W. Zaki and Z. Moumni, A three-dimensional model of the thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.55, issue.11, pp.2455-2490, 2007.
DOI : 10.1016/j.jmps.2007.03.012

F. Auricchio, R. L. Taylor, and J. Lubliner, Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior, Computer Methods in Applied Mechanics and Engineering, vol.146, issue.3-4, pp.3-4, 1997.
DOI : 10.1016/S0045-7825(96)01232-7

¨. Olander and A. , AN ELECTROCHEMICAL INVESTIGATION OF SOLID CADMIUM-GOLD ALLOYS, Journal of the American Chemical Society, vol.54, issue.10, pp.3819-3833, 1932.
DOI : 10.1021/ja01349a004

A. B. Greninger and V. G. Mooradian, Strain transformation in metastable copper-zinc and beta copper-tin alloys, Transactions of AIME, vol.128, pp.337-368, 1938.

W. J. Buehler, J. V. Gilfrich, and R. C. Wiley, Effect of Low???Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi, Journal of Applied Physics, vol.34, issue.5, p.1475, 1963.
DOI : 10.1063/1.1729603

W. J. Buehler and R. C. Wiley, Nickel-base alloys, 1965.

K. Bhattacharya, Theory of martensitic microstructure and the shape-memory effect Available from author: bhatta@ co, 1998.

K. Otsuka and C. M. Wayman, Shape Memory Materials, 1998.

M. Tiyyagura, Transmission electron microscopy studies in shape memory alloys, 2005.

A. Standard, Standard test method for transformation temperature of nickeltitanium alloys by thermal analysis, ASTM Standard, vol.05, pp.1-4, 2004.

R. M. Mcmeeking and A. G. Evans, Mechanics of Transformation-Toughening in Brittle Materials, Journal of the American Ceramic Society, vol.5, issue.5, pp.242-246, 1981.
DOI : 10.1007/BF00808066

J. D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.241, issue.1226, pp.376-396, 1226.
DOI : 10.1098/rspa.1957.0133

G. Stam, E. Van-der, and G. , Effect of reversible phase transformations on crack growth, Mechanics of Materials, vol.21, issue.1, pp.51-71, 1995.
DOI : 10.1016/0167-6636(94)00074-3

Q. Sun and K. Hwang, Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys???I. Derivation of general relations, Journal of the Mechanics and Physics of Solids, vol.41, issue.1, 1993.
DOI : 10.1016/0022-5096(93)90060-S

Q. Q. Sun and K. K. Hwang, Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys???II. Study of the individual phenomena, Journal of the Mechanics and Physics of Solids, vol.41, issue.1, pp.19-33, 1993.
DOI : 10.1016/0022-5096(93)90061-J

G. Stam, E. Van-der, G. , and P. Meijers, Effect of transformation-induced shear strains on crack growth in zirconia-containing ceramics, International Journal of Solids and Structures, vol.31, issue.14, pp.1923-1948, 1994.
DOI : 10.1016/0020-7683(94)90200-3

V. Birman, On mode I fracture of shape memory alloy plates, Smart Materials and Structures, vol.7, issue.4, pp.433-437, 1998.
DOI : 10.1088/0964-1726/7/4/001

K. Tanaka, A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior, Res Mechanica, vol.18, issue.3, pp.251-263, 1986.

A. L. Mckelvey and R. O. Ritchie, Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material, Journal of Biomedical Materials Research, vol.108, issue.3, pp.301-309, 1999.
DOI : 10.1002/(SICI)1097-4636(19991205)47:3<301::AID-JBM3>3.0.CO;2-H

N. Simha, Toughening by Phase Boundary Propagation, Journal of Elasticity, vol.59, pp.195-211, 2000.
DOI : 10.1007/978-94-010-0728-3_13

S. Yi and S. Gao, Fracture toughening mechanism of shape memory alloys due to martensite transformation, International Journal of Solids and Structures, vol.37, issue.38, pp.5315-5327, 2000.
DOI : 10.1016/S0020-7683(99)00213-9

A. G. Evans, Toughening mechanisms in zirconia alloys, Science and Technology of Zirconia II, 1983.

W. Yan, C. H. Wang, P. Z. Xin, and Y. W. Mai, Effect of transformation volume contraction on the toughness of superelastic shape memory alloys, Smart Materials and Structures, vol.11, issue.6, pp.947-955, 2002.
DOI : 10.1088/0964-1726/11/6/316

J. W. Hutchinson, On steady quasi-static crack growth, Defense Technical Information Center, 1974.

W. Yan, C. H. Wang, X. P. Zhang, and Y. W. Mai, Theoretical modelling of the effect of plasticity on reverse transformation in superelastic shape memory alloys, Materials Science and Engineering: A, vol.354, issue.1-2, pp.146-157, 2003.
DOI : 10.1016/S0921-5093(02)00941-3

J. Lubliner and F. Auricchio, Generalized plasticity and shape-memory alloys, International Journal of Solids and Structures, vol.33, issue.7, pp.991-1003, 1996.
DOI : 10.1016/0020-7683(95)00082-8

F. Xiong, Y. Liu, and E. Pagounis, Fracture mechanism of a Ni???Mn???Ga ferromagnetic shape memory alloy single crystal, Journal of Magnetism and Magnetic Materials, vol.285, issue.3, pp.410-416, 2005.
DOI : 10.1016/j.jmmm.2004.08.011

G. Z. Wang, Effects of notch geometry on stress???strain distribution, martensite transformation and fracture behavior in shape memory alloy NiTi, Materials Science and Engineering: A, vol.434, issue.1-2, pp.269-279, 2006.
DOI : 10.1016/j.msea.2006.06.077

G. Wang, A finite element analysis of evolution of stress???strain and martensite transformation in front of a notch in shape memory alloy NiTi, Materials Science and Engineering: A, vol.460, issue.461, pp.460-461, 2007.
DOI : 10.1016/j.msea.2007.01.154

G. Z. Wang, Effect of martensite transformation on fracture behavior of shape memory alloy NiTi in a notched specimen, International Journal of Fracture, vol.38, issue.461, pp.93-104, 2007.
DOI : 10.1007/s10704-007-9148-4

X. Wang, B. Xu, Z. Yue, and X. Tong, Fracture behavior of the compact tension specimens in NiTi shape memory alloys, Materials Science and Engineering: A, vol.485, issue.1-2, pp.14-19, 2008.
DOI : 10.1016/j.msea.2007.07.056

