H. Abboud, F. E. Chami, and T. Sayah, A priori and a posteriori estimates for three-dimensional Stokes equations with nonstandard boundary conditions, Numerical Methods for Partial Differential Equations, vol.9, issue.4, pp.1178-1193, 2012.
DOI : 10.1002/num.20676

C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Mathematical Methods in the Applied Sciences, vol.2, issue.9, pp.823-864, 1998.
DOI : 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B

B. Andreianov, M. Bendahmane, F. Hubert, and S. Krell, On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality, IMA Journal of Numerical Analysis, vol.32, issue.4, pp.1574-1603, 2012.
DOI : 10.1093/imanum/drr046

URL : https://hal.archives-ouvertes.fr/hal-00355212

B. Andreianov, M. Bendahmane, and F. Hubert, On3D DDFV discretization of gradient and divergence operators. II. Discrete functional analysis tools and applications to degenerate parabolic problems, CMAM Comput. Meth. Appli. Math, vol.13, pp.369-410, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00355212

F. Archambeau, N. Mechitoua, and M. Sakiz, Code_saturne: A Finite Volume code for the computation of turbulent incompressible flows -industrial applications, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01115371

D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica, vol.15, pp.1-155, 2006.
DOI : 10.1017/S0962492906210018

D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bulletin of the American Mathematical Society, vol.47, issue.2, pp.281-354, 2010.
DOI : 10.1090/S0273-0979-10-01278-4

D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates, ESAIM: Mathematical Modelling and Numerical Analysis, vol.19, issue.1, pp.7-32, 1985.
DOI : 10.1051/m2an/1985190100071

B. Auchmann and S. Kurz, A geometrically defined discrete hodge operator on simplicial cells, IEEE Transactions on Magnetics, vol.42, issue.4, p.643, 2006.
DOI : 10.1109/TMAG.2006.870932

A. Back and E. Sonnendrücker, Spline Discrete Differential Forms and New Finite Difference Discrete Hodge Operator, 2013.
DOI : 10.1051/proc/201235014

URL : https://hal.archives-ouvertes.fr/hal-00822164

L. Beirão-da-veiga, V. Gyrya, K. Lipnikov, and G. Manzini, Mimetic finite difference method for the Stokes problem on polygonal meshes, Journal of Computational Physics, vol.228, issue.19, pp.7215-7232, 2009.
DOI : 10.1016/j.jcp.2009.06.034

L. Beirão-da-veiga, K. Lipnikov, and G. Manzini, Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes, SIAM Journal on Numerical Analysis, vol.48, issue.4, pp.1419-1443, 2010.
DOI : 10.1137/090757411

L. Beirão-da-veiga, K. Lipnikov, and G. Manzini, Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes, SIAM Journal on Numerical Analysis, vol.49, issue.5, pp.1737-1760, 2011.
DOI : 10.1137/100807764

L. Beirão-da-veiga, K. Lipnikov, G. L. Manzini, F. Brezzi, A. Cangiani et al., The Mimetic Finite Difference method for Elliptic Problems. Modeling, Simulation & Applications Basic principles of Virtual Element Methods, Math. Models Methods Appl. Sci, vol.11, issue.23, pp.199-214, 2013.

L. Beirão-da-veiga and K. Lipnikov, A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles, SIAM Journal on Scientific Computing, vol.32, issue.2, pp.875-893, 2010.
DOI : 10.1137/090767029

C. Bernardi and N. Chorfi, Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem, SIAM Journal on Numerical Analysis, vol.44, issue.2, pp.826-850, 2006.
DOI : 10.1137/050622687

URL : https://hal.archives-ouvertes.fr/hal-00112164

M. Bessemoulin-chatard, C. Chainais-hillairet, and F. Filbet, On discrete functional inequalities for some finite volume schemes, IMA Journal of Numerical Analysis, vol.35, issue.3, p.672591, 2014.
DOI : 10.1093/imanum/dru032

URL : https://hal.archives-ouvertes.fr/hal-00672591

P. Bochev and J. M. Hyman, Principles of Mimetic Discretizations of Differential Operators, Compatible Spatial Discretization, 2005.
DOI : 10.1007/0-387-38034-5_5

&. Nicolaides, The IMA Volumes in mathematics and its applications, pp.89-120

A. Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, IEE Proceedings A Physical Science, Measurement and Instrumentation, Management and Education, Reviews, vol.135, issue.8, pp.493-500, 1988.
DOI : 10.1049/ip-a-1.1988.0077

A. Bossavit, On the geometry of electromagnetism, J. Japan Soc. Appl. Electromagn . & Mech, vol.6, issue.1 2 3 4, pp.17-28, 1998.

