Conception pluridisciplinaire d’une méthode générale d’évaluation des flux de contaminants issus des ruissellements des matériaux de toitures à l’échelle urbaine : développement et illustration à partir du cas du zinc à Créteil

Abstract : This thesis aims to develop a general method for modelling roofing materials emissions on the city scale. This method is based on an original scaling approach integrating different tools within the engineering sciences and social sciences. The work includes the creation of a bibliographic database describing new and old roofing materials and their associated contaminants.The scaling approach - from roof to the city scale – is based on a new concept called typical-situation of contaminant emission from roofing material on the roof. For each typical situation a contaminant annual runoff rate is associated. This concept allows the transition between the roof scale and the city scale. To facilitate contaminant flow calculation on the city scale, different methodological principles are adopted to exploit and adapt existing urban databases (land use database, numerical cadastre, and aerial images) with respect to the specific issue of roofing material emissions. Thus, dividing and crossing principles are used to divide the city into homogeneous units. A unit is a cluster of buildings characterized by a specific roofing materials distribution. These units are obtained by crossing a typological buildings study (developed from the land use database) with the city urban history and the roofing material historical evolution. Defining empirical rules is necessary to quantify the distribution of the material in the different roofing elements on the city scale. These rules are developed from a survey made by conducting interviews with experts of the roofing material sector (industrials, masters of work, architects...) as well as a historical study and a market study for roofing materials.The full development of the method makes it essential to choose a study site and a contaminant in order to illustrate in detail all the calculation steps. Créteil city was selected because it presents a big diversity and a large number of buildings in order to represent most of the urban functions of any city in France. In the city of Créteil, zinc annual runoff rates have been produced for different metallic materials for the maximum of zinc typical-situation. A statistical approach was developed to complete empirical rules to compute roofing materials area distribution on the city scale. This approach is based on a stratified random sampling technique in conjunction with aerial images interpretation of the different roofing material element applied for each unit. Given the roofing material distribution and the zinc typical-situations, annual zinc flow from roofing material at Créteil city was estimated namely 813 kg.an-1 with an uncertainty of 16.6%.The developed method can be applied to other cities and other contaminants. In this context, the operational procedure of the application of this method was described at the end of this work. Our method can be used as a decision-making tool by urban planners at three levels to implement policies in order to reduce roofing pollutants emissions. In order to apply this method to any contaminant, different tracks were drawn to define an optimized approach to produce of runoff rates for different typical situations
Document type :
Theses
Complete list of metadatas

https://pastel.archives-ouvertes.fr/tel-01127315
Contributor : Abes Star <>
Submitted on : Saturday, March 7, 2015 - 1:44:04 AM
Last modification on : Friday, October 4, 2019 - 1:17:47 AM
Long-term archiving on : Monday, June 8, 2015 - 1:07:32 PM

File

2014PEST1044.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01127315, version 1

Citation

Emna Sellami. Conception pluridisciplinaire d’une méthode générale d’évaluation des flux de contaminants issus des ruissellements des matériaux de toitures à l’échelle urbaine : développement et illustration à partir du cas du zinc à Créteil. Sciences de l'environnement. Université Paris-Est, 2014. Français. ⟨NNT : 2014PEST1044⟩. ⟨tel-01127315⟩

Share

Metrics

Record views

720

Files downloads

974