Skip to Main content Skip to Navigation

Body composition prediction by locally weighted and Bayesian networks modeling

Abstract : The assessment of human body composition is important for evaluating health and nutritional status. Among health issues, overweight and obesity are worldwide problems. Increased fat mass, especially in the trunk location, has been associated with an increased risk of metabolic diseases, such as type 2 diabetes and cardiovascular disease. The lean body mass, especially appendicular muscle mass, is also directly related to health and particularly with the mortality rate. Also, aging is associated with substantial changes in body composition. Reduction in body lean or body fat-free mass occurs during aging (Kyle et al., 2001) together with an increase of body fat related to accumulation of adipose tissues, particularly in abdominal region (Kuk et al., 2009); therefore assessing these changes in segmental body composition may be important because the study will lead to a pre-diagnosis for the prevention of morbidity and mortality risk. Accurate measurements of body composition can be obtained from different methods, such as underwater weighing and dual-energy X-ray absorptiometry (DXA). However, their applications are not always convenient, because they require fixed equipment and they are also time consuming and expensive. As a result, they are not convenient for use as a part of routine clinical examinations or population studies. The potential uses of statistical methods for body composition assessment have been highlighted (Snijder et al., 2006), and several attempts to predict body composition, particularly body fat percentage (BF%), have been made (Gallagher et al., 2000a; Jackson et al., 2002; Mioche et al., 2011b).The first aim in this thesis was to develop a multivariate model for predicting simultaneously body, trunk and appendicular fat and lean masses from easily measured anthropometric covariables. We proposed a linear solution published in the British Journal of Nutrition. There are two main advantages in our proposed multivariate approach. The first consists in using very simple covariables, such as body weight and height, because these measurements are easy and not expensive. The usefulness of waist circumference is also investigated and combined with age, height and weight as predictor variables. The second advantage is that the multivariate approach enables to take into account the correlation structure between the responses into account, which is useful for a number of inference tasks, e.g., to give simultaneous confidence regions for all the responses together. Then the prediction accuracy of the multivariate approach is justified by comparing with that of the available univariate models that predict body fat percentage (BF%). With a good accuracy, the multivariate outcomes might then be used in studies necessitating the assessment of metabolic risk factors in large populations.The second aim in this thesis was to study age-related changes in segmental body compositions, associated with anthropometric covariables. Two Bayesian modeling methods are proposed for the exploration of age-related changes. The main advantage of these methods is to propose a surrogate for a longitudinal analysis from the cross-sectional datasets. Moreover, the Bayesian modeling enables to provide a prediction distribution, rather than a simple estimate, this is more relevant for exploring the uncertainty or accuracy problems. Also we can incorporate the previous findings in the prior distribution, by combining it with the datasets, we could obtain more suitable conclusions.The previous predictions were based on models supposing any correlation structure within the variables, the third aim in this thesis was to propose a parsimonious sub-model of the multivariable model described by a Gaussian Bayesian network (GBN), more precisely Crossed Gaussian Bayesian Networks (CGBN). Last and final summary in the thesis.
Complete list of metadata

Cited literature [251 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Tuesday, March 24, 2015 - 3:07:06 PM
Last modification on : Wednesday, September 28, 2022 - 3:10:35 PM
Long-term archiving on: : Thursday, July 2, 2015 - 6:41:27 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01134969, version 1
  • PRODINRA : 312923


Simiao Tian. Body composition prediction by locally weighted and Bayesian networks modeling. Statistics [math.ST]. AgroParisTech, 2013. English. ⟨NNT : 2013AGPT0068⟩. ⟨tel-01134969⟩



Record views


Files downloads