A. Bossavit, ) Computational electromagnetism and geometry, J, 1999.

A. Bossavit, 'Generalized Finite Differences' in Computational Electromagnetics, Progress In Electromagnetics Research, vol.32, pp.45-64, 2001.
DOI : 10.2528/PIER00080102

A. Bossavit, Generating Whitney forms of polynomial degree one and higher, IEEE Transactions on Magnetics, vol.38, issue.2, pp.341-344, 2002.
DOI : 10.1109/20.996092

J. H. Bramble and P. Lee, On variational formulations for the Stokes equations with nonstandard boundary conditions, ESAIM: Mathematical Modelling and Numerical Analysis, vol.28, issue.7, pp.903-919, 1994.
DOI : 10.1051/m2an/1994280709031

F. Branin, The Algebraic-Topological Basis for Network Analogies and the Vector Calculus, Symposium on generalized networks, pp.12-14, 1966.

F. Brezzi, K. Lipnikov, and M. Shashkov, Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes, SIAM Journal on Numerical Analysis, vol.43, issue.5, pp.1872-1896, 2005.
DOI : 10.1137/040613950

F. Brezzi, A. Buffa, and K. Lipnikov, Mimetic finite differences for elliptic problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.2, pp.277-295, 2009.
DOI : 10.1051/m2an:2008046

F. Brezzi, A. Buffa, and G. Manzini, Mimetic scalar products of discrete differential forms, Journal of Computational Physics, vol.257, pp.1228-1259, 2014.
DOI : 10.1016/j.jcp.2013.08.017

F. Brezzi and M. Fortin, Mixed and Hydbrid Finite Element Methods. Springer series in computational mathematics, 1991.

A. Buffa, J. Rivas, G. Sangalli, and R. Vásquez, Isogeometric Discrete Differential Forms in Three Dimensions, SIAM Journal on Numerical Analysis, vol.49, issue.2, pp.818-844, 2011.
DOI : 10.1137/100786708

A. Buffa and S. Christiansen, A dual finite element complex on the barycentric refinement, Mathematics of Computation, vol.76, issue.260, pp.1743-1769, 2007.
DOI : 10.1090/S0025-5718-07-01965-5

E. Chénier, R. Eymard, T. Gallouët, and R. Herbin, An extension of the MAC scheme to locally refined meshes: convergence analysis for the full tensor time-dependent Navier???Stokes equations, Calcolo, vol.217, issue.2, 2014.
DOI : 10.1007/s10092-014-0108-x

S. H. Christiansen, A CONSTRUCTION OF SPACES OF COMPATIBLE DIFFERENTIAL FORMS ON CELLULAR COMPLEXES, Mathematical Models and Methods in Applied Sciences, vol.18, issue.05, pp.739-757, 2008.
DOI : 10.1142/S021820250800284X

S. H. Christiansen, H. Z. Munthe-kaas, and B. Owren, Topics in structure-preserving discretization, Acta Numerica, vol.29, pp.1-119, 2011.
DOI : 10.1002/(SICI)1521-4001(199812)78:12<795::AID-ZAMM795>3.0.CO;2-P

S. Christiansen and F. Rapetti, On high order finite element spaces of differential forms, Mathematics of Computation, vol.85, issue.298, pp.1306-4835, 2014.
DOI : 10.1090/mcom/2995

URL : https://hal.archives-ouvertes.fr/hal-00946553

P. Ciarlet, The Finite Element Method for Elliptic Problems, 1978.

M. Clemens and T. Weiland, Discrete Electromagnetism with the Finite Integration Technique, Progress In Electromagnetics Research, vol.32, pp.65-87, 2001.
DOI : 10.2528/PIER00080103

L. Codecasa, R. Specogna, and F. Trevisan, A new set of basis functions for the discrete geometric approach, Journal of Computational Physics, vol.229, issue.19, pp.7401-7410, 2010.
DOI : 10.1016/j.jcp.2010.06.023

L. Codecasa and F. Trevisan, Constitutive equations for discrete electromagnetic problems over polyhedral grids, Journal of Computational Physics, vol.225, issue.2, pp.1894-1918, 2007.
DOI : 10.1016/j.jcp.2007.02.032

L. Codecasa and F. Trevisan, Convergence of electromagnetic problems modelled by Discrete Geometric Approach, CMES, vol.58, pp.15-44, 2010.

