A. R. Abate, A. Poitzsch, Y. Hwang, J. Lee, J. Czerwinska et al., Impact of inlet channel geometry on microfluidic drop formation, Physical Review E, vol.80, issue.2
DOI : 10.1103/PhysRevE.80.026310

A. R. Abate, C. Chen, J. J. Agresti, and D. A. Weitz, Beating Poisson encapsulation statistics using close-packed ordering, Lab on a Chip, vol.28, issue.18, pp.2628-2631, 2009.
DOI : 10.1039/b909386a

J. Atencia and D. J. Beebe, Controlled microfluidic interfaces, Nature, vol.128, issue.7059, pp.648-655, 2005.
DOI : 10.1093/emboj/21.11.2664

N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler, Bacterial Persistence as a Phenotypic Switch, Science, vol.305, issue.5690, pp.1622-1625, 2004.
DOI : 10.1126/science.1099390

K. Frederick, L. Balagadde, C. L. You, F. H. Hansen, S. R. Arnold et al., Long-term monitoring of bacteria undergoing programmed population control in a microchemostat, Science, vol.309, issue.5731, pp.137-140, 2005.

J. Baret, V. Taly, R. Michael, C. A. Merten, and A. D. Griffiths, Gouttes et ??mulsions, m??decine/sciences, vol.25, issue.6-7, pp.627-632, 2009.
DOI : 10.1051/medsci/2009256-7627

B. Bedenic, J. Vranes, N. Beader, I. Jajic-bencic, V. Plecko et al., Effect of inoculum size of enterobacteriaceae producing shv and ctx-m extended-spectrum ßand carbapenems, Medicinski Glasnik, vol.6, pp.166-172, 2009.

P. Benkimoun, Des super-bactéries dans les valises du tourisme médical

E. Bidlas, T. Du, and R. J. Lambert, An explanation for the effect of inoculum size on MIC and the growth/no growth interface, International Journal of Food Microbiology, vol.126, issue.1-2, pp.140-152, 2008.
DOI : 10.1016/j.ijfoodmicro.2008.05.023

J. Q. Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics, Lab on a Chip, vol.41, issue.Suppl 1, pp.1265-1272, 2008.
DOI : 10.1039/b804911d

J. Q. Boedicker, M. E. Vincent, and R. F. Ismagilov, Microfluidic Confinement of Single Cells of Bacteria in Small Volumes Initiates High-Density Behavior of Quorum Sensing and Growth and Reveals Its Variability, Angewandte Chemie, vol.5, issue.32, pp.6022-6025, 2009.
DOI : 10.1002/ange.200901550

N. Bremond and R. Abdou, Decompressing Emulsion Droplets Favors Coalescence, Physical Review Letters, vol.100, issue.2, p.24501, 2008.
DOI : 10.1103/PhysRevLett.100.024501

URL : https://hal.archives-ouvertes.fr/hal-00264516

A. Brooun, S. Liu, and K. Lewis, A Dose-Response Study of Antibiotic Resistance in Pseudomonas aeruginosa Biofilms, Antimicrobial Agents and Chemotherapy, vol.44, issue.3, pp.640-646, 2000.
DOI : 10.1128/AAC.44.3.640-646.2000

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski et al., Droplet microfluidic technology for single-cell high-throughput screening, Proceedings of the National Academy of Sciences, pp.14195-14200, 2009.
DOI : 10.1073/pnas.0903542106

M. Chabert, Microfluidique de gouttes pour les analyses biologiques, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00180994

M. Chabert and J. Viovy, Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells, Proceedings of the National Academy of Sciences, pp.3191-3196, 2008.
DOI : 10.1073/pnas.0708321105

N. Champagne, R. Vasseur, A. Montourcy, and D. Bartolo, Traffic Jams and Intermittent Flows in Microfluidic Networks, Physical Review Letters, vol.105, issue.4, 2010.
DOI : 10.1103/PhysRevLett.105.044502

S. Chandrasekhar, Stochastic Problems in Physics and Astronomy, Reviews of Modern Physics, vol.15, issue.1, p.1, 1943.
DOI : 10.1103/RevModPhys.15.1

V. Zhang, J. C. Gau, P. Liao, and . Wong, Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels, Analytical Chemistry, vol.82, issue.3, pp.1012-1019, 2010.