S. Robertson, A. Mehta, A. Pelton, and R. Ritchie, Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis, Acta Materialia, vol.55, issue.18, pp.6198-6207, 2007.
DOI : 10.1016/j.actamat.2007.07.028

S. Daly, A. Miller, G. Ravichandran, and K. Bhattacharya, An experimental investigation of crack initiation in thin sheets of nitinol, Acta Materialia, vol.55, issue.18, pp.6322-6330, 2007.
DOI : 10.1016/j.actamat.2007.07.038

S. Gollerthan, D. Herberg, A. Baruj, and G. Eggeler, Compact tension testing of martensitic/pseudoplastic NiTi shape memory alloys, Materials Science and Engineering: A, vol.481, issue.482, pp.481-482, 2008.
DOI : 10.1016/j.msea.2007.03.126

F. Xiong and Y. Liu, Effect of stress-induced martensitic transformation on the crack tip stress-intensity factor in Ni???Mn???Ga shape memory alloy, Acta Materialia, vol.55, issue.16, pp.5621-5629, 2007.
DOI : 10.1016/j.actamat.2007.06.031

K. Tanaka and Y. Sato, Analysis of superelastic deformations during isothermal martensitic transformation, Res Mech, vol.17, issue.3, p.241, 1986.

Y. Freed and L. Banks-sills, Crack growth resistance of shape memory alloys by means of a cohesive zone model, Journal of the Mechanics and Physics of Solids, vol.55, issue.10, pp.2157-2180, 2007.
DOI : 10.1016/j.jmps.2007.03.002

V. Panoskaltsis, S. Bahuguna, and D. Soldatos, On the thermomechanical modeling of shape memory alloys, International Journal of Non-Linear Mechanics, vol.39, issue.5, pp.709-722, 2004.
DOI : 10.1016/S0020-7462(03)00022-2

C. Lexcellent and F. Thiebaud, Determination of the phase transformation zone at a crack tip in a shape memory alloy exhibiting asymmetry between tension and compression, Scripta Materialia, vol.59, issue.3, pp.321-323, 2008.
DOI : 10.1016/j.scriptamat.2008.03.040

URL : https://hal.archives-ouvertes.fr/hal-00348234

B. Raniecki and C. Lexcellent, Thermodynamics of isotropic pseudoelasticity in shape memory alloys, European Journal of Mechanics - A/Solids, vol.17, issue.2, pp.185-205, 1998.
DOI : 10.1016/S0997-7538(98)80082-X

C. Lexcellent and P. Blanc, Phase transformation yield surface determination for some shape memory alloys, Acta Materialia, vol.52, issue.8, pp.2317-2324, 2004.
DOI : 10.1016/j.actamat.2004.01.022

URL : https://hal.archives-ouvertes.fr/hal-00014161

A. Falvo, F. Furgiuele, A. Leonardi, and C. Maletta, Stress-Induced Martensitic Transformation in the Crack Tip Region of a NiTi Alloy, Journal of Materials Engineering and Performance, vol.60, issue.461, pp.5-6, 2009.
DOI : 10.1007/s11665-009-9361-6

L. Ma, Fundamental formulation for transformation toughening, International Journal of Solids and Structures, vol.47, issue.22-23, pp.22-23, 2010.
DOI : 10.1016/j.ijsolstr.2010.08.002

C. Maletta and F. Furgiuele, Analytical modeling of stress-induced martensitic transformation in the crack tip region of nickel???titanium alloys, Acta Materialia, vol.58, issue.1, pp.92-101, 2010.
DOI : 10.1016/j.actamat.2009.08.060

C. Maletta and M. L. Young, Stress-Induced Martensite in Front of Crack Tips in NiTi Shape Memory Alloys: Modeling Versus Experiments, Journal of Materials Engineering and Performance, vol.55, issue.2, pp.597-604, 2011.
DOI : 10.1007/s11665-011-9852-0

N. Carnot, Reflections on the power of heat, 1987.

C. Liang and C. Rogers, One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials, Journal of Intelligent Material Systems and Structures, vol.61, issue.3, pp.207-234, 1990.
DOI : 10.1177/1045389X9000100205

L. Brinson, One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable, Journal of Intelligent Material Systems and Structures, vol.4, issue.2, pp.229-242, 1993.
DOI : 10.1177/1045389X9300400213

R. Abeyaratne and J. K. Knowles, A continuum model of a thermoelastic solid capable of undergoing phase transitions, Journal of the Mechanics and Physics of Solids, vol.41, issue.3, pp.541-571, 1993.
DOI : 10.1016/0022-5096(93)90048-K

K. R. Rajagopal and A. R. Srinivasa, On the thermomechanics of shape memory wires, Zeitschrift für Angewandte Mathematik und Physik ZAMP, pp.459-496, 1999.

A. Paiva, M. A. Savi, A. M. Braga, and P. M. Pacheco, A constitutive model for shape memory alloys considering tensile???compressive asymmetry and plasticity, International Journal of Solids and Structures, vol.42, issue.11-12, pp.11-12, 2005.
DOI : 10.1016/j.ijsolstr.2004.11.006

G. J. Hall and S. Govindjee, Application of a partially relaxed shape memory free energy function to estimate the phase diagram and predict global microstructure evolution, Journal of the Mechanics and Physics of Solids, vol.50, issue.3, pp.501-530, 2002.
DOI : 10.1016/S0022-5096(01)00081-3

L. Juhász, E. Schnack, O. Hesebeck, and H. Andrä, Macroscopic Modeling of Shape Memory Alloys Under Non-Proportional Thermo-Mechanical Loadings, Journal of Intelligent Materials Systems and Structures, vol.13, issue.12, pp.825-836, 2002.
DOI : 10.1177/1045389X02013012008

M. Savi and A. Paiva, Describing internal subloops due to incomplete phase transformations in shape memory alloys, Archive of Applied Mechanics, vol.74, issue.9, pp.637-647, 2005.
DOI : 10.1007/s00419-005-0385-6

C. Liang and C. A. Rogers, A multi-dimensional constitutive model for shape memory alloys, Journal of Engineering Mathematics, vol.29, issue.3, pp.429-443, 1992.
DOI : 10.1007/BF00042744

