A. , N. K. , Q. Y. Duan, and S. Sorooshian, An integrated hydrologic Bayesian multimodel combination framework : Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resources Research, vol.43, issue.1, pp.1403-1413, 2007.

A. , V. , J. Lerat, C. Loumagne, T. Mathevet et al., What is really undermining hydrologic science today ? Hydrological Processes, pp.2819-2822, 2007.

B. C. Bates, E. P. Et, and . Campbell, A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall-runoff modeling, Water Resources Research, vol.33, issue.1, pp.937-947, 2001.
DOI : 10.1029/2000WR900363

J. , S. Marsili-libelli, L. T. Newham, J. P. Norton, C. Perrin et al., ANDRÉASSIAN : Characterising performance of environmental models, Environmental Modelling & Software, vol.40, pp.1-20, 2013.

B. , L. , V. Andréassian, C. Perrin, and P. Javelle, How crucial is it to account for the antecedent moisture conditions in flood forecasting ? Comparison of event-based and continuous approaches on 178 catchments, Hydrology and Earth System Sciences, vol.13, issue.6, pp.819-831, 2009.

B. Références-bibliographiques and C. , Quantification des incertitudes des débits calculés par un modèle pluiedébit empirique, pp.55-69, 2005.

B. , K. Et, and A. Binley, The future of distributed models : model calibration and uncertainty prediction, Hydrological Processes, vol.6, issue.3, pp.279-298, 1992.

B. , K. Et, and J. , FREER : Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, Journal of Hydrology, vol.249, issue.1-4, pp.11-29, 2001.

B. , K. J. Jasper, . Vrugt, J. F. Cajo, . Ter-braak et al., Comment onEquifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling, Stochastic Environmental Research and Risk Assessment, vol.23, issue.7, pp.1059-1060, 2009.

B. , K. J. Et, and M. J. Kirkby, A physically based, variable contributing area model of basin hydrology, Hydrological Sciences Bulletin, vol.24, issue.1, pp.43-69, 1979.

B. , K. , P. Smith, I. Westerberg, J. P. Freer et al., Comment on "Pursuing the method of multiple working hypotheses for hydrological modeling, Water Resources Research, vol.48, p.11801, 2012.

B. , J. Et, and R. Tibshirani, Hierarchical Clustering With Prototypes via Minimax Linkage, Journal of the American Statistical Association, vol.106, issue.495, pp.1075-1084, 2011.

B. , D. Et, D. L. De, and . Luca, A Bayesian approach for real-time flood forecasting, Physics and Chemistry of the Earth, pp.42-4491, 2012.

B. , S. Et, and K. Beven, A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation : Skalka catchment, Czech Republic, Water Resources Research, vol.45, pp.0-16, 2009.

B. , G. , M. Sivapalan, T. Wagener, A. Viglione et al., Runoff Prediction in Ungauged Basins : Synthesis Across Processes, Places and Scales, p.106, 2013.

B. , K. Et, and F. Pappenberger, Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system, Water Resources Research, vol.47, pp.7524-7544, 2011.

M. A. Boucher, D. Tremblay, L. Delorme, L. Perreault, and F. Anctil, Hydro-economic assessment of hydrological forecasting systems, Journal of Hydrology, vol.416, issue.417, pp.133-144, 2012.
DOI : 10.1016/j.jhydrol.2011.11.042

J. D. Brown, Knowledge, uncertainty and physical geography: towards the development of methodologies for questioning belief, Transactions of the Institute of British Geographers, vol.11, issue.3, pp.367-381, 2004.
DOI : 10.1029/98WR00003

J. D. Brown, D. J. Et, and . Seo, Evaluation of a nonparametric post-processor for bias correction and uncertainty estimation of hydrologic predictions, Hydrological Processes, vol.29, issue.1, pp.83-105, 2013.
DOI : 10.1002/hyp.9263

J. D. Brown, J. Demargne, D. Seo, and Y. Liu, The Ensemble Verification System (EVS): A software tool for verifying ensemble forecasts of hydrometeorological and hydrologic variables at discrete locations, Environmental Modelling & Software, vol.25, issue.7, pp.854-872, 2010.
DOI : 10.1016/j.envsoft.2010.01.009

J. D. Brown, D. Et, and . Seo, A Nonparametric Postprocessor for Bias Correction of Hydrometeorological and Hydrologic Ensemble Forecasts, Journal of Hydrometeorology, vol.11, issue.3, pp.642-665
DOI : 10.1175/2009JHM1188.1

B. , N. , C. Ballard, N. Mcintyre, G. O. Donnell et al., Integrating different types of information into hydrological model parameter estimation : Application to ungauged catchments and land use scenario analysis, Water Resources Research, vol.48, pp.6519-2012

B. , N. , N. Mcintyre, and H. Wheater, Conditioning rainfall-runoff model parameters for ungauged catchments and land management impacts analysis, Hydrology and Earth System Sciences, vol.13, issue.6, pp.893-904, 2009.

