R. Abgrall and S. Karni, Ghost-Fluids for the Poor: A Single Fluid Algorithm for Multifluids, Internat. Ser. Numer. Math. Birkhäuser, vol.141, pp.1-10, 2001.
DOI : 10.1007/978-3-0348-8370-2_1

R. Arienti, P. Hung, E. Morano, and J. E. Shepherd, A level set approach to Eulerian???Lagrangian coupling, Journal of Computational Physics, vol.185, issue.1, pp.213-251, 2003.
DOI : 10.1016/S0021-9991(02)00055-4

F. P. Baaijens, A fictitious domain/mortar element method for fluid-structure interaction, International Journal for Numerical Methods in Fluids, vol.79, issue.7, pp.743-761, 2001.
DOI : 10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A

S. Badia, F. Nobile, and C. Vergara, Fluid???structure partitioned procedures based on Robin transmission conditions, Journal of Computational Physics, vol.227, issue.14, pp.7027-7051, 2008.
DOI : 10.1016/j.jcp.2008.04.006

F. Belanger, M. P. Paidoussis, and E. De-langre, Time-marching analysis of fluid-coupled systems with large added mass, AIAA Journal, vol.33, issue.4, pp.752-757, 1995.
DOI : 10.2514/3.12641

T. Belytschko, Fluid-structure interaction, Computers & Structures, vol.12, issue.4, pp.459-469, 1980.
DOI : 10.1016/0045-7949(80)90121-2

B. Bourdin, G. A. Francfort, and J. J. Marigo, The Variational Approach to Fracture, Journal of Elasticity, vol.125, issue.8, pp.5-148, 2008.
DOI : 10.1007/s10659-007-9107-3

URL : https://hal.archives-ouvertes.fr/hal-00551079

K. B. Broberg, Cracks and fracture, 1999.

E. H. Van-brummelen, Added Mass Effects of Compressible and Incompressible Flows in Fluid-Structure Interaction, Journal of Applied Mechanics, vol.76, issue.2, p.21206, 2009.
DOI : 10.1115/1.3059565

E. H. Van-brummelen, Partitioned iterative solution methods for fluid-structure interaction, International Journal for Numerical Methods in Fluids, vol.193, issue.2, pp.3-27, 2011.
DOI : 10.1002/fld.2465

C. Michler, S. J. Hulshoff, E. H. Van-brummelen, and R. Borst, A monolithic approach to fluid???structure interaction, Computers & Fluids, vol.33, issue.5-6, pp.839-848, 2004.
DOI : 10.1016/j.compfluid.2003.06.006

URL : https://hal.archives-ouvertes.fr/hal-00450614

G. T. Camacho and M. Ortiz, Computational modelling of impact damage in brittle materials, International Journal of Solids and Structures, vol.33, issue.20-22, pp.2899-2938, 1996.
DOI : 10.1016/0020-7683(95)00255-3

P. Causin, J. F. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid???structure problems, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.42-44, pp.4506-4527, 2005.
DOI : 10.1016/j.cma.2004.12.005

URL : https://hal.archives-ouvertes.fr/hal-00695954

F. Cirak, R. Deiterding, and S. P. Mauch, Large-scale fluid???structure interaction simulation of viscoplastic and fracturing thin-shells subjected to shocks and detonations, Computers & Structures, vol.85, issue.11-14, pp.1049-1065, 2007.
DOI : 10.1016/j.compstruc.2006.11.014

F. Cirak, M. Ortiz, and A. Pandolfi, A cohesive approach to thin-shell fracture and fragmentation, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.21-24, pp.2604-2618, 2005.
DOI : 10.1016/j.cma.2004.07.048

P. Colella, D. T. Graves, B. J. Keen, and D. Modiano, A Cartesian grid embedded boundary method for hyperbolic conservation laws, Journal of Computational Physics, vol.211, issue.1, pp.347-366, 2006.
DOI : 10.1016/j.jcp.2005.05.026

V. Daru and C. Tenaud, High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations, Journal of Computational Physics, vol.193, issue.2, pp.563-594, 2004.
DOI : 10.1016/j.jcp.2003.08.023

V. Daru and C. Tenaud, Numerical simulation of the viscous shock tube problem by using a high resolution monotonicity-preserving scheme, Computers & Fluids, vol.38, issue.3, pp.664-676, 2009.
DOI : 10.1016/j.compfluid.2008.06.008

D. Palma, M. D. De-tullio, G. Pascazio, and M. Napolitano, An immersed-boundary method for compressible viscous flows, Computers & Fluids, vol.35, issue.7, pp.693-702, 2006.
DOI : 10.1016/j.compfluid.2006.01.004

R. Deiterding, F. Cirak, and S. P. Mauch, Efficient Fluid-Structure Interaction Simulation of Viscoplastic and Fracturing Thin-Shells Subjected to Underwater Shock Loading. International Workshop on Fluid-Structure Interaction, p.65, 2009.

