Skip to Main content Skip to Navigation
Theses

Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations

Résumé : Cette thèse présente une nouvelle classe de schémas de discrétisation spatiale sur maillages polyédriques, nommée Compatible Discrete Operator (CDO) et en étudie l'application aux équations elliptiques et de Stokes. La préservation au niveau discret des caractéristiques essentielles du système continu sert de fil conducteur à la construction des opérateurs. Les opérateurs de de Rham définissent les degrés de liberté en accord avec la nature physique des champs à discrétiser. Les équations sont décomposées de manière à différencier les relations topologiques (lois de conservation) des relations constitutives (lois de fermeture).Les relations topologiques sont associées à des opérateurs différentiels discrets et les relations constitutives à des opérateurs de Hodge discrets. Une particularité de l'approche CDO est l'utilisation explicite d'un second maillage, dit dual, pour bâtir l'opérateur de Hodge discret. Deux familles de schémas CDO sont ainsi considérées : les schémas vertex-based lorsque le potentiel est discrétisé aux sommets du maillage (primal), et les schémas cell-based lorsque le potentiel est discrétisé aux sommets du maillage dual (les sommets duaux étant en bijection avec les cellules primales).Les schémas CDO associés à ces deux familles sont présentés et leur convergence est analysée. Une première analyse s'appuie sur une définition algébrique de l'opérateur de Hodge discret et permet d'identifier trois propriétés clés : symétrie, stabilité et $mathbb{P}_0$-consistance. Une seconde analyse s'appuie sur une définition de l'opérateur de Hodge discret à l'aide d'opérateurs de reconstruction pour lesquels sont identifiées les propriétés à satisfaire. Par ailleurs, les schémas CDO fournissent une vision unifiée d'une large gamme de schémas de la littérature (éléments finis, volumes finis, schémas mimétiques…).Enfin, la validité et l'efficacité de l'approche CDO sont illustrées sur divers cas tests et plusieurs maillages polyédriques
Document type :
Theses
Complete list of metadatas

Cited literature [123 references]  Display  Hide  Download

https://pastel.archives-ouvertes.fr/tel-01116527
Contributor : Abes Star :  Contact
Submitted on : Friday, March 6, 2015 - 10:21:23 PM
Last modification on : Thursday, October 26, 2017 - 6:54:01 PM
Document(s) archivé(s) le : Sunday, June 7, 2015 - 6:15:49 PM

File

2014PEST1078.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01116527, version 2

Collections

Citation

Jérôme Bonelle. Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations. Mathematics [math]. Université Paris-Est, 2014. English. ⟨NNT : 2014PEST1078⟩. ⟨tel-01116527v2⟩

Share

Metrics

Record views

827

Files downloads

832