. Rohr, Exemple de vitesses de déformation pour différents procédés et applications, p.81, 2008.

. Julan, le calcul 2D en déformation plane pour le traitement de surface multi-impacts n'est pas un calcul quantitativement valable, Chapitre 5 -Effet du comportement cyclique après un traitement de mise en compression Comme nous avons pu le montrer dans Cependant, compte-tenu du coût du calcul en 3D, 2013.

. La-géométrie-et-le-maillage, sont donnés sur la figure IV.5.6. Le bâti est de taille 10 x 20 mm 2 . Les éléments les plus petits de la bille ont une taille de 15 µm

F. Iv, 6 ? Maillage 2D pour l'étude du gre- naillage FIGURE IV.5.7 ? Maillage 2D pour l'étude du choc laser Pour le choc laser, comme dans le cas de grenaillage une modélisation 2D est utilisée. Le maillage est donné sur la figure IV.5.7. Les dimensions sont de 12 mm x 8 mm. La longueur minimale d'éléments finis dans le sens de la surface est de 100 µm

B. K. Ahn and H. Huh, possède une aire plus grande que la boucle stabilisée sans pré-écrouissage (en rouge sur le graphique) Cela Comparison of Dynamic Hardening Equations for Metallic Materials with three types of Crystalline Structures, 5th International Conference on High Speed Forming, 2012.

I. Altenberger, R. K. Nalla, Y. Sano, L. Wagner, and O. Richie, On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti???6Al???4V at elevated temperatures up to 550??C, International Journal of Fatigue, vol.44, pp.292-302, 2012.
DOI : 10.1016/j.ijfatigue.2012.03.008

H. Amarchinta, Uncertainty quantification of residual stresses induced by laser peening simulation, 2010.

N. C. Anderholm, LASER???GENERATED STRESS WAVES, Applied Physics Letters, vol.16, issue.3, pp.113-115, 1970.
DOI : 10.1063/1.1653116

M. Arrigoni, Etude de l'influence des rugosités d'interface, de porosité et de l'épaisseur d'échantillon sur la propagation des chocs lasers dans des systèmes revêtus, Thèse de doctorat, 2004.

P. Ballard, Contraintes résiduelles induites par impact rapide, 1991.

A. Balmont, Modélisation et simulation d'une opération de soudage, 2013.

L. M. Barker and R. E. Hollenbach, Laser interferometer for measuring high velocities of any reflecting surface, Journal of Applied Physics, vol.43, issue.11, pp.43-4669, 1972.
DOI : 10.1063/1.1660986

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, Shock waves from a water-confined laser-generated plasma, Journal of Applied Physics, vol.82, issue.6, pp.2826-2832, 1997.
DOI : 10.1063/1.366113

M. Boustie, S. Couturier, J. P. Romain, D. Zagouri, and H. Simonnet, Shock pressure and free surface velocity measurements in confined interaction ??? Response of new VF2/VF3 piezoelectric gauges, Laser and Particle Beams, vol.14, issue.02, pp.171-179, 1996.
DOI : 10.1063/1.346783

W. L. Bragg, The Diffraction of Short Electromagnetic Waves by a Crystal, Proceedings of the Cambridge Philosophical Society, pp.43-57, 1912.

W. Braisted and R. Brockman, Finite element simulation of laser shock peening, International Journal of Fatigue, vol.21, issue.7, pp.719-724, 1999.
DOI : 10.1016/S0142-1123(99)00035-3

R. A. Brockman, W. Braisted, S. E. Olson, R. D. Tenaglia, A. H. Clauer et al., Prediction and characterization of residual stresses from laser shock peening, International Journal of Fatigue, vol.36, issue.1, pp.36-96, 2012.
DOI : 10.1016/j.ijfatigue.2011.08.011

G. Cailletaud, A micromechanical approach to inelastic behaviour of metals, International Journal of Plasticity, vol.8, issue.1, pp.55-73, 1992.
DOI : 10.1016/0749-6419(92)90038-E

A. F. Catant and C. Amzallag, Retour d'expérience international sur la fissuration des zones Inconel et des aciers inoxydables austénitiques -Bilan du 01, 2008.

