H. Z. Aashtiani and T. L. Magnanti, Equilibria on a Congested Transportation Network, SIAM Journal on Algebraic Discrete Methods, vol.2, issue.3, pp.213-226, 1981.
DOI : 10.1137/0602024

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. Adler and S. Verma, The linear complementarity problem, Lemke algorithm, perturbation, and the complexity class PPAD, 2011.

P. K. Agarwal, Intersection and decomposition algorithms for planar arrangements, 1991.

R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms, and Applications, 1993.

S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann, Exact Price of Anarchy for Polynomial Congestion Games, SIAM Journal on Computing, vol.40, issue.5, pp.1211-1233, 2011.
DOI : 10.1137/090748986

E. Altman and H. Kameda, Equilibria for multiclass routing in multiagent networks, Proc. 40th IEEE Conf. Decision and Control, pp.604-609, 2001.

E. Altman, T. Bas¸arbas¸ar, T. Jimenez, and N. Shimkin, Competitive routing in networks with polynomial costs, IEEE Transactions on Automatic Control, vol.47, issue.1, pp.92-96, 2002.
DOI : 10.1109/9.981725

E. Altman, T. Boulogne, R. El-azouzi, T. Jiménez, and L. Wynter, A survey on networking games in telecommunications, Computers & Operations Research, vol.33, issue.2, pp.286-311, 2006.
DOI : 10.1016/j.cor.2004.06.005

E. Altman, H. Kameda, and Y. Hayel, Revisiting collusion in routing games: a load balancing problem, Network Games, Control and Optimization (NetGCooP) 5th International Conference on, pp.1-6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00644539

E. Altman, T. Bas¸arbas¸ar, T. Jiménez, and N. Shimkin, Routing into Two Parallel Links: Game-Theoretic Distributed Algorithms, Journal of Parallel and Distributed Computing, vol.61, issue.9, pp.611367-1381, 2001.
DOI : 10.1006/jpdc.2001.1754

URL : http://black.csl.uiuc.edu/~tbasar/jpdc2000.pdf

R. Asmuth, B. Eaves, and E. Peterson, Computing Economic Equilibria on Affine Networks with Lemke's Algorithm, Mathematics of Operations Research, vol.4, issue.3, pp.209-214, 1979.
DOI : 10.1287/moor.4.3.209

O. Beaude, C. Wan, and S. Lasaulce, EV smart charging game and composite equilibrium, 2014.

M. Beckmann, C. B. Mcguire, and C. B. Winsten, Studies in Economics of Transportation, 1956.

M. G. Bell and Y. Iida, Transportation network analysis, 1997.
DOI : 10.1002/9781118903032

A. Berman and R. J. Plemmons, Nonnegative matrices. The Mathematical Sciences, Classics in Applied Mathematics, vol.9, 1979.
DOI : 10.1137/1.9781611971262

D. P. Bertsekas and J. N. Tsitsiklis, An Analysis of Stochastic Shortest Path Problems, Mathematics of Operations Research, vol.16, issue.3, pp.580-595, 1991.
DOI : 10.1287/moor.16.3.580

U. Bhaskar, L. Fleischer, D. Hoy, and C. Huang, Equilibria of Atomic Flow Games are not Unique, Proc. ACM-SIAM Sympos. Discrete Algorithms, pp.748-757, 2009.
DOI : 10.1137/1.9781611973068.82

U. Bhaskar, L. Fleischer, and C. Huang, The Price of Collusion in Series-Parallel Networks, Integer Programming and Combinatorial Optimization, pp.313-326, 2010.
DOI : 10.1007/978-3-642-13036-6_24

G. Blocq and A. Orda, Worst-case coalitions in routing games. arXiv preprint, 2013.

T. Boulogne, E. Altman, and O. Pourtallier, On the convergence to Nash equilibrium in problems of distributed computing, Annals of Operations Research, vol.109, pp.1-4279, 2002.

