal
plasma oscillations is ωp/γ

3/2
0 (due to the relativistic inertia of the electron in the longitudinal di-

rection), and thus the propagation length over which space-charge forces impact micro-bunching
is γ3/2

0 k−1
p . Thus the importance of space-charge effects can be quantified by the ratio

kpLg,0

γ3/2
∝
√
ρ

a′u,0

where a′u,0 is given in eq. (5.25). Marcus et al. [2011] derived a fitting formula of the same type
as that of Xie [2000], which shows that the gain length is indeed increased when this ratio is
large.

Long-range longitudinal space-charge. Longitudinal space-charge forces can also have an
impact at the scale of the whole bunch. They tend to accelerate the head of the bunch and
decelerate its tail, over a characteristic propagation distance [Grüner et al., 2009]

Lsp,‖ = 2πγ2

√
2σxσz

IA
I

(5.27)

This induces an energy chirp across the bunch which, if it becomes comparable to γ0ρ, can
significantly affect the FEL process.

Transverse space-charge. Similarly, the transverse space-charge fields tend to radially blow-
out the bunch. This leads to an increase of the transverse size σx and of the angular spread
σθ, which degrade the FEL process through the coefficient ηε and through a decrease of the
Pierce parameter ρ. This blowout happens on a characteristic propagation distance [Reiser,
2008; Grüner et al., 2009]

Lsp,⊥ = 2πγ3/2σx

√
2IA
I

(5.28)

5.1.5 Saturation

No instability can grow indefinitely, and at some point a limiting non-linear effect saturates the
amplitude. In the case of FEL amplification, this effect is a type of non-linear phase-mixing. As
the amplitude of the radiation grows, the longitudinal ponderomotive force substantially accel-
erates and decelerates the electrons (depending on their longitudinal position), and thus creates
stronger and stronger energy modulations across the bunch. In the linear regime, these energy
modulations are directly correlated with the longitudinal position z and are part of the FEL
process. However, when the modulations are too large, they start distorting these correlations,
through the non-linear equations of motion. Figure 5.3 shows these energy modulations in the
linear regime (lower left panel) and their distortion in the non-linear regime (lower right panel).

The details of this phenomenon are intricate and an exact description essentially requires
numerical simulations. Yet, for a rough analysis of the saturation, the decorrelated energy
modulations can be seen as an effective energy spread. Then, according to section 5.1.3, the
FEL process will effectively saturate when these energy modulations reach δγ ∼ γ0ρ. The
amplitude of the radiation at this point can be estimated by using the relation between ar,0 and
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Figure 5.3: Simulation results showing the saturation of the FEL process, for a planar magnetic
undulator with au,0 = 2 and an electron bunch with γ0 = 392. Top: Evolution of the Poynt-
ing flux Π with the propagation distance in the undulator z0. Bottom: Zoom on the energy
modulation of the beam, at two different positions in the undulator. Each dot represents a
macro-electron of the simulation. (The scale of the z axis in the lower plots is very different than
that in the top plot, since λr � λu.) Simulation run with the FEL spectral code PlaRes by
Andriyash et al. [2014b]

δu0 ≈ δγ in the linear regime described by section 5.1.2. This yields6 ar,0 ∼ (γ0ρ)2k′u/kr at
saturation, which corresponds to a saturated Poynting flux

Πsat ∼ ρ× (γ0mc
2)n0c.

Here n0c can be identified as the flux of electrons in the undulator. The above equation implies
that an FEL amplifies radiation until it has extracted a fraction ∼ ρ of the initial kinetic energy
of the electrons. At that point the FEL process saturates and the radiation is no longer amplified.

6More precisely, injecting eq. (5.14) and eq. (5.19) in eq. (5.11) yields ar,0 = − γ0βz,0ρk
′
u(1−i

√
3)

(kr+ku+ρk′u(1−i
√

3))au,0
δu0 ≈

γ0
k′u

au,0kr
(1− i

√
3)δu0. From the above analysis, δu0 ≈ δγ ∼ γ0ρ at saturation and thus ar,0 ∼ (γ0ρ)2k′u/kr.
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5.2 A prospective study of an LWFA-based FEL

5.2.1 Motivation and specific features of an LWFA-based FEL

Although FELs are unique sources due to their brightness, coherence and short wavelength, they
are also very large and costly facilities. This is particularly true of FELs that operate in the
UV and X-ray range, and which require a long accelerator to provide the necessary GeV-level
electrons. For instance, the accelerator of SACLA – the most compact existing XFEL – is 750
m long [Tanaka and Shintake, 2005] (see fig. 5.4), and the accelerator of the European XFEL,
currently under construction in Germany, will even reach 2.1 km [Altarelli, 2006]. In view of these
numbers, the possibility to accelerate electrons to the same energies in a meter-scale distance
(and using a ten-meter scale laser system) is indeed attractive.

Figure 5.4: The accelerator (left) and magnetic undulator (right) of the free-electron laser
SACLA, during a visit organized for the FEL2012 conference.

However, when designing an LWFA-based FEL, the particular features of the electron bunches
have to be duly taken into account. As shown in table 5.1, some of the characteristics of these
bunches are very different than those for conventional accelerator. One the one hand, LWFA-
generated bunches typically have a much higher peak current – which is favorable to the FEL
process since it increases the Pierce parameter ρ. On the other hand, they are also characterized
by a relatively large energy spread – which, as explained previously, can seriously affect the FEL
process. Similarly, although conventional accelerator and LWFA tend to produce bunches with
comparable emittance, LWFA-generated bunches have much smaller transverse size and much
higher divergence. Again, a smaller transverse size leads to a higher Pierce parameter, but a
larger divergence threatens the FEL process.

When considering the above parameters, it is clear that the design of a conventional FEL has
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Peak current Bunch length σγ/γ0 ε⊥ σx σθ
Conventional ∼0.1 – 1 kA ∼0.1 – 1 mm ∼0.01 % ∼1 mm.mrad ∼1 mm ∼1 µrad

LWFA ∼10 kA ∼1 µm ∼1 % ∼1 mm.mrad ∼1 µm ∼1 mrad

Table 5.1: Typical orders of magnitude for the characteristics of an electron bunch produced
either by a conventional accelerator or an LWFA.

to be re-adapted in order to accomodate the specific features of LWFA-generated bunches, and
that actually reaching FEL amplification may in fact be challenging. On the other hand, these
parameters also suggest that LWFA bunches might be better suited to other types of undulators
(i.e. non-magnetic) than their conventional counterparts. Keeping this in mind, in the rest of
this section we search for the condition that would allow a proof-of-concept FEL amplification,
with an LWFA bunch. In particular, we consider the undulator parameters au,0 and λ′u = 2π/k′u
as free parameters, in order to determine which type of undulator would be best suited for an
LWFA-generated bunch.

Figure 5.5 illustrates this approach. In this figure, the efficiency of the FEL process is
estimated as function of the undulator parameters au,0, λ′u, for a typical LWFA bunch (E ≈
200 MeV, ε⊥ = 0.5 mm.mrad, σx = 1 µm, I=30 kA). In order to quantify this efficiency, we use
the ratio Lg,0/Lg = 1/[ 1 + Λ(ηd, ηε, ηγ) ], as given by the Xie formula (eqs. (5.24) and (5.26))
in the case of a planar undulator. For Lg,0/Lg ≈ 1 there is robust FEL amplification and the
gain length is relatively short, whereas for Lg,0/Lg � 1, the FEL process is strongly degraded
and it is extremely uncertain whether there will be any FEL amplification at all. The left panel
is a colormap of Lg,0/Lg. The right panel indicates the zones where diffraction (ηd > 1, red
area), emittance (ηε > 1, green area) or energy spread (ηγ > 1, blue area) seriously degrade
the FEL process, and thus provides a semi-quantitative explanation for the aspect of the left
panel. Several types of undulator are represented on this figure, including magnetic undulators
(au,0 ∼ 1, λ′u ∼ 1cm), plasma wave undulators [Joshi et al., 1987; Williams et al., 1993; Corde
and Ta Phuoc, 2011] (au,0 ∼ 0.5, λ′u ranges from ∼ 10µm to ∼ 100µm depending on the plasma
density), and picosecond laser undulators [Tomassini et al., 2003; Bacci et al., 2008; Petrillo
et al., 2008] (according to section 5.1.2, λ′u = λu/2 for a laser pulse, thus λ′u is 5 µm for a CO2

laser pulse and 0.4 µm for a Ti:Sapph laser).
On the whole, fig. 5.5 shows that, in the case of a laser or plasma undulator, the FEL process

is strongly degraded, due to finite energy spread and emittance. Similarly, as a result of the
small beam size and high divergence, diffraction and finite emittance seriously affect an FEL
based on a magnetic undulator. This conclusion can however be modified by manipulating the
beam before it enters the undulator.

5.2.2 Magnetic undulator

In fact, the estimation provided by the Xie formula is incomplete in the case of a magnetic
undulator. Because of the high divergence of the LWFA bunch, its transverse size σx will quickly
grow over the meter-scale drift distance beetween the accelerator and undulator, and then over
the length of the undulator. This reduces the Pierce parameter and makes degradation by finite
emittance even more serious. Therefore, in order for FEL amplification to occur, the beam has
to be collimated before entering the undulator. Collimation reduces the divergence σθ and the
associated degradation parameter ηε, while ensuring at the same time that the Pierce parameter
does not decrease along the undulator. Using quadrupole magnets, the beam can be collimated
to a transverse size of ∼ 100µm and, assuming that the emittance is preserved, to a divergence
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Figure 5.5: Estimation of the efficiency of the FEL process for a typical LWFA bunch (I = 30
kA, ε⊥ = 0.5 mm.mrad, γ0 = 400, σγ/γ = 1%, σx = 1µm), based on the Xie formula (eqs. (5.24)
and (5.26)). The colored areas on the right panel indicates the zones where ηd > 1 (red area),
ηε > 1 (green area) or ηγ > 1 (blue area).

of ∼10 µrad.
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Figure 5.6: Estimation of the efficiency of the FEL process for a collimated LWFA bunch. (I =
30 kA, ε⊥ = 0.5 mm.mrad, γ0 = 400, σγ/γ = 1%, σx = 100µm).

The FEL efficiency associated with a collimated beam is plotted in fig. 5.6. As shown in
this figure, FEL amplification now seems realistic, in the case of a magnetic undulator. The
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5.2. A prospective study of an LWFA-based FEL

dominant source of degradation here is the finite energy spread of the bunch, and it can still
seriously degrade the FEL process if the actual bunch quality is lower than that considered
here. In order to alleviate the impact of energy spread and to make the FEL amplification more
robust, Maier et al. [2012] and Loulergue [2013] proposed to use a magnetic chicane before the
undulator. The corresponding setup is represented in fig. 5.7. The effect of the chicane is to
sort the electrons longitudinally, depending on their energy. (The most energetic electrons are
placed at the head of the bunch, while the low energy electrons trail at the back.) This results
in a lower effective energy spread, but also come at the cost of a longer bunch duration and
thus a lower peak current. For well-chosen chicane parameters, this scheme greatly improves the
robustness of FEL amplification. It is now at the heart of the Lunex5 project [Couprie et al.,
2013], a collaboration which involves several research centers, including LOA and the SOLEIL
synchrotron, and which aims at an experimental demonstration of an LWFA-based FEL.