C. Denoual, G. Barbier, and F. Hild, A probabilistic approach for fragmentation of brittle materials under dynamic loading. Comptes Rendus de l'Académie des Sciences-Series IIB-Mechanics-Physics-Chemistry-Astronomy, pp.685-691, 1997.

J. Dolbow, N. Moës, and T. Belytschko, An extended finite element method for modeling crack growth with frictional contact, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.51-52, pp.6825-6846, 2001.
DOI : 10.1016/S0045-7825(01)00260-2

URL : https://hal.archives-ouvertes.fr/hal-01461932

J. Donea, S. Giuliani, and J. P. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.33, issue.1-3
DOI : 10.1016/0045-7825(82)90128-1

D. Doyen, A. Ern, and S. Piperno, Quasi-explicit time-integration schemes for dynamic fracture with set-valued cohesive zone models, Computational Mechanics, vol.72, issue.9, pp.401-416, 2013.
DOI : 10.1007/s00466-012-0819-2

URL : https://hal.archives-ouvertes.fr/hal-00736779

Z. Dragojlovic, F. Najmabadi, and M. Day, An embedded boundary method for viscous, conducting compressible flow, Journal of Computational Physics, vol.216, issue.1, pp.37-51, 2006.
DOI : 10.1016/j.jcp.2005.11.025

F. Dubois, Lemmes finis pour la dynamique des gaz, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00733937

M. Elices, G. V. Guinea, J. Gomez, and J. Planas, The cohesive zone model: advantages, limitations and challenges, Engineering Fracture Mechanics, vol.69, issue.2, pp.137-163, 2002.
DOI : 10.1016/S0013-7944(01)00083-2

E. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-yusof, Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations, Journal of Computational Physics, vol.161, issue.1, pp.35-60, 2000.
DOI : 10.1006/jcph.2000.6484

J. Falcovitz, G. Alfandary, and G. Hanoch, A Two-Dimensional Conservation Laws Scheme for Compressible Flows with Moving Boundaries, Journal of Computational Physics, vol.138, issue.1, pp.83-102, 1997.
DOI : 10.1006/jcph.1997.5808

C. Farhat, K. G. Van-der-zee, and P. Geuzaine, Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18
DOI : 10.1016/j.cma.2004.11.031

C. Farhat, A. Rallu, and S. Shankaran, A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions, Journal of Computational Physics, vol.227, issue.16
DOI : 10.1016/j.jcp.2008.04.032

N. Favrie, S. L. Gavrilyuk, and R. Saurel, Solid???fluid diffuse interface model in cases of extreme deformations, Journal of Computational Physics, vol.228, issue.16, pp.6037-6077, 2009.
DOI : 10.1016/j.jcp.2009.05.015

R. P. Fedkiw, Coupling an Eulerian Fluid Calculation to a Lagrangian Solid Calculation with the Ghost Fluid Method, Journal of Computational Physics, vol.175, issue.1, pp.200-224, 2002.
DOI : 10.1006/jcph.2001.6935

R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method), Journal of Computational Physics, vol.152, issue.2, pp.457-492, 1999.
DOI : 10.1006/jcph.1999.6236

H. Forrer and M. Berger, Flow Simulations on Cartesian Grids Involving Complex Moving Geometries, Int. Ser. Numer. Math. Birkhäuser, vol.129, 1998.
DOI : 10.1007/978-3-0348-8720-5_34

C. Förster, W. A. Wall, and E. Ramm, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.7
DOI : 10.1016/j.cma.2006.09.002

L. B. Freund, Dynamic fracture mechanics, 1990.

R. Glowinski, T. Pan, T. I. Hesla, and D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, pp.755-794, 1999.
DOI : 10.1016/S0301-9322(98)00048-2

R. Glowinski, T. Pan, T. I. Hesla, D. Joseph, and J. Periaux, A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow, Computer Methods in Applied Mechanics and Engineering, vol.184, issue.2-4, pp.241-267, 2000.
DOI : 10.1016/S0045-7825(99)00230-3

R. Glowinski, T. Pan, and J. Periaux, A Lagrange multiplier/fictitious domain method for the Dirichlet problem ??? Generalization to some flow problems, Japan Journal of Industrial and Applied Mathematics, vol.92, issue.1, pp.87-108, 1995.
DOI : 10.1007/BF03167383

