Q. Définitions-1, E. George, and N. R. Draper, Essentially, all models are wrong, but some are useful Empirical model-building and response surfaces, p.424, 1987.

B. Andreianov, K. H. Karlsen, and N. H. Risebro, A theory of L1?dissipative solvers for scalar conservation laws with discontinuous flux, Archive for rational mechanics and analysis, pp.27-86, 2011.

D. Aregba-driollet and R. Natalini, Discrete Kinetic Schemes for Multidimensional Systems of Conservation Laws, SIAM Journal on Numerical Analysis, vol.37, issue.6, pp.1973-2004, 2000.
DOI : 10.1137/S0036142998343075

URL : https://hal.archives-ouvertes.fr/hal-00959531

V. Astarita, Node and link models for network traffic flow simulation, Mathematical and Computer Modelling, vol.35, issue.5-6, pp.643-656, 2002.
DOI : 10.1016/S0895-7177(02)80026-7

J. Aubin, A. M. Bayen, and P. Saint-pierre, Dirichlet problems for some Hamilton-Jacobi equations with inequality constraints, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pp.47-2348, 2008.
DOI : 10.1109/CDC.2009.5400247

A. Aw, A. Klar, M. Rascle, and T. Materne, Derivation of Continuum Traffic Flow Models from Microscopic Follow-the-Leader Models, SIAM Journal on Applied Mathematics, vol.63, issue.1, pp.259-278, 2002.
DOI : 10.1137/S0036139900380955

A. Aw and M. Rascle, Resurrection of "Second Order" Models of Traffic Flow, SIAM Journal on Applied Mathematics, vol.60, issue.3, pp.916-938, 2000.
DOI : 10.1137/S0036139997332099

P. Bagnerini and M. Rascle, A Multiclass Homogenized Hyperbolic Model of Traffic Flow, SIAM Journal on Mathematical Analysis, vol.35, issue.4, pp.949-973, 2003.
DOI : 10.1137/S0036141002411490

M. Bando, K. Hasebe, K. Nakanishi, A. Nakayama, A. Shibata et al., Phenomenological Study of Dynamical Model of Traffic Flow, Journal de Physique I, vol.5, issue.11, pp.1389-1399, 1995.
DOI : 10.1051/jp1:1995206

URL : https://hal.archives-ouvertes.fr/jpa-00247145

M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Physical Review E, vol.51, issue.2, pp.51-1035, 1995.
DOI : 10.1103/PhysRevE.51.1035

H. Bar-gera and S. Ahn, Empirical macroscopic evaluation of freeway merge-ratios, Transportation Research Part C : Emerging Technologies, pp.457-470, 2010.

M. Bardi and I. Capuzzo-dolcetta, Optimal control and viscosity solutions of Hamilton?Jacobi? Bellman equations, 2008.
DOI : 10.1007/978-0-8176-4755-1

M. Bardi and L. Evans, On Hopf's formulas for solutions of Hamilton?Jacobi equations, Nonlinear Analysis : Theory, Methods & Applications, vol.8, pp.1373-1381, 1984.

C. Bardos, A. Y. Leroux, and J. Nédélec, First order quasilinear equations with boundary conditions, Communications in partial differential equations, pp.1017-1034, 1979.
DOI : 10.1090/S0025-5718-1977-0478651-3

G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, 1994.

G. Barles, A. Briani, and E. Chasseigne, A Bellman Approach for Regional Optimal Control Problems in $\mathbb{R}^N$, SIAM Journal on Control and Optimization, vol.52, issue.3, pp.1712-1744, 2014.
DOI : 10.1137/130922288

G. Barles and E. R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman Equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.36, issue.1, pp.33-54, 2002.
DOI : 10.1051/m2an:2002002

G. Barles and E. R. Jakobsen, Error Bounds for Monotone Approximation Schemes for Hamilton--Jacobi--Bellman Equations, SIAM Journal on Numerical Analysis, vol.43, issue.2, pp.540-558, 2005.
DOI : 10.1137/S003614290343815X

URL : https://hal.archives-ouvertes.fr/hal-00017877

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic analysis, pp.271-283, 1991.

E. Barron and R. Jensen, Semicontinuous Viscosity Solutions For Hamilton???Jacobi Equations With Convex Hamiltonians, Communications in Partial Differential Equations, vol.10, issue.12, pp.293-309, 1990.
DOI : 10.1007/BF02765025

M. Beckmann, C. Mcguire, and C. B. Winsten, Studies in the economics of transportation, tech. rep, 1956.

S. Bexelius, An extended model for car-following, Transportation Research, vol.2, issue.1, pp.13-21, 1968.
DOI : 10.1016/0041-1647(68)90004-X

O. Biham, A. A. Middleton, and D. Levine, Self organization and a dynamical transition in traffic flow models, arXiv preprint cond-mat, 1992.

