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Résumé

Ce travail de thése est consacré a 'extension de la formule d’Itd au cas de chemins
a variations bornées a valeurs dans I'espace des distributions tempérées composés
par des processus réguliers au sens de Malliavin. On s’attache en particulier a faire
des hypothéses minimales de régularité, ce qui donne accés a un certain nombre
d’applications de notre principal résultat, en particulier & I’étude d’un probléme
variationnel.

Notre principal outil est le calcul de Malliavin, le premier chapitre est donc
consacré a des rappels sur ce sujet; la plupart des résultats sont classiques. Le
deuxiéme chapitre est consacré a ’étude de la classe de Schwartz et de 'espace
des distributions tempérées. On explique en particulier comment elles peuvent
étre exprimées, respectivement, comme intersection et comme union d’espaces
obtenus comme les domaines des puissances d'un opérateur différentiel simple.
Cela nous permet en particulier de comprendre la structure des chemins a valeurs
dans l'espace des distributions tempérées. Ces résultats sont connus mais trés peu
documentés, nous avons donc écrit des preuves détaillées.

Dans le troisiéme chapitre, on donne un certain nombre de résultats optimaux
qui expliquent sous quelles conditions I'on peut définir la quantité 7" o X pour une
distribution tempérée T' et une variable aléatoire X et quelle est la régularité de
I’objet obtenu. On utilise pour cela des arguments d’interpolation qui permettent
d’étendre une formule d’intégration par parties au sens de Malliavin au cas frac-
tionnaire. Les résultats sont fortement inspirés de I'article de Shinzo Watanabe,
"Fractional order spaces on the Wiener space", [83| mais sont nouveaux. On donne
également une version pour le cas ou la distribution 7" est elle-méme stochastique;
ce résultat est fondé sur une extension de la formule d’intégration par parties qui
est elle-méme originale.

Ces résultats nous permettent d’écrire, au chapitre 4, une formule d’Ité6 qui
constitue notre principal résultat. Elle s’écrit, pour une semimartingale générale,
sous des hypothéses beaucoup plus faibles que d’autres résultats existant dans la
littérature. On donne également un résultat plus précis pour le cas ou la semi-
martingale provient de la solution d'une équation différentielle stochastique. On
donne enfin deux extensions simples de notre formule: une version anticipative et
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une version de type I1t6-Wentzell.

Dans le chapitre 5, on utilise notre formule d’It6 pour établir 'existence et
I'unicité de la solution d’un probléme variationnel simple. En particulier, on mon-
tre que 'on peut affaiblir considérablement une hypothése d’ellipticité faite par la
plupart des auteurs.
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Introduction

0.1 Cadre: la formule d’It6

La formule d’It6 constitue la pierre angulaire du calcul stochastique. L’objet prin-
cipal de ce travail de thése est de la généraliser au cadre des distributions tempérées
(au lieu des fonctions C?) composées par des processus réguliers au sens de Malli-
avin sous des hypothéses minimales. Nous proposons également des applications,
notamment a I’étude d’un probléme variationnel.

0.1.1 Formule "de base"

Avant de préciser notre démarche, rappelons, a titre illustratif, une version "élé-
mentaire" de la formule d’Ito:

Théoréme 0.1.1.1 (Formule d’'1t6). Soient (Q, F,P) un espace probabilisé; W un
mouvement brownien & valeurs dans R? sur cet espace; X une P-semimartingale
continue & valeurs dans RN, adaptée a la filtration de W :

Xt:X0+/0tb(s)ds+/Oto(s)dWS (1)

ot b est un processus adapté & valeurs dans RN et o est un processus adapté a

X1
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valeurs dans R @ RN, Soit enfin f € O12 (R+ X RN,R). Alors on a:

f(ta Xt) = 0 XO

+ Z@if(S,Xs) < 0i(s)dW, )

avec a =o' 0.
De plus lintégrale stochastique dans (2) définit une martingale locale, donc
(f(Xy),t > 0) est une semimartingale dans la filtration de W .

Les notions définies dans le théoréme précédent sont classiques; on renvoie,
pour leurs définitions, a [60], [17], [31], [28]... ou bien aux articles originaux [29]
et [30].

0.1.2 Quelques généralisations connues

De nombreux auteurs se sont attachés a généraliser la formule (2) dans diverses
directions. La premiére est de renoncer a I'hypothése de continuité sur la semi-
martingale; on obtient alors, en paticulier, une formule d’It6 pour les processus de
Lévy, voir, par exemple, [11] ou la thése de doctorat [85] et les références qu’elle
cite. Nous n’avons pas eu le temps d’explorer cette théorie au cours de notre
travail. Une seconde direction possible est de généraliser la formule d’Ttd6 a des
processus qui ne sont pas des semimartingales. Parmi les classes de processus
pour lesquelles il existe des résultats, citons par exemple: le mouvement brownien
fractionnaire et les intégrales stochastiques construites sur ce processus (voir par
exemple |16]), le mouvement brownien multi-fractionnaire (voir [43]), ou certains
processus de Markov. Nous n’avons pas non plus travaillé dans cette direction.

Notre travail s’inscrit en effet dans une seconde "famille" de généralisations
de la formule d’Tt6 qui relachent les conditions portant sur la fonction f dans (2)
plutot que sur le processus X. Il existe de nombreux résultats sur ce sujet. Le plus
célébre d’entre eux est sans doute la formule de Tanaka (coir [60] par exemple),
qui permet de prendre f convexe lorsque N =d = 1:
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Théoréme 0.1.2.1 (Formule de Tanaka). Soit X une semimartingale continue
en dimension 1; pour tout a € R il existe un unique processus croissant L (X) tel
que:

t
1
| Xy —a| =|Xo—q] +/ sgn(Xs —a)dX; + 3" LX) (3)
0

Le(X) est le temps local de la semimartingale X .
Il vient alors:

Théoréme 0.1.2.2 (Formule d’It6-Tanaka). Soit X wune semiartingale continue
en dimension 1 et f : R — R pouvant s’écrire comme différence de deux fonctions
convezes, de sorte que f admet une dérivée a gauche f; et qu’au sens des distri-
butions, " est une mesure de Radon signée. On a la généralisation suivante de la
formule d’Ito:

F(X) = F(Xo) /f JAXs + 2 / L2(X) f"(da) (1)

De nombreux auteurs se sont également intfessés a la possibilité de remplacer
la condition f € C? par une condition du type f € WP!, un espace de Sobolev.
Par exemple pour le cas particulier du mouvement brownien en dimension 1, [13]
expose les propriétés de semimartingale de x +— L (X) a t fixé et établit le résultat
suivant:

Théoréme 0.1.2.3 (Formule de Bouleau-Yor). Soit f une fonction dérivable sur

R, de dérivée localement bornée et W un mouvement brownien de dimension 1.
On a:

o, /f W)W, — /f ), L¥(X) (5)

Cette construction faisant intervenir le temps local du mouvement brownien,
elle est spécifque a la dimension 1. Cependant, [20] propose une généralisation
sous une hypothése encore plus faible qui, quant a elle, s’étend au cas N = d:

Théoréme 0.1.2.4 (Formule de Follmer-Protter-Shiryaev). Soient f dérivable
telle que Df € L? (RN,RN) et W un mouvement brownien en dimension N. On
a:

loc

W, +Z@f W)W, + 3 - [f/(W), W], (6)

ot la covariation quadratique [f’(W), W1 est définie comme une limite de sommes
de Riemann.:

n

008 = Y 3 () - ) (<) @
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Nous établirons des liens directs entre ces trois derniers résultats (formules
de Tanaka, de Bouleau-Yor et de Follmer-Protter-Shiryaev) et les notres; nous
reviendrons sur ce point plus tard. Mentionnons également un dernier résutat du
méme type, voir [22] ou [12], bien qu’il soit moins directement lié¢ a notre étude:

Théoréme 0.1.2.5. Soient W un mouvement brownien & valeurs dans R et
few>t (Rd). Alors il existe une unique décomposition.:

JWy) = £(0) + M(f) + Ni(f) (8)

ou M(f) est une martingale locale de carré intégrable et N(f) est un processus
continu, additif, d’énergie nulle.

0.1.3 Le cas des EDS

Il existe également de nombreux résultats permettant d’écrire une formule d’Ito
pour f € WP pour des processus plus généraux que le seul mouvement brownien.
En général il est nécessaire de faire une hypothése d’ellipticité sur le processus X.
Pour le résultat suivant, on se donne deux fonctions b et o pour lesquelles il existe
une constante C telle que pour tous z,y € RV:

S;glovlb(t,fc)—b(t,y)l <C -z -y (9)

Alors, il existe une unique solution forte a I'équation diff’erentielle stochastique:

t t
thxo+/ b(s,XS)der/ o (s, X, )dW, (11)
0 0

On note enfin A le générateur du processus; si a = o - o:

A:Zbi-@—i—%-zai]"@j (12)

Avec ces notations, |38] établit:

Théoréme 0.1.3.1. Supposons que b et o soient bornés presque sirement et que
A soit uniformément elliptique, c’est a dire qu’il existe une constante C' telle que
pour tout & € RV :
(A-66) =) &&= C- €l (13)
i,
Alors, pour tout f € W22, on peut écrire la formule d’Ité pour f(X;) comme dans
le cas C?.
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L’idée de la preuve, que nous réutiliserons, est que les fonctions de W22 peu-
vent étre approchées par des fonctions C?. En combinant ces idées avec celles de
la formule de Féllmer-Protter-Shiryaev, certain auteurs (voir [6], [7] ou [5], par ex-
emple) prouvent des formules d’Tt6 pour des processus elliptiques et des fonctions
WP 11 existe également des résultats pour le cas ott X est une semimartingale.

0.2 Apports du calcul de Malliavin

Nous nous proposons d’établir un résultat encore plus général: en effet nous
remplacerons la fonction par une distribution tempérée. Avant d’énoncer notre
théoréme, il nous faut faire quelques rappels de calcul de Malliavin, théorie qui
sera au centre de la plupart des preuves de ce document. Les résultats ci-dessous
sont I'objet de rappels plus détaillés au cours du chapitre 1; par ailleurs nous nous
sommes beaucoup inspirés, notamment, de [45], [53|, [25], [66], [55], [56], [75] et
[44].

0.2.1 Rappels de calcul de Malliavin

Plagons-nous sur espace de Wiener W des fonctions continues sur [0, 1], nulles en
0, a valeurs dans un espace de Hilbert X. Munissons W de sa structure habituelle
d’espace de Banach et de la mesure de Wiener g, loi du mouvement brownien
sur X. L’objet du calcul de Malliavin est la construction d’une analyse de type
Sobolev, et en particulier d’un gradient au sens L” sur (W, u).

Nous nous intéressons aux dérivées aux sens faible le long de I'espace H, dit
espace de Cameron-Martin, des primitives de fonctions L?([0,1], X). En effet H
est un sous-espace dense de W, et le théoréme de Girsanov assure que la mesure de
Wiener est quasi-invariante par la translation par h € WV si et seulement si h € H.
Soient alors W un mouvement brownien sur X, 0 <t; <---<t, <1, Y un autre
espace de Hilbert et f : X" +— Y dérivable. Nous introduisons la fonctionnelle dite

cylindrique F' = f (By,,--- By,) ainsi que sa dérivée au sens de Malliavin:
VE=h—Y (0:f)(By.-- Bi,) ®h(t;) (14)
i=1

ou ® designe le produit tensoriel entre espaces de Hilbert, si bien que:
VFeY®H=~L(HY) (15)

est la différentielle au sens L” de F'. La densité dans LP des fonctionnelles cylin-
driques et la propriété de quasi invariance de p permettent de montrer la ferma-
bilité de V ainsi que la densité de ses domaines de fermeture D' := dom s (V).
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Ces domaines de fermeture sont les espaces de Sobolev d’ordre 1; les constructions
étant valables pour des espaces de Hilbert quelconques on définit de méme des
gradients itérés et des espaces de Sobolev d’ordre supérieur. On les munit de la
norme:

1FNows: = 1Pl (4) = 1oy + IV Fllzriome (16)

On peut également construire la divergence comme adjoint du gradient:
§=V*:D"(H) — LP(X) (17)

Notons au passage que la divergence d’un processus régulier et adapté coincide
avec son intégrale stochastique, ce qui permet une extension de la formule d’Ito
a des semimartingales non-adaptées (cf [54] ou [53|); nous reviendrons sur ces
notions.

Puis, on introduit l'opérateur d’Ornstein-Uhlenbeck £ = 6 o V. L’opposé
de cet opérateur est le générateur d’un semi groupe de contraction sur LP, dit
d’Ornstein-Uhlenbeck. L’étude de ce semi-groupe permet de construire des puis-
sances fractionnaires de tout ordre réel de Id+ L et d’établir les inégalités de Meyer

qui assurent que la norme usuelle et la norme H (Id + E)k/2 F‘ sont équivalentes.
Lp

Ceci permet d’étendre la notion d’espace de Sobolev a des ordres de dérivation
fractionnaires ou négatifs. On prouve en outre que le dual de DP* est DP"—F,

0.2.2 Intégrations par parties et formule d’It6 faible

Introduisons maintenant D I'espace des variables aléatoires appartenant a tous les
espaces de Sobolev: il s’agit d'un espace de variables aléatoires test, tres réguliéres.
Son dual I’ est I'espace des distributions de Meyer (formes linéaires sur au moins
I'un des espaces de Sobolev). 1l est possible d’étendre de nombreux objets du
calcul de Malliavin (gradient, divergence...) a I'espace des distributions de Meyer,
de méme qu'on étend le calcul différentiel sur R™ aux distributions tempérées
par exemple. [’analogie vaut également pour les méthodes de démonstration:
des résultats sont établis sur 'espace des fonctions tests et étendus par densité a
I’espace des distributions.

On s’intéressera en particulier a la formule d’intégration par parties suivante:

Théoréme 0.2.2.1. Soient X, Y € D et f € C}. On définit la matrice de Malli-
avin 2 de X par:

Yii(X) = (VXi, VX)) (18)
et on suppose que X est non-dégénérée, c’est a dire que:
YX) =8X) e () P (19)
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Alors:
E[0if(X)-Y]=E[f(X)-L(Y,X)] (20)

Li(Y,X) =46 (Y D (X) 'Xj> (21)

Ce résultat permet de définir f/(X) € D’ par dualité pour X € D, variable
aléatoire non-dégénérée sur l'espace de Wiener et f une fonction telle que f’ n’est
définie qu’au sens des distributions. Plus précisément, par une récurrence sim-
ple fondée sur le théoréme précédent et le fait que I’ensemble des distributions
tempérées s’obtient, pour tout 1 < p < oo, comme:

S'=J (1d+x*-a)" (L) (22)

keN

il a été établi dans [81| que I'on peut définir 7o X € D' pour tout X € D non-
dégénérée et T € §'. Cela a permis d’obtenir I'extension suivante de la formule
d’Tto, voir [78]:

Théoréme 0.2.2.2. Soient b et o deux processus stochastiques adaptés a la filtra-
tion du mouvement brownien W ; on suppose, pour tous p et k:

t
/0 b5, ds < oo (23)
t

/OHUSH%p,de < 0 (24)

et on introduit:

¢ ¢
X, = Xo + / byds + / o, dW, (25)
0 0

Soit X la matrice de Malliavin de X,; on suppose en outre:

t
/0 1512, ds < oo (26)

ou, ce qui revient au méme:

p
ds < oo (27)
P

/

det >
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Alors pour tout € >0 on a:

¢
T(t)oX,—T(e)o X = Mt(g) + Z/ bi(u) - (0;T,) o Xydu
1 lt
3 Z/E aij(u) - (055Ty) o Xydu
z7]

+ /tT(du) o X, (28)

avec, en utilisant la notation des intégrales stochastiques pour la divergence:
t
MO =Y [ 3 ) 01 o X)W (29)
jove

La preuve de [78] est fondée sur la stucture d’espace de Fréchet nucléaire de
S’. En effet, on peut alors appliquer le théoréme de Grothendieck pour obtenir
une représentation du chemin 7; du type:

T, = i Ao - Valt) - T, (30)

ou (\,) € ', (V,,) est une famille bornée de fonctions & variations bornées sur R
et (7,,) est une famille uniformément continue de §’. On voit alors que l'on peut
choisir k tel que ¢; := (Id + X? — 5)% T; soit une fonction C? en espace de fagon
indépendante de t; de plus, la fonction:

(t,2) = ¢(x) = ((m +x2og) " Tt> (x) (31)

est alors & variation bornée en temps (et C? en espace). Le résultat est finalement
obtenu en appliquant la formule d’It6 classique a la fonction ¢ et en "inversant”
les intégrations par parties.

0.3 Apports de ce travail

Si I'intérét théorique des résultats du paragraphe précédent est clair, on voit égale-
ment que les hypothéses faites (les variables aléatoires doivent étre dans D) sont
trop fortes pour les applications pratiques. Au cours de ce travail, on s’est donc at-
taché a les affaiblir. Les deux premiers chapitres de cette thése fournissent les outils
nécessaires a la poursuite de cet objectif. Au chapitre 1, on fait des rappels de calcul
de Malliavin, cette théorie intervenant dans la majorité de nos preuves. D’autres
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pans des mathématiques interviennent également: espaces vectoriels topologiques,
intégration de fonctions a valeurs Banach, interpolation, théorie des semi-groupes,
équations au dérivées partielles... On fait les rappels nécessaires a notre étude dans
les appendices correspondants, ot 'on fournit également des références. Dans le
chapitre 2, on étudie la structure de la classe de Schwartz et de I'espace des dis-
tributions tempérées en tant qu’espaces vectoriels topologiques (voir par exemple
[65], [23], [61], [59], [69]...) En particulier, on construit les puissances fractionnaires
de 'opérateur:

K:=1Id+X*-A (32)
par des méthodes d’interpolation de semi-groupes et on introduit les espaces:
Sps = domp» (K¥?) (33)
Leur intérét est que 'on a:
S =[S (34)
s

et:

S =S, (35)
D,S

Ces unions ensemblistes définissent également une topologie d’espace de Fréchet
sur S et de dual d’espace de Fréchet sur S’ comme il est expliqué dans le théoréme
2.3.0.3.

Ce sont sur les éléments développés dans les deux premiers chapitres et les
appendices que nous nous appuyons pour établir, au cours du chapitre 3, de nom-
breux lemmes techniques qui ont un intérét propre. Nous pouvons ainsi établir des
extensions de la formule d’Itd6 dans le chapitre 4 et en développer une application
a un probléme variationnel au chapitre 5.

0.3.1 Résultats d’intégration par parties

Les outils ue nous venons de présenter permettent de prouver le théoréme ci-
dessous, qui est le résultat principal du chapitre 3; il s’agit du théoréme 3.2.0.13
que nous reproduisons ici:

Théoréme 0.3.1.1. Soit F' € Do 145 avec 0 > 0 une variable aléatoire non-
dégénérée a valeurs dans RY. On suppose que X admet une densité bornée px.
Alors pour tout &' < 0 and 1 < p < p' < 0o on peut trouver q,r > 1 et 6 > 0 tels
qu’on ait lestimation suivante pour tous ¢ € S(RY):

[0 Flp, s <

] NFIS el 190,
(36)

<0 || Gy, * e
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Ici C' est une constante universelle dépendant de p,d,0',q,r,0... mais pas de X ou
de ¢. En particulier pour tout T' € Sy _y, T o F' peut étre défini dans D, _s et on
a encore le controle ci-dessus.

Pour prouver ce résultat, on s’appuie en particulier sur trois lemmes. Le pre-
mier permet de controler les normes de Sobolev de I'inverse de la matrice de Malli-
avin d’une variable aléatoire suffisemment réguliére:

Lemme 0.3.1.1. Pour un certain s > 1, considérons une variable aléatoire non
dégénérée F' € Do (RY) et sa matrice de Malliavin 3. Alors pour tout 1 < s' < s,

1
€ ]D)oo* s
det 2 ’

—1(R) (37)

De plus, pour tout p' > p il existe un ¢ > 1 et un o > 0 tels qu’on ait le controle
sutvant:

ou k = [s| et C est une constante universelle ne dépendant que de p,p’, s, s, q.

1
detX ||

} IFle. (39

H‘ detz 2(k+1) Hd >

p,s! —1

Le deuxiéme lemme permet de controler les opérateurs d’intégration par par-
ties:

Lemme 0.3.1.2. Pour tous p > 1 et s > 0, pour tous p’ > p et & > s,
il existe q,v > 1, 8 > 0 et une constante universelle ne dépendant que des
parametres ci-dessus tels que [on ait le contréole ci-dessous pour toute variable
aléatoire G € Doo- 541 et toute variable aléatoire non-dégénérée F' € Do g4o:

1 1 1
114G Pl < € elo .| zzggmes | * |

q
—Il |- IFNE 39
T ML

ou k = s].

En pratique, nous en utiliserons la généralisation suivante. Soit m; I'opérateur
de multiplication par le monome X;. Considérons une famille d’opérateurs p;
pour 3 = 1,...,m tels que chaque p; soit ou bien I'un des [;, ou bien I'un des m;,
t=1,...,N. On définit:

MG, F) = (G o1 (G pms (G o F) L)) (40)

pour une variable aléatoire suffisemment réguliére G et une variable a‘léatoire
suffisemment réguliére et no dégénérée F'. On peut alors énoncer le:
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Corollaire 0.3.1.1. Soient p' > p > 1 et 8 > s > 0. On considére A\ comme
ci-dessus, en supposant qu’au plus n des p; soit l'un des l;. Alors | existe g, 7 > 1,
0 > 0 et une constante universelle C tels qu’on ait le contréle ci-dessous pour G
assez réquliere et ' assez réquliere et non-dégénérée:

q H 1

1
ING. F)l,. < C - [Gllo., - {H— ;
o 5+ (detx)2+1) ||,

qg |m
— I ENC
e ML rmms#w& |

out k = [s] et o est la matrice de Malliavin de F.
Enfin, on utilise le lemme d’interpolation suivant:

Corollaire 0.3.1.2. Supposons que ' € Do 1 ait une densité bornée pp. Alors
pour tous 0 < p < p < letl<p<yp < oo il eriste une constante universelle
C(p,p'yp,p') telle que pour tout ¢ € S on ait le controle ci-dessous:

|0 Fllp,, < C-llprllec - 1+ [[VF[a) - [1lls,, , (42)

Au paragraphe 3.2, on explique comment combiner ces lemmes pour obtenir le
résultat principal. L’ idée est d’ écrire ¢ = K'K!'¢ pour un [ entier choisi proche
de s dans un sens que 1’on précise. Les deux premiers lemmes permettent alors de
faire un premier controle en faisant [s| intégrations par parties et le dernier lemme
permet de raffiner afin d’obtenir la partie fractionnaire du controle.

On donne également des résultats sur I'existence et la régularité de la densité
px afin de simplifier ce résultat. On obtient en particulier:

Lemme 0.3.1.3. Soit 6 > 1. Soit alors X € Dy- 1,5 une variable aléatoire non-
dégénérée. Alors X admet une densité continue et bornée; on a plus précisément
XeS§,;.

On a donc la gééralisation suivante du théoréme 0.3.1.1:

Théoréme 0.3.1.2. Soit F' € Do 145 avec 6 > 1 une variable aléatoire non-
dégénérée a valeurs dans RN . Alors pour tout 6’ < 6 and 1 < p < p' < 0o on peut
trouver q,r > 1 et 0 > 0 tels qu’on ait 'estimation suivante pour tous ¢ € S(RY):

|0 Flp, 5 <

} NEW, ol 1905,

(43)
Ici C est une constante universelle dépendant de p, 6,9, q,r,0... mais pas de X ou
de ¢. En particulier pour tout T' € Sy _5, T o F' peut étre défini dans D, _s et on
a encore le controle ci-dessus.

e I

On établit également une généralisation du théoreme 0.3.1.1 pour les espaces
Soos
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Théoréme 0.3.1.3. Soit F' € Doy 145, pour un certain 6 > 0 une variable aléa-
toire non-dégénérée a valeurs dans RN. Alors pour tous & < § et 1 < p < oo il
existe une constante universelle C' et des réels q,r > 1 et 0 > 0 tels qu’on ait le
controle suivant pour tous les ¢ € S(RY):

q

2m
l¢ Flls, _, go.{ ] ANFIS, - ols., , (44)

q N 1
7 det:

1
fesy=

La

En particulier pour tout T € Sy _y, T o F' peut étre définie dans D, _5 et on a
encore le controle ci-dessus.

0.3.2 Une formule d’It6 faible

Le théoréme 2.3.2.2, que nous reproduisons ci-dessous, donne la structure des
chemins a variations bornées a valeurs dans la casse de Schwartz:

Théoréme 0.3.2.1. Soit T' € BV ([0,1],8’). Pour tout p € [1,00] il existe s € R
tel que T'€ BV ([0,1],S,.5).