LWFA

Quadrupole triplet

Chicane

Undulator

Figure 5.7: Schematic representation of the setup considered for an FEL based on an LWFA
beam and a magnetic undulator. A quadrupole triplet collimates the beam after the exit of the
accelerator. It is followed by a magnetic chicane, which decompresses the bunch longitudinally.
Courtesy of A. Loulergue

One of the remaining issues of this scheme lies in the transport of the bunch from the ac-
celerator to the undulator. The transport and collimation are indeed made difficult by the high
divergence of the bunch, at the exit of the accelerator. Because of this divergence, the transverse
size of the bunch is very large when it reaches the collimating quadrupole magnets. As a result,
the electrons experience the high-radius aberrations of these magnets, and their emittance is
strongly affected. In addition, a large divergence also implies that the electrons have a consid-
erable spread in longitudinal velocity, and therefore that the bunch will spread longitudinally
during its propagation from the accelerator to the undulator. This effect reduces the peak current
(thereby reducing the Pierce parameter) and moreover makes it more difficult to longitudinally
sort the electrons with the chicane. Calculations and simulations by Alexandre Loulergue showed
that, for a bunch with an initial divergence of 2 mrad, the peak current can be 20 times lower
and the emittance 100 times higher, after transport and collimation. With these parameters,
FEL amplification is again degraded.

Calculations also show that this increase in emittance and decrease in peak current de-
pend quadratically on the initial divergence. This means that reducing the initial divergence is
paramount here, and that even a moderate reduction can have substantial benefits. Although
divergence can in principle be reduced by accelerating the electrons to higher energies (see sec-
tion 1.2.2), a higher energy also reduces the Pierce parameter (see eq. (5.25)), and thus one must
find other means to improve divergence. In this context, the results of chapter 4 can provide a
solution. In that chapter, it was shown that a laser-plasma lens can significantly reduce the diver-
gence of the bunch. Importantly, this reduction of divergence occurs only about one millimeter
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Chapter 5. Towards a compact free-electron laser

after the exit of the accelerator i.e. before the initial divergence can induce substantial bunch
lengthening. Thus placing a laser-plasma lens after the accelerator and before the quadrupole
triplet would greatly facilitate the subsequent transport of the beam and would ultimately lead
to a more robust FEL process.

It should nonetheless be mentioned that, although the laser-plasma would substantially facili-
tate the transport of the beam, it is not strictly necessary for a first proof-of-principle experiment,
within the Lunex5 collaboration. In addition to the magnetic chicane, recent progress in the de-
sign of the experiment (including the super-matching transport scheme by Alexandre Loulergue)
are likely to make the amplification much more robust. In addition, the use of a seeding radiation
(e.g. [Yu et al., 2000; Togashi et al., 2011]) will allow to use a shorter undulator [Lambert et al.,
2008; Labat et al., 2011]. Simulations currently suggest that, in these conditions, an FEL gain
can realistically be observed, and a first experiment is planned to take place at LOA within the
next few years.

5.2.3 Laser and plasma undulator

Although magnetic undulators are a robust and efficient technology, other undulator concepts
have also been proposed. As mentioned before, these concepts include laser and plasma undula-
tors [Whittum et al., 1990; Joshi et al., 1987; Gea-Banacloche et al., 1987; Danly et al., 1987].
With the development of high-power femtosecond lasers – and their ability to generate high fields
in plasmas – these alternative concepts have recently attracted much interest. Compared to a
magnetic undulator, laser undulators and plasma undulators have a much higher wiggling field
and a much shorter undulator period. This gives them several advantages over the conventional
magnetic undulators. First, due to their micron-scale undulator period, laser and plasma undu-
lators can be orders of magnitude shorter than magnetic undulators. They could thus drastically
reduce the size of the overall FEL setup. Moreover, in contrast to a magnetic undulator, a
laser undulator or plasma undulator can be placed almost immediately after the accelerator, and
thereby eliminates the need for beam transport.

However, figs. 5.5 and 5.6 show that, with a standard LWFA beam, the FEL efficiency of
these undulator is close to zero. This is due to their short undulator period λ′u, which makes
the Pierce parameter ρ very low (see eq. (5.18)) and leads to tighter requirements on the bunch
quality. In order to compensate for this, one could consider using a lower-energy electron bunch,
since ρ increases when γ0 decreases. Here it should be noted that in principle low-energy bunches
are more sensitive to deleterious space-charge effects. This however is partly compensated by
the shorter length of a laser or plasma undulator, which implies that these effects have less time
to develop.

In chapter 3, it was shown that optical transverse injection could precisely provide low-energy
bunches with low emittance, low energy spread and high current. Thus these bunches appear to
be good candidates for a laser or plasma undulator. The corresponding FEL efficiency (for the
bunch of section 3.3.1) is plotted in fig. 5.8. As can be seen, the situation is partly improved
compared to figs. 5.5 and 5.6. In particular, this type of bunch would be well suited for an
undulator with λ′u ∼ 10 µm –100 µm and au,0 ∼> 1, and this is the motivation for the undulator
that is proposed in section 5.3. However, regarding a laser or a plasma undulator, degradation
by energy spread and emittance is still too strong.

In fact, a laser or plasma undulator requires even lower energy. In the rest of this section, we
consider the set of beam parameters of table 5.2, which corresponds to γ = 20 with a percent-level
energy spread, and which could realistically lead to amplification with a CO2 laser undulator
or plasma undulator. Although these parameters have not yet been achieved, they provide a
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Figure 5.8: Estimation of the efficiency of the FEL process for a bunch obtained by optical
transverse injection in section section 3.3.1 (I = 10 kA, ε⊥ = 0.17 mm.mrad, γ0 = 54, σγ/γ =
1.7%, σx = 1µm).

reasonable objective for simulations and ultimately for experiments. Apart from the lower energy
and energy spread, these values are close to those obtained by optical transverse injection, and
scanning the parameters of the injection (plasma density, laser energy) could potentially lead
to similar parameters. Alternatively, low-energy gradient injection [Geddes et al., 2008; Schmid
et al., 2010] is also a possible candidate to meet the requirements of table 5.2.

Q γ σγ ε⊥ σx σz
100 pC 20 0.2 0.17 mm.mrad 2 µm 1 µm

Table 5.2: Set of parameters considered for FEL amplification with a CO2 laser undulator or a
plasma undulator.

The efficiency of the FEL process for the parameters of table 5.2 is represented in fig. 5.9. As
a result of the lower energy and the higher associated Pierce parameter, these parameter seem
indeed favorable to a plasma undulator or a CO2 laser undulator.

5.2.4 The particular case of the CO2 laser undulator

Due to its short undulator period, the CO2 laser undulator is a particularly attractive option
[Petrillo et al., 2008]. In a CO2 laser undulator, the electron bunch travels through a long (∼100
ps) and energetic (∼100 J) counterpropagating laser pulse. In this configuration, the electric
and magnetic fields of the pulse force the electrons to oscillate, and can potentially lead to an
FEL instability. In this section, we evaluate the potential of a CO2 undulator with the beam
parameters of table 5.2, by taking into account additional degrading effects that were neglected
in the previous section. Three important additional effects have to be considered here, that are
not assessed by the Xie formula.
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Figure 5.9: Estimation of the efficiency of the FEL process for the hypothetical bunch of table 5.2.
A Gaussian profile is assumed longitudinally, and thus the peak current is I = 12 kA.

The first one is the fact that the bunch naturally diverges while propagating in the laser
undulator. Therefore the density of the bunch decreases along the undulator, and this has
to be accounted for. A second important effect is the impact of space charge. As explained
in section 5.1.4, space-charge effects tend to make bunching more difficult, and they can be
substantial for low-energy electron bunches. Finally, the third effect is the non-uniformity of
the undulator. As the electrons propagate through the counterpropagating CO2 laser pulse, the
wiggling parameter au,0 that they experience changes. This is due partly to the finite duration of
the laser pulse, and partly to its finite Rayleigh length. In this section, we will consider UCLA’s
“MARS” laser, which can deliver 200 J pulses with 170 ps duration focused to a waist w0 = 80µm
(which corresponds to au,0 = 0.7 in the focal plane). In this case, the length of the laser pulse
is about 50 mm, while the Rayleigh length is 2 mm. Thus the non-uniformity of the laser is
dominated by the finite Rayleigh length:

au,0(z) =
au,0√

1 +
(z−zfoc)2

Z2
R

where zfoc is the longitudinal position of the focal plane and ZR is the Rayleigh length.
In order to take these effects into account, we performed Genesis simulations7 [Reiche,

1999] with the bunch parameters of table 5.2. These simulations consistently take into account
the divergence of the bunch, the non-uniformity of the undulator, and the short-range space-
charge effects. The results of these simulations are shown in fig. 5.10, and they reveal that
FEL amplification indeed does take place. As a result of the growing σx (which lowers the
Pierce parameter) and of the decreasing au,0 (which detunes the resonant wavelength), FEL

7Strictly speaking, Genesis only features a magnetic undulator. Yet, according to section 5.1.2, the FEL
equations are the same for a laser undulator with a wavelength λ0 and for a magnetic undulator with a period
λu = λ0/2. Thus the simulations were performed for an equivalent magnetic undulator having λu = 5µm. A
similar approach was used by Petrillo et al. [2008], but they did not consider the non-uniformity of the undulator.
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5.2. A prospective study of an LWFA-based FEL

amplification stops after 1.5 mm of propagation. Nonetheless, the radiation emitted before this
point already has interesting properties. The simulations predict that the electrons emit 4 µJ of
radiation at λr = 8.5 nm (146 eV), with a peak power of 700 MW.
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Figure 5.10: Results of Genesis simulations for the bunch parameters of table 5.2 and for a
laser undulator corresponding to UCLA’s ‘MARS’ laser. Left panel: Radiation power along the
undulator. The radiation slips with respect to the center of the bunch, due to the relatively
low energy of the electrons. Right panel: evolution of the transverse size of the bunch σx, the
wiggling parameter au,0 and the total radiated energy Erad, along the undulator. The energy
stops growing after ∼1.5 mm of propagation.

Here, it should however be noted that Genesis simulations do not take into account trans-
verse space-charge effects. As explained in section 5.1.4, tranverse space-charge can lead to an
increase in emittance, which can potentially degrade the FEL process. With the bunch param-
eters considered here, the characteristic length over which these effects develop is Lsp,⊥ ≈ 1.5
mm (see eq. (5.28)), and is thus comparable to the length over wich FEL amplification takes
place. The impact of these effects can be estimated by using eq. (1.45). Assuming that the
bunch evolves from a transversely Gaussian profile to a transversely uniform profile during its
propagation, the corresponding increase in emittance evaluates as

εx,f =

√
ε2x,i +

σ2
x

4γ0

I

IA
UGauss with UGauss = 0.154

With an initial emittance εx,i = 0.17 mm.mrad and with σx = 2 µm, the final emittance εx,f is
0.19 mm.mrad. Thus the emittance is only slightly increased, and the transverse space-charge
effects are unlikely to seriously degrade the FEL operation.

On the whole, the above estimates and the results of Genesis simulations are quite positive.
Thus the parameters of table 5.2 can indeed be considered as an objective for future parametric
studies of optical transverse injection. Reaching this objective would allow FEL amplification
with currently available laser undulators.
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Chapter 5. Towards a compact free-electron laser

5.3 Nanowire undulator

5.3.1 Presentation and motivation

As mentioned in section 5.2.3, the electron bunches produced by optical transverse injection
would be ideally suited for an undulator with λu ∼ 10 µm – 100 µm and au,0 ∼> 1. However, such
undulators are not currently available. For this reason, we proposed a new type of undulator,
with which it is hoped to reach the equivalent of au,0 ∼> 1. The basic idea is to place an array of
nano-fabricated wires, immediately after a laser-wakefield accelerator. As represented in fig. 5.11,
in this scheme the driving laser pulse propagates through this array after exiting the gas jet. As
the pulse hits the wires, it ionizes them and strips them of a fraction of their electrons. As
a result, the wires become positively charged and generate a strong space-charge field. PIC
simulations by Agustin Lifschitz and Igor Andriyash at LOA showed that electrostatic fields of
the order of 1 TV.m−1 can be generated in this way.