C. Cellard, Etude du choc laser sur l'alliage de titane Ti-17 : Application aux plaques minces, Thèse de doctorat, 2010.

I. Chaieb, Analyse et simulation des contraintes résiduelles induites par des traitements mécaniques de pré-contrainte en grenaillage et choc laser, Thèse de doctorat, 2004.

. Gilles, Modelling of multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening (USP), Journal of Materials Processing Technology, vol.212, issue.10, pp.2080-2090, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00760355

A. H. Clauer, Laser shock peening for fatigue resistance, 1991.

J. Colin, A. Fatemi, and S. Taheri, Fatigue Behavior of Stainless Steel 304L Including Strain Hardening, Prestraining, and Mean Stress Effects, Journal of Engineering Materials and Technology, vol.132, issue.2, 2010.
DOI : 10.1115/1.4000224

D. Courapied, Etude de l'interaction laser matière en régime de confinement par eau avec deux impulsions laser. Application au test d'adhérence par choc laser, 2013.

T. Couvant, Prototypage du démonstrateur CORIOLIS des modèles de CSC du circuit primaire : développements relatifs au cas des PFC, 2012.

A. Demma, G. Frederick, and C. King, Surface stress improvement technologies to mitigate stress corrosion cracking on nickel-base alloys in nuclear power plants, Contribution of Materials Investigations to Improve the Safety and Performance of LWRs, 2006.

K. Ding and L. Ye, Simulation of multiple laser shock peening of a 35CD4 steel alloy, Journal of Materials Processing Technology, vol.178, issue.1-3, pp.162-169, 2006.
DOI : 10.1016/j.jmatprotec.2006.03.170

V. Doquet and S. Taheri, Effet d'un pré-écrouissage ou d'un sur-écrouissage sur la durée de vie en fatigue de divers aciers à contrainte ou déformation imposée, 2000.

G. Douchet, Procédés de mitigation des Zones Inconel : comparaisons entre Water Jet Peening et Laser Peening pour application aux PFC, 2010.

C. Dubouchet, Traitements thermomécaniques de surfaces métalliques à l'aide de lasers CO2 continus et de lasers impulsionnels, Thèse de doctorat, 1993.

D. C. Erlich, Rod impact (Taylor) test Metals Park, oh : american society of metals edition, pp.203-207, 1985.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, Physical study of laser???produced plasma in confined geometry, Journal of Applied Physics, vol.68, issue.2, pp.775-784, 1990.
DOI : 10.1063/1.346783

B. R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, Physics and applications of laser-shock processing, Journal of Laser Applications, vol.10, issue.6, pp.265-279, 1998.
DOI : 10.2351/1.521861

R. Fabbro, P. Peyre, L. Berthe, A. Sollier, and E. Bartnicki, Physics and applications of laser shock processing of materials, High-Power Lasers in Manufacturing, pp.155-164, 2000.
DOI : 10.1117/12.377012

J. E. Field, S. M. Walley, W. G. Proud, H. T. Goldrein, and C. R. Siviour, Review of experimental techniques for high rate deformation and shock studies, International Journal of Impact Engineering, issue.7, pp.30725-775, 2004.

J. Fournier, Génération d'ondes de choc par laser pulsé de forte énergie. Applications mécaniques et métallurgiques, 1989.

J. A. Fox, Effect of water and paint coatings on laser???irradiated targets, Applied Physics Letters, vol.24, issue.10, pp.461-464, 1974.
DOI : 10.1063/1.1655012

S. Frechard, A. Redjainia, D. Metauer, E. Lach, and A. Lichtenbeger, Comportement dynamique et évolution microstructurale d'un acier inoxydable austénitique allié à l'azote, 2003.

