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The appearance of things changes according to the emotions,
and thus we see magic and beauty in them,
while the magic and beauty are really in ourselves.

Gibran Khalil Gibran
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Abstract

Convex optimization aims at searching for the minimum of a convex function
over a convex set. While the theory of convex optimization has been largely
explored for about a century, several related developments have stimulated
a new interest in the topic. The first one is the emergence of efficient
optimization algorithms, such as proximal methods, which allow one to easily
solve large-size nonsmooth convex problems in a parallel manner. The second
development is the discovery of the fact that convex optimization problems
are more ubiquitous in practice than was thought previously.

In this thesis, we address two different problems within the framework
of convex optimization. The first one is an application to computer stereo
vision, where the goal is to recover the depth information of a scene from
a pair of images taken from the left and right positions. The second one is
the proposition of new mathematical tools to deal with convex optimization
problems involving information measures, where the objective is to minimize
the divergence between two statistical objects such as random variables or
probability distributions.

We propose a convex approach to address the problem of dense disparity
estimation under varying illumination conditions. A convex energy function
is derived for jointly estimating the disparity and the illumination variation.
The resulting problem is tackled in a set theoretic framework and solved
using proximal tools. It is worth emphasizing the ability of this method
to process multicomponent images under illumination variation. The con-
ducted experiments indicate that this approach can effectively deal with the
local illumination changes and yields better results compared with existing
methods.

We then extend the previous approach to the problem of multi-view
disparity estimation. Rather than estimating a single depth map, we estimate
a sequence of disparity maps, one for each input image. We address this
problem by adopting a discrete reformulation that can be efficiently solved
through a convex relaxation. This approach offers the advantage of handling
both convex and nonconvex similarity measures within the same framework.
We have shown that the additional complexity required by the application of
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our method to the multi-view case is small with respect to the stereo case.
Finally, we have proposed a novel approach to handle a broad class of

statistical distances, called ϕ-divergences, within the framework of proximal
algorithms. In particular, we have developed the expression of the proximity
operators of several ϕ-divergences, such as Kulback-Leibler, Jeffrey-Kulback,
Hellinger, Chi-Square, Iα, and Renyi divergences. This allows proximal
algorithms to deal with problems involving such divergences, thus overcoming
the limitations of current state-of-the-art approaches for similar problems.
The proposed approach is validated in two different contexts. The first is an
application to image restoration that illustrates how to employ divergences as
a regularization term, while the second is an application to image registration
that employs divergences as a data fidelity term.
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Cette thèse s’inscrit dans le contexte de l’optimisation convexe. Elle ap-
porte à ce domaine deux contributions principales. La première porte sur
les méthodes d’optimisation convexe non lisse appliquées à la vision par
ordinateur. Quant à la seconde, elle fournit de nouveaux résultats théoriques
concernant la manipulation de mesures de divergences, telles que celles
utilisées en théorie de l’information et dans divers problèmes d’optimisation.

Le principe de la stéréovision consiste à exploiter deux images d’une même
scène prises sous deux points de vue, afin de retrouver les pixels homologues
et de se ramener ainsi à un problème d’estimation d’un champ de disparité.
Dans ce travail, le problème de l’estimation de la disparité est considéré
en présence de variations d’illumination. Ceci se traduit par l’ajout, dans
la fonction objective globale à minimiser, d’un facteur multiplicatif variant
spatialement, estimé conjointement avec la disparité. Nous avons mis l’accent
sur l’avantage de considérer plusieurs critères convexes et non-nécessairement
différentiables, et d’exploiter des images multicomposantes (par exemple,
des images couleurs) pour améliorer les performances de notre méthode. Le
problème d’estimation posé est résolu en utilisant un algorithme parallèle
proximal basé sur des développements récents en analyse convexe.

Dans une seconde partie, nous avons étendu notre approche au cas
multi-vues qui est un sujet de recherche relativement nouveau. Cette ex-
tension s’avère particulièrement utile dans le cadre d’applications où les
zones d’occultation sont très larges et posent de nombreuses difficultés.
Pour résoudre le problème d’optimisation associé, nous avons utilisé des
algorithmes proximaux en suivant des approches multi-étiquettes relaxés
de manière convexe. Les algorithmes employés présentent l’avantage de
pouvoir gérer simultanément un grand nombre d’images et de contraintes,
ainsi que des critères convexes et non convexes. Des résultats sur des im-
ages synthétiques ont permis de valider l’efficacité de ces méthodes, pour
différentes mesures d’erreur.
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La dernière partie de cette thèse porte sur les problèmes d’optimisation
convexe impliquant des mesures d’information (ϕ-divergences), qui sont large-
ment utilisés dans le codage source et le codage canal. Ces mesures peuvent
être également employées avec succès dans des problèmes inverses rencontrés
dans le traitement du signal et de l’image. Les problèmes d’optimisation
associés sont souvent difficiles à résoudre en raison de leur grande taille.

Dans ce travail, nous avons établi les expressions des opérateurs proximaux
de ces divergences. En s’appuyant sur ces résultats, nous avons développé une
approche proximale reposant sur l’usage de méthodes primales-duales. Ceci
nous a permis de répondre à une large gamme de problèmes d’optimisation
convexe dont la fonction objective comprend un terme qui s’exprime sous la
forme de l’une de ces divergences.

Vue d’ensemble du travail effectué

Optimisation convexe
Le chapitre 2 a pour but d’introduire le lecteur aux problèmes inverses
dans le cadre convexe. Notre exposé se limite à la description des outils
mathématiques nécessaires à notre étude. Pour ce faire, nous avons
fourni, dans un premier temps, un bref aperçu des problèmes inverses
en nous basant sur des approches variationnelles, pour ensuite présenter
les algorithmes d’optimisation convexe. Une attention particulière a
été accordée à la projection sur des ensembles convexes, à la fin de ce
chapitre.

Estimation de la disparité
La stéréoscopie est l’un des problèmes fondamentaux de la vision par
ordinateur. Le procédé de la stéréoscopie est calqué sur la perception
humaine du relief grâce aux deux images planes que perçoit chaque
œil. Ce processus constitue un enjeu majeur en vision par ordinateur.
Une étape cruciale dans la résolution de ce problème est la mise en
correspondance stéréoscopique.

Le problème de la mise en correspondance est un procédé de recon-
struction de la profondeur à partir de deux images de la même scène
acquises avec des angles différents. En établissant que deux points
correspondants, dans deux images acquises, représentent la projection
d’un même point de la scène, on peut calculer par triangulation la
position tridimensionnelle exacte de ce point dans l’espace.

L’un des problèmes les plus délicats en vision par ordinateur, notam-
ment dans le cadre de la mise en correspondance stéréoscopique, est
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celui de changements d’illumination qui peuvent affecter deux vues
d’une même scène. Un autre problème critique provient de la présence
d’objets dont la surface est uniforme ou de la présence de textures
répétitives. En effet, les pixels dans ces régions ne représentent pas de
primitives discriminantes, c’est à dire que plusieurs correspondants po-
tentiels ayant la même valeur de luminance existent dans l’autre image.
Les régions homogènes sont donc difficiles à apparier. Par ailleurs, une
autre difficulté rencontrée par les méthodes de mise en correspondance
concerne les occultations. Des points de la scène peuvent être visibles
dans une image de la paire stéréoscopique mais pas dans l’autre.

Pour pallier ces difficultés, les méthodes de mise en correspondance sont
amenées à exploiter toutes les informations disponibles afin de faciliter
la recherche et la détermination des correspondants. Les techniques les
plus simples et les plus courantes se basent sur une recherche locale
de similarité entre de petites régions, typiquement par optimisation
d’une fonction de corrélation. On peut aussi segmenter les images
et mettre en correspondance les régions obtenues. L’avantage de ces
méthodes est que la mise en œuvre est simple et efficace pour un
temps de calcul relativement faible. Cependant, les techniques locales
sont sensibles aux occultations, aux régions faiblement texturées et
aux motifs répétitifs. Les approches globales tentent de pallier ces
inconvénients en minimisant une fonction de coût globale qui fait inter-
venir l’ensemble des pixels des images, mais au prix d’une complexité
de calcul plus élevée. Plusieurs méthodes d’optimisation ont été pro-
posées dans la littérature. Nous pouvons distinguer les méthodes à
variables discrètes, qui effectuent un appariement de couples de pix-
els, comme la programmation dynamique ou les coupures de graphes,
des méthodes à variables continues, où la disparité estimée prend des
valeurs réelles “quelconques”, comme dans les approches variationnelles.

Dans notre travail, nous nous plaçons dans ce dernier cadre en em-
ployant des méthodes parallèles reposant sur des opérateurs proxi-
maux. Dans le Chapitre 3, le problème de mise en correspondance est
alors formulé comme un problème d’optimisation convexe sous con-
traintes. Une fonction objective convexe est minimisée sur l’intersection
d’ensembles convexes. Ces ensembles sont associés à différentes con-
traintes modélisant des informations a priori sur les propriétés des
champs à estimer. L’originalité de cette approche se traduit par
plusieurs aspects:

• L’estimation de la carte de disparité est effectuée ici en présence
de variations d’illumination dans la scène observée. Ceci se traduit
par l’ajout, dans la fonction objective globale à minimiser, d’un
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facteur multiplicatif variant spatialement, qui est estimé conjoin-
tement avec la disparité.

• Des images multi-composantes sont prises en considération. Cette
technique est élaborée en prenant en compte les trois canaux
couleurs (RGB, YUV, . . . ). La formulation globale n’étant pas
convexe, on propose une méthodologie d’approximation convexe
basée sur un développement de Taylor au premier ordre.

• Le critère convexe (distance) considéré peut être choisi de manière
très générale et peut être non différentiable (une norme `1 par
exemple).

• L’algorithme considéré offre une grande flexibilité quant au choix
du critère à minimiser et à l’incorporation de contraintes multiples.
Par ailleurs, il faut souligner que la méthode peut être implantée
sur une architecture parallèle (multi-coeurs, multi-processeurs,
GPU, ...).

Dans les résultats de simulation fournis, nous démontrons l’efficacité
de notre approche.

Estimation de la disparité en multi-vues
L’imagerie multi-vues a suscité un vif intérêt dans différentes appli-
cations telles que le cinéma numérique, la médecine, le trafic aérien,
les technologies militaires, les jeux vidéos, etc. Le développement
de la télévision 3D et des supports auto-stéréoscopiques a suscité de
nombreuses études portant sur le traitement de séquences d’images. Il
s’agit en particulier, d’extraire de l’information 3D à partir des vues
disponibles, sous forme de cartes de disparités.

Dans le Chapitre 4, nous étendons l’approche présentée dans le Chapitre 3
au cas multi-vues. On dispose de caméras calibrées, dont les paramètres
sont connus et les images acquises sont rectifiées. Nous proposons
d’estimer les cartes de disparité de chaque image présente dans la
séquence en exploitant toutes les données dans les vues adjacentes. La
stratégie adoptée permet d’exploiter les zones occultées qui se trouvent
dans certaines vues, ainsi que d’améliorer la précision des estimations
(par rapport au cas stéréo).

Pour résoudre les problèmes d’optimisation associés, nous avons utilisé
des algorithmes proximaux en suivant deux approches de relaxation
convexe différentes:

• Premièrement, nous avons considéré une approche multi-étiquettes
fondée sur des développements récents de l’analyse convexe. La
technique employée présente l’avantage de pouvoir manipuler un
grand nombre d’images avec une complexité faible par rapport
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au cas stéréo. Cet algorithme offre une grande flexibilité quant
à l’incorporation de critères convexes mais aussi non convexes
(`1-tronquée, ` 1

2
-tronquée, . . . )

• Deuxièmement, nous appliquons une linéarisation basée sur un
développement de Taylor amélioré.

Des résultats sur des images ont permis, pour différentes formes de
critère de mesure d’erreur, de valider l’efficacité de la première méthode
par rapport à la seconde et d’autres approches existantes.

Opérateurs proximaux des ϕ-divergences
La théorie de l’information est une branche émergente des mathématiques
appliquées et de l’informatique, issue de la volonté de quantifier les
échanges d’information. Dans les années 40, Claude Shannon a développé
la théorie de l’information qui décrit les aspects les plus fondamentaux
des systèmes de transmission. Cette théorie s’intéresse à la construction
et à l’étude de modèles mathématiques, en se basant essentiellement sur
la théorie des probabilités. Elle s’est développée au fur et à mesure et
est devenue aujourd’hui incontournable dans la conception des systèmes
de communication. Elle a été étendue à d’autres champs d’applications,
ou le codage, comme pour le codage source/canal.

Une fonction fondamentale de la mesure de l’information est la diver-
gence de Kullback -Leibler, qui mesure la distance entre deux objets
statistiques telles que des variables aléatoires par le biais de leurs distri-
butions de probabilité. Une telle divergence est un cas particulier d’une
classe plus large de distances appelées ϕ-divergences, incluant celles
de Jeffreys-Kullback, Hellinger, Chi-Square, Iα, et de Renyi. Nous
présentons dans ce qui suit un bref résumé sur l’état de l’art concernant
ces divergences:

• La divergence de Kullback-Leibler(KL) a un rôle de premier plan
dans le domaine de codage source/canal pour le calcul de la
capacité de transmission et de la fonction de débit-distorsion.
Ces problèmes sont souvent résolus par des algorithmes basés
sur la minimisation alternée proposés par Blahut et Arimoto.
La symétrisation classique de Kullback- Leibler est la diver-
gence de Jeffreys-Kullback, qui est connue dans plusieurs ap-
plications surtout dans les méthodes basées sur les algorithmes
des k-moyennes.

• La divergence d’Hellinger a été initialement introduite par Beran
et elle est connue sous différentes dénominations (telles que la
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divergence de Jeffreys-Matusita). Dans le domaine de la théorie
de l’information, la divergence d’Hellinger est couramment utilisée
dans l’analyse des données, des statistiques et de l’apprentissage
automatique.

• La divergence Chi-carré a été introduite par Pearson qui l’a utilisée
pour évaluer quantitativement si un phénomène observé tend à
confirmer une hypothèse donnée. Cette divergence a été ap-
pliquée avec succès dans différents contextes, tels que la théorie
de l’information et le traitement du signal, comme une mesure de
dissimilarité entre deux distributions de probabilités.

• La Iα-divergence a été initialement proposée pour évaluer statis-
tiquement l’efficacité d’un test d’hypothèse. Elle a été étendue par
de nombreux chercheurs et est surtout considérée dans le contexte
de la factorisation des matrices non-négatives.

• La divergence de Rényi a été introduite par Alfréd Rényi comme
une mesure de l’information liée à l’entropie Rényi. Elle a été
étudiée et appliquée dans de nombreux domaines, y compris les
problèmes de recalage d’image.

Etant des fonctions de dissimilarité, les ϕ-divergences peuvent servir
comme critères de minimisation dans les problèmes d’optimisation.
Cependant, ce sont des fonctions non lisses, ce qui exclut les techniques
d’optimisation lisses. De plus, les approches existantes impliquant ce
type de mesures se limitent souvent à des problèmes où la minimisation
est effectuée par rapport à l’un des arguments de la divergence, ou
en utilisant des approches alternées qui nécessitent des hypothèses
spécifiques pour être valides.

Les méthodes proximales constituent un cadre approprié pour les ϕ-
divergences, puisque ce sont des méthodes permettant de traiter des
fonctions convexes non lisses. La difficulté provient du fait que le
calcul de l’opérateur proximal des ces divergences n’est pas trivial. En
effet, une ϕ-divergence est une somme de fonctions à deux variables
non séparables. Par conséquent, le défi consiste à calculer des expres-
sions explicites de ces opérateurs. Dans le Chapitre 5, nous avons
établi les expressions des opérateurs proximaux de ces divergences.
Ce calcul nous a permis de développer de nouvelles méthodes proxi-
males qui permettent d’aborder des formes plus générales de problèmes
d’optimisation. Les expressions des opérateurs proximaux présentées,
directement liée à des fonctions convexes de deux variables réelles, ont
enrichi la liste des fonctions pour lesquelles un tel opérateur proximal
peut être facilement calculé.
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Projections épigraphiques
Les projections épigraphiques revêtent un grand intérêt lorsqu’il s’agit
de traiter des contraintes pour lesquelles une forme explicite de la
projection n’existe pas. Dans ce contexte, nous avons fourni dans le
Chapitre 5 des résultats théoriques pour montrer comment les formes
des opérateurs proximaux des divergences peuvent être utilisées pour
calculer l’expression de la projection sur l’épigraphe d’un certain nombre
de fonctions convexes.

Applications des opérateurs proximaux des ϕ-divergences
Les divergences ont été largement utilisées dans la littérature dans
différents contextes. Des mesures d’information ont été exploitées pour
comparer deux fonctions de densité de probabilité, et certaines servent
à mesurer la différence entre deux vecteurs aléatoires de même distribu-
tion. Dans le Chapitre 6, nous utilisons ces mesures d’information dans
deux applications différentes. Tout d’abord, nous étendons le cadre
de la variation totale non locale en utilisant des divergences pour con-
struire une nouvelle régularisation (en débruitage et en déconvolution).
Le recalage d’images constitue un autre exemple illustrant l’utilité des
opérateurs proximaux proposés.

Conclusion
Nous résumons nos contributions et dégageons quelques pistes pour de
futurs travaux dans le Chapitre 7.
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- Chapter 1 -

Introduction

“What is written without effort is in general read without pleasure.”
Samuel Johnson

Optimization is a rich and thriving mathematical discipline. Historically,
the first methodology for solving nonlinear optimization problems is due to
Fermat (1601–1665). Because of this work, Lagrange (1736–1813) stated
clearly that he considered Fermat to be the inventor of calculus (as opposed
to Newton (1643–1727) and Leibnitz (1646–1716) who were later locked in a
bitter struggle for this honor). At the beginning of the nineteenth century,
the least-squares method was firmly established as a scientific approach by
Gauss, Legendre, and Laplace within the space of a decade. Since then,
optimization theory has grown ever more sophisticated. The powerful and
elegant language of convex analysis unifies much of this theory, to which a
strong contribution was brought, among others, by Moreau (1923–2014). A
large number of important analytic problems have illuminating optimization
formulations and hence can be approached through convex analysis tools.
In this thesis, we present two main contributions within the framework
of convex optimization. The first one concerns an application of recent
nonsmooth optimization methods to computer stereo vision, while the second
one provides novel theoretical tools to deal with divergence measures in
optimization problems.

Disparity estimation One of the main challenges in computer vision
consists of reproducing human abilities by means of mathematical models
involving geometry, statistics, and learning theory. A popular example is
computer stereo vision, inspired from a biological process called stereopsis.
Stereopsis is the impression of depth that is perceived when a scene is
observed with two eyes. Indeed, binocular vision creates two slightly different
images of the scene in the two eyes, due to the different positions of the eyes
on the head. These differences, referred to as binocular disparity, provide
information that the brain can use to calculate depth in the visual scene,
providing a major means of depth perception.

1



2 Introduction

In stereo vision, binocular disparity refers to the difference in location
of an object seen from two different viewpoints. Such a difference results
from the horizontal separation of cameras (see Figure 1.1). In the same way
as the brain computes the depth of the visual scene, the disparity serves to
extract 3D information from 2D digital images, since the disparity is inversely
proportional to the depth. Disparity map can be recovered by estimating the
relative position of features in the stereo pair. This process is called stereo
matching. Looking for correspondences between stereo images is a difficult
task, because of the presence of hidden areas (i.e. occlusions) and because of
the fact that the light is reflected differently depending on the viewing angle.
A huge amount of solutions have been proposed to address stereo matching.
In this thesis, we present original approaches based on convex optimization.

Figure 1.1

Divergence measures Information theory is a branch of applied mathe-
matics and computer science involving the quantization of information. It
was developed by Shannon to find fundamental limits on communication
and signal processing operations. Since its inception, it has broadened to
find applications in many other areas, including statistical inference, natural
language processing, cryptography, neurobiology, quantum computing, and
other forms of data analysis. Important sub-fields of information theory are
source/channel coding, algorithmic information theory, complexity theory,
and measures of information (see Figure 1.2). A key measure of information
is the Kullback-Leibler divergence, which quantifies the distance between
two statistical objects such as random variables or probability distributions.
Such a divergence is a special case of a broader class of statistical distances
called ϕ-divergences. Thanks to their interesting properties, ϕ-divergences
have been widely used in optimization problems as similarity criteria between
the sought solution and a given observation. However, existing approaches
involving these kinds of measures are often restricted to problems where the
minimization is performed w.r.t. one of the arguments of the divergence, or
by using alternating minimization approaches which require specific assump-
tions to be valid. In this thesis, we present an original convex optimization
approach that circumvents the above limitations.
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Euclidean geomet ry

I nformat ion geomet r ies

Euclidean distance
d2(p, q) = i (pi − qi )2 (Pythagoras’

theorem circa 500 BC)

Minkowski distance (L k -norm)
dk (p, q) = k

i |pi − qi |k

(H. Minkowski 1864-1909)
Space-t ime geomet r y

Manhat tan distance
d1(p, q) = i |pi − qi |
(city block-taxi cab)

Mahalanobis met ric (1936)
dΣ = (p − q)T Σ − 1(p − q)

Quadrat ic distance
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Riemannian met ric tensor
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ds ds
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(C. Shannon 1948)
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∂ θ ln p(X |θ)

2
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(R. A. Fisher 1890-1962)

Kullback-Leibler divergence
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(relat ive ent ropy, 1951)

Rényi divergence (1961)
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Hellinger
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Figure 1.2: Taxonomy of principal distances. c©Frank Nielsen, 2007.
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Challenges

Estimating depth from stereo images is a central challenge in computer
vision and pattern analysis. Recovering 3D information from a pair of stereo
cameras has been a popular topic because the additional 3D information
provided by this technology contains significantly more information than 2D
clues produced by traditional cameras. However, this 2D to 3D evolution has
always been facing many challenges, which can be grouped into two main
categories: accuracy and efficiency. Accuracy becomes an important concern
in applications such as precise 3D surface modeling, especially when dealing
with object surfaces with reflectance behavior, rich geometric structure,
significant amount of occlusion and poor texture. Efficiency is one of the
main issues when the stereo system is employed in real-time applications
such as robot navigation, video surveillance, and interactive user interfaces.
Unfortunately, these challenges often conflict with each other: in order to
improve the quality of stereo matching, people usually cast the problem as
a global optimization problem, which results in a high computational cost
and a poor efficiency. On the other hand, most efficient stereo matching
algorithms are based on only local information, which leads to poor accuracy
in some difficult situations. Another challenge in depth estimation from
stereo images is the presence of hidden surfaces (occlusions), moving objects
or surfaces that reflect the light differently depending on the viewing angle,
therefore complicating the matching task.

The rapid development of computer technology in the last decades has
changed the methodologies underlying the 3D reconstruction. In this context,
a possible approach consists of first extracting the depth from multiple images,
and then reconstructing 3D scene using the depth information. Therefore,
multi-view depth estimation has become a crucial step in computer vision.
However, this kind of methods have to face the challenge of efficiently han-
dling a massive amount of multi-view data (w.r.t. the stereo case).

ϕ-divergences are often used as discrete measures in signal processing
problems. They serve as dissimilarity functions in many information theoretic
models, data recovery tasks, and machine learning. Their popularity stems
from their intimate connections with information theory concepts such as
the entropy and the mutual information. Being dissimilarity functions, they
may serve as criteria to be minimized in optimization problems. However,
ϕ-divergences are nonsmooth functions, which rules out smooth optimization
techniques. Proximal methods represent an ideal framework for ϕ-divergences,
as these methods are able to deal with nonsmooth convex functions. Here,
the difficulty stems from the fact that computing the proximity operator of
ϕ-divergences is not trivial since they are not separable functions of scalar
variables. Consequently, the challenge is to derive closed form expressions of
these operators.
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Contributions

Applications to computer stereo vision:

• We propose a convex optimization framework to address the problem
of dense disparity estimation under varying illumination conditions.
A convex energy function that takes into account the illumination
variation model is derived by resorting to a relaxation based on a
first-order Taylor approximation around an initial estimate. This
energy is then minimized while taking into consideration various convex
constraints arising from prior knowledge and observed data (Chapter 3).
The proposed method allows us to incorporate various convex distances
and it relies on the extension of the Parallel ProXimal Algorithm
(PPXA).

• We show, for the same optimization problem, the ability to consider
multicomponent images with illumination variation, and also the flex-
ibility in minimizing various (possibly nonsmooth) convex similarity
measures and combining them with various convex constraints.

• In the context of multi-view images, we address the problem of disparity
estimation from rectified images. We estimate a sequence of disparity
maps by exploiting, for each of these maps, information from all the
available views.

• We investigate the possibility of handling nonconvex similarity measures
by adopting a discrete formulation of the disparity estimation problem
which is exactly solved by a tight convex relaxation (Chapter 4). We
show that the additional complexity incurred by our method in the
multi-view context is small with respect to the stereo case.

Theoretical tools for dealing with divergence measures in optimization:

• ϕ-divergences are often restricted to problems where the minimization
is performed w.r.t. one of the arguments of the divergence, or they are
based on an alternating minimization process which requires specific
assumptions to converge. In this work, we develop a novel proximal
method that allows us to address more general forms of optimization
problems, by computing the expressions of the proximity operators of
two-variable convex functions. The expressions we have derived for
these divergences enrich the list of functions for which such proximity
operators can be easily calculated (Chapter 5).

• We have provided two different applications for divergence proximity
operators in signal processing:
� We extended the Non Local Total Variation (NLTV) framework
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by using information divergences to build new sparsity regularization
measures for signal recovery.
� We have involved the divergence in the expression of the data fidelity
term for image registration, more precisely for disparity estimation
under illumination variation.
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under illumination variation, Journée des doctorants, Champs sur
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imal methods for disparity map estimation, Symposium on Variation
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M. El Gheche, C. Chaux, J.-C. Pesquet, B. Pesquet-Popescu and J.
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Organization and Summary

This thesis is organized as follows. Chapter 2 introduces the reader to the
topic of convex optimization and the associated algorithmic solutions.

Then, Chapter 3 addresses the dense disparity estimation problem from
multicomponent images, formulated as an inverse problem by minimizing
a convex objective function under multiple convex constraints. These con-
straints arise from prior knowledge and rely on various properties of the
field to be estimated. We address the problem of disparity estimation under
varying illumination conditions, and develop a spatially varying multiplica-
tive model that accounts for photometric changes between both images in
the stereo pair. Results on synthetic and real stereo pairs demonstrate the
efficiency of the proposed method in recovering illumination changes and
disparity map jointly, making disparity estimation very robust w.r.t. such
changes.

For large scale or complex scenes, we address, in Chapter 4, the problem
of multi-view disparity estimation from rectified images. A sequence of
disparity maps is estimated by using two different approaches, which differ in
the type of convex relaxation employed. For each of these maps, information
from all the available views are exploited without adding much computational
cost with respect to the two-view case.

In Chapter 5, we focus on convex optimization problems involving infor-
mation measures (ϕ-divergence), which have been extensively investigated in
source and channel coding. These measures can also be successfully used in
inverse problems encountered in signal and image processing. The related
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optimization problems are often challenging due to their large size. We de-
rive closed-form expressions of the proximity operators of these divergences.
Building upon these results, we develop an efficient proximal approach. This
allows us to address, in Chapter 6, two applications of convex optimization
problems involving one of these divergences.

Finally, we draw some conclusions and perspectives in Chapter 7.



- Chapter 2 -

Convex optimization background

“Everything is ����possible convex.”
P. L. Combettes and J.-C. Pesquet

Optimization constitutes a wide and rich mathematical field. Many ap-
plications in computer design or analysis, in particular for real-time reactive
or automatic systems, rely on a wealth of these thriving tools. In recent
years, the theory underlying the computational techniques in convex and
nonconvex optimization have been studied by many authors. However, the
elegant and dynamical language of convex analysis enlights much more the
potential of optimization theory. Convex analysis, its extensions and its
applications have known many developments in the recent years.

This chapter mainly focuses on the convex formulation of inverse problems.
In this part, we aim at describing the tools relevant to our studies. Firstly,
we begin with a brief overview of inverse problems addressed by variational
approaches. Then, we provide a brief presentation of convex optimization
algorithms. Finally, we discuss different methods for computing the projection
onto a convex set.

9
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§ 2.1 inverse problems

In many optimization problems, one is interested in measuring a physical
signal which is not directly available. In this context, we often classify the
problems along two axes:

• Direct problem: having a complete description of a physical system,
we can estimate the outcome of some measurements. One can say it is
a problem of inferring the consequences from given causes.

• Inverse problem: finding the unknown causes of known consequences
(it is associated with the reversal of the cause-effect relationship).

Using the actual result of some measurements, we are able to infer the values
of the parameters that characterize the system Bertero and Boccacci [1998].
The inherent inverse problem consists in recovering the target signal by
making explicit any available a priori information on the model parameters.
There exist many applications to inverse problems which can be found in
many fields such as satellite image restoration Facciolo et al. [2009]; Hajlaoui
et al. [2010], microscopy image deconvolution Dupé et al. [2009]; Jezierska
et al. [2012], computed tomography Vandeghinste et al. [2011], machine
learning Bach et al. [2012]; Theodoridis et al. [2011], stereo vision Deriche
et al. [1996]; Miled et al. [2009a]; Pock et al. [2010], audio processing Kowalski
et al. [2010]; Akyildiz and Bayram [2012]...

A popular inverse problem consists in recovering a signal (e.g. an image)
which is as close as possible to a reference one. Because of sensor imperfections
and acquisition errors, the measured data are often noisy and degraded by a
linear operator. Let us consider the basic approach in restoration where the
direct problem can be formulated as follows:

z = Tx+ w, (2.1)

where z = (zj)1≤j≤K ∈ RK is the degraded observation and x = (xi)1≤i≤N ∈
RN is the image to be recovered. The linear operator T = (Tj,i)1≤j≤K,1≤i≤N ∈
RK×N describes the physical laws linking x to the measurements z (e.g.
motion blur, defocussing blur, ...) and the components of w = (wj)1≤j≤K ∈
RK are realizations of a mutually independent zero-mean (for example
Gaussian) noise process. Solving the inverse problem associated with (2.1)
aims at recovering x from z. One of the most well-known approaches in this
context is the least squares method Gauss [1820]; Kay [1998]. It consists in
minimizing the quadratic distance between the observation and the image to
be recovered:

argmin
x∈RN

‖Tx− z‖2. (2.2)
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(a) Original image x

(b) Blury image Tx: T of size 7
×7

(c) Noisy image z: with zero-mean
Gaussian noise and variance=400

Figure 2.1: Example of a degraded image resulting from the direct problem:
z = Tx+ w.

The solution to Problem (2.2) may be highly unstable and sensitive to
small changes in the data. In such a case, we can certainly see why an inverse
problem would be “difficult”. A more precise way to look at this might be
defined by how “solvable” a given problem is, which leads to the notion of
well-posed and ill-posed problems proposed by Hadamard [1902].

Well-posed problems Hadamard proposed three properties that a prob-
lem must possess in order to be classified as a well-posed one: existence,
uniqueness and stability. For our purposes, considering only finite dimen-
sional linear operators, we can think of data and solutions as the input and
output vectors of some linear transformations. The first two properties seem
rather obvious: a solution x̂ exists for each observation z and this solution is
unique. The third property is a question of stability, requiring that small
changes to the input do not produce arbitrarily large changes to the output.
A problem that lacks any one of these properties is by definition ill-posed.
Thus, to solve the problem in a reliable manner, it is necessary to incorporate
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additional information Tikhonov [1963]. One of the first approaches to get a
stable and satisfactory solution consists in adding a quadratic penalization
term in order to achieve a small energy:

argmin
x∈RN

‖Tx− z‖2 + λ‖x‖2, (2.3)

where λ > 0 is the regularization parameter which balances the solution
between the data fidelity term ‖Tx− z‖2 and the penalization ‖x‖2. A more
general formulation of the regularized problem will be presented afterwards.

2.1.1 Data fidelity and prior information

Since many inverse problems are inherently ill-posed, a Bayesian approach
may help in finding a stable and satisfactory solution. Let x be a realization
of a random variable X with prior probability density function PX and z a
realization of a random variable Z with conditional likelihood PZ|X=x. One
aims at finding the signal x having the maximum a posterior probability
density function PX|Z=z(x), given the observation z, i.e.

x∗ = arg max
x

PX|Z=z(x). (2.4)

Using Bayes rule, the posterior probability density function can be decom-
posed into likelihood and prior probability measures :

x∗ = arg max
x

PZ|X=x(z)PX(x). (2.5)

Taking the minus-logarithm of the above expression, eventually leads to the
following minimization problem:

minimize
x

− logPZ|X=x(z)︸ ︷︷ ︸
g(x)

+ (− logPX(x)︸ ︷︷ ︸
Ψ(x)

), (2.6)

where the function g is the data fidelity term and the function Ψ is the
prior term. Note that the fidelity term typically presents a separable form,
as it is common to assume the statistical conditional independence of the
components of vector Z:

g(x) =

N∑
i=1

g(i)(x, zi). (2.7)

The terms g(i)(x, zi) may be explicitly defined by a particular likelihood
distribution PZi|X=x(zi) (as in denoising problems), or they may be implicitly
derived from local matching scores (as in disparity estimation problems).