Les théorémes 0.3.1.2 (ou 0.3.1.3) et 0.3.2.1 résolvent les principales difficultés
de la preuve (au chapitre 4) de la formule d’Tt6 ci-dessous, qui est le centre de
cette these:

Théoréme 0.3.2.2. Soit W le mouvement brownien canonique de dimension d
sur l’espace de Wiener. Soit X le processus d’Ito de en dimension N tel que:

ou b est un processus adapté de dimension N et o est un processus matriciel adapté
de dimension N ® d. Nous notons a = o'o.

Soit aussi t € [0,1] — T(t) € S'(RY) un chemin a variations bornées; il existe
alors un s > 0 tel que:

T € BV (S,—s) (47)
On fait également les hypothéses suivantes:
t
[ s, e < o (48)
t
[ ol e < (19
0 :
1 (50)
sup ||=—— 00
<uet || 2() |,
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pour tout 0 < € < 1, ot X(u) est la matrice de Malliavin de X,. On a alors:
T(t)o X, —T(e)o X, = —i—Z/ T.,) o X,du

4= Z/ aij(u) - (8;T,) o Xydu
+/:T(du)oXu (51)

ot (Mt(€)> est une martingale faible sur ’espace de Wiener et au sens des
e<t<1

divergences on a:

M = Z/Z T,) o X,] dW? (52)

[’idée de la preuve est que, grace au théréeme 0.3.2.1, 'on peut trouver un
entier [ indépendant de t tels que les KT} soient des fonction C2. Alors on écrit
T, = K!K!'T;, on applique la formule d’Itd classique aux fonctions K~'T} et on
applique le théoréme 0.3.1.2 (ou 0.3.1.3) pour relever la formule d’It6 classique en
notre extension.

Comme annoncé notre formule est beaucoup plus facile a appliquer que les
résultats existants; en particuler on n’a plus besoin de supposer X; € .

0.3.3 Le cas d’une EDS

Nous avons souhaité spécialiser notre formule d’Itd6 au cas des semimartingales
qui sont solution d’une équation différentielle stochastique qui est sans doute le
plus utile pour les applications. C’est I'objet du théoréme 4.4.3.1. Pour I'obtenir,
nous avons d’'une part prouvé un résultat de dérivabilité - essentiellement, si les
coefficients de ’EDS appartiennent & I'espace de Holder A® alors sa solution a s
dérivées fractionnaires au sens de Malliavin - et d’autre part nous avons emprunté
un résultat de [15] pour la non-dégénérescence. Nous reproduisons ces résulats
ci-dessous.
On considére ’équation différentielle stochastique:

dX, = b(t, X,)dt + o(t, X,)dW, (53)

On introduit 'espace C%* des fonctions continues en temps, admettant [s] dérivées
en espace, dont la dérivée d’ordre [s] en espace est {s}-holderienne. On a alors le:
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Théoréme 0.3.3.1. On considére I’EDS ci-dessus et on suppose que b et o sont
dans C%° jusqu’a un certain temps T, pour un certain s > 1. Alors pour tous
p>1, s <setpourtoutt >0, onaX, €D,y etil existe des constantes A et B
ne dépendant que de p, s, s’ et des normes C%* de b et o telles que:

1 Xillp, ,, < Aexp(B([|bllcos + [lollco.) - 1) (54)

Supposons maintenant que o € C%® pour un certain s > 2 et que b € C%%.
Alors notre EDS a une unique solution. On note [s] = k. Pour i < j < d, on
introduit le champ de vecteurs: V; = aj&;j. Soit Lo I'ensemble de tous les V.
On note [, -] le commutateur de deux champs de vecteurs. Alors, on définit par
récurrence L; comme ’algébre de Lie engendrée par les [V}, Z], ou Z € L;_4. On
a le:

Théoréme 0.3.3.2. Supposons que pour un certain entier n < k—2 il existe ¢ > 0
tel que pour tout £ € SN on ait:

Y>> 2)(0.2)>¢ (55)

i=0 Z€eLy

Supposons aussi que o € CP2) pour un certain 5> 0 (c’est a dire que ['on sup-

pose une réqularité holderienne en temps). Alors, si ¥ est la matrice de Malliavin
de Xy, pour tout t > 0 on a des controles du type suivant:

1 1

= <C-—-e 56
Sl ” (56)
Ici C, v et K sont des constantes qui ne dépendent que de t. En particulier:
T P
—| dt < o0 o7
Z Et p ( )

En combinant ces deux théorémes, on obtient:

Théoréme 0.3.3.3. Supposons que les coefficients de notre EDS C%%) for some
s > 2 and let k = [s]. Supposons que la condition de Hormander du théoréme
précédent soit vérifiée pour un certain n < k — 2 et que o € CB"*2 Alors si T
est un chemin a variations bornées dans S, _s—1y on a la formule d’Ité ci-dessous:

t
TioXy—T.0oX. = M+ 2/ bi(u, Xy) - (0;T,) o Xy,du
1 Zt
+ 3 Z/ aij(u, X,) - (05T) o Xydu
17]

+ / t T(du) o X, (58)
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et au sens des divergences:
t
MO =3 / S (il X.) - (BT,) 0 X,] dW (59)
jove

Pour les applications au chapitre 5, nous utiliserons I’extension suivante:

Théoréme 0.3.3.4. Soient X et T comme dans le théoréme précédent. Con-
siderons deuz fonctions by, oy € C0%) et soit Y Uunique solution forte de ’EDS:

dY, = b(t,Y)dt + o(t, Y;)dW, (60)
Yo = vy (61)

Soit enfin f € BV(C®). Alors on peut écrire une formule d’Ito pour:

f(t,Yy) - T, 0 X, (62)

0.3.4 Autres extensions

Nous avons également étendu nos résultats dans diverses directions. Tout d’abord,
nous avons déja signalé que noous donnons au chapitre 2 des résultats sur les
espaces Sy s qui nous permettent d’obtenir, au chapitre 3, une version du théoréme
3.2.0.13 faisant intervenir ces espaces au lieu des S, ;: c’est le théoreme 3.2.0.15.
Ce résultat a un intérét double. D’abord, comme nous I'avons déja dit, il permet
de ne pas faire d’hypothése a priori sur I'existence d’'une densité pour la variable
aléatoire par laquelle on reléve. Ensuite, il nous a permis d’étendre le théoréme
3.2.0.15 au cas ou la distribution que I'on reléve est elle-méme aléatoire. Nous
donnons ces résultats dans le paragraphe 3.5; pour les établir, nous avons étendu
la formule d’intégration par parties 0.2.2.1 au cas ou la fonction est aléatoire. Dans
ce cas la formule d’intégration par parties devient:

Théoréme 0.3.4.1. Soient p,q,r > 1 tels que 1/p+ 1/q = 1/r. Supposons que
l’on ait:

o fe LP(Cy)
e feD, (CY)
° XEDqJ(RN)

Alors, on a, f(X) € D,y et la regle des chaines suivante:

V(f(X)) = hf(X)VX,+ (V)(X) (63)
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De plus, pour tout ¢ € Dy« 1 on a:

Eopf(X)- ¢ = E[f(X) - (X, )] = Ef¢- Ti(f, X)(X)] (64)

En suivant la méme démarche que dans le début du chapitre 3, on en déduit
en particulier le:

Théoréme 0.3.4.2. Pour un 6 > 0, soit X € Dy 145 une variable aléatoire
non-dégénérée o valeurs dans RY. Alors, pour tous §' < 6 et 1 < p < oo il existe
une constante universelle C' et des réels py,pa,p3 > p et 0 > 0 tels que l'on ait le
controle suivant pour tout ¢ € S(D):

¢ 0 X||p, _,
1 pP1 1 P1 0
< C- _ X 0
< O[], [l ) P
(0]
I DA PR T S
k=0

(65)

En particulier T € D, ;(Sy —s), T o X peut étre définie dans D, _s et dans ce cas
on a encore le controle ci-dessus.

Cela nous a permis de prouver une version faible de la formule d’Tt6-Wentzell.
En effet, considérons deux processus:

dXt = btdt + Utth (66)

Ici X vérifie les mémes hypothéses que dans le théoréme 0.3.2.2. On s’intéresse
aux T3 o X; ou T est un flux a valeurs dans &’. Plus précisément, on introduit des
processus:

DLVie N QDm_k(swrw_@)ranik(wgr@_th)) (67)

k<]s] :

Ici, on suppse que « est tel que {s} > &; si s est entier on suppose seulement:

Dy, Vi € [ Doo ik (Soor(st) (68)

k<[s]

On suppose que ces processus sont adaptés dans la filtration de W. On peut alors
définir une semimartingale a valeurs dans S, _spar une valeur initiale 7Ty € Soo _s
et I’équation:

dTl;, = Ddt + V,dW, (69)
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C’est a dire que our tout ¢ € S:

(T, 6) = (T, 6) + / (Dy. ) ds + / (Vi ) WV, (70)

qui est une semimartingale réelle. On prouve alors:

Théoréme 0.3.4.3. Sous les hypothéses ci-dessus, pour tous p' > p et 8 > s,
pour tout € > 0, on a la formule suiante au sens de l'espace: Do _(g42)

t
T(t) o X,—T()o X, = M+ / b(u) - (0.T0) 0 Xudu

+ D, o X,du
t
+/ o(u) - 0,V, o Xydu (71)

ot (Mt(6)> est une martingale faible sur l’espace de Wiener, et au sens des
e<t<1

divergences on a:
t
M = / [b(w) - (8,T,) 0 Xy + Vi 0 X, AW (72)
Nous prouvons également une version anticipative de notre formule d’It6 faible

(on utilise les notations classiques du calcul stochastique anticipatif; ces notations
sont précisées dans le chapitre 4). On considére un processus anticipatif:

t t
Xt—X0+/ bsds+/ osdW (73)
0 0

Ici X est une variable aléatoire et b et ¢ ne sont pas nécessairement adaptés. On
a alors le:

Théoréme 0.3.4.4. Soit T' € S, _5. On suppose que pour tout p:

5+3 p
// EH(IdJrﬁ)TDsat ]dsdt < (74)
s<t
5+2 p
// EH(Id—I—E)TDSbt ]dsdt < (75)
s<t
B 1 P
= dt < oo 76
|l (76)
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ou X est la matrice de Malliavin de X;. Alors, au sens de l’espace D, _s, on a:

ToX, = TolX
! 1
+ /(bs-T’oXs+§U§~T”oXs)ds
0

t
- / os- T o X, dW,
0

t
+ / (D™ X)so5 - T" 0 Xods (77)
0

0.3.5 Application au temps local

Nous comparons notre formule d’Itd6 a d’autres extensions déja connues, notam-
ment celles que nous avons évoquées plus haut. Ce faisant, nous montrons en
particulier comment le temps local de certains processus peut se désintégrer en
une intégrale de Pettis sur I)'. En effet, en dimension 1, considérons la solution de
I’EDS:

dX; = b(t, Xy)dt + o(t, X;)dW, (78)

On écrit alors, sous des hypothéses (sur X) qui sont précisées au chapitre 4:

[ Xi — K| = |Xc - K]

t t
= / sgn(Xs — K)b(s, Xy)ds +/ sgn(Xs — K)o(s, Xs)dW,

1 t
+ 5/ o(s, X;)*0k 0 Xyds (79)

On peut alors décomposer le temps local ainsi:
t
LE(X) = / o(s, X,)?0k o X.ds (80)
0

On peut généraliser cette idée a des dimensions supérieures en remplacant la fonc-
tion valeur absolue par la solution fondamentale de 1’équation de la chaleur en
dimension quelconque. Cela permet de définir (au sens faible) une notion de temps
local multi-dimensionnel.

Ces idées permettent également d’étudier la régularité du temps local, en espace
et au sens de Malliavin.

0.4 Application & un probléme variationnel

Le cinquiéme et dernier chapitre est consacré a I'application principale que nous
donnons a la théorie développée dans cette thése, a savoir 'étude d’un probléme



0.4. APPLICATION A UN PROBLEME VARIATIONNEL XXix

variationnel. On considére 'équation différentielle stochastique:
dXt = b(t, Xt)dt + O'(t, Xt)th (81)

On note A; son générateur et on se donne deux fonctions continues et bornées f
et g et une fonction continue et positive r et on considére le probléme:

Ku—ru < —g (82)

> f (83)

(K —ru)(f—u) = 0 (84)
uT,) = f (85)

Ce probléme a été étudié par de nombreux auteurs, voir en particulier [8], [9], [38],
[33]... On montre dans ces ouvrages que sous certaines hypothéses (régularité des
coefficients et ellipticité du générateur), 'unique solution a ce probléme est donnée
par la fonction:

u(t,z) = sup E [f(Xi(x))exp <— /t Tr(u,Xi(x))du)

o + /t "o, X)) exp (- /t sr<u,X;(x))du) ds} (86)

Notre contribution est de montrer que I’on peut affaiblir ces hypothéses, c’est a dire
les réduire a celles qui permettent d’appliquer la formule d’It6 du théoréme 4.4.3.1.
En pratique il suffit de supposer que les coefficients de 'EDS ainsi que f, g et r
sont trois fois dérivables en espace, que les coefficients de ’EDS sont holderiens en
temps et que X vérifie une condition de type Hormander. Cette derniére hypothése
est plus faible que les hypothéses d’ellipticité que 'on fait habituellement. L’idée
principale de la preuve est que I'on peut appliquer notre formule d’It6 faible & la
fonction u, qui, en général, n’est dérivable ni en temps ni en espace.
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Chapter 1

Introduction to Malliavin calculus

Malliavin calculus will be our main tool throughout the whole of this document.
For the sake of completeness and in order to introduce some notation, we provide
a brief introduction to the topic. Most of the results in this chapter are classic,
and we followed [45], [53], [25], [66], [55], [56], [75] and [44].

1.1 Malliavin analysis in finite dimension

We start with results from finite dimensional gaussian analysis. These will lift and
extend to the infinite-dimensionnal case of the Wiener space. For this section we
followed [44] and [55].

1.1.1 Gaussian random variables

Throughout this document, we will make an intensive use of the normal gaussian
law, which we note p. It is characterized by its density with regard to the Lebesgue

measure on R: ] ,
dp(z) = — e~ 7 -dz (1.1)
V2T

or, equivalently, by its Fourier transform:

/Re’fxd,u(x) = e’g (1.2)

The following is straightforward but noteworthy:
Proposition 1.1.1.1. Let p € [1,00[ and Q € R[X]; then Q € LP(R, u).
There also is:

Theorem 1.1.1.1. For any p €]1, co[, polynomials are dense in LP ().

1
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Proof. Let p €]1,00[. We have already observed that any polynomial is in L”(u).
Now let f € LP", so by Holder’s theorem all the x +— 2" f(x) are p-integrable and
suppose that for all n € N:

/ £ f () du(x) = 0 (1.3)

Then, by a version of Fubini’s theorem:

s -5

so the Fourier transform of the measure f - du is 0, hence by injectivity of the
Fourier transform f = 0 p-a.s. By duality this proves that polynomials are dense
n (LP") = LP. [

(2)dp(x) = 0 (1.4)

1.1.2 Gradient and divergence operators on LP(R, )

In the sequel p is any real number in |1, ool.

A weak (ie: distributional) derivative operator is classically defined on LP(R, )
as it is on LP(RR, \); see, for example, [1], [70] or [71]. We will indifferently note f’,
df or V f for the (weak or strong) derivative of f, whenever it exists. We introduce
D, x(R) the space of those functions in L” which admit k weak derivatives in L?;
in operator language theory:

Dp’k(R) = dOmLp (Vk) (15)
We equip D, ,(R) with the graph norm:
11l .2y = Ifllze + 1VE Fllo (1.6)

The (gaussian) divergence operator is defined as the transpose of the derivative
in the sense of the duality induced by the measure p. To get a flavour of this,
consider f,g € §. Then, integrating by parts, one notices that:

/R F@)g@)dpz) = [ F@)g)
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This leads us to the following definition:

Definition 1.1.2.1 (Gaussian divergence operator). It is formally defined on its
domain domp»(0) through the formula:

5f(@) =~ () +af () = % (f)e ) (1)

Remark 1.1.2.1. The domain of the divergence is dense in LP. Divergences co-
incide when defined in the sense of two or more p so we omit the index.

1.1.3 Hermite polynomials
The purpose of this paragraph is to introduce the:

Definition 1.1.3.1 (Hermite polynomials).

Ho(z) = (0"1)(2) = (—1)"e% - G (1.9)

By a straightforward recurrence one checks that these indeed are polynomial
functions and that H, has degree n. It is easy to compute the first few Hermite
polynomials:

Hy = 1
H = X

Hy, = X?’-1

Hy = X®-3X
H, = X*—6X%+3

We will also need the following extension of the Hermite polynomials:

hoa(2) = VaH, (%) (1.10)

The Hermite polynomials arise from a generating series:

x n 71‘2 T n —(z—t)2
(—1)”672 d <e 2 > = e;d— (e = ) (1.11)

dx™ dt™ [t=0

and therefore we indeed have:

t2 2 1 > tn
exp (:ct — 5) = exp (% — 5(1’ — t)2) = > ﬁHn(az) (1.12)
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as well as:
it Eoojtnh (z) (1.13)
exp |2t —a— | = —hp.alT )
P 2 — nl

The following result will be crucial to our purpose:

Theorem 1.1.3.1. (5—%) is an orthonormal basis of L*(p).

Proof. We have seen that polynomials are dense, in particular, in L?(u). Also,
we know that H,, has degree n, therefore the Hermite polynomials are a base of
R[X] (resp. C[X]). Therefore we only need to prove that the family we consider
is orthonormal.

First let n > m be two integers. Then:

E,[H,H,] = E,[(6")H,,] = E,[H™] =0 (1.14)

m

so we have proven the orthogonality. For the normality, considering the generating
series for the Hermite polynomials and taking the orthogonality into account, one
sees that:

/R (exp <xt - §>)2 dp(z) = ni;o :—; /]R H,(z)*du(x) (1.15)

It is then classic to compute the integral of the LHS which is e”, therefore identify-
ing coefficients in the Taylor series expansion leads to £, [H,] = n! as expected. [

We provide two other characterizations of the Hermite polynomials:

Proposition 1.1.3.1 (Recursive construction of the Hermite polynomials). The
Hermite polynomials verify Hy =0, Hy = X and:

Hn+1 - XHn — TLHn_l (116)

Proposition 1.1.3.2 (ODE verified by the Hermite polynomials). The Hermite

polynomials verify:
H'— XH,+nH,=0 (1.17)

1.1.4 The Ornstein Uhlenbeck operator and the associated
semigroup
It is straightforward calculus to derive the following equation, which is familiar to

quantum physicists:

dsf — sdf = f (1.18)
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We want to apply this formula to any one of the H,. First, consider H) . This
has to be a polynomial of degree n. Let us compute it explicitely by projecting it
on the H,,, m <n.

EuH, o] = Ey[Hy10H,) = EL[Hy ] = (n+1)] (1.19)
and similarly, for m < n:
B [H, . H,) =0 (1.20)
Therefore by applying formula (1.18) one obtains:
8dH, = nH, (1.21)
This leads us to introducing the:

Definition 1.1.4.1 (Ornstein Uhlenbeck operator).
Lf =ddf =d*df (1.22)
Of course it is straightforward to compute:

Lf(x) =—f"(x)+zf(z) (1.23)

This operator is symmetrical and positive by construction; it is diagonalized
by the orthonormal basis of the scaled Hermite polynomials which is relevant to
our study. —L is the generator of a contraction semigroup (see appendix C) on
LP(p): the Ornstein-Uhlenbeck semigroup, which we note P,. By definition of a
contraction semigroup F; enjoys the two following properties:

F)tpsf - F)t—i-sf (124)
and

IPefllr < [ f]lev (1.25)

Also, semigroup theory tells us that P,f is the unique solution of the Cauchy
problem:

Solt.r) = Lo(r) (1.26)
9(0,) = f (1.27)

From the unicity of the solution to such a Cauchy problem one sees that for
f € LPr N LP2, the two potential definitions of P, f coincide and we will no longer
make a distinction. Again because of the unicity and of the formula £LH, = H,,
one sees that:

PH,=e¢"H, (1.28)

We shall now prove the following:
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Theorem 1.1.4.1 (Mehler’s formula). The Ornstein Uhlenbeck semigroup is de-
fined by a density:

Puf(x) = / F)pee,y)duly) (1.29)

with, more precisely:

2 ent 1 e 2?2 — 2xye~t + e 2Hy?
o) = 3 () ) = e o (- o)
— n V1 —e 2t 1—e
(1.30)

This is equivalent to:
P f(x)= /f (e’tx +V1-— e*Qty) duly) = E [f(e’tx +V1-— e*2tN)} (1.31)

where N s a normal gaussian random variable.

Proof. We prove the result in the case where p = 2 and extend it by density to
the other cases. Indeed if f € L?, one has an expansion of the type:

f= ch(f)% (1.32)

where " ( )
n(z
C, = T dx 1.33
= [ s (153
and therefore: "
Pf= e e, (f)——= 1.34
So if we introduce the function:
o0 efnt
pe(a,y) = Wﬂn(m)Hn(y) (1.35)
n=0 ’

which is easily verified to be well defined in L*(u®?), we see that:

[ty = ST [ )y

- Yealn
— Ps) (1.36)

The explicit expression for p, is then computed through inverse Fourier transform.
Indeed, recall that:

22

H,(z) = (-1)%’5% (%) (1.37)
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SO since:

there comes:

Therefore:

pilz,y) = Ze—ﬂnmﬂn(y)

_ o //Z aTt

2
g ds (1.38)
V2T
o2 d
O (1.39)

T2 da dT
2V 27T 2V 27r

wa:— = iTy—

6

. +y / / { - + } do dT
= e ex oret +iow — O +ir
P 2 v V21 Vor

(1.40)

Then we do the following change of variable, which separates the double integral:

(o,7)r—>(
_ //exp{ oy

= eT /exp{—2(1—|—e Ho? +iZ

and we obtain:

ptﬂ«”y

(et )2 (z—1)?

co+T7T o—T

R W) (1.41)

7

c+7)? o—7 (0—7)2} do dr

V2 4 V27 V2
/exp{—;(l—e B2+ \/iy }\;l;'?

22442 e 20+et g 20-et
= e . .
Vitet V1—e?
1 l—et (z+4y)?
= —_— . eXp — .
V1—e 2t 14 et

so we obtain our expression of p;.

changle of variables.

4

B y>2) (1.42)

Finally, the last identity arises from a simple

O

Remark 1.1.4.1. The computation of these densities may also be done through
the SDE associated to the Ornstein-Uhlenbeck process:

dXt —

which solves as:

— X, dt +V2dW, (1.43)

t
X; = Xo+V2 / e~ = aw, (1.44)
0

and one may check that X; has density p; if Xo = 0.
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Finally the following result is simple but important:

Theorem 1.1.4.2. The P, and L are symmetrical operators.

1.1.5 Fractional Sobolev spaces

Fractional powers of Id — L are defined as is explained in appendix C; then one
gets the:

Theorem 1.1.5.1. Let p €]|1,00[ and k € N; the two following norms are equiva-
lent on Dy, -

1D,y = I llze + V5 £l 2o (1.45)

and:

LAl = [1(7d = £)*2 f]| 1 (1.46)

This allows to define fractional Sobolev spaces built on the gaussian measure
in a natural way; we omit the details as we may recover them as a special case of
the infinite-dimensionnal results which are more directly relevant to our study -
see the next section.

1.1.6 Extension to d-dimensional spaces
Ifn=(ny, - ,ng) € NV we note:

N

nl =] n! (1.47)

i=1

We also define N-dimensionnal Hermite polynomials as:

H,(z) = H H,, (x;) (1.48)

where we abusively used the same notation for 1-dimensionnal and N-dimensionnal
Hermite polynomials. We note u®» for the N-dimensionnal normal gaussian mea-
sure on RY. Then one proves:

HTL . .
Theorem 1.1.6.1. (\/—77> is an orthonormal basis of L*(u®V).
Proof. Since every monomial X may be written as a linear combination of the
H,(X;), n € N, it is clear that every monomial X* on RY may be written as a
linear combination of elements in our family. Therefore we will be done as soon
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that we prove that our family is orthogonal and this last fact is straightforward as
soon as one notices that:

[ ) @) (@) = [ / H () Hy () () (149)

]

This fact all the results we have just seen to the N-dimensionnal case; as the
proofs are straightforard we omit them.

1.2 Malliavin calculus

In thi section we will construct Malliavin calculus as an infinite dimensionnal
extension of the results in the previous section.