E. Gay, Comportement de composites sous choc induit par laser : développement de l'essai d'adhérence par choc des assemblages de composites collés, 2011.
DOI : 10.1051/mattech/2012029

URL : https://hal.archives-ouvertes.fr/hal-00597540/file/168.pdf

T. Goutierre, Simulation numérique de grenaillage, 2009.

F. Gravier, Simulation numérique d'opération de grenaillage, 2008.

Y. B. Guo, Laser Shock Peening: Modeling, Simulations, and Applications, 2011.
DOI : 10.5772/13094

URL : http://www.intechopen.com/articles/show/title/laser-shock-peening-modeling-simulations-and-applications

G. Hammersley, L. A. Hackel, and F. Harris, Surface prestressing to improve fatigue strength of components by laser shot peening, Optics and Lasers in Engineering, vol.34, issue.4-6, pp.327-337, 2000.
DOI : 10.1016/S0143-8166(00)00083-X

B. Han, C. Xu, J. Shi, and H. Song, Numerical simulation and experimental of residual stress field of SAE1070 spring steel induced by laser shock, Research Journal of Applied Sciences, Engineering and Technology, vol.5, issue.20, pp.4869-4877, 2013.

D. Hasenpouth, Tensile high strain rate behavior of AZ31B Magnesium alloy sheet, Applied Science in Mechanical Engineering, 2010.

V. Hauk, Structural and residual stress analysis by non-destructive methods, 1997.

Y. Hu and Z. Yao, Numerical simulation and experimentation of overlapping laser shock processing with symmetry cell, International Journal of Machine Tools and Manufacture, vol.48, issue.2, pp.48-152, 2008.
DOI : 10.1016/j.ijmachtools.2007.08.021

Y. Hu, Z. Yao, and J. Hu, 3-D FEM simulation of laser shock processing, Surface and Coatings Technology, vol.201, issue.3-4, pp.1426-1435, 2006.
DOI : 10.1016/j.surfcoat.2006.02.018

W. Huang, Contribution à l'analyse par diffractométrie X des déformations et des contraintes á l'échelle des grains, 2007.

H. Huh and W. J. Khang, Crash worthiness assessment of thin wall structure with the high strength steel sheet, International Journal of Vehicle Design, p.30, 2002.

J. Im, R. V. Grandhi, and Y. Ro, Residual stress behaviors induced by laser peening along the edge of curved models, Journal of Mechanical Science and Technology, vol.17, issue.1, pp.3943-3952, 2012.
DOI : 10.1007/s12206-012-0913-6

V. Ji, Contribution à l'analyse par Diffraction des rayons X de l'état microstructural et mécanique des matériaux hétérogènes, 1989.

G. R. Johnson and W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain-rates and high temperaturs, Proceedings 7th International Symposium on Ballistics, pp.541-547, 1983.

K. L. Johnson, Contact Mechanics, 1985.

E. Julan, C. Stolz, S. Taheri, P. Peyre, and P. Gilles, Simulation du traitement de surface par choc laser en présence d'un état initial de contraintes, 11ème Colloque National en Calcul des Structures, 2013.

E. Julan, C. Stolz, S. Taheri, P. Peyre, and P. Gilles, Simulation of laser peening for generation of a surface compressive stresses, 21ème Congrès Français de Mécanique, 2013.

M. Kamaya and M. Kawakubo, Strain-based modeling of fatigue crack growth ??? An experimental approach for stainless steel, International Journal of Fatigue, vol.44, pp.131-140, 2012.
DOI : 10.1016/j.ijfatigue.2012.05.006

G. Kermouche, A. L. Kaiser, P. Gilles, and J. M. Bergheau, Combined numerical and experimental approach of the impact-sliding wear of a stainless steel in a nuclear reactor, Wear, vol.263, issue.7-12, pp.7-121551, 2007.
DOI : 10.1016/j.wear.2007.02.015

M. T. Khabou, L. Castex, and G. Inglebert, The effect of material behaviour law on the theorical shot peening results, European Journal of Mechanics, A/Solids, vol.9, issue.6, pp.537-549, 1990.

A. S. Khan and S. Huang, Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10???5???104s???1, International Journal of Plasticity, vol.8, issue.4, pp.397-424, 1992.
DOI : 10.1016/0749-6419(92)90057-J

W. J. Khang, S. S. Cho, H. Hue, and D. T. Chung, Modified Johnson-Cook model for vehicle body crashworthiness simulation, International Journal of Vehicle Design, vol.21, issue.4/5, pp.424-435, 1999.
DOI : 10.1504/IJVD.1999.005594

J. H. Kim and J. W. Lee, Effects of simulation parameters on residual stresses in 3D finite element laser shock peening analysis, Global Journal of Researches inEngineering Mechanical and Mechanics Engineering, vol.13, issue.9, 2013.

