Skip to Main content Skip to Navigation

Réseaux ad hoc véhiculaires : vers une dissémination de données efficace, coopérative et fiable

Abstract : Vehicular Ad Hoc Networks (VANETs) allow sharing different kinds of data between vehicles in a collaborative way. In this thesis, we are particularly interested in road safety applications, designed for the exchange of information on road traffic and conditions. This kind of applications have strict Quality of Service (QoS) requirements, as data must be routed thoroughly and without any delays so for assuring the timely delivery of useful information to the drivers. In this context, data routing must face several issues raised by the high mobility and dispersion of vehicles, inadequate or completely lacking infrastructure, a variable network density, network saturation due to the large of information to deliver, and the size of the geographical areas to cover. Indeed, the problem of data dissemination in VANETs is non-trivial, and several research challenges must be solved in order to provide an efficient, collaborative, and reliable support for road safety applications. Specifically, we will address the problem of collaborative data dissemination through the following three questions: “How to perform data dissemination?”, “When should we do it?”, and “What must be disseminated?” We have provided answers to these questions through the three contributions of this thesis. Our first contribution is an efficient dissemination strategy, specifically tailored to the importance of the exchanged information as well as its lifespan, which is able to avoid the intensive dissemination process that generates network congestion and data redundancy. We confirm our statements and validate the performance of our solution by modeling it using a discrete-time Markov chain, which demonstrates the number of necessary retransmissions for all concerned vehicles to receive information. Moreover, we performed extensive simulations that show a reduction of up to 90% of redundant messages with respect to message flooding dissemination strategies. Next, in order to further improve the road safety message dissemination process, we propose a communications channel access scheduler, which aims at reducing the number of collisions caused by IEEE 802.11p/1609.4 multi-channel synchronizations, and thus improving the data reception rate. We base our solution on the optimal stopping theory, which chooses the right moment to send information by balancing the channel occupancy rate, the data delivery efficiency, and the maximum deferment delay tolerated by the information. To this end, we formulate the optimal stopping theory through a Markov decision process (MDP). We show through simulation-based evaluations an improvement of the reception rate of up to 25% and a reduction of up to 47% of message losses. Finally, after being interested in the quantitative aspect of network performance, we centered our efforts on improving the reliability of the dissemination process, which is obtained by motivating vehicles to cooperate and evicting malicious vehicles from the process. To this end, we propose a trust model inspired on signaling games, which are a type of dynamic Bayesian games. Through the use of our model, equilibrium is achieved, thus resulting in a fast and low-cost vehicle self-selection process. We define the parameters of our trust model through a discrete-time Markov chain model. To the best of our knowledge, our solution is the only existing solution that tackles the negative effects introduced by the presence of both malicious and selfish vehicles in a VANET. We evaluated the performance of our solution by modeling it using a Markov chain, and a set of simulations. Our results show that up to 100% of malicious vehicles are evicted while keeping a high cooperation rate, thus achieving an improvement of 42% when compared to other similar solutions
Document type :
Complete list of metadatas

Cited literature [107 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Friday, March 6, 2015 - 7:02:43 AM
Last modification on : Wednesday, February 26, 2020 - 7:06:07 PM
Long-term archiving on: : Sunday, June 7, 2015 - 4:00:44 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01124319, version 1


Nadia Haddadou. Réseaux ad hoc véhiculaires : vers une dissémination de données efficace, coopérative et fiable. Informatique [cs]. Université Paris-Est, 2014. Français. ⟨NNT : 2014PEST1023⟩. ⟨tel-01124319⟩



Record views


Files downloads