F. Dardalhon, Schémas numériques pour la simulation des grandes échelles, 2012.

S. Delcourte and P. Omnes, A Discrete Duality Finite Volume discretization of the vorticity-velocity-pressure formulation of the 2D Stokes problem on almost arbitrary two-dimensional grids. Numer. Methods Partial Differential Eq, 2014.
URL : https://hal.archives-ouvertes.fr/cea-00772972

M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden, Discrete Exterior Calculus, p.508341, 2005.

M. Desbrun, E. Kanso, and Y. Tong, Discrete Differential Forms for Computational Modeling. Discrete Differential Forms for Computational Modeling, pp.287-324, 2006.

D. Pietro and D. A. , Cell centered Galerkin methods for diffusive problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.1, pp.111-144, 2012.
DOI : 10.1051/m2an/2011016

URL : https://hal.archives-ouvertes.fr/hal-00511125

D. Pietro, D. A. Ern, A. Lemaire, and S. , An arbitrary-order and compactstencil discretization of diffusion on general meshes based on local reconstruction operators, Computational Methods in Applied Mathematics, vol.14, pp.461-472, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00978198

D. Pietro, D. A. Ern, and A. , A Family of Arbitrary-order Mixed Methods for Heterogeneous Anisotropic Diffusion on General Meshes, 2013.

D. Pietro, D. A. Ern, and A. , Hybrid high-order methods for variable-diffusion problems on general meshes, Comptes Rendus Mathematique, vol.353, issue.1, pp.31-34, 2015.
DOI : 10.1016/j.crma.2014.10.013

URL : https://hal.archives-ouvertes.fr/hal-01023302

D. Pietro, D. A. Lemaire, and S. , An extension of the Crouzeix???Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow, Mathematics of Computation, vol.84, issue.291, pp.1-31, 2015.
DOI : 10.1090/S0025-5718-2014-02861-5

URL : https://hal.archives-ouvertes.fr/hal-00753660

P. Dlotko and R. Specogna, A novel technique for cohomology computations in engineering practice, Computer Methods in Applied Mechanics and Engineering, vol.253, pp.530-542, 2013.
DOI : 10.1016/j.cma.2012.08.009

J. Dodziuk, Finite-Difference Approach to the Hodge Theory of Harmonic Forms, American Journal of Mathematics, vol.98, issue.1, 1976.
DOI : 10.2307/2373615

J. Droniou, R. Eymard, T. Gallouët, and R. Herbin, A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS, Mathematical Models and Methods in Applied Sciences, vol.20, issue.02, pp.265-295, 2010.
DOI : 10.1142/S0218202510004222

URL : https://hal.archives-ouvertes.fr/hal-00346077

J. Droniou, R. Eymard, T. Gallouët, and R. Herbin, GRADIENT SCHEMES: A GENERIC FRAMEWORK FOR THE DISCRETISATION OF LINEAR, NONLINEAR AND NONLOCAL ELLIPTIC AND PARABOLIC EQUATIONS, Mathematical Models and Methods in Applied Sciences, vol.23, issue.13, pp.2395-2432, 2013.
DOI : 10.1142/S0218202513500358

URL : https://hal.archives-ouvertes.fr/hal-00751551

J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods, MMathematical Models and Methods in Applied Sciences (M3AS), pp.1575-1619, 2014.
DOI : 10.1142/S0218202514400041

URL : https://hal.archives-ouvertes.fr/hal-00813613

J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numerische Mathematik, vol.59, issue.1, pp.35-71, 2006.
DOI : 10.1007/s00211-006-0034-1

URL : https://hal.archives-ouvertes.fr/hal-00005565

J. Droniou and R. Eymard, Study of the mixed finite volume method for Stokes and Navier-Stokes equations, Numerical Methods for Partial Differential Equations, vol.7, issue.1, pp.137-171, 2009.
DOI : 10.1002/num.20333

URL : https://hal.archives-ouvertes.fr/hal-00110911

J. Droniou and C. Le-potier, Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle, SIAM Journal on Numerical Analysis, vol.49, issue.2, pp.459-490, 2011.
DOI : 10.1137/090770849

URL : https://hal.archives-ouvertes.fr/hal-00808694

F. Dubois, Une formulation tourbillon-vitesse-presion pour le problème de Stokes, Comptes Rendus de l'Académie des Sciences, pp.277-280, 1992.