From a practical standpoint, it is important to balance the importance of
the data fidelity term g against the regularization Ψ, as it has an impact over
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the signal to be recovered. A possible solution is to introduce a regularization
constant λ ∈]0,+∞[ into the minimization problem, leading to the following
unconstrained formulation:

minimize
x

g(x) + λΨ(x). (2.8)

The alternative solution is to enforce an upper bound on the function g or
Ψ, yielding the following alternative constrained formulations:

minimize
x

g(x) s. t. Ψ(x) ≤ τ

(resp. minimize
x

Ψ(x) s. t. g(x) ≤ η), (2.9)

where τ and η are some positive constants which are chosen depending
on some prior information. Indeed, under technical assumptions, both
formulations are equivalent for some specific values of λ and τ (resp. η).
However, the constrained formulation may be considered more practical,
as the solution is less sensitive to the choice of regularization parameter λ,
and even the choice of τ (resp. η) may be easier than that of λ Combettes
and Trussell [1991]; Chierchia et al. [2013]; Afonso et al. [2011]. However,
it is worth noting that there exists well-known relationships between the
constrained formulation and the regularized one Ciak et al. [2012]; Teuber
et al. [2013]. The dual problem associated with (2.8) often has an interesting
interpretation in terms of the original problem, and sometimes leads to
efficient or distributed methods for solving it.

Convex data fidelity term In general, the function g may be either
convex or nonconvex. Unfortunately, finding a global minimum to Problems
(2.8) and (2.9), when g is nonconvex, turns out to be a very hard problem.
In some cases, good results may be obtained by local minimization, starting
from a good initialization, using for example PDEs (Partial Differential
Equations) or other variational approaches. However, such methods cannot
guarantee any form of quality of the result, as they may get stuck in local
minima.

On the other hand, when g is convex, there exist efficient numerical
methods to solve the above problems with guaranteed convergence (under
weak conditions). Consequently, a variety of convex relaxation techniques
have been developed to make the function g convex: first order Taylor
approximation Miled et al. [2009b], convex-hull approximation Jiang et al.
[2007], exact relaxation for binary problems Chan and Nikolova [2006], exact
relaxation for multi-label problems Pock et al. [2010], and semidefinite
programming Lieven and Stephen [1995].
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Convex regularization: The aim of regularization is to convey some prior
knowledge about the signal to be recovered, in order to make the original
problem well-posed. A priori knowledge should not reflect any specific
measurements of the physical signal which is currently available and analyzed.
In this regard, the more carefully the regularity is modeled (in terms of energy
to be minimized), the better the quality of the estimated signal. Since the
signals of interest are often piecewise smooth, popular regularization models
tend to enforce a sparsity condition by penalizing an analysis representation
of the target signal. In this context, Total Variation (TV) Rudin et al.
[1992]; Malgouyres [2002]; Peyré and Fadili [2011]; Bayram and Kamasak
[2012] has emerged as a simple, yet successful, regularization, consisting in
penalizing the gradient coefficients. However, TV fails to preserve textures,
details, and fine structures, because they are hardly distinguishable from
noise. To improve this behaviour, the TV model has been extended by using
a non-locality principle Gilboa and Osher [2009]; Werlberger et al. [2010];
Peyré [2011]; Chierchia et al. [2013]; Couprie et al. [2013]. Another approach
to overcome these limitations is to replace the gradient operator with a frame-
based transformation which may yield a more suitable sparse representation
of the signals of interest Mallat [1997]. The connections between these two
different approaches have been studied in Cai et al. [2012].

• Introducing a Total Variation regularization has an effect on smoothing
homogeneous regions in the image while preserving edges. Initially
introduced in image processing by Rudin et al. [1992], the TV regular-
ity measure has been proven to be very useful in image recovery and
denoising problems Combettes and Pesquet [2004]; Aujol [2009] and
variational stereo methods Miled et al. [2009a].

Let ∇̂(1) and ∇̂(2) denote discrete horizontal and vertical gradients
(for example, obtained by cyclic convolutions Combettes and Pesquet
[2008]; Pustelnik et al. [2011]). Then, a discrete version of the Total
Variation is the following one:

(∀x ∈ RN ) TV(x) =
∑
s∈D

√
|∇̂(1)x(s)|2 + |∇̂(2)x(s)|2 (2.10)

where D ⊂ Z2 is the image domain and s ∈ R2 is the spatial position
in the image x, here column-wise reshaped as an N -dimensional vector.
The associated constraint set is

C = {x ∈ RN |TV(x) ≤ τ} (2.11)

where τ can be computed based on some prior information on the target
solution (or approximated from an initial estimate). The projection
onto the convex set has been solved with various methods Van Den Berg
and Friedlander [2008]; Weiss et al. [2009]; Fadili and Peyré [2011] and
in particular with epigraphical ones Chierchia et al. [2013].
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• While TV is a simple convex optimization tool, it fails to preserve
textures. To improve this behaviour, the TV model has been extended
in Gilboa and Osher [2009] by relying on the non-locality principle
introduced in Buades et al. [2006].

NLTV(x) =
∑
s∈D

√∑
n∈Ws

ωs,n|x(s)− x(n)|2, (2.12)

whereWs is the neighbourhood support of s, that is a subset of positions
in D\{s} located in a relatively large Q×Q window centered at s, where
Q ∈ N is odd and ωs,n are some weights in [0,+∞[. The considered
NLTV constraint is expressed as

C ′ = {x ∈ RN |NLTV(x) ≤ τ ′} (2.13)

For computing the projection onto the convex set C ′, specific numerical
methods Chierchia et al. [2013] have been recently developed.

§ 2.2 Algorithms in convex optimization

Notation: In the following, we denote by ‖·‖ the standard Euclidean norm,
and by Id the identity matrix. The domain of a function f : RN →]−∞,+∞]
is dom f = {x ∈ RN |f(x) < +∞}. Γ0(RN ) is the class of lower semi-
continuous convex functions from RN to ]−∞,+∞] such that dom f 6= ∅.
Let f ∈ Γ0(RN ). The conjugate of f is the function f∗ ∈ Γ0(RN ) defined by

f∗ : RN →]−∞,+∞] : u 7→ sup
x∈RN

x>u− f(x) (2.14)

and the subdifferential of f is the set-valued operator

∂f : RN → 2R
N

: x 7→ {u ∈ RN |(∀y ∈ RN )(y−x)>u+f(x) ≤ f(y)}. (2.15)

When f is Gâteaux-differentiable at y ∈ RN , ∂f(y) = {∇f(y)} where ∇f(y)
is the gradient of f at y. A differentiable convex function has β-Lipschitz
continuous gradient ∇f if

(∀(x, y) ∈ RN × RN ) ‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖, (2.16)

where β ∈]0,+∞[.
Let C be a nonempty subset of RN . The indicator function of C is

ιC : RN →]−∞,+∞] : x 7→

{
0, if x ∈ C
+∞, if x /∈ C.

(2.17)
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Let S be a convex subset of RN . The relative interior of S, i.e. the set of
points x ∈ S such that the cone generated by − x+ S is a vector subspace
of RN , is denoted by ri S.
The epigraph of f ∈ Γ0(RN ) is the nonempty closed convex subset of RN ×R
defined as

epi f = {(x, ζ) ∈ RN × R | f(x) ≤ ζ}, (2.18)

and the lower level set of f at height ζ ∈ R is the nonempty closed convex
subset of RN defined as

lev≤ζ f = {x ∈ RN | f(x) ≤ ζ}. (2.19)

Let f ∈ Γ0(RN ) and g ∈ Γ0(RN ). We denote by f � g the infimal convolution
of f and g

f � g : RN → [−∞,+∞] : x 7→ inf
y∈RN

f(y) + g(x− y). (2.20)

Problem formulation and algorithms

By generalizing (2.6), a large range of inverse problems can be formulated
under the following form:

minimize
x∈RN

h(x) +
R∑
r=1

gr(Trx) s. t.


H1x ∈ C1,
...

HSx ∈ CS ,

(2.21)

where, for every r ∈ {1, . . . , R}, Tr ∈ RKr×N and gr ∈ Γ0(RKr), h : RN 7→
(−∞,+∞] is a convex differentiable function with a µ-Lipschitzian gradient
for some µ ∈ (0,+∞) and, for every s ∈ {1, . . . , S}, Hs ∈ RMs×N and
Cs ⊂ RMs is a nonempty closed convex subset.

Gradient descent The first methods for finding a solution to an inverse
problem were restricted to the use of a differentiable cost function Tikhonov
[1963], i.e. Problem (2.21) where R = 0 and S = 0. In this context, gradient-
based algorithms, e.g. nonlinear conjugate gradient or quasi-Newton methods,
are popular (see Chouzenoux et al. [2011] and references therein). However, in
order to model additional properties, sparsity promoting penalizations (R ≥
1) or hard constraints (S ≥ 1) may be introduced, and the differentiability
property is not satisfied anymore. One way to circumvent this difficulty
is to resort to smart approximations in order to smooth the involved non-
differentiable functions Aubert and Tahraoui [1980]; Ben-Tal and Teboulle
[1989]; Hiriart-Urruty and Lemaréchal [1996]. If one wants to address the
original nonsmooth problem without introducing approximation errors, one
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may apply some specific algorithms, e.g. Gauss-Seidel or Uzawa methods,
the convergence of which is guaranteed under restrictive assumptions Tseng
[2001]. Interior point methods Nesterov and Nemirovskii [1994], Wright
[1997] can also be employed for small to medium size optimization problems.

Projection methods In order to circumvent the limitations of the afore-
mentioned optimization techniques, some iterative methods were developed
to solve Problem (2.21) with R = 0 and h = 0, i.e. in finding a vector
belonging to the intersection of convex sets. The projection onto convex sets
algorithm (POCS) is one of the most popular approaches to solve convex
feasibility problems for data recovery Bregman [1965]; Gurin et al. [1967];
Youla and Webb [1982]; Combettes [1993]. A drawback of POCS is that
it is not well-suited for parallel implementations. The Parallel Projection
Method (PPM) and Method of Parallel Projections (MOPP) are variants of
POCS making use of parallel projections. Moreover, these algorithms were
designed to efficiently solve inconsistent feasibility problems (e.g. when the
intersection of the convex sets is empty). Thorough comparisons between
projection methods have been performed in Combettes [1997]; Censor et al.
[2012].

Proximal methods Recently, a new class of iterative algorithms has
emerged in order to efficiently solve Problem (2.21) in its general form. The
key tool in these approaches is the proximity operator Moreau [1965] of a
function ϕ ∈ Γ0(RN ), defined as

(∀y ∈ RN ) proxϕ(y) = argmin
u∈RN

1

2
‖u− y‖2 + ϕ(u). (2.22)

The proximity operator can be interpreted as a sort of subgradient step
for the function ϕ, as p = proxϕ(y) is uniquely defined through the inclusion
y − p ∈ ∂ϕ(p) Combettes and Pesquet [2011]. This explains why proximity
operators, yielding first order methods, are useful in optimization. As a
matter of fact, the proximity operator is the cornerstone of so-called proximal
methods.

Proximity operators enjoy many interesting properties Chaux et al. [2007];
Combettes and Pesquet [2011]. In particular, they generalize the notion of
projection onto a nonempty closed convex subset C of RN , in the sense that

(∀y ∈ RN ) proxιCy = PC(y) = argmin
u∈C

‖u− y‖. (2.23)

Hence, proximal methods provide a unifying framework that allows one to
address nonsmooth penalizations (R ≥ 1) and hard constraints (S ≥ 1).

The key feature of proximal methods is that they proceed by splitting.
The operators (proxgr)1≤r≤R, (Tr)1≤r≤R, (PCs)1≤s≤S and (Hs)1≤s≤S are used
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individually to solve Problem (2.21). This yields easily implementable algo-
rithms, which circumvent the problem of computing the proximity operator
of a sum of functions or a function composed with a linear operator, for
which closed-form expressions are rarely available.

Proximal algorithms can be classified in primal methods Daubechies
et al. [2004]; Chaux et al. [2007]; Combettes and Pesquet [2007b]; Figueiredo
et al. [2007]; Beck and Teboulle [2009]; Fornasier and Schönlieb [2009]; Steidl
and Teuber [2010]; Combettes and Pesquet [2011]; Pesquet and Pustelnik
[2012] and primal-dual methods Chen and Teboulle [1994]; Esser et al. [2010];
Chambolle and Pock [2011]; Briceño-Arias and Combettes [2011]; Combettes
and Pesquet [2012]; Vũ [2013]; Condat [2013]. The main difference is that
primal algorithms generally require the computation of the inverse of the
operator

∑R
r=1 T

>
r Tr +

∑S
s=1H

>
s Hs (see Algorithm 1), while primal-dual

ones only require the calculation of (Tr)1≤r≤R, (Hs)1≤s≤S and their adjoints
(see Algorithm 2). Consequently, primal-dual methods are often easier to
implement than primal ones, but their convergence may be slower Pustelnik
et al. [2012]; Couprie et al. [2013].

2.2.0.1 Primal algorithms

Primal methods aim at directly solving Problem (2.21), without resorting
to any duality arguments. In this context, forward-backward splitting and
Douglas-Rachford splitting are popular, although they are limited to solving
particular instances of Problem (2.21). Nonetheless, they are the building
blocks of more sophisticated algorithms (such as PPXA+ and M+LFBF)
that allow one to solve Problem (2.21) in its general form.

Forward-Backward splitting Let R = 1, T1 = Id and S = 0 in (2.21).
Then the problem becomes

minimize
x∈RN

h(x) + g(x). (2.24)

Forward-backward splitting aims at finding a point x̄ ∈ RN satisfying the
condition.1

0 ∈ ∂g(x̄) +∇h(x̄) ⇔ x̄ = proxg
(
x̄−∇h(x̄)

)
. (2.25)

Indeed, under the assumption that lim‖x‖→+∞ g(x) + h(x) = +∞, it can be

shown Combettes and Wajs [2005] that the sequence (x[n])n∈N defined as

x[n+1] = x[n] + λn

(
proxγng

(
x[n] − γn∇h(x[n])

)
− x[n]

)
(2.26)

converges to a solution to Problem (2.24) for γn ∈ ]0, 2/µ[ and λn ∈ ]0, 1].

10 ∈ ∂g(x̄) +∇h(x̄) ⇔ x̄−∇h(x̄)− x̄ ∈ ∂g(x̄) ⇔ x̄ = proxg
(
x̄−∇h(x̄)

)
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Douglas-Rachford splitting Let h = 0, R = 2, T1 = T2 = Id and S = 0
in (2.21). Then the problem reads

minimize
x∈RN

g1(x) + g2(x). (2.27)

Douglas-Rachford splitting aims at finding some points x̄, ū ∈ RN that satisfy
the condition.2

0 ∈ ∂g1(x̄)+∂g2(x̄) ⇔

{
ū− x̄ ∈ ∂g2(x̄)

x̄− ū ∈ ∂g1(x̄)
⇔

{
x̄ = proxg2(ū)

0 = proxg1(2x̄− ū)− x̄.
(2.28)

As a matter of fact, under the assumption (ri dom g1) ∩ (ri dom g2) 6= ∅, it
can be shown Combettes and Pesquet [2007b] that the sequence (x[n])n∈N
defined as {

x[n] = proxγg2(u[n]),

u[n+1] = u[n] + λn

(
proxγg1(2x[n] − u[n])− x[n]

)
,

(2.29)

converges to a solution to Problem (2.27) for λn ∈ ]0, 2[ and γ > 0.

PPXA+ Let h = 0 in Problem (2.21). Then, we have to

minimize
x∈RN

R∑
r=1

gr(Trx) +

S∑
s=1

ιCs(Hsx). (2.30)

Let L = [T>1 . . . T>R H>1 . . . H>S ]> ∈ RQ×N with Q =
∑R

r=1Kr +
∑S

s=1Ms,

(
∀v = [v>1 . . . v>R+S ]> ∈ RQ

)
g(v) =

R∑
r=1

gr(vr) +
S∑
s=1

ιCs(vR+s), (2.31)

and D =
{
v ∈ RQ

∣∣ v = Lx, x ∈ RN
}

. Then, Problem (2.30) can be cast
over the Douglas-Rachford framework by setting g1 = ιD and g2 = g,

minimize
v∈RQ

ιD(v) + g(v). (2.32)

Moreover, it can be shown Combettes and Pesquet [2008] that,3

(2.29) ⇔


v[n] = proxγg(u

[n])

v̂[n] = PD(v[n])

u[n+1] = u[n] + λn
(
2 v̂[n] − û[n] − v[n]

)
û[n+1] = û[n] + λn (v̂[n] − û[n]),

(2.33)

2x− u ∈ ∂g1(x) ⇔ (2x− u)− x ∈ ∂g1(x) ⇔ x = proxg1(2x− u)
3In (2.29) PD(2 v[n] − u[n]) = 2 v̂[n] − û[n], with v̂[n] = PD(v[n]) and û[n] = PD(u[n]) =

PD
(
u[n−1] + λn (2 v̂[n−1] − û[n−1] − v[n−1])

)
= û[n−1] + λn(v̂[n−1] − û[n−1]).
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and the sequence (û[n])n∈N converges to a solution of (2.32). Furthermore, the
constraint D enforces (û[n])n∈N = (Lx[n])n∈N, for some sequences (x[n])n∈N.
When L>L is invertible, it can be proved Pesquet and Pustelnik [2012] that
(x[n])n∈N converges to a solution of (2.30) and that PD(v[n]) = L x̂[n] with
x̂[n] = (L>L)−1L>v[n]. As a result, if there exists an x̄ ∈ RN such that
Lx̄ ∈ ri dom g, the sequence (x[n])n∈N generated by

v[n] = proxγg(u
[n])

x̂[n] = (L>L)−1L>v[n]

u[n+1] = u[n] + λn
(
L(2 x̂[n] − x[n])− v[n]

)
x[n+1] = x[n] + λn (x̂[n] − x[n]),

(2.34)

converges to a solution to Problem (2.30). The detailed iterations are
illustrated in Algorithm 1. Such an algorithm can be considered as a gener-
alization of numerous methods Fortin and Glowinski [1983]; Eckstein [1994];
Goldstein and Osher [2009]; Attouch and Soueycatt [2009]; Setzer et al.
[2010], among which augmented Lagrangian techniques.

Algorithm 1 PPXA+ Pesquet and Pustelnik [2012] for Problem (2.21).

γ ∈]0,+∞[, (λn)n∈N ⊂]0, 2[

(∀r ∈ {1, . . . , R}) u
[0]
r ∈ RKr

(∀s ∈ {1, . . . , S}) u
[0]
R+s ∈ RMs

x[0] ∈ RN

for n = 0, 1, . . .

(∀r ∈ {1, . . . , R}) v
[n]
r = proxγgr (u

[n]
r )

(∀s ∈ {1, . . . , S}) v
[n]
R+s = PCs(u

[n]
R+s)

x̂[n] =
( R∑
r=1

T>r Tr +

S∑
s=1

H>s Hs
)−1( R∑

r=1

T>r v
[n]
r +

S∑
s=1

H>s v
[n]
R+s

)
(∀r ∈ {1, . . . , R}) u

[n+1]
r = u

[n]
r + λn

(
Tr(2 x̂

[n] − x[n])− v[n]r

)
(∀s ∈ {1, . . . , S}) u

[n+1]
R+s = u

[n]
R+s + λn

(
Hs(2 x̂

[n] − x[n])− v[n]R+s

)
x[n+1] = x[n] + λn (x̂[n] − x[n])

2.2.0.2 Primal-dual algorithms

The scope of primal methods is somewhat limited, as they require to deter-
mine the inverse of some linear operators (see Algorithm 1), which turns
out to be burdensome or even impossible to compute in many practical
cases. Primal-dual algorithms overcome the inversion issue by resorting to
the Fenchel-Rockafellar duality framework. In Problem (2.21), let us add a
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function f ∈ Γ0(RN ), let L = [T>1 . . . T>R H>1 . . . H>S ]> ∈ RQ×N and define
g ∈ Γ0(RQ) as in (2.31). Instead of seeking a solution to the primal problem

minimize
x∈RN

f(x) + g(Lx) + h(x), (2.35)

or a solution to the dual problem

minimize
v∈RQ

g∗(v) + (f∗�h∗)(−L>v), (2.36)

one aims at finding a saddle-point solution to the primal-dual problem

min
x∈RN

max
v∈RQ

f(x)− g∗(v)︸ ︷︷ ︸
F1(x,v)

+ v>Lx+ h(x)︸ ︷︷ ︸
F2(x,v)

. (2.37)

The classical Karush-Kuhn-Tucker theory asserts that a solution to the
primal-dual problem is a pair (x̄, v̄) satisfying the inclusion,4{

0 ∈ ∂f(x̄) + L>v̄ +∇h(x̄)

0 ∈ ∂g∗(v̄)− Lx̄
⇔

{
x̄ = proxf

(
x̄− L>v̄ −∇h(x̄)

)
v̄ = proxg∗(v̄ + Lx̄),

(2.38)
where x̄ and v̄ are solutions, respectively, to the primal and dual problems.

The primal-dual inclusion in (2.38) falls in the forward-backward frame-
work. Hence, it can be solved by resorting to the classical forward-backward
splitting method or to the forward-backward-forward splitting method Tseng
[1998]. The detailed iterations associated with a primal-dual algorithm based
on Tseng’s splitting are illustrated in Algorithm 2.

§ 2.3 Projections

As mentioned before, computing the projection PC onto a nonempty closed
convex subset C of a real Hilbert space RN requires to solve a constrained
quadratic minimization problem:

(∀y ∈ RN ) PC(y) = argmin
u∈C

‖u− y‖. (2.39)

The distance to C of every point y ∈ RN is then given by dC(y) = ‖y−PC(y)‖.
However, it turns out that a closed form expression of the solution to (2.39)
is available in a limited number of instances.

Such well-known examples are the projections onto a closed half-space
and a hyperslab:

40 ∈ ∂g∗(v̄)− Lx̄ ⇔ (v̄ + Lx̄)− v̄ ∈ ∂g∗(v̄) ⇔ v̄ = proxg∗(v̄ + Lx̄).
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Algorithm 2 M+LFBF Combettes and Pesquet [2012] for Problem (2.21).

β = µ+
(∑R

r=1‖Tr‖
2 +

∑S
s=1‖Hs‖

2
)1/2

(γn)n∈N ⊂]0, β−1[

(∀r ∈ {1, . . . , R}) u
[0]
r ∈ RKr

(∀s ∈ {1, . . . , S}) v
[0]
s ∈ RMs

x[0] ∈ RN

for n = 0, 1, . . .

p[n] = ∇h(x[n]) +
∑R
r=1 T

>
r u

[n]
r +

∑S
s=1H

>
s v

[n]
s

x̂[n] = proxγnf

(
x[n] − γnp[n]

)
(∀r ∈ {1, . . . , R}) û

[n]
r = proxγng∗r

(
u
[n]
r + γnTrx

[n]
)

(∀r ∈ {1, . . . , R}) u
[n+1]
r = û

[n]
r + γnTr(x̂

[n] − x[n])

(∀s ∈ {1, . . . , S}) v̂
[n]
s = proxγnι∗Cs

(
v
[n]
s + γnHsx

[n]
)

(∀s ∈ {1, . . . , S}) v
[n+1]
s = v̂

[n]
s + γnHs(x̂

[n] − x[n])

p̂[n] = ∇h(x̂[n]) +
∑R
r=1 T

>
r û

[n]
r +

∑S
s=1H

>
s v̂

[n]
s

x[n+1] = x̂[n] − γn
(
p̂[n] − p[n]

)

Example 2.3.1 Let u ∈ RN , let η ∈ R, and let

C = {x ∈ RN | 〈x |u〉 ≤ η}. (2.40)

Then

• If u = 0 and η ≥ 0, in which case C = RN and PC = Id .

• If u = 0 and η < 0, in which case C = ∅.

• If u 6= 0, in which case C 6= ∅ and

(∀x ∈ RN ) PC(x) =

x, if 〈x |u〉 ≤ η,

x+
η − 〈x |u〉
‖u‖2

u, otherwise.
(2.41)

Example 2.3.2 Let u ∈ RN , let (η1, η2) ∈ R2, and let

C = {x ∈ RN | η1 ≤ 〈x |u〉 ≤ η2}. (2.42)

Then exactly one of the following holds:

• u = 0 and η1 ≤ 0 ≤ η2, in which case C = RN and PC = Id .

• u = 0 and η1 > 0 (resp. η2 < 0), in which case C = ∅.
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• u 6= 0 and η1 > η2, in which case C = ∅.

• u 6= 0 and η1 ≤ η2, in which case C 6= ∅ and

(∀x ∈ RN ) PC(x) =


x+

η1 − 〈x |u〉
‖u‖2

u, if 〈x |u〉 < η1,

x, if η1 ≤ 〈x |u〉 ≤ η2,

x+
η2 − 〈x |u〉
‖u‖2

u, otherwise.

(2.43)

The projection onto the `2-norm ball has also a closed-form expression:

Example 2.3.3 Let τ ∈ R, and set C = {x ∈ RN | ‖x‖2 ≤ τ}. Then

(∀x ∈ RN ), PC(x) =

x, if ‖x‖2 ≤ τ,

x

√
τ

‖x‖
otherwise.

(2.44)

Subgradient projection When an expression of the direct projection is
not available, a possible solution is to approximate the convex set C by a
half-space, which leads to the concept of subgradient projection. Let us
assume that C =

{
w ∈ RN

∣∣ ϕ(w) ≤ η
}

is nonempty, where η ∈ R and
ϕ ∈ Γ0(RN ). Then, for any y ∈ RN and t ∈ ∂ϕ(y), the convex set C is a
subset of the half-space

Cyη =
{
u ∈ RN

∣∣ 〈u− y | t〉 ≤ η − ϕ(y)
}
. (2.45)

If t 6= 0, the subgradient projection of y ∈ RN onto C reads

PCyη (y) =

y, if ϕ(y) ≤ η,

y +
η − ϕ(y)

‖t‖2
t, otherwise.

(2.46)

Subgradient projection was used in several works. It is involved in Polyak’s
algorithm by alternating the exact projection and the subgradient projection
Polyak [1969] (see also Shor [1985] for alternative projected subgradient
approaches). In Combettes [2003], a parallel block iterative algorithm was
proposed in order to solve Problem (2.21). However, the main limitation of
this method is that the objective function to be minimized must be quadratic
and strictly convex. For recent works about subgradient projection methods,
the reader may refer to Slavakis et al. [2006]; Bouboulis et al. [2012].
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Epigraphical projection An alternative approach to circumvent the com-
putation of a direct projection consists in resorting to a set of epigraphical
projections Chierchia et al. [2013]. This approach applies to constraints that
can be expressed as the lower level set of a sum of convex functions evaluated
over different blocks of the signal:

(∀y = [y>1 , . . . , y
>
L ]> ∈ RM ) ϕ(y) =

L∑
`=1

ϕ`(y`) ≤ η, (2.47)

where, for every ` ∈ {1, . . . , L}, y` ∈ RM` and ϕ` ∈ Γ0(RM`) is such that
ri(domϕ`) 6= ∅. The epigraphical-splitting technique consists in introducing
an auxiliary vector ζ =

(
ζ`
)

1≤`≤L ∈ RL into the minimization problem, so

that Condition (2.47) can be equivalently rewritten as
L∑
`=1

ζ` ≤ η,

(∀` ∈ {1, . . . , L}) ϕ`(y`) ≤ ζ`.

(2.48)

(2.49)

Dealing with additional constraints in the original minimization is not
a problem for proximal splitting algorithms, as far as the projections onto
the associated constraint sets can be computed. In the present case, the
projection onto (2.48) is given by Example 2.3.1 with u = (1, . . . , 1) ∈ RL,
whereas the projection onto (2.49) is given by

(∀(y, ζ) ∈ RM × RL) (p, θ) = Pepiϕ1×···×epiϕL(y, ζ), (2.50)

where θ = (θ`)1≤`≤L, p = [p>1 , . . . , p
>
L ]> ∈ RM is blockwise decomposed as y,

and

(∀` ∈ {1, . . . , L}) (p`, θ`) = Pepiϕ`(y`, ζ`). (2.51)

Therefore, the problem reduces to the lower-dimensional problem of the
determination of the projection onto the convex subset epiϕ` of RM` ×R for
each ` ∈ {1, . . . , L}. The key point of this approach is that epigraphical pro-
jections are closely related to proximity operators. Indeed, the epigraphical
projector in (2.51) is given by Chierchia et al. [2013]:{

p` = prox 1
2

(max{ϕ`−ζ`,0})2(y`),

θ` = max{ϕ`(p`), ζ`}.
(2.52)

In Chierchia et al. [2013], the closed-form expression of the epigraphical
projection has been given for several functions ϕ`, such as the absolute power
raised to a power β ∈ [1,+∞[, the distance to a convex set and the `p-norm
with p ∈ {1, 2,+∞}. Note also that, when the epigraphical projection has
no explicit form, a polyhedral approximation can still be applied.
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Numerical methods Beside the aforementioned approaches, specific nu-
merical methods have been developed to directly solve the constrained
quadratic minimization problem in (2.39) when

C = {x ∈ RN | ϕ(x) ≤ η}, (2.53)

with η > 0 and ϕ ∈ Γ0(RN ). Indeed, it can be shown that [Bauschke and
Combettes, 2011, Prop. 28.30]

PC(x) =

{
x, if ϕ(x) ≤ η,
proxλ̄ ϕ(x), otherwise,

(2.54)

where λ̄ is a solution in ]0,+∞[ to the equation:

ϕ(proxλϕ(x)) = η. (2.55)

In other words, the projection onto the lower level set of ϕ can be computed
by using the proximity operator of ϕ, provided that the correct λ is found. In
general, the solutions to (2.55) admit no closed-form expressions. However,
one may find λ by standard numerical methods, as the left-hand side of
(2.55) is decreasing in λ Parikh and Boyd [2013].

In sparse reconstruction applications, some interesting algorithms have
been developed such as spectral projected gradient techniques Van Den Berg
and Friedlander [2008],5 `1-regularized least squares methods Koh et al.
[2007],6 sparse reconstruction by separable approximation Wright et al.
[2009],7 and many others Duchi et al. [2008], Schmidt et al. [2009], Weiss
et al. [2009], Fadili and Peyré [2011]. Note that there also exist numerical
methods that do not follow the aforementioned approach, such as Quattoni
et al. [2009] and Kyrillidis et al. [2013].

§ 2.4 Conclusion

In this chapter, we have presented a quick overview of modern convex
optimization. Firstly, we have introduced inverse problems and discussed
the advantages of formulating them as convex optimization problems. Then,
we have emphasized the need to look for prior information which aims at
incorporating some additional knowledge in the problem formulation. To
maintain some smoothness, while preserving some discontinuities of the
signal, we have used a regularization term (such as TV and NLTV) which
can be used either as a convex constraint set or a penalization function.

5http://www.cs.ubc.ca/labs/scl/SPGL11/
6http://www.stanford.edu/~boyd/l1_ls/.
7thttp://www.lx.it.pt/~mtf/SpaRSA/

http://www.cs.ubc.ca/labs/scl/SPGL11/
http://www.stanford.edu/~boyd/l1_ls/.
t http://www.lx.it.pt/~mtf/SpaRSA/
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Moreover, we have presented some algorithms that can efficiently deal
with a large panel of convex problems. A special attention has been given
to proximal algorithms, as they are suitable for large-size problems and are
amenable to parallel implementations. Finally, to compute the projection
onto some convex sets, we have detailed the existing approaches for the exact
computation of projections and we have made an overview of the numerical
methods in the case where the projection operator admits no closed-form
expression.

In the next chapters, we will investigate some examples of constrained
convex optimization problems in disparity estimation and multi-view recon-
struction.



- Chapter 3 -

A parallel proximal splitting method for disparity
estimation from multicomponent images under

illumination variation

“Two Eyes = Three”
3D Dimensions

This chapter deals with the problem of matching a pair of multi-component
images by jointly estimating the disparity and the illumination variation.
Since the global formulation is nonconvex, the problem is addressed by solv-
ing a sequence of convex relaxations. Each convex relaxation is non trivial
and involves many constraints aiming at imposing some regularity on the
solution. Experiments demonstrate that the method is efficient and provides
better results compared with other approaches.

§ 3.1 Introduction

The purpose of computer vision is to duplicate the abilities of human vision
in order to perceive the observable world through digital images. Among
the large panel of human abilities, depth perception is certainly one of the
most appealing features to be electronically reproduced, as it may serve as a
basis for more complex tasks, such as object recognition, robot navigation,
reconstruction of three-dimensional shapes, and realistic scene visualization.

The depth of an object can be perceived thanks to binocular vision. As
a simple experiment, hold your finger vertically in front of your eyes and
close each eye alternately: you will notice that the finger jumps left and right
relative to the background of the scene. Indeed, because of the horizontal
separation, the eyes view an object from a slightly different angle, causing
a horizontal displacement from the left eye to the right eye (Figure 3.1).
The same mechanism underlies computer stereo vision, where the eyes are

27
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replaced by two cameras viewing the scene from slightly different angles
(Figure 3.2).