S. Leclercq and C. Lexcellent, A general macroscopic description of the thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.44, issue.6, pp.953-980, 1996.
DOI : 10.1016/0022-5096(96)00013-0

S. Govindjee and C. Miehe, A multi-variant martensitic phase transformation model: formulation and numerical implementation, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.3-5, pp.3-5, 2001.
DOI : 10.1016/S0045-7825(01)00271-7

D. Helm and P. Haupt, Shape memory behaviour: modelling within continuum thermomechanics, International Journal of Solids and Structures, vol.40, issue.4, pp.827-849, 2003.
DOI : 10.1016/S0020-7683(02)00621-2

J. Shaw, A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities, International Journal of Solids and Structures, vol.39, issue.5, pp.1275-1305, 2002.
DOI : 10.1016/S0020-7683(01)00242-6

S. Reese and D. Christ, Finite deformation pseudo-elasticity of shape memory alloys ??? Constitutive modelling and finite element implementation, International Journal of Plasticity, vol.24, issue.3, pp.455-482, 2008.
DOI : 10.1016/j.ijplas.2007.05.005

E. Patoor, A. Ererhardt, and M. Berveiller, Thermomechanical behavior by martensitic transformation in single and polycrystals of metallic alloys, Revue de Physique Appliqu??e, vol.23, issue.4, pp.702-702, 1988.
DOI : 10.1051/rphysap:01988002304070200

URL : https://hal.archives-ouvertes.fr/jpa-00245858

J. G. Boyd and D. C. Lagoudas, A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy, International Journal of Plasticity, vol.12, issue.6, pp.805-842, 1996.
DOI : 10.1016/S0749-6419(96)00030-7

Z. Bo and D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II: material characterization and experimental results for a stable transformation cycle, International Journal of Engineering Science, vol.37, issue.9, pp.1141-1173, 1999.

Z. Bo and D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations, International Journal of Engineering Science, vol.37, issue.9, pp.1089-1140, 1999.
DOI : 10.1016/S0020-7225(98)00113-X

D. C. Lagoudas and Z. Bo, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II: material characterization and experimental results for a stable transformation cycle, International Journal of Engineering Science, vol.37, issue.9, pp.1141-1173, 1999.
DOI : 10.1016/S0020-7225(98)00114-1

Z. Bo and D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect, International Journal of Engineering Science, vol.37, issue.9, pp.1175-1203, 1999.
DOI : 10.1016/S0020-7225(98)00115-3

Z. Bo and D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops, International Journal of Engineering Science, vol.37, issue.9, pp.1205-1249, 1999.
DOI : 10.1016/S0020-7225(98)00116-5

D. C. Lagoudas and P. B. Entchev, Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs, Mechanics of Materials, vol.36, issue.9, pp.865-892, 2004.
DOI : 10.1016/j.mechmat.2003.08.006

P. Popov and D. C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite, International Journal of Plasticity, vol.23, issue.10-11, pp.10-11, 2007.
DOI : 10.1016/j.ijplas.2007.03.011

J. Bowles and J. Mackenzie, The crystallography of martensite transformations I, Acta Metallurgica, vol.2, issue.1, pp.129-137, 1954.
DOI : 10.1016/0001-6160(54)90102-9

M. S. Wechsler, D. S. Lieberman, and T. A. Read, On the Theory of the Formation of Martensite, Journal of Metals, pp.1503-1515, 1953.

J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Archive for Rational Mechanics and Analysis, vol.197, issue.1, pp.13-52, 1987.
DOI : 10.1007/BF00281246

J. Enkovaara, Atomistic Simulation od magnetic shape memory alloys, 2003.

F. Hildebrand and R. Abeyaratne, An atomistic investigation of the kinetics of detwinning, Journal of the Mechanics and Physics of Solids, vol.56, issue.4, pp.1296-1319, 2008.
DOI : 10.1016/j.jmps.2007.09.006

S. Kibey, Mesoscale models for stacking faults, deformation twins and martensitic transformations: Linking atomistics to continuum, 2007.

C. Chan, S. Chan, H. Man, and P. Ji, 1-D constitutive model for evolution of stress-induced R-phase and localized Lüders-like stress-induced martensitic transformation of super-elastic NiTi wires, International Journal of Plasticity, pp.32-33, 2012.

F. Auricchio and E. Sacco, A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite, International Journal of Non-Linear Mechanics, vol.32, issue.6, pp.1101-1114, 1997.
DOI : 10.1016/S0020-7462(96)00130-8

T. Kamita and Y. Matsuzaki, One-dimensional pseudoelastic theory of shape memory alloys, Smart Materials and Structures, vol.7, issue.4, pp.489-495, 1998.
DOI : 10.1088/0964-1726/7/4/008

S. Govindjee and E. P. Kasper, Computational aspects of one-dimensional shape memory alloy modeling with phase diagrams, Computer Methods in Applied Mechanics and Engineering, vol.171, issue.3-4, pp.309-326, 1999.
DOI : 10.1016/S0045-7825(98)00213-8

Y. Song and S. Liu, One-dimensional tensile constitutive equation cannot be directly generalized to deal with two-dimensional bulging mechanical problems, Science in China Series E: Technological Sciences, 2002.

A. Chrysochoos, C. Licht, and R. Peyroux, Une mod??lisation thermom??canique unidimensionnelle de la propagation d'un front de changement de phase dans un monocristal d'AMF, Comptes Rendus M??canique, vol.331, issue.1, pp.25-32, 2003.
DOI : 10.1016/S1631-0721(02)00003-7

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape-memory alloys, Journal of Physics: Condensed Matter, vol.2, issue.1, pp.61-77, 1990.
DOI : 10.1088/0953-8984/2/1/005

M. Achenbach, A model for an alloy with shape memory, International Journal of Plasticity, vol.5, issue.4, pp.371-395, 1989.
DOI : 10.1016/0749-6419(89)90023-5

D. Koistinen and R. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica, vol.7, issue.1, pp.59-60, 1959.
DOI : 10.1016/0001-6160(59)90170-1

E. Patoor, A. Eberhardt, and M. Berveiller, Micromechanical Modelling of Superelasticity in Shape Memory Alloys, Le Journal de Physique IV, vol.06, issue.C1, pp.1-277, 1996.
DOI : 10.1051/jp4:1996127