1.2.1 The Wiener and Cameron-Martin spaces

Definition 1.2.1.1 (Wiener space). The Wiener space is the following vector space
of continuous functions:

W={feC(0,1],R)s.t.f(0) =0} (1.50)
equipped with its natural Banach space structure arising from the following norm:

[ flloe = sup [f(#)] (1.51)

te(0,1]
We recall the:

Theorem 1.2.1.1 (Radon). The strong dual space W' of W is M /(R - &), where
M is the set of all Radon measures on [0, 1] and g is the Dirac mass at 0. It is a

Banach space when equipped with the dual norm of || - ||s, which is:
lv|w+ = sup /fdu (1.52)
Il Flleo=1

We will consider the following evaluation functionals:

Definition 1.2.1.2 (Canonical functionals on the Wiener space).

Wi=weWr—uw(t)eR (1.53)
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Clearly, these are continuous functionals on the Wiener space: they actually
coincide with the Dirac masses. The cornerstone of Malliavin calculus is the fol-
lowing:

Theorem 1.2.1.2. There exists a unique measure [ on the Wiener space such
that the stochastic process (Wyi)o<i<i defined on the probability space OV, p) is
a Brownian motion. We call that measure the Wiener measure. The coordinate
process X considered under the Wiener measure is the canonical Brownian motion.

Proof. We do not recall how to construct a Brownian motion; instead, we sim-
ply show how, being given a Brownian motion Y on a certain probability space
(Q, F,P), we may map it to the evaluation functionals and construct the Wiener
measure. Indeed let us define a measurable application:

P=welr dw)eW (1.54)

by putting:
O(w)=te€0,1] — Yy(w) =W (Y(w)) €R (1.55)

Clearly the ®(w) are a.s. in W as the Brownian motion a.s. has continuous
trajectories. Then & is measurable because on one hand Y is and on the other
hand the evaluation functionals on the Wiener space are continuous, hence borelian
for the natural topology. We may therefore define ;1 as the image measure of P by
® and we then have, for any measurable application f on W:

B f(W0<t <)) =Ep[f(WoY),0<t<1)]=Eplf(Y;,0<t<1)]

(1.56)

Since Y is a Brownian motion under P this proves that W is a Brownian motion

under /. O
It is interesting to note that for u — a.s. wy, ws € VW one has:

Wt(wl + wz) = Wt<w1) + Wt(wQ) (157)

The following space of functions is closely related to the Wiener space:

Definition 1.2.1.3 (Cameron-Martin space).

"= {t € (0,1 /Otf(s)ds} (1.58)

That is: H is the space of primitives of L*([0,1] \) functions taking the value 0 at
0. Fquivalently, H 1is the space of those L? functions which cancel at 0 and have
L? weak derivatives. We will usually note h for the derivative of h € H.
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We will make use of the following classic results:

Theorem 1.2.1.3 (Topological structure of the Cameron-Martin space). The fol-
lowing quantity is a norm on the vector space H:

\h|g = /0h2(s)ds (1.59)

It defines a Hilbert space structure on H. Also, we have the following injections:
WH e H ' W (1.60)
with © dense into || - || and compact into |- |g

Proof. The Hilbert structure and the RHS injection are obvious. The compactness
of 7 is a special case of the Rellich theorem. The density may be obtained, for
example, via the Stone-Weierstrass theorem.

For the LHS injection, simply consider the application:

D =ps (t — /Ot v(s, 1])d5> (1.61)
O

It was natural to introduce ® because the following is valid p-a.s. through a
simple integration by parts which can be justified properly by working on Riemann
sums and taking limits in probability:

o {0y = /1<>w<>

:/W )dv(s

— W ([0,1)) - (Aiﬂaﬂmwgow

- (/01 v(]s, 1])dWs> (w) (1.62)

Also we now see that, in addition to || - [|yy+, there is another natural norm on

VA%
v |hws2 = \//01 v(]s,1))?ds = | E (/01 v(]s, 1])dWs) 2] (1.63)
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It clearly arises from a scalar product, and provides an isometry between the Radon
measures and a subset of the stochastic integrals on deterministic L?(\) functions.
It is not a complete space: indeed, the set of the primitives of Radon measures, ie
the image of @, is easily seen to be dense in H, therefore the set of the stochastic
integrals [ hdW, where h describes H, is isometric to the completion of the set of
Radon measures W* for the norm || - ||y 2.

We finish this paragraph with two simple computations related to equation
1.57.

Proposition 1.2.1.1. Let h € L?. For a.s. wi,ws € W:

( / h(s)dWS) (w1 + wy) = ( / h(s)dm) (w1) + ( / h(s)dWS) (ws)  (1.64)

Proof. Write the stocastic integral on the LHS as the limit of a Riemann sum and
apply equation 1.57. O

With similar techniques, one proves:

Proposition 1.2.1.2. Let g,h € H. Then
([iear.) @ = a0 (1.65)

1.2.2 Chaos decomposition on the Wiener space

We recall that W denotes the canonical Brownian motion on (W, u) and we start
with the following:

Lemma 1.2.2.1. Let (h;) be any ONB of H. Then:
1
oW, 0<t<1l)=0 </ hi(s)dWs, i € N) (1.66)
0

Proof. By elementary stochastic calculus, any stochastic integral fol Hi(s)dWS is
measurable with respct to the o-field o(W;,0 < t < 1), therefore we have the
inclusion:

oW, 0<t<1)Do (/01 }ii(s)dWS) (1.67)

Conversely since (h;) is an ONB of H, (h;) is an ONB of L?()\), hence the indicator
of an interval has a decomposition:

Loy = > aihi (1.68)
=1
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Therefore, one sees that, in the L? sense:

n 1
Wi = lim E;a . /0 i(s)dWY, (1.69)
from which the converse inclusion arises. ]

The main interest of this result is that it shows that the information in the
canonical Brownian filtration is encompassed in a countable filtration. This will
let us define more hilbertian structures. In particular, we introduce the:

Definition 1.2.2.1 (Polynomials on the Wiener space). Suppose that an ONB
(h;) of H has been fived. We call polynomial on the Wiener space any random

variable of the type:
1 . 1 .
P (/ iy (s) AW, / hn(s)dWS) (1.70)
0 0

where n is an integer and P is a polynomial function on R™ (resp C"). We will
note P the space of all polynomial random variables on the Wiener space.

It is noteworthy that since the h; are orthogonal to each other in L?(\) and
have norm 1, there is the identity in law:

(/01 CIOLUSIE 7/01 Hn(S)dWs> = N(0,1d,) (1.71)

and in particular polynomial random variables have moments of all orders. Poly-
nomial functions are therefore easy to work with, and our strategy in many cases
will be to build an object or prove a result first for the polynomial functions, and
then to extend it to more general random variables on the Wiener space. This will
be possible because of the:

Theorem 1.2.2.1 (density of the polynomials on the Wiener space). Let X in
LP(W, 1) and € > 0. Then there exists an integer n and a polynomial function in
n variables such that:

HX (/01 hy(s)dW, . .., /01 hn(s)dWS)

Proof. Let us define a discrete martingale as:

<€ (1.72)
Lr(W,p)

M,=F {X! /01 hi(s)dW,, i < n} (1.73)
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Then, by lemma 1.2.2.1 M,, converges in LP to X, ie for big enough n:

Also, there exists a function f,, such that:
1 1
M, = f, (/ hy(s)dWs, . .. ,/ hn(s)dWS) (1.75)
0 0

Now since M,, € LP(W, i) and (fol hy(s)dWs, ..., fol fin(s)dWS) is N(0, Id,,) under

i, necessarily f,, € LP(u,) and:

| M|l o ow,m) = || full 2o () (1.76)

Finally by theorem 1.1.1.1 there exists a polynomial P, such that:

I fo = Palliequ,) <€ (1.77)

and of course:

' P, (/01 ha(s)dWs, . . .,/01 Iin(s)dWS>

so we are done. L]

= || Pall 2o un) (1.78)
Lr(W,p)

As we consider polynomial random variables on the Wiener space, since these
have the same law as the underlying polynomial evaluated at a normal gaussian
random variable, it is natural to decompose the underlying polynomial in the
Hermite ONB and to study the hilbertian properties which thus arise. Indeed,
straightforward computations show that:

Proposition 1.2.2.1. If p,q = (p1,.--,0ny), (@1, -+, qny) are two different multi-

ndices:
E [Hp (/01 h;)l(s)dws,...,/o1 h;p(s)dWs) H, (/01 h;h(s)dvvs,...,/o1 h;q(s)dws)} =0
(1.79)
and

E

H, (/01 h;,l(s)dws,...,/o1 h;p(s)dmﬂ = pl (1.80)

By combining theorem 1.2.2.1 and proposition 1.2.2.1 , we immediately obtain
the:
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Theorem 1.2.2.2 (Wiener chaos decomposition - first statement). The countable
family of the }%-Hp (fol By, (8)dW, ..., fol h,;p(s)dWS> , where p describes all multi-
indices, the H,, are the Hermite polynomials and (h;) is any ONB of H constitutes
an ONB of L* (W, ).

The terminology "Wiener chaos decomposition" is justified by the following:

Definition 1.2.2.2 (Wiener chaos). The nth order Wiener chaos, which we note

Cn, is the linear span of the H, (fol h;,l(s)dWS, o ,fol h;lp (s)dWS>, where the H,

are the Hermite polynomials with total degree n.
We will characterize the Wiener chaoses thanks to the following result:

Proposition 1.2.2.2. For any n € N and h € H such that |h|y = 1:

H, </01 h(s)dWs> :/”'/o@ L <1h(51)---h(sn)dW51~~~dWsn (1.81)

Proof. The statement is trivial for n = 0, 1. It is then proved by a simple recursion
as the Hermite polynomials and the multiple integrals verify the same recursion
relationship. O

From this we deduce:

Theorem 1.2.2.3 (Caracterization of the nth Wiener chaos). C,, is the linear span
of the order n multiple Wiener integrals described in proposition 1.2.2.2, where h
describes any given ONB of H.

C,, also is the eigenspace of the operators P, and L, associated to the eigenvalues
e~ ™ and n respectively. In particular, the definition of the Wiener chaoses does
not depend on the choice of one specific ONB of H.

Now the Wiener chaos decomposition theorem may be rephrased:

Theorem 1.2.2.4 (Wiener chaos decomposition - second statement).

LW, ) =P (1.82)

1.2.3 Gradient and divergence on the Wiener space

We want to define a functional derivative on the Wiener space. The only way to
do this is through partial, ie directional derivatives, and we will want to consider,
when they exist, LP-limits of the type:

VX (w) = lim X(w+ aw) — X (w)

a—0 o

(1.83)
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Of course, for the theory to make sense, it is necessary that, if X = Y almost
surely and X is differentiable, then Y is also differentiable and VX = VY a.s.
in every direction. The cases where this is possible are explained in the following
paragraph:

The Girsanov and Cameron-Martin theorems

First we recall the classic:

Theorem 1.2.3.1 (Girsanov). Assume that u is a measurable process on the
Wiener space adapted to the canonical Brownian filtration, such that p-a.s.

1
/ ulds < oo (1.84)
0

t 1 t
Ay = exp {—/ usdWs — 5/ ugds} (1.85)
0 0

Assume that E[Ay] = 1. Then, the process (Wt—l—fg usds,0 <t <1) is a Brownian
motion under the probability Ay - .

Proof. Omitted, see [60]. [

and let

Remark 1.2.3.1. Two archetypal cases where E[A] = 1 are, first, when the
Novikov condition is verified:

E [eXp (% /01 ugds)} < 00 (1.86)

and, second, when the Kazamaki condition is verified:

1 /1
FE {exp (— / udes)

2 Jo
Using either one of the two criteria above, it is immediate to obtain the following

corollary of the Girsanov theorem:

Theorem 1.2.3.2 (Cameron, Martin). Let h € H. Then W + h is a Brown-
ian motion under the probability measure with density with regard to the Wiener

measure given by:
1 1 /1
exp{—/ hde5_§/ hids} (1.88)
0 0

Equivalently, this means that for any F € LPOW, ), p > 1, and any h € H, one
has:

< 00 (1.87)

E, {F(w + h) exp {— / hydW, — %/01 hgds}] = E,[F] (1.89)
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The Cameron-Martin theorem was actually proved prior to the Girsanov the-
orem. It admits various intuitive proofs, one of which is based on characteristic
functions and suits our setting well:

Proof. First recall equation (1.62): for any v € W*:

we (U, W)y, = (/01 v(]t, 1Dth) (w) (1.90)

Therefore the characterisitc function of the Wiener measure is:
E[ei<y,w>] _ E[ei s u(]t,l])th] _ eféf(} v(]t,1])2dt (1.91)
and similarly:

Elexp (i (v, w) (w + h)) - Aq]

= [exp{ /Oly t,1] th+z/01V(]t, 1])h(t)dt—/01 h(t)th—%/Olh(t)zdtH
- {exp{/ol — it )) thH exp {i/oly(]t, 1])h(t)dt—%-/01 h(t)%zt}
_ exp{/ (iw(ir.1 t))th}exp {i/oly(]t, 1])h(t)dt—%-/01 h(t>2dt}

— o (-5 / u(]t,u)?dt)

= Elexp (i (v, w))] (1.92)

so we are done. ]

By the Cameron-Martin theorem, it is clear that if X = Y a.s. then for any
h € H one also has X(-+ h) =Y (- + h) a.s. Therefore it is reasonable to try and
consider derivatives in this direction. Also, the following result which we copy from
[41] is a converse to the Cameron-Martin theorem which leads us not to consider
other directions than the space H for our derivatives:

Theorem 1.2.3.3. Let w € W — H. Then: u(-+w) is not absolutely continuous
with regards to .

Proof. Omitted as it is based on elaborate Fourier analysis considerations and we
will not make direct use of the results; see [41] for the details. ]
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Construction of the Gross-Sobolev derivative on the Wiener space

Let 1 < p < 0.

Definition 1.2.3.1 (differentiability in a direction). We will say that X € LP is
differentiable in the direction h € H when the following limit exists in the LP sense:

V)X (1) = Tim X(w+ ah) — X(w)

a—0 0%

(1.93)

Suppose that X € L? is differentiable in every direction h € H. Then it is clear
that a.s. h € H +— V; X € R is linear and we would like to consider the "whole"
gradient VX of X as a random variable with values in £(H,R) ~ H. For this to
be a tractable framework, we need an L? structure for H-valued random variables.
More generally, if = is some separable Hilbert space, one may define:

1 X[ e vz = 11X |2l g = |l Sugl(%X)EHLp(u) (1.94)
This leads us to the following definition of differentiability, which, because we work
in infinite dimensions, demands slightly more than just having a partial derivative
in each direction:

Definition 1.2.3.2 (differentiable random variables). We say that X € LP is
differentiable and we will note X € D, 1, if X is LP-differentiable in every direction
h e H and if VX € LPOW, u, H), ie:

sup VX

lg|m=1

< 0 (1.95)

Lr

Remark 1.2.3.2. In operator theory language D, is the domain of the operator
V.

Let us now give a few archetypal examples of differentiable random variables
together with their derivatives:

Proposition 1.2.3.1. Let g, h € H. Then [ hdW €D, and
vg/hdw = (9, h)n (1.96)

Proof. [ hdW € LP because it is gaussian. That it has a derivative in every
direction, and the computation of these, are straightforward consequences of the
linearity, see proposition 1.2.1.2. Then by the Cauchy-Schwarz inequality it is clear
that, p-a.s:

sup V, [ hdW = sup (g, h)u < |hlu (1.97)

lglm=1 lglrr=1

so V [ hdW is well defined in LP(W, u, H) and we are done. O
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Let us also note that, as a consequence of the previous proposition, W; € D, ;
and:

Vth = Vg / 1[07t]dW = / 1[07,@9 = g(t) (1.98)

Another crucial example is the following:

Proposition 1.2.3.2. Let g,h € H and let P € C[X]. Then P([hdW) € D,,,

" v,P ( / hdw) =P ( / de) (g, h)u (1.99)

or equivalently, by the Riesz theorem:
V/de =h (1.100)

Proof. Since [ hdW is gaussian it has moments of all orders and P( [ hdW) € L?.
Now, using proposition 1.2.1.2 and a Taylor expansion, we obtain, p-a.s:

P ((/ hdw) (w + ag)) = P ((/ de) (w) + a(g, h)H)

degP (n) ; w
= ZP ((ch!iW)( ))a"(h,g)”H (1.101)

Since the P (([ hdW)(w)) are in LP as well it is clear that the Newton ratio
converges in L” as « tends to 0 and we obtain the existence if derivatives in every
direction. Now, similarly to what we have done in the previous proof, a.s:

|jgglvgp (/ de) < ‘P’ </ de)' bl (1.102)

s0 we obtain VP ( [ de) e LP(W, u, H) and

Vs I 0

]

It is straightforward to generalize this to polynomials in several variables, and
therefore we obtain the following:
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Proposition 1.2.3.3 (differentiability of the polynomials on the Wiener space).
Suppose that an ONB (h;) of H has been fized. Then, any polynomial on the
Wiener space is in D, 1, and for any g € H:

v,P (/ W, ,/hndw> ~Y or (/ jndW, - ,/hndW) (0.h)n
=1

(1.104)
or, equivalently:

VP (/hldW,m ,/hndW> => opr (/hldW,--- ,/hndW) hi  (1.105)
i=1

We now prove the:

Theorem 1.2.3.4. The Gross-Sobolev derivative is a closed operator, ie if (X,,)
is a sequence in D,y which converges to 0 in LP then if (VX,) converges in
LPOW, p, H) its limit has to be 0.

Proof. Since we know that lim VX, exists it is enough to prove that it is 0 in every
direction, ie for any h € H, V,X,, — 0. Since the polynomial random variables
on the Wiener space are dense in LP", by duality it is enough to prove that for any
polynomial ¢: E[¢V,X,] — 0. To do this, we note that:

d

E[V, X, 0] = aazoE[X”(' +ah) - g
= %(FOE {anﬁ(- — ah) exp {a/ol h(s)dW, — %2/01 52<3)d5}]

= E [Xn (—vh¢+ ¢/01 h(s)dwsﬂ (1.106)

so we are done by Holder’s inequality. 0

Theorem 1.2.3.5. I, ; is a Banach space if equipped with the norm:
| X |, = 1 Xz + VX Lo, 1) (1.107)

More precisely, Dy, 1 is the completion of the set of polynomials on the Wiener space
for that norm.

Proof. For the first part, an operator is closed if and only if its domain is a Banach

space for its graph norm so the previous theorem gives the conclusion.
Alternatively we may obtain the result in a more "computational" way by

considering a Cauchy sequence (X,,), and by noting that since the Lebesgue spaces
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are Banach spaces, (X,,) has to converge in LP, to, say, X, and (VX,) has to
converge in LP(H), to, say, £&. Now we just need to prove that X € D,; and that
VX =& Todo this, let h € H and (o) a sequence of real numbers decreasing to 0.
Then, since L” convergence implies the almost sure convergence of a subsequence,
by a diagonal extraction procedure there exists a subsequence (X)) such that
a.s. for every k:

Now we simply write:

Xw(m+n)(' + agh) — Xp(mn)
— (& h
o (ga )H

< X¢(m+n)(' + akh) - Xl/)(ern) - Xz/;(n)( + O./kh) — Xw(n)
B e93 O

Xom) (- + arh) — Xym
< | Kuml ak ) = Xon) Y Xum

k

< |VaXym — (€ )l (1.109)

Let € > 0. There exists /N such that for any n > N the third term is controlled by
€. Take n = N from now on. There exists K such that for any k > K, at n = N,
the second term is controlled by e. Finally, at n = N and k = K, by the Cauchy
property for big enough m the first term is controlled by €. Therefore if we let m
tend to infinity we obtain:

X('+OZKh)—X_

077¢

(&, h)u| < 3e (1.110)

This proves that X has a differential in direction h and that this differential is
(€, h)m. Then since £ € LP(H) we automatically obtain X € D, ; and VX = ¢ so
we are done.

For the second part, we note that the polynomials are dense in any L”, and
actually by using the same technique as before one may prove that they are dense
in D, ; as well. O

Remark 1.2.3.3. The construction is sometimes done by defining the derivative
on the polynomials only, by proving a version of theorem 1.2.3.4 for polynomials
only, and by defining D, as the set of those random variables X for which there
exists an approzimating sequence of polynomials (P,) such that the gradients (V P,)
converge. Then by theorem 1.2.3.4 it makes sense to define VX = 1imVP,. In
this construction D, ; is automatically the completion of the polynomials for the op-
erator norm. Of course it is possible (but tedious) to prove that both constructions
are equivalent.
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Extension to Hilbert space valued random variables and higher order
derivatives

If = is a separable Hilbert space, then there is no difficulty in extending our results
to LP(W, u, =), the Lebesgue space of random variables taking values in =. If (z;)
is an ONB of = and if (h;) is an ONB of H then we define the polynomials on the
Wiener space as random variables of the type:

Sp (/ hydW, - ,/hnde) .z (1.111)
j=1

and all the ideas and proofs may be adapted in a straightforward way.

We are especially interested in the case where & = H®* the kth order sym-
metrized tensor power of H (see appendix A). Indeed, this case allows us to
construct higher order Gross-Sobolev spaces via an easy recurrence:

Dy = {X €Dyt |V X €Dy <H®(k‘1)>} (1.112)

and
VX =V (VF'X) (1.113)

in the sense of D, 4 <H®(k_1)>.

1.2.4 The divergence operator

As in the finite dimensionnal case, the divergence operator will be defined as the
adjoint of the gradient, although on te Wiener space the formal definition is slightly
more involved:

Definition 1.2.4.1 (Divergence on the Wiener space). Let & € LP(W, u, H). We
say that & € dom,(0) if for any ¢ € Dy 1 we have:

E[(Vo,&)u] < c|¢lp,-, (1.114)
and in this case we define 0& via the Riesz theorem by:

E[¢6¢] = E[(§, V)] (1.115)

The following results will be useful:

Proposition 1.2.4.1 (divergence of a product). Let & € dom,(5) and X € Dy,
for some q > p*. Define r > 1 such that:

LR (1.116)
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Then X¢ € dom,.(6) and:
5(XE) = Xo¢ — (VX, )y (1.117)

Proof. The choice of r justifies that both expressions on the RHS are well defined
in L" by Hélder’s theorem. Also, let ¢ be any polynomial on the Wiener space.
Then ¢ has moments of all orders, and especially of order r*. Therefore we may
write:

E[B(XE)¢] = ElXE V)]
= E[(§, XVo)n]
= E[(& V(XE) — oV X)]
= El(¢(X0§ = (VX,&)n) (1.118)
so by duality the proof is finished. O

Proposition 1.2.4.2. The divergence of a deterministic h € H 1is the stochastic
integral of its derivative:

1
5h = / h(s)dv, (1.119)
0
Proof. By the definition of the divergence, for any polynomial ¢:
E[¢d6h] = E[V¢] (1.120)

On the other hand, simplifying formula (1.106) we obtain:

E[V,p| = E [d)-/de} (1.121)

so by the usual duality argument we are done. O

1.2.5 Ornstein-Uhlenbeck operator on the Wiener space
Definition and first properties

Let us define a family of operators on the polynomials on the Wiener space by the
formula:

P (f (/ hldW,...,/hndW)> - <Pt(")f) (/ hldW,...,/hndW) (1.122)

where Pt(") is the Ornstein Uhlenbeck operator on R"™. The results for the finite
dimensionnal case are automatically lifted since the ([ hdW,..., [ H,dW) are
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normal centered gaussians; in particular (P;) defines a contractive LP semigroup
on the polynomials on the Wiener space, and for any polynomial X, the Mehler
formula holds:

PX(w)=FE |X (e tw+v1— e—%w)] (1.123)

It is straightforward to extend (P;) to a contraction semigroup on all LP by den-
sity; Mehler’s formula is then verified on all L” and, as in the finite dimensionnal
case, there is no ambiguity about the choice of p. As a semigroup (P;) admits a
generator which we denote £. As in the finite dimensionnal case, the P, and L are
symmetrical. Similarly to equation 1.122 we have:

L <f (/hldW,...,/hndW>) = (L™ f) (/hldW,...,/hndW) (1.124)

We will also prove that:

Theorem 1.2.5.1. Whenever both expressions are well defined:
L=050V (1.125)

Proof. Tt is enough to prove the equation for the polynomials, and indeed:

V(P (/hldW,...,/hndW)> :i&-P </h1dW,...,/hndW) hi

(1.126)
and therefore

s ([ [ )
= Y or (/hldW,...,/hndW) Shi — S 0P (/hldW,...,/hndW> Ik

i=1

(
S (P (/hldW,...,/hndW)) (1.127)

O
Finally the following result is an immediate consequence of formula (1.122):

Theorem 1.2.5.2. For any X € C,,:

PX =e™X (1.128)
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and

LX =—nX (1.129)
In other words, the Wiener chaos decomposition diagonalizes the Ornstein Uhlen-
beck semigroup.
Subordination of the Ornstein-Uhlenbeck semigroup

In order to prove some interpolation results for the Gross-Sobolev spaces, we
will need to make an intensive use of a semigroup which is closely related to
the Ornstein-Uhlenbeck semigroup. More precisely, one may introduce 7T} be the
semigroup generated by —(Id — £)'/?; then we know that Id — £ is the generator
of the submarkovian semigroup e *P, and that T} is its 1/2-subordination (see
appendix C for details), therefore one has the following explicit expression for 7T;:

Tt:/ e * P2 (ds) (1.130)
0

where the probability measures A\ are characterized through their Laplace trans-
forms: for 0 < < 1

/ e N (ds) = e (1.131)
0
and one may compute explicitely by inverting the Laplace transform:

1 t2
)\iﬂ(ds) = ﬁt{gme’@ - ds (1.132)

and therefore: .
T, = Lt/ 8_3/26_86_%P3d8 (1.133)
PAVZE N

We note that T; -1 = ¢ *- 1 and that more generally:
Proposition 1.2.5.1. If F' € LP then
ITF e < e[| F | (1.134)
Also:

Proposition 1.2.5.2. If F' € L? then

T,F € (D, (1.135)
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1.2.6 Fractional spaces and the Meyer inequalities

We would like to define fractionnal powers of the operator Id + £ as opeators on
a subspace of LP. In the case where p = 2, it is natural to use the Wiener chaos
representation and to set:
(Id+ L£)*2L,(f,) = (1 +n)2 - L,(f.) (1.136)
Then, the definition is completed by linearity and density. Of course, for a general
p this strategy is no longer valid, but we inspire from it and the equation:
1 oo
(1+2) = —- / et D) e gy (1.137)
I'(a) o
which is valid for z,a > 0 if I' denotes the usual Gamma function and we define
an operator on LP as:
1 o0
A X = — - TP Xdt 1.138
X =), e (159

It is easily verified that the integral above is well defined on L? in the sense of
Bochner and that A, is a contraction on LP. Also, by a simple change of variables:

Aaln(f) = (1 +n) =L (f) (1.139)

Therefore, on one hand our definition makes intuitive sense and on the other hand
we note that:

Proposition 1.2.6.1. A, maps the polynomials on the polynomials.
and

Corollary 1.2.6.1.
Ay (LP) D LP (1.140)

We will now prove that:
Proposition 1.2.6.2. A, is injective.