Figure 3.1: If you focus on a tree, closing first your right eye and then
your left eye, the tree will appear to move relatively to your finger.

Figure 3.2: Cameras (at two different positions) capture two separate
images. The disparity is the difference between the positions of the same
object in the two images. If an object is far away, the disparity will be small;
otherwise, the disparity will be large if the object is close.

Stereo matching is the process of finding the pixels in two (or more)
images that correspond to the same 3D point of the observed scene, in
order to compute the disparity between such pixels (i.e. the difference in
coordinates) and, hence, to infer the depth of the associated 3D point.

Several preliminary steps are required before that stereo matching can
take place: image acquisition, calibration, and rectification. In the present
work, we focus on stereo matching, but in order to provide a comprehensive
introduction to stereo vision, we briefly explain these preliminary steps in
the following.
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Acquisition and calibration

The pin-hole model is one of the simplest tools to describe image acquisition.
In this model, the image is formed by a projection onto a 2D plane:

P : R3 −→ R2 (3.1)

(X,Y, Z) −→ (f
X

Z
, f
Y

Z
) (3.2)

where f is the focal distance and (X,Y, Z) are the 3D coordinates. Calibration
follows the image acquisition and consists of estimating the internal and
the external geometry of the acquisition system. In particular, internal
calibration aims at finding the focal point, the optical center of the camera
and the size/angle of pixels, while external calibration aims at finding the
rotations and translations of the camera with respect to an external reference.
The calibration problem is usually considered as a solved problem, but current
research still focuses on this subject, because the calibration is a crucial step
in 3D reconstruction.

Rectification

Let us consider a 3D point P that is visible from both cameras. Given its
projection PL on the left image, its corresponding projection PR on the right
image plane has to be located on the epipolar line. The epipolar line is the
intersection between the epipolar plane (defined by the optical centers of the
stereo cameras CL and CR and the 3D point P ) and the image plane 3.3.

Figure 3.3: The epipolar lines are defined by the intersection of the left and
right image planes with the epipolar plane (CL, CR, P ). The points eL and
eR are the epipoles and are defined by the intersection of the image planes
with the line connecting the two cameras: the baseline (CL, CR).
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Stereo matching uses triangulation based on epipolar geometry to find the
correspondences between left and right images. Indeed, the epipolar line
corresponding to a pixel in one image is used to constrain the search for the
corresponding pixel in the other image. Rectification is a transformation
process that puts the original images onto a common image plane, where
the epipolar lines are parallel to the horizontal image axes. So doing, the
corresponding search simplifies to a one-dimensional one. Note that the
epipolar rectification is trivial when the calibration parameters are known;
otherwise, it can be easily achieved by exploiting some corresponding points
between the images.

Stereoscopic vision

In the following, we consider that the mapping is done from the left image
(called ”reference”) to the right one. Each pixel in the left image is associated
with a pixel in the right one which corresponds to the same point in the scene:
they are homologous pixels. The difference between the pixel coordinates of
the homologue points is called disparity.

The matching problem is then equivalent to searching for the disparity
field u, which attributes a disparity for each pixel in the left image (xL , yL)
as follows:

u : R2 7→ R2

(xL , yL) 7→ (xL − xR , yL − yR), (3.3)

where (xR , yR) are the coordinates in the right image of the point correspond-
ing to (xL , yL). If the stereo images are rectified, the vertical components of
the corresponding pixels are equal (yL = yR). In this case, the disparity is a
scalar and reads

u : R2 7→ R
(xL , yL) 7→ xL − xR . (3.4)

The 3D position (X,Y, Z) of a point P can be reconstructed from the
perspective projection of P on the image planes of the cameras (Figure 3.4),
once the relative position and orientation of the two cameras is known. Let
us consider the optical setting in the figure, which is also called standard
model.

• CL and CR are two pinhole cameras with parallel optical axes. Let f
be the focal length of both cameras.

• The baseline is perpendicular to the optical axes. Let B be the distance
between the two lens centers.
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• the optical axes lie in the XZ plane, which is parallel to the image
plane of both cameras, X axis equals the baseline, and the origin of
(X,Y, Z) world reference system is the lens center of the left camera.

Figure 3.4: Two cameras (acquiring images of the same scene) have two
different 2D representations of a common 3D point. With proper processing,
the position and depth of the 3D point can be extracted from the images.

Figure 3.5 depicts the camera configuration. By applying Thales theorem to
the triangles of hypotenuses CLP and CRP , we get:

xL
f

=
X

Z
and

xR
f

=
X −B
Z

. (3.5)

One can express the disparity u(xL , yL) = xL−xR of a 3D point as a function
of the depth Z between the corresponding 2D points as follows:

u(xL , yL) = xL − xR =
fB

Z
(3.6)

Using the relationship (3.6), we can draw two important conclusions:

• disparity is inversely proportional to the depth of a point Z, i.e. far
points have low disparity (for example the horizon has disparity of
zero) and close points have a high disparity;
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• the disparity is proportional to the baseline B: the smaller the baseline,
the lower the disparity.

Figure 3.5: The connection between disparity and depth.

Stereo matching is a challenging task, because of the intrinsic difficulty
in finding reliable correspondences between images in the presence of several
sources of uncertainty, such as noise, illumination variations, and occlusions
(which are pixels only visible from one view of the stereo images). A large
number of algorithms have been proposed to perform stereo matching. Since
the publication of the Middlebury database, which makes it possible to
quantitatively compare the different algorithms, many solutions have been
proposed to improve different aspects of stereo matching algorithms.

3.1.1 Related work

In recent years, much progress has been made in dense stereo matching,
thanks to the development of

(i) powerful global combinatorial optimization methods, such as graph-cuts
Kolmogorov and Zabih [2001]; Ishikawa [2003]; Boykov et al. [2011];
Komodakis et al. [2011] and belief propagation Klaus et al. [2006];
Yang et al. [2006]; Besse et al. [2012];

(ii) variational approaches which have proven to be also very effective for
globally solving the matching problem Deriche et al. [1996]; Miled et al.
[2006, 2009a]; Pock et al. [2010]; Cremers et al. [2011]; Wanner and
Goldluecke [2013].
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In general, dense stereo techniques can be also classified as local Hirschmuller
and Scharstein [2007]; Tsai et al. [2003]; Yoon and Kweon [2006] or global
Kolmogorov and Zabih [2001]; Ishikawa [2003]; Boykov et al. [2011]; Klaus
et al. [2006]; Yang et al. [2006]; Besse et al. [2012]; Deriche et al. [1996]; Miled
et al. [2006, 2009a], depending on whether they rely on local window-based
computations or on the minimization of a global energy function. In local
methods, the disparity computation at a given point depends only on intensity
values within a finite window. Clearly, these techniques assume that all pixels
within the window have the same disparity; therefore, they are sensitive near
object boundaries. Attempts to alleviate this problem include the use of
adaptive windows Kanade and Okutomi [1994] and shiftable windows Kang
et al. [2001].

In a majority of dense disparity estimation techniques, the scene is
assumed to be Lambertian. However, in the presence of illumination variation
(that often occurs in practice), this assumption is violated. Some algorithms
have been proposed to compensate illumination changes by normalizing pixel
values Buchsbaum [1980]; Finlayson et al. [1998]; van de Weijer et al. [2007].
These algorithm can be applied to compensate for illumination changes as a
preprocessing step before the stereo matching. The grey-world assumption
algorithm Buchsbaum [1980] normalizes intensities based on the averages.
The comprehensive normalization algorithm Finlayson et al. [1998] attempts
to remove the dependency on scene geometry as well as the effect of global
illumination iteratively. The grey-edge algorithm van de Weijer et al. [2007]
employs the average edge difference for the normalization.

Other algorithms have been proposed to decrease the illumination varia-
tion effect by using invariant similarity measures Hirschmuller and Scharstein
[2007]; Heo et al. [2011] in the matching cost computation. The normalized
cross correlation (NCC) can be used as a similarity measure, which mini-
mizes the effect of illumination conditions by compensating the differences
of the gain and the bias between stereo images Hirschmuller and Scharstein
[2007]. The adaptive normalized cross correlation (ANCC) Heo et al. [2011]
employs the NCC with adaptively support weights after log-chrominance
transformation and a suitable normalization that revert the illumination
changes to a linear model. In addition, methods based on nonparametric
local transforms followed by NCC and rank-transform Zabih and Woodfill
[1994]; Jung and Kim [2012] have been used.

Recently, the light field has been established as additional information to
describe the visual appearance of a scene. One of these approaches uses the
light detection to employ the structure tensor of an epipolar plane image to
obtain a robust local disparity estimation Wanner and Goldluecke [2013]. In
Heo et al. [2013], the authors proposed a stereo color histogram equalization
to produce color-consistent stereo images from which they can get more
accurate disparity maps.
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On the other hand, several techniques have been proposed to model the
illumination changes. In this context, Cox et al. Cox et al. [1995] proposed
a dynamic histogram warping that consists of directly matching histogram
values and performing a global optimization via dynamic programming.
However, this approach is restricted to the case of a spatially invariant
relationship between the intensities of the two images. In Davis et al. [2005],
a new method for stereo reconstruction called Light Transport Constancy
was introduced to formulate a rank constraint and enable correspondence of
non Lambertian surfaces.

The work in Gennert [1988] shows that the intensities of two corresponding
points are related by a spatially varying multiplicative term. Following this
model, a stereo algorithm based on a nonconvex cost function was developed.
The minimization of the cost function from the associated Euler-Lagrange
equations becomes a difficult task. In the same context, based on this
multiplicative model, dense disparity map estimation is formulated in Miled
et al. [2009a] as a constrained optimization problem in which a strictly convex
quadratic objective function is minimized under various convex constraints.
The resulting optimization problem is solved via a parallel block iterative
algorithm involving subgradient projections.

3.1.2 Chapter outline

In this chapter, we present a convex optimization approach based on a parallel
proximal algorithms Figueiredo and Nowak [2003]; Chambolle and Pock
[2011]; Raguet et al. [2013]; Briceño-Arias and Combettes [2011]; Combettes
and Pesquet [2012]; Pesquet and Pustelnik [2012]. Similarly to the subgradient
based methods, we use the multiplicative model by Gennert, which allows us
to define a global similarity measure to be minimized over an intersection of
convex constraint sets. The original contributions of our work consist of

(i) the ability to consider multicomponent images in the presence of illu-
mination variation

(ii) the flexibility in minimizing various (possibly nonsmooth) convex simi-
larity measures and combining them with various convex constraints.

The remainder of the chapter is organized as follows. The notation,
background, and considered model are presented in Section 3.2. Then, in
Section 3.3, we describe the adopted parallel proximal algorithm that allows
us to solve the derived convex minimization problem. Some simulation results
are shown in Sections 3.4 and 3.5 on the MiddleBury data set and other real
images. Finally, conclusions are drawn in Section 3.6.
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§ 3.2 Stereo matching model

We consider two multicomponent images of the same scene acquired by a
stereoscopic camera. The left (resp. right) view is given by the function

I1 : R2 7→ RK

s 7→ I1(s) = (I
(1)
1 (s), I

(2)
1 (s), ..., I

(K)
1 (s))> (3.7)

(resp. I2 : R2 7→ RK

s 7→ I2(s) = (I
(1)
2 (s), I

(2)
2 (s), ..., I

(K)
2 (s))>).

For every k ∈ {1, . . . ,K}, I(k)
1 (s) (resp. I

(k)
2 (s)) represents the k-th com-

ponent of image I1 (resp. I2) at position s ∈ R2. Particular cases of this
framework include color images by taking K = 3. Each component then
corresponds to one of the color channels of a specific color system (RGB,
YUV, ...). Throughout this chapter, it will be assumed that I1 and I2 are
differentiable functions.

Corresponding points in the stereo images tend to have similar values.
The pixel at position (i1, i2) ∈ R2 in the left image I1 corresponds to a pixel at
position (i′1, i

′
2) ∈ R2 in the right image I2, the disparity between these pixels

being equal to (i1 − i′1, i2 − i′2). As already mentioned, when stereo images
are rectified Fusiello et al. [2000], the vertical component of the disparity
vector vanishes. The disparity thus reduces to u(i1, i2) = i1− i′1. Finding for
each pixel (i1, i2) in the left image the corresponding pixel (i1 − u(i1, i2), i2)
in the right image constitutes the goal of stereo matching. The problem is
then equivalent to finding a disparity field u : R2 → [0,+∞) that minimizes
a similarity measure. However, under varying illumination conditions, the
corresponding points in a stereo pair do not have the same component values.
The illumination variation model we will employ is grounded on the work by
Gennert Gennert [1988] and takes the following form:

(∀(i1, i2) ∈ R2) I2(i1 − u(i1, i2), i2) ' v(i1, i2)I1(i1, i2) (3.8)

where v : R2 → [0,+∞) represents the illumination field. The problem now
is not only to estimate the disparity u but also to estimate the illumination
field v. The next section aims at better formulating the considered problem.

3.2.1 Problem formulation

In what follows, we propose a variational approach to jointly estimate the
disparity u and the illumination variation v. Based on Model (3.8), we can
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formulate the stereo matching problem as the minimization of a similarity
measure J̃ :

J̃(u,v) =
K∑
k=1

∑
s=(i1,i2)∈A\O

φ(k)
(
v(s)I

(k)
1 (s) − I

(k)
2 (i1 − u(s), i2)

)
(3.9)

where, for every k ∈ {1, . . . ,K}, φ(k) is assumed to belong to Γ0(R), the
class of proper lower semi-continuous convex functions from R to ]−∞,+∞].
In addition, A ⊂ Z2 is the considered finite image domain, u = (u(s))s∈A,
and v = (v(s))s∈A. The occlusion areas denoted by O correspond to pixels
only visible from one view of the stereo pair, which should not be taken into
account in the computation of the similarity measure. Consequently, they
have been discarded in the expression of the cost function.

In this chapter, we will be mainly concerned with convex optimization
approaches. Unfortunately, J̃ is nonconvex with respect to the variable u.
To tackle this difficulty, we perform the first-order Taylor expansion of the
disparity compensated right image around an initial value of the disparity
ū. The latter can be derived from a rough estimation, e.g. by a block-based
correlation method Tsai et al. [2003]. In practice, we can iteratively update
our initial value in order to make our final solution weakly dependent on it.
When the magnitude of the difference of the fields u and ū = (ū(s))s∈A is
small enough, we obtain the following expression: for every k ∈ {1, . . . ,K}
and s = (i1, i2) ∈ A,

I
(k)
2 (i1−u(s), i2) ' I(k)

2 (i1− ū(s), i2)−(u(s)− ū(s))∇(1)I
(k)
2 (i1− ū(s), i2)

(3.10)

where ∇(1)I
(k)
2 denotes the horizontal gradient of the k-th component of the

right image.
As a consequence of (3.9) and (3.10), we can approximate the cost function
by

J(u,v) =

K∑
k=1

∑
s∈A\O

φ(k)
(
T

(k)
1 (s)u(s) + T

(k)
2 (s)v(s) − r(k)(s)

)
(3.11)

where, for every k ∈ {1, . . . ,K} and s = (i1, i2) ∈ A,
T

(k)
1 (s) = ∇(1)I

(k)
2 (i1 − ū(s), i2)

T
(k)
2 (s) = I

(k)
1 (s)

r(k)(s) = I
(k)
2 (i1 − ū(s), i2) + ū(s)T

(k)
1 (s).

(3.12)

As previously mentioned, our objective is to jointly estimate u and v. Thus,
by defining w = (u,v),

(∀s ∈ A) w(s) =

[
u(s)
v(s)

]
(3.13)
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and, for every k ∈ {1, . . . ,K} and s ∈ R2, T(k)(s) = [T
(k)
1 (s), T

(k)
2 (s)], the

above expression can be reexpressed more concisely as

J(w) =

K∑
k=1

J (k)(w) (3.14)

where, for every k ∈ {1, . . . ,K},

J (k)(w) =
∑

s∈A\O

φ(k)
(
T(k)(s)w(s)− r(k)(s)

)
. (3.15)

Despite the convexity of the function J , optimizing this criterion is an
ill-posed problem, since we have two variables to estimate at each point s and
the components of T (k)(s) may locally vanish for some k and s. Therefore,
we need to incorporate additional prior information on the desired disparity
and illumination variation fields.

3.2.2 Introducing prior information

Our objective here is to introduce prior information on our target solution.
This can be done either by adding some regularization terms to J or by
incorporating some convex constraints to the problem. In this chapter, we
will follow the second approach. Let (Si)1≤i≤m denote the m nonempty closed
convex sets modelling the constraints one wants to impose. The resulting
optimization problem can then be formulated as:

Find w ∈ S =
m⋂
i=1

Si such that J(w) = inf J(S). (3.16)

Constraint sets defined on the Hilbert space H = R|A| × R|A| can be
described as lower level sets:

(∀i ∈ {1, ...,m}) Si = {w ∈ H | fi(w) ≤ δi} , (3.17)

where, for every i ∈ {1, . . . ,m}, fi : H → R is a convex function and δi ∈
R. One of the potential advantages of this approach, with respect to the
regularization formulation, is that it appears often easier, from a physical
viewpoint, to set the constraint bounds than to determine the regularization
parameters.

We will now review some of the constraints that can be applied to our
problem.
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3.2.2.1 Constraints on the disparity

Range values As the minimum and maximum values umin and umax of
the disparity field are often known, we propose to introduce a constraint
related to these bounds. The corresponding constraint can be expressed as

S1,1 = {(u(s))s∈A ∈ R|A| | (∀s ∈ A) umin ≤ u(s) ≤ umax}. (3.18)

It can be noticed that the disparity is always nonnegative, so that umin ≥ 0.

First-order smoothness constraint A piecewise constant behaviour of
the disparity field is often expected. Therefore, it is meaningful to introduce a
constraint enforcing smoothness in homogeneous areas while preserving edges.
One can think of using the Total Variation semi-norm which has played a key
role in image recovery problems Rudin et al. [1992]; Combettes and Pesquet

[2004]. Let ∇̂(1) and ∇̂(2) denote discrete horizontal and vertical gradients
(for example, obtained by cyclic convolutions Combettes and Pesquet [2008];
Pustelnik et al. [2011]). Then, a discrete version of the total variation (TV)
is the following one:

(∀u ∈ R|A|) TV(u) =
∑
s∈A

√
|∇̂(1)u(s)|2 + |∇̂(2)u(s)|2. (3.19)

The associated constraint set is

S1,2 =
{
u ∈ R|A|

∣∣ TV(u) ≤ τ2

}
(3.20)

with τ2 > 0.

Frame analysis constraint Alternatively, we can adopt a frame analysis
approach to construct a smoothness constraint. Such transform can be
described by an analysis frame operator F : R|A| → RQ with Q ≥ |A|, which
associates to u ∈ R|A| its frame coefficients

(
(Fu)q

)
1≤q≤Q. In particular, it

is well-known Meyer [1990]; Aujol et al. [2005]; Chambolle et al. [1998] that
wavelet frames, through their relationships with Besov spaces, constitute
appropriate tools to characterize useful classes of regular signals. F is said
to be a tight frame when F>F = νI, where ν > 0. A simple example of
a tight frame is the union of ν orthonormal wavelet bases Mallat [1997].
Frame representations Han and Larson [2000] and, more precisely, tight
frame representations Chaux et al. [2006] have become very popular during
the last decades. The considered frame analysis constraint is expressed as

S′1,2 =
{
u ∈ R|A|

∣∣ Q∑
q=1

ηq|(Fu)q| ≤ τ ′2
}

(3.21)

where (ηq)1≤q≤Q ∈ [0,+∞[Q and τ ′2 > 0.
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Second-order constraint Some recent works Lefkimmiatis et al. [2012]
have shown that considering the second-order derivatives of the target image
can be helpful in data recovery problems. Let a discrete version of the
Hessian of u ∈ R|A| at s ∈ A be

∇̂2u(s) =

[
∇̂(1,1)u(s) ∇̂(1,2)u(s)

∇̂(1,2)u(s) ∇̂(2,2)u(s)

]
. (3.22)

Consequently, a second-order variant of the discrete total variation can be
defined as

(∀u ∈ R|A|)

TV2(u) =
∑
s∈A

√
|∇̂(1,1)u(s)|2 + |∇̂(2,2)u(s)|2 + 2|∇̂(1,2)u(s)|2 (3.23)

and the associated constraint set is

S1,3 =
{
u ∈ R|A|

∣∣ TV2(u) ≤ τ3

}
(3.24)

with τ3 > 0.

3.2.2.2 Constraints on the illumination field

Range values Similarly to the disparity field, estimations of the minimum
and maximum values vmin ≥ 0 and vmax of the illumination field are often
available. The corresponding constraint can be expressed as

S2,1 = {
(
v(s)

)
s∈A ∈ R|A| | (∀s ∈ A) vmin ≤ v(s) ≤ vmax}. (3.25)

First-order smoothness constraint Since the illumination field is usu-
ally smoothly varying, we can add a quadratic constraint on the discrete
gradient of the illumination field. This amounts to considering the following
constraint set:

S2,2 =
{
v ∈ R|A|

∣∣ ‖∇̂v‖2`2 ≤ κ2

}
(3.26)

where κ2 > 0 and

(∀v ∈ R|A|) ‖∇̂v‖`2 =
(∑

s∈A
|∇̂(1)v(s)|2 + |∇̂(2)v(s)|2

)1/2
. (3.27)
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Second-order constraint We can also introduce a constraint on the
discrete Hessian of the illumination field, thus yielding

S2,3 =
{
v ∈ R|A|

∣∣ ‖∇̂2v‖2`2 ≤ κ3

}
(3.28)

where κ3 > 0 and, for every v ∈ R|A|,

‖∇̂2v‖`2 =
(∑

s∈A
|∇̂(1,1)v(s)|2 + |∇̂(2,2)v(s)|2 + 2|∇̂(1,2)v(s)|2

)1/2
.

(3.29)

3.2.2.3 Resulting constraints applied to vector w

Based on the constraints presented above, four different constraint sets are
considered in this work:

(i) The first one concerns the range of values taken by the disparity and
the illumination fields. It is defined as

S1 = S1,1 × S2,1. (3.30)

(ii) The second set is based on the first-order regularity of the illumination
and disparity fields:

S2 = S1,2 × S2,2 (3.31)

(iii) The third set involves the frame analysis formulation instead of the
total variation for the disparity, and reads:

S′2 = S′1,2 × S2,2. (3.32)

(iv) The last constraint set models the second-order smoothness constraints:

S3 = S1,3 × S2,3. (3.33)

§ 3.3 Proximal approaches for convex optimiza-
tion

3.3.1 Optimization background

The constraints proposed in Section 3.2.2.3 are separable, since each con-
straint set Si with i ∈ {1, . . . ,m} can be expressed as S1,i×S2,i.

1 In addition,

1Constraint S′2 will be substituted for S2 in some of our experiments.
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for every i ∈ {1, . . . ,m}, one can express S1,i (resp. S2,i) as L−1
1,i (C1,i) (resp.

L−1
2,i (C2,i)) where C1,i (resp. C2,i) is a nonempty closed convex subset of RN1,i

(resp. RN2,i) and L1,i (resp. L2,i) is a matrix in RN1,i×|A| (resp. RN2,i×|A|).
Hence, we have chosen L1,1 and L2,1 equal to the |A| × |A| identity matrix.
By setting L1,2 and L2,2 equal to the concatenation of the horizontal and
vertical gradient operators (N1,2 = N2,2 = 2|A|), C1,2 and C2,2 reduce to
`2,1 balls Van Den Berg and Friedlander [2008]; Eldar and Mishali [2009].
A similar choice can be made for constraint S3 by considering linear oper-
ators related to the second-order derivatives (N1,3 = N2,3 = 3|A|). In the
considered cases, the projection onto each convex set C1,i or C2,i takes a
closed-form expression or it can be computed in a finite number of operations
Van Den Berg and Friedlander [2008]. The considered optimization problem
then takes the following generic form:

minimize
L1,iu ∈ C1,i,
L2,iv ∈ C2,i,
i ∈ {1, . . . ,m}

J(w). (3.34)

mireille
Numerical solutions to this problem can be provided by parallel proximal
splitting methods. These methods basically consist of iterating computations
of proximity operators, as we have shown in Chapter 2.

3.3.2 PPXA+ algorithm

As shown by Algorithm 3, we proceed by splitting function J into the K terms
corresponding to each image component and by exploiting the separability
of the closed convex constraint sets (C1,i × C2,i)1≤i≤m. The algorithm is
initialized by setting the positive weights (ω1, ω2, . . . , ωm+K) ∈]0,+∞[m+K

as well as the variables (z1,i,0)1≤i≤m+K and (z2,i,0)1≤i≤m+K associated with
the convex constraints (C1,1×C2,1, . . . , C1,m×C2,m) and the split data fidelity
criterion J 7→ w 7→ (J (1)(w), . . . , J (K)(w)).

The main loop first consists of computing the proximity operators of the
data fidelity terms, as well as the direct projections onto the different convex
sets modeling prior information. By using basic properties of proximity
operators Combettes and Pesquet [2011], it can be shown that, for every
k ∈ {1, . . . ,K}, ωk > 0, and (z1, z2) ∈ R|A| × R|A|,

proxJ(k)

ωk

(z1, z2) = (z1(s)+µ(k)(s)T
(k)
1 (s), z2(s)+µ(k)(s)T

(k)
2 (s))s∈A (3.35)

where z1 = (z1(s))s∈A, z2 = (z2(s))s∈A, and
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Algorithm 3 PPXA+

• Notation

N1,m+1 = . . . = N1,m+K = |A|

N2,m+1 = . . . = N2,m+K = |A|

For k = 1, 2, . . . ,K

L1,m+k = I, L2,m+k = I

• Initialization

(ω1, ω2, . . . , ωm+K) ∈]0,+∞[m+K

(z
[0]
1,i)1≤i≤m+K ∈ RN1,1 × RN1,2 × · · · × RN1,m+K

(z
[0]
2,i)1≤i≤m+K ∈ RN2,1 × RN2,2 × · · · × RN2,m+K

Q1 =
(∑m+K

i=1 ωi(L1,i)
>L1,i

)−1

, Q2 =
(∑m+K

i=1 ωi(L2,i)
>L2,i

)−1

u[0] = Q1

(∑m+K
i=1 ωi(L1,i)

>z
[0]
1,i

)
, v[0] = Q2

(∑m+K
i=1 ωi(L2,i)

>z
[0]
2,i

)

•Main loop

For n = 0, 1, . . .

For i = 1, 2, . . . ,m

p
[n]
1,i = PC1,i(z

[n]
1,i) and p

[n]
2,i = PC2,i(z

[n]
2,i)

For k = 1, 2, . . . ,K

(p
[n]
1,m+k, p

[n]
2,m+k) =

prox J(k)

ωm+k

(z
[n]
1,m+k, z

[n]
2,m+k)

Averaging

c
[n]
1 = Q1

(∑m+K
i=1 ωi(L1,i)

>p
[n]
1,i

)
, c

[n]
2 = Q2

(∑m+K
i=1 ωi(L2,i)

>p
[n]
2,i

)
Updates

For i = 1, 2, . . . ,m

z
[n+1]
1,i = z

[n]
1,i + λ[n](L1,i(2c

[n]
1 − u[n])− p

[n]
1,i)

z
[n+1]
2,i = z

[n]
2,i + λ[n](L2,i(2c

[n]
2 − v[n])− p

[n]
2,i)

For k = 1, 2, . . . ,K

z
[n+1]
1,m+k = z

[n]
1,m+k + λ[n](2c

[n]
1 − u[n] − p

[n]
1,m+k)

z
[n+1]
2,m+k = z

[n]
2,m+k + λ[n](2c

[n]
2 − v[n] − p

[n]
2,m+k)

un+1 = u[n] + λ[n](c
[n]
1 − u[n])

vn+1 = v[n] + λ[n](c
[n]
2 − v[n])
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µ(k)(s) =



1
γ(k)(s)

(
prox γ(k)(s)φ(k)

ωk

(τ (k)(s))− τ (k)(s)
)

if γ(k)(s) 6= 0

and s 6∈ O
0 otherwise,

(3.36)

τ (k)(s) = T
(k)
1 (s)z1(s) + T

(k)
2 (s)z2(s)− r(k)(s) (3.37)

γ(k)(s) = |T (k)
1 (s)|2 + |T (k)

2 (s)|2. (3.38)

Subsequently, an averaging of the variables resulting from the computation
of the projections and proximity operators is performed before the update
equations. It must be emphasized that the matrix inversions required in
the algorithm can be efficiently performed by making use of discrete Fourier
diagonalization techniques Pustelnik et al. [2012].

To gain insights in the convergence properties of this algorithm, assume
that, for every k ∈ {1, . . . ,K}, φ(k) is a finite function. In our problem, the
data fidelity term is convex with respect to the variable (u,v) after Taylor
expansion and each individual constraint is also convex with respect to either
u or v, as mentioned in Sections 3.2.1 and 3.2.2. Then, provided that the
sequence of relaxation parameters (λn)n∈N involved in Algorithm 3 is such
that (∀n ∈ N) λ̃ ≤ λn+1 ≤ λn < 2, where λ̃ ∈]0, 2[, [Pesquet and Pustel-
nik, 2012, Prop. 5.2] allows us to guarantee that the sequence (un,vn)n∈N
generated by the algorithm converges to a solution to problem (3.16). The
value of this parameter is set to 1.5 for all iterations. As the relaxation
parameter constitutes an internal parameter of the algorithm, its choice does
not modify the optimality of the solution. However, its value plays a role in
the convergence speed as illustrated in Table 3.1. According to this table,
the value of λn has been chosen so as to maximize the convergence speed.

Table 3.1: Influence of λn on execution time (in seconds) for PPXA+
algorithm. The stopping condition described in Section 3.4.3 is used. The
machine is a quad core Intel Xeon Processor X5450, 3Ghz CPU and 8Gb
RAM.

λn 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 1.9

Teddy 18.16 12.97 10.09 9.09 8.26 6.98 6.29 6.77 7.35

Cones 19.69 14.08 10.96 9.89 9.01 10.00 9.05 10.55 11.07

Finally, note that PPXA+ can be similarly applied in order to minimize J
over S1 ∩ S2 or S1 ∩ S3.
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§ 3.4 Results with local constraints

3.4.1 Error measures

First of all, we would like to define the quality measures we adopt for assessing
the performance of our methods. Let ẑ ∈ R|A| denote an estimate of z ∈ R|A|.
The measures below allow us to provide quantitative evaluations of our
results:

(i) Mean Absolute Error (MAE)

MAE(z, ẑ) =
1

|A \ O|
∑

s∈A\O

|z(s)− ẑ(s)|. (3.39)

(ii) Average percentage of bad pixels

ErrT (z, ẑ) =
1

|A \ O|
∑

s∈A\O

1{|z(s)−ẑ(s)|>T} (3.40)

where T is some given positive threshold value chosen here equal to 2
and, for every s ∈ A,

1{|z(s)−ẑ(s)|>T} =

{
1 if |z(s)− ẑ(s)| > T

0 otherwise.
(3.41)

3.4.2 Initialization

As previously mentioned, initial estimates ū and v̄ are obtained based
on a block matching technique. Usually, two criteria are considered in the
minimization performed in the block matching procedure: the sum of squared
differences and the sum of absolute differences. In this work, we consider
another popular measure, namely the Normalized Cross Correlation (NCC)
similarity measure Tsai et al. [2003]. Note that more sophisticated measures
could be envisaged such as the one proposed in Yoon and Kweon [2006].
NCC is defined as follows:

(∀(i1, i2) ∈ A)(∀u ∈ N) ψi1,i2(u) =

K∑
k=1

ψ
(k)
i1,i2

(u) (3.42)

where

ψ
(k)
i1,i2

(u) =

∑
(j1,j2)∈B

I
(k)
1 (i1 + j1, i2 + j2)I

(k)
2 (x− u+ j1, i2 + j2)√ ∑

(j1,j2)∈B
(I

(k)
1 (i1 + j1, i2 + j2))2

√ ∑
(j1,j2)∈B

(I
(k)
2 (x− u+ j1, i2 + j2))2

(3.43)
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and B corresponds to the matching block (here of size 11× 11) centered
at pixel (i1, i2) in the reference image.
In order to get the corresponding pixel (i1 − ū(i1, i2), i2) in the right image,
the matching process determines ū(i1, i2) which maximizes the similarity
measure ψi1,i2 :

ū(i1, i2) ∈ argmax
u ∈ N∩[umin,umax]

ψi1,i2(u). (3.44)

Once ū(i1, i2) is found, v̄(i1, i2) is evaluated by the following weighted least
squares estimation:

v̄(i1, i2) =∑K
k=1 θ

(k)
∑

(j1,j2)∈B
I

(k)
1 (i1 + j1, i2 + j2)I

(k)
2 (i1 − ū(i1, i2) + j1, i2 + j2)∑K

k=1 θ
(k)

∑
(j1,j2)∈B

I
(k)
1 (i1 + j1, i2 + j2)2

, (3.45)

where (θ(k))1≤k≤K are nonnegative real weights. In our tests, the illumination
variation is the same for all the components and, for YUV images, the
best results have been obtained by choosing a weight equal to 1 for the Y
component, and 0 for the U and V components.
However, with the previous technique, some remaining artefacts can be
observed in the disparity maps, e.g. contouring effects and oversmoothing
in some areas. In order to reduce these artifacts and limit the influence
of occlusion areas, a bidirectional matching process is performed. More
precisely, we first apply the NCC method to find the left disparity map
denoted by ū1(i1, i2), by proceeding as described above. Similarly, the same
method is applied to find the right disparity map denoted by ū2(i1, i2) by
taking now the right view as the reference image. Finally, we derive the
initial disparity ū(i1, i2) as follows:

ū(i1, i2) = ū2(i1 − ū1(i1, i2), i2). (3.46)

The upper and lower bounds in the constrained formulation are estimated
using prior knowledge when available or from the initial estimates ū and v̄,
otherwise.