URL : https://hal.archives-ouvertes.fr/jpa-00254159

K. Gall and H. Sehitoglu, The role of texture in tension???compression asymmetry in polycrystalline NiTi, International Journal of Plasticity, vol.15, issue.1, pp.69-92, 1999.
DOI : 10.1016/S0749-6419(98)00060-6

E. Patoor, M. Amrani, A. Eberhardt, and M. Berveiller, Determination of the Origin for the Dissymmetry Observed between Tensile and Compression Tests on Shape Memory Alloys, Le Journal de Physique IV, vol.05, issue.C2, pp.2-495, 1995.
DOI : 10.1051/jp4:1995276

URL : https://hal.archives-ouvertes.fr/jpa-00253662

J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali, and S. Sohrabpour, A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings, International Journal of Plasticity, vol.26, issue.7, pp.976-991, 2010.
DOI : 10.1016/j.ijplas.2009.12.003

X. Gao, M. Huang, and L. Brinson, A multivariant micromechanical model for SMAs Part 1. Crystallographic issues for single crystal model, International Journal of Plasticity, vol.16, issue.10-11, pp.10-11, 2000.
DOI : 10.1016/S0749-6419(00)00013-9

S. Oliveira, M. A. Savi, and A. L. Kalamkarov, A three-dimensional constitutive model for shape memory alloys, Archive of Applied Mechanics, vol.40, issue.2, pp.1163-1175, 2010.
DOI : 10.1007/s00419-010-0430-y

A. Saleeb, S. Padula, and A. Kumar, A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions, International Journal of Plasticity, vol.27, issue.5, pp.655-687, 2011.
DOI : 10.1016/j.ijplas.2010.08.012

J. Luo, M. Li, X. Li, and Y. Shi, Constitutive model for high temperature deformation of titanium alloys using internal state variables, Mechanics of Materials, vol.42, issue.2, pp.157-165, 2010.
DOI : 10.1016/j.mechmat.2009.10.004

M. Brocca, L. Brinson, and Z. Ba?ant, Three-dimensional constitutive model for shape memory alloys based on microplane model, Journal of the Mechanics and Physics of Solids, vol.50, issue.5, pp.1051-1077, 2002.
DOI : 10.1016/S0022-5096(01)00112-0

F. Auricchio, A. Reali, and U. Stefanelli, A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity, International Journal of Plasticity, vol.23, issue.2, pp.207-226, 2007.
DOI : 10.1016/j.ijplas.2006.02.012

X. Wang and Z. Yue, Three-dimensional thermomechanical modeling of pseudoelasticity in shape memory alloys with different elastic properties between austenite and martensite, Materials Science and Engineering: A, vol.425, issue.1-2, pp.83-93, 2006.
DOI : 10.1016/j.msea.2006.03.033

A. C. Souza, E. N. Mamiya, and N. Zouain, Three-dimensional model for solids undergoing stress-induced phase transformations, European Journal of Mechanics - A/Solids, vol.17, issue.5, pp.789-806, 1998.
DOI : 10.1016/S0997-7538(98)80005-3

Y. Zhang, Y. T. Cheng, and D. S. Grummon, Finite element modeling of indentation-induced superelastic effect using a three-dimensional constitutive model for shape memory materials with plasticity, Journal of Applied Physics, vol.101, issue.5, p.53507, 2007.
DOI : 10.1063/1.2436928

B. Zhou, S. H. Yoon, and J. S. Leng, A three-dimensional constitutive model for shape memory alloy, Smart Materials and Structures, vol.18, issue.9, p.95016, 2009.
DOI : 10.1088/0964-1726/18/9/095016

K. Tanaka and R. Iwasaki, A phenomenological theory of transformation superplasticity, Engineering Fracture Mechanics, vol.21, issue.4, pp.709-720, 1985.
DOI : 10.1016/0013-7944(85)90080-3

K. Tanaka and A. , Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads, Mechanics of Materials, vol.19, issue.4, pp.281-292, 1995.
DOI : 10.1016/0167-6636(94)00038-I

K. Tanaka and S. Nagaki, Eine thermomechanische Beschreibung von Materialien mit inneren Variablen beim Phasen???bergang, Ingenieur-Archiv, vol.15, issue.5, pp.287-299, 1982.
DOI : 10.1007/BF00536655

B. Halphen and Q. S. Nguyen, Plastic and visco-plastic materials with generalized potential, Mechanics Research Communications, vol.1, issue.1, pp.43-47, 1974.
DOI : 10.1016/0093-6413(74)90034-2

Z. Moumni, Sur la modelisation du changement de phase solide : application aux materiaux a memorieMoumni Sur la modelisation du changement de phase solide : application aux materiaux a memorie de forme et a l'ndommagement fragile partiel, 8(i IV). de for, Z, 1995.

Z. Moumni, W. Zaki, and Q. S. Nguyen, Theoretical and numerical modeling of solid???solid phase change: Application to the description of the thermomechanical behavior of shape memory alloys, International Journal of Plasticity, vol.24, issue.4, pp.614-645, 2008.
DOI : 10.1016/j.ijplas.2007.07.007

C. Morin, Z. Moumni, and W. Zaki, Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling, International Journal of Plasticity, vol.27, issue.12, pp.1959-1980, 2011.
DOI : 10.1016/j.ijplas.2011.05.005

C. Morin, Z. Moumni, and W. Zaki, A constitutive model for shape memory alloys accounting for thermomechanical coupling, International Journal of Plasticity, vol.27, issue.5, pp.748-767, 2011.
DOI : 10.1016/j.ijplas.2010.09.005

W. Zaki and Z. Moumni, A 3D model of the cyclic thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.55, issue.11, pp.2427-2454, 2007.
DOI : 10.1016/j.jmps.2007.03.011

W. Zaki, An approach to modeling tensile???compressive asymmetry for martensitic shape memory alloys, Smart Materials and Structures, vol.19, issue.2, p.25009, 2010.
DOI : 10.1088/0964-1726/19/2/025009

W. Zaki, S. Zamfir, and Z. Moumni, An extension of the ZM model for shape memory alloys accounting for plastic deformation, Mechanics of Materials, vol.42, issue.3, pp.266-274, 2010.
DOI : 10.1016/j.mechmat.2009.11.013

B. D. Coleman, Thermodynamics with Internal State Variables, The Journal of Chemical Physics, vol.47, issue.2, p.597, 1967.
DOI : 10.1063/1.1711937