F. Dubois, Vorticity-velocity-pressure formulation for the Stokes problem, Mathematical Methods in the Applied Sciences, vol.12, issue.13, pp.1091-1119, 2002.
DOI : 10.1002/mma.328

A. Ern and J. Guermond, Theory and Pratice of Finite Elements, Applied Mathematical Sciences, vol.159, 2004.

A. Ern and M. Vohralík, Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs, SIAM Journal on Scientific Computing, vol.35, issue.4, pp.1761-1791, 2013.
DOI : 10.1137/120896918

URL : https://hal.archives-ouvertes.fr/hal-00681422

T. Euler, Consistent discretization of maxwell's equations on polyhedral grids, 2007.

R. Eymard, T. Gallouët, and R. Herbin, Finite Volume methods. Handbook of numerical analysis, VII . Handb. Numer. Anal., VII. Amsterdam: North-Holland, pp.713-1020, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00346077

R. Eymard, T. Gallouët, and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA Journal of Numerical Analysis, vol.30, issue.4, pp.1009-1043, 2010.
DOI : 10.1093/imanum/drn084

R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn et al., 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids. Finite Volumes for Complex Applications VI -Problems & Perspectives, pp.95-130, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00580549

R. Eymard, C. Guichard, and R. Herbin, Small-stencil 3D schemes for diffusive flows in porous media, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.2, pp.265-290, 2012.
DOI : 10.1051/m2an/2011040

URL : https://hal.archives-ouvertes.fr/hal-00542667

R. Eymard, J. Fuhrmann, and A. Linke, On MAC schemes on triangular delaunay meshes, their convergence and application to coupled flow problems, Numerical Methods for Partial Differential Equations, vol.48, issue.4, pp.1397-1424, 2014.
DOI : 10.1002/num.21875

R. Falk and M. Neilan, Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation, SIAM Journal on Numerical Analysis, vol.51, issue.2, pp.1308-1326, 2013.
DOI : 10.1137/120888132

M. Floater, G. Kós, and M. Reimers, Mean value coordinates in 3D, Computer Aided Geometric Design, vol.22, issue.7, pp.623-631, 2005.
DOI : 10.1016/j.cagd.2005.06.004

M. Fortin and M. Glowinski, Augmented Lagrangian Methods: Applications to the numerical solution of boundary-value problems, 1983.

Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A. G. Sunderland et al., Optimizing Code_Saturne computations on Petascale systems, Computers & Fluids, vol.45, issue.1, pp.103-108, 2011.
DOI : 10.1016/j.compfluid.2011.01.028

T. Frankel, The Geometry of Physics: an Introduction Edge functions for spectral element methods. Spectral and High Order Methods for Partial Differential Equations, BIBLIOGRAPHY Gerritsma, M. Lecture Notes in Computational Science and Engineering, vol.76, pp.199-207, 1997.

M. Gerritsma, An Introduction to a Compatible Spectral Discretization Method, Mechanics of Advanced Materials and Structures, vol.35, issue.3, pp.48-67, 2012.
DOI : 10.1006/jcph.2001.6973

A. Gillette, A. Rand, and C. Bajaj, Error estimates for generalized barycentric interpolation, Advances in Computational Mathematics, vol.72, issue.1, pp.417-439, 2012.
DOI : 10.1007/s10444-011-9218-z

A. Gillette and C. Bajaj, Dual formulations of mixed finite element methods with applications, Computer-Aided Design, vol.43, issue.10, pp.1213-1221, 2011.
DOI : 10.1016/j.cad.2011.06.017

F. Harlow and J. Welch, Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, Physics of Fluids, vol.8, issue.12, pp.2182-2189, 1965.
DOI : 10.1063/1.1761178