3.4.3 Algorithm implementation

In this section, we summarize the algorithm steps and parameters that are
required in our joint disparity and illumination variation estimation method.

Inputs:

- Occluded areas O estimated from the initial disparity map based on
the ordering Yuille and Poggio [1984] and border constraints.



46
Chapter 3. A parallel proximal splitting method for disparity estimation

from multicomponent images under illumination variation

- (T
(k)
1 , T

(k)
2 , r(k)) for k ∈ {1, 2, 3}.

- Minimum and maximum estimates of the fields to be estimated.

- Upper bounds for the constraints.

Parameter choice:

- For S1, ω1=100, ω2=100.

- For S2, S3 or S4: ω3=200, ω4=200.

- For J (1),J (2) and J (3): ω5=ω6=ω7=10.

- λn ≡ 1.5.

The weights were chosen so that all the terms in the averaging step have a
contribution of the same order.

Stopping criterion:

- The algorithm is stopped when the following condition is satisfied for
10 successive iterations:
‖un+1 − un‖ < ε‖un‖ where ε = 10−5.

Outputs:

- The final values of the disparity vector un and the illumination variation
vector vn.

3.4.4 Gray level images without illumination variation

Although the purpose of this work is to focus on situations where illumination
variation arises, in this first experiment we aim at illustrating the performance
of the proposed approach on grayscale images (K = 1) without any variation
of the illumination field (for every s ∈ A, v(s) = 1). This allows us to
compare our method with some recent state-of-the-art methods referenced
in the Middlebury website.2 In Table 3.2, we display the results obtained on
3 different stereo pairs (Teddy, Venus, and Cones) for which we compare the
results obtained by:

• the correlation-based approach used to initialize our approach (NCC),

• a graph-cut based approach (Gc+Occ) Kolmogorov and Zabih [2001],

• a total variation based algorithm (ConvexTV) Pock et al. [2008],

2http://vision.middlebury.edu/stereo/
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• a method based on the knowledge of Ground Control Points (Global-
GCP) Wang and Yang [2011],

• a histogram-based method (HistoAggr) Min et al. [2011],

• a curvelet-based approach (CurveletSupWgt) Mukherjee et al. [2010],

• the approach based on set theoretic estimation (subg. proj.) in Miled
et al. [2009a],

• our proposed method based on PPXA+ minimizing an `1 cost subject
to constraints S1,1, S1,2, and S′1,2.

Note that the frame employed to define constraint S′1,2 simply consists of
an overcomplete Haar wavelet representation carried out over 1 resolution
level. Other wavelet families have been tested without observing significant
improvements.

Table 3.2: Comparative results based on MAE for Teddy, Venus, and Cones
stereo pairs. The red superscript numbers represent method ranking.

Method Teddy Venus Cones

NCC 1.1698 0.4118 1.1348

Gc+Occ Kolmogorov and Zabih [2001] 1.1667 0.3037 0.5856

ConvexTV Pock et al. [2008] 0.3661 0.1781 0.3741

GlobalGCP Wang and Yang [2011] 0.4892 0.2724 0.4433

HistoAggr Min et al. [2011] 0.7884 0.2785 0.4342

CurveletSupWgt Mukherjee et al. [2010] 0.8315 0.2996 0.8317

Subg. proj. Miled et al. [2009a] 0.8906 0.2072 0.5515

PPXA+ 0.6663 0.2113 0.4874

The proposed approach appears to be competitive with respect to the
other ones, although most of them are not able to deal with illumination
variation. Moreover, as already mentioned, the proposed method can be
implemented on a GPU architecture, thus reducing drastically the com-
putation time. Indeed, the proximity operators and the projections onto
the different convex sets can be computed in parallel. For example, with a
GPU implementation, when considering the range values S1,1 and the total
variation constraints S1,2, the following executing times per iteration were
measured: for Teddy: 21.7ms, for Venus: 5.72ms, and for Cones: 21.98ms
Gaetano et al. [2012].

Let us now turn our attention to more challenging scenarios including
illumination variation both for grayscale and color images.
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3.4.5 Gray level images with illumination variation

In this section, we evaluate our method on grayscale images (K = 1) in the
presence of real and simulated illumination changes. The results are obtained
on three stereo pairs depicted in Figure 3.6, named “Books”, “Dolls”, and
“Parking meter”.

Figure 3.6: Stereo images: “Books” (left), “Dolls” (center), and “Parking
meter” (right).

In a first experiment, we estimate the disparity map and the illumination
variation (real case) on the Books pair downloaded from MiddleBury website.
We take here φ(1) = | · | for the cost function and consider the two convex
constraints S1 and S2 for which the upper bounds were evaluated on the
ground truth maps. In Figure 3.7, we compare our results with the subgradi-
ent projection approach proposed in Miled et al. [2009a], where a strictly
convex quadratic function is used. We also compare our approach with two
naive procedures for the disparity field estimation: the correlation based
approach ignoring the illumination variation and a histogram equalization
technique followed by a variational approach for disparity estimation, in the
spirit of the approach we developed.

Concerning the choice of the criterion and of the constraint sets, we
present in Figure 3.8 results obtained by using the following settings:

• for a)-b): S1, S′2, and φ(1) = | · |;

• for c)-d) same constraints as a)-b) and φ(1) = (·)4;

• for e)-f): S1, S2, S3, and φ(1) = | · |;

• for g)-h) same constraints as e)-f) and φ(1) = | · |
3
2 .

By comparing the obtained results, it turns out that the `1 cost is a
good choice, and that the use of second-order constraints leads to a
marginal improvement.
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a) True disparity b) True illumination

c) MAE=1.8, Err2=16 d) MAE=0.212

e) MAE=1.46, Err2=13 f) MAE=0.211

g) MAE= 4.69, Err2=26 h) MAE=1.55, Err2=18

Figure 3.7: Results for “Books” stereo pair: a)-b) ground truths, c)-d)
subgradient projection method (c) disparity and d) illumination fields), e)-
f) proposed approach with (umin, umax) = (20, 75),(vmin, vmax) = (0.1, 1.1),
(τ2, κ2) = (74000, 400) (e) disparity and f) illumination fields), g) estimation
of the disparity by NCC, h) estimation of the disparity after histogram
equalization.
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a) True disparity b) True illumination

c) MAE=1.26, Err2=13 d) MAE=0.09

e) MAE=1.38, Err2=14 f) MAE=0.102

g) MAE=1.23, Err2=14 h) MAE=0.103

i) MAE=1.23, Err2= 14 j) MAE=0.103

Figure 3.8: Results for Dolls stereo pair: proposed approach applied using c)-
d)-`1-cost and S1 ∩ S′2 with (umin, umax) = (20, 75), (vmin, vmax) = (0.1, 1.1),
(τ ′2, κ2) = (92000, 230), e)-f)-`4 cost and S1∩S′2, g)-h) `1 cost and S1∩S2∩S3

with (τ2, κ2) = (34000, 230), (τ3, κ3) = (180000, 570), i)-j)-`3/2 cost and
S1 ∩ S2 ∩ S3.
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In a third experiment (see Figure 3.10), we show the results provided by
the proposed method (with φ(1) = |·|) for a real image stereo pair from JISCT
database, 3 taken under simulated illumination variation. To introduce a
significant illumination variation, the left image is kept unchanged and the
right image is modified by multiplying it with the Gaussian profile g depicted
in Figure 3.9 and defined as:

(∀(i1, i2) ∈ A)

g(i1, i2) = α1 exp
(
−(i1 − i1,0)2 + (i2 − i2,0)2

2ξ2

)
+ α2 (3.47)

Figure 3.9: Synthetic Gaussian profile.

where (i1,0, i2,0) is the image center, ξ = 512 is the illumination deviation,
α1 and α2 are given constants equal to 1.8 and −0.6 respectively.
In this case, the constraint bounds in S1 and S2 are not known. Hence, they
are computed in the first place using the initial disparity, and then divided
by a factor 2, thus assuming that the expected result should be smoother
than the initial estimate.

a) MAE=0.033 b) c) MAE=0.031 d)

Figure 3.10: Results for “Parking meter” stereo pair. a)-b) Subgradi-
ent projection method and c)-d) our approach with (umin, umax) = (1, 8),
(vmin, vmax) = (0.1, 1.1), (τ2, κ2) = (20000, 0.4). a)-c) is the measured illumi-
nation field, b)-d) the measured disparity field.

3http://vasc.ri.cmu.edu/idb/html/jisct/
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3.4.6 Color images with illumination variation

For color images, we present tests performed on the Dolls pair also downloaded
from Middlebury website. Constraint sets S1 and S2 were used, the associated
bounds being computed on the ground truth fields. The results are provided
in Figure 3.11 for YUV color images and the grayscale level images (Y
component only) by using, for every k ∈ {1, . . . ,K}, φ(k) = | · |. As expected,
matching errors are reduced by using the proposed illumination variation
model for color images.

a) left image b) right image

c) True disparity e) MAE=1.26, Err2=13 g) MAE=1.10, Err2=11

d) True illumination f) MAE=0.09 h) MAE=0.09

Figure 3.11: Results for Dolls stereo pair: e)-f) results from gray scale
images and g)-h) from color (YUV) images. ((umin, umax) = (20, 75),
(vmin, vmax) = (0.1, 1.1), (τ2, κ2) = (92000, 240)).
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§ 3.5 Experiments with non local constraints

In this part, we exploit a recent extension of the total variation functional
which is the Non Local TV (NLTV). Here, the nonlocality principal means
that any point in the depth map can interact directly with any other point
in the whole map. The main idea of nonlocal extension is based on the
definition of nonlocal derivative operators, where the objective is to take into
account additional prior information derived from the object itself. Such pixel
grouping has already been considered in the field of image restoration, stereo
matching, and motion estimation: when performing image restoration, the
support weights are computed based on the fact that natural images exhibit
a large amount of redundancy. This leads to the well-known neighborhood
filters Buades et al. [2008] which belong to the best performing methods. A
variational interpretation of these ideas leads to the nonlocal regularizers
Gilboa and Osher [2009]; Peyré [2011]; Chierchia et al. [2013]; Couprie et al.
[2013]. In the context of stereo matching, Yoon and Kweon Yoon and Kweon
[2006] computed adaptive support weights to locally adapt the local matching
window to the image structure, which leads to a significant improvement of
the method. In Xiao et al. [2006], the authors proposed to incorporate the
bilateral Gaussian filter into a variational motion estimation framework in
order to improve the performance in occluded regions. In Werlberger et al.
[2010], the nonlocal total variation regularization is introduced using the
second order Taylor expansion of the data term applied in motion estimation.

The nonlocal total variation regularization incorporates this information
directly into the energy definition yielding:

NLTV(u) =
∑
s∈A

√ ∑
n∈Ns⊂Ws

ωs,n|u(s)− u(n)|2, (3.48)

where Ws is a set of positions n ∈ A \ {s} located into a Q × Q window
centered at s, where Q ∈ N is odd, and Ns is the actual neighborhood
support of pixel s, which may contain a smaller subset of positions in Ws.

The associated constraint is expressed as

S1,4 =
{
u ∈ R|A|

∣∣ NLTV(u) ≤ τ4

}
(3.49)

with τ4 > 0.

Weight estimation for NLTV operator

For every s ∈ A, we design the support Ns by selecting the pixels n ∈ Ws

that are most similar to s according to their weights ωs,n. For every n ∈ Ws,
the weight ωs,n depends on the similarity between patches built around the
pixels s and n of the disparity map, as will be shown afterwards. In general,
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such similarities can be estimated by following two different approaches. The
first solution consists of computing the weights on the left image, assuming
that object boundaries provide cues to localize discontinuities in the disparity
map, as will be shown next. The alternative solution consists of a two-step
approach, where an estimate of the disparity map is first computed with the
TV regularizer and subsequently used to compute the weights. We follow the
latter approach, as the former one suffers from the fact that similar patches
in the left image may not necessarily correspond to regions with similar
disparities.

In both cases, the weights are computed as follows

ωs,n = ω̃s exp
(
−δ ‖B̃sF̃sx̃− B̃nF̃nx̃‖2

)
, (3.50)

where δ ∈ ]0,+∞[, ω̃s ∈ (0,+∞), B̃s (resp. B̃n) selects a Q̃ × Q̃ patch
centered at position s (resp. n), and F̃s (resp. F̃n) is a linear processing of
the image depending on the position s (resp. n). The constant ω̃s is set so
as to normalize the weights (i.e.

∑
n∈Ns ωs,n = 1). In the present work, we

consider the foveated self-similarity measure recently introduced in Foi and
Boracchi [2012], due to its better performance in denoising. This approach
can be derived from (3.50) by setting F̃s (resp. F̃n) to a set of low-pass
Gaussian filters whose variances increase as the spatial distance from the
patch center s (resp. n) grows.

For every s ∈ A, the neighbourhoodNs is built according to the procedure
described in Gilboa and Osher [2007]. In practice, we limit the size of the
neighbourhood |Ns| to 14, and set Q = 11 and Q̃=3.

3.5.1 Results

To emphasize the potential of our approach, we realized some experiments
on the already introduced Middlebury benchmark database. For the NLTV
constraint, we have used an epigraphical projection in order to handle the
projection onto `12 ball norm Chierchia et al. [2013]. Concerning the choice
of the constraint sets, for NLTV (resp. TV) we use S1, S2,2, and S4 (resp. S1

and S2). Note that the matrix inversion required by primal algorithms (such
as PPXA+) can be performed by resorting to variable splitting as detailed in
Peyré and Fadili [2011]. In this respect, primal-dual methods often constitute
a better choice, as they require nothing but the linear operators and their
associated adjoint operators. For this reason, in the following we employ the
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M+LFBF algorithm(described in the previous chapter), which offers a good
performance, robustness to numerical errors, and guaranteed convergence.
The images used in our experiments are displayed in Figure 3.12.
mireille
mireille

(a) Venus (b) Bull (c) Cloth (d) Wood

Figure 3.12: Left images of the stereo pairs.

mireille
mireille
In Tables 3.3 and 3.4, we present the results obtained for two different cases:
-Case 1: Gray images without illumination variation (Table 3.3). According
to the percentage of bad pixels and the Mean Absolute Error, we can see
that the NLTV approach performs better than the total variation one, with
a gain of 0.83% in terms of bad pixels.

Table 3.3: Disparity estimation results obtained for the gray level images
Venus and Bull, using an `1 cost.

TV NLTV Parameters

Venus MAE=0.21 MAE=0.18 τ2=14000,τ4=15600
Err2=1.52 Err2=0.69 (umin, umax) =(3,20)

Bull MAE=0.20 MAE= 0.18 τ2=2533,τ4=7458
Err2=1.47 Err2= 1.16 (umin, umax) =(3,20)

-Case 2: Color images under illumination variation (Table 3.4). Also in this
case, NLTV performs better than TV with a gain in the percentage of bad
pixels of 0.51% and 2.01% for Cloth and Wood pairs respectively.
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Table 3.4: Disparity estimation results obtained for the color stereo pairs
Cloth and Wood, under illumination variation using an `1 cost.

TV NLTV Parameters

Cloth MAE=0.84 MAE=0.82 τ2=45000, τ4=18800
Err2=2.44 Err2=1.73 (umin, umax) =(15,55)

(vmin, vmax)=(0.1,0.6)

Wood MAE=2.78 MAE=2.53 τ2=58000, τ4=21000
Err2=10.47 Err2=8.10 (umin, umax) =(21,71)

(vmin, vmax)=(0.1,0.6)

Finally, in Figure 3.13, we illustrate the recovered disparity maps using
our method for color stereo pairs Cloth and Wood. These visual results
clearly show the efficiency of our method in recovering the depth estimation
in addition to illumination variations, for multicomponent images.

§ 3.6 Conclusion

In this chapter, we have investigated the application of a parallel proximal
algorithm to the dense disparity estimation problem, for multicomponent
(e.g. color) stereo matching, under illumination variation conditions. The
proposed approach is flexible, as it allows us to consider various convex
objective functions and constraints. It is also able to exploit the potentials
offered by multicore/GPU parallel system architectures. However, one of the
current limitations of the proposed method is that it is limited to convex cost
functions, thus requiring a linearization of the original disparity model and
making the estimation potentially sensitive to high matching error values.
In the next chapter, we extend this approach to the multi-view context, but
we resort to the convex relaxation proposed in Cremers et al. [2011], which
allows us to consider nonconvex cost functions with no approximation in the
computed solution (except for a quantization error).
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(a) Left image (b) True disparity (c) MAE=0.82, Err2=1.73

(d) Right image (e) True illumination (f) MAE=0.067

(g) Left image (h) True disparity (i) MAE=2.53, Err2=8.10

(j) Right image (k) True illumination (l) MAE=0.015

Figure 3.13: Visual results for with color images “Cloth” and “Wood”.
“Cloth” ( (a) to (f) ) with (umin, umax) = (15, 55),(vmin, vmax) = (0.1, 0.6)
and (τ4, κ2) = (18800, 135). “Wood” ( (g) to (l) ) with (umin, umax) =
(21, 71),(vmin, vmax) = (0.1, 0.6) and (τ4, κ2) = (21000, 42).
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- Chapter 4 -

Multi-view disparity estimation

“When you feel life at crossroads, you need higher perspective view.”
Toba Beta

In the previous chapter, we discussed the problem of depth estimation
from two views, under illumination variation. However, using two views, we
have a limited field of view and we can only see a portion of a scene. In
particular, a global description of objects often cannot be reconstructed from
only two viewpoints due to occlusions. For this purpose, multi-view imaging
has been used for many vision tasks to make the objects more visible.

This chapter addresses the problem of multi-view disparity estimation
from rectified images. A sequence of disparity maps is estimated by using
a multilabel optimization approach. For each of these maps, information
from all the available views are exploited. The joint estimation problem is
solved in a convex manner without adding much complexity with respect to
the stereo matching case. The good performance of the proposed method is
illustrated through experiments.

§ 4.1 Introduction

We consider the classical problem of estimating a dense 3D structure of a
scene from a collection of calibrated views. Being one of the fundamental
problems in computer vision, this issue has lately gained much attention
in this field and remains an active research area. There are different types
of approaches to tackle this problem, depending on the exploited image
information. All these methods aim at reversing the image formation process.
However, an image is essentially formed by projecting the 3D scene onto a
2D plane (which causes the loss of depth) and, in a mathematical sense, the
inverse projection mapping does not exist, since all 3D points along a visual

59
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ray are projected onto the same image 2D point. This makes the problem
of multi-view 3D reconstruction ill-posed. Thus, additional constraints are
needed in order to make the reconstruction problem well-posed. Multi-view
is known to produce detailed reconstructions with a quality close to that of
laser scanned models Seitz et al. [2006].

4.1.1 Related Work

The problem of 3D modeling from multiple images or multi-view stereopsis
has been widely studied in the field of computer vision, computer graphics,
and computational photography. A large panel of variational methods for
multi-view 3D reconstruction inherits the active contour framework originally
proposed for image segmentation Kass et al. [1988]. In this context, the
problem consists of modeling a continuous two-dimensional surface as the
minimizer of an appropriate energy functional, by using geodesic active
contour models Caselles et al. [1995, 1997], level sets Faugeras and Keriven
[1998], triangle meshes Hernandez and Schmitt [2004]; Duan et al. [2004]
or graph cuts Vogiatzis et al. [2007]. A generalization of this approach has
been developed in Pons et al. [2007], which allows to replace the classical
photo-consistency estimation with a global matching score on the entire
image domain.

On the other side, the Patch-based Multi-view Stereo algorithm proposed
by Furukawa and Ponce [2010] appears as the state-of-the-art method among
those based on feature extraction and matching. However, methods based
on feature extraction and matching may show significant errors caused by
severe occlusions and highly reflective surfaces. Probabilistic models have
been proposed as an alternative approach to handle complicated scene geom-
etry. These models do not make hard decisions about surface geometry or
appearance: they explicitly represent uncertainties by assigning probabilities
to multiple hypotheses. Early works along this line of reasoning Broadhurst
et al. [2001]; Bhotika et al. [2002] can be regarded as extensions of Space
Carving Kutulakos and Seitz [1999] and, more recently, algorithms based
on generative models for the reverse image formation process have been
introduced Gargallo et al. [2007]; Liu and Cooper [2011]. Using a Bayesian
approach, these algorithms infer the maximum a posteriori estimation from
the joint probability of all the images.

A different approach amounts at recovering a set of consistent view-
dependent depth maps from an image sequence, instead of reconstructing
a complete 3D model. This is mainly motivated by applications such as
view synthesis, depth-based segmentation, and video enhancement. Early ap-
proaches in depth estimation Okutomi and Kanade [1993]; Collins [1996] used
local window-based methods and employed a local winner-takes-all strategy.
Our work is somewhat related to that of Kang and Szeliski [2004]; Gargallo
and Sturm [2005], which also aims at inferring consistent depth maps from



4.2. Multi-view disparity estimation 61

multiple images. The authors in Gargallo and Sturm [2005] formulated 3D
modeling from images as a Bayesian MAP problem, and solved it using the
expectation-maximization algorithm. They used the estimated depth map to
determine the visibility prior. A multiple-depth-map prior was finally used
to smooth and merge the depths while preserving discontinuities. Larsen
et al. [2007] presented an approach for 3D reconstruction from multiple syn-
chronized video streams. In order to improve the final reconstruction quality,
they used the optical flow to find corresponding pixels in the subsequent
frames acquired by the same camera, and enforced the temporal consistency
in reconstructing successive frames. With the observation that the depth
error in conventional stereo methods grows quadratically with depth, Gallup
et al. [2008] proposed a multi-baseline and multi-resolution stereo method
to achieve constant depth accuracy by varying the baseline and resolution
proportionally to depth.

In summary, although many approaches have been proposed to model
3D objects or to estimate depths using multiple input images, the problem
of how to appropriately extract information and recover consistent depths
from an image sequence remains challenging. In the present work, a global
multilabel approach is proposed for multi-view disparity estimation, which is
grounded on the use of a convex optimization strategy. A global solution to
the problem is provided by minimizing a regularized similarity measure. The
regularization enforces the smoothness of the sought disparity maps while
preserving coherent contours in the set of images. The proposed formulation
handles possibly nonconvex similarity measures. We also point out that
the additional complexity required by the application of our method to the
multi-view context is small with respect to the stereo case.

The chapter is organized as follows. In Section 4.2, we provide a general
formulation of the multi-view disparity estimation problem. In Section 4.3,
we describe a convex relaxation method based on the multilabel approach and
we propose an algorithm to solve the resulting convex optimization problem.
In Section 4.4, we describe an alternative convex relaxation method based
on an improved first-order-Taylor approximation around an initial estimate.
In Section 4.5, we present some numerical comparisons of the proposed
multi-view disparity estimation methods and we show the effectiveness of
the first one with respect to the standard stereoscopic approach (i.e. based
on two views) and other multi-view estimation approach. Some conclusions
are given in Section 4.6.

§ 4.2 Multi-view disparity estimation

Although two images are enough to estimate the depth of a scene from point
correspondences, having additional views presents two significant benefits.
Firstly, the estimation process becomes more accurate: since there is more
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information about the same 3D point, this redundancy can be exploited in
order to improve the depth estimation quality. Secondly, occluded pixels
(i.e. pixels that have no match in some of the images) can be handled using
the other images where a correspondence exists. The uncertainty related to
occluded pixels can thus be reduced in multi-view systems.

This work investigates the disparity estimation problem for an arbitrary
number of views acquired by rectified cameras Hartley and Zisserman [2004];
Nozick [2011], with the camera centers aligned.

4.2.1 Problem formulation

We suppose that N rectified views (In)1≤n≤N are taken along a straight
line with equal distance between any two consecutive camera positions
(Figure 4.1).

Figure 4.1: N images (view 1, view 2, . . . ) captured by N aligned and
equidistant cameras (C1, C2, . . . ) at N different positions, resulting in a set
of stereo pairs with equal baselines B.

Each pair of views (In, Im), with (n,m) ∈ {1, . . . , N}2 and n 6= m, is
associated with a disparity field un,m. By invoking Equation (3.6), the

disparity values (u
(s)
n,m)s∈A are proportional to the distance between the two
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cameras, the focal length f , and to the inverse depths of the objects (Z(s))
in the scene:

(∀s ∈ A), u(s)
n,m =

f (m− n)B

Z(s)
. (4.1)

Using the same notation as in the previous chapter, s = (i1, i2) ∈ A denotes
a pixel coordinate and A ⊂ R2 is the image support. Under classical epipolar
geometry assumptions (see Chapter 3), the intensities of corresponding pixels
in the rectified images are related by

I(i1,i2)
n = I

(i1−u(s)n,m,i2)
m . (4.2)

The overall number of disparity fields is equal to N(N − 1)/2, but these are
obviously related since they correspond to the same 3D scene. In particular,
for every n ∈ {1, . . . , N}, if kn 6= n is some given index in {1, . . . , N}
(typically, kn = n+ 1 is the right image index, when n < N and kn = N − 1
is the left image index, when n = N), we have

(∀(n,m) ∈ {1, . . . , N}2, n 6= m) un,m = αn,mun,kn (4.3)

where αn,m is a real-valued constant depending on the relative positions of
the cameras. According to Equation (4.1), when the cameras are equidistant,
αn,m = m−n

kn−n .

Hence, by using (4.3), the number of disparity fields to be estimated
reduces to N . By taking advantage of the N views, the un,kn field can be
estimated with a variational approach that minimizes a criterion of the form

fn(un,kn) =

N∑
m=1
m 6=n

∑
s∈Dn,m

ψ(I(s)
n , I

(i1−αn,mu(s)n,kn ,i2)
m ) (4.4)

where Dn,m denotes some finite subset of A of unoccluded pixels (i.e. pixels
in the n-th view that can be matched with pixels in the m-th view) and
ψ : R2 → R is a similarity measure. As explained in the following sections,
the proposed approach is applicable to any kind of function of interest (`2
norm, truncated `1 cost function, etc...).

§ 4.3 Approach based on multilabeling

4.3.1 Convex representation

In order to estimate un,kn , we propose to adopt a multilabel approach
Pock et al. [2008]; Hiltunen et al. [2012]. More specifically, the disparity
un,kn is quantized over Q + 1 quantization levels r0, r1, . . . , rQ, such that
r0 < r1 < · · · < rQ. We employ a bijection that maps the disparity map
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un,kn ∈ {r0, . . . , rQ}P , with P = card(A), to a multivariate binary field
θn = (θn,1, . . . , θn,Q) ∈ B with components

(∀ q ∈ {1, . . . , Q})(∀ s ∈ A) θ(s)
n,q =

{
1 if u

(s)
n,kn
≥ rq

0 otherwise

where

B = {θn ∈ ({0, 1}P )Q| (∀ s ∈ A) 1 ≥ θ(s)
n,1 ≥ · · · ≥ θ

(s)
n,Q ≥ 0}.

More precisely, there exists a bijection between the set of disparity fields
un,kn ∈ {r0, . . . , rQ}P and the set of multivariate label images θn,q as defined
above. We have then

(∀ s ∈ A) u
(s)
n,kn

= r0 +

Q∑
q=1

(rq − rq−1)θ(s)
n,q (4.5)

The estimation of the quantized disparity un,kn is thus equivalent to finding
the associated multivariate binary field θn ∈ B. It can be further observed
that the global error measure can be re-expressed as a linear function of θn
as follows:

f̃n(θn) =
N∑
m=1
m 6=n

∑
s∈Dn,m

Q∑
q=0

ψ(I(s)
n , I

(i1−αn,mrq ,i2)
m )(θ(s)

n,q − θ
(s)
n,q+1) (4.6)

where θn,0 = 1 and θn,Q+1 = 0. Consequently, the minimization problem can
be expressed as:

minimize
θn∈B

f̃n(θn) + ρ(θn) (4.7)

where ρ is some regularization function used to promote the spatial regularity
of the binary images. A typical choice for ρ is the isotropic discrete total
variation which is denoted by tv. Then, our problem becomes:

minimize
θn∈B

f̃n(θn) + µ

Q∑
q=1

(rq − rq−1) tv(θn,q), µ > 0. (4.8)

Note that f̃n and tv are convex functions, but the problem is nonconvex due
to the nonconvexity of the set B. We thus use a convex relaxation based on
the approach of Cremers et al. [2011]. The problem is then equivalent to

minimize
θn∈R

f̃n(θn) + µ

Q∑
q=1

(rq − rq−1) tv(θn,q) (4.9)
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where

R = {θn ∈ ([0, 1]P )Q|(∀ s ∈ A) 1 ≥ θ(s)
n,1 ≥ · · · ≥ θ

(s)
n,Q ≥ 0}.

Although the convex function f̃n(θn) + ρ(θn) is minimized over a convex
set R, the uniqueness of a solution is not guaranteed Ekeland and Téman
[1999]. In order to solve Problem (4.9), we need to introduce some auxiliary
functions.

Firstly, let gn : R → R be a linear function defined as

(∀ θn ∈ R) gn(θn) = f̃n(θn)−
N∑
m=1
m6=n

∑
s∈Dn,m

ψ
(
I(s)
n , I

(i1−αn,mr0,i2)
m

)
(4.10)

=

Q∑
q=1

∑
s∈A

θn,q
>ςn,q = θn

>ςn, (4.11)

where ·>· is the standard scalar product in the space (RP )Q and ςn =
(ςn,1, . . . , ςn,Q) ∈ (RP )Q. For every q ∈ {1, . . . , Q}, the components of vector
ςn,q are given by

(∀ s ∈ A) ς(s)
n,q =

N∑
m=1
m 6=n

1n,m(s)
(
ψ(I(s)

n , I
(i1−αn,mrq ,i2)
m )− ψ(I(s)

n , I
(i1−αn,mrq−1,i2)
m )

)

where, for every m ∈ {1, . . . , N} with n 6= m, 1n,m(s) = 1 if s ∈ Dn,m and 0
otherwise.

In addition, the constraint set R can be decomposed as the intersection
of two more tractable sets:

θn ∈ R ⇔ (θn ∈ E1 and Lθn ∈ E2) (4.12)

where E1 = ([0, 1]P )Q, E2 = ([0,+∞[P )Q−1, and L : (RP )Q → (RP )Q−1

is a linear operator, calculating the successive differences between the Q
components of θn, defined as

(∀ θn ∈ (RP )Q) Lθn = (ζn,1, . . . , ζn,Q−1), (4.13)

and for all s ∈ A,  ζn,1(s)
...

ζn,Q−1(s)

 = L

θn,1(s)
...

θn,Q(s)

 (4.14)
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where L ∈ R(Q−1)×Q, is such that

L =



1 −1 0 . . . . . . 0

0 1 −1
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . . . . 0 1 −1


. (4.15)

Finally, the total variation function can be expressed as

ρ(θn) = µ h(Dθn) (4.16)

where D : (RP )Q → (R2P )Q is a block diagonal operator whose q-th diagonal
term with q ∈ {1, . . . , Q} corresponds to a discrete gradient operator applied
to θn,q computed in the horizontal and vertical directions. D is a linear
operator given by

D =



D1 0 . . . 0

D2 0
...

0 D1

0 D2
...

...
... 0

0 0 0 D1

0 0 . . . 0 D2


(4.17)

where D1 and D2 are the spatial gradient operators operating in the hor-
izontal/vertical directions with periodic extension at boundaries. These
operators correspond to 2D filters with frequency responses 1− exp(−2πν1)
and 1− exp(−2πν2), where (ν1, ν2) are the 2D horizontal/vertical frequency
variables (2 = −1). The above function h is a sum of `1,2 norms:1(
∀ δn = (δn,1, . . . , δn,Q) ∈ (R2P )Q

)
h(δn) =

Q∑
q=1

(rq − rq−1)‖δn,q‖1,2.

With these definitions, the optimization problem reads

minimize
θn∈(RP )Q

gn(θn) + µ h(Dθn) s. t.

{
θn ∈ E1,

Lθn ∈ E2,
(4.18)

and the corresponding constrained formulation reads

minimize
θn∈(RP )Q

gn(θn) s. t.


θn ∈ E1,

Lθn ∈ E2,

h(Dθn) ≤ η,
(4.19)

where η ≥ 0.

1See Section 6.1 for the definition of the `1,2-norm.
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4.3.2 Proximal solution

Guidelines for addressing the above optimization problems are provided in
Chambolle and Pock [2011]; Briceño-Arias and Combettes [2011]; Combettes
and Pesquet [2012]; Setzer et al. [2010]; Parikh and Boyd [2013] by employing
algorithms involving computation of proximity operators.