J. Grétarsson and R. Fedkiw, Fully conservative leak-proof treatment of thin solid structures immersed in compressible fluids, Journal of Computational Physics, vol.245, pp.160-204, 2013.
DOI : 10.1016/j.jcp.2013.02.017

J. T. Grétarsson, N. Kwatra, and R. Fedkiw, Numerically stable fluid???structure interactions between compressible flow and solid structures, Journal of Computational Physics, vol.230, issue.8, pp.3062-3084, 2011.
DOI : 10.1016/j.jcp.2011.01.005

A. A. Griffith and . Vi, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.221, issue.582-593
DOI : 10.1098/rsta.1921.0006

B. E. Griffith and C. S. Peskin, On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems, Journal of Computational Physics, vol.208, issue.1, pp.75-105, 2005.
DOI : 10.1016/j.jcp.2005.02.011

G. P. Guruswamy and C. Byun, Direct coupling of Euler flow equations with plate finite element structures, AIAA Journal, vol.33, issue.2, pp.375-377, 1995.
DOI : 10.2514/3.12378

R. D. Guy and D. A. Hartenstine, On the accuracy of direct forcing immersed boundary methods with projection methods, Journal of Computational Physics, vol.229, issue.7, pp.2479-2496, 2010.
DOI : 10.1016/j.jcp.2009.10.027

E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration : Structure- Preserving Algorithms for Ordinary Differential Equations, 2006.

D. Hartmann, M. Meinke, and W. Schröder, A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.9-12
DOI : 10.1016/j.cma.2010.05.015

G. Hou, J. Wang, and A. Layton, Abstract, Communications in Computational Physics, vol.19, issue.02, pp.337-377, 2012.
DOI : 10.1006/jcph.1999.6356

X. Hu, B. C. Khoo, N. A. Adams, and F. L. Huang, A conservative interface method for compressible flows, Journal of Computational Physics, vol.219, issue.2, pp.553-578, 2006.
DOI : 10.1016/j.jcp.2006.04.001

B. Hübner, E. Walhorn, and D. Dinkler, A monolithic approach to fluid???structure interaction using space???time finite elements, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.23-26, pp.2087-2104, 2004.
DOI : 10.1016/j.cma.2004.01.024

S. R. Idelsohn, J. Marti, A. Limache, and E. Oñate, Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid???structure interaction problems via the PFEM, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.19-20, pp.1762-1776, 2008.
DOI : 10.1016/j.cma.2007.06.004

S. R. Idelsohn, E. Oñate, F. Del-pin, and N. Calvo, Fluid???structure interaction using the particle finite element method, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.2100-2123, 2006.
DOI : 10.1016/j.cma.2005.02.026

S. R. Idelsohn, F. Del-pin, R. Rossi, and E. Oñate, Fluid-structure interaction problems with strong added-mass effect, International Journal for Numerical Methods in Engineering, vol.195, issue.1, pp.1261-1294, 2009.
DOI : 10.1002/nme.2659

G. R. Irwin, Fracture. Encyclopedia of Physics, pp.551-590, 1958.

P. R. Beyer-jr, A computational model of the cochlea using the immersed boundary method, Journal of Computational Physics, vol.98, issue.1, pp.145-162, 1992.
DOI : 10.1016/0021-9991(92)90180-7

H. Kebir, J. M. Roelandt, and J. Foulquier, A new singular boundary element for crack problems, Engineering Fracture Mechanics, vol.62, issue.6, pp.497-510, 1999.
DOI : 10.1016/S0013-7944(99)00008-9

J. Kim, D. Kim, and H. Choi, An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries, Journal of Computational Physics, vol.171, issue.1, pp.132-150, 2001.
DOI : 10.1006/jcph.2001.6778

Y. Kim and C. S. Peskin, Penalty immersed boundary method for an elastic boundary with mass, Physics of Fluids, vol.19, issue.5, p.53103, 2007.
DOI : 10.1063/1.2734674

E. De-langre, Effects of Wind on Plants, Annual Review of Fluid Mechanics, vol.40, issue.1, pp.141-168, 2008.
DOI : 10.1146/annurev.fluid.40.111406.102135

URL : https://hal.archives-ouvertes.fr/hal-01022800

B. Lawn, Fracture of brittle solids, 1993.
DOI : 10.1017/CBO9780511623127

P. , L. Tallec, and J. Mouro, Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Eng, vol.190, issue.24, pp.3039-3067, 2001.