Proof. First suppose that p = 2, and let X € L? be such that A, X = 0. Then if
we write a decomposition in Wiener chaoses:

X = I.(f) (1.141)

we have

A X = —_— 1.142
Z (14 n)« ( )
so the orthogonality of the Wiener chaoses yield the result. Now if p > 2, LP C L?
and we also get the result.
Finally let us suppose that p < 2. Then, we have the following;:
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Lemma 1.2.6.1. Let X € L? and Y € L* . Then:
E[AX - Y]=FE[X-AY] (1.143)
Now let F be the set of those polynomials with L? -norm 1. Then:

|AaX ||, =sup E[A.X - Y] =sup E [X - (1 +n) Y] (1.144)
YeE YeE

therefore ||A,X]||;, = 0 if and only if X is orthogonal to every polynomial, ie iff
X =0 so we are done. O

This justifies that we introduce:

Ay if a<0

(Id+£)* = A7V ifa>0

(1.145)
This definition of our fractional power coincides with the intuitive one in the L?
case (because the two operators coincide on polynomials). Also, we have the
following crucial:

Theorem 1.2.6.1 (Meyer inequalities). Let 1 < p < oo and n € N. Then, the
two following norms are equivalent:

IX1] = 1 X][ze + [V X | o arom)

and

X[ = [|(rd + £)"2 x|,

In the p = 2 case it is very easy to prove the result by comparing the respective
actions of V and (Id + £)*/? on a polynomial. Unfortunately, this idea does not
extend to a general p for the lack of an orthogonality property. We omit the proper
proof which, although classic, is quite involved and may be found in [53] or [66]
for example. The same references also provide a slightly more precise result which
is a consequence of Meyer’s multiplier theorem:

Theorem 1.2.6.2. Let 1 < p < 00, s € R and a > 0. Then the two following
norms are equivalent:

IX1| = [[(1d + £)*/2X ],

and
X[ = || (- Id + L)X,

The Meyer inequalities allow us to extend the definition of the D, ; spaces for
any 1 < p < oo and any real number k. Because the A, are contractions, one may
see that:
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Proposition 1.2.6.3. Let 1 < p; < ps < o0 and s; < So. Then:
Dy sy CDyys, (1.146)

In particular, elements of I, _ for a positive s are not necessarily random
variables and we refer to them as distributions on the Wiener space. Also, an
immediate corollary of lemma 1.2.6.1 is:

Theorem 1.2.6.3. Let 1 < p < oo and s > 0. Then:
Dy s =Dp s (1.147)

Also, for p > 1, D, 4 is uniformly convex as it is naturally isometric to L” which
in turn is uniformly convex; in particular this proves that 1D, , is isomorphic to its

bidual and:

Corollary 1.2.6.2.
]:D)*

p*775

=D,, (1.148)
Another consequence of the reflexivity of D, ; is the very convenient:

Lemma 1.2.6.2. Let p > 1 and s > 0. Let (X,,) be a sequence of random variables
which converges to X in LP and which is bounded in D, 5. Then (X,,) converges to
X inDy,.

Proof. Since I, 5 is a reflexive Banach space, as a consequence of the Banach-
Alaoglu theorem there exists a subsequence Xy(,) which converges weakly in D, ,.
In particular, for any polynomial random variable P:

lim E [(Id + L) Xy - P] —E [(Id + L)% X, P (1.149)
n—oo
so we are done. O]

We finish this paragraph with a result which we will often use:
Proposition 1.2.6.4. Let p €]1,00].
o Let h e LP(H). Then:

1 1
P, / hy,dW, = et - / P,h,dW, (1.150)
0 0
o Leta >0, s € R and h € D, (H). Then, [, hydW, € D, and:

1 1
(a-Id+£)8/2/ huqu:/ (14a)-Id+ L) hadWy  (1.151)
0

0
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1.2.7 Distributions on the Wiener space

First we introduce:

Definition 1.2.7.1 (Smooth random variables). The space D of the smooth ran-
dom wvariables on the Wiener space is defined as:

D =)D, (1.152)

We equip it with its natural Fréchet space topology (see appendix A), ie the
one given by the distance:

_yy L X Y, (1153)
275 T+ X = Vs,

p=1 k=0

Then it is natural to consider the:

Definition 1.2.7.2 (Distributions on the Wiener space). The vector space IV of
the distributions on the Wiener space is defined as the strong dual of the space D
of smooth random variables:

U Dy (1.154)
p>1,5€R

This space is naturally equipped with its strong dual topology.

The interest of the space I is that the objects of the Malliavin calculus, which
were defined on D, extend to D' by duality, just as operators on spaces of test
functions extend to distributions. We exemplify this idea with the gradient and
the divergence, starting with the:

Theorem 1.2.7.1 (Continuity of the gradient). For every p €]1,00[ and s € R,
V admits a continuous extension:

V:D,s > D,s1(H) (1.155)
Proof. Let X € D. Then there is:

VX, o = ”M+£ VXhﬂm
::Hv@.m+£YT o
< Hld+£)(21d+£ ]M)
< C~}(

= C- || X|b,., (1.156)
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Here we have used the Meyer inequalities (and their extension). The prove is then
finished as D is dense in any of the D, ;. m

As an immediate consequence of this we get:

Corollary 1.2.7.1 (Weak gradient). V admits a continuous extension:
V:D' — D'(H) (1.157)
Also by duality one deduces:

Corollary 1.2.7.2 (Weak divergence). The divergence admits continuous exten-
s0mS:

5Dy, (H) = Dyyy (1.158)

and:
5:D =D (1.159)

1.2.8 Weak martingales

In this section we define a notion of martingality for weak processes. The results
in this paragraph perhaps are less classic than those in the rest of this chapter,
and rather than giving the most general possible statements we content ourselves
with notions which will fulfill our purpose later on. More general results may be
found in [77] or [49].

First we need to define a notion of weak measurability and a weak conditionnal
expectation. To do so we show that in relevant cases the strong conditionnal
expectations commutes with operators related to the Ornstein-Uhlenbeck operator:

Lemma 1.2.8.1. If X € LP(u), p > 1 is Fy-measurable and s > 0 then P,X is
Fi-measurable as well.

Proof. First we obtain the result if X is in the nth Wiener chaos since then
P, X = ¢ ™ X. The result then holds for a polynomial function on W, and fi-
nally for any X in L” by density of the polynomials. O]

Lemma 1.2.8.2. If X € LP(u), p>1 and s > 0 then
P,E[X|F] = E[P,X|F] (1.160)
Proof. Indeed if Y € L? and Y € F, we have:
E[P,E[X|F]Y]=E|[E[X|F]PY]=E[XPY]=FE[P,XY] (1.161)

and P,F [X|F] € F; from the previous result, which completes the proof. ]
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Similar results for £ or for (Id + E)k/2, k € Z are obtained by the same method
if X is regular enough. This leads to:

Lemma 1.2.8.3. If X € D,;, p > 1, k > 0 then E[X|F] € D, .
Proof. Indeed, Y = (Id + £)"* X € L7, so:
E[X|F]=E [([d + L) 7Y|F| = (1d+ £) P EYIFR) (1.162)
[

We may now define a notion of weak measurability:

Definition 1.2.8.1 (Weak measurability). We will say that T € I is weakly
Fi-measurable if VX € D,

<T7 X> = <T7 E [Xl'/—';fD (1'163)

If X is a proper random variable this is equivalent to being measurable. Also
we have:

Lemma 1.2.8.4. T' € D, _; is weakly Fi-measurable if and only if (Id + E)_k/Q X
15 measurable.

Proof. Indeed if T' is weakly measurable the measurability rewrites, VX € D:

E|(Id+L)™?T. (Id+£)’“/2X} '

E|(Id+£) T - (1d+ £)*"* E [XIE]]

_— :(]d L LT B [(Id + L) XmH

- ElE [(Id 4Ly H T\]—}] (Id + £)*? X]
' (1.164)

and D is stable by (Id + L F/2 and dense in L” . so we get:
v ( : g
(Id+ L) *’T=F [(1d+£)*’“/QT|ft] (1.165)

and therefore (Id+ £)*?T is F,-measurable. Conversely if (Id+ L£)™"*T is
Fy-measurable (Id+ L) ™**T = E [(quL £)~k? T|~7:t] holds and we can do the
above computations backwards to find that 7" is weakly F;-measurable. O
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We also define the conditionnal expectation of 7€ D' by:
(E[T|F],X) = (T, E[X|F]) (1.166)

It is easily checked that this definition extends the usual conditionnal expectation
on LP and that it is equivalent to defining:

E[T\F] = (Id+ L) E |(Id+ £) ™" T|F, (1.167)

and hence that the negative Gross-Sobolev spaces also are left stable by the weak
conditionnal expectation.
We now may define a weak martingale as a weak adapted process M verifying
the martingale equality:
E [M|F,| = M (1.168)

for s <t. If M is a weak martingale and M, € D, _;, we note that:
E [(]d+£)_’“/2 M| F,| = (Id+ £) ™ M, (1.169)

from which we deduce the two following results:

Lemma 1.2.8.5. If M is a weak martingale and M, € D,_; then Vs < t,
M, € D, and | M|lp, , <|Mlp, -

Lemma 1.2.8.6. A weak process (M,;)o<i<1 such that My € D, _y is a weak mar-

tingale if and only if the process <([d + E)fk/2 Mt) 15 an LP martingale.
0<t<1

We now show how we may define Brownian integrals of weak adapted processes
and how these provide an example of weak martingales. First we recall that the
divergence as defined on D, ;(H) extends the stochastic integrals to non adapted
processes and that the divergence extends by duality to D'(H). We will use the
following notation: if f € D'(H), we note fijg4 the element of I'(H) whose time
derivative is f before ¢ and 0 after ¢ and we introduce: fg fu)dw, =6 (fio.)-

Now let us suppose that f € D, _(H). Then fjo4 € D, _4(H) and we know
that:

(1d+ L) 6 (fion) =0 ((2- 1d+ £ foy) (1.170)

Let us note M, for this quantity. Clearly, if f is weakly adapted,
t
M, :/ [(2~Id+£)_k/2f(u)] AW, (1.171)
0

is a martingale, so we have proved:

Proposition 1.2.8.1. If f € IV(H) is a weakly adapted process, then the weak
process (fot f(u)qu> is a weak martingale.
t
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1.2.9 Malliavin calculus in Banach spaces

It is possible to extend the construction of most of the mathematical objects we
have reviewed in this chapter to the case of random variables taking values in a
Banach space X if that space enjoys the so-called uniform martingale-difference
property, UMD for short:

Definition 1.2.9.1 (UMD property). A Banach space X is said to have the UMD
property if for some p €]1,00[, there exists a universal constant C(p, X) such that
for every (discrete) X -valued, LP martingale, for every e € {—1,1}" and every

N € N there 1s:

N p
E|D en(M, — M,1)|| | <C(p,X)- E[|My — My|[%] (1.172)
n=1 X

We will not provide a full review of UMD spaces and their applications; instead
we suggest the survey [58| and the references therein. We will content ourelves
with using the fact that the most important results in Malliavin calculus, espe-
cially the construction of the gradient and the Meyer inequalities, hold for UMD
valued random variables. The intuition behind this is that the UMD property is
a necessary and sufficient condition on a Banach space for the Hilbert transform
to be bounded on that space.

We also mention examples of Banach spaces enjoying the UMD property:
Hilbert spaces on one hand (we have already contructed the Maliavin calculus
on Hilbert spaces) and on the other hand the Sobolev spaces W), ; for 1 < p < oo,
which will be our case of application. The CF, however, are not UMD.
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Chapter 2

Topological structure of S and S’

In this section, we recall the results about the topology of S and S&" which we will
need in the sequel. First, several families of semi-norms are introduced and it is
proved that they all endow the Schwartz class with the same (usual) Fréchet space
topology. We then recall some important properties of this topology.

2.1 Two standard families of semi norms on S

For a multi-index o € NV and x € RY, we will use the following notation:

al=ap-ay

N
a o o
=t xy

Do = o g

Then there is a classic family of semi-norms defined by the following equation for
a, B e NV:
1715 = sup [¢*D% () (2.1)

z€RN
We recall that the Schwartz class, for which we note S(RY), is defined as the space

of those functions on RY such that for every o, 5 € NV: ||f||gx;) < 00. Then this
family of semi-norms naturally define a Fréchet space topology (see appendix A)
through the distance:

i =SS L 1S = gllsy 2.9
o5 27 1N — gl
We also introduce the following, for a, 5 € NV:

£, = |2+ 2°DP f(2)]| s (2.3)

and we have the:

35
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Proposition 2.1.0.1. For p,q € [1,00], the families (]| - ||$)B,oz,ﬂ e NV) and
(I| - ||((Xq7)5,0z,ﬁ € NY) define the same topology on S (]RN).
Proof. Indeed, on one hand, multiplying and dividing by (1 + |z|?)® yields:
dr 1/p e/
| fllze < {/—} - sup |(1+ [z]7)*Pf ()| (2.4)
I CEarn I

and the integral above is finite for big enough s(N). p and such an s being fixed,
the exists a polynomial dominating (1 + |z|?)*/?. Hence there exists a constant
C(N,p) and an integer k(N,p) such that:

I8 <o S A1S (2.5)
[7|<k

On the other hand, one can use the following (non-optimal, but sufficiently precise
for our use) Sobolev embedding result; see, for example, [1]:

Proposition 2.1.0.2 (Sobolev embedding). If k > N/p, Wk? — C°.

which, choosing a big enough integer £ at fixed p and N and using the Leibniz
formula, proves that there exists constants C;(p, N) such that:

IFISE < O l2°DP fllynn < Co- > £, (2.6)
|v|<k,0<a
This concludes our proof. O

2.2 The operator K and associated semi norms

In this section, we introduce families of semi-norms which define the same topology
on S than the ones we have studied in the previous paragraph. The purpose of
these is that these less classical families will be more convenient for the study of
S’. This will be useful as we turn to the lifting of random variables in the next
chapter. Such results are well-known (cf, for example, [81] or [25]) but not very
documented, so we provide details for the sake of completeness.

All our study will be based on the following differential operator:

K=1Id—A+ |z (2.7)
ie:
Kf(x) = f(z) = Af(x) + |z|*f(x) (2.8)
We also introduce:
K=K-1Id (2.9)

Let us note that & and K are continuous operators on S. Our agenda is to formally
define fractional powers of I and to study their regularity.
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2.2.1 Semi norms built on L?

We start with the following observation: K is symmetric and positive for the
Hilbert space structure induced by L? on S, ie for every f,g € S:

Jn o= [ 1o (210
and:
Jwp-s=[@+ppeepme = fie e

It is therefore natural to try and diagonalize K and indeed we prove that there
exists an orthogonal basis of L? made of elements of S(R™) which are eigenvectors
of IC. These eigenvectors are closely related to the so-called Hermite functions.
We have recalled the facts we need on Hermite polynomials in chapter 1 and now,
for n € NV, we introduce:

Falw) = Ha(v22) exp(—|z[*/2) (2.12)

It is noteworthy that, abusively using the same notation for the Hermite func-
tions in dimensions 1 and V:

Fal@) = fur(21) - fay (2) (2.13)

These belong to the Schwartz class and as can be checked using the PDE verified
by the Hermite polynomials, they are eigenfunctions of the differential operator IC
associated to the eigenvalue:

Ap=2n|+N+1>1>0 (2.14)

respectively. In dimension 1, the fn form an orthogonal family since each fn is
an eigenvector associated to a different eigenvalue of the symmetric operator K.
The orthogonality extends to multiple dimensions as the relevant multiple integral
can be separated into a product of multiple integrals using (2.13). Using this fact
it is easy to compute the L? norm of f,, hence the following functions form an
orthonormal family:

fl@) _ Ha(v22) exp(—|a]*/2)
oN/Ay/nl TN/ /!
Finally, (f,) is an orthogonal basis of L?, which can be checked by using the fact
the the normalized Hermite polynomials are an orthogonal basis of L?(uy) and
that the following is an isometric isomorphism mapping f, on Hn/\/m:
L — L*(p)
[z NP g (1 /1/2)

and we have proved the:

fn<x> =

(2.15)

(2.16)
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Theorem 2.2.1.1 (Reduction of K). (f,) is an orthonormal basis of L* made of
elements of S(RY). Moreover f, is an eigenvector of K associated to the eigenvalue
An =2|n|+ N + 1.

Now, we may decompose any f € S (or more generally: any f € L?) as:

F=> " calf) fa (2.17)

and then:

£z = | D ealf)? (2.18)
This allows us to define the fractional power K° for s € R in the following way:

Kof =" ealf)- A f (2.19)

neNN

on the vector space dom2(K/) of those f for which this quantity is well defined
(see appendix C for the details). We also introduce the norm:

1Fllso,. = I ]2 (2.20)

and the space Sy, = domy2(K*/?) is the completion of S for this norm. When this
is defined, there is:

1fllssn = | D enlf)?- N (2.21)

neNN

We now study the effect of deriving or multiplying by a monomial an element
of our ONB; let us note ¢; for the N-tuple with a 1 in the ith coordinate and 0
elsewhere, then:

and

Once again the details of the computations rely on the recursion verified by the
Hermite polynomials. Using the decomposition (2.17) in combination with the two
equations above one may explicitely compute the coefficients m,, and d,, such that:

v f@) = Y mafale) (224

neNN
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and
Oif(x) =) dufu() (2.25)
Then one obtains the following:

Theorem 2.2.1.2. There exists a universal constant C(N) such that the following
controls hold:

|z fllz2
10; - fllr2

C- Hf”ébJ (2'26)
C I flls2n (2.27)

IAIN

From which on deduces the:

Theorem 2.2.1.3. The families of semi norms (|| - ||((12’)5,a,ﬂ e NY) and
(Il - 1ss.,» s € N) define the same topology on S (RY).

We do not work out the details of the proof, first they may be found in [59],
second because in the next paragraph we will prove results in the L” framework
which are an extension of the L? case we studied in this paragrph.

2.2.2 Semi norms built on L?, 1 < p < o0

In order to define the fractional powers of K, we will prove that this operator may
be understood as the generator of a semigroup on L?; then we will be able to use
the results in appendix C. The following results are detailed in [25], for example.

First we note that C is the generator of a semigroup K; on LP; the transition
density k; of K, is given by:

ko(z,y) = ) exp(=An - t) - ful@) - fuly) (2.28)

neNN

In the case of dimension 1, by Mehler’s formula this is:

ki (2,)

= exp(=2t) - Y (exp(—2t))" - ful2) - fuly)

M8

Il
o

n

et drye™ — (2% + y?)(1 + e~ %)
—_— . eX
(1 —e ) P 2(1 —e %)

—t

- m exp <—% - coth(2t) - <x2 - %ét) + y2)> (2:29)
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and in dimension N there is:
N
ke(z,y) = [ 0" (i) (2.30)
i=1

The fractional powers of I may therefore be defined as domain operators on LP as
is explained in apendix C. We may therefore define the spaces S, 5 as domLp(/CS/Q),
ie the completion of S for the norm:

1£1ls,.. = 12 f| o (2.31)
Similarly, K is the generator of a semigroup K; with transition density:
kD () = exp(t) - K (2.) (2.32)

and it is shown in [25] that there exists a universal constant C'(/V) such that:

l;t(x7y) < C'Qt(‘ray> (233)

where ¢; is the transition density of the heat kernel. Therefore there is the:

Proposition 2.2.2.1. For s > 0, and f € LP, there is:

1 ls,. < C-|da=a)y"ip)| < c- il (2:34)
and conversely:
Iflle < C71 1 flls, (2.35)
Proof. According to the results in appendix C let us write:
K2 f(z) = — / Tt B ()
I'(s/2) Jo
1

T T(s/2) /0 £ e /]R ) f(y)dydt (2.36)

Then by Holder’s inequality and because k is controlled by the heat kernel:

—s/2 1 > s/2—1 _—t 7.
KBr@| < g | et Rl

¢ - s/2—1 _—t
< mogm | [ atel)dva

- o Jua sy,

< -l
= C-|fll (2.37)

Finally, the second inequality is obtained by applying the first one to K¥/2f. O
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Remark 2.2.2.1. We could not directly obtain a result such as:
1flls, . < C -1l (Td = A)"" f|» (2.38)

ie getting rid of the absolute value inside the second term is not trivial; it is the
point of the next result.

We define continuous operators X; and X2 on S as:
(Xif)(z) = z:f (z) (2.39)

and:
(X2f) (@) = [« f(x) (2.40)

Then we prove the:

Theorem 2.2.2.1. There exists a universal constant C, depending only on
1 <p < oo and N, such that the following estimates hold:

CIKCY 2| 1 (2.41)
C|KCY2u)| (2.42)

(| Osu]| v

<
[ Xullzo <

Proof. All the notation in this proof is that of appendix E. We will apply theorem
E.0.0.26 to the operator K; to do so, first notice that one gets a good weight
function by setting:

p(z) = (14 |z*)® (2.43)
Then take m =1, by = 1, by = =1, ag = 0, p = 0 and v = 3, so that xyo = v = 3

and yo = = 0. Hence,
A=p" = plA=K (2.44)

and we have proved the:
Lemma 2.2.2.1. K € Aj 5 (RY,p).