Proximity operators

Since gn is a linear function, it can be further deduced from the standard
properties of the proximity operator Combettes and Pesquet [2011] that the
proximity operator of γgn + ιE1 with γ ∈ 0,+∞] is given by:

proxγgn+ιE1
= PE1(· − γςn) (4.20)

For the proximity operator of h, needed to solve Problem (4.18), we have:(
∀ δn = (δn,1, . . . , δn,Q) ∈ (R2P )Q

)
proxµhδn = ξn (4.21)

where, ξn = (ξn,1, . . . , ξn,Q) ∈ (R2P )Q, for every q ∈ {1, . . . , Q} and s ∈ A,

ξ(s)
n,q = max

{
0, 1− µ(rq − rq−1)

‖δ(s)
n,q‖1,2

}
δ(s)
n,q. (4.22)

For the projection onto the lower level set of h, needed to solve Problem
(4.19), we use the projection onto the `1 ball proposed by Van Den Berg
and Friedlander [2008]. In our experiments, we focus on the constrained
formulation (4.19) since the regularization parameter η may be easier to
estimate.

Remark 4.3.1 The projection onto the polyhedron R may be computed in
a finite number of iterations by solving the dual problem, which consists of
a quadratic criterion subject to a positivity constraint. However, since at
each iteration we need to compute a large number of projections (for each
pixel in the image), this approach turns out to be slower than splitting the
constraint R into E1 + E2.

M+LFBF algorithm

We propose here to use a primal-dual proximal algorithm whose main ad-
vantage is the absence of any matrix inversion. More precisely, we use the
M+LFBF algorithm proposed in Combettes and Pesquet [2012]. The algo-

rithm is initialized by setting the constants β and γ, and the variables v
[0]
1

and v
[0]
2 associated with the lower-level set constraint on h and E2.
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The main loop consists of computing the proximity operator given in
(4.20), as well as the direct projections onto the different convex sets modeling
prior information.

Algorithm 4 M+LFBF Combettes and Pesquet [2012]

β =
(
‖D‖2 + ‖L‖2

)1/2
ε ∈]0, (1 + β)−1[, γ ∈ [ε, (1− ε)/β]

v
[0]
1 ∈ (R2P )Q, v

[0]
2 ∈ (RP )Q−1

θ
[0]
n ∈ (RP )Q

for t = 0, 1, . . .

p[t] = D>v
[t]
1 + L>v

[t]
2

θ̂
[t]
n = PE1

(
θ
[t]
n − γςn − γp[t]

)

v̂
[t]
1 = v

[t]
1 + γDθ

[t]
n − γPlev≤ηh

(
v
[t]
1 +γDθ

[t]
n

γ

)
v̂
[t]
2 = v

[t]
2 + γLθ

[t]
n − γPE2

(
v
[t]
2 +γLθ

[t]
n

γ

)

v
[t+1]
1 = v̂

[t]
1 + γD(θ̂

[t]
n − θ[t]n )

v
[t+1]
2 = v̂

[t]
2 + γL(θ̂

[t]
n − θ[t]n )

p̂[t] = D>v̂
[t]
1 + L>v̂

[t]
2

θ
[t+1]
n = θ̂

[t]
n − γ

(
p̂[t] − p[t]

)

Remark 4.3.2 mireille

1- If γ ∈ [ε, (1−ε)
β ] where β =

(
‖D‖2 + ‖L‖2

)1/2
and ε ∈]0, (1 + β)−1[,

then the sequence (θ
[t]
n )t∈N generated by the Algorithm 4 converges to

a solution θn to Problem 4.19 (Combettes and Pesquet [2012]).

2- In practice, to accelerate the convergence, the step-size γ has to be
chosen as large as possible (for example, ε = 0.001/(β + 1) and γ =
(1− ε)/β).

3- Due to the forms of operators L and D, we have

‖L‖ = 2 (4.23)

(that is the maximum singular value of matrix L). In addition, according
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to (4.17), we have

‖D‖ = ‖D∗D‖
1
2 = ‖D∗1D1 +D∗2D2‖

1
2

= max
ν1,ν2

(|1− exp(2πν1)|2 + |1− exp(2πν2)|2)
1
2 = 2

√
2. (4.24)

This shows that β = 2
√

3.

§ 4.4 Improved Taylor approximation

An alternative way to deal with multi-view disparity estimation consists of
relaxing the data fidelity term by resorting to a linearization around an initial
estimate. In Chapter 3, we presented an approach based on the first-order
Taylor approximation. In the present section, we improve this approach by
using a second-order Taylor approximation Malis [2004], which allows us to
tighten the relaxation of the data fidelity term in the absence of illumination
variation.

Recall that (In)1≤n≤N denote the N rectified views, and the intensities
of corresponding pixels between two views are related by

I(i1,i2)
n = I

(i1−u(s)n,m,i2)
m . (4.25)

When the magnitude of the difference between the fields un,m and the initial
estimate ūn,m is small enough, we obtain the following expression:(
∀(n,m) ∈ {1, . . . , N}2, n 6= m

)
and

(
∀s = (i1, i2) ∈ Dn,m

)
I

(i1−u(s)n,m,i2)
m 'I(i1−ū(s)n,m,i2)

m − (u(s)
n,m − ū(s)

n,m)∇(1)I
(i1−ū(s)n,m,i2)
m

+
1

2
(u(s)
n,m − ū(s)

n,m)2∇(1,1)I
(i1−ū(s)n,m,i2)
m + o(|u(s)

n,m − ū(s)
n,m|2)︸ ︷︷ ︸

O(|u(s)n,m−ū
(s)
n,m|2)

,

(4.26)

where ∇(1) (resp. ∇(1,1)) denotes the first-order (resp. the second order)
derivative along the first space dimension (see Chapter 3, Equation 3.22).

By deriving the two members of Equation (4.25), we obtain:

∇(1)I(s)
n = ∇(1)(I

(i1−u(s)n,m,i2)
m ) = ∇(1)I

(i1−u(s)n,m,i2)
m (1−∇(1)u(s)

n,m). (4.27)

Since u
(s)
n,m is locally smooth, it appears reasonable to assume that∇(1)u

(s)
n,m ' 0.

The results in Section 4.5 confirm the validity of this assumption. By per-
forming a second term Taylor expansion around the initial estimate ū, we
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obtain:

∇(1)I
(i1−u(s)n,m,i2)
m ' ∇(1)I

(i1−ū(s)n,m,i2)
m

− (u(s)
n,m − ū(s)

n,m)∇(1,1)I
(i1−ū(s)n,m,i2)
m

+ o(|u(s)
n,m − ū(s)

n,m|2). (4.28)

Then, combining Equation (4.26) and (4.28), we obtain

I
(i1−u(s)n,m,i2)
m ' I(i1−ū(s)n,m,i2)

m

− 1

2
(u(s)
n,m − ū(s)

n,m)∇(1)(I
(i1−ū(s)n,m,i2)
m + I(s)

n )

+ o(|u(s)
n,m − ū(s)

n,m|2) (4.29)

Following the approach in Chapter 3, the criterion is reformulated as:

Jn(un,kn) =
N∑
m=1
m6=n

∑
s∈Dn,m

ψ
(
I(s)
n − I

(i1−αn,mu(s)n,kn ,i2)
m

)

=

N∑
m=1
m6=n

∑
s∈Dn,m

ψ
(
T (s)
n,mu

(s)
n,kn
− r(s)

n,m

)
(4.30)

where, by using (4.3), (4.25), and (4.29), for every s = (i1, i2) ∈ Dn,m,T (s)
n,m = 1

2αn,m∇
(1)
(
I

(i1−αn,mū(s)n,kn ,i2)
m + I

(s)
n

)
,

r
(s)
n,m = I

(i1−αn,mūn,kn (s),i2)
m + ū

(s)
n,kn

T
(s)
n,m − I(s)

n .
(4.31)

To minimize the criterion Jn, we need to incorporate additional prior
information on the disparity field (see Chapter 3, Section 3.2.2.1), which
yields a minimization problem expressed as:

minimize
un,kn∈RP

Jn(un,kn) s. t.

{
un,kn ∈ S1,1,

un,kn ∈ S1,2,
(4.32)

where

S1,1 = {un,kn ∈ RP | (∀s ∈ RP ) umin ≤ u(s)
n,kn
≤ umax},

S1,2 = {un,kn ∈ RP | TV(un,kn) ≤ τ2}.

To solve Problem 4.32, we will use Algorithm 5, which is a modified
version of PPXA+ employed in Chapter 3.2

2In this section, the optimization is performed w.r.t. one variable instead of two. Recall
that S1,1 (resp. S1,2) can be expressed as L1(C1,1) (resp. L2(C1,2)), where L1 is the
identity matrix and L2 the gradient operator matrix in R2P .
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Algorithm 5 PPXA+

• Initialization

For m = 1, . . . , N − 1

Lm+2 = I

(ω1, ω2, . . . , ωN+1) ∈]0,+∞[N+1

(z
[0]
i )1≤i≤N+1 ∈ RP × R2P × RP · · · × RP

Q1 =
(∑N+1

i=1 ωi(Li)
>Li

)−1

u
[0]
n,kn

= Q1

(∑N+1
i=1 ωi(Li)

>zi,0

)
For l = 0, 1, . . .

p
[l]
1 = PC1,1(z

[l]
1 ), p

[l]
2 = PC1,2(z

[l]
2 )

For m = 1, . . . , N − 1

p
[l]
m+2 = prox

J
(m)
n

ωm+2

(z
[l]
m+2)

c[l] = Q1

(∑N+1
i=1 ωi(Li)

>p
[l]
i

)
z
[l+1]
1 = z

[l]
1 + λ[l](L1(2c[l] − u

[l]
n,kn

)− p
[l]
1 )

z
[l+1]
2 = z

[l]
2 + λ[l](L2(2c[l] − u

[l]
n,kn

)− p
[l]
2 )

For m = 1, . . . , N − 1

z
[l+1]
m+2 = z

[l]
m+2 + λ[l](2c[l] − u

[l]
n,kn
− p

[l]
m+2)

u
[l+1]
n,kn

= u
[l]
n,kn

+ λ[l](c[l] − u
[l]
n,kn

)

§ 4.5 Numerical results
In this section, we present some numerical examples to illustrate the per-
formance of the proposed method for multi-view disparity estimation. In
this regard, we will show the improvement resulting from the use of more
than two images for estimating the disparity map and the flexibility of our
algorithm to handle both convex and nonconvex similarity measures ψ. The
quality of the results is evaluated by computing the mean absolute error
(MAE) and the percentage of unoccluded badly estimated pixels between the
computed disparity ûn,kn and the ground truth un,kn . A pixel is considered
as unoccluded in In if it appears at least in one image of the considered
image sequence (Im)1≤m≤N,m6=n. Thus, the percentage of false pixels reads

ErrT (un,kn , ûn,kn) =
1∣∣∣∣ N⋃

m=1

m6=n

Dn,m
∣∣∣∣

∑
s∈

N⋃
m=1

m6=n

Dn,m

1{|u(s)n,kn−û
(s)
n,kn
|>T}, (4.33)

where T is a predefined threshold, as in Chapter 3. Since ground truth
disparity maps for image sequences are hard to find, a set of experiments
are conducted to evaluate the proposed framework.
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4.5.1 Disparity map estimation from multiple images

Firstly, we limit ourselves to the dataset available at the Middlebury stereo
vision website. Each dataset consists of 9 or 7 rectified views taken from
equidistant cameras along a line. Ground truth disparity maps, created by
using the structured lighting technique of Scharstein and Szeliski [2003], are
only provided for two viewpoints in each dataset. In the case when we have
9 views, we estimate the disparity between view 2 and view 4, which is then
evaluated using the provided ground truth divided by two. Finally, by adding
more images, we demonstrate the efficiency of our method in recovering depth
information from multiple images. Our analysis is conducted by estimating
the disparity map u2,4 on three image sequences (Sawtooth, Teddy, and
Cones - Figure 4.2) and by comparing different similarity measures in the
optimization criterion.

Multilabel approach

The main advantage of this method is the possibility to handle both convex
and nonconvex error similarity measures ψ, namely the `1-norm (ψ=| · |),
the truncated `1-norm (ψ= min{| · |, ε}), the ` 1

2
-norm (ψ=| · |

1
2 ), and the

truncated ` 1
2
-pseudo norm (ψ= min{| · |

1
2 , ε}).

Sawtooth Teddy Cones

Figure 4.2: Tested image sequences

The first line of Tables 4.1, 4.2 and 4.3 illustrates the MAE and Err1
indices of the estimated disparity map u2,4, in the case when only two images
are used in the estimation process (the standard stereo scenario with left and
right images). The second line of these tables (resp. the third line) collects
the MAE and Err1 indices in the case when we estimate the disparity map
u2,4 by using three (resp. five) multi-view images.3

3Note that, in Tables 4.1, 4.2, and 4.3, the five multi-view images (3rd line) contain the
three multi-view images used in the previous experiment (2nd line), which in turn contain
the left/right stereo images (1st line).



4.5. Numerical results 73

mireille
mireille

Table 4.1: The (MAE, Err1) results on Sawtooth image, with Q=14, r0=2, rQ=9 and
(∀ q ∈ {2, . . . , Q}) rq − rq−1 = 0.5, and η = 6.9× 103.

`1 `1,ε ` 1
2

` 1
2
,ε

(I2, I4) (0.17, 1.96) ε=9, (0.17, 1.23) (0.16, 1.84) ε=6, (0.19, 1.31)

(I0, I2, I4) (0.15, 1.76) ε=8, (0.15, 1.16) (0.14, 1.66) ε=6, (0.18, 1.28)

(I0, I1, I2, I3, I4) (0.19, 1.56) ε=8, (0.18, 1.08) (0.18, 1.47) ε=6, (0.16, 1.27)

Table 4.2: The (MAE, Err1) results on Teddy image, with Q=20, r0=6, rQ=26 and
(∀ q ∈ {2, . . . , Q}) rq − rq−1 = 1, and η = 23× 103.

`1 `1,ε ` 1
2

` 1
2
,ε

(I2, I4) (0.64, 5.70) ε=25, (0.56, 4.29) (0.60, 5.37) ε=19, (0.64, 5.90)

(I0, I2, I4) (0.52, 5.33) ε=23, (0.48, 4.08) (0.50, 5.02) ε=19, (0.61, 5.67)

(I0, I1, I2, I3, I4) (0.46, 4.59) ε=23, (0.48, 3.82) (0.44, 4.33) ε=19, (0.61, 5.64)

Table 4.3: The (MAE, Err1) results on Cones image, with Q=26, r0=2, rQ=28 and
(∀ q ∈ {2, . . . , Q}) rq − rq−1 = 1, and η = 27× 103.

`1 `1,ε ` 1
2

` 1
2
,ε

(I2, I4) (0.49, 7.34) ε=27, (0.41, 5.24) (0.49, 6.96) ε=25, (0.59, 7.9)

(I0, I2, I4) (0.49, 4.71) ε=27, (0.45, 3.72) (0.42, 4.44) ε=25, (0.49, 5.23)

(I0, I1, I2, I3, I4) (0.44, 4.04) ε=27, (0.43, 3.68) (0.43, 3.81) ε=25, (0.48, 5.19)

Moreover, we illustrate in Figure 4.3 the estimated disparity maps. The
red regions indicate the pixels associated with a wrong disparity value.
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(0.17, 1.23) (0.15, 1.16) (0.18, 1.08)

(0.56, 4.29) (0.48, 4.08) (0.48, 3.82)

(0.41, 5.24) (0.45, 3.72) (0.43, 3.68)

Figure 4.3: The disparity map u2,4 and the indices (MAE, Err1) obtained
by using the proposed method with the truncated `1-norm. From left to
right: stereo, 3 views, 5 views. From top to button: Sawtooth, Teddy, and
Cones.

Improved First-Order Taylor approximation To investigate the per-
formance of the improved first-order Taylor approximation, we firstly compare
it to the standard Taylor approximation (presented in Chapter 3) for two
different error measures : the `1-norm (ψ(·) = | · |) and the squared `2-norm
(ψ(·) = | · |2). As shown in Table 4.4, the improved first-order expansion
reduces the error introduced by the Taylor approximation around the same
initial estimate. Note that the improved approximation can only be applied
to the disparity estimation problem for gray level images without illumination
variation. This is the reason why it was not employed in Chapter 3, where
the considered images were affected by illumination variations.
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Table 4.4: (MAE, Err1) results on u2,4 for three different stereo pairs using ψ = | · |
and ψ = | · |2. Comparison is performed between the first-Order Taylor linearization and
the improved one.

Stereo pair τ2 [umin,umax] ψ = | · |p 1st-order Improved 1st-order

Sawtooth
14×103 [3, 18] p = 1 (0.29, 2.81) (0.26, 2.79)

p = 2 (0.34, 3.12) (0.30, 3.10)

Teddy
46×103 [0, 26] p = 1 (0.61, 7.81) (0.60, 7.64)

p = 2 (0.62, 7.93) (0.62, 7.74)

Cones
68×103 [0, 27] p = 1 (0.63, 7.84) (0.66, 7.41)

p = 2 (0.69, 7.80) (0.62, 7.61)

Performance comparison of different methods

In this section, we compare the approaches based on multi-labeling and
Taylor approximation with the method in Woodford et al. [2009] based on
graph-cuts.

To do so, we employ some standard datasets taken from the Middlebury
Database (“Sawtooth”, “Teddy” and “Cones”, Figure 4.2) and a synthetic
dataset called “Sponza”, which consists of five images with the corresponding
ground-truth disparity maps (Figure 4.4) generated by using the photo-
realistic rendering Embree software.4 Each disparity map is computed by
exploiting depth information and image characteristics (Chapter 3, Equation
3.6).

I1 I2 I3 I4 I5

u1,2 u2,3 u3,4 u4,5 u5,4

Figure 4.4: “Sponza” sequence. Each image is of size 480 × 960 (PPM
grayscale format). Calibration parameters for the equidistant cameras are
known.

4http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels-0
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I3

u3,4

Figure 4.5: Image 3 of “Sponza” sequence.

Table 4.5 collects the percentage of error pixels obtained with the
improved-first-order Taylor approximation, the multilabel approach, and the
method in Woodford et al. [2009]. One can see that the multilabel approach
performs better than the others, as it employs a tighter convex relaxation
of the data fidelity term. This can be also observed in Figure 4.6, where
the disparity map of “Sponza” dataset estimated with the aforementioned
methods is displayed. Nonetheless, the Taylor-approximation approach is
much faster (see Chapter 3, Section 3.4), i.e. it trades off the precision with
the speed.
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Implementation parameters To perform the above experiments, we
used the following setups for the considered algorithms:

• Multilabel. For Sawtooth, Teddy, and Cones, we fix the same param-
eters as in Tables 4.1, 4.2, and 4.3. For Sponza, sequence, we have: ψ =
`1,ε (ε=40), Q=80, r0 = 11, rQ = 91, (∀ q ∈ {2, . . . , Q}), rq − rq−1 = 1,
and η = 54× 103.

• Improved Taylor approximation For Sponza we have ψ = `1,
τ2 = 11 × 104, and [umin, umax]=[11,91]. (For Sawtooth, Teddy, and
Cones, see Table 4.4).

• Graph cuts Woodford et al. [2009] The authors incorporated the
second-order smoothness priors for a global optimization of the stereo
reconstruction. They employed triple cliques to estimate depth by using
graph cuts. We have used the code publicly available5 for gray level
images. The default setting has been unchanged (except for Sponza).

Table 4.5: Percentage of bad pixels obtained with the considered methods.

u2,4 (I2, I4) (I0, I2, I4) (I0, I1, I2, I3, I4)

Sawtooth
Multilabel 1.23 1.16 1.08
Improved 1st-order 2.79 2.13 1.86
Graph cuts 1.75 1.66 1.70

Teddy
Multilabel 4.29 4.08 3.82
Improved 1st-order 7.64 5.43 5.00
Graph cuts 4.57 4.46 3.83

Cones
Multilabel 5.24 3.72 3.68
Improved 1st-order 7.41 5.4 4.65
Graph cuts 7.02 6.02 4.65

u3,4 (I3, I4) (I2, I3, I4) (I1, I2, I3, I4, I5)

Sponza
Multilabel 5.4 4.2 3.10
Improved 1st-order 7.71 5.93 5.49
Graph cuts 6.50 5.47 4.84

5http://www.robots.ox.ac.uk/∼ojw/software.htm
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Multilabel

1st-order Taylor approximation Graph-cuts

Figure 4.6: Visual comparison of “Sponza” disparity map u3,4 estimated
by the considered methods using 5 images.

4.5.2 Disparity map sequence estimation

In this section, we show the reconstruction result of a 3D scene from a
sequence of disparity maps. Figure 4.7 displays such a disparity sequence,
where five images were used to estimate each map. The improvement is
obvious with respect to the stereo case, using the `1 similarity measure.

Finally, an extended disparity map is obtained from the disparity map
sequence (see Figure 4.8) as well as a 3D reconstruction of the “Sponza”
sequence (see Figure 4.9) performed from the estimated maps. Five views,
of the 3D scene, are presented from different camera position: Left, Down,
Center, Up and Right.

§ 4.6 Conclusion

In this chapter, we have proposed a multilabel optimization approach for
performing multi-view disparity estimation. Rather than estimating a single
depth map, we associate a depth map with each input image (or a subset
of those images). We have proposed two different approaches to estimate
the depth map of each chosen reference frame, which differ in the type of
convex relaxation employed. The first approach employs a relaxation based
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û1,2 : (1.07, 4.43) û2,3: (0.94, 2.95) û3,4 : (0.94, 3.18)

(1.56, 5.58)stereo (1.43, 5.17)stereo (1.55, 5.35)stereo

û4,5: (1.01, 3.68) û5,4: (1.13, 5.58)

(2.16, 6.69)stereo (2.33, 7.59)stereo

Figure 4.7: (MAE, Err2) obtained using five images for each disparity map
estimation, Q=80, r0=11, rQ=91 and (∀ q ∈ {2, . . . , Q}), rq − rq−1 = 1.
For comparison, we indicate the values of (MAE,Err2)stereo obtained in the
stereo case when un,kn is estimated from (In,Ikn). ψ is the `1-norm.

on multi-labeling, with the possibility of using nonconvex similarity measures.
So doing, there is no more dependence of the method performance on the
initial estimate, at the cost of an increased complexity. The second approach
employs a relaxation based on an improved first-order Taylor approximation
around an initial estimate. The numerical issues related to the computation
of our disparity sequence have been addressed by using a proximal algorithm.
The proposed method leads to improved results compared with other methods.
It is also worth emphasizing that this method can be efficiently implemented
on multicore architectures.
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Figure 4.8: The extended disparity map constructed using the sequence of
disparity maps: (u1,2, u2,3, u3,4, u4,5, u5,4)
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Figure 4.9: 3D reconstruction from the true disparity sequence (Left column) and
from the proposed method (Right column). The camera position from the top to the
buttom: Left, Down, Center, Up, and Right.
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- Chapter 5 -

Proximity operators of discrete information
divergences

“Knowledge is of two kinds. We know a subject ourselves, or we know where
we can find information upon it. ”
Samuel Johnson

The notion of information measure plays a central role in the fields of
probability, statistics, and information theory, as it allows one to assess
how close two distributions are from each other. Among the large panel of
available measures, a special attention has been paid to ϕ-divergences, e.g.
Kullback-Leibler, Jeffreys-Kullback, Hellinger, Chi-Square, Iα, and Renyi
divergences. Indeed, these divergences have been studied extensively in many
different contexts, including convex optimization. In the latter context, the
solution of optimization problems may be challenging.

One of the main limitations of existing convex optimization methods
is that they restrict the use of ϕ-divergences to problems in which the
minimization is performed w.r.t. one of the divergence arguments. A possible
solution to overcome this issue is to resort to alternating minimization
approaches, which however require specific assumptions to be valid Tseng
[1997]; Bauschke et al. [2006]. In the present chapter, we derive closed-form
expressions of the proximity operators of the aforementioned ϕ-divergences.
These novel results enrich the list of functions for which the proximity
operator can be easily computed. Building upon these results, we are able to
address a wider range of convex optimization problems by means of proximal
methods.

83
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§ 5.1 introduction

Claude Shannon [1948], in his seminal paper “A Mathematical Theory of
Communication”, introduced a powerful mathematical framework to quantify
the notion of information, laying the foundations for the field of information
theory and originating a major revolution in communications and related
fields. The power of the framework introduced by Shannon is reflected in
his two main results known as the Source Coding Theorem and the Channel
Coding Theorem.

In the same spirit as Shannon [1948], it was natural to investigate func-
tionals which allow one to quantify how much information is shared between
two probability distributions. As pointed out by Liese and Vajda [1987], the
origins of these ideas can be traced back to the early twentieth century liter-
ature in the works by Pearson [1900] and Hellinger [1909], although research
in this area became much more prolific after the publication of Shannon’s
paper Shannon [1948]. Motivated by this work, Kullback and Leibler [1951]
introduced the information measure now known as the Kullback-Leibler
divergence within the context of hypothesis testing.

Yet a higher level of generalization in the area of probabilistic divergences
was achieved by the work by Csiszár [1963] (and independently also Ali
and Silvey [1966]; Cover and Thomas [1991]), who introduced the notion of
ϕ-divergences for probability distributions, a framework which encompasses
a vast number of information measures currently used in the literature, in-
cluding the Kullback-Leibler (KL), Jeffreys-Kullback (JK), Hellinger (Hel),
Chi square, and Iα divergences. The works by Arimoto [1971]; LeCam [1973];
Burbea and Rao [1982]; Basseville [1989]; Vajda [1989]; Barron et al. [1990];
Liese and Vajda [2006]; Amari [2009]; Österreicher [2013]; Nielsen and Nock
[2013]; Basseville [2013] have enriched this formalism and its applications in
an extensive manner.

The KL divergence is known to play a prominent role in the computation
of channel capacity and rate-distortion functions. One can address these
problems with the celebrated alternating minimization algorithm proposed by
Blahut [1972]; Arimoto [1972]. However, other approaches based on geometric
programming Chiang and Boyd [2004] may provide more efficient numerical
solutions. The generalized KL divergence is also known as the I-divergence.
It plays an important role in inverse problems for recovering the signal of
interest in the presence of Poisson noise. In such a case, the I-divergence
is usually employed as a data fidelity term. For instance, an alternating
projection technique was proposed in Byrne [1993], where both the data
fidelity term and the regularization term are based on the KL divergence. The
problem was formulated in a similar manner in Richardson [1972], whereas
in Fessler [1995]; Piro et al. [2008]; Dupé et al. [2009]; Zanella et al. [2009];
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Piro et al. [2010]; Pustelnik et al. [2011]; Teuber et al. [2012]; Carlavan
and Blanc-Féraud [2012]; Anthoine et al. [2012] more general forms of the
regularization functions are considered. In particular, the developments in
Dupé et al. [2009]; Pustelnik et al. [2011]; Teuber et al. [2012]; Anthoine et al.
[2012] are grounded on proximal splitting methods. These proximal tools
were recently shown to offer both efficient and flexible solutions to a wide
class of possibly nonsmooth convex minimization problems (see Combettes
and Pesquet [2011]; Parikh and Boyd [2013] and references therein). Note
that, in all of the aforementioned works, one of the two variables of the KL
divergence is fixed.

As the KL divergence is a Bregman distance, optimization problems
involving this function can also be addressed by using the alternating mini-
mization approach proposed in Bauschke et al. [2006]. However, the required
optimization steps may be difficult to implement and the convergence of
the algorithm is only guaranteed under restrictive conditions. Moreover,
a Kullback-Leibler proximal algorithm generalizing the EM algorithm was
investigated in Chrétien and Hero [2008]. The KL divergence is then used as
a metric for the maximization of a log-likelihood function, rather than being
one of the terms of the objective function. Recently, the authors in Vemuri
et al. [2011]; Meizhu et al. [2010] defined a new similarity measure called
total Kullback Leibler divergence, which has the potential benefit of being
invariant to axis rotations. On the other side, the classical symmetrization
of Kullback-Leibler divergence (also known as Jeffreys-Kullback divergence
Jeffreys [1946]) has been recently used in the k-means algorithm (as a re-
placement of the squared difference) Nielsen and Nock [2009]; Nielsen [2013],
yielding analytical expressions of the centroids in terms of the Lambert W
function.

text
The Hellinger divergence was named after Ernst Hellinger [1909] and

later rediscovered in Beran [1977]; Devijver and Kittler [1982]; Gibbs and Su
[2002]; Liese and Vajda [2006]; Rauber et al. [2008] under different names
(such as Jeffreys-Matusita distance). In the field of information theory, the
Hellinger divergence is commonly used in the analysis of nonparametric
density estimation LeCam [1973]; van de Geer [1993], statistics and Data
Analytics Chang-Hwan [2012], and machine learning Cieslak et al. [2012].

text
The Chi-square divergence can be traced back to Pearson [1900], where

it was used to quantitatively assess whether an observed phenomenon tends
to confirm or deny a given hypothesis. This work heavily contributed to the
development of modern statistics: in 1984, the journal Science referred to
Pearson [1900] as “one of the 20 most important scientific breakthroughs”.
Moreover, Chi-square divergence was also successfully applied in different
contexts, such as information theory and signal processing, as a dissimilarity
measure between two probability distributions Cover and Thomas [1991];



86 Chapter 5. Proximity operators of discrete information divergences

Park et al. [2011].
The Iα-divergence was originally proposed in Chernoff [1952] to statis-

tically evaluate the efficiency of an hypothesis test. Subsequently, it was
recognized as an instance of more general divergence classes Ali and Silvey
[1966], such as the class of ϕ-divergences Csiszár [1974] and the class of
Bregman divergences Amari [2009]. Indeed, Iα-divergence has been extended
by many researchers as in Liese and Vajda [1987]; Zhang [2004]; Minka [2005];
Amari [2009], it has been considered in the context of Non-negative Matrix
Factorization where the hyper-parameter α is associated with characteristics
of a learning machine Cichocki et al. [2008].

text
Rényi divergence was introduced in Rényi [1961] as a measure of informa-

tion related to Rényi entropy. According to the definition given in Harremoës
[2006], Rényi divergence measures “how much a probabilistic mixture of
two codes can be compressed”. It has been studied and applied in many
areas Vajda [1989]; Liese and Vajda [1987, 2006] including image registration
problems Hero et al. [2002].

To the best of our knowledge, existing approaches for optimizing convex
criteria involving these divergences are often restricted to problems where the
minimization is performed w.r.t. one of the arguments of the divergence, or
they are based on an alternating minimization process which requires specific
assumptions to be valid. In the context of proximal methods, this lacuna can
be explained by the fact that there exist few results concerning the proximity
operator of non-separable convex functions (as opposed to separable ones, for
which many results are available Chaux et al. [2007]; Combettes and Pesquet
[2011]). Some examples of such non-separable functions are: a quadratic
function composed by a linear operator Combettes and Pesquet [2008],
a separable function composed with an orthonormal or semi-orthogonal
linear operator Combettes and Pesquet [2008], the `2-norm Combettes and
Pesquet [2008], the quadratic-over-linear function Benamou and Brenier
[2000]; Benamou et al. [2002], the indicator function of a closed convex
Combettes and Pesquet [2008] or the epigraph of a lower semi continuous
convex function Chierchia et al. [2013], and a convex function composed with
the distance to a closed convex set Combettes and Pesquet [2008].

In this work, we develop a novel proximal method that allows us to
address more general forms of optimization problems. The expressions
we derive for these divergences enrich the list of functions for which such
proximity operators can be easily computed. In addition to its flexibility,
the proposed approach leads to parallel proximal algorithms that can be
efficiently implemented on multicore architectures.

The remaining of the chapter is organized as follows. In Section 5.2,
we present the general form of the addressed optimization problem and
introduce the notation used in this work. In Section 5.3, we study the
proximity operators of ϕ-divergences and some of their properties. The
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aforementioned divergence proximity operators are described in Section 5.4.
In Section 5.5, we explain how the forms of these proximity operators can be
employed to deduce the expression of the projection onto the epigraph of
some convex functions. Finally, Section 5.6 concludes the chapter.

§ 5.2 Problem formulation

5.2.1 Optimization problem

The objective of this chapter is to address convex minimization problems
involving a discrete information divergence D, which can be formulated as
follows:

Problem 5.2.1 Let D be a function in Γ0(RP × RP ). Let A and B be
matrices in RP×N , and let u and v be vectors in RP . For every s ∈ {1, . . . , S},
let Rs be a function in Γ0(RKs) and Ts ∈ RKs×N . We want to

minimize
x∈RN

D(Ax+ u,Bx+ v) +

S∑
s=1

Rs(Tsx). (5.1)

Hereabove Γ0(H) denotes the class of convex functions f defined on a real
Hilbert space H and taking their values in ] − ∞,+∞] which are lower-
semicontinuous and proper (i.e. their domain dom f on which they take
finite values is nonempty). Allowing functions to take the +∞ value makes
Problem 5.2.1 a versatile one. For example, the involved functions may take
finite values only for nonnegative-valued arguments. This also allows us to
include in this formulation convex constrained problems by letting Rs with
s ∈ {1, . . . , S} be equal to the indicator function ιC of some nonempty closed
convex set C. Recall that the indicator of a nonempty closed convex subset
C of H is defined as

(∀x ∈ H) ιC(x) =

{
0 if x ∈ C
+∞ otherwise.