C. Morin, A comprehensive approach for fatigue analysis of Shape Memory Alloys, 2011.
URL : https://hal.archives-ouvertes.fr/pastel-00608205

J. Van-humbeeck, Non-medical applications of shape memory alloys, Materials Science and Engineering: A, vol.273, issue.275, pp.273-275, 1999.
DOI : 10.1016/S0921-5093(99)00293-2

G. B. Kauffman and I. Mayo, The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications, The Chemical Educator, vol.2, issue.2, pp.1-21, 1997.
DOI : 10.1007/s00897970111a

J. Abadie, N. Chaillet, and C. Lexcellent, Modeling of a new SMA micro-actuator for active endoscopy applications, Mechatronics, vol.19, issue.4, pp.437-442, 2009.
DOI : 10.1016/j.mechatronics.2008.11.010

URL : https://hal.archives-ouvertes.fr/hal-00380883

G. Song, N. Ma, and H. Li, Applications of shape memory alloys in civil structures, Engineering Structures, vol.28, issue.9, pp.1266-1274, 2006.
DOI : 10.1016/j.engstruct.2005.12.010

D. Fugazza, Shape-memory alloy devices for earthquake engineering: Mechanical properties, constitutive modeling and numerical simulations, Rose School MSc Dissertation, under the supervision, 2003.

D. C. Lagoudas, Shape Memory Alloys, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01199907

J. J. Moreau, New variational techniques in mathematical physics

G. Irwin, Plastic zone near a crack and fracture toughness, Proceedings, 7th Sagamore Conference, pp.63-76, 1961.

G. Barenblatt, Advances in applied mechanics, of Advances in Applied Mechanics, 1962.

A. A. Bulbich, Nucleation on the crack tip and transformation toughness in crystals undergoing structural phase transitions, Journal of Materials Science, vol.22, issue.4, pp.1070-1080, 1992.
DOI : 10.1007/BF01197662

X. Wang, Y. Wang, A. Baruj, G. Eggeler, and Z. Yue, On the formation of martensite in front of cracks in pseudoelastic shape memory alloys, Materials Science and Engineering: A, vol.394, issue.1-2, pp.393-398, 2005.
DOI : 10.1016/j.msea.2004.11.029

S. H. Daly, Deformation and fracture of thin sheets of Nitinol, 2007.

C. Lexcellent, M. R. Laydi, and V. Taillebot, Analytical prediction of the phase transformation onset zone at a crack tip of a shape memory alloy exhibiting asymmetry between tension and compression, International Journal of Fracture, vol.37, issue.38, pp.1-13, 2010.
DOI : 10.1007/s10704-010-9577-3

V. Taillebot, C. Lexcellent, and P. Vacher, ABOUT THE TRANSFORMATION PHASE ZONES OF SHAPE MEMORY ALLOYS' FRACTURE TESTS ON SINGLE EDGE-CRACKED SPECIMEN, Functional Materials Letters, vol.05, issue.01, p.1250007, 2012.
DOI : 10.1142/S1793604712500075

URL : https://hal.archives-ouvertes.fr/hal-00738676

Z. Du and J. Hancock, The effect of non-singular stresses on crack-tip constraint, Journal of the Mechanics and Physics of Solids, vol.39, issue.4, pp.555-567, 1991.
DOI : 10.1016/0022-5096(91)90041-L

D. Carka and C. M. Landis, On the Path-Dependence of the J-Integral Near a Stationary Crack in an Elastic-Plastic Material, Journal of Applied Mechanics, vol.78, issue.1, p.11006, 2011.
DOI : 10.1115/1.4001748

M. Young, S. Gollerthan, J. Baruj, W. Frenzel, G. Schmahl et al., Strain mapping of crack extension in pseudoelastic NiTi shape memory alloys during static loading, Acta Materialia, vol.61, issue.15, pp.5800-5806, 2013.
DOI : 10.1016/j.actamat.2013.06.024

M. L. Williams, The Bending Stress Distribution at the Base of a Stationary Crack, Journal of Applied Mechanics, vol.28, issue.1, pp.109-114, 1957.
DOI : 10.1115/1.3640470

A. Oral, J. Lambros, and G. Anlas, Crack Initiation in Functionally Graded Materials Under Mixed Mode Loading: Experiments and Simulations, Journal of Applied Mechanics, vol.75, issue.5, p.51110, 2008.
DOI : 10.1115/1.2936238

A. Pelton, J. Dicello, and S. Miyazaki, Optimisation of processing and properties of medical grade Nitinol wire, Proceedings of the Int'l Conference on Shape Memory and Superelastic Technologies. SMST, 2000.
DOI : 10.3109/13645700009063057

T. Anderson, Fracture mechanics: fundamentals and applications, 2004.

P. C. Paris, R. M. Mcmeeking, and H. Tada, The Weight Function Method for Determining Stress Intensity Factors, Cracks and fracture, ASTM STP, vol.601, pp.471-489, 1976.
DOI : 10.1520/STP28659S

S. Yi, S. Gao, and L. Shen, Fracture toughening mechanism of shape memory alloys under mixed-mode loading due to martensite transformation, International Journal of Solids and Structures, vol.38, issue.24-25, pp.24-25, 2001.
DOI : 10.1016/S0020-7683(00)00283-3

J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, vol.35, issue.2, p.379, 1968.
DOI : 10.1115/1.3601206

J. Rice and G. Rosengren, Plane strain deformation near a crack tip in a power-law hardening material, Journal of the Mechanics and Physics of Solids, vol.16, issue.1, pp.1-12, 1968.
DOI : 10.1016/0022-5096(68)90013-6

Z. Jin and R. Batra, Some basic fracture mechanics concepts in functionally graded materials, Journal of the Mechanics and Physics of Solids, vol.44, issue.8, pp.1221-1235, 1996.
DOI : 10.1016/0022-5096(96)00041-5

G. Anlas, M. Santare, and J. Lambros, Numerical Calculation of Stress Intensity Factors in Functionally Graded Materials, International Journal of Fracture, vol.104, issue.2, pp.131-143, 2000.
DOI : 10.1023/A:1007652711735

C. F. Shih, Relationships between the J-integral and the crack opening displacement for stationary and extending cracks, Journal of the Mechanics and Physics of Solids, vol.29, issue.4, pp.305-326, 1981.
DOI : 10.1016/0022-5096(81)90003-X

M. Hoffmann and T. Seeger, Dugdale Solutions for Strain Hardening Materials
DOI : 10.1007/978-3-642-82818-8_4

K. Schwalbe, The Prediction of Failure Situations Using the CTOD Concept Based on the Engineering Treatment Model (ETM), 1986.
DOI : 10.1007/978-3-642-82818-8_16

C. Woo and C. Chow, Finite element analysis of crack instability, Numer Methods in Fract Mech, Proc of the Int Conf, pp.83-92, 1980.