Therefore we may apply theorem E.0.0.26 (in this case with y = 0); for a
generic constant C; and some A with small enough real part we obtain:

[ Aul|ze [[ullw2

Cillullwz,p0)

CQ“ICU — )\UHLP

Co - ([[Kullze + [A] - flullze)

Cg . HICUHLP (245)

VAN VAN VAN VAN VAN

For the last inequality we used proposition 2.2.2.1.
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Then by complex interpolation one gets:

IV=Aulz» < CIIVEu| 2o = Clulls,, (2.46)

so we obtain the first part of the result through the well-known (cf, for example,
|67]) inequality:

”8{&”[;} S CHV_AUHLP (247)

Also, one sees that:
X% ullze < 1Cullze + llullze + | Aullze < ClIKul|zs (2.48)
and similarly, one gets the second part of the result by interpolation. O

We finish this paragraph with a couple of results related to the interpolation of
the S, s spaces. First as an application of the results for semigroup interpolation
which may be found in appendix D there is the:

Theorem 2.2.2.2. We consider py,ps > 1, s1,s9 € Rand 0 <6 < 1. Let p and s
be such that: % = pil + 28 and s = 0sy + (1 — 0)sa. Then [Sp, 61, Spaosaly = Sps-

p2
Also we obtain the following through classic semigroup interpolation argu-
ments, cf appendix C:

Theorem 2.2.2.3 (Dual space of S,5). For 1 < p < oo and s € R there is:
S = Spr—s (2.49)
where 1/p*+1/p = 1.
We may also introduce some real interpolation spaces:

Definition 2.2.2.1 (Real interpolation of the S,;). Let p > 1 and s € R. We
define a family of Banach spaces T, s as follows:

o ifseZthenT,s =38,
o Otherwise let k = [s|, o0 = {s}. Then T,s = (Spr+1,Spk)

and there is the:

l—op’

Theorem 2.2.2.4. For any € > 0, there is:
Tps—e = Sps = Tpoie (2.50)

Proof. Omitted as it is very similar to that of theorem 3.1.0.9, which we prove in
detail. u

We also have a duality result for the real interpolation spaces:
Theorem 2.2.2.5 (Dual space of 7,5). For 1 <p < oo and s € R there is:
T/ =Ty (2.51)
where 1/p*+1/p = 1.
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2.2.3 Semi norms built on L

In this section we extend the LP results of the previous section to the L*> case.
We were not able to find the exact results we needed in the literature, so we built
our own proofs. More precisely, we will prove the:

Theorem 2.2.3.1. There exists a universal constant C' such that the following
estimates hold:

IV —Aulle
[ X sulloo

O oo (2.52)
Ol ul|o (2.53)

Proof. We prove the theorem only in dimension 1; results generalize to higher
dimension with no other difficulty than tedious notation. We start with the second
part of the theorem. We recall that K is invertible on any L” and its inverse has
a kernel II which is given by:

K fla) = /_Oo [z, y)f (y)dy (2.54)
M(z,y) = Z%j’éy) (2.55)

where the f, are the Hermite functions. Then by Fubini’s theorem:

1:0) = 3 1)) / P2 gy = / P @R (256)

so by Mehler’s formula one obtains:

I N N £ e G 9 (GRS A
e = [\ =y o (g ) @
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and hence:

1 2 00 2 9 9 4
’Cilf(fﬂ) N /\/117”4/ eXp ey 2((1;11_34))(1+T>>f<y)dr
2
- /\/?/ exp 5 H { +y2—1fr4wny<y)dr
_ 11—7r%
= / 7"4 émm)
2 2
</ exP( ;i; (y %x))ﬂy)dydr

_/ 11—r4 2)
B 1—7’4 21+T4

11+r ) 2r?
/ooexp( 57— aY ) f (y—l— 1+r4$) dydr (2.58)

So we obtain:

K™ f (@)

Hf“oo 11— 2 > 11+ 2
- 21+r4x P\ gy ) dudr
- V3. HfHoo/ L
1+ 2144
- V9 22 r? 1 2
= 2 Hf”oo ez - WGXP ——4.%' dr
< V2| fllse -7 /1/ i 1+T4 )dr (2.59)

First, we notice the following majorization:

2 22
K~ f ()] < \/; [ fllo - €= (2.60)

From this, we deduce that ! f is controlled by || f|l~ on any compact. Then we
do the following changes of variables in the last integral:

1
= 2.61
i 1474 (2.61)

t = s’ (2.62)

IN
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and these yield:

1
|]C_1f(f)3)‘ < ”f”oo e% / [8(1 _ S)]_3/4 e_stdS

1/2
-IIfIIOO-xef-/Q [ta® — )] et (2.63)

2

=% =%

From this one may already see that K f is continuous and bounded on any compact.
Now we cut this last integral into two parts:

2 322 2

xr e x
/2:/2 +/32 (2.64)

4

For the first integral, we note that on the domain of integration, there is:

3
2o >t 2.65
t(x®—t) > T (2.65)
SO
& —3/4 3\ 4 % 3\ 22
[02 [t(z* —t)] e tdt < (16) x_3-[62 e tdt < (E) v (2.66)
T T

and for the second one:

2

2 _3

T B 3 2 T
/ [t(z* —t)] B ety (Z) g 3/2e= 17" . / (2% — )73/ dt
322 3z2

4 3 _% )
= (-) xleixQ/ (1—7)"3dr  (2.67)
4 3/4

and this last integral is finite (its value is 4/4/2). Overall, we obtain a majorization
of the form:

IN

K (@) < [Crae 4 Corle e || ) (2.68)

Now we have on one hand, because of (2.60):

‘Sl|1<p1VC )] < \/> £ lloo (2.69)

and on the other hand, because of (2.68):

sup |[K~ ' f(z)] < (sup (Cro™2 + nge}l”‘")> oo (2.70)

|z|>1 |z|>1
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Also because of (2.68):

sup (|2°] - [K7f(2)]) < (Sup(Cl + sz3ei$2)> N lloo (2.71)

|z[>1 |z[>1
ie:
[X2E ™ flloo < C - [ flloo (2.72)
The proof is then finished as in the L” case. O]

We note that we could not get a control of the type: [|0julloe < C - [|KY?u|o
This is because ||0;ulloc < C - ||[v/—Aul|s does not hold in general. However, such
an inequality does hold for the Holder spaces A7, v € R, — N, cf [67]. We shall
therefore prove the:

Theorem 2.2.3.2. For v € R, — N, there exists a universal constant C such that
the following estimates hold:

10ullar < |V=2ular < C[IKY?ullax (2.73)
[ Xiullar < CIKYu|ar (2.74)

Proof. We do the proof for 0 < v < 1. Once again, we work with the operator K.
Let 0 < € < 1; we want to control the difference:

(z+ €K flz+e) — 22K f(x)
= ((z+ 2= 2?) K f(z +€) + 22 (/E—lf(x Ye) - /E—lf(a;)) (2.75)

The first term of the sum on the right hand side simply is: (2ze + €2) K1 f(z + €);
using the previous theorem one easily controls this by Cel|f|«. For the second
term, write:

K- Y +e) —
11—74 9 11—7“42
/\/ 11— 21+r4<x+6))_eXp(_EHrﬁ)]
11+, 272
/exp( 7Ay)f(y+1_1_7,4:1:>dyal7’
/ 11—r*
—
1—'r4 2144
11+r 2r? 272
/_Ooexp( X 4y){f<y+1+r4(x+e)>—f(y+1+r4x>}dydr

(2.76)

To control the first integral, one may use the following simple calculus lemma:
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Lemma 2.2.3.1. Let 0 < n < 1. Then one has a uniform control of the type:

11—r4( e 11— 2
ex ——= X € — €X
P\721 4 P\ 211"

1— 4 1—-nl—
< C(n) r € exp (——?7 r a:2) (2.77)

1474 2 144

and therefore the first integral is controled by:
1—-nl1—7r4 o0 11+r*
C 00 \/ - 2 —— ) dyd
lf1 / 7’41+T4 ( 2 1+r4x)/_ooexp< 21—7"4y) yar

(1 —r4)3/2 L—nl—r*,
cnfuoo/ oo (5t @

< ellf o (Catm)a=2 + Calme77'2) (2.78)

by methods similar to those of the proof of the previous theorem, noting that:
— / . . .. .
(}14::‘)1?22 < 1+1T4. It is possible, although non-necessary, to optimize the above in

7. Then, the second integral is controled by:

r2 v —rt o0 r
Cel il Jy /ey (250) oo (—digma) [ oo (~gt20?) dydr
< Cfllar fiy 1/ ) XD —%};:ﬁﬁ) dr (2.79)

1+ + < 1. Now the last integral on the right hand side has already been
encountered and majorized in the proof of the previous theorem, so we are done
as, putting the parts together, we have proved:

because

(z+ €K f(z +e) — 22K fz)| < CE|f]|av (2.80)

which means that:
IX*E fllas < 1 fllan (2.81)
and we finish the proof by the usual method. O]

We also relate the Sy 5 spaces to the S, ; spaces in the following way:

Proposition 2.2.3.1 (Some Sobolev type injections). The following injections
hold:

o Sy = Cf fors>=

) SOO,SC—>LPf0rs>%
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Proof. For the first injection, simply observe that S, — W, . For the second
one, write:

115, < [ g - [sun 1+ e @) (282

and notice that the integral if finite iff s > N and that according to theorem
2.2.3.2:
sup(1 + [z])7[f(z)] < C - [[K> fllo = Cllfls,, . (2.83)

2p

O
Now since Cf = w0 and LP = §, o we immediately obtain the:
Corollary 2.2.3.1. For any € > 0, the following injections hold:

° — Sps

oo,s+%+e
We may now deduce the:

Proposition 2.2.3.2 (Dual space for S 5). For any € > 0, the following injection
holds:
Slos = Soo—s—N—c (2.84)

Proof. We apply the first inclusion of the above corollary twice in a row and obtain:

S.. 8 S,
) j2

,s—l—%-‘,—s T Ypr,—s—

N_ — Soo,fst(%+p%)fe’ (285)

P

]

2.3 The topologies on S and &'

The results in the previous paragraphs allow us to understand how the topology
on § is defined. More precisely, there is the:

Theorem 2.3.0.3 (Equivalence of some topologies on S). Any one of the following
families of semi norms equips S with the same Fréchet space topology:

e for some fized 1 <p < oo: |- ||(apf)3, where a, 3 describe NV ;
o for some fized 1 < p < oo: | -|s,., where s describes N (or Z);

o for some fized 1 < p < oo: || -|7,,, where s describes N (or Z).
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It will be useful to note that for any 1 < p < oo:

S=[)Sp (2.86)

seR

and because of theorems 2.2.2.1 and 2.2.3.2:

S'=JS,. (2.87)

seR

The topology on &’ is then obtained as a strong dual-Fréchet space topology.

In the final paragraphs of this chapter, we list a number of useful properties
of the topology described in theorem 2.3.0.3. In the rest of this document we will
always consider that S is equipped with this topology and that S’ is equipped with
the associated strong dual space topology.

2.3.1 Properties of the topologies on S and S’

The results in this sections are consequences of more general theorems from the
theory of topological vector spaces; we refer to this appendix A for the relevant
definitions and results.

First, for some f € L2, recall that there is a decomposition:

k) = Y0 2 ) (289

and therefore:

Proposition 2.3.1.1. For s > N%, K~s 1s a Hilbert-Schmidt operator, and:

1K™ s = [Z )\1251 (2.89)

neNN =T

ie the inclusion Sy — Says is Hilbert-Schmidt (nuclear) for any k.
We deduce from this and theorem A.4.4.2 that:

Theorem 2.3.1.1. S equipped with its standard Fréchet space topology is a nuclear
topological vector space.

Also, because of theorem A.4.4.3 there is the:
Theorem 2.3.1.2. S’ equipped with its stong dual topology is a nuclear space.

There also is the:
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Theorem 2.3.1.3. S is a Montel space.

Proof. S is a nuclear Fréchet space. O]
and therefore:

Theorem 2.3.1.4. S’ is a Montel space.

Proof. S’ is the strong dual of a Montel space. O

Let us also note that S is barelled as a Fréchet space and that S’ is barelled as
a Montel space.

2.3.2 S’-valued paths

In this section we mention those results of topological nature which will provide
us with an understanding of the structure of regular S’-valued paths. We refer to
appendix A and to the references therein for details.

More precisly we would like to understand the structure of continuous paths
and of paths with bounded variation (BV for short) taking values in &’. First,
we note that since S(R”) is a Montel space, every weakly convergent sequence in
S'(RY) also is strongly convergent. Moreover, we recall that a function from a
metric space to a topological space is continuous if and only if it is sequentially
continuous. Therefore the notion of a continuous path on &'(RY) will not depend
on which topology we pick, and we introduce the following:

Definition 2.3.2.1 (Continuous S’-valued paths). The path:
T:[0,1] — S'(RY) (2.90)

is said to be continuous if and only if for all ¢ € S(RN), t s (T'(t), ¢) is a function
in C ([0,1], RY).

A similar definition holds for a bounded variation path.
We now turn on a representation of bounded variation paths on &'(RY) which
will be convenient to our purpose. Let T be a bounded variation path.

Theorem 2.3.2.1 (Grothendieck representation of BV paths). Consider

T € BV([0,1],8'). Then, there exist sequences (\,) € I*, (V,,) bounded in BV,
and (F,) an equicontinuous family of S'(RY) depending only on T such that
Vo € S(RY):

<T(t)> ¢> = Z )‘n ' Vn(t) ’ <Fn7 Qb) (2.91)

An analogue result holds for continuous paths.
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Proof. We consider the following linear mapping:
S'(RY) — BV
¢ = (= (T01), )

Now let (¢,) € S(RV)N and ¢ € S(RY) such that ¢, 5 ¢ and there exists g € BV

such that [(¢) B g. Then since BV convergence implies pointwise convergence it
is immediately checked that g = I(¢), hence the graph of [ is closed. Now since
S(RY) is a Fréchet space and BV is a Banach space we can use a version of the
closed graph theorem to conclude that [ is continuous. Finally, since S(RY) is a
nuclear space [ is a nuclear mapping. Therefore we finish the proof by using the
Grothendieck theorem A.4.3.1. O]

I = (2.92)

The representation in the previous theorem will be useful because of the fol-
lowing fact:

Proposition 2.3.2.1. Consider some p > 1. Any equicontinuous set £ C S(RY)
is included in one of the S, _, for some v > 0.

Proof. The equicontinuity of £ in § means that the following set:
{6 € S®MNT € £, (T, 9)| < ¢} (2.08)

is a neighbourhood of 0. Therefore it contains a ball for one of the seminorms
| - [ls..» ie there exists k € Z and n > 0 such that:

10lls,, <n=VT € &[T, )| <e (2.94)
We now introduce: 0
9n = o3k fn (2.95)
Clearly:
lgnllsie =3 < (2.96)
and if T' € &: ) 0
<T, fn> =5 cn(T) (2.97)
so we eventually get:
len(T)] < % Y (2.99)
and therefore:
Il < o SN (2.99)

and this is a finite sum for big enough v, so &€ C S, _,. The proof is finished by
using the equivalence of the Fréchet space topologies on S and on its dual as was
stated in theorem 2.3.0.3. [
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As an immediate consequence of the two previous results, there is the:

Theorem 2.3.2.2. Let T € BV ([0,1],S8’). For every p € [1, 00| there exists s € R
such that T € BV (]0,1],S,.)-

and once again there is a similar result for continuous paths.



Chapter 3

Lifting of random variables by
distributions

The lifting of smooth random variables is a well documented topic, see for example:
|81], |25], [75] or [83]. Here we try to improve the usual results by using the
interpolation theory to extend them to fractional indices for the distribution space
and the Gross-Sobolev space. To do so we follow the ideas in [83] but we extend
them in several ways.

First we will consider any tempered distribution instead of just elements in a
negative Bessel potential space. We achieve this by working in the spaces S, ;
indeed:

S = ﬂs 5 (3.1)
SO:

=S (3.2)

while the union of all Bessel potential spaces is strictly included in S'.

Second we pay extra attention to some constants in our majorizations as we
will need that much precision further on.

Third, we give results for the lifting of the S~ _s spaces. The results are
more complicated to state and prove but do not require a priori assumptions on
the existence of a density for the random variable we consider. This allows us to
give results for the lifting of regular enough random variables by regular enough
random distributions.

For a primer in interpolation theory, we refer to appendix D and to the refer-
ences therein.

23
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3.1 Interpolation of Gross-Sobolev spaces

We start by recalling some results for the interpolation of Gross-Sobolev spaces.
We copy the first one from [82]:

Theorem 3.1.0.3 (Complex interpolation of Gross-Sobolev spaces). We consider
p1,p2 > 1, s1,89 ER and 0 < 0 < 1. Let p and s be such that: % = pil + 110;29 and
s=0s1 + (1 —0)sy. Then Dy, s, Dy, 5], =Dy s.

It is interesting to note that this is related to the following result which we
copy from [66]:

Theorem 3.1.0.4. Let 1 < p < oo and s1 < sy € R; let A € [0,1] and set:
s=A-s1+(1—=X) s (3.3)

Then there exists a universal constant C(p, si, so, \) such that for every ¢ € D the
following holds:
1Xlb,.. < C-IXl,., - 1X]5, (3.4)

- DP,SQ

Proof. This is an immediate consequence of the previous theorem and the defini-
tion of an interpolation functor. We also refer to [66] for an explcit proof which
does not directly use interpolation theory, although the ideas are the same. O

Theorem 3.1.0.4 has an obvious but very useful corollary:

Corollary 3.1.0.1. Let p,s1,82 and X\ be as in theorem 3.1.0.4 and let (X,,) a
sequence of random variables such that (X,,) converges in D, s, and is bounded in
D, s,. Then for every s < sy (X,,) converges in D, ;.

Remark 3.1.0.1. [t is interesting to compare this last result to lemma 1.2.6.2.

As another consequence of the complex interpolation of Gross-Sobolev spaces
we give two extensions of Holder’s theorem which we also take from [82]:

Theorem 3.1.0.5 (Holder theorem for Gross-Sobolev spaces). Consider s > 0
and 1 < p,q,r < oo such that 1/p = 1/q+ 1/r. Then there exists a universal
constant C(s,q,r) such that for every X,Y € D:

X - Yllp,, < C- [ Xllp,, - Y., (3.5)

Proof. First we prove the result for s € N. Indeed V(X -Y) is computed by
the Leibniz formula and then the result is just a consequence of the usual Holder
theorem. The general result is then obtained by complex interpolation. 0
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Theorem 3.1.0.6 (Holder theorem for Gross-Sobolev distribution spaces). Let
1 <p,q,r < oo suchthat 1/p=1/q+1/r and s > 0. Then there exists a universal
constant C(s,q,r) such that for every X, Y € D:

1X - Yllp, . < C- [ Xllp,, - IY]lb, _. (3.6)

Proof. By the definition of the duality on the Gross-Sobolev spaces, there is on
one hand:

X Ylp,_.= sup (X -Y,¢) (3.7)
19llp,« (=1
and on the other hand:
(XY, 0)=(Y, X -¢) <[V, _, - |X &b, (3.8)

Now since 1/r* = 1/p* + 1/q, applying the previous theorem there is:

IX - ¢llp,. . < 1 Xllp, . - 1¢llb,,. _, (3.9)

rT,s —

and therefore:

(XY, 9) <[ Xllp,, - Y llp,.—. - 4]l

so we are done. O]

(3.10)

*
p*,—s

Often we will simply refer to these last two theorems as Hdélder’s inequqlity;
hopefully the context will always clarify which one we are applying.

Going further with the notion of interpolation, it is interesting to consider the
action of real interpolation functors on Gross-Sobolev spaces. Therefore following
[83] we introduce:

Definition 3.1.0.2 (Real interpolation of Gross-Sobolev spaces). Let p > 1 and
s € R. We define a family of Banach spaces &, s as follows:

o ifscZthen &, =D,
o Otherwise let k = [s|, 0 = {s}. Then &, = (Dpvk“’Dp’k)l—U’P'

We specialize the definition of the real interpolation spaces to our case and
obtain a caracterization of the space &, s and an expression for its norm; we refer
to appendix D and the references therein or to [83] for the details. In practice, we
will mostly rely on the following result:

Theorem 3.1.0.7 (semigroup caracterization of the space &, ;).

1
\FIZ, = IFI5,, + / 1 F - T dt
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Proof. This is a specialization of a general result on semigroup interpolation to
the operator (Id+ £)*/*. See appendix D for the details. O

Also as an application of the duality theorem in D we get the:

Theorem 3.1.0.8 (Duality for the &, spaces). If 1 <p < oo and s € R then:
& s =Ep s (3.11)

The following result how closely related the complex and real interpolated
Gross-Sobolev spaces are. It will also turn out to be very convenient as it will allow
us to prove a number of results for whichever family of spaces is more convenient
to use and to automatically obtain them for the other family "up to €".

Theorem 3.1.0.9 (inclusions between the real and complex spaces). For every
p>1,s€R and e > 0 one has the following continuous injections:

Epste 7 Dps = Epse (3.12)

Proof. We could use a general result from semigroup interpolation theory but due
to the importance of this theorem for the sake of completeness we provide a full
proof following [83].

We note that we only need to prove the first inclusion; indeed the second one
then automatically follows by the duality theorem.

If s € Z there is nothing to prove. Otherwise let us write: [s] = k € Z and
{s} =0 €]0,1[ and let X € D. Then, as per the fractionnal power results provided
in appendix C there is the following relation, where the RHS is a Bochner integral:

oy T[T e iy
(I-L)%X = ) /0 t X — T,X]dt (3.13)

I'l—o

In the remainder of this proof, C' will denote some universal constant possibly
depending on p, k, 0, €, etc. but not on X. There is:

1 X3,
- u-2rey

p
Dy &

0 p
g(l{/ tHwHX—nX%kﬁ}
0 p,

1 o0 !
= o [ - nxip ae [Tevex - nxg, o
(3.14)
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In the above, the [ integral is dominated by C'- || X||p,, and for the fol integral
we write:

1 1
—1+4+0 -1 ¢ —lieto
J R e A R A LS S

1

< C- {t—(1+(a+e)p) X - TtXH% dt}p
P,k
(3.15)

by Hélder’s theorem. We finish the proof by injecting these two majorizations in
(3.14) and using theorem 3.1.0.7. O

Now let us introduce the following quantities: for F' € L” we set:
.« [(0)=F
o f(t)y=1 [[T,Fdrift>0

Since (I — £)"? commutes to any T} it is easily verified that the f(t) are smooth
for ¢ > 0 and:

Proposition 3.1.0.2. If F € D, ; then:
o 15 ®)lo,. < IFl,.
o |£(t) = Flls,. =0
We will need the following estimates on f:

Lemma 3.1.0.1. Let ' € £, for some p > 1 and s > 0. We note k = [s] and
o = {s}. Then there exist constants C; depending only on p and s such that:

1
/0 I e dt < CyFIE. (3.16)
1
/0 D P8 dt < Gl|PL (3.17)
1
/0 D) fE At < CollFIL (3.18)

Proof. The first point is obvious because f is bounded in D, ; as was stated in the
previous lemma and because of theorem 3.1.0.9.

The proof of the second point will require the following simple result which we
borrow from [1]:
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Lemma 3.1.0.2. Let ¢ be a scalar-valued function defined on Ry and let

ww=%4¢@@ (3.19)

Then for 1 < p < oo and for v, 0 such that v+ 1/p =0 < 1 one has:

/OOO Pl ) Pdt < (ﬁ)p . /OOO 72| (1)[Pdt (3.20)

Then we notice that for ¢ > 0:

1/ 1 1 1/
P = /0 TFdr+ STF = 2(TF — F) — 5 /0 (T.F — F)dr  (3.21)

therefore:

1 1
[, < o[ [emme e, a
i 7 0 P,

1
- / t—1impmpo
0

The first term in this sum is controlled by using the semigroup characterization in
theorem 3.1.0.7. For the second term we apply lemma 3.1.0.2 with v = —1/p — o,
hence 1 — 0 = 1+ o and we obtain:

1 ¢
TF—F
/tlpg /—dT
0 0

t
so then again the semigroup caracterization controls the second term as was de-
sired.
For the third point one notices that:

P

/0 (TF - Fyr

dt} (3.22)

Dy,

p 1 1
dt < —— t 1P T, F — F|2 dt (3.23
S gy | T 629

I I 1
(I+L)YV2f(t) = ;/ (I +L)?Fdr = _E/ T'rFdr = —(LF = F) (3.24)
0 0

therefore
1
1£Ol5,10 = |75 = F) (3:29
Dp,k+1
and as previously the semigroup characterization concludes. 0

We also need estimates on 1/f(t):
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Lemma 3.1.0.3. Let F' € D for some k € N. If F >0 a.s. and 1/F € L™
then for any p > 1 and any p’ > p there exists ¢ > 1 depending only on p, p' and
k such that the following estimate holds:

1 k+1 1
< 1— e 1 R
D, &

Proof. First, applying the Malliavin calculus version of Faa di Bruno’s formula,
we see that:

1

ft)

sup
0<t<1

k
+ 1 _ 671 : F ' ||F||Dq7k

1 Hl

Iy Lr

(3.26)

1 1
Vh—— = 1 3.27
70~ Fo 520
where IT is a linear combination of the VA f(£)®---®@ V' f(t) with i, +- - - +1i, = k.
Then, successive applications of Holder’s inequality and Meyer’s inequalities lead

115, , (3.28)
|1 FIp,
Ly’

l7ol... <50l * |7

We may take k as the exponent because every term in II is of order at most £ in
terms of tensor products and by applying Holder’s inequality. A possibile value
for ¢ is: 1/p = 1/p' + k/q. Now we only need to control ||1/f(t)*"||,,». To do
this we notice that we define a family of markovian kernels (and of contractions)
on the LP spaces by setting:

GU)F = —' f(t) = — . /tTTFdT (3.29)

o l—et

and applying Jensen’s inequality leads to:

ZarF < 60 H (3.30)

Returning to f one gets:

1 t t 1 1 1
76 S U—eh GoF “1-et 0 H ST G0 H (3:31)

and we conclude since the G, are contractions. O]

Remark 3.1.0.2. In the case where k = 0 the polynomial 11 in the above proof is
1 and therefore the result improves to:

1

f(t)

sup
0<t<1

(3.32)

Lpr Lr



60 CHAPTER 3. LIFTING OF RANDOM VARIABLES BY DISTRIBUTIONS

We may now state the following:

Theorem 3.1.0.10. Let s > 0 and F € &~ such that F > 0 a.s. and
1/F € L> . Then for every s < s 1/F € Ex-y and for any p' > p there

exists q(p,p',s) > 1 and a constant C(p,p’,s) such that the following estimate
holds:

P
kp+ o’

} ELE (3.3

1
F

<c|

7l
JE + || =
Ep.s! F2RHD ] Fllw

where k = [s].