(5.2)

In applications to inverse problems, Rs may also be some regularization
function serving to enforce the smoothness of the sought solution or to model
some additional prior information, e.g. its sparsity after some appropriate
linear transform Ts.

A special case of interest in information theory is obtained when u = v = 0,
N = 2P , and

A = [IP 0], B = [0 IP ] (5.3)

where IP is the P × P identity matrix. By decomposing the vector x as

x = [p>q>]> (5.4)
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where (p, q) ∈ (RP )2, and by setting

(∀s ∈ {1, . . . , S}) Ts = [Us Vs] (5.5)

where Us and Vs are matrices in RKs×P , Problem 5.2.1 becomes:

Problem 5.2.2 Let D be a function in Γ0(RP × RP ). For every s ∈
{1, . . . , S}, let Rs be a function in Γ0(RKs), and let Us and Vs be matrices
in RKs×P . We want to

minimize
p∈RP , q∈RP

D(p, q) +
S∑
s=1

Rs(Usp+ Vsq). (5.6)

When the variables p and q correspond to probability mass distributions, a
standard example of convex constraint subset of R2P is the product of two
unit simplexes of RP :

C =
{

(p(1), . . . , p(P ), q(1), . . . , q(P ))> ∈ [0, 1]2P
∣∣ P∑
i=1

p(i) = 1 and

P∑
i=1

q(i) = 1
}
.

(5.7)

5.2.2 Considered class of divergences

We will focus on additive information measures of the form

(
∀p = (p(i))1≤i≤P ∈ RP

)(
∀q = (q(i))1≤i≤P ∈ RP

)
D(p, q) =

P∑
i=1

Φ(p(i), q(i))

(5.8)
where Φ is defined as follows

(
∀(υ, ξ) ∈ R2

)
Φ(υ, ξ) =



ξ ϕ
(υ
ξ

)
if υ ∈ [0,+∞[ and ξ ∈ ]0,+∞[

υ lim
ζ→+∞

ϕ(ζ)

ζ
if υ ∈ ]0,+∞[ and ξ = 0

0 if υ = ξ = 0

+∞ otherwise

(5.9)
and ϕ : R→ [0,+∞] belongs to Γ0(R) and is twice differentiable on ]0,+∞[.1

So, Φ is the perspective function Bauschke and Combettes [2011] of ϕ on
[0,+∞[× ]0,+∞[ and D is a function in Γ0(R2P ).
If ϕ is strictly convex such that

ϕ(1) = ϕ′(1) = 0 (5.10)

1The existence of limζ→+∞ ϕ(ζ)/ζ in [0,+∞] is guaranteed [Hiriart-Urruty and
Lemaréchal, 1996, Section 2.3].
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D belongs to the celebrated class of ϕ-divergences Csiszár [1963, 1967]. Then,(
∀(p, q) ∈ [0,+∞[P × [0,+∞[P

)
D(p, q) ≥ 0 (5.11)

D(p, q) = 0 ⇔ p = q. (5.12)

Examples of ϕ-divergences will be provided in Sections 5.4.1, 5.4.2, 5.4.3,
5.4.4 and 5.4.6. For a thorough investigation of the rich properties of
ϕ-divergences, the reader is refered to Csiszár [1963]; Ali and Silvey [1966];
Basseville [1989]. Other divergences (e.g. Rényi divergence) are expressed as(

∀(p, q) ∈ RP × RP
)

Dg(p, q) = g
(
D(p, q)

)
(5.13)

where g is some increasing function. Then, provided that g
(
ϕ(1)

)
= 0, for

every (p, q) ∈ ([0,+∞[P )2 such that [p> q>]> ∈ C where C is given by
(5.7), we have Dg(p, q) ≥ 0. Note that, from an optimization standpoint,
minimizing D or Dg (possibly subject to constraints) makes no difference, so
that we will only address problems involving D in the rest of this chapter.

5.2.3 Proximity operators

Proposition 5.2.3 Moreau [1965]; Bauschke and Combettes [2011] Let
f ∈ Γ0(H). Then,

(i) for every x ∈ H, proxfx ∈ dom f .

(ii) For every (x, x) ∈ H2, x = proxfx ⇔ x− x ∈ ∂f(x),
where ∂f(x) denotes the subdifferential of f at x. If f is Gâteaux
differentiable at x, ∂f(x) = {∇f(x)} where ∇f(x) denotes the gradient
of f at x.

(iii) For every (x, z) ∈ H2,

proxf(·+z)x = proxf (x+ z)− z. (5.14)

(iv) For every (x, z) ∈ H2 and for every α ∈ R,

proxf+·>z+αx = proxf (x− z). (5.15)

(v) Let f∗ be the conjugate function of f (f∗ ∈ Γ0(H) defined by f∗ : u 7→
supx∈H(〈x | u〉 − f(x))). For every x ∈ H,

proxf∗x = x− proxfx. (5.16)

(vi) Let G be a real Hilbert space and let T : G → H be a bounded linear
operator, the adjoint of which is denoted by T ∗. If T ◦ T ∗ = κ Id where
κ ∈ ]0,+∞[, then

proxf◦T = Id +
1

κ
T ∗ ◦ (proxκf − Id ) ◦ T. (5.17)
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Numerous additional properties of proximity operators are mentioned in
Combettes and Pesquet [2011]; Parikh and Boyd [2013].

In this chapter, we will be mainly concerned with the determination of
the proximity of D as introduced in Section 5.2.2 (in this case, H = RP ×RP ).
The next result shows that the problem reduces to the determination of the
proximity operator of a real function of two variables.

Proposition 5.2.4 Let D be defined by (5.8) where Φ ∈ Γ0(R2) and let
γ ∈ ]0,+∞[. Let u = (u(i))1≤i≤P ∈ RP and v = (v(i))1≤i≤P ∈ RP . Then, for
every p = (p(i))1≤i≤P ∈ RP and for every q = (q(i))1≤i≤P ∈ RP ,

proxγD(·+u,·+v)(p, q) =
(
(p(i) − u(i))1≤i≤P , (q

(i) − v(i))1≤i≤P
)

(5.18)

where

(∀i ∈ {1, . . . , P}) (p(i), q(i)) = proxγΦ(p(i) + u(i), q(i) + v(i)). (5.19)

Proof. The result is a straightforward consequence of Combettes and Pesquet
[2011] and Proposition 5.2.3(iii) (by setting f = D and z = (u, v)).

Note that, although an extensive list of proximity operators of one-variable
real functions can be found in Combettes and Pesquet [2011], few results
are available for real functions of two variables Benamou and Brenier [2000];
Benamou et al. [2002]; Combettes and Pesquet [2008]; Chierchia et al. [2013].
An example of such a result is provided below.

Proposition 5.2.5 Let ϕ ∈ Γ0(R) be an even differentiable function on
R \ {0}. Let Φ: R2 → ]−∞,+∞] : (ν, ξ) 7→ ϕ(ν− ξ) + ι[0,+∞[(ν) + ι[0,+∞[(ξ).

Then, for every (ν, ξ) ∈ R2,
proxΦ(ν, ξ) =

1
2

(
ν + ξ + prox2ϕ(ν − ξ), ν + ξ − prox2ϕ(ν − ξ)

)
if prox2ϕ(ν − ξ) < |ν + ξ|

(0,proxϕξ) if proxϕξ > 0

and proxϕξ ≥ ν + ξ

(proxϕν, 0) if proxϕν > 0

and proxϕν ≥ ν + ξ

(0, 0) otherwise.

(5.20)

Proof. Let (ν, ξ) ∈ R2. From Proposition 5.2.3(i), we know that proxΦ(ν, ξ) ∈
[0,+∞[2. By using Proposition 5.2.3(ii), we have the following equivalences:{

(ν, ξ) ∈ ]0,+∞[2

(ν, ξ) = proxΦ(ν, ξ)
⇔


(ν, ξ) ∈ ]0,+∞[2

ν − ν ∈ ∂ϕ(ν − ξ)
ξ − ξ ∈ −∂ϕ(ν − ξ)

⇔

{
(ν, ξ) ∈ ]0,+∞[2

(ν, ξ) = proxΦ̃(ν, ξ)
(5.21)
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where Φ̃ : (ν, ξ) 7→ ϕ(ν − ξ). By using now Proposition 5.2.3(vi), we get

(5.21)⇔

{
(ν, ξ) ∈ ]0,+∞[

2

(ν, ξ) = (ν, ξ) + 1
2

(
prox2ϕ(ν − ξ)− ν + ξ

)
(1,−1)

⇔


(ν, ξ) ∈ ]0,+∞[

2

ν = 1
2

(
ν + ξ + prox2ϕ(ν − ξ)

)
ξ = 1

2

(
ν + ξ − prox2ϕ(ν − ξ)

)
⇔


prox2ϕ(ν − ξ) < |ν + ξ|
ν = 1

2

(
ν + ξ + prox2ϕ(ν − ξ)

)
ξ = 1

2

(
ν + ξ − prox2ϕ(ν − ξ)

)
.

(5.22)

Similarly, we have{
ν = 0, ξ ∈ ]0,+∞[

(ν, ξ) = proxΦ(ν, ξ)
⇔


ν = 0, ξ ∈ ]0,+∞[

ν − ϕ′(−ξ) ∈ ∂ι[0,+∞[(0) =]−∞, 0]

ξ − ξ − ϕ′(−ξ) = 0

⇔


ν = 0, ξ ∈ ]0,+∞[

ξ ≥ ν + ξ

ξ = proxϕ(−·)ξ

⇔


proxϕ(−·)ξ ∈ ]0,+∞[ ∩ [ν + ξ,+∞[

ν = 0

ξ = proxϕ(−·)ξ

⇔


proxϕξ ∈ ]0,+∞[ ∩ [ν + ξ,+∞[

ν = 0

ξ = proxϕξ.

(5.23)

where the last equivalence results from the assumption that ϕ is even.
Symmetrically,{

ν ∈ ]0,+∞[ , ξ = 0

(ν, ξ) = proxΦ(ν, ξ)
⇔


proxϕν ∈ ]0,+∞[ ∩ [ν + ξ,+∞[

ν = proxϕν

ξ = 0.

(5.24)

The above two propositions provide a simple characterization of the
proximity operators of some distances defined for nonnegative-valued vectors.
However, the assumptions made in Proposition 5.2.5 are not satisfied by the
class of functions Φ considered in Section 5.2.2.2 In the next section, we
will propose two algorithms for solving a general class of convex problems
involving these functions Φ.

2Indeed, none of the considered ϕ-divergences can be expressed as a function of the
difference between the two arguments.
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5.2.4 Proximal splitting algorithms

As soon as we know how to calculate the proximity operators of the functions
involved in Problem 5.2.1, various proximal methods can be employed to
solve it numerically. Two examples of such methods are given subsequently.

The first algorithm is PPXA+ Pesquet and Pustelnik [2012] which con-
stitutes an extension of PPXA (Parallel ProXimal Agorithm) proposed in
Combettes and Pesquet [2008]. As can be seen in Afonso et al. [2011]; Setzer
et al. [2010], PPXA+ is also strongly related to augmented Lagrangian
methods [Pesquet and Pustelnik, 2012, Section 6]. In the form provided
below, this algorithm requires A>A+B>B +

∑S
s=1 T

>
s Ts to be invertible.3

Algorithm 6 PPXA+

Initialization

(ω0, . . . , ωS) ∈ ]0,+∞[S+1 , t0,0 ∈ RP , t1,0 ∈ RP , t2,0 ∈ RK1 , . . . , tS+1,0 ∈ RKS

x0 =

(ω0A
>A+ ω0B

>B +
∑S
s=1 ωsT

>
s Ts)

−1(ω0A
>t0,0 + ω0B

>t1,0 +
∑S
s=1 ωsT

>
s ts+1,0)

for n = 0, 1, . . .

(r0,n, r1,n) = prox
ω−1
0 D(·+u,·+v)(t0,n, t1,n) + e0,n

for s = 1, . . . , S

rs+1,n = prox
ω−1
s Rs

ts+1,n + es,n

yn =

(ω0A
>A+ ω0B

>B +
∑S
s=1 ωsT

>
s Ts)

−1(ω0A
>r0,n + ω0B

>r1,n +
∑S
s=1 ωsT

>
s rs+1,n)

λn ∈ ]0, 2[

t0,n+1 = t0,n + λn
(
A(2yn − xn)− r0,n

)
t1,n+1 = t1,n + λn

(
B(2yn − xn)− r1,n

)
for s = 1, . . . , S

ts+1,n+1 = ts+1,n + λn
(
Ts(2yn − xn)− rs+1,n

)
xn+1 = xn + λn(yn − xn).

In this algorithm, ω0, . . . , ωS are weighting factors and (λn)n≥0 relaxation
factors. Typical values for these parameters will be indicated later. For every
n ≥ 0, the variables e0,n ∈ (RP )2, e1,n ∈ RK1 , . . . , eS,n ∈ RKS model possible
errors in the computation of the proximity operators. For instance, these
errors arise when the proximity operator is not available in a closed form

3A slightly more complex variant of PPXA+ exists where this assumption is not required
Attouch and Soueycatt [2009]; Pesquet and Pustelnik [2012], Prop. 5.4.
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and one needs to compute it through inner iterations. Under some technical
conditions, the convergence of PPXA+ is guaranteed.

Proposition 5.2.6 [Pesquet and Pustelnik, 2012, Corollary 5.3] Suppose
that the following assumptions hold.

(i) A>A+B>B +
∑S

s=1 T
>
s Ts is invertible.

(ii) There exists x̌ ∈ RN such that

Ax̌+ u ∈ ]0,+∞[P , Bx̌+ v ∈ ]0,+∞[P

(∀s ∈ {1, . . . , S}) Tsx̌ ∈ ri(domRs). (5.25)

(iii) There exists λ ∈]0, 2[ such that (∀n ∈ N) λ ≤ λn+1 ≤ λn < 2.

(iv) (∀s ∈ {0, . . . , S})
∑

n∈N ‖es,n‖ < +∞.

If the set of solutions to Problem (5.2.1) is nonempty, then any sequence
(xn)n∈N generated by Algorithm (6) converges to an element of this set.

It can be noticed that, at each iteration n, PPXA+ requires to solve a
linear system in order to compute the intermediate variable yn. The com-
putational cost of this operation may be high when N is large. Proximal
primal-dual approaches Chen and Teboulle [1994]; Esser et al. [2010]; Cham-
bolle and Pock [2011]; Briceño-Arias and Combettes [2011]; Combettes and
Pesquet [2012]; Vũ [2013]; Condat [2013] allow us to circumvent this difficulty.
An example of such an approach is the M+LFBF (Monotone+Lipschitz For-
ward Backward Forward) method Combettes and Pesquet [2012] which takes
the following form:
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Algorithm 7 M+LFBF

Initialization

t0,0 ∈ RP , t1,0 ∈ RP , t2,0 ∈ RK1 , . . . , tS+1,0 ∈ RKS

x0 ∈ RN , β =
(
‖A‖2 + ‖B‖2 +

∑S
s=1 ‖Ts‖

2
)1/2

, ε ∈ ]0, 1/(β + 1)[

for n = 0, 1, . . .

γn ∈ [ε, (1− ε)/β]

x̂n = xn − γn(A>t0,n +B>t1,n +
∑S
s=1 T

>
s ts+1,n)

t̂0,n = t0,n + γnAxn, t̂1,n = t1,n + γnBxn

(r0,n, r1,n) = (t̂0,n, t̂1,n)− γnprox
γ−1
n D(·+u,·+v)(γ

−1
n t̂0,n, γ

−1
n t̂1,n) + e0,n

t̃0,n = r0,n + γnAx̂n, t̃1,n = r1,n + γnBx̂n

t0,n+1 = t0,n − t̂0,n + t̃0,n, t1,n+1 = t1,n − t̂1,n + t̃1,n

for s = 1, . . . , S

t̂s+1,n = ts+1,n + γnTsxn

rs+1,n = t̂s+1,n − γnprox
γ−1
n Rs

(γ−1
n t̂s+1,n) + es,n

t̃s+1,n = rs+1,n + γnTsx̂n

ts+1,n+1 = ts+1,n − t̂s+1,n + t̃s+1,n

x̃n = x̂n − γn(A>r0,n +B>r1,n +
∑S
s=1 T

>
s rs+1,n)

xn+1 = xn − x̂n + x̃n.

In this algorithm, (γn)n≥0 is a sequence of step-sizes, and e0,n ∈ (RP )2,
e1,n ∈ RK1 , . . . , eS,n ∈ RKS still correspond to possible errors in the com-
putation of the proximity operators. The convergence of the algorithm is
secured by the following result.

Proposition 5.2.7 [Combettes and Pesquet, 2012, Theorem 4.2] Suppose
that the following assumptions hold.

(i) There exists x̌ ∈ RN such that

Ax̌+ u ∈ ]0,+∞[P , Bx̌+ v ∈ ]0,+∞[P

(∀s ∈ {1, . . . , S}) Tsx̌ ∈ ri(domRs). (5.26)

(ii) (∀s ∈ {0, . . . , S})
∑

n∈N ‖es,n‖ < +∞.

If the set of solutions to Problem (5.2.1) is nonempty, then any sequence
(xn)n∈N generated by Algorithm (10) converges to an element of this set.

It is worth highlighting that these two algorithms share two interesting
features: at first, many operations (e.g. the loops on s) can be implemented in
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parallel. Second, they are tolerant with respect to errors in the computations
of the proximity operators. 4

§ 5.3 Main result

As shown by Proposition 5.2.4, we need to compute the proximity operator
of a scaled version of a function Φ ∈ Γ0(R2) as defined in (5.9). In the
following, Θ denotes a primitive on ]0,+∞[ of the function ζ 7→ ζϕ′(ζ−1).
The following functions will subsequently play an important role:

ϑ− : ]0,+∞[→ R : ζ 7→ ϕ′(ζ−1) (5.27)

ϑ+ : ]0,+∞[→ R : ζ 7→ ϕ(ζ−1)− ζ−1ϕ′(ζ−1). (5.28)

A first technical result is as follows:

Lemma 5.3.1 Let γ ∈ ]0,+∞[, let (υ, ξ) ∈ R2, and define

χ− = inf
{
ζ ∈ ]0,+∞[

∣∣ ϑ−(ζ) < γ−1υ
}

(5.29)

χ+ = sup
{
ζ ∈ ]0,+∞[

∣∣ ϑ+(ζ) < γ−1ξ
}

(5.30)

(with the usual convention inf ∅ = +∞ and sup∅ = −∞). If χ− 6= +∞,
the function

ψ : ]0,+∞[→ R : ζ 7→ ζϕ(ζ−1)−Θ(ζ) +
γ−1υ

2
ζ2 − γ−1ξζ (5.31)

is strictly convex on ]χ−,+∞[. In addition, if

(i) χ− 6= +∞ and χ+ 6= −∞

(ii) limζ→χ−
ζ>χ−

ψ′(ζ) < 0

(iii) limζ→χ+ ψ
′(ζ) > 0

then ψ admits a unique minimizer ζ̂ on ]χ−,+∞[, and ζ̂ < χ+.

Proof. The derivative of ψ is

(∀ζ ∈ ]0,+∞[) ψ′(ζ) = ϕ(ζ−1)− (ζ + ζ−1)ϕ′(ζ−1) + γ−1υζ − γ−1ξ

= ζ
(
γ−1υ − ϑ−(ζ)

)
+ ϑ+(ζ)− γ−1ξ. (5.32)

The function ϑ− is decreasing as the convexity of ϕ yields

(∀ζ ∈ ]0,+∞[) ϑ′−(ζ) = −ζ−2ϕ′′(ζ−1) ≤ 0. (5.33)

4Note also that we have employed PPXA+ (resp. M+LFBF) in Chapter 3 (resp.
Chapter 4), where the optimization was performed with respect to one variable.
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This allows us to deduce that, if
{
ζ ∈ ]0,+∞[

∣∣ ϑ−(ζ) < γ−1υ
}
6= ∅,

]χ−,+∞[=
{
ζ ∈ ]0,+∞[

∣∣ ϑ−(ζ) < γ−1υ
}
. (5.34)

Similarly, the function ϑ+ is increasing as the convexity of ϕ yields

(∀ζ ∈ ]0,+∞[) ϑ′+(ζ) = ζ−3ϕ′′(ζ−1) ≥ 0 (5.35)

which allows us to deduce that, if
{
ζ ∈ ]0,+∞[

∣∣ ϑ+(ζ) < γ−1ξ
}
6= ∅,

]0, χ+[=
{
ζ ∈ ]0,+∞[

∣∣ ϑ+(ζ) < γ−1ξ
}
. (5.36)

If (χ−, χ+) ∈ ]0,+∞[2, then (5.32) leads to

ψ′(χ−) = ϑ+(χ−)− γ−1ξ (5.37)

ψ′(χ+) = χ+

(
γ−1υ − ϑ−(χ+)

)
. (5.38)

So, Conditions (ii) and (iii) are equivalent to

ϑ+(χ−)− γ−1ξ < 0 (5.39)

χ+

(
γ−1υ − ϑ−(χ+)

)
> 0. (5.40)

In view of (5.34) and (5.36), these inequalities are satisfied if and only if
χ− < χ+. The inequality is also obviously satisfied if χ− = 0 or χ+ = +∞.

In addition, we have

(∀ζ ∈ ]0,+∞[) ψ′′(ζ) = γ−1υ − ϑ−(ζ) + ζ−1(1 + ζ−2)ϕ′′(ζ−1). (5.41)

When ζ > χ− 6= +∞, γ−1υ − ϑ−(ζ) > 0, and the convexity of ϕ yields
ψ′′(ζ) > 0. This shows that ψ is strictly convex on ]χ−,+∞[.

If Conditions (i)-(iii) are satisfied, due to the continuity of ψ′, there exists
ζ̂ ∈]χ−, χ+[ such that ψ′(ζ̂) = 0. Because of the strict convexity of ψ on
]χ−,+∞[, ζ̂ is the unique minimizer of ψ on this interval.

The required assumptions in the previous lemma can often be simplified
as stated below.

Lemma 5.3.2 Let γ ∈ ]0,+∞[ and (υ, ξ) ∈ R2. If (χ−, χ+) ∈ ]0,+∞[2,
then Conditions (ii) and (iii) in Lemma 5.3.1 are equivalent to: χ− < χ+. If
χ− ∈ ]0,+∞[ and χ+ = +∞ (resp. χ− = 0 and χ+ ∈ ]0,+∞[), Conditions
(ii)-(iii) are satisfied if and only if limζ→+∞ ψ

′(ζ) > 0 (resp. limζ→0
ζ>0

ψ′(ζ) <

0).
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Proof. If (χ−, χ+) ∈ ]0,+∞[2, we have already shown that Conditions (ii)
and (iii) are satisfied if and only χ− < χ+.

If χ− ∈ ]0,+∞[ and χ+ = +∞ (resp. χ− = 0 and χ+ ∈ ]0,+∞[), we
still have

ψ′(χ−) = ϑ+(χ−)− γ−1ξ < 0. (5.42)

(resp. ψ′(χ+) = χ+

(
γ−1υ − ϑ−(χ+)

)
> 0) (5.43)

which shows that Condition (ii) (resp. Condition (iii)) is always satisfied.

By using the same expressions of χ− and χ+ as in the previous lemmas,
we obtain the following characterization of the proximity operator of any
scaled version of Φ:

Proposition 5.3.3 Let γ ∈ ]0,+∞[ and (υ, ξ) ∈ R2. proxγΦ(υ, ξ) ∈ ]0,+∞[2

if and only if Conditions (i)-(iii) in Lemma 5.3.1 are satisfied. When these
conditions hold,

proxγΦ(υ, ξ) =
(
υ − γ ϑ−(ζ̂), ξ − γ ϑ+(ζ̂)

)
(5.44)

where ζ̂ < χ+ is the unique minimizer of ψ on ]χ−,+∞[.

Proof. For every (υ, ξ) ∈ R2, such that Conditions (i)-(iii) in Lemma 5.3.1
hold, let

υ = υ − γ ϑ−(ζ̂) (5.45)

ξ = ξ − γ ϑ+(ζ̂) (5.46)

where the existence of ζ̂ ∈]χ−, χ+[ is guaranteed by Lemma 5.3.1. As
consequences of (5.34) and (5.36), υ and ξ are positive. In addition, since

ψ′(ζ̂) = 0

⇔ ζ̂
(
γ−1υ − ϑ−(ζ̂)

)
= γ−1ξ − ϑ+(ζ̂) (5.47)

we derive from (5.45) and (5.46) that ζ̂ = ξ/υ > 0. This allows us to
re-express (5.45) and (5.46) as

υ − υ + γϕ′
(υ
ξ

)
= 0 (5.48)

ξ − ξ + γ

(
ϕ
(υ
ξ

)
− υ

ξ
ϕ′
(υ
ξ

))
= 0 (5.49)

that is

υ − υ + γ
∂Φ

∂υ
(υ, ξ) = 0 (5.50)

ξ − ξ + γ
∂Φ

∂ξ
(υ, ξ) = 0. (5.51)
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The latter equations are satisfied if and only if (υ, ξ) = proxγΦ(υ, ξ) Com-
bettes and Pesquet [2011].

Conversely, for every (υ, ξ) ∈ R2, let (υ, ξ) = proxγΦ(υ, ξ). If (υ, ξ) ∈
]0,+∞[2, (υ, ξ) satisfies (5.48) and (5.49). By setting ζ̃ = ξ/υ > 0, after
simple calculations, we find

υ = υ − γ ϑ−(ζ̃) > 0 (5.52)

ξ = ξ − γ ϑ+(ζ̃) > 0 (5.53)

ψ′(ζ̃) = 0. (5.54)

According to (5.34) and (5.36), (5.52) and (5.53) imply that χ− 6= +∞,
χ+ 6= −∞, and ζ̃ ∈]χ−, χ+[. In addition, according to Lemma 5.3.1, ψ′ is
strictly increasing on ]χ−,+∞[ (since ψ is strictly convex on this interval).
Hence, ψ′ has a limit at χ− (which may be equal to −∞ when χ− = −∞),
and Condition (ii) is satisfied. Similarly, ψ′ has a limit at χ+ (possibly equal
to +∞ when χ+ = +∞), and Condition (iii) is satisfied.

Remark 5.3.4 In (5.9), a special case arises when

(∀ζ ∈ ]0,+∞[) ϕ(ζ) = ϕ̃(ζ) + ζϕ̃(ζ−1) (5.55)

where ϕ̃ is a twice differentiable convex function on ]0,+∞[. Then Φ takes a
symmetric form, so giving birth to L-divergences. It can then be deduced
from (5.28) that

(∀ζ ∈ ]0,+∞[) ϑ−(ζ) = ϑ+(ζ−1) = ϕ̃(ζ) + ϕ̃′(ζ−1)− ζϕ̃′(ζ). (5.56)

§ 5.4 Examples

5.4.1 Kullback-Leibler divergence

Let us now apply the results in the previous section to the function

Φ: (υ, ξ) 7→


υ ln

(
υ
ξ

)
+ ξ − υ if (υ, ξ) ∈ ]0,+∞[2

ξ if υ = 0 and ξ ∈ [0,+∞[

+∞ otherwise.

(5.57)

This is a function in Γ0(R2) satisfying (5.9) with

(∀ζ ∈ ]0,+∞[) ϕ(ζ) = ζ ln ζ − ζ + 1. (5.58)
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Proposition 5.4.1 The proximity operator of γΦ with γ ∈ ]0,+∞[ is
(∀(υ, ξ) ∈ R2)

proxγΦ(υ, ξ) =

{(
υ + γ ln ζ̂, ξ + γ(ζ̂−1 − 1)

)
if exp(υ/γ) > 1− γ−1ξ

(0, 0) otherwise

(5.59)
where, in the first case, ζ̂ is the unique minimizer on ] exp(−υ/γ),+∞[ of
the function:

ψ : ]0,+∞[→ R : ζ 7→
(ζ2

2
−1
)

ln ζ+
1

2

(
γ−1υ− 1

2
)ζ2 +(1−γ−1ξ)ζ. (5.60)

Proof. For every (υ, ξ) ∈ R2, (υ, ξ) = proxγΦ(υ, ξ) is such that (υ, ξ) ∈ dom Φ
Moreau [1962]. Let us first note that

υ ∈ ]0,+∞[⇔ (υ, ξ) ∈ ]0,+∞[2 . (5.61)

We are now able to apply Proposition 5.3.3, where ψ is given by (5.60) and

(∀ζ ∈ ]0,+∞[) Θ(ζ) =
ζ2

2

(
1

2
− ln ζ

)
− 1 (5.62)

ϑ−(ζ) = − ln ζ (5.63)

ϑ+(ζ) = 1− ζ−1. (5.64)

In addition,

χ− = exp(−υ/γ) (5.65)

χ+ =

{
(1− γ−1ξ)−1 if ξ < γ

+∞ otherwise.
(5.66)

According to (5.61) and Proposition 5.3.3, υ ∈ ]0,+∞[ if and only if Condi-
tions (i)-(iii) in Lemma 5.3.1 hold. Since χ− ∈ ]0,+∞[ and limζ→+∞ ψ

′(ζ) =
+∞, Lemma 5.3.2 shows that these conditions are satisfied if and only if

ξ < γ and exp(−υ/γ) < (1− γ−1ξ)−1 (5.67)

or ξ ≥ γ (5.68)

or, equivalently
exp(υ/γ) > 1− γ−1ξ. (5.69)

Under this assumption, Proposition 5.3.3 leads to the following expressions
of the proximity operator:

υ = υ + γ ln ζ̂ (5.70)

ξ = ξ + γ

(
1

ζ̂
− 1

)
(5.71)
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where ζ̂ is the unique minimizer on ] exp(−υ/γ),+∞[ of the function ψ.
We have shown that υ > 0⇔ (5.69). So, υ = 0 when (5.69) is not satisfied.

Then, the expression of ξ simply reduces to the asymmetric soft-thresholding
rule Combettes and Pesquet [2007a]:

ξ =

{
ξ − γ if ξ > γ

0 otherwise.
(5.72)

However, exp(υ/γ) ≤ 1− γ−1ξ ⇒ ξ < γ, so that ξ is necessarily equal to 0.

Remark 5.4.2

(i) It can be noticed that

ψ′(ζ̂) = ζ̂ ln ζ̂ + γ−1υζ̂ − 1

ζ̂
+ 1− γ−1ξ = 0

⇔ ζ̂−1 exp
(
ζ̂−1(ζ̂−1 + γ−1ξ − 1)

)
= exp(γ−1υ). (5.73)

In the case where ξ = γ, the above equation reduces to

2ζ̂−2 exp
(
2ζ̂−2

)
= 2 exp(2γ−1υ)

⇔ ζ̂ =

(
2

W (2e2υ/γ)

)1/2

(5.74)

where W is the Lambert W function Corless et al. [1996]. When ξ 6= γ,
although a closed form expression of (5.73) is not available, efficient
numerical methods to compute ζ̂ can be developed as shown in the
following.

(ii) For a given (υ, ξ) ∈ R2, minimizing ψ over ] exp(−υ/γ),+∞[ amounts
to minimizing ψ1 + ψ2 over R, where

(∀ζ ∈ R) ψ1(ζ) =

{
ζ2

2 ln ζ + 1
2

(
γ−1υ − 1

2

)
ζ2 if ζ ≥ exp(−υ/γ)

+∞ otherwise

(5.75)
and

(∀ζ ∈ R) ψ2(ζ) =

{
− ln ζ + (1− γ−1ξ)ζ if ζ > 0

+∞ otherwise.
(5.76)

We have then

(∀ζ > exp(−υ/γ)) ψ′′1(ζ) = ln ζ + γ−1υ + 1 > 0 (5.77)
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and

(∀ζ > 0) ψ′′2(ζ) =
1

ζ2
> 0 (5.78)

which shows that ψ1 and ψ2 are strictly convex functions.

As ψ1 and ψ2 belong to Γ0(R), a possibility for performing this mini-
mization is to employ the Douglas-Rachford algorithm. This requires
calculating the proximity operators of τψ1 and τψ2 where τ > 0.
For every ζ ∈ R, proxτψ1

ζ ∈ [exp(−υ/γ),+∞[ Moreau [1962]. We have
then {

ζ > exp(−υ/γ)

ζ = proxτψ1
ζ

(5.79)

⇔

{
ζ > exp(−υ/γ)

ζ − ζ + τ
(
ζ ln ζ + γ−1υζ

)
= 0.

(5.80)

Since ζ 7→ ζ + τ(ζ ln ζ + γ−1υζ) is strictly increasing (hence, bijective)
from [exp(−υ/γ),+∞[ to [exp(−υ/γ),+∞[, this is also equivalent to{

ζ > exp(−υ/γ)

ζ − ζ + τ(ζ ln ζ + γ−1υζ) = 0.
(5.81)

In addition, the latter equality can be rewritten as

ζ

τζ
exp

( ζ
τζ

)
=
ζ

τ
exp(τ−1 + γ−1υ)

⇔ ζ =
ζ

τW
(
τ−1ζeτ−1+γ−1υ

) . (5.82)

In summary, (5.79) is equivalent to ζ > exp(−υ/γ) and (5.82). We
deduce that

proxτψ1
ζ =


ζ

τW

(
τ−1ζeτ−1+γ−1υ

) if ζ > exp(−υ/γ)

exp(−υ/γ) otherwise.