P. D. Lea, Fluid Structure Interaction with Applications in Structural Failure, 2013.

R. J. Leveque, Finite volume methods for hyperbolic problems, 2002.
DOI : 10.1017/CBO9780511791253

C. Mariotti, Lamb's problem with the lattice model Mka3D, Geophysical Journal International, vol.171, issue.2, pp.857-864, 2007.
DOI : 10.1111/j.1365-246X.2007.03579.x

C. Mariotti and L. Monasse, From general mechanics to discontinuity, unified approach to elasticity, 2012.

B. Maurel and A. Combescure, An SPH shell formulation for plasticity and fracture analysis in explicit dynamics, International Journal for Numerical Methods in Engineering, vol.79, issue.3, pp.949-971, 2008.
DOI : 10.1002/nme.2316

URL : https://hal.archives-ouvertes.fr/hal-00381478

B. Maury, A fat boundary method for the Poisson problem in a domain with holes, J

J. Mazars, Application de la mécanique de l'endommagement au comportement non linéaire et à la rupture du béton de structure, 1984.

V. Michaut, Modeling of the dynamic fragmentation using a discrete element method/ Modélisation de la fragmentation dynamique par la méthode des éléments discrets, 2011.

G. H. Miller and P. Colella, A Conservative Three-Dimensional Eulerian Method for Coupled Solid???Fluid Shock Capturing, Journal of Computational Physics, vol.183, issue.1, pp.26-82, 2002.
DOI : 10.1006/jcph.2002.7158

R. Mittal and G. Iaccarino, IMMERSED BOUNDARY METHODS, Annual Review of Fluid Mechanics, vol.37, issue.1, pp.239-261, 2005.
DOI : 10.1146/annurev.fluid.37.061903.175743

J. Mohd-yusof, Combined immersed-boundary/b-spline methods for simulations of flow in complex geometries, Annual Research Briefs. Center of Turbulence Research, pp.317-327, 1997.

J. F. Molinari, G. Gazonas, R. Raghupathy, A. Rusinek, and F. Zhou, The cohesive element approach to dynamic fragmentation: the question of energy convergence, International Journal for Numerical Methods in Engineering, vol.61, issue.3
DOI : 10.1002/nme.1777

URL : https://hal.archives-ouvertes.fr/hal-00123064

J. J. Monaghan, An introduction to SPH, Computer Physics Communications, vol.48, issue.1, pp.89-96, 1988.
DOI : 10.1016/0010-4655(88)90026-4

L. Monasse, Analyse d'une méthode de couplage entre un fluide compressible et une structure déformable, 2011.

L. Monasse, V. Daru, C. Mariotti, S. Piperno, and C. Tenaud, A conservative coupling algorithm between a compressible flow and a rigid body using an Embedded Boundary method, Journal of Computational Physics, vol.231, issue.7, pp.2977-2994, 2012.
DOI : 10.1016/j.jcp.2012.01.002

URL : https://hal.archives-ouvertes.fr/hal-01163118

L. Monasse and C. Mariotti, An energy-preserving Discrete Element Method for elastodynamics, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.6, pp.1527-1553, 2012.
DOI : 10.1051/m2an/2012015

URL : https://hal.archives-ouvertes.fr/hal-00403919

W. F. Noh, Fundamental Methods of Hydrodynamics, Methods of Computational Physics, vol.3, pp.117-179, 1964.

H. O. Nordhagen, S. Kragset, T. Berstad, A. Morin, C. Dørum et al., A new coupled fluid???structure modeling methodology for running ductile fracture, Computers & Structures, vol.94, issue.95, pp.13-21, 2012.
DOI : 10.1016/j.compstruc.2012.01.004

R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome, An Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regions, Journal of Computational Physics, vol.120, issue.2, pp.278-304, 1995.
DOI : 10.1006/jcph.1995.1165

C. S. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, vol.25, issue.3, pp.220-252, 1977.
DOI : 10.1016/0021-9991(77)90100-0

C. S. Peskin, The immersed boundary method, Acta numerica, issue.11, 2002.

T. J. Poinsot and S. K. Lele, Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, vol.101, issue.1, pp.104-129, 1992.
DOI : 10.1016/0021-9991(92)90046-2

D. O. Potyondy and P. A. , A bonded-particle model for rock, International Journal of Rock Mechanics and Mining Sciences, vol.41, issue.8, pp.411329-1364, 2004.
DOI : 10.1016/j.ijrmms.2004.09.011

M. A. Puscas and L. Monasse, A Three-Dimensional Conservative Coupling Method Between an Inviscid Compressible Flow and a Moving Rigid Solid, SIAM Journal on Scientific Computing, vol.37, issue.6, 2014.
DOI : 10.1137/140962930

URL : https://hal.archives-ouvertes.fr/hal-00974602

M. A. Puscas, L. Monasse, A. Ern, C. Tenaud, and C. Mariotti, A conservative Immersed Boundary method for an inviscid compressible flow coupled with a fragmenting structure, 2014.