D. Parks, The virtual crack extension method for nonlinear material behavior, Computer Methods in Applied Mechanics and Engineering, vol.12, issue.3, pp.353-364, 1977.
DOI : 10.1016/0045-7825(77)90023-8

T. K. Hellen, On the method of virtual crack extensions, International Journal for Numerical Methods in Engineering, vol.85, issue.1, pp.187-207, 1975.
DOI : 10.1002/nme.1620090114

H. López, Transformation induced toughening in a Ni???Ti 52 shape memory alloy, Materials Letters, vol.51, issue.2, pp.144-150, 2001.
DOI : 10.1016/S0167-577X(01)00281-6

J. H. Chen, G. Z. Wang, and W. Sun, Investigation on the fracture behavior of shape memory alloy NiTi, Metallurgical and Materials Transactions A, vol.109, issue.C4, pp.941-955, 2005.
DOI : 10.1007/s11661-005-0288-8

S. W. Robertson and R. O. Ritchie, A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.100, issue.1, pp.26-33, 2008.
DOI : 10.1002/jbm.b.30840

T. Baxevanis, A. Parrinello, and D. Lagoudas, On the fracture toughness enhancement due to stress-induced phase transformation in shape memory alloys, International Journal of Plasticity, vol.50, pp.158-169, 2013.
DOI : 10.1016/j.ijplas.2013.04.007

R. Dauskardt, T. Duerig, and R. Ritchie, Effects of in situ phase transformation on fatigue-crack propagation in titanium?nickel shape-memory alloys, Proceedings of the MRS International Meeting, pp.243-249, 1988.

V. Mehta, R. Imbeni, T. Ritchie, and . Duerig, On the electronic and mechanical instabilities in Ni50, Materials Science and Engineering: A, vol.91, issue.3781 2, pp.130-137, 2004.

R. Holtz, K. Sadananda, and M. A. Imam, Fatigue thresholds of Ni-Ti alloy near the shape memory transition temperature, International Journal of Fatigue, vol.21, pp.137-145, 1999.
DOI : 10.1016/S0142-1123(99)00065-1

C. Jackson, 55-nitinol-the alloy with a memory: it's physical metallurgy properties , and applications, NASA Special Publication, 1972.

S. W. Robertson, On the mechanical properties and microstructure of Nitinol for biomedical stent applications, 2006.

A. Varias and C. Shih, Quasi-static crack advance under a range of constraints???Steady-state fields based on a characteristic length, Journal of the Mechanics and Physics of Solids, vol.41, issue.5, pp.835-861, 1993.
DOI : 10.1016/0022-5096(93)90002-W

V. Tvergaard, Effect of T-stress on crack growth under mixed mode I???III loading, International Journal of Solids and Structures, vol.45, issue.18-19, pp.18-19, 2008.
DOI : 10.1016/j.ijsolstr.2008.05.014

D. Hellmann and K. Schwalbe, On the Experimental Determination of CTOD Based R-Curves, 1986.
DOI : 10.1007/978-3-642-82818-8_6

R. H. Dean and J. W. Hutchinson, Quasi-Static Steady Crack Growth in Small-Scale Yielding, Fracture Mechanics: 12th Conference, ASTM, pp.383-405, 1980.
DOI : 10.1520/STP36982S

J. R. Rice, W. J. Drugan, and T. L. Sham, Elastic-Plastic Analysis of Growing Cracks, Fracture Mechanics: Twelfth Conference, ASTM, vol.700, pp.189-221, 1979.
DOI : 10.1520/STP36972S

P. Stahle, Easy adaptation of a commercial FEM code for self-similarity, Communications in Numerical Methods in Engineering, vol.2, issue.2, pp.117-125, 1995.
DOI : 10.1002/cnm.1640110205

C. Niordson, Analysis of steady-state ductile crack growth along a laser weld, International Journal of Fracture, vol.111, issue.1, pp.53-69, 2001.
DOI : 10.1023/A:1010951331590

C. M. Landis, On the fracture toughness of ferroelastic materials, Journal of the Mechanics and Physics of Solids, vol.51, issue.8, pp.1347-1369, 2003.
DOI : 10.1016/S0022-5096(03)00065-6

C. M. Landis, On the fracture toughness anisotropy of mechanically poled ferroelectric ceramics, International Journal of Fracture, vol.126, issue.1, pp.1-16, 2004.
DOI : 10.1023/B:frac.0000025296.90820.52

J. Sheng and C. M. Landis, Toughening due to domain switching in single crystal ferroelectric materials, International Journal of Fracture, vol.45, issue.2, pp.161-175, 2007.
DOI : 10.1007/s10704-007-9056-7

P. Martiny, F. Lani, A. Kinloch, and T. Pardoen, Numerical analysis of the energy contributions in peel tests: A steady-state multilevel finite element approach, International Journal of Adhesion and Adhesives, vol.28, issue.4-5, pp.4-5, 2008.
DOI : 10.1016/j.ijadhadh.2007.06.005

P. Martiny, F. Lani, A. Kinloch, and T. Pardoen, A maximum stress at a distance criterion for the prediction of crack propagation in adhesively-bonded joints, Engineering Fracture Mechanics, vol.97, pp.105-135, 2013.
DOI : 10.1016/j.engfracmech.2012.10.025

K. Nielsen, C. Niordson, and J. Hutchinson, Strain gradient effects on steady state crack growth in rate-sensitive materials, Engineering Fracture Mechanics, vol.96, pp.61-71, 2012.
DOI : 10.1016/j.engfracmech.2012.06.022

K. Nielsen and C. Niordson, Rate sensitivity of mixed mode interface toughness of dissimilar metallic materials: Studied at steady state, International Journal of Solids and Structures, vol.49, issue.3-4, pp.576-583, 2012.
DOI : 10.1016/j.ijsolstr.2011.11.001