(5.83)

The proximity operator of τψ2 follows from standard results on the
calculation of proximity operators Pustelnik et al. [2011]:

proxτψ2
ζ =

1

2

(
ζ + τ(γ−1ξ − 1) +

√
|ζ + τ(γ−1ξ − 1)|2 + 4τ

)
. (5.84)

The Douglas-Rachford algorithm to compute the solution is then pro-
vided by:
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Algorithm 8 Douglas-Rachford algorithm

Fix ε ∈ ]0, 1[, τ > 0, ζ̂−1/2 ∈ ]0,+∞[

for n = 0, 1, . . .

ζ̂n = proxτψ2
ζ̂n−1/2

µn ∈ [ε, 2− ε]

ζ̂n+1/2 = ζ̂n−1/2 + µn
(
proxτψ1

(
2ζ̂n − ζ̂n−1/2

)
− ζ̂n

)
.

(iii) More generally, we can derive the proximity operator of

Φ̃ : (υ, ξ) 7→


υ ln

(
υ
ξ

)
+ κ(ξ − υ) if (υ, ξ) ∈ ]0,+∞[2

κξ if υ = 0 and ξ ∈ [0,+∞[

+∞ otherwise

(5.85)

where κ ∈ R. Of particular interest in the literature is the case when
κ = 0 Blahut [1972]; Arimoto [1972]; Dupé et al. [2009]; Pustelnik et al.
[2011]. From Proposition 5.2.3(iv), we get, for every γ ∈ ]0,+∞[,(
∀(υ, ξ) ∈ R2

)
prox

γΦ̃
(υ, ξ) = proxγΦ(υ+γκ−γ, ξ−γκ+γ) (5.86)

where proxγΦ is provided by Proposition 5.4.1.

5.4.2 Jeffreys-Kullback divergence

Let us now consider the symmetrized form of (5.57) given by

Φ: (υ, ξ) 7→


(υ − ξ)

(
ln υ − ln ξ) if (υ, ξ) ∈ ]0,+∞[2

0 if υ = ξ = 0

+∞ otherwise.

(5.87)

This function belongs to Γ0(R2) and satisfies (5.9) and (5.55) with

(∀ζ ∈ ]0,+∞[) ϕ̃(ζ) = − ln ζ. (5.88)

Proposition 5.4.3 The proximity operator of γΦ with γ ∈ ]0,+∞[ is
(∀(υ, ξ) ∈ R2)

proxγΦ(υ, ξ) =


(
υ + γ

(
ln ζ̂ + ζ̂ − 1), ξ − γ

(
ln ζ̂ − ζ̂−1 + 1)

)
if W (e1−γ−1υ)W (e1−γ−1ξ) < 1

(0, 0) otherwise

(5.89)
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where, in the first case, ζ̂ is the unique minimizer on ]W (e1−γ−1υ),+∞[ of
the function:

ψ : ]0,+∞[→ R : ζ 7→
(ζ2

2
+ ζ − 1

)
ln ζ +

ζ3

3
+

1

2

(
γ−1υ − 3

2

)
ζ2 − γ−1ξζ.

(5.90)

Proof. We apply Proposition 5.3.3 where ψ is given by (5.90) and

(∀ζ ∈ ]0,+∞[) Θ(ζ) = ζ2
(3

4
− ζ

3
− 1

2
ln ζ
)

(5.91)

ϑ−(ζ) = ϑ+(ζ−1) = − ln ζ − ζ + 1. (5.92)

The above equalities have been derived from (5.55) and (5.56). It can be
deduced from (5.29), (5.30) and (5.92) that

χ− + lnχ− = 1− γ−1υ (5.93)

χ−1
+ + ln(χ−1

+ ) = 1− γ−1ξ (5.94)

that is

χ− = W (e1−γ−1υ) (5.95)

χ+ =
(
W (e1−γ−1ξ)

)−1
. (5.96)

According to Proposition 5.3.3, proxγΦ(υ, ξ) ∈ ]0,+∞[2 if and only if
Conditions (i)-(iii) in Lemma 5.3.1 hold. Lemma 5.3.2 shows that these
conditions are satisfied if and only if

W (e1−γ−1υ)W (e1−γ−1ξ) < 1. (5.97)

Under this assumption, the expression of the proximity operator follows from
Proposition 5.3.3 and (5.92).
We have shown that proxγΦ(υ, ξ) ∈ ]0,+∞[2 ⇔ (5.97). Since proxγΦ(υ, ξ) ∈
dom Φ, we necessarily get proxγΦ(υ, ξ) = (0, 0), when (5.97) is not satisfied.

Remark 5.4.4 To minimize ψ, we need to find the zero on [χ−, χ+] of the
function:

ψ′(ζ) = (ζ + 1) log ζ +
ζ

2
+ 1− 1

ζ
+ ζ2 +

(
γ−1υ − 3

2

)
ζ − γ−1ξ. (5.98)

Thus can be performed by Algorithm 9, the convergence of which is proved
in Section 5.7.

Algorithm 9 Newton algorithm

Fix ζ̂0 ∈ [χ−, χ+]

for n = 0, 1, . . .

ζ̂n+1 = P[χ−,χ+]

(
ζ̂n − ψ′(ζ̂n)/ψ′′(ζ̂n)

)
.
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5.4.3 Hellinger divergence

Let us now consider the function of Γ0(R2) given by

Φ: (υ, ξ) 7→

{
(
√
υ −
√
ξ)2 if (υ, ξ) ∈ [0,+∞[2

+∞ otherwise.
(5.99)

This symmetric function satisfies (5.9) and (5.55) with

(∀ζ ∈ ]0,+∞[) ϕ̃(ζ) = ζ −
√
ζ. (5.100)

Proposition 5.4.5 The proximity operator of γΦ with γ ∈ ]0,+∞[ is

(∀(υ, ξ) ∈ R2)

proxγΦ(υ, ξ) =



(
υ + γ(ρ− 1), ξ + γ

(
1
ρ − 1

))
if (υ < γ and

(1− γ−1υ)(1− γ−1ξ) < 1)

or υ ≥ γ
(0, 0) otherwise

(5.101)

where, in the first case, ρ is the unique solution on ] max(1− γ−1υ, 0),+∞[
of the equation:

ρ4 + (γ−1υ − 1)ρ3 + (1− γ−1ξ)ρ− 1 = 0. (5.102)

Proof. For every (υ, ξ) ∈ R2, (υ, ξ) = proxγΦ(υ, ξ) is such that (υ, ξ) ∈
[0,+∞[2 Moreau [1962]. By using the notation of Proposition 5.3.3 and by
using Remark 5.3.4, we have:

(∀ζ ∈ ]0,+∞[) Θ(ζ) =
ζ2

2
− 2

5
ζ5/2 + 1 (5.103)

ϑ−(ζ) = ϑ+(ζ−1) = 1−
√
ζ (5.104)

and

χ− =

{
(1− γ−1υ)2 if υ < γ

0 otherwise
(5.105)

χ+ =

{
(1− γ−1ξ)−2 if ξ < γ

+∞ otherwise.
(5.106)

According to Proposition 5.3.3, (υ, ξ) ∈ ]0,+∞[2 if and only if Conditions (i)-
(iii) in Lemma 5.3.1 hold. Under these conditions, Proposition 5.3.3 leads
to

υ = υ + γ(ζ̂1/2 − 1) (5.107)

ξ = ξ + γ
(
ζ̂−1/2 − 1

)
(5.108)
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where ζ̂ is the unique minimizer on ]χ−,+∞[ of the function:

ψ : ]0,+∞[→ R : ζ 7→ 2

5
ζ5/2 − 2ζ1/2 +

γ−1υ − 1

2
ζ2 + (1− γ−1ξ)ζ. (5.109)

This means that ζ̂ is the unique solution on ]χ−,+∞[ of the equation:

ψ′(ζ̂) = ζ̂3/2 − ζ̂−1/2 + (γ−1υ − 1)ζ̂ + 1− γ−1ξ = 0. (5.110)

By setting ρ = ζ̂1/2, (5.102) is obtained.
Since limζ→0

ζ>0
ψ′(ζ) = −∞ and limζ→+∞ ψ

′(ζ) = +∞, Lemma 5.3.2 shows

that Conditions (i)-(iii) are satisfied if and only if

υ < γ, ξ < γ, and (1− γ−1υ)2 < (1− γ−1ξ)−2

or υ < γ and ξ ≥ γ
or υ ≥ γ and ξ < γ

or υ ≥ γ and ξ ≥ γ (5.111)

or, equivalently

υ < γ and (1− γ−1υ)(1− γ−1ξ) < 1

or υ ≥ γ. (5.112)

In turn, when (5.112) is not satisfied, we necessarily have υ = 0 or ξ = 0.
In the first case, the expression of ξ is simply given by the asymmetric
soft-thresholding rule in (5.72). Similarly, in the second case, we have

υ =

{
υ − γ if υ > γ

0 otherwise.
(5.113)

However, when υ > γ or ξ > γ, (5.111) is always satisfied, so that υ = ξ = 0.
Altogether, the above results yield the expression of the proximity opera-

tor in (5.101).

5.4.4 Chi square divergence

Let us now consider the function of Γ0(R2) given by

Φ: (υ, ξ) 7→


(υ − ξ)2

ξ
if υ ∈ [0,+∞[ and ξ ∈ ]0,+∞[

0 if υ = ξ = 0

+∞ otherwise.

(5.114)

This function satisfies (5.9) with

(∀ζ ∈ ]0,+∞[) ϕ(ζ) = (ζ − 1)2. (5.115)
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Proposition 5.4.6 The proximity operator of γΦ with γ ∈ ]0,+∞[ is
(∀(υ, ξ) ∈ R2)

proxγΦ(υ, ξ) =
(
υ + 2γ(1− ρ), ξ + γ(ρ2 − 1)

)
if υ > −2γ

and ξ > −υ
(
1 + (4γ)−1υ

)(
0,max(ξ − γ, 0)

)
otherwise

(5.116)

where, in the first case, ρ is the unique solution on ]0, 1 + γ−1υ/2[ of the
equation:

ρ3 + (1 + γ−1ξ)ρ = 2 + γ−1υ. (5.117)

Proof. By proceeding similarly to the proof of Proposition 5.4.5. we have:

(∀ζ ∈ ]0,+∞[) Θ(ζ) = 2ζ − ζ2 (5.118)

ϑ−(ζ) = 2(ζ−1 − 1) (5.119)

ϑ+(ζ) = 1− ζ−2 (5.120)

and

χ− =


2

2 + γ−1υ
if υ > −2γ

+∞ otherwise
(5.121)

χ+ =


1√

1− γ−1ξ
if ξ < γ

+∞ otherwise.

(5.122)

According to Proposition 5.3.3, (υ, ξ) ∈ ]0,+∞[2 if and only if Conditions (i)-
(iii) in Lemma 5.3.1 hold. Then, (υ, ξ) = proxγΦ(υ, ξ) is such that

υ = υ + 2γ(1− ζ̂−1) (5.123)

ξ = ξ + γ(ζ̂−2 − 1) (5.124)

where ζ̂ is the unique minimizer on ]χ−,+∞[ of the function:

ψ : ]0,+∞[→ R : ζ 7→
(

1 +
γ−1υ

2

)
ζ2 − (1 + γ−1ξ)ζ − 2 + ζ−1. (5.125)

Thus, ζ̂ is the unique solution on ]χ−,+∞[ of the equation:

ψ′(ζ̂) = (2 + γ−1υ)ζ̂ − 1− γ−1ξ − ζ̂−2 = 0. (5.126)

By setting ρ = ζ̂−1, (5.117) is obtained.
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Lemma 5.3.2 shows that Conditions (ii) and (iii) are satisfied iff

υ > −2γ, ξ < γ, and
2

2 + γ−1υ
<

1√
1− γ−1ξ

or υ > −2γ and ξ ≥ γ (5.127)

or, equivalently,

υ > −2γ, ξ < γ, and 1− ξ

γ
<

(
1 +

υ

2γ

)2

.

or υ > −2γ and ξ ≥ γ. (5.128)

When (5.128) does not hold, we necessarily have υ = 0. The end of the
proof is similar to that of Proposition 5.4.5.

5.4.5 Renyi divergence

Let α ∈]1,+∞[ and let us now consider the function of Γ0(R2) given by

Φ: (υ, ξ) 7→


υαξ1−α if υ ∈ [0,+∞[ and ξ ∈ ]0,+∞[

0 if υ = ξ = 0

+∞ otherwise

(5.129)

which corresponds to the case when

(∀ζ ∈ ]0,+∞[) ϕ(ζ) = ζα. (5.130)

Note that the above function Φ allows us to generate the Rényi divergence
up to a log transform and a multiplicative constant.

Proposition 5.4.7 The proximity operator of γΦ with γ ∈ ]0,+∞[ is

(∀(υ, ξ) ∈ R2)

proxγΦ(υ, ξ) =


(
υ − γαζ̂1−α, ξ + γ(α− 1)ζ̂−α

)
if υ > 0 and

γ
1

α−1 ξ
1−α <

(
υ
α

) α
α−1(

0,max(ξ, 0)
)

otherwise

(5.131)

where, in the first case, ζ̂ is the unique solution on ](αγυ−1)
1

α−1 ,+∞[ of the
equation:

γ−1υ ζ̂1+α = γ−1ξ ζ̂α + αζ̂2 + α− 1. (5.132)
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Proof. We proceed similarly to the previous examples by noticing that

(∀ζ ∈ ]0,+∞[) Θ(ζ) =

{
α

3−αζ
3−α if α 6= 3

α ln ζ if α = 3
(5.133)

ϑ−(ζ) = αζ1−α (5.134)

ϑ+(ζ) = (1− α)ζ−α (5.135)

ψ′(ζ) = (1− α)ζ−α − αζ2−α + γ−1υζ − γ−1ξ (5.136)

and

χ− =


(γα
υ

) 1
α−1

if υ > 0

+∞ otherwise
(5.137)

χ+ =


(γ(1− α)

ξ

)1/α
if ξ < 0

+∞ otherwise.

(5.138)

Note that (5.132) becomes a polynomial equation when α is a rational
number. In particular, when α = 2, it reduces to the cubic equation:

ρ3 + (2 + γ−1ξ)ρ = γ−1υ (5.139)

with ζ̂ = ρ−1.

5.4.6 Iα divergence

Let α ∈]0, 1[ and let us now consider the function of Γ0(R2) given by

Φ: (υ, ξ) 7→

{
αυ + (1− α)ξ − υαξ1−α if υ ∈ [0,+∞[ and ξ ∈ [0,+∞[

+∞ otherwise

(5.140)
which corresponds to the case when

(∀ζ ∈ ]0,+∞[) ϕ(ζ) = 1− α+ αζ − ζα. (5.141)
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Proposition 5.4.8 The proximity operator of γΦ with γ ∈ ]0,+∞[ is
(∀(υ, ξ) ∈ R2)

proxγΦ(υ, ξ) =

(
υ + γα(ζ̂1−α − 1), ξ + γ(1− α)(ζ̂−α − 1)

)
if
(
υ < γα and(

1− γ−1ξ
(1−α)

)
<
(

1− υ
γα

) α
α−1

)
or υ ≥ γα

(0, 0) otherwise

(5.142)

where, in the first case, ζ̂ is the unique solution on
](

max
(
1− υ

γα
, 0
)) 1

1−α ,+∞
[

of the equation:

αζ̂2 + (γ−1υ − α)ζ̂α+1 + (1− α− γ−1ξ)ζ̂α = 1− α. (5.143)

Proof. We have then (∀ζ ∈ ]0,+∞[)

Θ(ζ) = α
(ζ2

2
− ζ3−α

3− α

)
(5.144)

ϑ−(ζ) = α(1− ζ1−α) (5.145)

ϑ+(ζ) = (1− α)(1− ζ−α) (5.146)

ψ′(ζ) = αζ2−α + (γ−1υ − α)ζ + (α− 1)ζ−α + 1− α− γ−1ξ (5.147)

and

χ− =


(

1− υ

γα

) 1
1−α

if υ < γα

0 otherwise
(5.148)

χ+ =


(

1− ξ

γ(1− α)

)−1/α
if ξ < γ(1− α)

+∞ otherwise.

(5.149)

The result follows by noticing that limζ→0
ζ>0

ψ′(ζ) = −∞ and limζ→+∞ ψ
′(ζ) =

+∞.

As for the Renyi divergence, (5.143) becomes a polynomial equation when α
is a rational number.

§ 5.5 Connection with epigraphical projections

A number of recent works Chierchia et al. [2013]; Harizanov et al. [2013];
Tofighi et al. [2014]; Ono and Yamada [2014] have shown that the projection
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onto the epigraph of a convex function is a useful tool for solving constrained
convex optimization with the help of proximal algorithms. Epigraphical
projection may be of main interest when dealing with constraint sets for
which a closed form expression of the projection does not exist. In this part,
we briefly explain how the forms of the proximity operator of divergences
which have been derived in the previous sections can be employed to deduce
the expression of the projection onto the epigraph of some convex functions.

Proposition 5.5.1 Let ϕ : R → [0,+∞] be a function in Γ0(R) which is
twice differentiable on ]0,+∞[. Let Φ be the function defined by (5.9) and
ϕ∗ ∈ Γ0(R) the Fenchel-conjugate function of the restriction of ϕ on [0,+∞[,
defined as

(∀ζ∗ ∈ R) ϕ∗(ζ) = sup
ζ∈[0,+∞[

(
ζζ∗ − ϕ(ζ)

)
. (5.150)

Let epiϕ∗ =
{

(υ∗, ξ∗) ∈ R2
∣∣ ϕ∗(υ∗) ≤ ξ∗} be the epigraph of ϕ∗. Then, the

projection onto epiϕ∗ is given by(
∀(υ∗, ξ∗) ∈ R2

)
Pepiϕ∗(υ

∗, ξ∗) = (υ∗,−ξ∗)− proxΦ(υ∗,−ξ∗). (5.151)

Proof. The conjugate function of Φ is

(∀(υ, ξ) ∈ R2) Φ∗(υ∗, ξ∗) = sup
(υ,ξ)∈R2

(
υυ∗ + ξξ∗ − Φ(υ, ξ)

)
. (5.152)

From the definition of Φ, we deduce that

(∀(υ, ξ) ∈ R2) (5.153)

Φ∗(υ∗, ξ∗) = sup
{

sup
(υ,ξ)∈[0,+∞[×]0,+∞[

(
υυ∗ + ξξ∗ − ξϕ

(υ
ξ

))
, (5.154)

sup
υ∈]0,+∞[

(
υυ∗ − lim

ξ→0
ξ>0

ξϕ
(υ
ξ

))
, 0
}

= sup
{

sup
(υ,ξ)∈[0,+∞[×]0,+∞[

(
υυ∗ + ξξ∗ − ξϕ

(υ
ξ

))
, 0
}

= sup{ιepiϕ∗(υ
∗,−ξ∗), 0} (5.155)

= ιepiϕ∗(υ
∗,−ξ∗), (5.156)

where the equality in (5.155) stems from [Bauschke and Combettes, 2011,
Example 13.8]. Then, (5.151) follows from the conjugation property of the
proximity operator (see Proposition 5.2.3 (v)).

The above proposition is applicable to all the examples of ϕ-divergences
wich have been presented in Section 5.3. In Table 5.1, we give the expressions
of the corresponding functions ϕ∗.
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Divergence
ϕ(ζ) ϕ∗(ζ∗)
ζ > 0 ζ∗ ∈ R

Kullback-Leibler ζ ln ζ − ζ + 1 eζ
∗
− 1

Jeffreys-Kullback (ζ − 1) ln ζ W (e1−ζ
∗
) +

(
W (e1−ζ

∗
)
)−1

+ ζ∗ − 2

Chi square (ζ − 1)2


ζ∗(ζ∗ + 4)

4
if ζ∗ ≥ −2

−1 otherwise

Hellinger 1 + ζ − 2
√
ζ


ζ∗

1− ζ∗ if ζ∗ > −1

+∞ otherwise

Renyi, α ∈]1,+∞[ ζα

(α− 1)
(ζ∗
α

) α
α−1

if ζ∗ ≥ 0

0 otherwise

Iα, α ∈]0, 1[ 1− α+ αζ − ζα
(1− α)

((
1− ζ∗

α

) α
α−1 − 1

)
if ζ∗ ≤ α

+∞ otherwise

Table 5.1: Conjugate function ϕ∗ of the restriction of ϕ to [0,+∞[.

§ 5.6 Conclusion

In this chapter, we have shown how to deal with convex optimization problems
involving discrete information divergences. Our analysis has emphasized
that the difficulty lies in computing the proximity operator of two-variable
real functions. To this end, we have carried out a systematic study of the
proximity properties of ϕ-divergences, which has eventually led us to derive
new closed-form expressions of proximity operators. These novel results have
shed light on a new methodology that may replace the approaches usually
followed to deal with problems involving these divergences (i.e. minimizing by
fixing one of the two arguments or by alternating between the two variables).

In addition, we have provided a closed-form expression of the projection
onto the epigraph of convex functions related to the considered ϕ-divergences.

In the next chapter, we will consider applications of these divergences,
which may be useful in some problems, in the context of image restoration
and image registration.
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§ 5.7 Convergence proof of algorithm 9

We aim at finding the zero of the function ψ′ given below (along with its
derivative ψ′′):(
∀ ζ ∈ ]W (e1−γ−1υ),+∞[

)
ψ′(ζ) = (ζ + 1) log ζ +

ζ

2
+ 1− 1

ζ
+ ζ2 +

(
γ−1υ − 3

2

)
ζ − γ−1ξ,

ψ′′(ζ) = log ζ +
1

ζ
+

1

ζ2
+ 2ζ + γ−1υ.

To do so, we employ the Newton algorithm, whose global convergence is
guaranteed for any initial value by the following condition Thorlund-Petersen
[2004]:

(∀a ∈]0,+∞[)(∀b ∈]a,+∞[) ψ′′(a) + ψ′′(b) >
ψ′(b)− ψ′(a)

b− a
,

which is equivalent to

(b− a)ψ′′(a) + (b− a)ψ′′(b)− ψ′(b) + ψ′(a) > 0. (5.157)

Condition (5.157) can be rewritten as follows

(b− a)(log a+
1

a
+

1

a2
+ 2a+ γ−1υ)

+(b− a)(log b+
1

b
+

1

b2
+ 2b+ γ−1υ)

+

(
(a+ 1) log a+

a

2
+ 1− 1

a
+ a2 +

(
γ−1υ − 3

2

)
a− γ−1ξ

)
−
(

(b+ 1) log b+
b

2
+ 1− 1

b
+ b2 +

(
γ−1υ − 3

2

)
b− γ−1ξ

)
> 0,

which, after some simplification, boils down to

(b+ 1) log a− (a+ 1) log b+
b

a
+

b

a2
− 2

a
− a

b
− a

b2
+

2

b
− a2 + b2

+γ−1υ(b− a) +
1

2
(b− a) > 0. (5.158)

We now show that Condition (5.158) holds true because b > a and it is a
sum of two terms

(b+ 1) log a− (a+ 1) log b+
b

a
+

b

a2
− 2

a
− a

b
− a

b2
+

2

b
− a2 + b2︸ ︷︷ ︸

>0

(5.159)
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and

γ−1υ(b− a) +
1

2
(b− a)︸ ︷︷ ︸

>0

. (5.160)

Proof. Equation (5.159) can be rewritten as

(∀a ∈]0,+∞[)(∀b ∈]a,+∞[) g(a, b)− g(b, a) > 0

where

g(x, y) = −(x+ 1) log y − x

y
+

y

x2
− 2

x
+ y2.

Therefore, we shall demonstrate that, for every b > a > 0, g is decreasing
w.r.t. the first argument and increasing w.r.t. to the second argument, i.e.

g(a, b) > g(b, b) and g(b, b) > g(b, a), (5.161)

which implies that
g(a, b) > g(b, a).

To prove these two inequalities, we will study the derivative of g with respect
to its arguments. The conditions in (5.161) are indeed equivalent to

(∀y ∈]0,+∞[)(∀x ∈]0, y[)
∂g

∂x
(x, y) < 0, (5.162)

(∀x ∈]0,+∞[)(∀y ∈]x,+∞[)
∂g

∂y
(x, y) > 0. (5.163)

The first and second partial derivatives of g w.r.t. x read

(∀y ∈]0,+∞[)(∀x ∈]0, y[)
∂g

∂x
(x, y) = − log y − 1

y
− 2y

x3
+

2

x2

∂2g

∂x2
(x, y) =

6y

x4
− 4

x3
=

6y − 4x

a4
> 0.

Since ∂2g/∂x2 is strictly positive, ∂g/∂x is strictly increasing w.r.t. x and

lim
x→y

∂g

∂x
(x, y) = − log y − 1

y
= log

1

y
− 1

y
< 0.

Therefore, Condition (5.162) holds, and g is decreasing with respect to x.
The first and second partial derivatives of g w.r.t. y read

(∀x ∈]0,+∞[)(∀y ∈]x,+∞[)
∂g

∂y
(x, y) =

−x
y
− 1

y
+

x

y2
+

1

x2
+ 2y

∂2g

∂y2
(x, y) =

x

y2
+

1

y2
− 2x

y3
+ 2.
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For every y ∈ [1,+∞[,

(∀x ∈]0, y[)
∂2g

∂y2
(x, y) =

x

y2
+

1

y2
− 2x

y3︸︷︷︸
<1

+2 > 0,

and ∂g/∂y is strictly increasing w.r.t. y (since ∂2g/∂y2 is strictly positive)
and

(∀x ∈ [1,+∞[) lim
y→x

∂g

∂y
(x, y) = −1 +

1

x2
+ 2x > 0,

(∀x ∈]0, 1])
∂g

∂y
(x, 1) =

1

x2
+ 1 > 0.

For every y ∈ ]0, 1[, we have

(∀x ∈]0, y[)
∂g

∂y
(x, y) =

−x
y

+
x

y2
− 1

y
+

1

x2
+ 2y,

=
x− xy
y2

− 1

y
+

1

x2
+ 2y,

since x < y < 1, this implies that xy < x and 1
y <

1
x <

1
x2

and

(∀x ∈]0, y[)
∂g

∂y
(x, y) =

x− xy
y2︸ ︷︷ ︸
>0

−1

y
+

1

x2︸ ︷︷ ︸
>0

+2y > 0.

As Condition (5.163) holds, g is increasing with respect to y.
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2D Applications of divergence proximity operators

“Knowledge without application is like a book that is never read.”
Christopher Crawford

Measures based on distance or divergence play a pivotal role in evaluating
the dissimilarity between two objects (such as numbers, vectors, matrices,
functions, images, . . . ). In this chapter, we investigate the use of divergences
as a data fidelity term or a regularization term in two different image
processing applications: restoration and registration.

As we have presented in the previous chapter, the objective function will
have the following form:

x 7→ D(Ax,Bx) (6.1)

where D is a function in Γ0(RP × RP ), and A and B are matrices in RP×N .
The most common assumption on the signal of interest x ∈ RN is that, by
making an appropriate choice of matrices A and B, Ax and Bx are close in
the metric induced by D.

Divergences have been widely used in the literature within many different
contexts. Some measures have been used for regression analysis, some have
been applied to compare two probability density functions, and some are
used to measure the dissimilarity between two random vectors of the same
distribution. In this chapter, we use information measures in two applica-
tions. Firstly, we extend the NLTV framework by using some information
divergences to build new sparsity measures for signal recovery. In denoising
and deconvolution examples, our approach is compared with other existing
approaches. Secondly, an image registration application constitutes another
example illustrating the use of the proposed divergence proximity operators.

115
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§ 6.1 Regularization based on ϕ-divergences

In this section, we consider divergences for building non-local smoothness
measures. The Non-Local Total Variation Gilboa and Osher [2009]; Buades
et al. [2006] has been used as a popular and effective image prior model in
regularization-based imaging problems Werlberger et al. [2010]; Peyré [2011];
Chierchia et al. [2013]; Couprie et al. [2013]; Teuber et al. [2013]. As we
have mentioned in Chapter 2, NLTV is a powerful regularization operator.
It makes full use of spatial information distributed over the different image
regions.

In Equation (3.48), we have defined NLTV as follows:

NLTV(x) =
∑
s∈A

√ ∑
n∈Ns⊂Ws

ωs,n|x(s) − x(n)|2, (6.2)

where Ws is the set of positions n ∈ A \ {s} located into a Q×Q window
centered at s, where Q ∈ N is odd. The idea behind NLTV is illustrated
in Fig.6.1. For each pixel in the image, we select some neighbours within
a limited region and we compute the weights ωs,n according to a similarity

measure between Q̃× Q̃ patches built around pixels s and n. Large weights
are desirable in flat areas in order to effectively suppress the noise, while
small weights are desirable around object edges in order to preserve details
and fine structures.

A key observation is that NLTV can be interpreted as a similarity measure.
Indeed, the vector of weighted differences can be rewritten as:

(∀s ∈ A) [ωs,n(x(s) − x(n))]n∈Ns = Asx−Bsx, (6.3)

where

As : x 7→ [ωs,nx
(s)]n∈Ns , (6.4)

Bs : x 7→ [ωs,nx
(n)]n∈Ns . (6.5)

Consequently, the `1,p-NLTV regularization term can be expressed as follows

`1,p −NLTV(x) =
∑
s∈A
‖Asx−Bsx‖p. (6.6)

Let, for all s ∈ A, a(s) = Asx ∈ [0,+∞[|Ns| and b(s) = Bsx ∈ [0,+∞[|Ns|.
Thus, Equation (6.6) is equivalent to

`1,p −NLTV(x) =
∑
s∈A
‖a(s) − b(s)‖p. (6.7)



6.1. Regularization based on ϕ-divergences 117

(a) Fragment of the noisy image (Chapter
2) Image part highlighted by red color is
illustrated in (b), (c) and (d).

(b) Reference pixel and sur-
rounding 5×5 bloc.

(c) Candidates (d) Chosen neighboors

Figure 6.1: Illustration of the idea behind nonlocal total variation.

By setting now a(s) = (a(s,m))1≤m≤|Ns| and b(s) = (b(s,m))1≤m≤|Ns|, then the
smoothed version of NLTV regularization, namely the squared `2-NLTV, can
be expressed as

`2-NLTV(x) =
∑
s∈A

|Ns|∑
m=1

(a(s,m) − b(s,m))2. (6.8)

By analogy, we propose to define the ϕ-divergence version of NLTV as

D-NLTV(a, b) =
∑
s∈A

|Ns|∑
m=1

b(s,m)ϕ

(
a(s,m)

b(s,m)

)
, (6.9)

where ϕ : R→ [0,+∞] belongs to Γ0(R) and is twice differentiable on ]0,+∞[.
The aim of this part is to investigate the influence of the choice of the

similarity measure on the performance of optimization approaches in the
context of image recovery.
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6.1.1 Numerical experiments

In order to assess the relevance of the proposed regularization, we present nu-
merical experiments relative to an image restoration problem. The considered
degradation model is

z = Hx+ w,

where x ∈ RN denotes the image to be recovered, z ∈ RM are the observed
data, H ∈ RM×N corresponds to a matrix associated with a blur operator,
and w ∈ RM is a realization of an additive zero-mean white Gaussian noise.
The restoration process is based on a variational approach aiming at finding
an image x ∈ RN as close as possible to x ∈ RN from the observation z.
Indeed, as inverse problems are usually ill-posed, one needs some prior
information about the estimate, such as the dynamic range of the pixel
values and the smoothness of the estimate of x̄. Therefore, the restoration
can be achieved by solving the following convex optimization problem:

minimize
x∈RN

1

2λ
‖Hx− z‖2 +D(Ax,Bx) + ιC(x) (6.10)

where λ ∈]0,+∞[ is the regularization constant, and the operators A and B
are chosen as explained before. The last term ιC constrains x to belong to
the convex set C = [0, 255]N .

Alternatively, we seek to describe the problem within a set theoretic
framework. In several works Combettes and Trussell [1991], it was observed
that an upper bound on the data fidelity term allows us to efficiently restrict
the solution to vectors x such that:

Hx ∈ C ′ =
{
u ∈ RM | ‖u− z‖2 ≤ δMσ2

}
(6.11)

where δ is a positive constant (usually close to 1) and σ2 is the noise variance.
This leads to the following variant of Problem (6.10):

minimize
x∈RN

D(Ax,Bx) + ιC′(Hx) + ιC(x). (6.12)

Note that, under technical assumptions (Chapter 2, Section 2.1.1), Problem
(6.12) is equivalent to Problem (6.10). However the constrained formulation
given above is usually considered to be more practical as the solution is less
sensitive to the choice of δ than λ Chierchia et al. [2013].

The above problem can be solved using proximal optimization algorithms.
Such methods require to compute the proximity operator of the divergence
D, the projection onto the `2 ball, and the projection onto the hypercube
[0, 255]N . These two projections are quite standard. A possible algorithm
for solving Problem (6.12) is thus the M+LFBF primal-dual algorithm
Combettes and Pesquet [2012]. The associated iterations are recalled in
Algorithm 1, where at each iteration k, γ[k] is a step-size and e[k] ∈ (RP )2
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corresponds to a possible error in the computation of the proximity operators
of the divergence term.