These electrostatic fields can then influence the trajectories of the trailing electrons, after
they exit from the accelerator. The nanowires are arranged in a checker-board pattern, so that
they pull the electrons in alternate directions, effectively forcing them to wiggle. In this scheme,
the nanowires are ∼10 microns long and ∼0.5 µm wide, and they are separated by ∼10 microns.
These specifications are within the capabilities of current nano-fabrication techniques with silicon
substrates.

10 mµ

Laser Beam
Wakefield

. . .
2 mm

Nanowires Array

Laser Beam

Electron Beam

Electron Beam

u

µ20 m

Laser Beam

Gas Jet

(III)
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(II)

λ

y

z
x

Figure 5.11: Representation of the proposed nanowire undulator. After exiting the accelerator,
the driving laser pulse ionizes the wires, and repels a fraction of the electrons. This creates a
strong space charge field around the nanowires, which can wiggle the trailing electron bunch.
(Courtesy of A. Lifschitz)

In order to study this undulator, we use a simplified model in sections 5.3.2 to 5.3.4. In this
model, which is represented in fig. 5.12, the undulator consists of two infinite rows of identical,
positively-charged and infinitely-long wires. We chose to consider only two rows because the
rows lying closer to the path of the laser are the most strongly charged, and they are the ones
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5.3. Nanowire undulator

that determine in practice the motion of the electrons. In section 5.3.5, we examine to which
extent the other approximations of this model are valid, and we discuss how the results of the
model are modified when considering a more realistic undulator.

z

x

λ

∆x

∆z

Figure 5.12: Representation of the simplified model considered in sections 5.3.2 to 5.3.4. The
parameters of the model are the longitudinal and transverse spacing between the wires (∆z and
∆x), and the linear charge density λ of each individual wire.

In studying the FEL process, we use a cold-fluid approach similar to that of section 5.1.2. The
electric field inside the undulator is calculated in section 5.3.2, and the zeroth-order motion of
the electrons in this field (i.e. their motion in the absence of radiation) is studied in section 5.3.3.
The amplified radiation is considered in section 5.3.4, and we derive the gain length for a certain
range of parameters.

5.3.2 The fields inside the undulator

The electric field created by an individual, infinitely-long wire has a well-known expression.

E =
2mc2re
e2

(
λ

r

)
er = 2

mc2

e
λ̃

(
x− x0

(x− x0)2 + (z − z0)2
ex +

z − z0

(x− x0)2 + (z − z0)2
ez

)
(5.29)

where r is the distance from the axis of the wire, and where (x0, y0) is the position of the
wire in cartesian coordinates. λ is the linear charge density of the wire, and λ̃ ≡ λre/e is the
corresponding dimensionless parameter. In our case, λ̃ can be reexpressed as

λ̃ = πR2reZαnat = 6.2× 103 αR[µm]2 for silicon

where R is the radius of the wire, nat is the density of atoms in the wire, Z the atomic number
of these atoms and α the overall fraction of electrons that have been removed by the laser. PIC
simulations reveal that α is of the order of 10−3, and thus for R ≈ 0.5µm, λ̃ is of order unity.

By linear superposition, the total electric field in the undulator can be written as a sum over
the wires:

Ez =
2λ̃mc2

e

∞∑
n=−∞

z − n∆z

[ z − n∆z ]2 + [x− (−1)n∆x ]2

Ex =
2λ̃mc2

e

∞∑
n=−∞

x− (−1)n∆x

[ z − n∆z ]2 + [x− (−1)n∆x ]2
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Compact expression of the fields. Due to the presence of an infinite sum, the above ex-
pression are not very convenient. It is however possible to rewrite them in a more compact form,
by an appropriate use of the residue theorem (see appendix D):

Ez = −πλ̃mc
2

e∆z

[
sin
(
π

∆z z
)[

cosh
(
π

∆z (∆x+ x)
)

+ cos
(
π

∆z z
) ] − sin

(
π

∆z z
)[

cosh
(
π

∆z (∆x− x)
)
− cos

(
π

∆z z
) ]]
(5.30)

Ex = πλ̃
mc2

e∆z

[
sinh

(
π

∆z (∆x+ x)
)[

cosh
(
π

∆z (∆x+ x)
)

+ cos
(
π

∆z z
) ] − sinh

(
π

∆z (∆x− x)
)[

cosh
(
π

∆z (∆x− x)
)
− cos

(
π

∆z z
) ]]

(5.31)

In addition, it is also possible to express the associated dimensionless potential φ = eΦ/mc2

(which, by definition, satisfies the relations Ez = −mc2/e× ∂zφ, Ex = −mc2/e× ∂xφ).

φ = −λ̃ log

[
4e−2π∆x

∆z

(
cosh

(
π(∆x+ x)

∆z

)
+ cos

( πz
∆z

)) (
cosh

(
π(∆x− x)

∆z

)
− cos

( πz
∆z

)) ]
These compact expressions are particularly useful in some numerical FEL simulations, in which
the expression of the external undulator fields is treated as an input. They are also convenient
when graphically representing the fields, as it is done in fig. 5.13.

Figure 5.13: Representation of the periodic fields along the undulator for λ̃ = 1 and ∆x = 0.5∆z.
Left panel: representation of −φ, which is proportional to the potential energy of the electrons
in the undulator. Right panel: representation of the transverse electric field.

Expression of the fields as a Fourier series. Since the fields are periodic along the z axis,
they can also be expressed as a Fourier series. Inside the undulator (|x| < ∆x), the corresponding
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expressions are (see appendix D):

Ez = 2πλ̃
mc2

e∆z

∞∑
k=1

e−
kπ∆x

∆z

[
e
kπx
∆z + (−1)ke−

kπx
∆z

]
sin

(
kπz

∆z

)
(5.32)

Ex = −2πλ̃
mc2

e∆z

∞∑
k=1

e−
kπ∆x

∆z

[
e
kπx
∆z − (−1)ke−

kπx
∆z

]
cos

(
kπz

∆z

)
(5.33)

φ = 2λ̃
∞∑
k=1

e−
kπ∆x

∆z

k

[
e
kπx
∆z + (−1)ke−

kπx
∆z

]
cos

(
kπz

∆z

)
(5.34)

These expressions are convenient when integrating the equations of motion for the electrons.
Importantly, it can be seen from these expressions that the average of Ex(x, z) over one period
in z is zero (for any fixed value of x). This implies that, if a relativistic electron propagated
on a straight line (fixed x), the average transverse field would be neither focusing, nor defo-
cusing. However, electrons do not propagate on straight lines here, but instead they wiggle
about their average trajectory. As will be seen in the next section, this gives rise to a transverse
ponderomotive force.

5.3.3 Motion of the electron in the absence of radiation

In the absence of radiation (a = 0), the zeroth-order equation of motion for the electrons is:

1

c

∂u0

∂t
+

1

γ0
(u0 ·∇)u0 = ∇φ

Since φ does not depend on t, this equation preserves the quantity γ0 − φ.

γ0 = γ̄0 + φ = γ̄0 + 2λ̃

∞∑
k=1

e−
kπ∆x

∆z

k

[
e
kπx
∆z + (−1)ke−

kπx
∆z

]
cos

(
kπz

∆z

)
(5.35)

where γ̄0 is the average value of γ0, and is a constant here.

Wiggling motion. In order to study the transverse wiggling motion, we rewrite the equation
of transverse motion as

1

c

∂ux,0
∂t

+
∂ux,0
∂z

− ∂φ

∂x
=

(
1− uz,0

γ0

)
∂ux,0
∂z

− ux,0
γ0

∂ux,0
∂x

(5.36)

where part of the term (u0 ·∇)ux,0 has been brought to the right-hand side. These right-hand
side terms can in fact be neglected as a first approximation. This is because, for relativistic
electrons propagating along the z axis, uz,0/γ0 = βz,0 ≈ 1 and ux,0/γ0 = βx,0 � 1. In addition,
since φ does not depend on t, it is natural to assume that u0 does not depend on t either. Upon
neglecting the right-hand side terms and suppressing the time derivative, eq. (5.36) becomes

∂ux,0
∂z

− ∂φ

∂x
= 0 (5.37)

Using the Fourier expression of φ (eq. (5.34)), this leads to:

ux,0 = ūx,0 + 2λ̃

∞∑
k=1

e−
kπ∆x

∆z

k

[
e
kπx
∆z − (−1)ke−

kπx
∆z

]
sin

(
kπz

∆z

)
(5.38)
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Figure 5.14: Plots of ux,0, Ex and 1−βz,0 for different values of ∆x. These quantities are plotted
on-axis (x = 0), for ūx,0 = 0, and with fixed values for λ̃ and γ̄0 (λ̃ = 1, γ̄0 = 50).

where ūx,0 is the average of ux over one period. Using eqs. (5.35) and (5.38), it is possible to
obtain βz,0 from the relation

βz,0 = 1−
(1 + u2

x,0)

2γ2
0

(5.39)

The quantities ux,0 and βz,0 are plotted on-axis (x = 0) in fig. 5.14 for different values of
the ratio ∆x/∆z and for the same value of λ̃. As can be seen from these plots, the motion is
nearly sinusoidal and has a relatively low amplitude for ∆x/∆z ∼> 0.5. On the contrary, it is
anharmonic and has a larger amplitude for ∆x/∆z ∼< 0.5. This behavior is also clearly apparent
in the Fourier components of ux,0 and γ0 (eqs. (5.35) and (5.38)), through their exponentional
dependence on ∆x/∆z.

∆x < ∆z

∆x > ∆z

Figure 5.15: Schematic representation of the forces experienced by an electron in the undulator,
for the cases ∆x < ∆z and ∆x > ∆z. The blue dot represents the electron and the black
arrows represent the forces exerted by the individual wires. In the case ∆x > ∆z, these force
compensate each other for the most part.

The observed fact that the amplitude of Ex and ux,0 rapidly decrease when the ratio ∆x/∆z
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5.3. Nanowire undulator

increases can be understood qualitatively. As shown in fig. 5.15, in the case ∆x < ∆z, the wires
are relatively far apart, and a given electron essentially feels the force of each individual wires
successively in time. On the contrary, for ∆x > ∆z, a given electron is at a similar distance from
many distinct wires. Thus at any time, it simultaneously feels the force of the two rows of wires.
These forces cancel each other for the most part, and hence the total wiggling force is very low.

Transverse ponderomotive force. In eq. (5.37), we neglected the right-hand side terms
of eq. (5.36), and as a result ūx,0 was considered a constant in the final solution (eq. (5.38)).
However, although it is typically small, the right-hand side of eq. (5.36) can have long-term
effects, and it can in particular induce slow variations of ūx,0. Assuming again |ux,0| � γ0, the
average of eq. (5.36) over one period reads8:

1

c

∂ūx,0
∂t

+
∂ūx,0
∂z

+
ūx,0
γ̄0

∂ūx,0
∂x

≈ − 1

2γ̄0

∂

∂x
〈(ux,0 − ūx,0)2〉 (5.40)

where the brackets denote an average over one period. The right-hand size can now be interpreted
as a transverse ponderomotive force Fx = −mc2/2γ̄0 × ∂x〈(ux,0 − ūx,0)2〉. From eq. (5.38), one
can obtain

〈(ux,0 − ūx,0)2〉 = +2λ̃2
∞∑
k=1

1
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and thus the expression of the ponderomotive force is
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)
where the power series of the logarithm was used in order to obtain the final expression. This
expression is negative when x > 0 and positive when x < 0, and hence this ponderomotive force
is focusing. This is not surprising since ponderomotive effects typically push particles away from
areas of high wiggling field, and since, in the case of the nanowires, the wiggling field is higher
off-axis than on-axis, as shown in fig. 5.13. For the purpose of the FEL process, this focusing force
is rather beneficial, as it focuses the diverging electron beam. It should however be remarked
that this force operates only in the x-z plane and that the electrons will still diverge in the y-z
plane.

Close to the axis, the ponderomotive force Fx can be linearized.