M. A. Puscas, L. Monasse, A. Ern, C. Tenaud, C. Mariotti et al., Conservative coupling method between an inviscid compressible flow and a deformable structure, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01111912

T. Rabczuk, R. Gracie, J. Song, and T. Belytschko, Immersed particle method for fluid-structure interaction, International Journal for Numerical Methods in Engineering, vol.252, issue.3, pp.48-71, 2010.
DOI : 10.1115/1.3129711

P. W. Randles and L. D. Libersky, Smoothed Particle Hydrodynamics: Some recent improvements and applications, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.375-408, 1996.
DOI : 10.1016/S0045-7825(96)01090-0

P. B. Ryzhakov, R. Rossi, S. R. Idelsohn, and E. Oñate, A monolithic Lagrangian approach for fluid???structure interaction problems, Computational Mechanics, vol.85, issue.4, pp.883-899, 2010.
DOI : 10.1007/s00466-010-0522-0

S. K. Sambasivan and H. S. Udaykumar, Ghost Fluid Method for Strong Shock Interactions Part 2: Immersed Solid Boundaries, AIAA Journal, vol.47, issue.12, pp.2923-2937, 2009.
DOI : 10.2514/1.43153

E. Schlangen and E. J. Garboczi, Fracture simulations of concrete using lattice models: Computational aspects, Engineering Fracture Mechanics, vol.57, issue.2-3, pp.319-332, 1997.
DOI : 10.1016/S0013-7944(97)00010-6

P. Schwartz, M. Barad, P. Colella, and T. Ligocki, A Cartesian grid embedded boundary method for the heat equation and Poisson???s equation in three dimensions, Journal of Computational Physics, vol.211, issue.2, pp.531-550, 2006.
DOI : 10.1016/j.jcp.2005.06.010

X. Shi and N. Phan-thien, Distributed Lagrange multiplier/fictitious domain method in the framework of lattice Boltzmann method for fluid???structure interactions, Journal of Computational Physics, vol.206, issue.1, pp.81-94, 2005.
DOI : 10.1016/j.jcp.2004.12.017

A. Soria and F. Casadei, Arbitrary Lagrangian-Eulerian multicomponent compressible flow with fluid-structure interaction, International Journal for Numerical Methods in Fluids, vol.54, issue.11, pp.1263-1284, 1997.
DOI : 10.1002/(SICI)1097-0363(19971215)25:11<1263::AID-FLD602>3.0.CO;2-8

G. Strang, On the Construction and Comparison of Difference Schemes, SIAM Journal on Numerical Analysis, vol.5, issue.3, pp.506-517, 1968.
DOI : 10.1137/0705041

N. Sukumar and T. Belytschko, Arbitrary branched and intersecting cracks with the extended finite element method, Int. J. Numer. Meth. Eng, vol.48, pp.1741-1760, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01005274

J. W. Swegle and S. W. Attaway, On the feasibility of using Smoothed Particle Hydrodynamics for underwater explosion calculations, Computational Mechanics, vol.93, issue.3, pp.151-168, 1995.
DOI : 10.1007/BF00364078

P. , L. Tallec, and M. Tidriri, Convergence analysis of domain decomposition algorithms with full overlapping for the advection-diffusion problems, Math. Comput, vol.68, issue.226, pp.585-606, 1999.
URL : https://hal.archives-ouvertes.fr/inria-00074239

M. D. Tidriri, Domain Decomposition for Compressible Navier-Stokes Equations with Different Discretizations and Formulations, Journal of Computational Physics, vol.119, issue.2, pp.271-282, 1995.
DOI : 10.1006/jcph.1995.1135

E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, 1999.

Y. H. Tseng and J. H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, Journal of Computational Physics, vol.192, issue.2, pp.593-623, 2003.
DOI : 10.1016/j.jcp.2003.07.024

J. Vierendeels, K. Dumont, and P. R. Verdonck, A partitioned strongly coupled fluid-structure interaction method to model heart valve dynamics, Journal of Computational and Applied Mathematics, vol.215, issue.2, pp.602-609, 2008.
DOI : 10.1016/j.cam.2006.04.067

K. Wang, A. Rallu, J. F. Gerbeau, and C. Farhat, Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid-structure interaction problems, International Journal for Numerical Methods in Fluids, vol.41, issue.1, pp.1175-1206, 2011.
DOI : 10.1002/fld.2556

URL : https://hal.archives-ouvertes.fr/hal-00651118