Algorithm 10 M+LFBF

Initialization

v
[0]
1 ∈ RP , v

[0]
2 ∈ RP , v

[0]
3 ∈ RM , x[0] ∈ RN

β =
(
‖A‖2 + ‖B‖2 + ‖H‖2

)1/2
, ε ∈ ]0, 1/(β + 1)[

For k = 0, 1, . . .

γ[k] ∈ [ε, (1− ε)/β]

y
[k]
1 = x[k] − γ[k](A>v

[k]
1 +B>v

[k]
2 +H>v

[k]
3 )

p
[k]
1 = PC(y

[k]
1 )(y

[k]
2,0, y

[k]
2,1) = (v

[k]
1 , v

[k]
2 ) + γ[k](Ax[k], Bx[k])

(p
[k]
2,0, p

[k]
2,1) = (y

[k]
2,0, y

[k]
2,1)− γ[k]prox D

γ[k]

(
y
[k]
2,0

γ[k]
,
y
[k]
2,1

γ[k]

)
+ e[k]

(q
[k]
2,0, q

[k]
2,1) = (p

[k]
2,0, p

[k]
2,1) + γ[k](Ap

[k]
1 , Bp

[k]
1 )

(v
[k+1]
1 , v

[k+1]
2 ) = (v

[k]
1 , v

[k]
2 )− (y

[k]
2,0, y

[k]
2,1) + (q

[k]
2,0, q

[k]
2,1)

y
[k]
3 = v

[k]
3 + γ[k]Hx[k]

p
[k]
3 = y

[k]
3 − γ[k]z − γ[k]PC′

(
y
[k]
3

γ[k]
− z
)

q
[k]
3 = p

[k]
3 + γ[k]Hp

[k]
1

v
[k+1]
3 = v

[k]
3 − y

[k]
3 + q

[k]
3

q
[k]
1 = p

[k]
1 − γ[k](A>p

[k]
2,0 +B>p

[k]
2,1 +H>p

[k]
3 )

x[k+1] = x[k] − y[k]1 + q
[k]
1 .

6.1.2 Results

In this section, we present the performance of the proposed D-NLTV regu-
larization method in restoration experiments. In particular, the following
choices for D are considered: squared `2-norm, `1,2-norm, Kullback-Leibler
divergence, Jeffreys-Kullback, Hellinger divergence, Chi square divergence,
and Iα divergence (α=0.2). Note also that Rényi divergence is not suitable for
the considered application, since its use is limited to probability distributions.

In our experiments, we have considered three types of images: angio-
graphic,1 medical, 2 and satellite images (Figure 6.2).

1www.pcronline.com
2www.cellimagelibrary.org/
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(a) “Aniso” (b) “Tunis”

(c) “Marseille” (d) “Zoughouane” (e) “Paris”

(f) “Cardiac muscle”

(g) “Nucleolus”

(h) “Lysosomes”

Figure 6.2: Example of angiographic (a), satellite (b,c,d,e), and medical
(f,g,h) images.
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Table 6.1: (SNR,SSIM) denoising results with σ2=400.

`1,2-TV `1,2-NLTV KL-NLTV JK-NLTV Hel-NLTV Chi-NLTV I0.2-NLTV

Tunis

21.32-0.795 21.56-0.808 21.73-0.823 21.71-0.822 21.69-0.824 21.70-0.822 21.49-0.808

Marseille

18.66-0.759 19.12-0.784 19.62-0.807 19.68-0.807 19.16-0.804 19.68-0.807 19.11-0.793

Zoughouane

21.94-0.702 22.19-0.715 22.63-0.749 22.61-0.748 22.54-0.755 22.61-0.748 22.43-0.734

Paris

18.07-0.726 18.38-0.738 18.64-0.767 18.64-0.767 18.67-0.767 18.63-0.766 18.59-0.765

Aniso

24.56-0.830 25.11-0.837 26.33-0.876 26.28-0.874 26.51-0.881 26.32-0.876 26.36-0.875

Nucleolus

18.58-0.803 18.85-0.817 18.95-0.825 18.95-0.826 18.96-0.825 18.93-0.825 18.84-0.814

Cardiac muscle

22.21-0.709 22.56-0.708 22.97-0.759 22.96-0.758 22.90-0.762 22.95-0.758 22.78-0.736

Lysosomes

22.14-0.788 22.48-0.800 22.54-0.808 22.53-0.808 22.56-0.810 22.52-0.808 22.45-0.810

The observed image is generated by degrading the original one with a
convolution operator H, which is equal to identity for the denoising problem
and corresponds to a truncated Gaussian point spread function with standard
deviation 1.6 and kernel size 3× 3, and 7× 7 for the deconvolution problem.
The noise variance is equal to 400 and 64 for the image denoising and
restoration problems, respectively. The linear operators A and B associated
with NLTV are computed from the TV image result obtained using the code
in Foi and Boracchi [2012]. For the regularization parameters, we set Q = 11
and Q̃ = 5.

The balance between the smoothness of the estimate and the data fidelity
is controlled by the parameter δ tuned so as to maximize the Signal-to-
Noise Ratio (SNR). The quality of the results, presented in Tables 6.1,6.2,
and 6.3, is evaluated in terms of the SNR and the Structural Similarity
index (SSIM) Malpica and Bovik [2009]. One can observe that the results
obtained with D-NLTV improve upon the standard `1,2-NLTV, for the
different divergences with a gain up to 0.44 dB. Fig. 6.3 and 6.4 show
that our method using Div-NLTV leads to significant visual improvements
compared with `1,2-TV and `1,2-NLTV. Note that the considered divergences
lead to similar results. We believe that this behavior can be explained by the
fact that the ϕ-divergences present little difference when the two arguments
are similar, i.e. the ratio is close to one. Indeed, the Taylor expansion around
one is the same and equal to the quadratic difference as shown next.
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Table 6.2: (SNR, SSIM) restoration results with σ2=64 and a blur operator
of size 3×3.

`1,2-TV `1,2-NLTV KL-NLTV JK-NLTV Hel-NLTV Chi-NLTV I0.2-NLTV

Tunis

22.37-0.843 22.70-0.851 23.09-0.871 23.12-0.871 22.77-0.863 23.05-0.868 22.70-0.864

Marseille

20.84-0.837 21.19-0.852 21.93-0.873 21.94-0.873 21.90-0.873 21.70-0.866 21.62-0.865

Zoughouane

22.60-0.733 22.78-0.731 23.18-0.770 23.19-0.770 22.96-0.760 23.09-0.758 22.59-0.744

Paris

18.38-0.740 18.70-0.747 19.12-0.782 19.12-0.782 19.11-0.782 19.02-0.776 18.91-0.771

Aniso

27.27-0.885 28.17-0.899 28.41-0.908 28.42-0.908 28.23-0.889 28.41-0.908 28.21-0.888

Nucleolus

17.13-0.724 17.43-0.741 17.62-0.756 17.62-0.756 17.62-0.755 17.61-0.755 17.57-0.751

Cardiac muscle

22.55-0.724 22.99-0.724 23.35-0.763 23.36-0.763 23.22-0.760 23.36-0.763 23.17-0.731

Lysosomes

22.06-0.773 22.33-0.783 22.54-0.797 22.54-0.797 22.39-0.791 22.54-0.797 22.38-0.789

Table 6.3: (SNR, SSIM) restoration results with σ2=64 and a blur operator
of size 7×7.

`1,2-TV `1,2-NLTV KL-NLTV JK-NLTV Hel-NLTV Chi-NLTV I0.2-NLTV

Tunis

18.54-0.623 19.05-0.659 19.49-0.698 19.53-0.700 19.30-0.690 19.52-0.700 19.27-0.682

Marseille

17.98-0.716 18.56-0.745 19.00-0.769 19.03-0.770 18.99-0.769 19.02-0.770 18.96-0.768

Zoughouane

19.95-0.502 20.36-0.534 20.71-0.579 20.74-0.581 20.61-0.565 20.73-0.581 20.64-0.572

Paris

15.29-0.467 15.70-0.504 15.99-0.546 16.01-0.548 15.98-0.544 16.00-0.548 15.92-0.541

Aniso

24.49-0.826 25.52-0.850 25.79-0.860 25.90-0.863 25.73-0.859 25.89-0.863 25.80-0.868

Nucleolus

14.51-0.451 14.88-0.494 15.14-0.527 15.20-0.534 15.10-0.522 15.14-0.528 15.15-0.528

Cardiac muscle

19.76-0.529 20.45-0.562 20.81-0.604 20.84-0.605 20.64-0.595 20.83-0.605 20.78-0.599

Lysosomes

18.83-0.498 19.47-0.558 19.84-0.599 19.86-0.600 19.69-0.582 19.85-0.601 19.71-0.585
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Aniso (17.21-0.505) (24.49-0.826) (25.52-0.850) (25.90-0.863)

Tunis (15.77-0.424) (18.54-0.623) (19.05-0.659) (19.53-0.700)

Marseille (14.10-0.449) (17.98-0.716) (18.56-0.745) (19.03-0.770)

Zoughouane (17.26-0.327) (19.95-0.502) (20.36-0.534) (20.74-0.581)

Paris (13.14-0.284) (15.29-0.467 ) (15.70-0.504) (16.01-0.548)

Figure 6.3: Angiographic + Satellite images: comparison of restoration
results (SNR-SSIM) with σ2=64 and a blur operator of size 7×7. From the
Left to the Right: Original image, degraded image, `12-TV result, `12-NLTV
result and JK-NLTV result.
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Nucleolus (12.85-0.273) (14.51-0.451) (14.88-0.494) (15.20-0.534)

Cardiac muscle (16.85-0.350) (19.76-0.529) (20.45-0.562) (20.84-0.605)

Lysosomes (16.43-0.306) (18.83-0.498) (19.47-0.558) (19.86-0.600)

Figure 6.4: Medical images: comparison of restoration results (SNR-SSIM)
with σ2=64 and a blur operator of size 7×7. From the Left to the Right:
Original image, degraded image, `12-TV result, `12-NLTV result and JK-
NLTV result.

Recall that the considered ϕ-divergences are additive information mea-
sures of the form given by Equation (5.8).

Let us now perform the second-order Taylor expansion of the function Φ
around an initial estimate (ῡ, ξ̄) ∈ R2 as follows:

Φ(υ, ξ) ' Φ(ῡ, ξ̄) + (υ − ῡ)
∂Φ

∂υ
(ῡ, ξ̄) + (ξ − ξ̄)∂Φ

∂ξ
(ῡ, ξ̄)

+
1

2
(υ − ῡ)2∂

2Φ

∂υ2
(ῡ, ξ̄) +

1

2
(ξ − ξ̄)2∂

2Φ

∂ξ2
(ῡ, ξ̄)

+ (υ − ῡ)(ξ − ξ̄) ∂
2Φ

∂υ∂ξ
(ῡ, ξ̄), (6.13)

where

∂Φ

∂υ
(υ, ξ) = ϕ′

(υ
ξ

)
∂Φ

∂ξ
(υ, ξ) = ϕ

(υ
ξ

)
− υ

ξ
ϕ′
(υ
ξ

)
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∂2Φ

∂υ2
(υ, ξ) =

1

ξ
ϕ′′
(υ
ξ

)
∂2Φ

∂ξ2
(υ, ξ) =

υ2

ξ3
ϕ′′
(υ
ξ

)
∂2Φ

∂υ∂ξ
(υ, ξ) = − υ

ξ2
ϕ′′
(υ
ξ

)
. (6.14)

Since ϕ is such that

ϕ(1) = ϕ′(1) = 0, (6.15)

we can deduce that when ξ̄ → ῡ, the equations in (6.14) boil down to

∂Φ

∂υ
(ῡ, ξ̄) = 0,

∂Φ

∂ξ
(ῡ, ξ̄) = 0,

∂2Φ

∂υ2
(ῡ, ξ̄) =

1

ῡ
ϕ′′(1),

∂2Φ

∂ξ2
(ῡ, ξ̄) =

1

ῡ
ϕ′′(1),

∂2Φ

∂υ∂ξ
(ῡ, ξ̄) =

−1

ῡ
ϕ′′(1). (6.16)

Thus (6.13) reads

Φ(υ, ξ) ' 1

2ῡ
ϕ′′(1)

(
(υ − ῡ)2 + (ξ − ξ̄)2 − 2(υ − ῡ)(ξ − ξ̄)

)
' 1

2ῡ
ϕ′′(1)(υ − ξ)2, (6.17)

where ϕ′′(1) > 0 since ϕ is strictly convex.

So, as we can notice, divergences perform similarly to the squared `2-
norm when the two arguments are close. The latter computation is validated
in the same context of image restoration using the NLTV regularization.
Tables 6.4, 6.5, and 6.6 show that `2-NLTV leads to close performance to
the ϕ-divergences (“Best of Div.” designates the best result obtained in
restoration using ϕ-divergences, i.e. Tables 6.1, 6.2, and 6.3).
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Mireille
mireille
mireille

Table 6.4: (SNR,SSIM) denoising results with σ2=400.

`1,2-NLTV

Tunis 21.56-0.808

Marseille 19.12-0.784

Zoughouane 22.19-0.715

Paris 18.38-0.738

Aniso 25.11-0.837

Nucleolus 18.85-0.817

Cardiac 22.56-0.708

Lysosomes 22.48-0.800

l2-NLTV

21.72-0.824

19.67-0.808

22.61-0.745

18.54-0.763

26.35-0.873

18.89-0.817

22.87-0.755

22.51-0.810

Best Of Div

21.73-0.823

19.68-0.807

22.63-0.749

18.67-0.767

26.51-0.881

18.96-0.825

22.97-0.759

22.56-0.810

Table 6.5: (SNR, SSIM) restoration results with σ2=64 and a blur operator
of size 3×3.

`1,2-NLTV

Tunis 22.70-0.851

Marseille 21.19-0.852

Zoughouane 22.78-0.731

Paris 18.70-0.747

Aniso 28.17-0.899

Nucleolus 17.43-0.741

Cardiac 22.99-0.724

Lysosomes 22.33-0.783

l2-NLTV

22.97-0.867

21.67-0.866

23.09-0.762

18.89-0.772

28.33-0.907

17.61-0.754

23.35-0.755

22.54-0.797

Best Of Div

23.12-0.871

21.94-0.873

23.19-0.770

19.12-0.782

28.42-0.908

17.62-0.756

23.36-0.763

22.54-0.797
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Table 6.6: (SNR, SSIM) restoration results with σ2=64 and a blur operator
of size 7×7.

`1,2-NLTV

Tunis 19.05-0.659

Marseille 18.56-0.745

Zoughouane 20.36-0.534

Paris 15.70-0.504

Aniso 25.52-0.850

Nucleolus 14.88-0.494

Cardiac 20.45-0.562

Lysosomes 19.47-0.558

l2-NLTV

19.47-0.698

19.00-0.770

20.72-0.578

15.93-0.543

25.87-0.864

15.12-0.527

20.84-0.599

19.83-0.599

Best Of Div

19.53-0.700

19.03-0.770

20.74-0.581

16.01-0.548

25.90-0.863

15.15-0.528

20.84-0.605

19.86-0.600

§ 6.2 Data fidelity based on ϕ-divergences

6.2.1 Image registration

The objective of image registration is to determine spatial transformations
that maximize a similarity metric between two images resulting from two
different acquisitions. Let the two original images be represented by data
vectors I1 ∈ RP and I2 ∈ RP . For every j ∈ {1, 2}, let Fj be an image
mapping operator such that

Fj : RP × RNj → RP

(Ij , zj) 7→ Fj(Ij , zj) (6.18)

where Fj(Ij , zj) is the mapped image, and zj ∈ RNj is a vector of mapping
parameters He et al. [2003]; Hamza and Krim [2003]; Zitovà and Flusser
[2003]; Malviya and Bhirud [2009].
When a Kullback metric is adopted, the image registration criterion to be

minimized w.r.t. x =
[
z>1 , z

>
2

]>
reads

D
(
F1(I1, z1), F2(I2, z2)

)
.

To determine the optimal parameter vector x ∈ RN with N = N1 +N2, one
can proceed by supposing that F1(resp. F2) is differentiable and by performing
a first-order Taylor expansion around an initial estimate z̄1(resp. z̄2) as
follows: (∀j ∈ {1, 2})

Fj(Ij , zj) 'Fj(Ij , z̄j) +
∂Fj
∂zj

(Ij , z̄j)(zj − z̄j) (6.19)
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where
∂Fj
∂zj

(Ij , z̄j) is a Jacobian matrix. With the linearization expressed in

(6.19), the image registration problem can be reformulated under the form
of Problem 5.1 (Chapter 5), where

A =

[
∂F1

∂z1
(I1, z̄1) 0

]
, (6.20)

B =

[
0

∂F2

∂z2
(I2, z̄2)

]
, (6.21)

and

u = F1(I1, z̄1)− z̄1
∂F1

∂z1
(I1, z̄1), (6.22)

v = F2(I2, z̄2)− z̄2
∂F2

∂z2
(I2, z̄2). (6.23)

The additional regularization terms (Rs◦Ts)1≤s≤S allow the incorporation
of prior knowledge about the sought parameter vector x.

6.2.2 Disparity estimation under illumination variation
We conducted experiments for disparity estimation under illumination varia-
tion, using a stereoscopic pair of grayscale images I1 and I2 with size P1×P2

(P = P1P2). The related image mapping operators are given by

F1(I1, z1) = vec
[
(z

(i1,i2)
1 I

(i1,i2)
1 )1 ≤ i1 ≤ P1

1 ≤ i2 ≤ P2

]
(6.24)

F2(I2, z2) = vec
[
(I

(i1−z
(i1,i2)
2 ,i2)

2 )1 ≤ i1 ≤ P1
1 ≤ i2 ≤ P2

]
(6.25)

where I
(i1,i2)
1 (resp. I

(i1,i2)
2 ) is the intensity value in the left (resp. right) view

at pixel (i1, i2), z
(i1,i2)
1 the illumination variation coefficient at (i1, i2), and

z
(i1,i2)
2 the associated disparity. The parameter vectors are here

z1 = vec
[
(z

(i1,i2)
1 )1≤i1≤P1,1≤i2≤P2

]
and

z2 = vec
[
(z

(i1,i2)
2 )1≤i1≤P1,1≤i2≤P2

]
.

It can be observed that

∂F1

∂z1
(I1, z̄1) = Diag

[
(I

(i1,i2)
1 )1 ≤ i1 ≤ P1

1 ≤ i2 ≤ P2

]
(6.26)

∂F2

∂z2
(I2, z̄2) = −Diag

[
(∇(1)I

(i1−z
(i1,i2)
2 ,i2)

2 )1 ≤ i1 ≤ P1
1 ≤ i2 ≤ P2

]
(6.27)

where ∇(1) is the gradient operator w.r.t. the first spatial coordinate.
It is useful to incorporate prior information about the solution so as to
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convert the original matching problem to a well-posed one. Similarly to
what we have presented in Chapter 3, a first constraint set is introduced
that takes into account the range of possible values for the disparity and the
illumination variation:

C1 =
{

[z>1 , z
>
2 ]> ∈ R2P | (z1)min ≤ z1 ≤ (z1)max,

(z2)min ≤ z2 ≤ (z2)max

}
. (6.28)

A second constraint is employed to enforce the smoothness of the esti-
mated fields:

C2 = {[z>1 , z>2 ]> ∈ R2P | ‖∇z1‖2`2 ≤ κ1, TV(z2) ≤ κ2} (6.29)

where ‖ · ‖`2 is the `2 norm, ∇ is the spatial gradient operator and TV is
the discrete total variation semi-norm. Consequently, we have now S = 2
in Problem 5.1 (previous chapter), where R1 and R2 reduce to indicator
functions of convex sets, T1 = I2P , and T2 is a block diagonal matrix with
diagonal terms set to gradient operators.

6.2.3 Experiments

We now illustrate the practical performance of our method on the “Cloth”,
“Baby 1”, “Baby 2”, and “Dolls” stereo pairs (Figure 6.5) downloaded from
the MiddleBury website.3

The results are provided in Table 6.7 and Figure 6.6. The quality of the
results was evaluated using three different metrics based on a ground truth:
the MAE (Mean Absolute Error) evaluated between the computed maps
(zj)j∈{1,2} and the ground truth (z̃j)j∈{1,2}, the percentage of bad matching
pixels in the disparity map

ErrT =
1

P

P1∑
i1=1

P2∑
i2=1

1(|z(i1,i2)
2 − z̃(i1,i2)

2 )| > T ),

3http://vision.middlebury.edu/stereo/
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(a) “Cloth” (b) “Baby 1”

(c) “Baby 2” (d) “Dolls”

Figure 6.5: Left images of the stereo pairs used in our simulations.

and the MS-SSIM (multi-scale structure similarity index) Malpica and Bovik
[2009]. According to the percentage of bad pixels and the Mean Absolute
Error, we can see that the JK divergence performs better than the other
error measures.

Finally, in Figure 6.6, we illustrate the recovered disparity maps using
JK and KL divergences for the gray stereo pair “Cloth”. These visual results
show the efficiency of the JK measure in recovering the depth estimation in
the presence of the illumination variations.
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Table 6.7: Disparity estimation results (MAE,Err2) obtained for gray level
images.

Cloth Baby 1 Baby 2 Dolls

`2 (0.8385, 3.62) (0.9706, 5.80) (1.8336, 12.18) (1.2591, 14.41)

KL (0.8287, 3.36) (0.9301, 5.40) (1.6539, 11.56) (1.2107, 13.86)

JK (0.8348, 3.44) (0.9298, 5.32) (1.6503, 11.48) (1.2157, 13.36)

Hel (0.9057, 3.46) (0.9333, 5.57) (1.7631, 11.71) (1.2107, 13.87)

Chi (0.8335, 3.43) (0.9328, 5.56) (1.7636, 11.71) (1.2127, 13.81)

I0.2 (0.9058, 3.39) (0.9335, 5.55) (1.7741, 11.64) (1.2167, 13.83)

§ 6.3 Conclusion

In this chapter, we have applied ϕ-divergences as a measures of dissimilarity
in two different contexts:

• We have extended the NLTV framework by using information diver-
gences to build new sparsity regularization measures for signal recovery.

• We have used the divergence as a data fidelity term for image reg-
istration, more precisely for disparity estimation under illumination
variation.

However, as we have shown before, the performance achieved by different
types of ϕ-divergence is similar. This behaviour may be explained by the fact
that the values of these two-variable functions have the same second-order
Taylor expansion when the two arguments are close to each others.

The practical results obtained by implementing the proposed ϕ-divergence
measures in an image processing context do not yield the expected perfor-
mance gains with respect to standard measures such as the squared `2-norm.
However, it would be interesting to investigate the effectiveness of divergences
in problems involving probability distribution. Indeed, it is our belief that
these measures could constitute a successful element for other applications
and that they are undoubtedly better adapted to some other problems.
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a) Left image b) Right image

c) True disparity d) True illumination

e) MAE= 0.8348, Err2=3.44 f) MAE=0.0332

MS− SSIM= 0.9856 MS− SSIM=0.0275

g) MAE= 0.8287, Err2= 3.36 h) MAE=0.0330

MS− SSIM=0.9857 MS− SSIM=0.0271

Figure 6.6: Results for “Cloth” stereo pair: a)-b) stereo images, c)-d)
ground truths, e)-f) KL divergence and g)-h) JK divergence. Parameters:
((z1)min, (z1)max) = (20, 75), ((z2)min, (z2)max) = (0.1, 1.1), (κ1, κ2) = (74000, 400).
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Conclusion

“You may not end up where you thought you’d be, but you’ll end up right
where you’re meant to be.”

In the first part of this thesis, we have investigated the problem of disparity
estimation within the framework of convex optimization and extended it to
the case of multiple stereo views. In the second part, we have provided novel
tools to deal with convex divergence measures in optimization problems and
we have applied them to image recovery problems.

§ 7.1 Contributions

Disparity estimation under illumination variation We have proposed
a convex optimization approach to deal with disparity estimation under
illumination variation. Our solution consists of modeling the spatially-
varying illumination variation by a multiplicative term. Since the
global formulation is nonconvex, the problem is addressed by solving a
sequence of convex relaxations.

• We have employed a relaxation based on a first-order Taylor
approximation around an initial estimate to derive a convex energy
function. This energy is then minimized subject to various convex
constraints aiming at imposing some regularity on the solution.
The originality in our approach lies in the ability to deal with non-
strictly convex energies, which allows us to employ data fidelity
terms other than quadratic ones.

• The problem of jointly estimating the disparity and the illumina-
tion variation is tackled in a set theoretic framework and solved
using proximal tools. The original contributions of our work
consist of the ability to consider multicomponent images in the

133
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presence of illumination variation, where each component corre-
sponds to one of the channels of a specific color system (RGB,
YUV, ...).

The proposed approach is also able to exploit the potentials offered by
multicore/GPU parallel system architectures. The experiments indicate
that this approach can effectively deal with the local illumination
variation and yields better results compared with other approaches.

Disparity map sequence We have extended the previous approach to
multi-view problems. Rather than estimating a single depth map, we
have associated a depth map with each input image (or a subset of
them). We have proposed two different approaches to estimate the
depth map for each chosen reference frame, which differ in the type of
convex relaxation employed. The first approach employs a relaxation
based on multi-labeling, with the possibility of using nonconvex simi-
larity measures. So doing, there is no more dependence with respect to
the initial estimate, at the cost of an increased complexity. The second
approach employs a relaxation based on an improved first-order Taylor
approximation around an initial estimate. The experimental results
illustrate, through a complex specular scene example, the effectiveness
of our proposals.

ϕ-divergence proximity operator We have shown how to deal with con-
vex optimization problems involving ϕ-divergences, when the minimiza-
tion is jointly performed with respect to both divergence arguments.
More specifically, we have derived new expressions for the proximity op-
erator of several ϕ-divergences (e.g. Kullback-Leibler, Jeffreys-Kullback,
Hellinger, Chi-Square, Iα, and Renyi divergences), enriching the list of
functions for which such operators can be easily computed. This has
allowed us to address a generic class of convex optimization problems
by means of efficient proximal algorithms, overcoming the limitations
of current state-of-the-art approaches for such problems.

Applications for ϕ-divergence proximity operator We have investig-
ated the use of divergences in two different image processing appli-
cations: restoration and registration. Firstly, we have extended the
NLTV framework by using some information divergences to build new
regularization terms for signal recovery. This regularity measure al-
lows us to better exploit image features by making use of the relevant
information along an edge or a regular texture pattern. Secondly, we
have presented an image registration application to illustrate the use of
divergences as data fidelity terms, where our objective is to determine
spatial transformations that maximize a similarity metric between two
images resulting from two different acquisitions.



7.2. Perspectives 135

Epigraphical projection Epigraphical projections have a great interest
when dealing with constraint sets for which a closed form expression of
the projection does not exist. Within this context, we have provided
theoretical guidelines to show how the forms of the proximity operator
of divergences can be employed to compute the expression of the
projection onto the epigraph of a number of convex functions.

§ 7.2 Perspectives

Extension to View synthesis application: The problem of estimating
the disparity between two stereo images (see Chapter 3) can be ex-
tended to view synthesis. Because only a few cameras are available,
additional views have to be synthesized from them. The main idea is
to simultaneously estimate a new view and the corresponding disparity
map. To do so, we need to synthesize a virtual depth map from the cur-
rent view by applying a warping technique. We do not need any other
side information to synthesize the virtual depth maps except camera
parameters. In particular, it could be a good idea to investigate new
ways of estimating the illumination variation for the new view synthesis
by studying how the light could change from one image to another in
multi-view datasets. This could be applied later in 3D tracking, stereo
video coding, 3D scene interpretation, and 3D television.

Exploiting the dependence among the disparity sequence maps:
The multi-view methods presented in Chapter 4 can be improved in
several ways. One of the most appealing ideas is to combine the
disparity sequence estimation in a single optimization problem in order
to exploit the huge correlation between the disparities of different views.
In this case, an additional piece of prior information may be included
into the minimization problem: the 3D point projected in different
views should have the same disparity value (since cameras are rectified
and equidistant). The main challenges in this context are the occlusion
areas and the non-convexity of the considered constraint, which needs
to be relaxed using one of the techniques presented in Chapter 6.

Combining the discrete and continuous methods: There is also room
for improving the potential of the multi-label approach for the disparity
estimation sequence. The images of a scene under varying illuminations
and from different viewpoints are highly interrelated, which make it
possible to predict the object depth and the illumination variation.
Illumination due to imperfectly calibrated cameras, different perspective
projection directions, and different reflection effects varies from an
object to the other. We could consider the local illumination variation
that arises due to differences in camera positioning. Hence, it would
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be interesting to extend the multi-label approach in order to jointly
estimate the disparity map and the illumination variation field. This
would require combining the multilabel-based relaxation of Chapter 4
with the continuous approach of Chapter 3.

Disparity and Motion from a Multi-view video sequence:
Stereo video sequences show the temporal evolution of a scene from two
different viewpoints. In order to allow for an accurate stereo sequence
analysis, it is essential to consider the spatio-temporal relationships that
exist between the different images of the sequences. The stereo-motion
consistency constraint can be exploited by jointly estimating the motion
field of the left and right sequences, along with the disparity field of
the current stereo pair. This approach can be efficiently extended to a
multi-view sequence by using the techniques presented in Chapter 4.

ϕ-divergence in blind deconvolution ϕ-divergences can be applied in
the context of blind deconvolution. Here, the degradation model is the
same as in Equation (2.1):

z = Tx+ w,

but one aims at estimating both the target image x ∈ RN and the
linear operator T ∈ RK×N . The common approach is to resort to an
alternating minimization scheme, which however has no guaranteed
convergence. An alternative approach consists of assuming that there
exists an operator G such that GT = I, which allows one to reformulate
the degradation model as

Gz = x+ ω,

where ω = Gw denotes the transformed (and possibly amplified) noise.
This leads to a convex optimization problem which aims at minimizing
the divergence between Gz and x, while enforcing some kind of reg-
ularization on G and x. The presented approach constitutes a good
example of minimization problems jointly performed on two variables.

ϕ-divergence for channel estimation It is worth mentioning that sev-
eral applications in telecommunication systems could benefit from the
proposed optimization approaches, e.g. for jointly estimating the trans-
mitted data and the channel transfer function in the presence of noise.
In this context, ϕ-divergences play a central role in the formulation of
the recovery problem. In addition, some constraints can be added to the
problem in order to model the temporal evolution of the channel (due
to Doppler effect). The resulting optimization problem is nonconvex
and the existing methods generally follow an alternating minimization
scheme (see e.g. Hu et al. [2008]). An alternative approach would



7.2. Perspectives 137

consist of adopting the algorithms developed in Chapter 5 to address
this nonconvex scenario, or by resorting to the convex reformulation
provided above for blind deconvolution.

Epigraphical projection in video coding As we have seen in Section 5.5,
the proximity operator of the considered ϕ-divergences allows us to
compute the orthogonal projection onto the epigraph of functions listed
in Table 5.1. Recently, epigraphical projections have been employed to
address convex constraints for which the associated projection operator
is not available in closed form Chierchia et al. [2013]. Our results
thus substantially enrich the list of functions that can be handled by
such an epigraphical approach. For example, the exponential function
can be used in the context of video coding, where one needs to solve
a rate allocation problem that aims at minimizing the rate budget
while keeping the global distortion (expressed as a sum of exponentials
composed by a linear operator) below a given bound.
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Akad. Mat. Kutató Int. Köozl., 8:85–108, 1963. 84, 89

I. Csiszár. Information-type measures of difference of probability distributions
and indirect observations. Studia Sci. Math. Hungar., 2:299–318, 1967. 89

I. Csiszár. Information measures: A critical survey. IEEE Trans. on inf.
theory, A:73–86, 1974. 86

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Comm. Pure Applied
Math., 57(11):1413–1457, Nov. 2004. 18

J. E. Davis, R. Yang, and L. Wang. BRDF invariant stereo using light
transport constancy. In Proc. IEEE Int. Conf. Comput. Vis., volume 1,
pages 436–443, Beijing, China, Oct. 2005. 34

R. Deriche, P. Kornprobst, and G. Aubert. Optical-flow estimation while
preserving its discontinuities: A variational approach. In S. Li, D. Mital,
E. Teoh, and H. Wang, editors, Recent Developments in Computer Vision,
volume 1035 of Lecture Notes in Computer Science, pages 69–80. Springer
Berlin / Heidelberg, 1996. 10, 32, 33

P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach.
Prentice-Hall International, 1982. 85

Y. Duan, L. Yang, H. Qin, and D. Samaras. Shape reconstruction from 3D
and 2D data using PDE-based deformable surfaces. In Computer Vision –
ECCV, volume 3023 of Lecture Notes in Computer Science, pages 238–251.
Springer Berlin Heidelberg, 2004. 60

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Effcient projections
onto the l1-ball for learning in high dimensions. In Proc. of Intl. Conf. on
Machine Learning, pages 272–279, Helsinki, Finland, Jul. 2008. 25



152 Bibliography
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