D. Braess, ??ber ein Paradoxon aus der Verkehrsplanung, Unternehmensforschung Operations Research - Recherche Op??rationnelle, vol.8, issue.1, pp.258-268, 1968.
DOI : 10.1007/BF01918335

M. Cao and M. Ferris, A Pivotal Method for Affine Variational Inequalities, Mathematics of Operations Research, vol.21, issue.1, pp.44-64, 1996.
DOI : 10.1287/moor.21.1.44

S. Caron and G. Kesidis, Incentive-Based Energy Consumption Scheduling Algorithms for the Smart Grid, 2010 First IEEE International Conference on Smart Grid Communications, pp.391-396, 2010.
DOI : 10.1109/SMARTGRID.2010.5622073

S. Catoni and S. Pallottino, Technical Note???Traffic Equilibrium Paradoxes, Transportation Science, vol.25, issue.3, pp.240-244, 1991.
DOI : 10.1287/trsc.25.3.240

E. Centre and B. Research, The economic costs of gridlocks, 2012.

C. K. Chau and K. M. Sim, The price of anarchy for non-atomic congestion games with symmetric cost maps and elastic demands, Operations Research Letters, vol.31, issue.5, pp.31327-334, 2003.
DOI : 10.1016/S0167-6377(03)00030-0

G. Cohen, C. , and F. , Nested monotonicity for variational inequalities over product of spaces and convergence of iterative algorithms

R. Cominetti, J. R. Correa, and N. E. Stier-moses, The Impact of Oligopolistic Competition in Networks, Operations Research, vol.57, issue.6, pp.1421-1437, 2009.
DOI : 10.1287/opre.1080.0653

R. Cominetti and A. Torrico, Additive consistency of risk measures and its application to risk-averse routing in networks. arXiv preprint arXiv, pp.1312-4193, 2013.

J. R. Correa, A. S. Schulz, and N. Stier-moses, Selfish Routing in Capacitated Networks, Mathematics of Operations Research, vol.29, issue.4, pp.961-976, 2004.
DOI : 10.1287/moor.1040.0098

J. R. Correa, A. S. Schulz, and N. E. Stier-moses, A geometric approach to the price of anarchy in nonatomic congestion games, Games and Economic Behavior, vol.64, issue.2, pp.457-469, 2008.
DOI : 10.1016/j.geb.2008.01.001

R. Cottle, J. Pang, and R. Stone, The linear complementarity problem, 1992.

S. Dafermos, The Traffic Assignment Problem for Multiclass-User Transportation Networks, Transportation Science, vol.6, issue.1, pp.73-87, 1972.
DOI : 10.1287/trsc.6.1.73

S. Dafermos, Traffic Equilibrium and Variational Inequalities, Transportation Science, vol.14, issue.1, pp.42-54, 1980.
DOI : 10.1287/trsc.14.1.42

S. Dafermos and A. Nagurney, Sensitivity analysis for the asymmetric network equilibrium problem, Mathematical Programming, vol.19, issue.2, pp.174-184, 1984.
DOI : 10.1007/BF02612357

C. Daskalakis and C. Papadimitriou, Continuous Local Search, 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011.
DOI : 10.1137/1.9781611973082.62

D. Schutter, B. , D. Moor, and B. , The extended linear complementarity problem, Mathematical Programming, vol.4, issue.1, 1995.
DOI : 10.1007/BF01590958

D. Dumrauf and M. Gairing, Price of Anarchy for Polynomial Wardrop Games, Internet and Network Economics, pp.319-330, 2006.
DOI : 10.1007/11944874_29

B. Eaves, Polymatrix Games with Joint Constraints, SIAM Journal on Applied Mathematics, vol.24, issue.3, pp.418-423, 1973.
DOI : 10.1137/0124043

H. Edelsbrunner, Algorithm in Combinatorial Geometry, EATCS Monographs on Theoretical Computer Science, vol.10, 1987.
DOI : 10.1007/978-3-642-61568-9

H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel et al., Arrangements of curves in the plane???topology, combinatorics, and algorithms, Theoretical Computer Science, vol.92, issue.2, pp.319-336, 1992.
DOI : 10.1016/0304-3975(92)90319-B

M. Englert, T. Franke, and L. Olbrich, Sensitivity of Wardrop equilibria, Algorithmic Game Theory, pp.158-169, 2008.

M. Fiedler and V. Pták, On matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak Mathematical Journal, vol.12, issue.3, pp.382-400, 1962.