Once the theorem is proved the following is an immediate consequence of the-
orem 3.1.0.9:

Corollary 3.1.0.2. A similar statement holds for the spaces Do

Proof. With the notation of the theorem, we set &k = [s] and ¢ = {s}. Let us
consider s’ < s; if s is an integer the result is included in lemma 3.1.0.3 so we ay
suppose [s'] = k as well and we set o/ = {s'}. We now introduce g(t) = 1/f(t)
for t € [0,1] and we extend g to a smooth function with comapct support. Of
course g(0) = 1/F so by the definition of the real interpolation functor, to obtain
a majorization of [[1/F|l¢ , it is enough to control the two following terms:

1
/ erlg(O, e
0

and )
| emigos, a

where v is such that p~! + v =1 — ¢’. In the sequel C; will always be a universal
constant, possibly depending on some specified parameters.
o

We start with the second term. Since ¢'(¢) = (t)/f(t)? by replacing, apply-
ing Holder’s inequality and lemma 3.1.0.3 we obtain, for any ¢ > 0:

1 1 / p
f'(t)
g Ol e = [ v 2]
/0 Do 0 f(t)? D,k
1 1 p ,
<Cipkd) [ o7 ANFOI, .
0 f(t>2 Dy146)/8,k S
< (! k. o ! ’ o F||Nk 1 YPILF () ]|Z d
< Cy(p, k,9) - T20k+1) L”l%/&/ ol JSeS: ] ||]D)q’k' ; t ||f(t)||Dp(1+5),k t

(3.34)
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for any 0 < 0’ < ¢ and for some ¢ as in lemma 3.1.0.3. Now by Jensen’s inequality:

1
1 1 1+5
v vp(14+6 (1+9)
/0 TR O = [/ t”(“||f’<t>l|%pw,kdf]

_1
< [1Fllg, (3.35)

p(1+6),s

since vp(1+9) = =1+ p(1 +9)(1 — o). Finally:

1 1 p 1
v p -
;e < o | ]+ |

+
where C3 = C3(p, k, 0,0, v).
The first term is dealt with in a similar way. First, by Meyer’s inequalities:

lg®llp,.n < Calp k) 9@, + 1V9®)p,.]

Calp. 1 [Hgamm,k v |52 ] (3.31)

We consider the two terms in the sum separately. The first term is dealt with by
using lemma 3.1.0.3. For the second term Holder’s inequality leads to:

F

P & 1
] NFNE, - |FE

SET) Ep(146),s

o (3.36)

146/
r’ &

V[t 1
f{;()2) RN o0 I LAOTE
1
S Hf(t)g 5 -Hf<t>H]D)p(1+5)7k+1 (3.38)

and we proceed as previously to obtain, for some Cs(p, k,d,0", v):

1 p p
1 1 1
vp p . il . kp 1+6
[ 10008, e < - {| gz | e 5] ] 1P IPUER,
(3.39)
We then finish the proof of the theorem by putting the terms together and
setting p’ = p(1 + 9). O

3.2 Integration by parts

First we introduce a crucial quantity:

Definition 3.2.0.3 (Malliavin matrix). Let F' € Dy 1(RY). We introduce the
Malliavin matriz of F as the random matrixz with coefficients:

Sy = (VF, VE)x (3.40)
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We note that the Malliavin matrix is a.s. symmetric and positive as a Gram
matrix. Also, if ' € Dy,- ((RY) then X;; € Do~ _1(R) and by Hélder’s theorem:

12351, < Cloy5) - IFIIES,,, (3.41)

We are interested in the invertibility of Y and in the regularity of its potential
inverse. We will need another standard definition:

Definition 3.2.0.4 (non-degeneracy). The random variable F € Dy- 1 (RY) is

non-degenerate if:
1

det 2

eL> (3.42)

If a random variable is non-negenerate then its Malliavin matrix X is invert-
ible and we will often note ~ for this inverse. The following is a straightforward
consequence of theorem 3.1.0.10 and Holder’s inequality but will be crucial to our
purpose:

Proposition 3.2.0.3. We consider a non-degenerate F € Do ((RY) for some
s > 1 and X its Malliavin matriz. Then for any 1 < s’ <'s,

1
det 2

€ Doo- s—1(R) (3.43)

Also, for all p' > p there exists ¢ > 1 and o > 0 such that the following estimate
holds:

where k = [s] and C' is a universal constant depending only on p,p’,s, s, q.

1 p

det

NES
dety

p
] NFlE (344)

Ly’

1
< || e
o= ey,

Proof. Applying theorem 3.1.0.10 yields:

Then since detd: is a polynomial in the VF; we finish the proof with Hélder’s
inequality. 0

1
detX:

p+ o
} |dets )

(3.45)

R s

Remark 3.2.0.3. A similar result holds for real interpolation spaces.

We now recall the following classical result:
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Theorem 3.2.0.11 (Integration by parts on the Wiener space). Consider the
random variables F' € Dy- o(RY) and G € Do 1 (RY). Suppose that F is non-
degenerate. Then for any i =1,..., N the following quantity is well defined:

(G, F)=6 (G : Z%JVFj) (3.46)
and if ¢ € CH(RY) then:
E[(0;¢) o F -G = Elpo F-1;(G, F)] (3.47)

Proof. First we prove that [;(G, F') is well defined in L?. Indeed, noting C for a
generic constant:

N N
1:(G, F)lle < (|G- 4 VE| < C-(Gllp,, - || D%V E (3.48)
i=1 Dyp.1 =1 Dy1
Then we use the fact that:
1
V= oy " (comaty) (3.49)
therefore by Holder’s inequality:
N 1 N
Z%JVFJ- <C- ’ | Z ! (comatX),, VF (3.50)
i=1 Dy 1 1 i=1 Dry 1

Now the term with the determinant may be controlled in some D, 5 by propo-
sition 3.2.0.3, and the other terms may be controlled in some I, 5 because the
" (comatYl);; VF; are multivariate polynomials in VI

Now we prove the actual integration by parts formula. By the Malliavin cal-
culus chain rule, ¢(F') € D, ; and:

V(6(F) = >_(0:9)(F) - VF; (3.51)
therfore: N
(V(o(F)), V) = Z(%)(F) $ 04 (3.52)

and since 7 is the inverse of the Malliavin matrix, elementary linear algebra yields:

(@0)(F) = 375 (V(6(F)), V) (3.53)

The result is finally obtained by integrating by parts. O
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It is straightforward but noteworthy that the operators [; are linear in the first
variable but not in the second. This is the main difficulty in the study of their
regularity. Some results are well known for Gross-Sobolev spaces with an integer
order of derivability. Here, following the logic of Watanabe we state the more
precise:

Theorem 3.2.0.12 (Fractional regularity of the operator [;). For any p > 1 and
s >0, for any p' > p and s’ > s there exists q,r > 1, 8 > 0 and a universal
constant depending only on the above parameters such that the following estimate
holds for any G € Dyo- 541 and non-degenerate F' € Do g1o:

q H 14

1:(G, )|, < C- |G|,

dety:

1 [%
st |:H <d€t2)2(k+1) 1 ’ HFH]DT,S/_F2 (3'54)

La La
where k = [s].

Remark 3.2.0.4. In the case where s is an integer, the usual, simpler result lets
one take s instead of s’ in the majorization of the above type.

Proof. Use the exact same technique than to prove the existence of [;(G, F') in the
previous theorem, only with higher order spaces. O

In the sequel, it will be convenient to use x; the operator mapping S to itself,
defined by (z;f)(x) = x;f(x). Here is a continuity result analogue to the previous
one which is longer to state than to prove:

Lemma 3.2.0.4. For any random wvariables F' and G and for any measurable
function f one has:

El(z:f)(F) - G] = E[f(F) - mi(G, F)]

with

and for any p' >p>1if 1/p=1/p +1/q:

[mi(G, F)ll o < NGl ol El o

Now let us consider a family of functionals p; for j = 1,...,m such that every
1; is either one of the [; or one of the m;, t =1,..., N. We define
MG, F) = pim (G, prrn—1(G, i —2(G, ..., F) ..)) (3.55)

for regular enough G and non-degenerate F. Then, combining theorem 3.2.0.12
and lemma 3.2.0.4 with a straightorward recurrence one obtains:
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Proposition 3.2.0.4. Let p’ > p > 1 and s’ > s > 0. Suppose that X\ is as
above, with at most n of the u; being an l;. Then there exists g,r > 1, 0 > 0 and a
universal constant C' such that the following estimate holds for any regular enough
F, G, F being nondegenerate:

q q

1

< .
ING, F)lp,, < C - |1Gb,, dety

0
} AFE
(3.56)

4

1
o |

La La

where k = [s] and o is the Malliavin matriz of F.

We now state a first result related to the interpolation of Gross-Sobolev spaces
and the spaces introduced in section 2:

Lemma 3.2.0.5. Suppose that F' € Dy 1 has a bounded density prp. Then for
every 0 < p < p < land 1l < p < p' < oo there exists a universal constant
C(p, p,p,p') such that for any ¢ € S the following estimate holds:

¢ 0 Fllp,, < C-llprlloc - L+ IVF|La) - [|ls,, (3.57)
Proof. First we note that:
[0 Fll < llprlleo - ¢l e (3.58)

and for ¢ such that 1/p'+1/q = 1/p, by Meyer’s inequalities and Holder’s theorem:

N
60 Fllo,, < e(p)- [léoFllpo+ Y 1060 F - VE||

L i=1
i N
< ) |ll9o Fller+ Y 10ip0 Flip - [VF| s
L i=1
< ep) - lllppllss - 10lle + lIpelloe - VOl Lo - IV Fl ]
< cDpplle(X+ IVFLa) - |¢ls, (3.59)

For the last inequality we used theorem 2.2.2.1. We see that we have proved our
result for the cases p = 0 or p’ = 1. We now suppose 0 < p < p' < 1. We may

then choose p < p; < p’ and p < p; < pa < p’ such that:
1 1

l=pp——==1=-p1——

p b1

Then by real interpolation one obtains:

¢ Flle,,,, <c@lpplloo(t+IVEL)-6l7, ., (3.60)

The proof is then finished by combining the above with theorems 3.1.0.9 and
2.2.2.4. O
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We now prove a result which will let us lift non-degenerate random variables
by tempered distributions with minimal conditions:

Theorem 3.2.0.13. Let F' € Do- 1.5 for some & > 0 be a non-degenerate RN -
valued random variable admitting a bounded density. Then for every 0’ < § and
1 < p<p < oo there erists a universal constant C' and some ¢, > 1 and § > 0
such that the following estimate holds for every ¢ € S(RV):

l¢o Fllp, _; <

} NFIS, ol 195,

(3.61)

Hence for any T € Sy 5, T o F' may be defined in D, _5 and the above estimate
still holds.

- H‘ de tz 2(k+1) Hd >

Proof. We still note 3 for the Malliavin matrix of F. Also, we note k and o for
(0] and {d} respectively. If 0 is an integer, the result is classical, so we only prove
the case where o # 0. In this case ¢’ may be chosen such that [¢'] = k. If k is odd,
we write k = 2] — 1 and ¢ = K'K~'¢. We then expand K

ICZZZAilo"'oAiZm

where, for each term in the sum, m <[ and each A;; is either a partial derivative
Oy or a multiplication by a coordinate z;. An application of proposition 3.2.0.4 to
a regular enough v leads to:

E[(Aj0---0A;, V)oF-G]=E[poFAG,F)] (3.62)

for some A\ as in proposition 3.2.0.4, and if 1/7r+1/p =1 and 1 < 7’ < 7 then for

some q,r,6 one has:
q 72m
0
|,

" (3.63)

q

1
\NG.F . . B
NG P, <C[Gls.. Lﬁw@m

—k—1

1
|
Now we recall that:

I(Aiy 0+ 0 Ajy, ) 0 Fllp, s = sup{E[(A; o+ 04, ¢)0F-G]|G|b,, <1}

= sup{E[¢po F-\NG,F),|G|p,, <1} (3.64)

so by taking linear combinations and replacing v by K~'¢ we obtain:

q

1q2m9 !
|1, D0
q

poF —_—
H ° HD‘” 0= detXy I
(3.65)

N

< |y,
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and since 0 < k + 1 — ¢’ < 1 lemma 3.2.0.5 applies to the last factor of the right
hand side so the proof is finished in this case since the ||V F|/1« term may be
"included" in the HFH]%)T1+6’ term by Meyer’s inequalities.

If k is even, let us write k = 2. As in the previous case, we expand K so
we may write Id = ICFUC~UH1D as a linear combination of factors of the following

type:
A,

11

o---0A ok~ = Ajo---0A, 0 K=Y 6 Ao

+ Ay o0 dy, o KT Ay 0] (3.66)

12m+2

where [, ] is the commutator of two linear operators. We may then proceed exactly
as in the odd case, noting that the operators K~(*1) o A and [K~U+Y, A] map L?
to itself when A is a partial derivative or a multiplication by a coordinate, see [70]
or [71]. O

In order to simplify the above theorem, we recall that regular enough random
variables always admit a bounded (and even continuous) density. We copy the
following result from |66]:

Theorem 3.2.0.14. Suppose that p > N and that ' € Dgy, o s non-degenerate.
Then F' admits a continuous and bounded density py and:

1 2N
Iorlle < 19 F oy, - |5 (3.67

L4p

Combining these two theorems we obtain:

Theorem 3.2.0.15. Let F' € Dy 1,5 for some 6 > 1 be a non-degenerate RY -
valued random variable. Then for every &' < § and 1 < p < p' < oo there exists a
universal constant C' and some q,r > 1 and 0 > 0 such that the following estimate
holds for every ¢ € S(RY):

q

2m
|¢oFllb,, s SO-[ } AFle, ., lels, , (3.68)

4 1
detX

1
H (detx)2(k+1)

La La

Hence for any T' € Sy _5, T o F' may be defined in D, _s and the above estimate
still holds.

Remark 3.2.0.5. Once again there are similar results for the spaces £ and T .

To conclude this section, we give another result for the existence of densities.
This is more precise that theorem 3.2.0.14 but it only works in dimension 1 as of
now.

We start with a lemma which is a slightly more general version of a result in

[4]:
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Lemma 3.2.0.6. Suppose that X € Dy- 1(R) has a cumulative distribution func-
tion which is yv-Hélder. Then, for any x, for any p > 1 and for any o < %:

Ixse €Dpq (3.69)
and, for some r and a constant C(p,«) > 0, the following inequality then holds:
ILxsalln,.. < Cp.a) (14 VX ) [ Fxlan (3.70)
Proof. Being inspired by [4] we use the K interpolation method and we write:
H=H +H-H, (3.71)

where H is the Heaviside function and H, is the piecewise linear function with
values 0 on | — oo, —¢| and 1 on [0,00[. We note that H, is 1/e-Lipschitz, so
H.(X —z) € D,; and we apply the K-method to the decomposition:

Ixse = H(X —2)+ 152, — H(X —x) (3.72)
First, by the chain rule and Hélder’s inequality one has, for any ¢ > 1:

IVH(X = 2)|r < e VX 21 1 lomecxollzr

< VX e [PX < @) = P(X < 2 =€)
< HFmeHVXIIL%e‘H% (3.73)
and similarly:
I1xse — H(X —2)||pp = Plz — e < X < 2)7 < ||Fx|laver (3.74)
so overall:
K. < e|H(X = 2)p,., + x50 — H(X = 2)|[1o < [Fx|lxoes (375

where K. = K (¢, 1x~, following the notation of appendix D for the K method of
interpolation and finally:

1 1

d

1x>2llp, ., = / K]’ = <C / e P de (3.76)
0 0

€

and clearly this last integral converges if and only if o < plq. Since one may choose
q arbitrarily close to 1 the proof is complete. O

Our lemma now allows us to prove the following:
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Theorem 3.2.0.16. Suppose that X € D- o 1, is non-degenerate with a -
p

Hélder cumulative distribution function. Then X has a continuous and bounded

density given by the formula:

px(z) =E KWXM, %) H] =F {1X>x5 (%ﬂ (3.77)

Proof. The identity between the two expectations is just an integration by parts.
We only need to prove that these quantities are well defined. First, we may apply
lemma 3.2.0.6 to see that

Vixsz €Dy _-a (3.78)

for any a < %. Second, by Holder’s inequality and theorem 3.1.0.10 we see that

VX
W € ]D)p*’l_%% (3.79)
so once again a version of Holder’s inequality proves that the first expectation is
well defined. The second one is dealt with in a similar way and allows one to see
that the density is continuous and bounded. 0

Remark 3.2.0.6. If~v > 1 then the random variable X has a distribution function
in C}, hence we know that it has a continuous and bounded density without any
hypothesis on the Malliavin reqularity of X. Conwversely, if v = 0, it is better to
use theorem 3.2.0.14.

3.3 Some results for the S ; spaces

The results in the previous section were only for 1 < p < oo. Here we provide
analogue results for p = co. We start with a result similar to lemma 3.2.0.5:

Lemma 3.3.0.7. Take I' € Dy~ 1. Then for 0 < p <1 and € > 0 there exists a
universal constant C(p, p, €) such that for any ¢ € S the following estimate

00, +e
holds:

[6(F)Ip,,, < C A+ (VE|Le) 1 f]ls (3.80)

00, p+ 3 +e

Before we prove this results let us make a few comments. First, this is easier to
apply than lemma 3.2.0.5 because the random variable F' is not required to have
a density a priori. However, this is interesting only if p + 1/p < 1: otherwise ¢ is
Lipschitz and one may just apply the usual chain rule. Finally, since one may take
p as big as one wants on the RHS and since the || - [|p,, increase in p, one gets the
obvious:
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Corollary 3.3.0.3. Take F € Dy 1. Then for 0 < p <1 and € > 0 there exists
some q(€) > p and a universal constant C(p,€) such that for any ¢ € S pie. the
following estimate holds:

[o(F)p,., < C L+ NVE o) [[fll 50 e (3.81)

Now we turn to the proof of the lemma:

Proof. First let ¢ be any smooth function. Then:
[WE) e < [[¥]los (3.82)

and

[V lp,. < ClllYllee + [VELollllen] < CA+VE|Lo) [[¢lls0 1y (3:83)

because [|Y]cr < ||¢||a1+e and because of theorem 2.2.3.2. Now let () be a
smooth real interpolation path for ||¢| and let f(¢) = (¢)(F). Then, setting
v=—141-p

P

1 1
| 1Ol dt < CL IVPY [ 0, a8
0 0 ’

and therefore:

1
1 ? B 1
[ 1O, < O IR s e 68)
0 Sts

Then we may control fol V|| L f(t)||rpdt in a similar way, and by taking infimums
real interpolation yields:

[o(E) le,,, < C L+ [NV E o] - [0l

o0, (14+) (p+ 1)

(3.86)

Then we are done because this is valid for any ¢ > 0 and because of theorems
3.1.0.9 and 2.2.2.4. O

Finally, by simply copying the proof of theorem 3.2.0.13 and using theorem
2.2.3.2 instead of theorem 2.2.2.1 one obtains the following:

Theorem 3.3.0.17. Let F' € Dy- 1.5 for some & > 0 be a non-degenerate RN -
valued random wvariable. Then for every 0" < ¢ and 1 < p < oo there exists a
universal constant C' and some q,r > 1 and 0 > 0 such that the following estimate

holds for every ¢ € S(RN):
H ) q ]Qm
|[F
(detx)2+D) L

Hence for any T € Sy 5, T o F' may be defined in D, _5 and the above estimate
still holds.

l60Fll, , < C- [

4 1
detX

el (387
La
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Then again, here we do not need to make an assumption on the existence of a
density for the random variable X.

3.4 Existence and regularity of densities

Consider some § > 0. In this section, we suppose that X € Do 1 5(RY) is a
nondegenerate random variable which admits a continuous and bounded density
px- As an immediate corollary of theorem 3.2.0.13, we see that the following linear
application is continuous:

Sp/7_5/ — Dn_g
T — ToX (3.88)
for any p’ > p, &' < 4. Now let ¢ € D) s = D 5. Clearly the following is a
continous linear form:
Sp/,,gl — R
T — (T'oX, o) (3.89)

Therefore by duality, there exists some function px 4 € S]’D/’,y = S@y+,5 such that
for any 7' € S,y _s the following holds:

(T'o X, ¢) = (T, px.) (3.90)
Since p’ and ¢’ may approach p and ¢ infinitesimally, by density one checks that px 4
does not depend on the choice of these parameters and that px 4 € Sp+)- 5-. By

N \—
the Sobolev injections, we deduce that px 4 € O3 if tht exponent is positive.
Also, since the Dirac mass 0, € S, _n~ _ for any x and any € > 0, one sees that it

makes sense, at least for p small enough, to take T" = ¢, in the expression above.
Then there comes an explicit expression for py 4:

Px,p(z) = (0: ©0 X, 9) (3.91)
In the case where T is a proper function, we note that we have the identity:
B0 = [ T@pxo(a)ds (3.92)

Identitying with the usual definitions for the density and the conditionnal density
of a random variable, we then obtain:

Px,1 = Px (3.93)

and
px.o(x) = px(z) - E[¢|X = 1] (3.94)
We sum up our results in the following:
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Theorem 3.4.0.18. Let § > 0 and let X € Do 1.5(RY) be a nondegenerate
random vartable which admits a continuous and bounded density px. Let p > 1

and ¢ € Dy, 5. Then there exists a unique function px,4 € Sy~ 5- such that for any
T eS8y _5:

(T'oX,9) =(T,pxe) (3.95)
Also, if 6 > % then px 4 € C=)". One has the expression:
px,(@) =px () E[¢|X =12] = (0, 0 X, ) (3.96)
In particular:
px(z) = pxa(z) = (6,0 X, 1) (3.97)

and for all p > 1 px € S, therefore px € C° .

Very similarly, without assuming a priori that X has a continuous density by
using theorem 3.2.0.15 we could have proved:

Theorem 3.4.0.19. Let 6 > 1 and let X € Do~ 1,5(RY) be a nondegenerate
random variable. Then X admits a continuous and bounded density px; actually
px € Sps for all p and px € C° , therefore all the conclusions of the previous
theorem hold.

Also, in the case where X, ¢ are in D, it is noteworthy that px 4, and especially
px, are in S, which is much stronger than just C'*°. Finally, the following is an
immediate consequence of equation (3.94) which will be useful later on:

Proposition 3.4.0.5. Under the conditions of either one of the two theorems
above, px and px,4 have the same supports.

3.5 The case of random fields

In this paragraph we study the Malliavin regularity of random variables of the
type:

fX) = flw, X(w)) (3.98)
where X is a regular enough random variable and f is a random flow on R" in the

sense defined by [40], enjoying some regularity both on its paths and in the sense
of Malliavin. It is classic to introduce norms such as:

1l o (coy = Sup /()] (3.99)

Lp
or:

1fll o ey = (3.100)

sup | f(«)| + sup | f®) ()]
z€R zeR Lp
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Accordingly, we note LP(C’f) for the corresponding Banach spaces. For short, we
will refer to such flows as CF, L? flows, or as LP(C¥) flows. Furthermore, the CF
are separable Banach spaces, so Gross-Sobolev spaces may be built on them, and
following Meyer’s inequalities we introduce the following norms:

1 £llo,..ccp) = ||sup|(Id + £)2 f(x)| (3.101)
IGR Lr
and:
1 I, wcry = sup ((Id+ L£)2 f(z)| + sup \(Id + £)2 f®)(2)] (3.102)
S EAS Lp

as well as the corresponding spaces and obvious notation.
Our first result is the following:

Proposition 3.5.0.6 (Malliavin chain rule for random flows). Let p,q,r > 1 such
that 1/p+ 1/q = 1/r and suppose that the following hypotheses hold:

o €Ly
o fEDL(E)
e X €D, (RY)
Then, f(X) € D, and the following chain rule holds:

V(X)) =) 0uf(X)VXi + (VF)(X) (3.103)

We borrow the idea behind this proof from [53]:

Proof. Let 1, be a smooth approximation of the Dirac mass. Then, almost surely,
for any x:

fw, X(w)) = lim f(w,z),(X(w) — z) (3.104)

n—oo

Also, by the usual chain rule:
Vif(w,z)n(X(w) —2)] = ¢n(X(w) = 2)(Vf)(w,z)

— flw,z) Y Optbn(X(w) — 2)VX; (3.105)

and clearly this converges, at least in the almost sure sense, to the right hand side
of equation 3.103. Also, by the hypotheses we made and Hélder’s inequality, this
quantity is bounded in L"(C?), so the convergence takes place in L™ and we are
done. O]
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Alternatively an intuitive idea is to "separate the variables" between the ran-
domness in the flow and the randomness in the random variable. We sketch another
proof of proposition 3.5.0.6 which is in that spirit and is interesting in its own right:

Proof. Let us take inverse Fourier transforms and write:

f(w, X(w)) = / X flu, €)de (3.106)

Then by using a Hilbert space version of the Fubini theorem (cf [40] for example)
and similar arguments as above:

N

V(X)) =) ( / igkeiﬁwf(w,f)dg) VX (w) + / X (V) (w, €)dg

k=1

(3.107)
which is indeed the right hand side of equation 3.103 as can be seen by taking
inverse Fourier transforms. O]

We now turn to an extension of the integration by parts formula. We start
with some preliminary computations. Suppose that the hypotheses of proposition
3.5.0.6 hold and that X is non-degenerate. As usual we note o for its Malliavin
matrix and v for the inverse of ¢. Then for any j we may write:

(V(£(X)), VX)) = o0 f(X) + (VF)(X), VX;) (3.108)
k=1
therefore by straightforward linear algebra:
N
Ocf(X) =y (V(F(X)) = (VHIX), VX;) (3.109)
j=1
Now we define N new random flows by the equations:

Ti(f, X) szZij((Vf)(x),VXj) (3.110)

Note that this depends linearly on f, and depends on X linearly through V.X;
but also non-linearly through ~. It is not difficult to see that Ti(f, X) is an L?
random flow with the same smoothness as (Vf)(z) (at least C? as per our set of
hypotheses). Of course if f is deterministic then Tj(f, X) is null.