Fx = −8π2λ̃2

γ̄0

mc2

∆z2

x(
1 + e

2π∆x
∆z

) (5.41)

Under the influence of this force, the electrons will perform sinusoidal betatron oscillations. The
corresponding betatron wavelength is

λβ =
γ̄0∆z

λ̃
√

2

√
1 + e

2π∆x
∆z (5.42)

8In obtaining this average equation, we neglected the term proportional to (1 − uz,0/γ0) and made the ap-
proximations γ0 ≈ γ̄0. Relaxing these approximations leads to additional terms of the order u2

x,0/γ̄
2
0 × ∂zux,0 and

u3
x,0/γ̄

3
0 × ∂xux,0, which are indeed negligible compared to the terms of order ux,0/γ̄0 × ∂xux,0.
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Figure 5.16: Trajectory of a single electron (black lines), obtained by numerical integration of
the equations of motion, in the fields given by eqs. (5.30) and (5.31). The colormap corresponds
to the wiggling field Ex. The parameters used here are γ̄0 = 50, ∆z = 10 µm, ∆x = 5 µm,
λ̃ = 1.

These predictions can be confirmed by numerically integrating the equations of motion for a
single electron, in the electric field given by the compact expressions eqs. (5.30) and (5.31). The
numerically-integrated trajectory is plotted in fig. 5.16, in the case γ̄0 = 50, ∆z = 10 µm, ∆x =
5 µm, λ̃ = 1. The short-term wiggling motion and the long-term betatron oscillations can be
clearly seen. The results of the numerical integration are in good agreement with the predictions
of this section, since the betatron wavelength of the trajectory in fig. 5.16 is λβ = 1.6 mm, while
eq. (5.42) predicts λβ = 1.7 mm.

5.3.4 FEL amplification

In the presence of co-propagating radiation, the zeroth-order motion is perturbed and, in a
similar way as that decribed in section 5.1.2, this pertubation can lead to micro-bunching and
amplification. In fact, when ∆x ∼> 0.5∆z and |x| � ∆x, the motion is nearly sinusoidal and the
situation is indeed identical to that of a planar magnetic undulator. The only difference lies in
the fact that γ0 remains constant in the case of a magnetic undulator whereas it oscillates about
its mean value γ̄0 in the case of the nanowire undulator. However, these oscillations are of the
order of λ̃, which is typically small compared to γ̄0, and they will be neglected here9.

Thus a complete analogy can be drawn with a planar magnetic undulator, when ∆x ∼> 0.5∆z
and |x| � ∆x. As mentioned above, the motion is sinusoidal with these parameters, and the
higher harmonics can be neglected in the expression of ux,0 (eq. (5.38)):

ux,0 = 4λ̃e−
π∆x
∆z sin

( πz
∆z

)
The parameters of the equivalent magnetic undulator are

au,0 = 4λ̃e−
π∆x
∆z ku =

π

∆z

9Indeed the variations that the oscillations of γ0 induce on 1− βz,0 (which is an important quantity here since
it determines the Doppler shift) are typically of the order of λ̃/γ̄3

0 (according to eq. (5.39)). By contrast, the
variations induced by the oscillations of ux,0 are of the order of λ̃2/γ̄2

0 . Thus, for λ̃ � 1/γ̄0 (which is commonly
satisfied), the oscillations of γ0 have a negligible impact.
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5.3. Nanowire undulator

Using this analogy, the predicted radiation wavelength and the predicted gain length are:
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where
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The crucial result here is that the Pierce parameter – and thus the gain length – have an
exponential dependence on the geometrical ratio ∆x/∆z. This implies that ∆x should be chosen
very small in order to have robust and fast FEL amplification. On the other hand, the sinusoidal
approximation is not justified for very small ∆x and the FEL process may then behave differently.

In order to confirm these predictions, I compared them with numerical FEL simulations.
The FEL code Genesis cannot be used here, since it intrinsically assumes that the wiggling
field is purely magnetic and sinusoidal. On the contrary, the code PlaRes by Andriyash et al.
[2014b] integrates the equations of motion in user-specified wiggling fields. Thus PlaRes was
used here, with the compact expressions of the wiggling fields eqs. (5.30) and (5.31). I simulated
a cylindrical flat-top electron bunch of density ne = 3× 1019 cm−3 (a typical order of magnitude
for LWFA bunches) and energy γ̄0 = 50, propagating through a nanowire undulator with λ̃ = 1
and ∆z = 10µm. The transverse spacing of the undulator ∆x is varied and the radius of the
electron bunch is modified accordingly (R = 0.1∆x), so as to always satisfy the condition of
validity for the sinusoidal approximation |x| � ∆x. The simulated electron beam is ideal in the
sense that its initial energy spread and emittance are zero.
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Figure 5.17: Comparison of the predictions of eq. (5.43) (blue curves) with the results of 2D
Plares simulations (red dots). The left panel shows the central radiation wavelength λr while
the middle panel shows the gain length Lg,0. The predicted Pierce parameter is indicated in the
right panel, as an additional information.

The results of these simulations are shown in fig. 5.17. The agreement is very good for
∆x > 5µm, and confirms that the gain length increases exponentially with the ratio ∆x/∆z.
The simulation results depart from the theoretical predictions for ∆x < 5µm. This could be
because the sinusoidal approximation of eq. (5.38) is not valid anymore for these values of ∆x.
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Another possibility is that this discrepancy is due to degradation by diffraction, which can be
strong for small ∆x (since the size of the electron beam is proportional to ∆x here).

The case ∆x = 4µm has the advantage of having a relatively short gain length, while satis-
fying ∆x� σx with typical values of σx for LWFA beams. Therefore, the PlaRes simulation is
re-run with a realistic bunch (i.e. with finite energy spread and emittance, and a larger transverse
size). The parameters of the bunch are again those obtained in simulations of optical transverse
injection (γ̄0 = 54, σx = 1µm, σz = 1µm, Q = 50 pC, σγ/γ = 1.7 %, ε⊥ = 0.17 mm.mrad).
The results are shown in fig. 5.18 and compared with that of an ideal bunch (same parameters,
except for σγ = 0, ε⊥ = 0). Although the FEL amplification is degraded in the case of the
realistic beam, there is still a very clear exponential increase of the radiated energy. Thus, FEL
amplification does take place and, as was suggested by the colormaps of section 5.2.3, a nanowire
undulator is in principle well-adapted for the bunches obtained by transverse optical injection.
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Figure 5.18: Energy radiated by an electron bunch as a function of the distance in the nanowire
undulator. The blue curve corresponds to a realistic bunch (σγ/γ = 1.7 %, ε⊥ = 0.17 mm.mrad),
while the green curve corresponds to an ideal bunch (σγ/γ = 0 %, ε⊥ = 0 mm.mrad). The other
parameters of the bunch are γ̄0 = 54, σx = 1µm, σz = 1µm, Q = 50 pC.

5.3.5 Discussion for a realistic undulator

Although the results from our simplified model are encouraging, there are a number of important
effects that have not been taken into account. Unfortunately, these effects can seriously affect
the FEL process, and we discuss them in this section.

Finite size of the wires In our simplified model, the wires were considered to be infinitely
long and uniformly charged. Yet in reality, their length is of course finite, and moreover the
laser pulse only creates charge separation over a certain fraction of this length (due to its finite
waist). The effect of the finite size of the charge-separation zone can be estimated by considering
uniformly-charged wires having a finite length L. Then the expression of the electric field created
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by one individual wire (in its bisecting plane) is

E =2
mc2re
e2

λ

r

L√
4r2 + L2

er (5.44)

=2
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e
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(x− x0)2 + (z − z0)2

L√
4(x− x0)2 + 4(z − z0)2 + L2

[ (x− x0)ex + (z − z0)ez ]

(5.45)

where again r is the distance from the axis of the wire, where (x0, y0) is its position in cartesian
coordinates, and where λ is its linear charge density. As can be expected, this expression reduces
to the expression for an infinite wire (eq. (5.29)) for r � L. On the other hand, for r � L the
field decreases faster than that of an infinite wire (|E| ∝ r−2 instead of r−1). This can have
important implications for the total field of the undulator.

As mentioned in section 5.3.2, the total field of the undulator is the sum of the fields of the
individual wires. Yet, when the field of an individual wire is given by eq. (5.45), it is not possible
to use the same techniques as in section 5.3.2 and to rewrite the total field in a compact form
or as a Fourier series. It is nonetheless possible to calculate at the least the average of the total
wiggling field over one undulator period:

〈Ex〉 =
2mc2

e∆z
λ̃

[
arctan

(
2(∆x− x)

L

)
− arctan

(
2(∆x+ x)

L

)]
In agreement with the results of section 5.3.2, this expression goes to zero in the case of infinite
wires (L =∞). However, in the case of finite-sized wires, 〈Ex〉 is non-zero, and an analysis of its
sign reveals that it is defocusing for electrons. Therefore this effect competes with the focusing
ponderomotive force. Close to the axis, the expression of the average defocusing force is

Fx =
8mc2λ̃

L∆z

x

(1 + 4∆x2/L2)

For realistic values of the parameters (λ̃ ∼ 1, γ̄0 ∼ 50, L ∼ 10µm, ∆x ∼ 5µm, ∆z ∼ 10µm), this
force largely dominates over the ponderomotive force (eq. (5.41)), and the electron bunch will
defocus as it travels through the undulator. However, it should be noticed that this defocusing
effect only operates along the x direction. On the contrary, the average electric field along the
y direction is expected to be focusing and to bring the electrons in the bisecting plane of the
wires. This can partially compensate the impact that the defocusing fields in x have on the
bunch density.

Diffuse electron density As the laser removes a fraction of the electrons from the wires, it
scatters them around and thus generates a diffuse distribution of negative charges inside the
undulator. Although this distribution was not taken into account in our simplified model, it
can partially screen the positive charge of the wires. This typically causes the electric field of
individual wires to decrease faster with r than they would in the absence of electrons. In this
sense, the impact of a diffuse electron density is similar to that of the finite length of the wires. It
is thus expected that this distribution of electron will also lead to an average defocusing force in
the x-z. Building an accurate model of the electron density and of the corresponding defocusing
force can be quite complicated. Yet estimations by PIC simulations suggest that it can have a
substantial effect. These simulations showed that the bunch can indeed defocus over a length
as short as ∼ 200 µm [Andriyash et al., 2014a]. Yet the exact dependency of this length with
respect to the laser and undulator parameters remains to be established.
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Finite length of the undulator In the simplified model, the undulator was considered to be
infinite in the longitudinal direction. In reality, the wires that are ahead of the laser pulse, at a
given time, are not charged yet. Since the electron bunch travels not far behind the laser pulse,
there will be a larger number of positively-charged wires behind the electron bunch than ahead
of it. In this case, the average longitudinal electric field over one undulator period is expected to
be non-zero and to pull the electrons back. Although it is unlikely to actually stop the electron
bunch, it can still progressively reduce its energy. The exact amplitude of this effect depends on
the range of the electric field produced by individual wires, and thus on their length and on the
surrounding electron distribution. PIC simulations tend to show that the relative decrease of the
mean bunch energy is at the percent level, but again a study of its dependence with respect to
the parameters of the undulator has to be carried out.

Evolution of the laser pulse As the laser pulse propagates through the undulator, it pro-
pressively loses energy. This occurs because it gives energy to the electrons as it pulls them from
the wires, but also because a fraction of the laser energy diffracts on the wires and is lost trans-
versely. PIC simulations suggest that these effects cause the laser field to decrease exponentially,
as a function of the propagation distance. In these simulations, the characteristic length of this
phenomenon is ∼400 µm.

As a consequence of its decreasing field, the laser pulse removes less and less electrons from
each wire as it propagates through the undulator. Therefore the successive wires are not identical,
as it was assumed in the simplified model, but instead their individual charge decreases across
the undulator. This situation is analog to that of a tapered undulator [Huang and Kim, 2007]. In
principle, tapered undulators can, if their taper is well-chosen, increase the total energy radiated
by the bunch in the undulator. However, it is unclear to which extent the taper can be controlled
in our case, and it could just as well lead to detrimental detuning effects if its value is not well-
adapted.