C. Fisk, More paradoxes in the equilibrium assignment problem, Transportation Research Part B: Methodological, vol.13, issue.4, pp.305-309, 1979.
DOI : 10.1016/0191-2615(79)90023-7

M. Florian, A Traffic Equilibrium Model of Travel by Car and Public Transit Modes, Transportation Science, vol.11, issue.2, pp.166-179, 1977.
DOI : 10.1287/trsc.11.2.166

M. Florian and H. Spiess, The convergence of diagonalization algorithms for asymmetric network equilibrium problems, Transportation Research Part B: Methodological, vol.16, issue.6, pp.477-483, 1982.
DOI : 10.1016/0191-2615(82)90007-8

M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Research Logistics Quarterly, vol.3, issue.1-2, pp.95-110, 1956.
DOI : 10.1002/nav.3800030109

M. Gairing, B. Monien, and K. Tiemann, Routing (Un-) Splittable Flow in Games with Player-Specific Linear Latency Functions, Automata, Languages and Programming, pp.501-512, 2006.
DOI : 10.1007/11786986_44

G. Research, The soft grid 2013-2020: Big data and utility analytics for smart grid, 2012.

M. A. Hall, Properties of the Equilibrium State in Transportation Networks, Transportation Science, vol.12, issue.3, pp.208-216, 1978.
DOI : 10.1287/trsc.12.3.208

D. I. Halperin, J. E. Goodman, O. 'rourke, and J. , Handbook of discrete and computational geometry, chapter 24, 2004.

P. Harker, Accelerating the convergence of the diagonalization and projection algorithms for finite-dimensional variational inequalities, Mathematical Programming, vol.24, issue.1-3, pp.29-59, 1988.
DOI : 10.1007/BF01580752

T. Harks, The impact of collusion on the price of anarchy in nonatomic and discrete network games, 2008.

T. Harks, Stackelberg strategies and collusion in network games with splittable flow, Theory of Computing Systems, pp.781-802, 2011.

A. Haurie and P. Marcotte, On the relationship between Nash???Cournot and Wardrop equilibria, Networks, vol.1, issue.04, pp.295-308, 1985.
DOI : 10.1002/net.3230150303

A. Hayrapetyan, E. Tardos, and T. Wexler, The effect of collusion in congestion games, Proceedings of the thirty-eighth annual ACM symposium on Theory of computing , STOC '06, pp.89-98, 2006.
DOI : 10.1145/1132516.1132529

C. Huang, Collusion in atomic splittable routing games, Automata, Languages and Programming, pp.564-575, 2011.

D. Johnson, C. Papadimitriou, and K. Talwar, How easy is local search?, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), pp.79-100, 1988.
DOI : 10.1109/SFCS.1985.31

M. Josefsson and M. Patriksson, Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design, Transportation Research Part B: Methodological, vol.41, issue.1, pp.4-31, 2007.
DOI : 10.1016/j.trb.2005.12.004

S. Kintali, L. J. Poplawski, R. Rajaraman, R. Sundaram, and S. Teng, Reducibility among fractional stability problems, 50th IEEE Symposium on Foundations of Computer Science (FOCS), 2009.
DOI : 10.1109/focs.2009.57

URL : http://arxiv.org/abs/0904.1435

G. Kolata, What if they closed 42nd Street and nobody noticed?, p.38, 1990.

H. Konishi, Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters, Transportation Science, vol.38, issue.3, pp.315-330, 2004.
DOI : 10.1287/trsc.1030.0047

B. Korte and J. Vygen, Combinatorial Optimization, Theory and Algorithms, 2000.

E. Koutsoupias and C. Papadimitriou, Worst-case equilibria, STACS 99, pp.404-413, 1999.
DOI : 10.1007/3-540-49116-3_38

C. Lemke, Bimatrix Equilibrium Points and Mathematical Programming, Management Science, vol.11, issue.7, pp.681-689, 1965.
DOI : 10.1287/mnsc.11.7.681

H. Lin, T. Roughgarden, ´. E. Tardos, and A. Walkover, Stronger Bounds on Braess's Paradox and the Maximum Latency of Selfish Routing, SIAM Journal on Discrete Mathematics, vol.25, issue.4, pp.1667-1686, 2011.
DOI : 10.1137/090769600

H. Mahmassani, M. , and K. , Some numerical results on the diagonalization algorithm for network assignment with asymmetric interactions between cars and trucks, Transportation Research Part B: Methodological, vol.22, issue.4, pp.275-290, 1988.
DOI : 10.1016/0191-2615(88)90004-5

P. Marcotte and L. Wynter, A New Look at the Multiclass Network Equilibrium Problem, Transportation Science, vol.38, issue.3, pp.282-292, 2004.
DOI : 10.1287/trsc.1030.0039