E. , J. Et, and G. O. Donnell, Prediction intervals for rainfall-runoff models : raw error method and split-sample validation, Hydrology Research, vol.43, issue.107, pp.637-648, 2012.

F. , V. , A. Favre, and M. Said, Probabilistic forecasting from ensemble prediction systems : Improving upon the best-member method by using a different weight and dressing kernel for each member, Quarterly Journal of the Royal Meteorological Society, vol.132, issue.617, pp.1349-1369, 2006.

F. , K. J. Et, and T. S. Hogue, Evaluating uncertainty estimates in hydrologic models : borrowing measures from the forecast verification community, Hydrology and Earth System Sciences, vol.15, issue.11, pp.3367-3382, 2011.

F. , J. , K. Beven, and B. Ambroise, Bayesian estimation of uncertainty in runoff prediction and the value of data : An application of the GLUE approach, Water Resources Research, vol.32, issue.7, pp.2161-2173, 1996.

G. , R. , B. Houdant, F. Garavaglia, T. Mathevet et al., Human assessment of hydrometeorological forecasts and communication of their uncertainties in a decision making context, Houille Blanche-Revue Internationale De L Eau, vol.5, issue.5, pp.71-80, 2009.

G. , A. , J. B. Carlin, H. S. Stern, and D. B. Rubin, X (rel) Cité p, Bayesian Data Analysis. Chapman & Hall/CRC, p.75, 2004.

G. , K. P. , D. J. Seo, H. Gupta, J. Schaake et al., Towards the characterization of streamflow simulation uncertainty through multimodel ensembles, Journal of Hydrology, vol.298, issue.1-4, pp.222-241, 2004.

G. , T. , F. Balabdaoui, and A. E. Raftery, Probabilistic forecasts, calibration and sharpness, Journal of the Royal Statistical Society Series B-Statistical Methodology, vol.69, pp.243-268, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00363242

G. , T. Et, and A. E. Raftery, Strictly proper scoring rules, prediction, and estimation, Journal of the American Statistical Association, vol.102, issue.477, pp.359-378, 2007.

G. , J. Et, and A. Bardossy, Generic error model for calibration and uncertainty estimation of hydrological models, Water Resources Research, vol.44, pp.0-07, 2008.

H. , H. , E. Saksman, and J. Tamminen, An adaptive Metropolis algorithm, Bernoulli, vol.7, issue.2, pp.223-242, 2001.

H. , H. , M. Laine, A. Mira, and E. Saksman, DRAM : Efficient adaptive MCMC, Statistics and Computing, vol.16, issue.4, pp.339-354, 2006.

H. , J. , E. O. Connell, and J. Ewen, On not undermining the science : coherence, validation and expertise. Discussion of Invited Commentary by Keith Beven Hydrological Processes, Hydrological Processes, pp.3141-3146985, 2006.

H. , K. W. , S. V. Kumar, C. D. Peters-lidard, and J. A. Santanello, Quantifying the change in soil moisture modeling uncertainty from remote sensing observations using Bayesian inference techniques, Water Resources Research, vol.48, pp.11514-75, 2012.

H. , J. A. , D. Madigan, A. E. Raftery, and C. T. Volinsky, David Draper and E. I. George, and a rejoinder by the authors, Statistical Science, vol.14, issue.4, pp.382-401, 1999.
DOI : 10.1214/ss/1009212519

H. , T. M. Et, and P. J. Webster, A 1-10-Day Ensemble Forecasting Scheme for the Major River Basins of Bangladesh : Forecasting Severe Floods of 2003-07, Journal of Hydrometeorology, vol.11, issue.3, pp.618-641, 2010.

H. , G. M. Et, and R. C. , SPEAR : An approach to the preliminary analysis of enviromental systems, Journal of Environmental Management, vol.12, issue.1, pp.7-18, 1981.