Conclusion and future work The results of the simplified model suggest that FEL amplifi-
cation could in principle take place, even with realistic bunch parameters. However, this section
shows that a number of effects can seriously degrade the FEL process in practice. These ef-
fects should be studied systematically, in the hope that a regime of parameters can be found
in which they are not limiting. Alternatively, variations of the original undulator concept could
be considered, so as to make it less sensitive to the above mentioned effects. For instance, it
theoretically possible to use a secondary electron bunch in order to remove the electrons from
the wires, instead of a laser pulse. Although a laser pulse tends to scatter the electrons around
the wires, an electron bunch tends to repell them radially. Thus such an electron bunch would
generate less diffuse electron density inside the undulator, and would thus reduce the defocusing
forces.
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Summary of the results

This section summarizes the main results of this thesis.

Firstly, I showed in chapter 2 that standard PIC simulations of laser-wakefield acceleration
can sometimes overestimate the emittance of the accelerated bunch. This occurs mostly for
very intense bunches, and I showed that this overestimation is, to a large extent, due to the
numerical Cherenkov effect. Because of this artifact, the electrons emit a spurious radiation,
which then interacts with the bunch itself and artificially increases its emittance. I then proposed
a modified numerical scheme, which suppresses the Cherenkov radiation and results in a lower
final emittance. Importantly, this scheme is applicable to both three-dimensional Cartesian grids
and quasi-cylindrical grids.

Using this algorithm, I showed in chapter 3 that a new regime of colliding-pulse injection can
lead to low-emittance bunches. In this new regime – which arises for low densities and tightly-
focused laser pulses – the pulse collision causes the accelerating cavity to shrink and reexpand.
The rapid expansion of the cavity then triggers a sharp transverse injection. This optical trans-
verse injection contrasts with previously-known mechanisms of colliding-pulse injection, which
were longitudinal and conceptually relied on a stationary wakefield. Importantly, optical trans-
verse injection can lead to low-energy bunches (∼ 25 MeV) with a high charge (∼ 50 pC) and a
low energy spread (∼ 2 %), in addition to their low emittance (∼ 0.2 mm.mrad).

In chapter 4, we propose an interesting setup (the laser-plasma lens) which substantially
reduces the divergence of the electrons after they exit the accelerator. In this setup, a second,
well-chosen gas jet is placed after the accelerator. When the driving laser pulse (or a second,
dedicated laser pulse) propagates through this jet, it generates a wakefield which can collimate
the trailing electrons. While the single-pulse version of this scheme is well-adapted to low-energy
electrons (∼ 100 MeV), the two-pulse version may be better suited to high-energy electrons (∼
400 MeV). Through PIC simulations (for which an additional artifact was corrected in appendix
C), it is shown that both versions of this scheme can realistically reduce the final divergence by
a factor 3.

Finally, in chapter 5, I consider the combination of a laser-wakefield accelerator with several
types of undulators. In particular, it is shown that low-energy electron bunches could be advan-
tageously combined with short-period laser-plasma undulators, and may result in ultra-compact
FELs. In this context, an innovative nanowires undulator is proposed. Through a simplified
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model, I show that, when combined with typical bunches from optical transverse injection, this
nanowires undulator could lead to FEL amplification, with a gain length of the order of 100 µm.

Future prospects

These results open up several prospects, both regarding the numerical modeling of relativistic
plasmas and regarding the short-term and long-term prospects of laser-wakefield acceleration.

Towards a better numerical description of laser-plasma experiments. Although PIC
codes can accurately describe many aspects of laser-plasma interactions, I showed here that it
is in some cases still challenging to correctly describe the transverse dynamics of relativistic
beams. For this reason, several methods were introduced in order to improve this description,
in particular by avoiding the numerical Cherenkov effect (chapter 2) as well as by correcting
an inaccurate compensation of the E and B fields (appendix C). These methods were used in
the case of optical transverse injection and of the laser-plasma lens, but in principle they have
a broader field of application, and they may in fact be used in many situations in which the
transverse dynamics of the bunch is important. Recently, we used for instance the Cherenkov-
free algorithm in order to study the evolution of the angular momentum of the accelerated bunch
[Thaury et al., 2013]. This algorithm has also been used lately by Xavier Davoine (CEA DAM)
and Serge Kalmykov (University of Nebraska Lincoln) in simulations of Compton scattering
with a laser-accelerated bunch. In this case, preliminary results showed that the spectrum of
the Compton radiation is much narrower when the spurious growth of the bunch emittance is
suppressed.

In addition, the results concerning the numerically-inaccurate compensation of E and B
at the back of the laser pulse (appendix C) may have implications for simulations of laser-
enhanced betatron motion. Some simulations indeed suggest that the betatron oscillations of
the accelerated electrons can be amplified by their interaction with the back of the laser pulse
[Németh et al., 2008; Cipiccia et al., 2011]. However, as shown in appendix C, this interaction
can sometimes be numerically overestimated, and it would thus be interesting to run these
simulations with higher-order time interpolation of the B field.

Finally, the above methods could also be used to simulate the influence of space charge forces
on the bunch itself (including e.g. the growth of emittance due to space charge). It is indeed
difficult for PIC codes to accurately reproduce this space-charge force, since this situation is
prone to both the numerical Cherenkov effect (the particles propagate close to c) and to the
numerically-inaccurate compensation of E and B. (physically, the bunch-generated E and B
fields should compensate with a precision of 1/γ2). It is thus important to study precisely to
which extent PIC codes can correctly capture this space-charge force.

Mitigation of numerical instabilities in flowing-plasma simulations. The numerical
Cherenkov effect can also have a dramatic impact in flowing-plasma simulations (i.e. simulations
in which the whole plasma travels at a relativistic speed). In this case, the numerical Cherenkov
effect leads to a growing instability, which rapidly disrupts the simulation [Xu et al., 2013]. This
instability appears for instance in simulations of relativistic astrophysical shocks [Spitkovsky,
2008; Keshet et al., 2009] and in boosted-frame simulations [Vay, 2007; Martins et al., 2010] (i.e.
simulations that reduce the computational cost by considering a moving frame of reference).
For three-dimensional PIC simulations, several methods have already been developed in order
to mitigate this instability [Xu et al., 2013; Vay et al., 2011], but the Cherenkov-free algorithm
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of chapter 2 could nevertheless complement these methods. In fact, preliminary research has
been carried out along these lines, in collaboration with the group of Luís Silva at the Instituto
Superior Técnico (Lisbon). These first investigations revealed that the Cherenkov-free algorithm
can supress the primary Cherenkov instability, although it is still subject to a secondary, slowly-
growing Cherenkov instability (known as the aliased Cherenkov instability).

More importantly, this Cherenkov-free algorithm could also be used in quasi-cylindrical PIC
simulations of flowing plasmas. Contrary to three-dimensional PIC simulations, no methods
have been developed so far in order to mitigate the Cherenkov instability in quasi-cylindrical
simulations. Thus, if the Cherenkov-free algorithm is successful in suppressing the Cherenkov
instability in this case, it would allow to carry out quasi-cylindrical boosted-frame simulations
for the first time. These simulations would cumulate the reductions in computational load
associated with both the boosted-frame technique and the quasi-cylindrical grid, and would thus
be extremely fast.

Multi-stage linear colliders. In the longer term, the results of this thesis could contribute
to the development of several potential applications of LWFA, and in particular to prospective
compact colliders. In the most recent proposals for LWFA-based colliders (e.g. [Schroeder et al.,
2010]), the electron beam is accelerated in a series of staged gas-filled capillaries. At the end
of each stage, the depleted driving laser pulse is replaced by a fresh pulse, which continues
accelerating the electron bunch in the next stage. Also, in this design, the laser-wakefield is
typically in the linear or quasi-linear regime inside the gas-filled capillaries.

Although the development of multi-stage linear colliders was only briefly mentioned in this
thesis, several of our results could be applied in this context. Firstly, optical transverse injection
could be used as a low-energy, high-quality injector, just before the first stage. Moreover, the
laser-plasma lens could refocus the electron bunch inbetween two consecutive stages. The bunch
indeed tends to diverge in the drift space between two stages, and its emittance later degrades
if it is not refocused before entering the next stage [Mehrling et al., 2012]. Finally, the nonlinear
beamloading calculations of section 4.3 could be applied to the accelerated bunch, within the
linear wakefield of each stage. Using these calculations, one could in particular evaluate the
growth of emittance due to transverse beamloading, over the long acceleration distance of the
collider. These evaluations could then help design the collider, by predicting the maximal charge
and the optimal geometry of the bunch that would keep emittance at a low level.

Plasma-based X-ray sources. Our results can also contribute to the long-term development
of incoherent X-ray sources (i.e. synchrotron-type sources) and coherent X-ray sources (i.e. free-
electron lasers). Regarding incoherent sources, the laser-plasma lens could facilitate the coupling
between a laser-wakefield accelerator and a magnetic undulator. As mentioned in chapter 4, the
associated reduction in divergence would indeed reduce the width of the emitted spectrum, and
increase the brightness of the radiation. In addition, the development of innovative plasma-based
undulators (such as the nanowire undulator) could lead to drastically more compact synchrotron
sources. In this context, it is for instance planned to experimentally observe the first incoherent
radiation from a nanowire undulator within the next year at LOA.

These developments are also important in the case of coherent sources. In this context,
the laser-plasma lens could be integrated into the FEL design of the Lunex5 project – which
combines an LWFA with a magnetic undulator. Here the lens could help preserve the emittance
and duration of the bunch, throughout the transport line from the exit of the accelerator to the
entrance of the undulator. Finally, chapter 5 contributed to show that low-energy, high-quality
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Conclusion

bunches (similar to those produced by optical transverse injection) could possibly lead to an FEL
effect when combined with a compact undulator (such as the laser undulator or the nanowire
undulator). This opens exciting prospects for ultra-compact FELs, in which both the accelerator
and the undulator have a centimeter-scale length (although they would still require a ten-meter
size laser system). However, there is still much work to be done in this direction. In particular,
it would be necessary to build more realistic models of the nanowire undulator, so as to confirm
that it can robustly lead to an FEL effect. It might also be advantageous to explore different
geometries for the array of nano-wires, as well as to consider the possibly to activate them with
an electron bunch instead of a laser pulse.

More generally, this thesis is part of a much larger effort towards higher-quality laser-accelerated
beams, and towards innovative LWFA-based applications. Although an actual compact collider
may still lie a few decades away from now, several other applications could become available
on a shorter term. This includes for instance LWFA-based tomography, phase-contrast imaging,
and electron diffraction in crystals. In addition, thanks to recent developments in the Lunex5
collaboration (including super-matching, the design of a magnetic chicane and the design of a
seeding beam), a soft X-ray LWFA-based FEL now seems achievable within the next few years. If
successful, this experiment would pave the way for cheaper and more wide-spread FEL facilities,
which would then open many new opportunities in atomic physics, biochemistry, and material
science.
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Appendix A

Ponderomotive formalism

This section gives a short version of the demonstration of the ponderomotive equations by Mora
and Antonsen [1997]. We refer the reader to this article for a more rigorous derivation.

Equations of motion : Let us consider a given electron in the plasma. Its motion in the
potentials atot and φtot is determined by the electromagnetic Lagrangian

L = −
√

1− β2
tot − βtot · atot + φtot where βtot ≡

1

c

dxtot
dt

.