P. Marcotte, Inéquations variationnelles: Motivation, algorithmes de résolution et quelques applications, 1997.

J. Matou?ek, Lectures on discrete geometry, 2002.
DOI : 10.1007/978-1-4613-0039-7

F. Meunier and T. Pradeau, A Lemke-Like Algorithm for the Multiclass Network Equilibrium Problem, Proceedings of the 9th Conference on Web and Internet Economics (WINE), pp.363-376, 2013.
DOI : 10.1007/978-3-642-45046-4_30

URL : https://hal.archives-ouvertes.fr/hal-00857611

F. Meunier and T. Pradeau, The uniqueness property for networks with several origin???destination pairs, European Journal of Operational Research, vol.237, issue.1, pp.245-256, 2014.
DOI : 10.1016/j.ejor.2014.01.041

I. Milchtaich, Congestion Games with Player-Specific Payoff Functions, Games and Economic Behavior, vol.13, issue.1, pp.111-124, 1996.
DOI : 10.1006/game.1996.0027

I. Milchtaich, Generic Uniqueness of Equilibrium in Large Crowding Games, Mathematics of Operations Research, vol.25, issue.3, pp.349-364, 2000.
DOI : 10.1287/moor.25.3.349.12220

I. Milchtaich, Topological Conditions for Uniqueness of Equilibrium in Networks, Mathematics of Operations Research, vol.30, issue.1, pp.226-244, 2005.
DOI : 10.1287/moor.1040.0122

H. Minkowski, Zur theorie der einheiten in den algebraischen zahlkörpern, Mathematisch-Physikalische Klasse, pp.90-93, 1900.

D. Monderer and L. S. Shapley, Potential Games, Games and Economic Behavior, vol.14, issue.1, pp.124-143, 1996.
DOI : 10.1006/game.1996.0044

Y. Myung, H. Kim, and D. Tcha, Optimal Load Balancing on Sonet Bidirectional Rings, Operations Research, vol.45, issue.1, pp.148-152, 1997.
DOI : 10.1287/opre.45.1.148

J. Nash, Non-Cooperative Games, The Annals of Mathematics, vol.54, issue.2, pp.286-295, 1951.
DOI : 10.2307/1969529

Y. M. Nie, Multi-class percentile user equilibrium with flow-dependent stochasticity, Transportation Research Part B: Methodological, vol.45, issue.10, pp.1641-1659, 2011.
DOI : 10.1016/j.trb.2011.06.001

E. Nikolova and N. Stier-moses, A mean-risk model for the stochastic traffic assignment problem, Operations Research, 2014.

A. Orda, R. Rom, and N. Shimkin, Competitive routing in multi-user communication networks, IEEE INFOCOM '93 The Conference on Computer Communications, Proceedings, pp.510-521, 1993.
DOI : 10.1109/INFCOM.1993.253270

F. Ordóñez and N. E. Stier-moses, Wardrop Equilibria with Risk-Averse Users, Transportation Science, vol.44, issue.1, pp.63-86, 2010.
DOI : 10.1287/trsc.1090.0292

J. D. Ortuzar and L. G. Willumsen, Modelling transport, 1994.
DOI : 10.1002/9781119993308

M. Pala, S. Baltazar, P. Liu, H. Sellier, B. Hackens et al., Transport Inefficiency in Branched-Out Mesoscopic Networks: An Analog of the Braess Paradox, Physical Review Letters, vol.108, issue.7, p.76802, 2012.
DOI : 10.1103/PhysRevLett.108.076802

URL : https://hal.archives-ouvertes.fr/hal-00709528

C. Papadimitriou, On the complexity of the parity argument and other inefficient proofs of existence, Journal of Computer and System Sciences, vol.48, issue.3, pp.498-532, 1994.
DOI : 10.1016/S0022-0000(05)80063-7

C. Papadimitriou, Algorithms, games, and the internet, Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp.749-753, 2001.

M. Patricksson, The Traffic Assignment Problem: Models and Methods, 1994.

M. Patriksson, Sensitivity Analysis of Traffic Equilibria, Transportation Science, vol.38, issue.3, pp.258-281, 2004.
DOI : 10.1287/trsc.1030.0043

M. Patriksson and R. Rockafellar, Sensitivity Analysis of Aggregated Variational Inequality Problems, with Application to Traffic Equilibria, Transportation Science, vol.37, issue.1, pp.56-68, 2003.
DOI : 10.1287/trsc.