R. Billot, C. Chalons, F. De-vuyst, N. Faouzi, and J. Sau, A conditionally linearly stable second-order traffic model derived from a Vlasov kinetic description, Comptes Rendus M??canique, vol.338, issue.9, pp.529-537, 2010.
DOI : 10.1016/j.crme.2010.07.018

URL : https://hal.archives-ouvertes.fr/hal-00566031

S. Blandin, J. Argote, A. M. Bayen, and D. B. Work, Phase transition model of non-stationary traffic flow: Definition, properties and solution method, Transportation Research Part B: Methodological, vol.52, pp.52-83, 2013.
DOI : 10.1016/j.trb.2013.02.005

O. Bokanowski, Y. Cheng, and C. Shu, A Discontinuous Galerkin Solver for Front Propagation, SIAM Journal on Scientific Computing, vol.33, issue.2, pp.923-938, 2011.
DOI : 10.1137/090771909

URL : https://hal.archives-ouvertes.fr/hal-00653471

O. Bokanowski and H. Zidani, Anti-Dissipative Schemes for Advection and Application to Hamilton???Jacobi???Bellmann Equations, Journal of Scientific Computing, vol.21, issue.5, pp.1-33, 2007.
DOI : 10.1007/s10915-005-9017-0

URL : https://hal.archives-ouvertes.fr/hal-00878221

P. Bonnel, Prévoir la demande de transport, 2004.

E. Bourrel, Modélisation dynamique de l'écoulement du trafic routier : du macroscopique au microscopique, 2003.

M. Brackstone and M. Mcdonald, Car-following: a historical review, Transportation Research Part F: Traffic Psychology and Behaviour, vol.2, issue.4, pp.181-196, 1999.
DOI : 10.1016/S1369-8478(00)00005-X

Y. Brenier, Un algorithme rapide pour le calcul de transformées de Legendre-Fenchel discrètes, Comptes rendus de l, Académie des Sciences. Série Mathématique, vol.1, pp.308-587, 1989.

A. Bressan, Hyperbolic systems of conservation laws, Revista Matem??tica Complutense, vol.12, issue.1, 2000.
DOI : 10.5209/rev_REMA.1999.v12.n1.17204

A. Bressan and K. Nguyen, Conservation law models for traffic flow on a network of roads, Networks and Heterogeneous Media, vol.10, issue.2, 2014.
DOI : 10.3934/nhm.2015.10.255

A. Bressan and F. Yu, Continuous Riemann solvers for traffic flow at a junction, Discrete and Continuous Dynamical Systems, vol.35, issue.9, 2014.
DOI : 10.3934/dcds.2015.35.4149

G. Bretti, R. Natalini, and B. Piccoli, Fast algorithms for the approximation of a traffic flow model on networks, Discrete and Continuous Dynamical Systems-Series B, 2006.

C. Buisson and C. Ladier, Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams, Transportation Research Record, Journal of the Transportation Research Board, pp.2124-127, 2009.

C. Buisson, J. Lebacque, and J. Lesort, STRADA, a discretized macroscopic model of vehicular traffic flow in complex networks based on the Godunov scheme, CESA'96 IMACS Multiconference : computational engineering in systems applications, pp.976-981, 1996.

C. Buisson, J. Lesort, and J. Lebacque, Macroscopic modelling of traffic flow and assignment in mixed networks, Computing in Civil and Building Engineering. Proceedings of the Sixth International Conference on Computing in Civil and Building Engineering, pp.12-15

F. Camilli, A. Festa, and D. Schieborn, An approximation scheme for a Hamilton???Jacobi equation defined on a network, Applied Numerical Mathematics, vol.73, pp.33-47, 2013.
DOI : 10.1016/j.apnum.2013.05.003

URL : https://hal.archives-ouvertes.fr/hal-00724768

F. Camilli and C. Marchi, A comparison among various notions of viscosity solution for Hamilton???Jacobi equations on networks, Journal of Mathematical Analysis and Applications, vol.407, issue.1, pp.112-118, 2013.
DOI : 10.1016/j.jmaa.2013.05.015

F. Camilli, C. Marchi, and D. Schieborn, The vanishing viscosity limit for Hamilton???Jacobi equations on networks, Journal of Differential Equations, vol.254, issue.10, pp.4122-4143, 2013.
DOI : 10.1016/j.jde.2013.02.013

M. J. Cassidy and S. Ahn, Driver turn-taking behavior in congested freeway merges, Transportation Research Record, Journal of the Transportation Research Board, pp.140-147, 1934.