. Ismagilov, Using three-phase flow of immiscible liquids to prevent coalescence of droplets in microfluidic channels : A criteria to identify the third liquid and validation with protein crystallization, Langmuir, vol.23, issue.4, pp.2255-2260, 2007.

G. Chen, P. D. Jeffrey, C. Fuqua, Y. Shi, and L. Chen, Structural basis for antiactivation in bacterial quorum sensing, Proceedings of the National Academy of Sciences, pp.16474-16479, 2007.
DOI : 10.1073/pnas.0704843104

P. Christofilogiannis, Current inoculation methods in MIC determination, Aquaculture, vol.196, issue.3-4, pp.297-302, 2001.
DOI : 10.1016/S0044-8486(01)00542-7

G. , C. , and S. Anna, Microfluidic methods for generating continuous droplet streams, Journal of Physics D : Applied Physics, vol.40, p.319, 2007.

J. Clausell-tormos, A. D. Griffiths, and C. A. Merten, An automated two-phase microfluidic system for kinetic analyses and the screening of compound libraries, Lab on a Chip, vol.118, issue.10, pp.1302-1307, 2010.
DOI : 10.1039/b921754a

A. D. Griffiths and C. A. Merten, Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms, Chemistry & Biology, vol.15, issue.5, pp.427-437, 2008.

W. A. Craig, S. M. Bhavnani, and P. G. Ambrose, The inoculum effect : Fact or artifact ? Diagnostic Microbiology and Infectious Disease, pp.229-230, 2004.

D. Richard, G. Ari, and . Sezonov, Les organismes modèles -Biologie et génétique d'Escherichia coli, Belin Sup, 2008.

M. De-menech, P. Garstecki, F. Jousse, and H. A. Stone, Transition from squeezing to dripping in a microfluidic T-shaped junction, Journal of Fluid Mechanics, vol.68, issue.1, pp.141-161, 2008.
DOI : 10.1146/annurev.fluid.30.1.139

A. J. Demello, Control and detection of chemical reactions in microfluidic systems, Nature, vol.8, issue.7101, pp.394-402, 2006.
DOI : 10.1038/nature05062

P. Stephen, A. S. Diggle, G. S. Griffin, S. A. Campbell, and . West, Cooperation and conflict in quorum-sensing bacterial populations

R. Dreyfus, P. Tabeling, and H. Willaime, Ordered and Disordered Patterns in Two-Phase Flows in Microchannels, Physical Review Letters, vol.90, issue.14, p.144505, 2003.
DOI : 10.1103/PhysRevLett.90.144505

J. F. Edd, D. D. Carlo, K. J. Humphry, S. Koster, D. Irimia et al., Controlled encapsulation of single-cells into monodisperse picolitre drops, Lab on a Chip, vol.45, issue.8, pp.1262-1264, 2008.
DOI : 10.1039/b802941e

M. Egervarn, H. Lindmark, S. Roos, G. Huys, and S. Lindgren, Effects of Inoculum Size and Incubation Time on Broth Microdilution Susceptibility Testing of Lactic Acid Bacteria, Antimicrobial Agents and Chemotherapy, vol.51, issue.1, pp.637-643, 2006.
DOI : 10.1128/AAC.00637-06

J. El-ali, P. K. Sorger, and K. F. Jensen, Cells on chips, Nature, vol.4, issue.7101, pp.442403-411, 2006.
DOI : 10.1038/nature05063

W. Engl, R. Backov, and P. Panizza, Controlled production of emulsions and particles by milli- and microfluidic techniques, Current Opinion in Colloid & Interface Science, vol.13, issue.4, pp.206-216, 2008.
DOI : 10.1016/j.cocis.2007.09.003