T. Kobayashi, J. W. Simons, C. S. Brown, and D. A. Shockey, Plastic flow behavior of Inconel 718 under dynamic shear loads, International Journal of Impact Engineering, vol.35, issue.5, pp.389-396, 2008.
DOI : 10.1016/j.ijimpeng.2007.03.005

B. H. Kolsky, An Investigation of the Mechanical Properties of Materials at very High Rates of Loading, Proceedings of the Physical Society : B, p.676, 1949.
DOI : 10.1088/0370-1301/62/11/302

A. and L. Pécheur, Fatigue thermique d'un acier inoxydable austénitique : influence de l'état de surface par une approche multi-échelles, Thèse de doctorat, 2008.

H. J. Lee, J. H. Song, and H. Huh, Dynamic tensile tests of auto-body steel sheets with the variation of temperature. Solid State Phenomena, pp.116-117259, 2006.

W. S. Lee and C. F. Lin, Impact properties and microstructure evolution of 304L stainless steel, Materials Science and Engineering: A, vol.308, issue.1-2, pp.124-135, 2001.
DOI : 10.1016/S0921-5093(00)02024-4

W. S. Lee and T. N. Sun, Plastic flow behavior of Inconel 690 super alloy under compressive impact loading, Materials Transactions, issue.7, pp.452339-2345, 2004.

J. Li, Simulation de réparation par soudage et billage ultrasonore d'un alliage à base Nickel, Thèse de doctorat, 2011.

R. Liang and A. S. Khan, A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures, International Journal of Plasticity, vol.15, issue.9, pp.963-980, 1999.
DOI : 10.1016/S0749-6419(99)00021-2

L. Dyna, LSDyna anwenderforum frankenthal, 2007.

J. Lu, M. James, and G. Roy, Handbook of Measurement of Residual Stresses, 1996.

E. Macherauch, P. Muller, and Z. Angew, Das sin2(psi) Verfahren der rontgenographischen spannungsermittlung. Physik, 13 pp, pp.305-312, 1961.

E. Macherauch, H. Wohlfahrt, and U. Wolfstieg, Zur Zweckmassigen Definition Von Eigenspannungen . HTM, 28 pp, pp.201-302, 1973.

L. Meirovitch, MACMILLAN SERIES IN APPLIED MECHANICS, 1967.

M. A. Meyers and K. K. Chawla, Mechanical Metallurgy : Principles and Application, 1984.

C. S. Montross, T. Wei, L. Ye, G. Clark, and Y. W. Mai, Laser shock processing and its effects on microstructure and properties of metal alloys: a review, International Journal of Fatigue, vol.24, issue.10, pp.24-1021, 2002.
DOI : 10.1016/S0142-1123(02)00022-1

T. Nicholas, Tensile testing of materials at high rates of strain, Experimental Mechanics, vol.6, issue.4, pp.177-185, 1981.
DOI : 10.1007/BF02326644

I. Nistor, S. Cappera, and F. Moraru, Identification of dynamic behavior law parameters for metallic materials using Taylor impact test, 2006.

I. C. Noyan and J. B. Cohen, Residual stress : measurement by diffraction and interpretation, 1987.
DOI : 10.1007/978-1-4613-9570-6

I. C. Noyan, T. C. Huang, and B. R. York, Residual stress/strain analysis in thin films by X-ray diffraction, Critical Reviews in Solid State and Materials Sciences, vol.35, issue.2, pp.125-177, 1995.
DOI : 10.1007/978-1-4615-3460-0_16

M. Obata, Y. Sano, N. Mukai, M. Yoda, S. Shima et al., Effect of laser peening on residual stress and stress corrosion cracking for type 304 stainless steel, The 7th International Conference on Shot Peening, pp.387-394, 1999.

T. Palin-luc, N. Saintier, and J. F. Flavenot, Stress gradient effect in HCF for notched components, taking into account cyclic plasticity, Fatigue Design, 2007.

K. Park and C. Jung, The effect of compressive residual Stress of two-Stage Shot Peening for Fatigue Strenght of Spring Steel, Proceeding of twelfth International offshore and Polar Engineering Conference, 2002.