H. , K. , H. Moradkhani, and S. Sorooshian, A sequential Bayesian approach for hydrologic model selection and prediction, Water Resources Research, vol.45, pp.0-12, 2009.

J. , A. J. , R. A. Letcher, and J. P. Norton, Ten iterative steps in development and evaluation of environmental models. Environmental Modelling & Software, pp.602-614, 2006.

J. , J. , T. Mathevet, and A. C. Favre, Temporal uncertainty estimation of discharges from rating curves using a variographic analysis, Journal of Hydrology, vol.397, issue.12, pp.83-92, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00648646

J. , X. L. , C. Y. Xu, Q. Zhang, and V. P. Singh, Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model, Journal of Hydrology, vol.383, issue.3-4, pp.147-155, 2010.

J. , I. T. Et, and D. B. Stephenson, Forecast verification : a practioner's guide in atmospheric science, p.45, 2012.

K. , E. , D. A. Hughes, and T. Wagener, Incorporating uncertainty in hydrological predictions for gauged and ungauged basins in southern, Africa. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, vol.57, issue.5, pp.1000-1019, 2012.

K. , D. , G. Kuczera, and S. W. Franks, Bayesian analysis of input uncertainty in hydrological modeling : 1. Theory, Water Resources Research, vol.42, issue.3, pp.3407-3424, 2006.

K. , D. , G. Kuczera, and S. W. Franks, Bayesian analysis of input uncertainty in hydrological modeling : 2. Application, Water Resources Research, vol.42, issue.3, pp.3408-3425, 2006.

K. , D. Et, and F. Fenicia, Elements of a flexible approach for conceptual hydrological modeling : 2. Application and experimental insights, Water Resources Research, vol.47, pp.11511-11521, 2011.

K. , K. S. Et, and R. Krzysztofowicz, A bivariate meta-Gaussian density for use in hydrology

K. , J. J. , B. W. Croke, H. Koivusalo, A. J. Jakeman et al., Bayesian inference of uncertainties in precipitation-streamflow modeling in a snow affected catchment, Water Resources Research, vol.48, pp.11513-11523, 2012.

K. , T. , J. Freer, J. N. Quinton, C. J. Macleod et al., Ensemble evaluation of hydrological model hypotheses, Water Resources Research, vol.46, p.7516, 2010.

L. , D. , A. H. Weerts, P. J. Smith, and K. J. Beven, Application of data-based mechanistic modelling for flood forecasting at multiple locations in the Eden catchment in the National Flood Forecasting System (England and Wales) Hydrology and Earth System Sciences, pp.177-185, 2013.

L. , Z. , Q. Shao, Z. Xu, and X. Cai, Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method : A case study of SWAT model applied to Yingluoxia watershed in northwest China, Journal of Hydrology, vol.385, pp.1-476, 2010.

K. and P. Restrepo, Advancing data assimilation in operational hydrologic forecasting : progresses, challenges, and emerging opportunities, Hydrology and Earth System Sciences, vol.16, issue.10, pp.3863-3887, 2012.

L. , Y. L. , J. Freer, K. Beven, and P. Matgen, Towards a limits of acceptability approach to the calibration of hydrological models : Extending observation error, Journal of Hydrology, vol.367, issue.12, pp.93-103, 2009.

L. , Y. Q. , and H. V. Gupta, Uncertainty in hydrologic modeling : Toward an integrated data assimilation framework, Water Resources Research, vol.43, issue.7, p.106, 2007.

L. , D. , M. Ye, and M. C. Hill, Analysis of regression confidence intervals and Bayesian credible intervals for uncertainty quantification, Water Resources Research, vol.48, pp.20-74, 2012.

M. , P. Et, and E. Todini, Hydrological forecasting uncertainty assessment : Incoherence of the GLUE methodology, Journal of Hydrology, vol.330, issue.12, pp.368-381, 2006.

M. , P. , E. Todini, and M. L. Martina, Reply to comment by Keith Beven, Paul Smith and Jim Freer on "Hydrological forecasting uncertainty assessment : Incoherence of the GLUE methodology, Journal of Hydrology, vol.338, pp.3-4319, 2007.

M. , C. J. Et, and R. Krzysztofowicz, Identification of likelihood and prior dependence structures for hydrologic uncertainty processor, Journal of Hydrology, vol.290, issue.12, pp.1-21, 2004.