A. Hatcher, Algebraic Topology, 2002.

B. He, Compatible Discretizations for Maxwell Equations, 2006.

B. He and F. Teixeira, Geometric finite element discretization of Maxwell equations in primal and dual spaces, Physics Letters A, vol.349, issue.1-4, pp.1-14, 2006.
DOI : 10.1016/j.physleta.2005.09.002

F. Hermeline, A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes, Journal of Computational Physics, vol.160, issue.2, pp.481-490, 2000.
DOI : 10.1006/jcph.2000.6466

R. Hiemstra, D. Toshniwal, R. Huijsman, and M. Gerritsma, High order geometric methods with exact conservation properties, Journal of Computational Physics, vol.257, pp.1444-1471, 2013.
DOI : 10.1016/j.jcp.2013.09.027

R. Hiptmair, Canonical construction of finite elements, Mathematics of Computation, vol.68, issue.228, pp.1325-1346, 1999.
DOI : 10.1090/S0025-5718-99-01166-7

R. Hiptmair, Discrete Hodge-Operators: An Algebraic Perspective, Progress In Electromagnetics Research, vol.32, pp.247-269, 2001.
DOI : 10.2528/PIER00080110

R. Hiptmair, High Order Whitney Forms, Progress In Electromagnetics Research (PIER), pp.271-299, 2001.

K. Hormann and N. Sukumar, Maximum Entropy Coordinates for Arbitrary Polytopes, Proceedings of the Symposium on Geometry Processing. Eurographics Association, pp.1513-1520, 2008.
DOI : 10.1111/j.1467-8659.2008.01292.x

X. Hu and R. A. Nicolaides, Covolume techniques for anisotropic media, Numerische Mathematik, vol.24, issue.1, pp.215-234, 1992.
DOI : 10.1007/BF01385505

J. M. Hyman and M. Shashkov, Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, Computers & Mathematics with Applications, vol.33, issue.4, pp.81-104, 1997.
DOI : 10.1016/S0898-1221(97)00009-6

J. Kreeft, A. Palha, and M. Gerritsma, Mimetic framework on curvilinear quadrilaterals of arbitrary order, 2011.

J. Kreeft and M. Gerritsma, Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution, Journal of Computational Physics, vol.240, pp.284-309, 2013.
DOI : 10.1016/j.jcp.2012.10.043

S. Krell and G. Manzini, The Discrete Duality Finite Volume Method for Stokes Equations on Three-Dimensional Polyhedral Meshes, SIAM Journal on Numerical Analysis, vol.50, issue.2, pp.808-837, 2012.
DOI : 10.1137/110831593

G. Kron, Numerical Solution of Ordinary and Partial Differential Equations by Means of Equivalent Circuits, Journal of Applied Physics, vol.16, issue.3, pp.172-186, 1945.
DOI : 10.1063/1.1707568

G. Kron, A Set of Principles to Interconnect the Solutions of Physical Systems, Journal of Applied Physics, vol.24, issue.8, p.965, 1953.
DOI : 10.1063/1.1721447

A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Computer Methods in Applied Mechanics and Engineering, vol.268, pp.782-800, 2014.
DOI : 10.1016/j.cma.2013.10.011

K. Lipnikov, G. Manzini, and D. Svyatskiy, Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems, Journal of Computational Physics, vol.230, issue.7, pp.2620-2642, 2011.
DOI : 10.1016/j.jcp.2010.12.039

K. Lipnikov, G. Manzini, and M. Shashkov, Mimetic finite difference method, Journal of Computational Physics, vol.257, pp.1163-1227, 2014.
DOI : 10.1016/j.jcp.2013.07.031

K. Lipnikov and G. Manzini, A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation, Journal of Computational Physics, vol.272, pp.360-385, 2014.
DOI : 10.1016/j.jcp.2014.04.021

C. Mattiussi, An Analysis of Finite Volume, Finite Element, and Finite Difference Methods Using Some Concepts from Algebraic Topology, Journal of Computational Physics, vol.133, issue.2, pp.289-309, 1997.
DOI : 10.1006/jcph.1997.5656

P. Mullen, P. Memari, F. De-goes, and M. Desbrun, HOT: Hodge Optimized Triangulations, ACM Transactions on Graphics, vol.30, 2011.