P. Peyre, Traitement mécanique superficiel d'alliages d'Aluminium par ondes de choc-laser. Caractérisation des effets induits et application à l'amélioration de la tenue en fatigue, Thèse de doctorat, 1993.

P. Peyre, Caractérisation du comportement sous choc de l'alliage et des effets résiduels induits dans la matière, 2014.

P. Peyre, L. Berthe, and R. Fabbro, Le choc-laser en 2006 : état de l'art et applications, 2006.

P. Peyre, L. Berthe, X. Scherpereel, and R. Fabbro, Laser-shock processing of aluminiumcoated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour, Journal of Materials Science, pp.33-1421, 1998.

P. Peyre, C. Carboni, A. Sollier, L. Berthe, C. Richard et al., New trends in laser shock wave physics and applications, High-Power Laser Ablation IV, 2002.
DOI : 10.1117/12.482138

P. Peyre, I. Chaieb, and C. Braham, FEM calculation of residual stresses induced by laser shock processing in stainless steels, Modelling and Simulation in Materials Science and Engineering, vol.15, issue.3, pp.15-16, 2007.
DOI : 10.1088/0965-0393/15/3/002

P. Peyre and R. Fabbro, Electromagnetic Gauge Study of Laser-Induced Shock Waves in Aluminium Alloys, Journal de Physique III, vol.5, issue.12, pp.1953-1964, 1995.
DOI : 10.1051/jp3:1995241

URL : https://hal.archives-ouvertes.fr/jpa-00249429

P. Peyre, R. Fabbro, L. Berthe, and C. Dubouchet, Laser shock processing of materials, physical processes involved and examples of applications, Journal of Laser Applications, vol.8, issue.3, pp.135-141, 1996.
DOI : 10.2351/1.4745414

A. M. Rajenderan, High strain rate behavior of metals, ceramics and concretes, 1991.

D. Retraint, C. Pilé, C. Garnier, and J. Lu, Ultrasonic shot peening, volume 1 of Handbook on Residual Stress, Society for Experimental Mechanics, pp.146-159, 2005.

B. I. Rohr, H. Nahme, K. Thoma, and J. C. Anderson, Material characterisation and constitutive modelling of a tungsten-sintered alloy for a wide range of strain rates, International Journal of Impact Engineering, vol.35, issue.8, pp.35811-819, 2008.
DOI : 10.1016/j.ijimpeng.2007.12.006

URL : https://hal.archives-ouvertes.fr/hal-00499107

E. Rouhaud, Modélisation mécanique : de la contraction à la mise en compression, 2008.

W. K. Rule and S. E. Jones, A REVISED FORM FOR THE JOHNSON???COOK STRENGTH MODEL, International Journal of Impact Engineering, vol.21, issue.8, pp.609-624, 1998.
DOI : 10.1016/S0734-743X(97)00081-X

Y. Sano, I. Altenberger, B. Scholtes, K. Masaki, Y. Ochi et al., Enhancement of Surface Properties by Laser Peening Without Coating, Volume 7: Operations, Applications, and Components, 2006.
DOI : 10.1115/PVP2006-ICPVT-11-93303

L. Singh, R. A. Khan, and M. L. Aggarwal, Effect of shot peening on hardening and surface roughness of nitrogen austenic stainless steel, International Journal of Engineering Science and Technology, vol.2, issue.5, pp.818-826, 2010.

M. Slais, I. Dohnal, and M. Foretjl, Determination of Johnson-Cook equation parameters, Acta Metallurgica Slovaca, vol.18, issue.2-3, pp.125-132, 2012.

H. Song, Analyse expérimentale et numérique de la distribution des contraintes résiduelles induites par choc-laser dans des alliages d'aluminium, 2010.