This Lagrangian results in the following equations of motion

1

c

dxtot
dt

=
utot
γtot

1

c

d

dt
(utot − atot) = ∇φtot − (∇ · atot) ·

utot
γtot

(A.1)

with γtot = 1/
√

1− β2
tot =

√
1 + u2

tot. Equation (A.1) can also be re-written in the form of
eqs. (1.4) and (1.5). Moreover, as explained in section 1.1, we make the quasi-static assumption
i.e. we assume that atot and φtot are only functions of ξ = ct−z and x⊥. Therefore the Lagrangian
L is invariant under the transformation (ct, z) → (ct + ε, z + ε), and Noether’s theorem states
that there is a corresponding constant of motion H :

H =
∂L
∂βtot

· βtot − L−
∂L

∂βz,tot
= γtot − uz,tot − ψtot

where ψ = φ− az. Now before the electron has been reached by the laser pulse, it is at rest and
does not experience any field. Therefore H = 1, which leads to the relation

γtot − uz,tot = 1 + ψtot (A.2)

As suggested in section 1.1, let us now decompose the quantities in eqs. (A.1) and (A.2) into
their fast and slow components (e.g. atot = af + as). The fast components oscillate in time at
the laser frequency ω0 (and multiples thereof) and hence vanish when averaging over one laser
period (e.g. 〈af 〉 = 0), while the slow components vary much more slowly and are essentially
constant over a laser period (e.g. 〈as〉 = as).

Fast component of u⊥ : The fast, transverse component of eq. (A.1) reads

1

c

d

dt
(u⊥,f − a⊥,f ) = ∇⊥φf −

[
(∇⊥ · atot) ·

utot
γtot

]
f
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Appendix A. Ponderomotive formalism

This gives an order of magnitude for u⊥,f − a⊥,f : |u⊥,f − a⊥,f | ∼ |atot|k0σ⊥
,
φf
k0σ⊥

where k0 is the
wavevector of the laser and σ⊥ is the transverse size of the laser. In typical situations, k0σ⊥ � 1,
and thus

u⊥,f ' a⊥,f (A.3)

Slow components of γ and uz : The fast component of the Lorenz gauge condition reads

∂ψf
∂ξ

+ ∇⊥ · a⊥,f = 0

and therefore, in order of magnitude, ψf ∼
|a⊥,f |
k0σ⊥

. As a result, ψf can be essentially neglected,
and eq. (A.2) becomes :

γtot − uz,tot = γs − uz,s = 1 + ψs (A.4)

Injecting the above results γtot = uz,tot+γs−uz,s and u⊥,f = a⊥,f into the relation γ2
tot = 1+u2

tot

yields :

γ2
s + uz,s(uz,s − 2uz,tot) + 2γs(uz,tot − uz,s) = 1 + u2

⊥,s + 2u⊥,s · a⊥,f + a2
⊥,f

Averaging this equation over one laser period provides an expression for γs, and therefore also
for uz,s.

γs =
√

1 + u2
s + 〈a2

⊥,f 〉 uz,s =
√

1 + u2
s + 〈a2

⊥,f 〉 − 1− ψs (A.5)

Slow component of the equation of motion : Another by-product of eq. (A.4) is a relation
between the variables ξ and t : dξ

dt ≡ 1 − βz,tot = 1+ψs
γtot

. This allows to express the equations of
motion eq. (A.1) as a function of ξ :

dxtot
dξ

=
utot

1 + ψs

d

dξ
(utot − atot) =

γtot∇φtot
1 + ψs

− (∇atot) · utot
1 + ψs

(A.6)

=
γtot∇ψtot

1 + ψs
+

(γtot − uz,tot)∇az,tot
1 + ψs

−
(∇a⊥,tot) · u⊥,tot

1 + ψs

=
γtot∇ψs
1 + ψs

+
(γs − uz,s)∇az,tot

1 + ψs
−

(∇a⊥,tot) · u⊥,tot
1 + ψs

This last expression isolates most of the fast components, and averaging over one laser period is
more amenable. When doing so, the equations become :

dxs
dξ

=
us

1 + ψs
d

dξ
(us − as) =

γs∇ψs
1 + ψs

+
(γs − uz,s)∇az,s

1 + ψs
−

(∇a⊥,s) · u⊥,s
1 + ψs

−
〈(∇a⊥,f ) · a⊥,f 〉

1 + ψs

=
γs∇φs
1 + ψs

− (∇as) · us
1 + ψs

− 1

2(1 + ψs)
∇〈a2

⊥,f 〉

Thus the equations of motion for the slow components are the same as the standard equations
of motion eq. (A.6), except for the additional ponderomotive term − 1

2(1+ψs)
∇〈a2

⊥,f 〉.
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Appendix B

The coefficients of the Cherenkov-free
algorithms

In section 2.3, two modified PIC algorithm are proposed, whose properties strongly depend on a
set of coefficients. This appendix explains how these coefficients were chosen.

B.1 Coefficients for the Cartesian algorithm

In the case of the proposed Cartesian algorithm, the numerical dispersion relation is

s2
t

c2∆t2
=

s2
x

∆x2
+

s2
y

∆y2
+

s2
z

∆z2
− 4

(
δx

s4
x

∆x2
+ δy

s4
y

∆y2
+ δz

s4
z

∆z2

)

− 4

(
1

∆x2
βx,y +

1

∆y2
βy,x

)
s2
xs

2
y

− 4

(
1

∆y2
βy,z +

1

∆z2
βz,y

)
s2
ys

2
z

− 4

(
1

∆z2
βz,x +

1

∆x2
βx,z

)
s2
zs

2
x (B.1)

where st = sin(ω∆t/2) and su = sin(ku∆u/2) for u = x, y, z. As mentioned in section 2.3.1, the
β and δ coefficients should be chosen so as to avoid numerical Cherenkov radiation for particles
propagating along the z axis (v = vez). In other words, these coefficients should be chosen
in such a way that no wavevector k can simultaneously satisfy the above numerical dispersion
relation and the resonant condition ω = vkz.

The choice of δz. In order to ensure this property, let us first impose it for wavevectors of
the form k = kzez. Since v can be extremely close to c for an ultrarelativistic bunch, we impose
ω(k = kzez) ≥ ckz, for all kz in [0, π/∆z]. Using the above numerical dispersion relation, this
becomes

ω =
2

∆t
arcsin

(
c∆t

∆z
sz
√

1− 4δzs2
z

)
≥ ckz (B.2)

Decreasing δz increases the left-hand side (even for negative values of δz). This is represented
in fig. B.1. As can be seen in this figure, once δz reaches the value δz,0 for which eq. (B.2) is
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Figure B.1: Representation of the numerical dispersion relation for wavectors of the form k =
kzez, for different (negative) values of δz. The dashed line represents the quantity ckz.

satisfied at kz = π/∆z, then eq. (B.2) is satisfied for all kz in [0, π/∆z]. With this definition,
δz,0 can be found from the relation

2

∆t
arcsin

(
c∆t

∆z

√
1− 4δz,0

)
=

cπ

∆z

which yields

δz,0 = −1

4

[
∆z2

c2∆t2
sin2

(
πc∆t

2∆z

)
− 1

]
.

Thus, as long as δz ≤ δz,0, the condition eq. (B.2) is satisfied. However, it must be noticed
that ω(k = π

∆zez) becomes a complex number for δz < −1
4

(
∆z2

c2∆t2
− 1
)
, which means that the

numerical scheme becomes unstable. In order to avoid this, I chose to use

δz = δz,0

since δz,0 always satisfies δz,0 ≥ −1
4

(
∆z2

c2∆t2
− 1
)
.

The choice of the other β and δ coefficients. With the above choice of δz, ω is real for
all wavevectors of the form k = kzez. However it can still be complex for other wavevectors
k, and thus the stability of the scheme is not yet guaranteed. This is best seen by considering
the numerical dispersion relation eq. (B.1) for k = π

∆xex + π
∆zez. In this case, the numerical

dispersion equation leads to

sin2

(
ω∆t

2

)
= sin2

(
πc∆t

2∆z

)
+
c2∆t2

∆x2

(
1− 4δx − 4βx,z − 4

∆x2

∆z2
βz,x

)
If βx,z, βz,x and δx are chosen to be zero, then the right-hand side can easily be greater than 1
(for typical values of ∆t, ∆x and ∆z), which again leads to a complex ω. In order to prevent

146



B.1. Coefficients for the Cartesian algorithm

this, I chose

βx,z =
1

8
βz,x =

∆z2

8∆x2
δx = 0 (B.3)

which ensures that the right-hand side of eq. (B.3) always remains lower than 1. A similar
reasoning for k = π

∆yey + π
∆zez leads to

βy,z =
1

8
βz,y =

∆z2

8∆y2
δy = 0

Finally, for simplicity, βx,y and βy,x are chosen to be zero.

Resulting dispersion relation With this choice of coefficients, the numerical dispersion re-
lation eq. (B.1) becomes

s2
t

c2∆t2
=

s2
z

∆z2
(1− 4δz,0s

2
z) +

s2
x

∆x2
(1− s2

z) +
s2
y

∆y2
(1− s2

z) (B.4)

An analysis of this dispersion relation reveals that the corresponding scheme is numerically stable,
provided that

1

c2∆t2
≥ max

(
1

∆x2
+

1

∆y2
,

1

∆z2

)
In addition, no wavevector k can satisfy the resonant condition ω = vkz with this dispersion
relation. This can be seen by remarking that, from eq. (B.4):

ω =
2

∆t
arcsin

√ s2
z

∆z2
(1− 4δz,0s2

z) +
s2
x

∆x2
(1− s2

z) +
s2
y

∆y2
(1− s2

z)


≥ 2

∆t
arcsin

(√
s2
z

∆z2
(1− 4δz,0s2

z)

)
≥ ckz
> vkz

where the results of the first paragraph (choice of δz) were used when going from the second to
the third line. Since ω > vkz for all k, this numerical scheme avoids the numerical Cherenkov
effect (for particles traveling along z). Thus, as was desired, the scheme is both stable and
Cherenkov-free.

Notice however that the above choice of coefficients is by no means unique. For instance,
choosing the alternative set of coefficients δx = 0 δy = 0 δz = δz,0

βx,z =
1

4
βy,z =

1

4
βz,x = βz,y = βx,y = βy,x = 0

(B.5)

leads to the exact same numerical dispersion relation (i.e. eq. (B.4) is unchanged). Thus this
choice of coefficients also leads to a stable, Cherenkov-free numerical scheme.
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B.2 Coefficients for the quasi-cylindrical algorithm

As mentioned in section 2.3.2, the numerical dispersion relation cannot be found analytically
in the case of the quasi-cylindrical algorithm. Therefore, contrary to the case of the Cartesian
algorithm, it is not possible to theoretically predict the values of the β and δ coefficients which
will prevent the numerical Cherenkov effect. Instead, one has to resort to a heuristic choice
for these coefficients, and then to verify through test simulations that this choice does suppress
the numerical Cherenkov effect. Here, in order to make this heuristic choice, I drew an analogy
between the quasi-cylindrical scheme and the alternative Cartesian scheme defined by eq. (B.5).
This is motivated by the fact that the coefficients of these two scheme play similar roles in the
definition of the numerical operators, as shown in figs. B.2 and B.3.

z

x

y
−δz −αz αz δz

D∗zF
D∗yF

βy,z αy βy,z

−βy,z −αy −βy,z

−βx,z
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βx,z

−αx

αx

D∗xF

Figure B.2: Graphical representation of the role of the coefficients from eq. (B.5) in the definition
of the numerical operators D∗z , D∗y, D∗z . The coefficients that have a zero value (i.e. δx, δy, βz,x,
βz,y, βx,y, βy,x) have not been represented.

z

r

−δz −αz αz δz

D∗zF D∗θF

βθ,z αθ βθ,z

−βr,z

βr,z

−βr,z

βr,z

−αr

αr

D∗rF

Figure B.3: Graphical representation of the coefficients of the proposed quasi-cylindrical scheme,
in the definition of the numerical operators D∗z , D∗r , D∗θ .