R. E. Chandler, R. Herman, and E. W. , Traffic Dynamics: Studies in Car Following, Operations Research, vol.6, issue.2, pp.165-184, 1958.
DOI : 10.1287/opre.6.2.165

Y. Cheng and C. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton???Jacobi equations, Journal of Computational Physics, vol.223, issue.1, pp.398-415, 2007.
DOI : 10.1016/j.jcp.2006.09.012

E. Chevallier and L. Leclercq, A macroscopic theory for unsignalized intersections, Transportation Research Part B: Methodological, vol.41, issue.10, pp.1139-1150, 2007.
DOI : 10.1016/j.trb.2007.05.003

C. G. Claudel and A. M. Bayen, Lax???Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton???Jacobi Equation. Part I: Theory, IEEE Transactions on Automatic Control, vol.55, issue.5, pp.55-1142, 2010.
DOI : 10.1109/TAC.2010.2041976

G. M. Coclite, M. Garavello, and B. Piccoli, Traffic Flow on a Road Network, SIAM Journal on Mathematical Analysis, vol.36, issue.6, pp.1862-1886, 2005.
DOI : 10.1137/S0036141004402683

R. M. Colombo, A 2 × 2 hyperbolic traffic flow model, Mathematical and computer modelling, pp.683-688, 2002.

R. M. Colombo and E. Rossi, On the Micro-Macro limit in traffic flow, Rendiconti del Seminario Matematico della Universit?? di Padova, vol.131, pp.131-217, 2014.
DOI : 10.4171/RSMUP/131-13

L. Corrias, Fast Legendre???Fenchel Transform and Applications to Hamilton???Jacobi Equations and Conservation Laws, SIAM Journal on Numerical Analysis, vol.33, issue.4, pp.1534-1558, 1996.
DOI : 10.1137/S0036142993260208

R. Corthout, Intersection Modelling and Marginal Simulation in Macroscopic Dynamic Network Loading, 2012.

R. Corthout, G. Flötteröd, F. Viti, and C. M. Tampère, Non-unique flows in macroscopic first-order intersection models, Transportation Research Part B: Methodological, vol.46, issue.3, pp.46-343, 2012.
DOI : 10.1016/j.trb.2011.10.011

G. Costeseque, Modélisation et simulation dans le contexte du trafic routier, Modéliser et simuler. Epistémologies et pratiques de la modélisation et de la simulation, 2013.

G. Costeseque and J. Lebacque, Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations, Discrete and Continuous Dynamical Systems - Series S, vol.7, issue.3, pp.411-433, 2014.
DOI : 10.3934/dcdss.2014.7.411

URL : https://hal.archives-ouvertes.fr/hal-01214831

G. Costeseque, J. Lebacque, and R. Monneau, A convergent scheme for Hamilton???Jacobi equations on a junction: application to traffic, Numerische Mathematik, vol.24, issue.3, 2014.
DOI : 10.1007/s00211-014-0643-z

URL : https://hal.archives-ouvertes.fr/hal-00829044

R. Courant, K. Friedrichs, and H. Lewy, On the Partial Difference Equations of Mathematical Physics, IBM Journal of Research and Development, vol.11, issue.2, pp.215-234, 1967.
DOI : 10.1147/rd.112.0215

M. G. Crandall, L. C. Evans, and P. Lions, Some properties of viscosity solutions of Hamilton?Jacobi equations, Transactions of the, pp.487-502, 1984.

M. G. Crandall, H. Ishii, and P. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of the, pp.1-67, 1992.

M. G. Crandall and P. Lions, Viscosity solutions of Hamilton?Jacobi equations, Transactions of the, pp.1-42, 1983.

M. G. Crandall and P. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Mathematics of Computation, vol.43, issue.167, pp.1-19, 1984.
DOI : 10.1090/S0025-5718-1984-0744921-8

C. M. Dafermos, Hyperbolic conservation laws in continuum physics, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 2005.

C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transportation Research Part B: Methodological, vol.28, issue.4, pp.269-287, 1994.
DOI : 10.1016/0191-2615(94)90002-7

C. F. Daganzo and N. Geroliminis, An analytical approximation for the macroscopic fundamental diagram of urban traffic, Transportation Research Part B: Methodological, vol.42, issue.9, pp.771-781, 2008.
DOI : 10.1016/j.trb.2008.06.008

I. C. Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming, Applied Mathematics & Optimization, vol.8, issue.1, pp.367-377, 1983.
DOI : 10.1007/BF01448394

I. C. Dolcetta and H. Ishii, Approximate solutions of the bellman equation of deterministic control theory, Applied Mathematics & Optimization, vol.24, issue.2, pp.161-181, 1984.
DOI : 10.1007/BF01442176

J. S. Drake, J. L. Schofer, and A. May, A statistical analysis of speed-density hypotheses in vehicular traffic science, proceedings of the Third International Symposium on the Theory of Traffic Flow, 1967.

D. R. Drew, Deterministic aspects of freeway operations and control, Texas Transportation Institute College Station, TX, 1965.