M. , L. , D. Nott, and A. Sharma, Towards dynamic catchment modelling : a Bayesian hierarchical mixtures of experts framework, Hydrological Processes, pp.847-861, 2007.

M. , A. , and G. Grossi, Estimating the uncertainty of hydrological forecasts : A statistical approach, Water Resources Research, vol.44, issue.124, pp.0-08, 2008.

M. , A. , C. A. Shoemaker, N. Van-de, and G. , Introduction to special section on Uncertainty Assessment in Surface and Subsurface Hydrology : An overview of issues and challenges, Water Resources Research, vol.45, pp.0-00, 2009.

M. , H. , C. M. Dechant, and S. Sorooshian, Evolution of ensemble data assimilation for uncertainty quantification using the particle filter-Markov chain Monte Carlo method, Water Resources Research, vol.48, pp.12520-12537, 2012.

M. , H. , K. L. Hsu, H. Gupta, and S. Sorooshian, Uncertainty assessment of hydrologic model states and parameters : Sequential data assimilation using the particle filter, Water Resources Research, vol.41, issue.5, pp.5012-5029, 2005.

M. , M. , C. Xu, L. Gottschalk, and L. M. Tallaksen, Systematic evaluation of autoregressive error models as post-processors for a probabilistic streamflow forecast system, Journal of Hydrology, vol.407, issue.1-4, pp.58-72, 2011.

M. , L. , E. Gaume, and C. Obled, Uncertainties on mean areal precipitation : assessment and impact on streamflow simulations, Hydrology and Earth System Sciences, vol.13, issue.2, pp.99-114, 2009.
URL : https://hal.archives-ouvertes.fr/insu-00413244

N. , J. E. Et, and J. V. Sutcliffe, River flow forecasting through conceptual models part I -A discussion of principles, Journal of Hydrology, vol.10, issue.3, pp.282-290, 1970.

O. , L. , V. Andréassian, C. Perrin, C. Michel et al., Spatial proximity, physical similarity, regression and ungaged catchments : A comparison of regionalization approaches based on 913 French catchments, Water Resources Research, vol.44, issue.3, pp.3413-108, 2008.

R. , M. H. , S. J. Van, A. , and F. Pappenberger, Do probabilistic forecasts lead to better decisions ? Hydrology and Earth System Sciences, pp.2219-2232, 2013.

R. , M. , T. Mathevet, J. Thielen, and F. Pappenberger, Communicating uncertainty in hydro-meteorological forecasts : mission impossible ? Meteorological Applications, pp.223-235, 2010.

R. , A. , M. H. Ramos, G. Thirel, V. Andréassian et al., Comparing the scores of hydrological ensemble forecasts issued by two different hydrological models, Atmospheric Science Letters, vol.11, issue.2, pp.100-107, 2010.

R. , J. C. Et, and H. J. Henriksen, Modelling guidelines -terminology and guiding principles, Advances in Water Resources, vol.27, issue.1, pp.71-82, 2004.

R. , J. C. , H. J. Henriksen, W. G. Harrar, H. Scholten et al., Quality assurance in model based water management -review of existing practice and outline of new approaches, Environmental Modelling & Software, vol.20, issue.10, pp.1201-1215, 2005.

R. , J. C. , J. P. Van-der, S. , A. L. Hojberg et al., VANROLLEGHEM : Uncertainty in the environmental modelling process -A framework and guidance. Environmental Modelling & Software, pp.1543-1556, 2007.

R. , P. , M. Renner, A. H. Weerts, P. Van et al., Uncertainty assessment via Bayesian revision of ensemble streamflow predictions in the operational river Rhine forecasting system, Water Resources Research, vol.45, pp.2428-139, 2009.

R. , P. Et, and A. H. , WEERTS : A Bayesian approach to decision-making under uncertainty : An application to real-time forecasting in the river Rhine, Journal of Hydrology, vol.356, issue.12, pp.56-69, 2008.

R. , S. K. , D. Seo, B. Lawrence, J. D. Brown et al., Short-term ensemble streamflow forecasting using operationally-produced single-valued streamflow forecasts - A Hydrologic Model Output Statistics (HMOS) approach, Journal of Hydrology, vol.497, pp.80-96, 2013.