Moreover, these coefficients have to satisfy similar relations in order to ensure that the cor-
responding numerical operators are second-order accurate:

αz + 3δz = 1
αy + 2βy,z = 1
αx + 2βx,z = 1


αz + 3δz = 1
αθ + 2βθ,z = 1
αr + 2βr,z = 1

Therefore, a natural heuristic choice for the quasi-cylindrical scheme is to mirror the coefficients
of eq. (B.5) and choose:

δz = δz,0

(
= −1

4

[
∆z2

c2∆t2
sin2

(
πc∆t

2∆z

)
− 1

] )
βr,z =

1

4
βθ,z =

1

4

This choice of coefficients was then tested in typical simulations, and the corresponding numerical
scheme proved to be stable and Cherenkov-free.
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Appendix C

Spurious interaction between the
electrons and the laser pulse

In standard PIC simulations of the laser-plasma lens (chapter 4), the divergence and emittance
of the electrons were observed to substantially grow in the direction of the laser polarization.
This appendix explains why this growth is a numerical artifact, and how I suppressed it in the
numerical simulations.

C.1 Observation of an unphysical interaction with the laser

In order to illustrate this growth of divergence, let us consider the simulation results of fig. C.1.
This figure shows the evolution of the transverse position (upper panels) and transverse momenta
(lower panels) of the accelerated electrons in the x and y directions. Note that, in this simulation,
the laser pulse was linearly polarized along the x direction. (The simulation was run with Calder
Circ and the Cherenkov-free scheme, with two azimuthal modes and with ∆z = 0.03µm, ∆r =
0.2µm and c∆t = 0.96∆z.)

In the drift space, in fig. C.1, the y components of the momenta (py) appear to remain roughly
constant, but the x components (px) vary considerably. Since there is no wakefield in the drift
space, the only force that the electrons can experience are their own space-charge force, and
the force associated with the E and B fields in the back of the laser pulse. (Since the electrons
progressively catch up with the laser pulse during their acceleration, they can in some cases reach
the back of its intensity distribution.) However, the fact that only px exhibits high variations
suggests that these variations are due to the force associated with the linearly-polarized laser.
This is confirmed by fig. C.2, which shows that the electrons indeed experience the fields of the
back of the pulse. (This figure even shows that the bunch is modulated at the laser wavelength.)

In theory, the field of the laser pulse can certainly accelerate the electrons along its polar-
ization axis, and cause their momenta to vary. However, the amplitude of these variations is
surprisingly high in fig. C.1. Notice that, if these variations were indeed physical, they would
represent a serious hurdle for the laser-plasma lens. As can be seen by comparing the lower left
and lower right panel of fig. C.1, the fact that px varies in the drift space prevents the lens from
properly collimating the electrons.

In order to determine whether the variations of px are of physical or numerical origin, let
us evaluate the force that the electrons should physically experience. For a given electron, the
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Figure C.1: Results of a typical PIC simulation of the laser-plasma lens. Upper panels: Density
profile of the two jets (blue curves) and evolution of the transverse coordinates x (left panel) and
y (right panel) for some of the accelerated electrons (black lines). (In the simulation the laser is
polarized along x.) Lower panels: Evolution of the transverse momenta px (left panel) and py
(right panel) for the same electrons. For more clarity, the trajectory of one of these electrons has
been singled out and colored in red.

Figure C.2: Left panel: Snapshot of the simulation at z = 550µm (i.e. inside the drift space),
showing the laser pulse (red and blue) and the trailing electron bunch (black dots). Right panel:
Zoom on the electron bunch. (Notice that the electric field Ex has been rescaled.)
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C.2. Origin of the spurious force

equation of motion along the x direction reads:

d px
dt

= −e(Ex − vzBy + vyBz)

Since the laser propagates along the z axis and in vacuum, its fields satisfyBz = 0 andBy = Ex/c.
This yields

d px
dt

= −eEx(1− βz) ∼ −eEx
2γ2

where βz = vz/c and where 1 − βz was estimated by assuming that the electrons propagate
essentially along the z axis. Thus, for relativistic electrons, the force of the laser is reduced by
a factor 2γ2, which can be very high since the Lorentz factor of the electrons is around γ = 300.
Using the above estimation, one can evaluate an order of magnitude of the physical variation of
px across the drift space. Since the electrons experience an electric field |Ex| ∼ 0.5mcω0/e (see
fig. C.2) over a propagation distance Ld ∼ 500µm, this yields ∆px ∼ 10−2mc. This is 500 times
lower than the typical variation observed in the simulation: ∆px ∼ 5mc (see fig. C.1)! This
shows that, due to a numerical artifact, the laser force felt by the electrons in the simulation is
unphysically high. Importantly, this unphysical force was observed both with the Cherenkov-free
algorithm and the standard algorithm.

C.2 Origin of the spurious force

In the above physical calculation, the terms Ex and vzBy cancel each other almost entirely
(Ex − vzBy is of the order of 10−5Ex). In PIC codes, this implies that Ex and vzBy should be
calculated with a precision of about 10−5. While this precision is much coarser than machine
precision, the intrinsic discretization of the equations in a PIC code can still introduce errors of
this order of magnitude. For instance, Vay [2008] showed that, assuming that By is accurately
calculated in PIC codes (i.e. that By equals Ex/c with a very good precision), the discretization
error on vz can lead to an important error on the final force Ex − vzBy. However, in the case of
the simulation of fig. C.1, this error was estimated analytically and found to be negligible.

Since the observed error does not come from the discretization error on vz, it must come from
the calculation of By, i.e. from the fact that By does not equal Ex/c with enough precision in the
simulation. Here it is important to note that, in the standard PIC algorithm, it can be shown
that the relation By = Ex/c is satisfied exactly on the grid10 for a sinusoidal wave propagating
along z. However, when calculating the force Ex − vzBy, the fields Ex and By are interpolated
from the grid to the macroparticles. In particular, the magnetic field By has to be interpolated in
time, since By is defined at half-timesteps on the grid whereas the force Ex − vzBy is calculated
at integer timesteps. As explained in section 2.1.2, this interpolation in time is done by simply
averaging the fields in time, i.e. the field Bn

y at integer timestep n∆t is calculated through
Bn
y = (B

n+1/2
y + B

n−1/2
y )/2. As represented in fig. C.3, this method of interpolation typically

introduces an error in the calculation of Bn
y , and thus Bn

y does not equal Enx/c when interpolated
on the macroparticles.

10More precisely, one can show that the expressions Exni+ 1
2
,j,k

= E0 cos [ nω0∆t− ω0k∆z/c ] and By
n+ 1

2

i,j+ 1
2
,k+ 1

2

=

B0 cos
[ (
n+ 1

2

)
ω0∆t− ω0

(
k + 1

2

)
∆z/c

]
on the grid are solution of the discretized Maxwell equations, provided

that B0 = E0/c. This is true in the standard PIC scheme, but not exactly true in the Cherenkov-free scheme.
However, the difference between B0 and E0/c in the Cherenkov-free scheme can be evaluated, and it is negligible
for the laser of fig. C.2.
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Figure C.3: Schematic representation of the evolution of the Ex and By fields for a sinusoidal
wave in a PIC simulation. It can be shown that, in the standard PIC algorithm, the discrete
fields Enx/c (red dots) and Bn+ 1

2
y (blue dots) lie exactly on the same sinusoid. However, when

interpolating the By field to an integer time (dashed red line), the obtained field Bn
y is not on

the sinusoid (green dot), and thus the Ex and By fields do not compensate exactly in the Lorentz
force.

This error can be directly estimated by a Taylor expansion. Assuming that the fields Enx and
B
n+1/2
y are of the form Enx = E0 cos[ ω0n∆t ], Bn+1/2

y = E0
c cos[ ω0(n+ 1

2)∆t ], the interpolated
field at integer timestep Bn

y is of the form:

Bn
y =

B
n+1/2
y +B

n−1/2
y

2
=
E0

c
cos[ ω0n∆t ]×

(
1− (ω0∆t)2

8

)
+O(∆t3)

where ω0 is the laser frequency. Thus Bn
y is only second-order accurate in ∆t. The corresponding

force on the electrons is

Fnx = −e(Enx − vzBn
y ) = −eE0(1− βz) cos[ ω0n∆t ]− eE0βz

(ω0∆t)2

8
cos[ ω0n∆t ]

Here the second term (which is typically much greater than the first one) is unphysical, and it
can explain why the electrons were strongly accelerated along x in fig. C.1.

C.3 Correction with a third-order accurate interpolation method

In order to reduce this spurious force, I implemented a third-order accurate interpolation method
instead of the standard second-order accurate method. As represented in fig. C.4, this method
uses the fields Bn−3/2

y , Bn−1/2
y and Bn+1/2

y to calculate Bn
y . The exact expression of the inter-

polated field is

Bn
y =

3

8
Bn+1/2
y +

3

4
Bn−1/2
y − 1

8
Bn−3/2
y

where the coefficients have been chosen so as to have third-order accuracy. When performing
a Taylor expansion of the above equation (and considering the half-timestep fields to have the
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same sinusoidal expression as before), it can indeed be shown that

Bn
y =

E0

c
cos[ ω0n∆t ] +

E0

c

(ω0∆t)3

16
sin[ ω0n∆t ]
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Figure C.4: Schematic representation of the third-order accurate interpolation method. This
method is more precise than the standard second-order accurate interpolation method, and thus
the interpolated field lies closer to the sinusoid than in fig. C.3.

I reran the simulation of section C.1 with this interpolation method. The simulation results
for the second-order accurate and third-order accurate method are shown in figs. C.5 and C.6.
The bunch still lies in the back of the laser pulse with the third-order method (see fig. C.6),
but the variations of px in the drift space are almost negligeable (see fig. C.5). Notice that the
proposed interpolation method does not attempt to explicitly reduce the force of the laser, but
only to calculate the B field with more accuracy. Thus, the results of fig. C.5 confirm that the
variations of px observed in section C.1 were unphysical, and that they were in fact due to an
inaccurate interpolation of the B field in time and a lack compensation of the E and v×B term
in the Lorentz force.

In addition, the lower right panel of fig. C.5 shows that the laser-plasma lens can now properly
collimate the electrons in the x direction. This implies that the impact of the laser field on the
electron bunch is in reality too weak to represent a serious hurdle for the laser-plasma lens
concept.
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Figure C.5: Comparison of the simulation results with second-order accurate interpolation (top
panels) and with third-order accurate interpolation (lower panels). The plots show the evolution
of the transverse momenta px (left panels) and py (right panels) of the accelerated electrons
throughout the simulation.

Figure C.6: Snapshot of the simulation at z = 550µm with the second-order accurate (left
panel) and third-order accurate (right panel) methods. The electric field of the laser is virtually
unchanged with the third-order method, but the electrons (black dots) experience a weaker force.
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Appendix D

Expression of the fields in the
nanowires undulator

In this appendix, the expressions used in section 5.3 are derived.

D.1 Expression of the fields as a Fourier series

D.1.1 Expression of Ez.