F. Dubois and P. L. Floch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, Journal of Differential Equations, vol.71, issue.1, pp.93-122, 1988.
DOI : 10.1016/0022-0396(88)90040-X

A. Duret, J. Bouffier, and C. Buisson, Onset of Congestion from Low-Speed Merging Maneuvers Within Free-Flow Traffic Stream, Transportation Research Record: Journal of the Transportation Research Board, vol.2188, pp.2188-96, 2010.
DOI : 10.3141/2188-11

L. C. Edie, Car-Following and Steady-State Theory for Noncongested Traffic, Operations Research, vol.9, issue.1, pp.66-76, 1961.
DOI : 10.1287/opre.9.1.66

L. C. Evans, Partial differential equations (graduate studies in mathematics, 2009.

M. Falcone, A numerical approach to the infinite horizon problem of deterministic control theory, Applied Mathematics & Optimization, vol.59, issue.1, pp.1-13, 1987.
DOI : 10.1007/BF01442644

M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numerische Mathematik, vol.67, issue.3, pp.315-344, 1994.
DOI : 10.1007/s002110050031

M. Falcone and R. Ferretti, Semi-Lagrangian Schemes for Hamilton???Jacobi Equations, Discrete Representation Formulae and Godunov Methods, Journal of Computational Physics, vol.175, issue.2, pp.559-575, 2002.
DOI : 10.1006/jcph.2001.6954

S. Fan, M. Herty, and B. Seibold, Semi-Lagrangian approximation schemes for linear and Hamilton?Jacobi equations, SIAM, 2013 Comparative model accuracy of a data-fitted generalized Aw- Rascle-Zhang model, arXiv preprint, 2013.

S. Fan and B. Seibold, A comparison of data-fitted first order traffic models and their second order generalizations via trajectory and sensor data, 2012.

N. Farhi, H. Haj-salem, and J. Lebacque, Multianticipative piecewise-linear car-following model, Transportation Research Record, Journal of the Transportation Research Board, pp.2315-100, 2012.
DOI : 10.3141/2315-11

URL : http://arxiv.org/abs/1302.0153

G. Flötteröd and J. Rohde, Operational macroscopic modeling of complex urban road intersections, Transportation Research Part B: Methodological, vol.45, issue.6, pp.903-922, 2011.
DOI : 10.1016/j.trb.2011.04.001

T. Forbes, H. Zagorski, E. Holshouser, and W. Deterline, Measurement of driver reactions to tunnel conditions, Highway Research Board Proceedings, 1958.

N. Forcadel, C. Imbert, and R. Monneau, Homogenization of fully overdamped Frenkel???Kontorova models, Journal of Differential Equations, vol.246, issue.3, pp.1057-1097, 2009.
DOI : 10.1016/j.jde.2008.06.034

URL : https://hal.archives-ouvertes.fr/hal-00266994

N. Forcadel and W. Salazar, Homogenization of second order discrete model and application to traffic flow, preprint, 2014.

H. Frankowska, Lower semicontinuous solutions of Hamilton?Jacobi?Bellman equations, SIAM Journal on Control and Optimization, pp.31-257, 1993.

G. Galise, C. Imbert, and R. Monneau, A junction condition by precised homogenization, 2014.

M. Garavello and P. Goatin, The cauchy problem at a node with buffer, Discrete Contin, Dyn. Syst. Ser. A, 2012.

N. H. Gartner, C. J. Messer, and A. K. Rathi, Traffic flow theory : A state-of-the-art report, Committe on Traffic Flow Theory and Characteristics (AHB45), 2001.

D. C. Gazis, R. Herman, and R. W. Rothery, Nonlinear Follow-the-Leader Models of Traffic Flow, Operations Research, vol.9, issue.4, pp.545-567, 1961.
DOI : 10.1287/opre.9.4.545

N. Geroliminis and C. F. Daganzo, Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings, Transportation Research Part B: Methodological, vol.42, issue.9, pp.759-770, 2008.
DOI : 10.1016/j.trb.2008.02.002

N. Geroliminis and J. Sun, Properties of a well-defined macroscopic fundamental diagram for urban traffic, Transportation Research Part B: Methodological, vol.45, issue.3, pp.605-617, 2011.
DOI : 10.1016/j.trb.2010.11.004

A. Ghorbel and R. Monneau, Existence and non-existence of semi-discrete shocks for a carfollowing model in traffic flow, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00760671

J. Gibb, Model of traffic flow capacity constraint through nodes for dynamic network loading with queue spillback, Transportation Research Record, Journal of the Transportation Research Board, pp.2263-113, 2011.

Y. Giga and N. Hamamuki, Hamilton-Jacobi Equations with Discontinuous Source Terms, Communications in Partial Differential Equations, vol.42, issue.4, pp.199-243, 2012.
DOI : 10.1016/j.physd.2008.05.009

P. G. Gipps, A behavioural car-following model for computer simulation, Transportation Research Part B: Methodological, vol.15, issue.2, pp.105-111, 1981.
DOI : 10.1016/0191-2615(81)90037-0

E. Godlewski and P. Raviart, Hyperbolic systems of conservation laws, Ellipses, 1991.

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, pp.271-306, 1959.

H. Greenberg, An Analysis of Traffic Flow, Operations Research, vol.7, issue.1, pp.79-85, 1959.
DOI : 10.1287/opre.7.1.79

B. D. Greenshields, J. Bibbins, W. Channing, and H. Miller, A study of traffic capacity, Highway research board proceedings, 1935.