Now we are ready to state the following:
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Proposition 3.5.0.7 (Flow integration by parts formula). Under the hypotheses
of proposition 3.5.0.6, for any ¢ € Dy« 1:

E0uf(X) -] = E[f(X) - 1n(X,¢)] = E[¢- Ti(f, X)(X)] (3.111)

We note that if f is deterministic this boils down to the usual Malliavin inte-
gration by parts formula.

We will now be following the same agenda as in the previous paragraphs. Since
(from previous paragraphs in this chapter) we already know how to control I (X, ¢)
we will focus on T (f, X) - and more specifically on Ty (f, X)(X). We start with
the following:

Lemma 3.5.0.8. Let p > 1, and f and X be such that the following hypotheses
hold:

o fisaCy flow

o There exists p < r < oo such that for every k > 1 and every multi-index j

77777

fe [\ Du(CIRY)) (3.112)

l7]+k=n+1

e X €Dy,

Then, (Vf)(X) € D,,(H), and for some p > p and some universal constant C':

IV (V) Gl oy < C Yo IV NN | - IXI5,

lj|+k=n+1;k>1

<O D Wl ey | IXTE,., (3113)

|jl+k=n+1:k>1

Proof. A simple recurrence based on proposition 3.5.0.6 yields that (Vf)(X) is n
times differentiable. The second bullet point in our hypotheses ensure us that for
any 7, k:

< o0 (3.114)
L’I’

so a fortiori the right hand side in our majorization is finite. To obtain the actual
inequality, compute V" ((V f) (X)) with Faa di Bruno’s formula and apply Holder’s
inequality. O
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We would like to improve this result into a more precise one for the fractional
case. We start with a result which is analogue to lemma 3.3.0.7 and corollary
3.3.0.3:

Lemma 3.5.0.9. Let X € D- 1. Then, for every 0 < p < 1, for every a €]1, 0],
for every € > 0, for every p > 1, there exist q,r > 1 and a universal constant C
such that for every f € Do 1(S) the following estimate holds:

17Ol < C - Q41X ) (1 i + Wl y)  (3115)
Proof. We will use the Sobolev injection:
Wy = Cy (3.116)
Now let us write:

(3.117)

+6)

1F @Ol < 1 lleriogy < N Fllew,

and, using the flow version of the chain rule and Hélder’s inequality:

175, < € (Wl + 1 Nsaepy - 19X N + 1V Fllocepy)

< C (Ifllnav, s,y + Iflzasan IV X lar + 1V F o,y )
(3.118)

+

Now since W, ~, _is a UMD Banach space the Meyer inequalities are valid for
W, ~ ~valued random variables, so we may finish the proof by interpolation as
for lemma 3.3.0.7. ]

Now we get back to controlling ||(V f)(X)|lp,.:

Lemma 3.5.0.10. Letp > 1, s >0, € >0 and f and X be such that the following
hypotheses hold:

o There exists p < q < oo such that:

Fe [ Dok (Swofspsire) (3.119)

k+i=[s]+1
e There exists 1 < v < 0o such that:

f < ﬂ Dp,k—i—{s} <Wa7g+e+l> (3120)
k+i=[s]+1
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e X €Dy

Then, (Vf)(X) € D,s(H) and and for some p > p and some universal constant
C' the following control holds:

IV H X,

< C- (1 + ||V[S]+1X||[S]+1) . Z (||f||Dq,k(Soo,{s}+l+e) + ||f||Dp>k+{5}(Wa,%+e+l)>
k+1=[s]+1

(3.121)
Proof. By Meyer’s inequalities:

IV AX)s,.. < |[(ra+£)%

(VE(V ) (X H (3.122)

Now VEI(Vf)(X) may be expanded by Faa di Bruno’s formula; each of the terms
of the expansion is of the form:

(VO - O f)(X) @ P (3.123)

where k + |l| = [s] + 1 and P is a polynomial in the VX, with total degree lower
than [s]. Therefore, we finish the proof by separating the terms using the triangle
inequality and then using Holder’s inequality and the previous lemma on each term
in the sum. O

Our lemma provides us with a control for T (f, X)(X):

Proposition 3.5.0.8. Suppose that f and X wverify all the hypotheses in the pre-
vious lemma. Suppose in addition that X is nondegenerate. Then for some s’ > s,
0 > 0 and for any p1,ps, ps such that 1/p1 + 1/pa+1/ps < 1/p:

1T (f, X)(X)lp,, = C %: | f 11Dy i (Soo oy 1100) T ||fH]D>p,k+{s}(Wa%+EH)
kpl=[s]+1;k>1
1 p2 1 P2
- X %
etz .. ‘det22([s}+1) m] X1z, ...

(3.124)
Proof. We still note « for the inverse of the Malliavin matrix of X. By Hélder’s

inequality:

1T5(f, X)(X)|p,, < C- I(VHX)p,, - (3.125)

()

First, we have just seen how to control the first term of the product in the right
hand side. Then, we have seen how to control the second term in the proof of
theorem 3.2.0.11. Therefore by recombining we are done. O]

Dr,s
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We may now state the main result in this section:

Theorem 3.5.0.20 (Lifting of a random distribution by a non degenerate RV).
Let X € Do- 115 for some § > 0 be a non-degenerate RN -valued random variable.
Then for every 6’ < § and 1 < p < oo there exists a universal constant C' and some
P1,P2,p3 > p and 0 > 0 such that the following estimate holds for every ¢ € S(D):

|¢ 0 X|lp, _,
1 pP1 1 P1 0
< C- _— X 0
B |:H(d€t2)2(k+l) LP1 HdetE LP1:| ” H]D)pz,l-&-é’
(9]
X3 (1003 a5 ) + 19l a7, s )]
k=0

(3.126)

Hence for any T € D, x(Sy —s), T o X may be defined in D, _s and the above
estimate still holds.

Proof. We follow the same strategy as for the proof of theorem 3.3.0.17 so we omit
the details. [

We conclude this section with two simple remarks: first that in practice it will
be best to take « as big as possible; second that if we stick to the case where
s € N it is possible to write much simpler results which do not involve the W »
spaces.

—+e€



Chapter 4

A weak Ito formula

In the previous chapter, we have stated precise conditions under which a tempered
distribution may be lifted by a regular, non-degenerate random variable, the result
being a distribution on the Wiener space. Of course, we could make both the
distribution and the random variable depend on time and then the result would
be a weak process as per the notion of weak measurability which we defined in
section 1.2.8. It is then natural to think of proving an Itd formula for distributions
and this had first been done in [78|. In this chapter, we will use somehow different
techniques based on the precise estimates we obtained in the previous chapter to
obtain an It6 formula which may be applied under less demanding conditions than
the one stated in [78]. We shall also prove a formula of the Tt6-Wentzell type which
holds when a regular enough random process is lifted by a tempered-distribution
valued semi-martingale. These results will lead to applications which are detailed
in this chapter and the next one, and would have remained out of reach with the
previously existing Itd formulae.

At various points in this chapter, we will need some results on the topologies of

S and S’ which are quite involved. For these we refer to chapter 2 and appendix
A.

4.1 The formula for a general Ito6 process

4.1.1 Processes with an absolutely continuous drift

In this paragraph W denotes the canonical d-dimensionnal Brownian motion on
the Wiener space. We work with the filtration of WW. Let X be the N-dimensionnal
1t6 process such that:
dXt == btdt—l—atth (41)
X() = T

79
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where b is an adapted N-dimensionnal process and o is an adapted process of
N ® d-dimensionnal random matrices. We will note a = o’o.

Also let t € [0,1] — T(t) € S'(RY) be a (deterministic) path with bounded
variations. First we need to find tractable conditions under which it is licit to
define the composes T} o Xy, 9;T; o X; and 0;; 0 X, for t > 0. Let 1 < p < oo. By
the Grothendieck representation, for any 1 < p < oo there exists s’ > 0 such that
T is a path with bounded variations in S, _s, as is explained in theorem 2.3.2.2 -
the case where the T} are actual functions and not distributions in the strict sense
is easier to deal with. Then the 9;7; are and the 8%. are BV paths taking values
in S)_(s+1) and S, _(s42) respectively. From now on, since this is not a loss of
generality, we will restrict our study to that of a path:

T, € BV (S,_,) (4.3)

In particular, ¢ — |/T}||s,_, is bounded. Then if 7} is as in (4.3) according to
theorem 3.2.0.15, for all the distributions we are interested in to exist we need
that X; € Dy- ¢43 for some s’ > s and that X, be non-degenerate for ¢ > 0.
In fact for technical reasons we need to make uniform assumptions on X; more
precisely let us suppose that for all » > 1:

t

/0 bullp, . du < oo (4.4)
t
/HUUHBH%CZU < 00 (4.5)
i ,

! < (4.6)

su —_— 0 .
cuet || S(w) ||,

for any 0 < e < 1, where 3(u) is the Malliavin matrix of X,,. Then we have:
Proposition 4.1.1.1. Under the three above hypotheses, one has:
o Vu>0, X, €Dy g3
t
o Vr>0,Ve>0, [ 1Xullp, ,,,ds < oo
o Yu > 0, X, is non-degenerate.

In particular, the Ty o X, are well defined in Dy _y, the 0;T; o X; are well defined
in D, _(y+1) and the 6i2jTt o Xy are well defined in D), _(y12).

Proof. The first two points are easy consequences of the Holder inequalities. For
the third third point, we notice that condition (4.6) implies that for Lebesgue-a.s.
u € [e,1], X, is non-degenerate; then we use that the inverse Malliavin matrix is an
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Ito process, hence it has continuous trajectories to deduce that X, is nondegenerate
for every u. Then the existence of the weak processes is a direct application of the
results in the previous chapter. O]

Remark 4.1.1.1. It is noteworthy that the conditions we take ensure us that for
every u > €, X, has a bounded and continuous density.

Our strategy in order to obtain a weak Itd formula will now be the following:
we introduce the classic sequence of mollifiers:

pul) = W exp (-%) (@7)

and we regularize our distribution valued-path; more precisely we introduce a
sequence of functions 70 € S defined as:

TW = p, « T (4.8)

so we are able to apply the (classic, C? version of the) Ito formula:

T, X)) — T (e, X,) = Z/ ) - 0, 7™ (u, X,)du
i,j “€
t

+ / 7™ (du, X.,)
+ Z/tZ[bz’(U)-&T(")(U,XU)] AW (4.9)

and since by design:

Sp,—s

™ "3 (4.10)

we will study the convergence of each term as n tends to infinity. Note that we do
not start from 0 as the initial condition z is trivially degenrate, hence there is no
hope of defining T} o x.

We start with the following:

Lemma 4.1.1.1 (Convergence of the LHS).

’

D,
Tt X)) —T™ (e, X.) ™" T(t) o X; — T(e) o X, (4.11)

Proof. This is an immediate consequence of theorem 3.2.0.15; let us note that here
we only used the D - o regularity of the X,. ]
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Then we prove:
Lemma 4.1.1.2 (Convergence of the first term).

D,/

t t
/ bi(u) - ;T (u, X, )du =5 / bi(u) - 0T, o X,du (4.12)
Proof. First let us note that theorem 3.2.0.15 allows us to check that the RHS
above is well defined as a Bochner integral in D,y _(y11). Since the techniques
involved are the same than those we will use to prove the actual convergence we
do not write the details.

Now let us turn to the proof of the convergence; by Holder’s theorem, for some
r>landp >p" >p>1:

”bZ(U) . 8ZT(n) (U, Xu) — b,(U) . (81Tu) (e} XUHDp,—(erl)

< Clbi(W)llp, . 107 (u, Xa) = (0T0) © Xl s,y (413)

141)
The ||b;(u)]|p,.,, are bounded in u by hypothesis. By theorem 3.2.0.15, we have a
bound of the type:

10,7 (u, X)) = (0T0) © Xullp, sy < C(Xu) - 10T (w) = 0T (w)lls,, 0.0,
(4.14)
where u — C(X,) is an integrable function on [0, 1] because of the hypotheses on
X, and the other term is bounded in n by an integrable function of v because of
how the T were chosen. Also, at fixed u, the term under the integral converges
to 0 in D), _(y41) because of theorem 3.2.0.15. Therefore we may conclude to the
convergence of the first term by the dominated convergence theorem for Bochner
integrals.
Let us note that C'(X,,) only involves the D, ¢ regularity of the X, and we
did not use more regularity in our proof. 0

Similalry one may prove:
Lemma 4.1.1.3 (Convergence of the second term).

D,

t t
/ aij(u) -&'jT(”) (U,Xu)du pi>+2> / aij(u) '8ijTu o X, du (4.15)

Proof. The proof is the exact same, however we note that for this term the Dy~ o3
regularity of the X, is required indeed. 0

and:
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Lemma 4.1.1.4 (Convergence of the fourth term).
D et p
Z/Z ) 0T (u, X)) dWi =S A (4.16)

where (Mt(6)> s a weak martingale on the Wiener space, and in the sense of
e<t<1

divergences we have:

MO =3 [ 3 - @) o X (.17

Proof. The general idea is the same, except that we need to use the Burkholder
Davis Gundy inequalities:

t t
/ bi(u) - ;T (u, X,)dW? — / bi(u) - 0;T, o X, dW?

Dp,s
t

(2-Id+ L£)*? [b(u) - (9,T™ — T, 0 X,,(u, X,,))] AW

oo (/1

1/p
C(p,s {/ [bs(u) - (;T™ — 8T, 0 Xu(u,Xu))H;p ) du] (4.18)

Lp

) 1/2
2 ) (07 = 917, 0 X, X)) )

Lp

The p > 2 restriction was needed to obtain this last inequality. We may then
complete the proof with the exact same techniques than for the first and second
terms. Once again, we note that only the D, 4o regularity of the X, was
required. O]

Finally we have to give a result for the third term. This one is the trickiest
because the right candidate for the limit of the Stieltjes integrals is less obvious.
We start with the following technical result:

Lemma 4.1.1.5. For any p > 1, s >0, for any n € N and for any f € S:

Hpn * f”sp,fs S ||f”8p,75 (419)

Proof. First:

i 10 = [ rsrow (<20 ) fe -y a0
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and therefore

(K2 (pnx ) (2) = /ﬁ‘e@( ‘g:) (K721) (= wdy

2mn
= (pnx (K7 2f)) () (4.21)
so finally:
lpn ¢ % = llon = (K72 f) 1[0 < I 2fIE = 1£1% . (4.22)

where the inequality is a classic consequence of Jensen’s inequality on the proba-
bility space L*(p,). O

We are now ready to state:

Lemma 4.1.1.6 (Convergence of the third term). The following limit exists in
D

/ 70
p,=s

n—oo

</:T(du, oXu),¢>> - [T(du,pxm) (4.24)

Proof. Let us denote (u;) for the elements of a partition 7 of [¢,t] arranged in
increasing order. Then a Stieltjes integral on [¢,?] is approached by Riemann
sums:

t t
/ T(du,0X,) := lim [ T (du,X,) (4.23)

and it is defined by:

t
/ 7™ (du, X,) = lim [T (wigr, Xo,) — T (i, X)) (4.25)

|7|—0
i

where the limit is taken in probabilities. Now, applying theorem 3.2.0.15 as in the
previous proofs, one obtains a control of the type:

|| [T(n) (Uz’—f—l; Xy ) -7t (uiv Xuz):| o [T

w1 © Xui - Tui © Xuzj|
H( uZL T(n ) (Tui+1 - Tuz‘)

Dp/, ’

—5

(4.26)

Sp,,fsl

where B is a function which is bounded on [, t] independently of n. Also by the
triangle inequality and lemma 4.1.1.5:

H (20, ~70) = (T ~ T2) <2-|r

Uit1 Tui
‘Sp/ o/ SP'V*S/

s

(4.27)
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which does not depend on n either. Now since:

Z | Ty — T, s, , SVar(T) < oo (4.28)

and this control is independant of 7 by the dominated convergence theorem one
obtains the convergence of the following Riemann sum in D, _y:

> [Ty 0 Xu, = T, 0 X, ] (4.29)

i

and we denote its limit by:
t
/ T(du,0X,) = lim Y " [T,,,, 0 Xy, — Ty, 0 X, ] (4.30)

Now let ¢ € D. By theorem 3.4.0.18 for every u, px, s exists and has at least
S(p)+,s regularity. Therefore by disintegrating each term of the Riemann sum
separately one obtains:

E (¢ [Ty, 0 Xy, — Ty 0 X, ]| = s (Tu1 — Tuys Pxo)s (4.31)

Since Var(T) < oo in Sy _y and u — px, s is bounded in Sy o by similar
techniques one shows that this converges to:

t /
/ T (du, px, / / 2T (du, ) - <K*%pxu,¢> (x)dx (4.32)
€ RN

so we are done. Once again, we did not use the D~ » 3 regularity of the X,: only
Do~ 541 was required for this part of the proof. O

Remark 4.1.1.2. Let us remember that we restricted ourselves to BV (Sy _y)
because of the Grothendieck theorem. Therefore it is worth mentionning that
the convergence of our Stieltjes integral may also be obtained directly from the
Grothendieck representation. Indeed since (F;) is a bounded sequence in Sy _y by
a method similar to the one used for the first term one has a control of the type:

IF™ (X)) = Fyo Xullo,, . < C(X) - |1E” — Fills, (4.33)

where F](n) = pn % Fj and uw— C(X,) is an integrable function of u € [0, 1] which
is independant of n. Therefore one obtains that for every j:

d|V;|(u) = 0 (4.34)

,—S

/ ||F(” F OX ||D %
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by the dominated convergence theorem for Bochner integrals. Since the sequence
of these integrals also is bounded in j one concludes to the dominated convergence
of the third term by the dominated convergence theorem for series. Also, one then
has a more explicit expression for the Stieltjes integral:

/: (du, 0Xu) ZA /FnoXuan(U) (4.35)

We are now ready to state the main result in this paragraph:

Theorem 4.1.1.1 (Weak Ito formula). Under the conditions (4.3), (4.5), (4.6)
and (4.6), for any ¢ > 0, for all t € e 1], the following holds in the space

]D)p’\/Z,—(s’—i—Q)-'
t
T(t)o X, —T()o X. = M +Z / bi(u) - (BT,) o Xudu

+= Z/a” (045Ty) o Xydu

+ /t T(du) o X, (4.36)

where <Mt(€)> 1s a weak martingale on the Wiener space, and in the sense of
e<t<1

divergences we have:

M =3 / tz [bi(w) - (8;T,) o X, dW/ (4.37)

Proof. We only need to show the convergence of every term, which is done by
applying the previous lemmae. Let us also note that the lemmae provide precise
estimates of the Do _(s42) norm of every term - we have p' V2 rather than simply
p’ because of the martingale term; see the proof of the corresponding lemma. [

Now we make the following observation: if we prove that all but one term in the
proof of the It6 formula above converge, then by elementary algebra the last one
has to converge too and the convergence takes place in the same space. Therefore
one may obtain the three following results which are slightly more precise.

The first one is interesting when T} is more regular in the continuous sense than
in the BV sense.

Corollary 4.1.1.1. Replace hypothesis (4.3) with:

T € C°(S,-) (4.38)
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where possibly o > s and replace s by o in hypotheses (4.5), (4.6) and (4.6). Then,
the formula in theorem 4.1.1.1 still holds in the space Dy —(or42).

Proof. The proof is the same as for theorem 4.1.1.1 except that the part about the
Stieltjes integral is not required. O

The second result allows one to "save" one order of regularity:

Corollary 4.1.1.2. Suppose that (4.3) holds and replace s+3 by s+2 in hypotheses
(4.5), (4.6) and (4.6). Then the conclusions of theorem 4.1.1.1 still hold in the

space Dyrva —(s141)-

Proof. The proof is the same as for theorem 4.1.1.1 except that the part about the
crochet integral (which contain the order 2 derivatives) is not required. O

Finally the third corollary allow us to obtain controls in the space D, _(s49)
for p’ < 2:

Corollary 4.1.1.3. Suppose (4.3), (4.5), (4.6) and (4.6) as in theorem 4.1.1.1.
Then the conclusions of theorem 4.1.1.1 hold in the space Dy _(s49) for p’ < 2.

Proof. This time it is the part about the martingale term which is not required. [

Finally there is a straightforward extension of the Itd formula in theorem
4.1.1.1, which allows one to multiply 7} o X; by a regular enough process Y;. More
precisely consider a one-dimensionnal Itd process:

dY, = bdt+ odW, (4.39)
Yo =y (4.40)

and make the following hypotheses on Y: for all » > 1,

1
/H%Hﬁmdu < o0 (4.41)

0

1
/ o5, du < oo (4.42)

0
(4.43)

We do not need to suppose that Y is non-degenerate. Then:
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Theorem 4.1.1.2. Suppose that X and T are as in theorem 4.1.1.1 and that Y
is as above. Then the following stands in D, ,:

Y- T(t)o X, —Y.-T()o X, = +Z/ T,) o X,du
+= Z/Ya” - (05T,) o X,du

/ V(u)Y, T, o X,du
¢
—l—/ Y, T (du) o X, (4.44)

where
M = Z/ Z (O;T,) 0 X.] dW“rZ/ w)T, 0 X, dWJ (4.45)

This result is proved exactly as theorem 4.1.1.1. Of course corollaries 4.1.1.1,
4.1.1.2 and 4.1.1.3 also admit similar extensions.

4.1.2 Processes with a general drift

In this paragraph we consider the process X such that:

dXt = dAt+Utth (446)
Xy = z (4.47)

where ¢ is as in the previous paragraph and A is a bounded variation process. We

still make the hypotheses (4.6), (4.6) and (4.3) and instead of (4.5) we suppose
that for every r > 1:

t
[, o < o0 (1.1
| 4l

which is enough to ensure that the quantities we consider are well defined.
We now state the main result in this paragraph:

Theorem 4.1.2.1. Under the hypotheses (4.5), (4.6), (4.6) and (4.3), for any
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€ >0, for all t € [e,1], the following holds in the space Dyya _(542):
t
T(#)oX,—T(e)o X, = M+ / (8T,) o dA(u)
1 " 5
+3 Z/E az;(u) - (05T) o Xydu
irj
t
+/ T(du) o X, (4.49)

where (Mt(e)) 18 as in theorem 4.1.1.1 and the integral against A is defined
e<t<1

as:
t

t
[ @) e xudaw =t [ @) (X)0AW (250
Proof. As in the proof of theorem 4.1.1.1 we introduce T = p, T in order apply
the usual Itd formula to that function and we study the convergence of each term
in the formula. Except for the integral against A, every term is analogue to that
in the proof of theorem 4.1.1.1 and since we have the same regularity for X we
obtain the convergence of these terms similarly. Finally the convergence of the
integral against A is then automatic. O

The problem with this idea is that it gives no explicit information about the
behaviour of the BV integral against A. This may be partly addressed to if we
make one extra assumption, namely that for some ¢ > (p’)*:

supz | Auyys — Auk”Sq’S/ < 00 (4.51)
k

where p is given in (4.3) and the sup is taken over all the partitions of [e, 1]. Indeed
we then have the:

Lemma 4.1.2.1. Under hypotheses (4.3), (4.48) and (4.51),

[ omexaaw =i [ @6uT) K)are) (52
s given as the limit of the following Riemann sum:
> (0T, 0 Xu) - (Auyy — Auy) (4.53)
k
Proof. Same technique as for the proof of lemma 4.1.1.6. O

Of course, as in the previous paaragraph, one may notice that it is sufficient to
prove the convergence of all but one term, one may obtain more precise results.
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4.1.3 The case where T} is random

Let X be as in section 4.1.1 and suppose that T; is a S’-valued random process
with bounded variations, adapted to the filtration of the Brownian motion W,
such that for every r > 1 and every integer k < [¢]:

t
S s s < o (4.54)
0

Then the same weak 1t6 formula as in theorem 4.1.1.1 holds. This is proved by
following the proof of theorem 4.1.1.1 but using theorem 3.5.0.20 instead of theorem
3.2.0.15. Indeed hypothesis 4.54 was designed exactly so that lemma 3.5.0.20 may
be applied.