Ez is a 2∆z-periodic odd function of z, and can therefore be expressed as a Fourier series :

Ez = 2λ̃
mc2

e

∞∑
n=−∞

z − n∆z

[ z − n∆z ]2 + [x− (−1)n∆x ]2
=

∞∑
k=1

ak sin

(
kπz

∆z

)

where ak =
1

i∆z

∫ ∆z

−∆z
dz ei

kπz
∆z × 2λ̃

mc2

e

∞∑
n=−∞

z − n∆z

[ z − n∆z ]2 + [x− (−1)n∆x ]2

By decomposing the sum over n into even and odd values of n, ak can be written as a sum of
integrals over contiguous intervals, and thus as an integral from −∞ to ∞.

ak = 2λ̃
mc2

ie∆z

∞∑
p=−∞

∫ ∆z

−∆z
dz ei

kπz
∆z × z − 2p∆z

[ z − 2p∆z ]2 + [x−∆x ]2

+ 2λ̃
mc2

ie∆z

∞∑
p=−∞

∫ ∆z

−∆z
dz ei

kπz
∆z × z − (2p+ 1)∆z

[ z − (2p+ 1)∆z ]2 + [x+ ∆x ]2

= 2λ̃
mc2

ie∆z

∞∑
p=−∞

∫ ∆z−2p∆z

−∆z−2p∆z
dz ei

kπz
∆z × z

z2 + [x−∆x ]2

+ (−1)k2λ̃
mc2

ie∆z

∞∑
p=−∞

∫ ∆z−(2p+1)∆z

−∆z−(2p+1)∆z
dz ei

kπz
∆z × z

z2 + [x+ ∆x ]2

= 2λ̃
mc2

ie∆z

[∫ ∞
−∞
dz

z ei
kπz
∆z

z2 + [x−∆x ]2
+ (−1)k

∫ ∞
−∞
dz

z ei
kπz
∆z

z2 + [x+ ∆x ]2

]
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These integrals can be calculated by using the residue theorem (along with Jordan’s lemma).

ak = 2πλ̃
mc2

e∆z

[
e−

kπ
∆z
|∆x−x| + (−1)ke−

kπ
∆z
|∆x+x|

]
And thus, inside the undulator (|x| < ∆x):

Ez = 2πλ̃
mc2

e∆z

∞∑
k=1

e−
kπ∆y

∆z

[
e
kπx
∆z + (−1)ke−

kπx
∆z

]
sin

(
kπz

∆z

)

D.1.2 Expression of Ex

Similarly, Ex is a periodic, even function of z and thus it can be written as:

Ex = 2λ̃
mc2

e

∞∑
n=−∞

x− (−1)n∆x

[ z − n∆z ]2 + [x− (−1)n∆x ]2
=
b0
2

+
∞∑
k=1

bk cos

(
kπz

∆z

)
where

bk =
1

∆z

∫ ∆z

−∆z
dz ei

kπz
∆z × 2λ̃

m

c

2
e
∞∑

n=−∞

x− (−1)n∆x

[ z − n∆z ]2 + [x− (−1)n∆x ]2

By using similar techniques as in the previous section, bk can be expressed as

bk = −2πλ̃
mc2

e∆z

[
∆x− x
|∆x− x|

e−
kπ
∆z
|∆x−x| − ∆x+ x

|∆x+ x|
(−1)ke−

kπ
∆z
|∆x+x|

]
Using the above expression of bk, the expression of Ex inside the undulator is:

Ex = −2πλ̃
mc2

e∆z

∞∑
k=1

e−
kπ∆x

∆z

[
e
kπx
∆z − (−1)ke−

kπx
∆z

]
cos

(
kπz

∆z

)

D.1.3 Expression of φ

By integrating the equations ∂zφ = −eEz/mc2, ∂xφ = −eEx/mc2, one can find the expression
of φ.

φ = 2λ̃
∞∑
k=1

e−
kπ∆x

∆z

k

[
e
kπx
∆z + (−1)ke−

kπx
∆z

]
cos

(
kπz

∆z

)
+K

Here K is an integration constant, which determines the origin of the potentials. If, by conven-
tion, this constant is chosen so that the average of φ over one period is zero, then

φ = 2λ̃

∞∑
k=1

e−
kπ∆x

∆z

k

[
e
kπx
∆z + (−1)ke−

kπx
∆z

]
cos

(
kπz

∆z

)
(D.1)

D.2 Compact expression of the fields

D.2.1 Expression of Ex.

By separating odd and even values of n in Ex, its expression can be written as

Ex = 2λ̃
mc2

e

∞∑
n=−∞

x− (−1)n∆x

[ z − n∆z ]2 + [x− (−1)n∆x ]2

= 2λ̃
mc2

e

[ ∞∑
k=−∞

x+ ∆x

[( z −∆z)− 2k∆z ]2 + [x+ ∆x ]2
+

∞∑
k=−∞

x−∆x

[ z − 2k∆z ]2 + [x−∆x ]2

]
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D.2. Compact expression of the fields

Let us thus obtain a compact expression for the sum

f(u, v) =
∞∑

k=−∞

1

(u− 2k∆z)2 + v2

f(u, v) can in fact be written as a sum of residues for a well-chosen holomorphic function g(z):

f(u, v) =

∞∑
k=−∞

Res[ g(z) , z = 2k∆z ] g(z) =
π

2∆z

tan
(
πz

2∆z

) 1

[ (u− z)2 + v2 ]

Using the residue theorem, f(u, v) can also be written as a sum of integrals of g(z) over successive
closed contours.

f(u, v) =
1

2iπ

∞∑
k=−∞

∮
Ck
g(z)dz

These closed contours are represented in the following figure (blue circle). The singularities of g
are represented on the same figure (black dots).

Re(z)

Im(z)

z = u+ iv

z = u− iv

C−3 C−2 C−1 C0 C1 C2 C3

−6 ∆z −4 ∆z −2 ∆z 2 ∆z 4 ∆z 6 ∆z0

These contours can be reshaped into two new contours (see the following figure), one lying in the
upper plane (C+) and the other one in the lower plane (C−). This deformation does not change
the value of the associated integral, since the contributions of the red portions cancel each other,
and since the contributions of the green ones vanish when the contour goes to infinity.
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Re(z)

Im(z)

z = u+ iv

z = u− iv

−6 ∆z −4 ∆z −2 ∆z 2 ∆z 4 ∆z 6 ∆z0

C−

C+

Thus f(u, v) can be expressed as:

f(u, v) =
1

2iπ

(∮
C+
g(z)dz +

∮
C−
g(z)dz

)

and by using the residue theorem:

f(u, v) = −Res[ g(z) , z = u+ iv ]− Res[ g(z) , z = u− iv ]

= − π

4v∆z

(
eπ(iu−v)/2∆z + e−π(iu−v)/2∆z

eπ(iu−v)/2∆z − e−π(iu−v)/2∆z
− eπ(iu+v)/2∆z + e−π(iu+v)/2∆z

eπ(iu+v)/2∆z − e−π(iu+v)/2∆z

)

=
π

2v∆z

sinh
(
π

∆zv
)[

cosh
(
π

∆zv
)
− cos

(
π

∆zu
) ]

Using the above relation, Ex can be expressed in a relatively compact form:

Ex = πλ̃
mc2

e∆z

[
sinh

(
π

∆z (∆x+ x)
)[

cosh
(
π

∆z (∆x+ x)
)

+ cos
(
π

∆z z
) ] − sinh

(
π

∆z (∆x− x)
)[

cosh
(
π

∆z (∆x− x)
)
− cos

(
π

∆z z
) ]]
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D.2.2 Expression of the potential φ.

The dimensionless potential φ can be obtained from Ex by integrating the relation Ex =
−mc2/e× ∂xφ. This yields

φ = −λ̃ log

[ (
cosh

(
π(∆x+ x)

∆z

)
+ cos

( πz
∆z

)) (
cosh

(
π(∆x− x)

∆z

)
− cos

( πz
∆z

)) ]
+ F (z)

(D.2)
where F is an undetermined function. F can however be obtained from the Laplace equation
∂2
zφ + ∂2

xφ = 0, which is valid in between the wires (since it is assumed that there is no charge
present, apart from the wires themselves). Injecting the above expression of φ in the Laplace
equation yields F ′′(z) = 0, and thus F (z) = αz + β. Since the infinite array of nanowires is
invariant by a translation of 2∆z along the z axis, the constant α is necessarily zero. In addition,
the constant β is a global constant that determines the origin of potentials. This constant must
be chosen in such a way that the present expression of φ (eq. (D.2)) matches that of the previous
section (eq. (D.1)). The constant β can thus be determined by evaluating both expressions at
x = 0, z = 0:

−2λ̃ log

[
sinh

(
π∆x

∆z

)]
+ β = 4λ̃

∞∑
k=1

e−
2kπ∆x

∆z

2k

= −2λ̃ log
(

1− e−
2π∆x

∆z

)
and the resulting expression of φ is:

φ = −λ̃ log

[
4e−2π∆x

∆z

(
cosh

(
π(∆x+ x)

∆z

)
+ cos

( πz
∆z

)) (
cosh

(
π(∆x− x)

∆z

)
− cos

( πz
∆z

)) ]
D.2.3 Expression of Ez.

The electric field Ez can be easily obtained from the above expression and the relation Ez =
−mc2/e× ∂zφ :

Ez = −πλ̃mc
2

e∆z

[
sin
(
π

∆z z
)[

cosh
(
π

∆z (∆x+ x)
)

+ cos
(
π

∆z z
) ] − sin

(
π

∆z z
)[

cosh
(
π

∆z (∆x− x)
)
− cos

(
π

∆z z
) ]]
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Résumé

Lorsque l’on focalise une impulsion laser courte et intense dans un gaz sous-dense, celle-ci peut
accélérer une fraction des électrons du gaz, et ainsi générer un faisceau d’électrons ayant une
énergie de quelques centaines de MeV. Ce phénomène, connu sous le nom d’accélération laser-
plasma, pourrait avoir de nombreuses applications, notamment pour la réalisation de sources de
rayons X ultra-intenses appelées lasers à électrons libres (LEL). Cependant, ces applications né-
cessitent que le faisceau d’électrons ait une excellente qualité (faible divergence, faible émittance
et faible dispersion en énergie).

Au cours de cette thèse, différentes solutions ont été développées afin d’améliorer la qualité
des faisceaux d’électrons issus de l’accélération laser-plasma. Ce travail est effectué à travers
des modèles analytiques ainsi que des simulations Particle-In-Cell (PIC). Nous commençons
cependant par montrer que les simulations PIC ont tendance à surestimer l’émittance du faisceau,
en raison de l’effet Cherenkov numérique. Afin d’estimer correctement l’émittance ici, nous
proposons un algorithme PIC modifié qui n’est pas sujet à l’effet Cherenkov numérique.

A l’aide de cet algorithme, un nouveau mécanisme permettant de générer le faisceau est
observé puis étudié : il s’agit de l’injection optique transverse. Les faisceaux produits par ce
mécanisme sont caractérisés par une forte charge, une faible divergence et une faible émittance.
Par ailleurs, nous proposons un dispositif – la lentille laser-plasma – qui permet de fortement
réduire la divergence finale des faisceaux. Ces résultats sont placés dans leur contexte, à travers
une discussion des propriétés nécessaires pour un laser à électrons libres compact. Nous montrons
en particulier que les accélérateurs laser-plasma pourraient être avantageusement combinés avec
des onduleurs laser-plasma innovants, afin de produire des sources de rayons X intenses.

Abstract

When an intense and short laser pulse propagates through an underdense gas, it can accelerate
a fraction of the electrons of the gas, and thereby generate an electron bunch with an energy of
a few hundreds of MeV. This phenomenon, which is referred to as laser-wakefield acceleration,
has many potential applications, including the design of ultra-bright X-ray sources known as
free electron lasers (FEL). However, these applications require the electron bunch to have an
excellent quality (low divergence, emittance and energy spread).

In this thesis, different solutions to improve the quality of the electron bunch are developed,
both analytically and through the use of Particle-In-Cell (PIC) simulations. It is first shown
however that PIC simulations tend to erroneously overestimate the emittance of the bunch, due
to the numerical Cherenkov effect. Thus, in order to correctly estimate the emittance, a modified
PIC algorithm is proposed, which is not subject to this unphysical Cherenkov effect.

Using this algorithm, we observed and studied a new mechanism to generate the electron
bunch: optical transverse injection. This mechanism can produce bunches with a high charge,
a low emittance and a low energy spread. In addition, we also proposed an experimental setup
– the laser-plasma lens – which can strongly reduce the final divergence of the bunch. Finally,
these results are put into context by discussing the properties required for the design of a compact
FEL. It is shown in particular that laser-wakefield accelerator could be advantageously combined
with innovative laser-plasma undulators, in order to produce bright X-rays sources.
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