K. Han, An Analytical Approach to Sustainable Transportation Network Design, 2013.

K. Han, B. Piccoli, T. L. Friesz, and T. Yao, A continuous-time link-based kinematic wave model for dynamic traffic networks, 2012.

K. Han, T. Yao, and T. L. Friesz, Lagrangian-based hydrodynamic model : Freeway traffic estimation, 2012.

D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics, vol.73, issue.4, p.1067, 2001.
DOI : 10.1103/RevModPhys.73.1067

URL : http://arxiv.org/abs/cond-mat/0012229

D. Helbing, S. Lämmer, and J. Lebacque, Self-organized control of irregular or perturbed network traffic, in Optimal control and dynamic games, pp.239-274, 2005.

W. Hellyherman and R. C. Ed, Simulation of bottlenecks in single-lane traffic flow, Proc. Symp. Theory of Traffic Flow, pp.207-238, 1961.

V. Henn, A Wave-Based Resolution Scheme for the Hydrodynamic LWR Traffic Flow Model, Traffic and Granular Flow'03, pp.105-124, 2005.
DOI : 10.1007/3-540-28091-X_10

J. C. Herrera and A. M. Bayen, Incorporation of Lagrangian measurements in freeway traffic state estimation, Transportation Research Part B: Methodological, vol.44, issue.4, pp.460-481, 2010.
DOI : 10.1016/j.trb.2009.10.005

J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson et al., Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment, Transportation Research Part C: Emerging Technologies, vol.18, issue.4, pp.18-568, 2010.
DOI : 10.1016/j.trc.2009.10.006

M. Herty, C. Kirchner, S. Moutari, and M. Rascle, Multicommodity flows on road networks, Multicommodity flows on road networks, pp.171-187, 2008.
DOI : 10.4310/CMS.2008.v6.n1.a8

M. Herty and A. Klar, Modeling, Simulation, and Optimization of Traffic Flow Networks, SIAM Journal on Scientific Computing, vol.25, issue.3, pp.1066-1087, 2003.
DOI : 10.1137/S106482750241459X

H. Holden and N. H. Risebro, A Mathematical Model of Traffic Flow on a Network of Unidirectional Roads, SIAM Journal on Mathematical Analysis, vol.26, issue.4, pp.999-1017, 1995.
DOI : 10.1137/S0036141093243289

S. P. Hoogendoorn and P. H. Bovy, State-of-the-art of vehicular traffic flow modelling, Proceedings of the Institution of Mechanical Engineers, pp.215-283, 2001.
DOI : 10.1177/095965180121500402

S. P. Hoogendoorn, S. Ossen, and M. Schreuder, Properties of a microscopic heterogeneous multi-anticipative traffic flow model, in Transportation and Traffic Theory, 2007.

E. Hopf, Generalized solutions of non-linear equations of first order, Journal of Mathematics and Mechanics, vol.14, pp.951-973, 1965.

C. Hu and C. Shu, A Discontinuous Galerkin Finite Element Method for Hamilton--Jacobi Equations, SIAM Journal on Scientific Computing, vol.21, issue.2, pp.666-690, 1999.
DOI : 10.1137/S1064827598337282

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton?Jacobi equations on networks, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00832545

C. Imbert, R. Monneau, and H. Zidani, A Hamilton?Jacobi approach to junction problems and application to traffic flows, ESAIM : Control, Optimisation and Calculus of Variations, pp.129-166, 2013.

H. Ishii, Perron?s method for Hamilton-Jacobi equations, Duke Mathematical Journal, vol.55, issue.2, pp.369-384, 1987.
DOI : 10.1215/S0012-7094-87-05521-9

W. Jin and H. M. Zhang, Multicommodity kinematic wave simulation model for network traffic flow, Transportation Research Record, Journal of the Transportation Research Board, pp.1883-59, 2004.

W. Jin and W. W. Recker, Instantaneous information propagation in a traffic stream through inter-vehicle communication, Transportation Research Part B: Methodological, vol.40, issue.3, pp.40-230, 2006.
DOI : 10.1016/j.trb.2005.04.001

W. Jin and Y. Yu, Asymptotic solution and effective Hamiltonian of a Hamilton???Jacobi equation in the modeling of traffic flow on a homogeneous signalized road, Journal de Math??matiques Pures et Appliqu??es, vol.104, issue.5, 2014.
DOI : 10.1016/j.matpur.2015.07.002

B. S. Kerner, Experimental Features of Self-Organization in Traffic Flow, Physical Review Letters, vol.81, issue.17, pp.3797-3800, 1998.
DOI : 10.1103/PhysRevLett.81.3797

M. M. Khoshyaran and J. Lebacque, Lagrangian modelling of intersections for the GSOM generic macroscopic traffic flow model Internal state models for intersections in macroscopic traffic flow models, in conference of Traffic and Granular Flow A stochastic macroscopic traffic model devoid of diffusion, Proceedings of the 10th International Conference on Application of Advanced Technologies in Transportation (AATT2008) Traffic and Granular Flow'07, pp.139-150, 2008.