J. C. Sobotka and R. H. Dodds, Steady crack growth in a thin, ductile plate under small-scale yielding conditions: Three-dimensional modeling, Engineering Fracture Mechanics, vol.78, issue.2, pp.343-363, 2011.
DOI : 10.1016/j.engfracmech.2010.10.006

T. Baxevanis, C. M. Landis, and D. C. Lagoudas, On the Fracture Toughness of Pseudoelastic Shape Memory Alloys, Journal of Applied Mechanics, vol.81, issue.4, p.41005, 2013.
DOI : 10.1115/1.4025139

Q. Nguyen and M. Rahimian, Mouvement permanent d'une fissure en milieu ´ elasto-plastique, Journal de Mécanique appliquée, vol.5, pp.95-120, 1981.
URL : https://hal.archives-ouvertes.fr/hal-00105515

K. Van and M. Maitournam, Steady-state flow in classical elastoplasticity: Applications to repeated rolling and sliding contact, Journal of the Mechanics and Physics of Solids, vol.41, issue.11, 1981.
DOI : 10.1016/0022-5096(93)90027-D

T. Nguyen-tajan, Une méthode de calcul de structures soumisesàsoumises`soumisesà des chargements mobiles, European Journal of Computational Mechanics, pp.37-41, 2002.

L. Minh, B. , M. Maitournam, and V. Doquet, A cyclic steady-state method for fatigue crack propagation: Evaluation of plasticity-induced crack closure in 3D, International Journal of Solids and Structures, vol.49, issue.17, pp.2301-2313, 2012.
DOI : 10.1016/j.ijsolstr.2012.04.040

URL : https://hal.archives-ouvertes.fr/hal-00725063

Q. P. Sun, K. C. Hwang, and S. W. Yu, A micromechanics constitutive model of transformation plasticity with shear and dilatation effect, Journal of the Mechanics and Physics of Solids, vol.39, issue.4, pp.507-524, 1991.
DOI : 10.1016/0022-5096(91)90038-P

S. Gollerthan, M. Young, K. Neuking, U. Ramamurty, and G. Eggeler, Direct physical evidence for the back-transformation of stress-induced martensite in the vicinity of cracks in pseudoelastic NiTi shape memory alloys, Acta Materialia, vol.57, issue.19, pp.5892-5897, 2009.
DOI : 10.1016/j.actamat.2009.08.015

J. Mcnaney, V. Imbeni, Y. Jung, P. Papadopoulos, and R. Ritchie, An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading, Mechanics of Materials, vol.35, issue.10, pp.969-986, 2003.
DOI : 10.1016/S0167-6636(02)00310-1

C. Grabe and O. Bruhns, Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes, International Journal of Plasticity, vol.25, issue.3, pp.513-545, 2009.
DOI : 10.1016/j.ijplas.2008.03.002

Y. Chemisky, A. Duval, E. Patoor, and T. B. Zineb, Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation, Mechanics of Materials, vol.43, issue.7, pp.361-376, 2011.
DOI : 10.1016/j.mechmat.2011.04.003

H. Pan, P. Thamburaja, and F. Chau, Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning, International Journal of Plasticity, vol.23, issue.4, pp.711-732, 2007.
DOI : 10.1016/j.ijplas.2006.08.002

Y. Liu, D. Favier, and L. Orgeas, Mechanistic simulation of martensite reorientation deformation of polycrystalline NiTi, Smart Materials and Structures, vol.14, issue.5, pp.207-210, 2005.
DOI : 10.1088/0964-1726/14/5/006

P. Sedlák, M. Frost, B. Bene?ová, T. B. Zineb, and P. Sittner, Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings, International Journal of Plasticity, vol.39, pp.132-151, 2012.
DOI : 10.1016/j.ijplas.2012.06.008

B. Piotrowski, T. B. Zineb, E. Patoor, and A. Eberhardt, Modeling of niobium precipitates effect on the Ni47Ti44Nb9 Shape Memory Alloy behavior, International Journal of Plasticity, vol.36, pp.130-147, 2012.
DOI : 10.1016/j.ijplas.2012.03.004

URL : https://hal.archives-ouvertes.fr/hal-01203110

C. Yu, G. Kang, and Q. Kan, Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation, International Journal of Plasticity, vol.54, pp.132-162, 2014.
DOI : 10.1016/j.ijplas.2013.08.012

W. Zaki, Time integration of a model for martensite detwinning and reorientation under nonproportional loading using Lagrange multipliers, International Journal of Solids and Structures, vol.49, issue.21, pp.2951-2961, 2012.
DOI : 10.1016/j.ijsolstr.2012.05.038

W. Zaki, An efficient implementation for a model of martensite reorientation in martensitic shape memory alloys under multiaxial nonproportional loading, International Journal of Plasticity, vol.37, pp.72-94, 2012.
DOI : 10.1016/j.ijplas.2012.04.002

H. Sehitoglu, J. Wang, and H. Maier, Transformation and slip behavior of Ni2FeGa, International Journal of Plasticity, vol.39, pp.61-74, 2012.
DOI : 10.1016/j.ijplas.2012.05.011

J. Wang, H. Sehitoglu, and H. Maier, Dislocation slip stress prediction in shape memory alloys, International Journal of Plasticity, vol.54, 2013.
DOI : 10.1016/j.ijplas.2013.08.017

C. Yu, G. Kang, Q. Kan, and D. Song, A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys, International Journal of Plasticity, vol.44, pp.161-191, 2013.
DOI : 10.1016/j.ijplas.2013.01.001

H. Kato and K. Sasaki, Transformation-induced plasticity as the origin of serrated flow in an NiTi shape memory alloy, International Journal of Plasticity, vol.50, pp.37-48, 2013.
DOI : 10.1016/j.ijplas.2013.03.011

J. R. Rice, The mechanics of quasi-static crack growth, Proceedings of the Eighth U.S. National Congress of Applied Mechanics, pp.191-216, 1979.