URL : https://hal.archives-ouvertes.fr/hal-00672548

W. Engl, M. Tachibana, A. Colin, and P. Panizza, A droplet-based high-throughput tubular platform to extract rate constants of slow chemical reactions, Chemical Engineering Science, vol.63, issue.6, pp.1692-1695, 2008.
DOI : 10.1016/j.ces.2007.11.006

URL : https://hal.archives-ouvertes.fr/hal-00672563

W. Engl, Gestion de gouttes sur un réseau millifluidique, exemples d'analyse haut débit et mise en forme de matériaux, 2006.

A. Ferran, V. Dupouy, P. Toutain, and A. Bousquet-melou, Influence of Inoculum Size on the Selection of Resistant Mutants of Escherichia coli in Relation to Mutant Prevention Concentrations of Marbofloxacin, Antimicrobial Agents and Chemotherapy, vol.51, issue.11, pp.4163-4166, 2007.
DOI : 10.1128/AAC.00156-07

URL : https://hal.archives-ouvertes.fr/hal-00517559

. Whitesides, Formation of droplets and bubbles in a microfluidic t-junctionscaling and mechanism of break-up, Lab Chip, vol.6, issue.3, pp.437-446, 2006.

A. Gomez-lopez, A. Aberkane, E. Petrikkou, E. Mellado, J. Luis-rodriguez-tudela et al., Analysis of the Influence of Tween Concentration, Inoculum Size, Assay Medium, and Reading Time on Susceptibility Testing of Aspergillus spp., Journal of Clinical Microbiology, vol.43, issue.3, 2010.
DOI : 10.1128/JCM.43.3.1251-1255.2005

D. Andrew, D. S. Griffiths, and . Tawfik, Miniaturising the laboratory in emulsion droplets, Trends in Biotechnology, vol.24, issue.9, pp.395-402, 2006.

A. Groisman, C. Lobo, H. Cho, K. Campbell, S. Yann et al., A microfluidic chemostat for experiments with bacterial and yeast cells, Nature Methods, vol.37, issue.9, pp.685-689, 2005.
DOI : 10.1126/science.1083694

P. Guillot, A. Ajdari, J. Goyon, M. Joanicot, and A. Colin, Droplets and jets in microfluidic devices, Comptes Rendus Chimie, vol.12, issue.1-2, pp.247-257, 2009.
DOI : 10.1016/j.crci.2008.07.005

P. Guillot and A. Colin, Stability of parallel flows in a microchannel after a T junction, Physical Review E, vol.72, issue.6, p.66301, 2005.
DOI : 10.1103/PhysRevE.72.066301

A. Gupta and R. Kumar, Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction, Microfluidics and Nanofluidics, vol.5, issue.18, pp.799-812, 2010.
DOI : 10.1007/s10404-009-0513-7

A. Gupta, S. M. Murshed, and R. Kumar, Droplet formation and stability of flows in a microfluidic T-junction, Applied Physics Letters, vol.94, issue.16, pp.164107-164110, 2009.
DOI : 10.1063/1.3116089

L. R. Hoffman, D. A. Argenio, M. J. Maccoss, Z. Zhang, R. A. Jones et al., Aminoglycoside antibiotics induce bacterial biofilm formation, Nature, vol.436, issue.7054, pp.4361171-1175, 2005.
DOI : 10.1038/nature03912

S. Schmitz, H. Koster, K. J. Duan, R. A. Humphry, J. S. Scanga et al., Biocompatible surfactants for water-influorocarbon emulsions, Lab Chip, vol.8, issue.10, pp.1632-1639, 2008.