A. Klar, J. Greenberg, and M. Rascle, Congestion on Multilane Highways, SIAM Journal on Applied Mathematics, vol.63, issue.3, pp.818-833, 2003.
DOI : 10.1137/S0036139901396309

URL : http://www.osti.gov/scitech/servlets/purl/821216

E. Kometani and T. Sasaki, A Safety Index for Traffic with Linear Spacing, Operations Research, vol.7, issue.6, pp.704-720, 1959.
DOI : 10.1287/opre.7.6.704

S. Krauß, Microscopic modeling of traffic flow : Investigation of collision free vehicle dynamics, 1998.

S. Krauss, P. Wagner, and C. Gawron, Metastable states in a microscopic model of traffic flow, Physical Review E, vol.55, issue.5, pp.55-5597, 1997.
DOI : 10.1103/PhysRevE.55.5597

N. Krylov, On the rate of convergence of finite-difference approximations for Bellman equations with variable coefficients, Probability Theory and Related Fields, pp.1-16, 2000.

N. V. Krylov, The Rate of Convergence of Finite-Difference Approximations for Bellman Equations with Lipschitz Coefficients, Applied Mathematics and Optimization, vol.52, issue.3, pp.365-399, 2005.
DOI : 10.1007/s00245-005-0832-3

H. J. Kushner and P. Dupuis, Numerical methods for stochastic control problems in continuous time, 2001.

C. Lattanzio and P. Marcati, The Zero Relaxation Limit for the Hydrodynamic Whitham Traffic Flow Model, Journal of Differential Equations, vol.141, issue.1, pp.150-178, 1997.
DOI : 10.1006/jdeq.1997.3311

J. A. Laval and L. Leclercq, The Hamilton???Jacobi partial differential equation and the three representations of traffic flow, Transportation Research Part B: Methodological, vol.52, pp.17-30, 2013.
DOI : 10.1016/j.trb.2013.02.008

URL : https://hal.archives-ouvertes.fr/hal-00908873

P. D. Lax, Hyperbolic systems of conservation laws II, Communications on Pure and Applied Mathematics, vol.3, issue.4, pp.537-566, 1957.
DOI : 10.1002/cpa.3160100406

J. Lebacque, S. Mammar, and H. Haj-salem, An intersection model based on the GSOM model, Proceedings of the 17th World Congress, pp.7148-7153, 2008.

J. Lebacque, Semimacroscopic simulation of urban traffic, Proc. of the Int. 84 Minneapolis Summer Conference. AMSE, pp.273-291, 1984.

J. Lebacque, H. Haj-salem, and S. Mammar, Second order traffic flow modeling : supplydemand analysis of the inhomogeneous Riemann problem and of boundary conditions, Proceedings of the 10th Euro Working Group on Transportation (EWGT), 2005.

J. Lebacque and M. M. Khoshyaran, First order macroscopic traffic flow models for networks in the context of dynamic assignment, in Transportation Planning, pp.119-140, 2002.

J. Lebacque, S. Mammar, and H. H. Salem, Generic second order traffic flow modelling, in Transportation and Traffic Theory, 2007.

L. Leclercq, Bounded acceleration close to fixed and moving bottlenecks, Transportation Research Part B: Methodological, vol.41, issue.3, pp.41-309, 2007.
DOI : 10.1016/j.trb.2006.05.001

L. Leclercq, J. A. Laval, and E. Chevallier, The lagrangian coordinates and what it means for first order traffic flow models, in Transportation and Traffic Theory, 2007.

L. Leclercq and S. Moutari, Hybridization of a class of " second order " models of traffic flow, Simulation modelling practice and theory, pp.918-934, 2007.

H. Lenz, C. Wagner, and R. Sollacher, Multi-anticipative car-following model, The European Physical Journal B-Condensed Matter and Complex Systems, pp.331-335, 1999.

W. Leutzbach and R. Wiedemann, Development and applications of traffic simulation models at the Karlsruhe Institut für Verkehrswesen, Traffic engineering & control, vol.27, pp.270-278, 1986.

R. J. Leveque, Finite volume methods for hyperbolic problems, 2002.
DOI : 10.1017/CBO9780511791253

J. Li and H. Zhang, Modeling space???time inhomogeneities with the kinematic wave theory, Transportation Research Part B: Methodological, vol.54, pp.113-125, 2013.
DOI : 10.1016/j.trb.2013.03.005

M. J. Lighthill and G. B. Whitham, On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.229, issue.1178, pp.317-345, 1955.
DOI : 10.1098/rspa.1955.0089

Y. Lucet, Faster than the fast Legendre transform, the linear-time Legendre transform, Numerical Algorithms, pp.171-185, 1997.