J. R. Rice and E. P. Sorensen, Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids, Journal of the Mechanics and Physics of Solids, vol.26, issue.3, pp.163-186, 1978.
DOI : 10.1016/0022-5096(78)90007-8

A. Chrysochoos and R. Peyroux, Analyse exp??rimentale et mod??lisation num??rique des couplages thermom??caniques dans les mat??riaux solides, Revue Générale de Thermique, pp.582-606, 1998.
DOI : 10.1016/S0035-3159(98)80036-6

R. Peyroux, A. Chrysochoos, C. Licht, and M. Löbel, THERMOMECHANICAL COUPLINGS AND PSEUDOELASTICITY OF SHAPE MEMORY ALLOYS, International Journal of Engineering Science, vol.36, issue.4, pp.489-509, 1998.
DOI : 10.1016/S0020-7225(97)00052-9

C. Churchill, J. Shaw, and M. Iadicola, TIPS AND TRICKS FOR CHARACTERIZING SHAPE MEMORY ALLOY WIRE: PART 4 - THERMO-MECHANICAL COUPLING, Experimental Techniques, vol.16, issue.5, pp.63-80, 2010.
DOI : 10.1111/j.1747-1567.2010.00619.x

X. Zhang, P. Feng, Y. He, T. Yu, and Q. Sun, Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips, International Journal of Mechanical Sciences, vol.52, issue.12, pp.1660-1670, 2010.
DOI : 10.1016/j.ijmecsci.2010.08.007

URL : https://hal.archives-ouvertes.fr/hal-01241589

J. A. Shaw and S. Kyriakides, Thermomechanical aspects of NiTi, Journal of the Mechanics and Physics of Solids, vol.43, issue.8, pp.1243-1281, 1995.
DOI : 10.1016/0022-5096(95)00024-D

D. Entemeyer, E. Patoor, A. Eberhardt, and M. Berveiller, Strain rate sensitivity in superelasticity, International Journal of Plasticity, vol.16, issue.10-11, pp.10-11, 2000.
DOI : 10.1016/S0749-6419(00)00010-3

F. Auricchio and E. Sacco, Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching???bending loadings, International Journal of Solids and Structures, vol.38, issue.34-35, pp.34-35, 2001.
DOI : 10.1016/S0020-7683(00)00282-1

C. Bouvet, S. Calloch, and C. Lexcellent, A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings, European Journal of Mechanics - A/Solids, vol.23, issue.1, pp.37-61, 2004.
DOI : 10.1016/j.euromechsol.2003.09.005

C. Müller and O. Bruhns, A thermodynamic finite-strain model for pseudoelastic shape memory alloys, International Journal of Plasticity, vol.22, issue.9, pp.1658-1682, 2006.
DOI : 10.1016/j.ijplas.2006.02.010

J. R. Rice, Stresses Due to a Sharp Notch in a Work-Hardening Elastic-Plastic Material Loaded by Longitudinal Shear, Journal of Applied Mechanics, vol.34, issue.2, p.287, 1967.
DOI : 10.1115/1.3607681

J. K. Knowles and E. Sternberg, Discontinuous deformation gradients near the tip of a crack in finite anti-plane shear: an example, Journal of Elasticity, vol.16, issue.1, pp.81-110, 1980.
DOI : 10.1007/BF00043136

R. Abeyaratne, Discontinuous deformation gradients away from the tip of a crack in anti-plane shear, Journal of Elasticity, vol.19, issue.4, pp.373-393, 1981.
DOI : 10.1007/BF00058080

J. R. Rice and R. Nikolic, Anti-plane shear cracks in ideally plastic crystals, Journal of the Mechanics and Physics of Solids, vol.33, issue.6, pp.595-622, 1985.
DOI : 10.1016/0022-5096(85)90005-5

J. K. Knowles and E. Sternberg, Anti-plane shear fields with discontinuous deformation gradients near the tip of a crack in finite elastostatics, Journal of Elasticity, vol.34, issue.2, pp.129-164, 1981.
DOI : 10.1007/BF00043857

F. G. Yuan and S. Yang, Analytical solutions of fully plastic crack-tip higher order fields under antiplane shear, International Journal of Fracture, vol.45, issue.1, pp.1-26, 1995.
DOI : 10.1007/BF00032186

Z. Jin and C. Sun, A comparison of cohesive zone modeling and classical fracture mechanics based on near tip stress field, International Journal of Solids and Structures, vol.43, issue.5, pp.1047-1060, 2006.
DOI : 10.1016/j.ijsolstr.2005.06.074

T. Wang and K. Kishimoto, Higher order fields for damaged nonlinear antiplane shear notch, crack and inclusion problems, European Journal of Mechanics - A/Solids, vol.18, issue.6
DOI : 10.1016/S0997-7538(99)00110-2

S. A. Silling, Consequences of the Maxwell relation for anti-plane shear deformations of an elastic solid, Journal of Elasticity, vol.100, issue.3, pp.241-284, 1988.
DOI : 10.1007/BF00045618

S. A. Silling, Dynamic growth of martensitic plates in an elastic material, Journal of Elasticity, vol.65, issue.2, pp.143-164, 1992.
DOI : 10.1007/BF00041777

S. A. Silling, Numerical studies of loss of ellipticity near singularities in an elastic material, Journal of Elasticity, vol.11, issue.3, pp.213-239, 1988.
DOI : 10.1007/BF00045617

J. C. Amazigo, Fully plastic crack in an infinite body under anti-plane shear, International Journal of Solids and Structures, vol.10, issue.9, pp.1003-1015, 1974.
DOI : 10.1016/0020-7683(74)90008-0

S. A. Silling, Numerical analysis of crack-tip fields using the hodograph transformation, International Journal for Numerical Methods in Engineering, vol.33, issue.11, pp.2503-2515, 1989.
DOI : 10.1002/nme.1620281103

X. Gao, A mathematical analysis of the elastoplastic anti-plane shear problem of a power-law material and one class of closed-form solutions, International Journal of Solids and Structures, vol.33, issue.15, pp.2213-2223, 1996.
DOI : 10.1016/0020-7683(95)00049-6

S. Desindes and S. Daly, The small-scale yielding of shape memory alloys under mode III fracture, International Journal of Solids and Structures, vol.47, issue.5, pp.730-737, 2010.
DOI : 10.1016/j.ijsolstr.2009.11.014

R. Long and C. Hui, Effects of finite chain extensibility on the stress fields near the tip of a mode III crack, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.26, issue.21, pp.3170-3187, 2011.
DOI : 10.1016/j.biomaterials.2004.11.021

S. Daly, G. Ravichandran, and K. Bhattacharya, Stress-induced martensitic phase transformation in thin sheets of Nitinol, Acta Materialia, vol.55, issue.10, pp.3593-3600, 2007.
DOI : 10.1016/j.actamat.2007.02.011