G. Perakis, The ???Price of Anarchy??? Under Nonlinear and Asymmetric Costs, Mathematics of Operations Research, vol.32, issue.3, pp.614-628, 2007.
DOI : 10.1287/moor.1070.0258

A. Pigou, The Economics of Welfare., The Economic Journal, vol.43, issue.170, 1924.
DOI : 10.2307/2224491

H. Poincaré, Second complémentcomplémentà l'analysis situs, Proceedings of the London Mathematical Society, pp.277-308, 1900.

Y. Qiu and T. L. Magnanti, Sensitivity Analysis for Variational Inequalities Defined on Polyhedral Sets, Mathematics of Operations Research, vol.14, issue.3, pp.410-432, 1989.
DOI : 10.1287/moor.14.3.410

K. P. Rath, A direct proof of the existence of pure strategy equilibria in games with a continuum of players, Economic Theory, vol.17, issue.3, pp.427-433, 1992.
DOI : 10.1007/BF01211424

O. Richman and N. Shimkin, Topological Uniqueness of the Nash Equilibrium for Selfish Routing with Atomic Users, Mathematics of Operations Research, vol.32, issue.1, pp.215-232, 2007.
DOI : 10.1287/moor.1060.0229

J. B. Rosen, Existence and Uniqueness of Equilibrium Points for Concave N-Person Games, Econometrica, vol.33, issue.3, pp.520-534, 1965.
DOI : 10.2307/1911749

R. Rosenthal, A class of games possessing pure-strategy Nash equilibria, International Journal of Game Theory, vol.2, issue.1, pp.65-67, 1973.
DOI : 10.1007/BF01737559

T. Roughgarden, The price of anarchy is independent of the network topology, Journal of Computer and System Sciences, vol.67, issue.2, pp.341-364, 2003.
DOI : 10.1016/S0022-0000(03)00044-8

T. Roughgarden, Selfish routing with atomic players, Proc. The, pp.16-127

T. Roughgarden and F. Schoppmann, Local Smoothness and the Price of Anarchy in Atomic Splittable Congestion Games, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp.255-267, 2011.
DOI : 10.1137/1.9781611973082.22

T. Roughgarden, T. , and E. , How bad is selfish routing?, Journal of the ACM, vol.49, issue.2, pp.236-259, 2002.
DOI : 10.1145/506147.506153

T. Roughgarden, T. , and E. , Bounding the inefficiency of equilibria in nonatomic congestion games, Games and Economic Behavior, vol.47, issue.2, pp.389-403, 2004.
DOI : 10.1016/j.geb.2003.06.004

T. Roughgarden, On the severity of Braess's Paradox: Designing networks for selfish users is hard, Journal of Computer and System Sciences, vol.72, issue.5, pp.922-953, 2006.
DOI : 10.1016/j.jcss.2005.05.009

W. Saad, Z. Han, H. V. Poor, and T. Bas¸arbas¸ar, Game-theoretic methods for the smart grid, Signal Processing Magazine, IEEE, issue.5, pp.29-86, 2012.

D. Schiro, J. Pang, and U. Shanbhag, On the solution of affine generalized Nash equilibrium problems with shared constraints by Lemke???s method, Mathematical Programming, vol.56, issue.4, 2012.
DOI : 10.1007/s10107-012-0558-3

D. Schmeidler, Equilibrium points of nonatomic games, Journal of Statistical Physics, vol.36, issue.4, pp.295-300, 1970.
DOI : 10.1007/BF01014905

A. Schrijver, Combinatorial Optimization, Polyhedra and Efficiency, 2003.

M. Smith, The existence, uniqueness and stability of traffic equilibria, Transportation Research Part B: Methodological, vol.13, issue.4, pp.443-451, 1979.
DOI : 10.1016/0191-2615(79)90022-5

R. L. Tobin and T. L. Friesz, Sensitivity Analysis for Equilibrium Network Flow, Transportation Science, vol.22, issue.4, pp.242-250, 1988.
DOI : 10.1287/trsc.22.4.242

C. Wan, ContributionsàContributionsà la théorie des jeux d'´ evolution et de congestion, 2012.

C. Wan, Coalitions in Nonatomic Network Congestion Games, Mathematics of Operations Research, vol.37, issue.4, pp.654-669, 2012.
DOI : 10.1287/moor.1120.0552

J. G. Wardrop, CORRESPONDENCE. SOME THEORETICAL ASPECTS OF ROAD TRAFFIC RESEARCH., Proceedings of the Institution of Civil Engineers, vol.1, issue.5
DOI : 10.1680/ipeds.1952.11362