Y. Makigami, G. Newell, and R. Rothery, Three-Dimensional Representation of Traffic Flow, Transportation Science, vol.5, issue.3, pp.302-313, 1971.
DOI : 10.1287/trsc.5.3.302

S. Mammar, J. Lebacque, and H. H. Salem, Intersection modeling based on the second order traffic flow model ARZ, Proceedings of the 11th EWGT Meeting, pp.435-440, 2006.

A. , M. Jr, and H. Keller, Non?integer car?following models, Highway Research Record, pp.199-218, 1967.

P. Mazaré, A. H. Dehwah, C. G. Claudel, and A. M. Bayen, Analytical and grid-free solutions to the Lighthill???Whitham???Richards traffic flow model, Transportation Research Part B: Methodological, vol.45, issue.10, pp.45-1727, 2011.
DOI : 10.1016/j.trb.2011.07.004

R. Monneau, Homogenization of some traffic vehicular models. private lectures, 2011.

R. Monneau, M. Roussignol, and A. Tordeux, Invariance and homogenization of an adaptive time gap car-following model, Nonlinear Differential Equations and Applications NoDEA, pp.1-27, 2012.

J. Monteil, ]. J. Monteil, R. Billot, N. E. El, and . Faouzi, Investigating the effects of cooperative vehicles on highway traffic flow homogenization : analytical and simulation studies Véhicules coopératifs pour une gestion dynamique du trafic : approche théorique et simulation, Recherche Transports Sécurité, 2013.

K. Moskowitz and L. Newan, Notes on freeway capacity, Highway Research Record, 1963.

K. Nagel and M. Schreckenberg, A cellular automaton model for traffic flow, J. Physique I, vol.2, p.102, 1992.

G. F. Newell, Nonlinear Effects in the Dynamics of Car Following, Operations Research, vol.9, issue.2, pp.209-229, 1961.
DOI : 10.1287/opre.9.2.209

G. F. Newell, A simplified theory of kinematic waves in highway traffic, part I: General theory, Transportation Research Part B: Methodological, vol.27, issue.4, pp.281-287, 1993.
DOI : 10.1016/0191-2615(93)90038-C

D. Ngoduy, Application of gas-kinetic theory to modelling mixed traffic of manual and ACC vehicles, Transportmetrica, vol.1, issue.1, pp.43-60, 2012.
DOI : 10.1016/S0191-2615(98)00044-7

D. Ngoduy, S. Hoogendoorn, and R. Liu, Continuum modeling of cooperative traffic flow dynamics , Physica A : Statistical Mechanics and its Applications, pp.2705-2716, 2009.

D. Ngoduy and C. Tampère, Macroscopic effects of reaction time on traffic flow characteristics, Physica Scripta, vol.80, issue.2, p.25802, 2009.
DOI : 10.1088/0031-8949/80/02/025802

D. Ngoduy and R. Wilson, Multianticipative Nonlocal Macroscopic Traffic Model, Computer-Aided Civil and Infrastructure Engineering, vol.43, issue.2, 2013.
DOI : 10.1111/mice.12035

O. Oleinik, Construction of a generalized solution of the cauchy problem for a quasi-linear equation of first order by the introduction of vanishing viscosity, Amer, Math. Soc. Transl. Ser, vol.2, pp.277-283, 1963.

G. Orosz, B. Krauskopf, and R. E. Wilson, Bifurcations and multiple traffic jams in a carfollowing model with reaction-time delay, Physica D : Nonlinear Phenomena, pp.211-277, 2005.

G. Orosz and G. Stépán, Subcritical Hopf bifurcations in a car-following model with reaction-time delay, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.462, issue.2073, pp.462-2643, 2006.
DOI : 10.1098/rspa.2006.1660

G. Orosz, R. E. Wilson, and B. Krauskopf, Global bifurcation investigation of an optimal velocity traffic model with driver reaction time, Physical Review E, vol.70, issue.2, pp.26207-026207, 2004.
DOI : 10.1103/PhysRevE.70.026207

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

S. Osher and C. Shu, High-Order Essentially Nonoscillatory Schemes for Hamilton???Jacobi Equations, SIAM Journal on Numerical Analysis, vol.28, issue.4, pp.907-922, 1991.
DOI : 10.1137/0728049

S. Ossen and S. P. Hoogendoorn, Multi-anticipation and heterogeneity in car-following empirics and a first exploration of their implications, in Intelligent Transportation Systems Conference, pp.1615-1620, 2006.