A. Huebner, M. Srisa-art, D. Holt, C. Abell, F. Hollfelder et al., Quantitative detection of protein expression in single cells using droplet microfluidics, Chemical Communications, vol.2, issue.12, pp.121218-1220, 2007.
DOI : 10.1039/b618570c

A. Huebner, S. Sharma, M. Srisa-art, F. Hollfelder, J. Edel et al., Microdroplets: A sea of applications?, Lab on a Chip, vol.80, issue.10, pp.1244-1254, 2008.
DOI : 10.1039/b806405a

H. Hufnagel, A. Huebner, C. Gulch, K. Guse, C. Abell et al., An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets, Lab on a Chip, vol.47, issue.11, pp.1576-1582, 2009.
DOI : 10.1039/b821695a

M. Joanicot and A. Ajdari, APPLIED PHYSICS: Droplet Control for Microfluidics, Science, vol.309, issue.5736, pp.887-888, 2005.
DOI : 10.1126/science.1112615

A. Saif, S. Khan, and . Duraiswamy, Microfluidic emulsions with dynamic compound drops, Lab Chip, vol.9, issue.13, pp.1840-1842, 2009.

T. R. Kievit, T. De-kievit, and B. H. Iglewski, Bacterial Quorum Sensing in Pathogenic Relationships, Infection and Immunity, vol.68, issue.9, pp.4839-4849, 2000.
DOI : 10.1128/IAI.68.9.4839-4849.2000

H. Kim, D. Luo, D. Link, D. A. Weitz, M. Marquez et al., Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device, Applied Physics Letters, vol.91, issue.13, pp.91133106-91133109, 2007.
DOI : 10.1063/1.2790785

A. L. Koch, Bacterial Choices for the Consumption of Multiple Resources for Current and Future Needs, Microbial Ecology, vol.60, issue.2, pp.183-197
DOI : 10.1007/s00248-003-1053-4

S. Koster, F. E. Angile, H. Duan, J. J. Agresti, A. Wintner et al., Drop-based microfluidic devices for encapsulation of single cells, Lab on a Chip, vol.88, issue.4, pp.1110-1115, 2008.
DOI : 10.1039/b802941e

J. Kreft, Biofilms promote altruism, Microbiology, vol.150, issue.8, pp.2751-2760, 2004.
DOI : 10.1099/mic.0.26829-0

J. E. Kreutz, A. Shukhaev, W. Du, S. Druskin, O. Daugulis et al., Evolution of Catalysts Directed by Genetic Algorithms in a Plug-Based Microfluidic Device Tested with Oxidation of Methane by Oxygen, Journal of the American Chemical Society, vol.132, issue.9, pp.3128-3132, 2010.
DOI : 10.1021/ja909853x

J. Turton, S. Upadhyay, M. Warner, W. Welfare, M. David et al., Emergence of a new antibiotic resistance mechanism in india, pakistan, and the uk : a molecular, biological, and epidemiological study. The Lancet Infectious Diseases, 2010.

E. Kussell, R. Kishony, N. Q. Balaban, and S. Leibler, Bacterial Persistence: A Model of Survival in Changing Environments, Genetics, vol.169, issue.4, pp.1807-1814, 2005.
DOI : 10.1534/genetics.104.035352

R. J. Lambert, Susceptibility testing: inoculum size dependency of inhibition using the Colworth MIC technique, Journal of Applied Microbiology, vol.40, issue.2, pp.275-279, 2000.
DOI : 10.1046/j.1365-2672.1999.00712.x

R. J. Lambert and J. Pearson, Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values, Journal of Applied Microbiology, vol.53, issue.5, pp.784-790, 2000.
DOI : 10.1016/0168-1605(89)90071-8

C. Lass-florl, . Speth, . Kofler, . Dierch, and W. Gunsilius, Effect of increasing inoculum sizes of Aspergillus hyphae on MICs and MFCs of antifungal agents by broth microdilution method, International Journal of Antimicrobial Agents, vol.21, issue.3, pp.229-233, 2003.
DOI : 10.1016/S0924-8579(02)00189-9

H. H. Lee, M. N. Molla, C. R. Cantor, and J. J. Collins, Bacterial charity work leads to population-wide resistance, Nature, vol.38, issue.7311, pp.46782-85, 2010.
DOI : 10.1038/nature09354