S. Suresh, Fatigue of materials. Cambridge Solid State Science Series, 1991.

J. W. Swegle and D. E. Grady, Shock viscosity and the prediction of shock wave rise times, Journal of Applied Physics, vol.58, issue.2, 1985.
DOI : 10.1063/1.336184

S. Taheri, Some Advances on Understanding of High Cycle Thermal Fatigue Crazing, Journal of Pressure Vessel Technology, vol.129, issue.3, pp.400-410, 2007.
DOI : 10.1115/1.2748822

URL : https://hal.archives-ouvertes.fr/hal-00089583

S. Taheri, A. Hauet, L. Taleb, and K. Crescent, Micro???macro investigations about the fatigue behavior of pre-hardened 304L steel, International Journal of Plasticity, vol.27, issue.12, pp.27-1981, 2011.
DOI : 10.1016/j.ijplas.2011.06.004

S. Taheri, L. Vincent, and J. C. Le-roux, A Conservative Damage Accumulation Method for the Prediction of Crack Nucleation Under Variable Amplitude Loading for Austenitic Stainless Steel, Volume 3: Design and Analysis, 2013.
DOI : 10.1115/PVP2013-97284

G. I. Taylor, The use of Flat-Ended projectile for determing dynamic yield stress, Proceedings of Royal Society of London : A, pp.289-299, 0194.

L. Tollier, R. Fabbro, and E. Bartnicki, Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. I. Laser-shock characterization, Journal of Applied Physics, vol.83, issue.3, pp.83-1224, 1998.
DOI : 10.1063/1.366819

F. Vaillant and P. Huguenin, Amorçage des fissures de corrosion sous contrainte dans les aciers inoxydables austénitiques pré-déformés et exposés au milieu primaire des réacteurs à eau sous pression, 2013.

A. Vasu and R. V. Grandhi, Effects of curved geometry on residual stress in laser peening, Surface and Coatings Technology, vol.218, pp.71-79, 2013.
DOI : 10.1016/j.surfcoat.2012.12.029

A. W. Warren, Y. B. Guo, and S. C. Chen, Massive parallel laser shock peening: Simulation, analysis, and validation, International Journal of Fatigue, vol.30, issue.1, pp.188-197, 2008.
DOI : 10.1016/j.ijfatigue.2007.01.033

R. M. White, Elastic Wave Generation by Electron Bombardment or Electromagnetic Wave Absorption, Journal of Applied Physics, vol.34, issue.7, pp.2123-2124, 1963.
DOI : 10.1063/1.1729762

X. Wu, C. Huang, X. Wang, and H. Song, A new effective method to estimate the effect of laser shock peening, International Journal of Impact Engineering, vol.38, issue.5, pp.38-322, 2011.
DOI : 10.1016/j.ijimpeng.2010.11.008

C. Yang, P. D. Hodgson, Q. Liu, and L. Ye, Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening, Journal of Materials Processing Technology, vol.201, issue.1-3, pp.303-309, 2008.
DOI : 10.1016/j.jmatprotec.2007.11.147

L. C. Yang, ???switched ruby laser, Journal of Applied Physics, vol.45, issue.6, pp.45-2601, 1974.
DOI : 10.1063/1.1663636

M. Yoda and B. Newton, Underwater laser peening, Welding and Repair Technology for Power Plants Eighth Internation EPRI Conference, 2008.

J. Zarka, J. Frelat, G. Inglebert, and P. Kasmai-navid, A new approach in inelastic analysis of structures, 1990.

F. J. Zerilli and R. W. Armstrong, Dislocation???mechanics???based constitutive relations for material dynamics calculations, Journal of Applied Physics, vol.61, issue.5, pp.611816-1825, 1987.
DOI : 10.1063/1.338024

H. Zhao, G. Gary, and J. R. Klepaczko, On the use of a viscoelastic split hopkinson pressure bar, International Journal of Impact Engineering, vol.19, issue.4, pp.319-330, 1997.
DOI : 10.1016/S0734-743X(96)00038-3

URL : https://hal.archives-ouvertes.fr/hal-00111585

. Nique-d-'un and . Milieu, P la pression, u la vitesse, ? la masse volumique et c la célérité du choc) Pour obtenir une onde de choc, il est nécessaire que le temps d'application du choc soit très court (<µs)

. On-note, P 1 , ? 1 , u 1 l'état du fluide après le passage de l'onde à la célérité c. La conservation de la masse du fluide au temps t nous donne : ? 0

. En-Écrivant-le-principe-fondamental-de-la-dynamique, la quantité de mouvement du fluide sous choc ? 0 .S.(c?U 0 ).t.(u 1 ?u 0 ) est égale à l'impulsion des forces de pression s'exerçant sur cette tranche, (P 1 ?P 0 ).S.t. On obtient la relation suivante