H. J. Payne, Models of freeway traffic and control, Mathematical models of public systems, 1971.

B. Perthame, Kinetic formulation of conservation laws, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01146188

B. Piccoli, K. Han, T. L. Friesz, and T. Yao, Second-order models and traffic data from mobile sensors, Transportation Research Part C: Emerging Technologies, vol.52, 2012.
DOI : 10.1016/j.trc.2014.12.013

URL : http://arxiv.org/abs/1211.0319

I. Prigogine and R. Herman, Kinetic theory of vehicular traffic, tech. rep, 1971.

R. Prud-'homme, La congestion et ses coûts, Annales des Ponts et Chaussées, vol.94, pp.13-19, 2000.

S. Qiu, M. Abdelaziz, F. Abdellatif, and C. G. , Exact and grid-free solutions to the Lighthill???Whitham???Richards traffic flow model with bounded acceleration for a class of fundamental diagrams, Transportation Research Part B: Methodological, vol.55, pp.55-282, 2013.
DOI : 10.1016/j.trb.2013.07.002

P. I. Richards, Shock Waves on the Highway, Operations Research, vol.4, issue.1, pp.42-51, 1956.
DOI : 10.1287/opre.4.1.42

J. A. Sethian, Level set methods and fast marching methods : evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 1999.

C. M. Tampère, Human-kinetic multiclass traffic flow theory and modelling, Civil Engineering and Geosciences, Department Transport & Planning, p.309, 2004.

C. M. Tampère, R. Corthout, D. Cattrysse, and L. H. Immers, A generic class of first order node models for dynamic macroscopic simulation of traffic flows, Transportation Research Part B: Methodological, vol.45, issue.1, pp.45-289, 2011.
DOI : 10.1016/j.trb.2010.06.004

C. M. Tampère, S. P. Hoogendoorn, and B. Van-arem, Continuous traffic flow modeling of driver support systems in multiclass traffic with intervehicle communication and drivers in the loop, Intelligent Transportation Systems, IEEE Transactions on, vol.10, pp.649-657, 2009.

A. Tordeux, Étude de processus en temps continu modélisant l'écoulement de flux de trafic routier, 2010.

M. Treiber, A. Hennecke, and D. Helbing, Congested traffic states in empirical observations and microscopic simulations, Physical Review E, vol.62, issue.2, pp.62-1805, 2000.
DOI : 10.1103/PhysRevE.62.1805

M. Treiber and V. Kanagaraj, Comparing numerical integration schemes for time-continuous car-following models, arXiv preprint, 2014.

M. Treiber and A. , Kesting, and D. Helbing, Delays, inaccuracies and anticipation in microscopic traffic models, Physica A : Statistical Mechanics and its Applications, pp.71-88, 2006.

J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, Automatic Control, IEEE Transactions on, vol.40, pp.1528-1538, 1995.

F. Van-wageningen-kessels, Y. Yuan, S. P. Hoogendoorn, H. Van-lint, and K. Vuik, Discontinuities in the Lagrangian formulation of the kinematic wave model, Discontinuities in the lagrangian formulation of the kinematic wave model, pp.148-161, 2013.
DOI : 10.1016/j.trc.2011.08.004

J. G. Wardrop, Some theorical aspects of road traffic research, Proceedings of the Institute of Civil Engineers, pp.325-378, 1952.

R. Wiedemann, Simulation des verkehrsflusses schriftenreihe des instituts für verkehrswesen, 1974.

R. Wiedemann and U. Reiter, Microscopic traffic simulation : the simulation system mission, background and actual state, Project ICARUS (V1052) Final Report, 1992.

D. B. Work, O. Tossavainen, Q. Jacobson, and A. M. Bayen, Lagrangian sensing: traffic estimation with mobile devices, 2009 American Control Conference, pp.1536-1543, 2009.
DOI : 10.1109/ACC.2009.5160332

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Z. Xu and C. Shu, Anti-diffusive high order WENO schemes for Hamilton?Jacobi equations, Methods and Applications of Analysis, pp.169-190, 2005.

I. Yperman, The link transmission model for dynamic network loading, 2007.

H. M. Zhang, A theory of nonequilibrium traffic flow, Transportation Research Part B: Methodological, vol.32, issue.7, pp.485-498, 1998.
DOI : 10.1016/S0191-2615(98)00014-9

P. Zhang, S. Wong, and S. Dai, A conserved higher-order anisotropic traffic flow model: Description of equilibrium and non-equilibrium flows, Transportation Research Part B: Methodological, vol.43, issue.5, pp.43-562, 2009.
DOI : 10.1016/j.trb.2008.10.001

Y. Zhang and C. Shu, High-Order WENO Schemes for Hamilton--Jacobi Equations on Triangular Meshes, SIAM Journal on Scientific Computing, vol.24, issue.3, pp.1005-1030, 2003.
DOI : 10.1137/S1064827501396798

A. Case, Tolerance = 10 ? 3, step of density = 0, p.151

E. Hamiltonian and .. , Case of the parabola, without flux limiter A = ?. Tolerance = 10 ?3 , step of density = 0.01. The flow axis is rescaled between 0 and 1, p.153

¯. Flux-limiter and . For-the-effective-hamiltonian, case of two traffic signals, with respect to the spacing l and the offset ? between both signals, p.171

.. Illustration-de-la-conservation-du-trafic, 242 A.4 Notations for the microscopic car-following models, p.245

.. Car-following-models-classification, 249 A.3 Classification de quelques exemples -sans exhaustivité-de logiciels de simulation en trafic, p.250