R. , P. Et, J. Mieleitner-renard, B. , D. Kavetski et al., Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters Understanding predictive uncertainty in hydrologic modeling : The challenge of identifying input and structural errors, Water Resources Research Water Resources Research, vol.45, issue.18, pp.10402-05521, 2009.

R. , B. , D. Kavetski, E. Leblois, M. Thyer et al., Toward a reliable decomposition of predictive uncertainty in hydrological modeling : Characterizing rainfall errors using conditional simulation, Water Resources Research, vol.47, pp.11516-11526, 2011.

R. , K. L. , and A. H. Weerts, SCHROEVERS : Estimation of the uncertainty in water level forecasts at ungauged river locations using quantile regression, International Journal of River Basin Management, vol.10, issue.4, pp.383-394, 2012.

P. Salamon, L. Et, and . Feyen, Disentangling uncertainties in distributed hydrological modeling using multiplicative error models and sequential data assimilation, Water Resources Research, vol.358, issue.3-4, pp.12501-12518, 2010.
DOI : 10.1029/2009WR009022

S. , J. C. , T. M. Hamill, R. Buizza, and M. Clark, The hydrological ensemble prediction experiment, Bulletin of the American Meteorological Society, vol.88, issue.10, pp.1541-1547, 2007.

S. , B. , D. B. Talamba, and A. Musy, Quantifying hydrological modeling errors through a mixture of normal distributions, Journal of Hydrology, vol.332, issue.3-4, pp.303-315, 2007.

S. , G. Et, and J. A. , VRUGT : A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors, Water Resources Research, vol.46, pp.10531-10548, 2010.

S. , P. , K. J. Beven, and J. A. Tawn, Informal likelihood measures in model assessment : Theoretic development and investigation, Advances in Water Resources, issue.8, pp.311087-1100, 2008.

S. , P. J. , K. J. Beven, A. H. Weerts, and D. Leedal, Adaptive correction of deterministic models to produce probabilistic forecasts, Hydrology and Earth System Sciences, vol.16, issue.8, pp.2783-2799, 2012.

S. , T. J. Et, and L. A. Marshall, Bayesian methods in hydrologic modeling : A study of recent advancements in Markov chain Monte Carlo techniques, Water Resources Research, vol.44, pp.0-05, 2008.

S. J. Van-andel, A. Weerts, and J. Schaake, Post-processing hydrological ensemble predictions intercomparison experiment, Hydrological Processes, vol.15, issue.1, pp.158-161, 2013.
DOI : 10.1002/hyp.9595

V. Steenbergen, N. , J. Ronsyn, and P. Willems, A non-parametric data-based approach for probabilistic flood forecasting in support of uncertainty communication. Environmental Modelling & Software, pp.92-105, 2012.

J. A. Velazquez, F. Anctil, and C. Perrin, Performance and reliability of multimodel hydrological ensemble simulations based on seventeen lumped models and a thousand catchments, Hydrology and Earth System Sciences, vol.14, issue.11, pp.2303-2317, 2010.
DOI : 10.5194/hess-14-2303-2010

V. , J. S. , J. D. Brown, P. Reggiani, and A. H. , WEERTS : Post-processing ecmwf precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales, Journal of Hydrology, vol.501, pp.73-91, 2013.

J. Vidal, E. Martin, L. Franchisteguy, M. Baillon, and J. , A 50-year high-resolution atmospheric reanalysis over France with the Safran system, International Journal of Climatology, vol.136, issue.11, pp.1627-1644, 2010.
DOI : 10.1002/joc.2003

URL : https://hal.archives-ouvertes.fr/meteo-00420845

V. , J. A. , H. V. Gupta, L. A. Bastidas, W. Bouten et al., Effective and efficient algorithm for multiobjective optimization of hydrologic models, Water Resources Research, vol.39, issue.8, pp.1214-1230, 2003.

V. , J. A. , H. V. Gupta, W. Bouten, and S. Sorooshian, A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resources Research, vol.39, issue.8, pp.1201-74, 2003.

V. , J. A. , C. J. Ter, B. , C. G. Diks et al., Hydrologic data assimilation using particle Markov chain Monte Carlo simulation : Theory, concepts and applications, Advances in Water Resources, vol.51, pp.457-478, 2013.

V. , J. A. , C. J. Ter, B. , H. V. Gupta et al., Response to comment by Keith Beven onEquifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling, Stochastic Environmental Research and Risk Assessment, vol.23, issue.7, pp.1061-1062, 2009.