J. Lee, J. Kaplan, and W. Lee, Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms, Biomedical Microdevices, vol.20, issue.Suppl 2, pp.489-498, 2008.
DOI : 10.1007/s10544-007-9157-0

K. Lewis, Riddle of Biofilm Resistance, Antimicrobial Agents and Chemotherapy, vol.45, issue.4, pp.999-1007, 2001.
DOI : 10.1128/AAC.45.4.999-1007.2001

K. Lewis, Persister cells, dormancy and infectious disease, Nature Reviews Microbiology, vol.71, issue.1, pp.48-56, 2007.
DOI : 10.1128/AAC.00684-06

E. Mary, D. R. Lidstrom, and . Meldrum, Life-on-a-chip, Nat Rev Micro, vol.1, issue.2, pp.158-164, 2003.

J. R. Lobry, G. Carret, and J. P. Flandrois, ATCC 25922 in the presence of sub-inhibitory concentrations of various antibiotics, Journal of Antimicrobial Chemotherapy, vol.29, issue.2, pp.121-127, 1992.
DOI : 10.1093/jac/29.2.121

URL : https://hal.archives-ouvertes.fr/hal-00698024

H. Meyer, O. Kappeli, and A. Fiechter, Growth Control in Microbial Cultures, Annual Review of Microbiology, vol.39, issue.1, pp.299-319, 1985.
DOI : 10.1146/annurev.mi.39.100185.001503

J. Monod, The Growth of Bacterial Cultures, Annual Review of Microbiology, vol.3, issue.1, pp.371-394, 1949.
DOI : 10.1146/annurev.mi.03.100149.002103

R. Mukhopadhyay, When PDMS isn't the best, Analytical Chemistry, vol.79, issue.9, pp.3248-3253, 2007.
DOI : 10.1021/ac071903e

A. Novick, Growth of Bacteria, Annual Review of Microbiology, vol.9, issue.1, pp.97-110, 1955.
DOI : 10.1146/annurev.mi.09.100155.000525

A. Marie-queenan, B. Foleno, C. Gownley, E. Wira, and K. Bush, Effects of inoculum and beta-lactamase activity in ampcand extended-spectrum beta-lactamase (esbl)-producing escherichia coli and klebsiella pneumoniae clinical isolates tested by using nccls esbl methodology, J. Clin. Microbiol, vol.4279, issue.1, pp.269-275, 2004.

R. R. Regoes, C. Wiuff, R. M. Zappala, K. N. Garner, F. Baquero et al., Pharmacodynamic Functions: a Multiparameter Approach to the Design of Antibiotic Treatment Regimens, Antimicrobial Agents and Chemotherapy, vol.48, issue.10, pp.3670-3676, 2004.
DOI : 10.1128/AAC.48.10.3670-3676.2004

C. H. Schmitz, A. C. Rowat, S. Köster, and D. A. Weitz, Dropspots: a picoliter array in a microfluidic device, Lab Chip, vol.88, issue.10, 2009.
DOI : 10.1039/B809670H

G. Sezonov, D. Joseleau-petit, and R. Ari, Escherichia coli Physiology in Luria-Bertani Broth, Journal of Bacteriology, vol.189, issue.23, pp.8746-8749, 2007.
DOI : 10.1128/JB.01368-07

URL : https://hal.archives-ouvertes.fr/hal-00184125

W. Shi, J. Qin, N. Ye, and B. Lin, Droplet-based microfluidic system for individual Caenorhabditis elegans assay, Lab on a Chip, vol.77, issue.9, pp.1432-1435, 2008.
DOI : 10.1039/b808753a

J. Shim, L. F. Olguin, G. Whyte, D. Scott, A. Babtie et al., Simultaneous Determination of Gene Expression and Enzymatic Activity in Individual Bacterial Cells in Microdroplet Compartments, Journal of the American Chemical Society, vol.131, issue.42, pp.13115251-15256, 2009.
DOI : 10.1021/ja904823z