J. Munkres, Elements of Algebraic Topology, 1984.

J. C. Nédélec, Incompressible mixed finite elements for Stokes equations, Numerische Mathematik, vol.12, issue.1, pp.97-112, 1982.
DOI : 10.1007/BF01399314

R. A. Nicolaides, K. A. Trapp, P. Arnold, R. Bochev, R. Lehoucq et al., Covolume discretization of differential forms Compatible Spatial Discretizations, The IMA Volumes in Mathematics and its Applications, 2006.

J. B. Perot, D. Vidovic, and P. Wesseling, Mimetic Reconstruction of Vectors, Compatible Spatial Discretizations, vol.142, pp.173-188, 2006.
DOI : 10.1007/0-387-38034-5_9

J. B. Perot and R. Nallapati, A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows, Journal of Computational Physics, vol.184, issue.1, pp.192-214, 2003.
DOI : 10.1016/S0021-9991(02)00027-X

J. B. Perot and V. Subramanian, Discrete calculus methods for diffusion, Journal of Computational Physics, vol.224, issue.1, pp.59-81, 2007.
DOI : 10.1016/j.jcp.2006.12.022

F. Rapetti, High order edge elements on simplicial meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol.41, issue.6, pp.1001-1020, 2007.
DOI : 10.1051/m2an:2007049

URL : https://hal.archives-ouvertes.fr/hal-01141133

P. Raviart and J. Thomas, Primal Hybrid Finite Element Methods for 2nd Order Elliptic Equations, Mathematics of Computation, vol.31, issue.138, pp.391-413, 1977.
DOI : 10.2307/2006423

D. Rufat, G. Mason, P. Mullen, and M. Desbrun, The chain collocation method: A spectrally accurate calculus of forms, Journal of Computational Physics, vol.257, pp.1352-1372, 2014.
DOI : 10.1016/j.jcp.2013.08.011

M. Shashkov and S. Steinberg, Support-Operator Finite-Difference Algorithms for General Elliptic Problems, Journal of Computational Physics, vol.118, issue.1, pp.131-151, 1995.
DOI : 10.1006/jcph.1995.1085

T. Tarhasaari, L. Kettunen, and A. Bossavit, Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis], IEEE Transactions on Magnetics, vol.35, issue.3, pp.1494-1497, 1999.
DOI : 10.1109/20.767250

F. Teixeira, Differential Forms in Lattice Field Theories: An Overview, ISRN Mathematical Physics, vol.33, issue.15, p.16, 2013.
DOI : 10.1063/1.3692167

A. Tikhonov and A. Samarskii, Homogeneous difference schemes, USSR Computational Mathematics and Mathematical Physics, vol.1, issue.1, pp.5-67, 1962.
DOI : 10.1016/0041-5553(62)90005-8

E. Tonti, On the formal structure of physical theories. monograph of the Italian National Research Council, 1975.

E. Tonti, The reason for analogies between physical theories, Applied Mathematical Modelling, vol.1, issue.1, pp.37-50, 1975.
DOI : 10.1016/0307-904X(76)90023-8

E. Tonti, A direct discrete formulation of field laws: The Cell Method, CMES, vol.1, 2001.

K. A. Trapp, Inner products in covolume and mimetic methods, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.6, pp.941-959, 2008.
DOI : 10.1051/m2an:2008030

F. Trevisan and L. Kettunen, Geometric interpretation of finite-dimensional eddy-current formulations, International Journal for Numerical Methods in Engineering, vol.6, issue.13, pp.1888-1908, 2006.
DOI : 10.1002/nme.1692

R. Verstappen and A. Veldman, Symmetry-preserving discretization of turbulent flow, Journal of Computational Physics, vol.187, issue.1, pp.343-368, 2003.
DOI : 10.1016/S0021-9991(03)00126-8

DOI : 10.1142/S0218202512500613

E. Wachspress, A Rational Finite Element Basis, Journal of Lubrication Technology, vol.98, issue.4, 1975.
DOI : 10.1115/1.3452953

J. Warren, S. Schaefer, A. Hirani, and M. Desbrun, Barycentric coordinates for convex sets, Advances in Computational Mathematics, vol.6, issue.1, pp.319-338, 2007.
DOI : 10.1007/s10444-005-9008-6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Whitney and N. J. Princeton, Geometric integration theory, p.387, 1957.
DOI : 10.1515/9781400877577

K. Yee, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media, IEEE Transaction, issue.14, pp.302-307, 1966.