L. Shui, J. C. Eijkel, A. Van-den, and . Berg, Multiphase flow in microfluidic systems ??? Control and applications of droplets and interfaces, Advances in Colloid and Interface Science, vol.133, issue.1, pp.35-49, 2007.
DOI : 10.1016/j.cis.2007.03.001

H. Song, D. L. Chen, and R. F. Ismagilov, Reactions in Droplets in Microfluidic Channels, Angewandte Chemie International Edition, vol.97, issue.44, pp.7336-7356, 2006.
DOI : 10.1002/anie.200601554

H. Song, J. D. Tice, and R. F. Ismagilov, A Microfluidic System for Controlling Reaction Networks in Time, Angewandte Chemie International Edition, vol.42, issue.7, pp.792-796, 2003.
DOI : 10.1002/anie.200390203

H. Steels, S. A. James, I. N. Roberts, and M. Stratford, Sorbic acid resistance: the inoculum effect, Yeast, vol.57, issue.13, pp.1173-1183, 2000.
DOI : 10.1002/1097-0061(20000930)16:13<1173::AID-YEA617>3.0.CO;2-8

S. Philip, J. Stewart, and . William-costerton, Antibiotic resistance of bacteria in biofilms. The Lancet, pp.135-138, 2001.

H. A. Stone, A. D. Stroock, and A. Ajdari, ENGINEERING FLOWS IN SMALL DEVICES, Annual Review of Fluid Mechanics, vol.36, issue.1, pp.381-411, 2004.
DOI : 10.1146/annurev.fluid.36.050802.122124

P. Tabeling, Introduction à la microfluidique, Belin, 2003.

H. Vincent, K. R. Tam, K. Ledesma, T. Chang, J. P. Wang et al., Killing of escherichia coli by [beta]-lactams at different inocula, Diagnostic Microbiology and Infectious Disease, vol.64, issue.2, pp.166-171, 2009.

R. Abdou, N. Thiam, J. Bremond, and . Bibette, Breaking of an emulsion under an ac electric field, Phys. Rev. Lett, vol.102, issue.18, 2009.

S. Kenneth, E. S. Thomson, and . Moland, Cefepime, piperacillintazobactam , and the inoculum effect in tests with extended-spectrum betalactamase-producing enterobacteriaceae, Antimicrob. Agents Chemother, vol.45, issue.12, pp.3548-3554, 2001.

T. Thorsen, S. J. Maerkl, and S. R. Quake, Microfluidic Large-Scale Integration, Science, vol.298, issue.5593, pp.580-584, 2002.
DOI : 10.1126/science.1076996

J. D. Tice, A. D. Lyon, and R. F. Ismagilov, Effects of viscosity on droplet formation and mixing in microfluidic channels, Analytica Chimica Acta, vol.507, issue.1, pp.73-77, 2004.
DOI : 10.1016/j.aca.2003.11.024

M. W. Toepke and D. J. Beebe, PDMS absorption of small molecules and consequences in microfluidic applications, Lab on a Chip, vol.6, issue.12, pp.1484-1486, 2006.
DOI : 10.1039/b612140c

I. Klas, N. Udekwu, P. Parrish, F. Ankomah, B. R. Baquero et al., Functional relationship between bacterial cell density and the efficacy of antibiotics Méthodes level set pour des problèmes d'interface en microfluidique, J. Antimicrob. Chemother, vol.63100, issue.4, pp.745-757, 2007.

C. M. Waters and B. L. Bassler, QUORUM SENSING: Cell-to-Cell Communication in Bacteria, Annual Review of Cell and Developmental Biology, vol.21, issue.1, pp.319-346, 2005.
DOI : 10.1146/annurev.cellbio.21.012704.131001

D. B. Weibel, W. R. Diluzio, and G. M. Whitesides, Microfabrication meets microbiology, Nature Reviews Microbiology, vol.16, issue.3, pp.209-218, 2007.
DOI : 10.1038/nrmicro1616