4.2 An Ito - Wentzell formula

In this section we study the case of T; o X; where X, is a regular, non-degenerate
process of the type (4.1) and T} is a §’-valued semi-martingale. More precisely,
using the results from section 3.5, we will prove an extension of the It6-Wentzell
formula (see, for example, [40]). We stick to the case where the dimension is N =1
for simpler notation but there is no difficulty in extending the results.

We suppose that X verifies hypotheses (4.5), (4.6) and (4.6). We also introduce
two time-continous, distribution-valued processes:

D Vie N (Dw,k (Soo_(s—ty) N Do (Wm_(s_k_%))) (4.55)
k<[s]

Here we suppose that « is such that {s} > %; is s is an integer we only suppose:
Dt; Vi € m ID>o<>—,k (Soo,—(s—k)) (456)
k<[s]

We suppose that these processes are adapted to the filtration of W. Then we
may define an S, _s-valued semimartingale by an initial value 7j € S _s and the
equation:

dT, = Dydt + V,dW, (4.57)

where the above means that for any ¢ € S:

(206) = T é) + [ (Duords s [ (Veoyaw. (4.58)
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which is a regular semimartingale in R. For more details about the construction
of such objects, see, for example, [76] or [39]. It is then easily verified that:

T € ﬂ ]D)oo_,k (Soo,—(s—k)) (459)
k<[s]

and all the t — ||T; ) are bounded. There also is a similar result for

I (S
the Do (Wa (s_k_ﬂ)> spaces.

,—

We now state our result:

Theorem 4.2.0.1 (Weak Ito-Wentzell formula). Under the hypotheses (4.55),
(4.5), (4.6) and (4.6), for any p' > p and s’ > s, for any € > 0, the following
formula holds in Dy —(s42):

t
T(#)oX,—T(e)oX. = M+ / b(u) - (8,T,) o Xodu

1 t
+§/ o(u)? - (0yeTy) 0 Xydu
tE
—i—/ D, o X,du
.
+/ o(u) - 0,V o Xydu (4.60)
where (Mt(€)> s a weak martingale on the Wiener space, and in the sense of
e<t<1
divergences we have:
t .
M = / [b(w) - (8,T,) 0 Xy + Vi 0 X,] AW/ (4.61)

Proof. We use the same method as for the proof of theorem 4.1.1.1, except that
we use theorem 3.5.0.20 instead of theorem 3.2.0.15. The condition (4.55) has
been written so that theorem 3.5.0.20 always applies directly, so there is no extra
difficulty. O
4.3 An anticipative version

In this section we still consider a S’-valued path T, and a process:

t t
X=Xy + / b,du + / o, dW, (4.62)
0 0
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but we allow X, to be a random variable and we do not suppose that b or o are
adapted to the Brownian filtration anymore (so the stochastic integrals have to be
understood as divergences). We study under which hypotheses on the Malliavin
regularity of Xy, b and o we may still write a weak (anticipative) Tt6 formula as
in the previous section.

We will now recall a few points about anticipative stochastic calculus. We do
not pretend to provide a full introduction to that topic; instead we only introduce
the notation we will need and we refer to [53] and the references therein for details.

First, for 1 < p < oo we introduce the space L, ; of those processes such that:

1
[ullf, :ZE[/ yut|pdt1+E[// | D guq|Pdsdt
P 0 s<t

Then for 1 < ¢ < p we introduce the spaces ng{, resp. ILZ’_1 of thoses processes
u € L, such that there exists a process D u, resp. D~ u such that for every t¢:

< o0 (4.63)

1
lim sup B [|Dgu, — (DTu),|P] ds =0 (4.64)

"o Jo s<t<(s+ 1Al

resp:
1

lim sup B [|[Dgu — (D" u),|’] ds =0 (4.65)

n=oo Jo (s—%)v0§t<s

Finally we note: L? | = LY? NLZ7. To acquire an intuition about that notion, let us
note that if u is a process such that (s, t) — Dyu, is continuous on a neighbourhood
of the diagonal, then: (D%u); = Dyu; = (D~ u);. However that continuity property
does not hold for many processes which are of interest; for example there is the:
Theorem 4.3.0.2. Consider the process (4.62) and suppose that:

o Xo€Dyy;

[ ] b S DZQ(H);

® 0 C ]L2,1-

Then u € L3, and:

t t

(D~X), = DXo+ / Dibydr + / Dy, dW, (4.66)
0 0

(D+X)t = (D7X)t —+ ¢ (467)
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Also, in [53] (or in the original |54]), it is proved that if F' is a C? function and
if one assumes enough regularity on b and o, the following It6 formula holds:

f(X) = f(Xo)
n /O t (bsf’<Xs>+§a§ ”<Xs>) s

+ /O o f (X.)dW,
* /t(D_X)sJSf”(XS)dS (4.68)
0

Here the Brownian term is a divergence. We also note that the difference between
the usual 1t6 formula and this anticipative one lies only in the last term. Finally
it is interesting to notice that this term in the one with least Malliavin regularity.
Then by the same methods as in the previous section we prove the:

Theorem 4.3.0.3 (Anticipative weak It6 formula). Let T € S, _s. Consider the
process (4.62), with the hypotheses that for every p:

/ / B[+ )% D[] asit < oo (4.69)
s<t
// EH(IdnLL’)%QDSbt p] dsdt < oo (4.70)
s<
= 1 p
/ | dt < o (4.71)
0 t

where X 1s the Malliavin matriz of X,. Then the following holds in the space Dy _s:
ToX, = TolX,
! 1
+ / (bs-T/oXs+§U§-T/’oXs) ds
0
t
+ / os- T o X, dW,
0

¢
+ / (D™ X)s05 - T" 0 Xods (4.72)
0

Proof. The method is exactly the same as in the previous paragraph so we only
mention a few notewothy differences.

First since we allow Xj to be a (nondegenerate) random variable our formula
may involve integrals starting from 0 rather than some e.
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Second we cannot lift the Brownian (divergence) term into a martingale since
o is not adapted. Therefore instead of the Burkholder-Davies-Gundy inequlities
we will need to use the divergence inequailty:

||5u||Dp5 —_ ||u||]D)ps+1(H) (473)

Finally we note that our hypotheses have been tailored so that D~ X has enough
(ie 0 + 3) Malliavin regularity. O

4.4 Application to the solution of a SDE

In this paragraph we give conditions on the coefficients of a stochastic differen-
tial equation for its solution to be regular in the sense of Malliavin calculus and
uniformly non-degenerate. This allows us to derive under which conditions on the
coefficients of an SDE which are sufficient to apply the weak It6 formula (or its
extensions) to its unique strong solution.

4.4.1 Fractional regularity of the solution of an SDE

We introduce the Hélder spaces C°. If s is an integer, then C* simply is the
space of bounded functions with bounded derivatives of total order less than s.
Otherwise write s = [s] + {s}; then C° is the space of those functions in C!
with all derivatives of total order [s] being {s}-holderian. These spaces are closely
related to the Poisson semi-group (II;), cf [67]. Let us recall a few facts about this
semi-group.

First for ¢ > 0 we introduce the functions:

_ —2imy-x —2m|ylt
m(x) = /N e c e 2mlt gy
R

_ ) — (4.74)
P (e )T
and for f € CP we set:
(e f)(z) = (e = f)(2) (4.75)

Then II; defines a semigroup on C}, which enjoys the following property:
Theorem 4.4.1.1. Let f € L™ and 0 < s < 1. Then the following are equivalent:
o [€C¥;

2] o
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e For every 1 <i < N: H%H = O(t=19)

We also introduce the space C%* of those functions defined on [0, 7] x RY which
are C® in space uniformly in time, with the norm:

[fllcos = sup [[f(£,)llc: (4.76)
0<t<T

We will consider the following N-dimensionnal stochastic differential equation:

dXt = b(t,Xt)dS+U(t,Xt)th (477)
Xo = (4.78)

with b : Ry x RY — R¥ and ¢ : Ry x RY — RY @ R? and W the canonical
Brownian motion on the d-dimensionnal Wiener space.
The following result is well known and may be found in [66], [53] or [56]:

Theorem 4.4.1.2. Consider the stochastic differential equation (4.77) and sup-
pose that b and o are in C%* for some T. Then for any p > 1 and any t > 0,
X, € D, and there exists a constant C' depending only on p, k and the C%* norms
of b and o such that:

S 6C’T
Lp

sup |(Id + £)*2 X,

0<t<T

Remark 4.4.1.1. In fact it is sufficient that b and o be CY*~1 with uniformly
lipschitz derivatives of order k — 1.

Proof. Classic and omitted, cf, for example, [53]. ]
We will generalize this to the following:

Theorem 4.4.1.3. Consider the stochastic differential equation (4.77) and sup-
pose that b and o are in C*° for some T and some s > 1. Then for any p > 1,
s <sandanyt>0, X, €D,y and there exist constants A and B depending only
on p, s, s and the C** norms of b and o such that:

1 Xillp, . < Aexp(B([|bl|cos + [loflco.) - 1) (4.79)

Proof. We stick to the case d = N = 1 during the proof, but the general case
includes no other difficulty than tedious notation. We note [s] = k and {s} = a.
We suppose a > 0, otherwise our result is included in theorem 4.4.1.2. We note
that the fact that s > 1 implies the existence and the unicity of a strong solution
to the SDE.
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We recall that I denotes the Poisson kernel; for 7 > 0 we introduce the func-
tions o, and b, defined by:

U’r(tv ) = (HTO)(ta ) (480)

with an analoguous definition for b,. For 7 > 0 these functions have bounded
derivatives of all order; we recall that we have the estimates, cf |67]:

lozller < llofle (4.81)

for [ < k and
llorllor < 7710l os (4.82)

We also consider X[ the solution of the stochastic differential equation associated
to these coefficients. We may apply theorem 4.4.1.2 to X; for £ < s, and to the
X/ for any integer (here: k4 1) if 7 > 0. Let us write:

t t min(t,)
VXtT:/ U'T(S,XST)VX;dWS—I—/ b'T(s,XST)VXSTdWSqL/ o-(s, X])ds
0 0 0

(4.83)
and by the Malliavin calculus analogue to Faa di Bruno’s formula: if £ > 1:

t t
VEHXT = / oF D (s, XT)VORHD XTq, + / ol (s, XT)VFIXTaw,
0 0

t t
+ / b (5, XT)VEFD XTds 4 / V.(s, XT)V*1 XTds

0 0

¢ t min(t,-)
+ / P(s,X)dWS+/ Q(S,X)ds+/ R(s, X)ds (4.84)
0 0 0

where P, () and R are polynomials in the space derivatives of order less than k of
b, and o, and in the V®' X7 for [ < k in the sense of tensor products. Therefore,
applying the Burkholder Davis Gundy inequality, theorem 4.4.1.2 and Hélder’s
theorem one gets:

p p

sup |VFHLXT ds

0<u<t

< f(t)+7”“9(t)+/0 (oller+flen)?

sup [VEHIXT]
0<u<s

Lr Lp
(4.85)
where f and g are bounded by bounds of the type exp(C(]|b]|co.s + ||o]|co.s). Now
applying Gronwall’s lemma leads to a majorization of the type:

I sup [VHXTII < (14 7P oxp( OBl + lollcor) -6) (480
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and if 0 < o < a

1
o sup (VX dr < A+ exp(B(blos + ollco-) - 6) - (45)
0 sSus

Now we need to control 9, V*X7. We note that, since s > 1, the properties of
the Poisson kernel guarantee the differentiability of b, and o, in 7 together with a
uniform control on these derivatives. Therefore the theory of stochastic flows (cf
[40] or [38], the results generalize easily to processes with values in Hilbert spaces)
proves the existence of 0, (VkXtT) and that the computations below are valid.

Starting from (4.84) and replacing k + 1 by k we find a stochastic differential
equation verified by 9, V*XT. First:

t t
- / o™ (s, X)WV XTdW, = / (0,0 (s, XT) 4+ o™V (s, X7)0, X7 | VEFXTdW,
0 0

t
+ k / oM (s, XT)VEEVXT © 0, VXTdW,  (4.88)
0

and

t

t
- / ol (s, XT)\V*XTdW, = [0-00 (5, XT) + 0”(s5, X1)0. XT| VFEXTdW,
0

J
t
+ / ol (s, X7)0,V*XTdW, (4.89)
0
There also are similar Lebesgue integrals involving b. Finally, we obtain the form:
t
0. X] = / [c% D (s, X1)O, XIVEFXT + o (s, X])0.VFXT]| dW,
0
¢
+ / (DY) (s, XT) 0, XTVERXT + V. (s, XT)0.VFX]] ds
0
t t min(t,-)
+ / P(s, X)dW, +/ Q(s, X)ds +/ R(s,X)ds  (4.90)
0 0 0

where P, () and R are polynomials involving terms of order at most £ — 1 in
T-derivatives end at most k in space and Malliavin derivatives, so once again
by applying the Burkholder Davis Gundy inequality, theorem 4.4.1.2, Hélder’s
theorem and finally Gronwall’s lemma we obtain:

p
< (1477 exp(C(llollcos + [blees))  (4.91)
p

sup |0, VFXuT|

0<u<t
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and for 0 < o < a:

1
/ 7_—1+(1—0/)p
0

By the definition of the real interpolation spaces, noting s = k + o’ this yields:
X; €D,y and:

p
dr < Aexp(B([bllens + oflcos) 1) (4.92)
Lp

sup |0, V*XuT|

0<u<t

1 Xillp, . < Aexp(B([|b]|cos + [loflco.) - 1) (4.93)
This ends the proof. m

Remark 4.4.1.2. Here as opposed to theorem 4.4.1.2 we do not obtain a uniform
majorization. This is because we could not differentiate the sup with regard to .

4.4.2 A sufficient condition for the non-degeneracy of the
solution of an SDE

We now state a condition for the non-degeneracy of the solution of the stochastic
differential equation (4.77). We suppose that o € C%% for some s > 2 and that
B € C%. Then our stochastic differential solution has a unique strong solution.
We note k = [s]. For 1 < j < d let us consider the vector fields on RY which
are defined by: V; = 0. ;0,,. Let Lo be the set containing all the Vj; define by
recurrence L;; the set containing the [V}, Z] where Z € L,. Here [-,] is the
commutator of two vector fields. The L; are well defined for ¢ < k. Adapting the
proof from [15] we state:

Theorem 4.4.2.1. Suppose that for some n < k — 2 there exists ¢ > 0 such that
for all € € SN-1:

YD 6 2)(0,2) > ¢ (4.94)

1=0 ZeLy,

Suppose also that o € CP"2) for some B > 0. Then, if ¥, is the Malliavin matriz
of Xy, estimates of the following type hold for t > 0:

1
<C- - et (4.95)

B

Here C, v and K are constants which do not depend on t. In particular:

r

The proof is entirely contained in [15]. We simply accept to cope with a the-
orem which is more tedious to state as we pay more attention to the orders of
differentiablity; in so doing we avoid to suppose that the volatility is C'%°.

P

p

dt < oo (4.96)
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4.4.3 Weak Ito formula for the solution of an SDE

We now combine the results in the two previous paragraphs to obtain tractable
sufficient conditions which let us apply the weak It6 formula to the solution of the
stochastic differential equation (4.77).

Theorem 4.4.3.1. Suppose that the coefficients of the stochastic differential equa-
tion (4.77) are in C*%) for some s > 2 and let k = [s]. Suppose that the Horman-

der condition (4.94) holds for some n < k —2 and that o € CB"+2) Then if T is
a path with bounded variations in S, _s—1) the following It6 formula holds:

t
T,oX,—T.o X, = M+ Z/ bi(u, X,,) - (8T,) o X, du
1 i
+ 5 Z/ aij(u, Xu> . (&JTU) o) Xudu
ij Ve
t
+ / T(du) o X, (4.97)

and in the sense of divergences:
t
MO =3 / S (s, X.) - (BT) 0 X,] AW (4.98)
il

Of course, theorem 4.1.1.2 also extends into the following:
Theorem 4.4.3.2. Let X and T be as in the previous theorem. Consider two

functions by, oy € C©9) and let Y be the only strong solution of the stochastic
differential equation:

dY, = b(t,Y,)dt + o(t,Y,)dW, (4.99)
Y, = y (4.100)

Finally let f € BV(C®). Then the It formula holds for:
f.Yy) - Tio Xy (4.101)

Let us note that we do not need to make any assumption on the nondegeneracy
of Y.
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4.5 Comparison to other extensions of the 1t for-
mula

4.5.1 Extensions of the Follmer-Protter-Shiryaev type

We start by showing that from our It6 formula, we can recover a formula of the
type of the Follmer-Protter-Shiryaev formula given in [20]:

Theorem 4.5.1.1 (Follmer-Protter-Shiryaev formula). Let f be a differentiable
function such that Df € L2 (RN, RN) and let W be a N-dimensionnal Brownian
motion. Then:

N

FOV) = 5(0)+ S 0SOVAW,+ 5 - [FOVLW), (410)

where the quadratic covariaation [f'(W), W] is defined as the limit of Riemann
sums:

N n

SOV W] =37 tm ST (F0V) = FWen)) - (We = W) (4.103)
i=1 k=1

Now, suppose that we are in the setting of theorem 4.4.3.1. Suppose, in addi-

tion, that 7; has values, say, in S,; or in WPl Then, the T, and its first order
derivatives are proper functions with at least L? regularity so the Itd formula reads:

T(t, X,) —T(e, X.) = Z /tbz-(u, X,) - 0,7 (u, X,,)du

J

. / S . X)) - T (w, X,)] dW

+ / T(du, X,)

€

1 t
+ 52/ aij(u, X,) - (05T,) 0 Xydu  (4.104)
2y

In the equation above, only the terms in the last line are distributions on the
Wiener space, while all the other are proper random variables. Therefore, one
expects that it is possible to let € tend to 0, and to recover a usual (functional)
It6 formula in this case. Also, it should be possible to identify the distribution
term above with the quadratic covariation term in the Follmer-Protter-Shiryaev
formula.
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First, we prove that this holds indeed in the uniformly elliptic case, ie if the
function a is uniformly bounded from below. Indeed, in [35] it is proved that under
this condition, and if the coefficients b and o are Cy° uniformly in time, then the
process X; has a smooth density px,(y) which verifies:

Clly — |

—1,—N/2 clly — x||2 —1,—N/2
¢t exp | —————— <px,(y) <Ct exp | ——— (4.105)

Here, ¢ and C are two constants, and we recall that X, = x a.s. Moreover, by
taking a close look at Kohatsu-Higa’s proof, one notices that the most irregular
distributions playing a role are of the type 6?; o X;. Therefore, the proof is still
valid if b and o are such that these distributions are well defined. Recall that the
Dirac mass J, is in the space Sl+e7—1l+i for any e. Recall also that the uniform
ellipticity hypothesis implies uniform non-degeneracy of the proces X. Therefore,
by following the proof by Kohatsu-Higa and using theorem 3.2.0.13 we extend his
result to the following:

Theorem 4.5.1.2 (Density control under uniform ellipticity). Let X; be the strong
solution of the SDE

X = (4.107)

where b,o € C%**¢ and a is uniformly bounded from below. Then X, admits a
continuous and bounded density px, at each t > 0 and one has:

_Clly —=|?

_ 2

t

) (4.108)

for some constants c,C.

Remark 4.5.1.1. Because of the uniform ellipticity we do not need to assume that
the coeficients are Hélder in time as we did in theorem 4.4.3.1 as this hypothesis
was used only to prove the non-degeneracy. Also, if we suppose more space regu-
larity on the coefficients, then the X; have more Malliavin regularity according to
theorem 4.4.1.3, and hence px, has more reqularity because of theorem 3.4.0.18

Remark 4.5.1.2. Under the conditions of theorem 4.5.1.2 for all t > 0 X, has
full support.

We give another result of the same type . In [42], sections V.11 and following,
the following result is given:
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Theorem 4.5.1.3 (Fundamental solution to a parabolic Cauchy problem). Con-
sider a second order parabolic operator P(t,x,;,0,) on 0, T[xRY. Suppose that,
Jor some 0 < a < 1 the coefficients of P are jointly 5-Hdolder in time and a-Holder
in space. Let 0 < 17 <t; £ € RN, Then for 7 <t < T there erists a fundamental
solution Z to the equation:

P(t, xZ, (9t, ax)Z.,—’g(t, SL’) = (ST &® (55 (4109)

which is continuous and bounded in x for any t. Moreover, there exisits a number
C > 0 such that Z verifies:

| Zre(t, )| < C’-ﬁ-exp (—C'i_gf) (4.110)
PR -

The same reference also provides estimates for small (fractional) order deriva-
tives of Z. The unicity of the Cauchy problem is adressed to separately in the
same book. Now, consider the SDE (4.106, 4.107) and suppose that its coefficients
are Lipschitz in space and a-Hoélder in time for some o > 0. Then on one hand
our SDE admits a unique strong solution, and on the other hand the parabolic op-
erator associated to the SDE verifies the conditions of theorem 4.5.1.3. Therefore
X; has to have a continuous and bounded density at any ¢ > 0 which verifies a
majorization of the above type and we have:

Theorem 4.5.1.4 (Density existence and control without uniform ellipticity). Let
X; be the strong solution of the SDE (4.106, 4.107) where b, o are a-Hélder in time
for some o > 0 and Lipschitz in space. Then X; admits a continuous and bounded
density px, at each t > 0 and one has:

px.(y) <C- m * €Xp (—Cp;:i' ) (4.111)

for some constant C' > 0.

We note that although the second theorem seems easier to apply, it does not
bound the density from below.
We now prove the following:

Theorem 4.5.1.5. Suppose that T; is a BV path taking values in S,1 (or W, 1)
for some p > 2 and that X wverifies the conditions of either theorem 4.5.1.3 or
4.5.1.2. Then it makes sense to let € tend to 0 in formula (4.104)

Proof. We only need to prove that every integral is well defined in L” as € tends
to 0. More precisely, we prove the LP convergence of every integral except the one
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involving distributions on the Wiener space. Then, by elementary algebra, this
integral has to converge, too.

The proof of the convergence of every term relies on ideas similar to those we
developed in the proof of theorem 4.1.1.1. For example,

t
0

t
< HbHOO/O 10T (u, X.0)|| o (4.112)

Lp

and

0w, X = [ 1070, (a)da (4.113)

so finally

t
/ b(u, X)0;T (u, X,,)du
0

t
< ||b||c>o/O o, locl70i (. )| odu - (4.114)

Lr

Now u > [|0;(u,-)||r» is continuous because of the hypotheses on T and |[|px, ||o
is controled by theorem 4.5.1.2; so finally this last integral is finite. Therefore we
may apply the dominated convergence theorem to obtain our convergence.

The Brownian term is dealt with in a similar way, using the Burkholder Davies
Gundy theorem. For the BV integral, notice that:

d

Remark 4.5.1.3. In [}7] Moret and Nualart give a similar result for a general
semimartingale. We only the specialization of their result to solutions of SDEs, as
obtaining the existence and the reqularity of a density for a general semimartingale
is a more difficult problem than doing it just for the solution of an SDE.

|<] T l(du px) (4115)

]

/0 t T(du, X,,)

Remark 4.5.1.4. In [20] the order 2 term is expressed as a quadradtic covariation
rather than a ' -valued integral, so we have the identification:

[(D)(X), X], (4.116)

| —

1 t
5 Z/ CLZ'J'<U, Xu) : (&]Tu) e} Xudu =
ij Y0

Remark 4.5.1.5. We need that p > 2 because we apply the Burkholder Dauvies
Gundy theorem to the Brownian integral. See the proof of theorem 4.1.1.1 for
details.

We may extend the above result a little bit in the specific case where N =1
and the coefficients b and o are time homogeneous. Indeed in [7] the following
result is proved:
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Theorem 4.5.1.6. Let b € CZ(R) and 0 € C"™*(R) for some n € N and x € R
such that:

o(x)=--=0"D(x)=0 (4.117)
and
b(z)o™ (z) #0 (4.118)
Let X, be the solution of the SDE:
t t
X, = x+/ b(XS)ds+/ o(Xs)dW, (4.119)
0 0
Then at all t > 0, X; admits a density px, € CY(R) such that:
px, () < prve (4.120)

Remark 4.5.1.6. The conditions on the volatility exactly express hypoellipticity as
in dimension 1 the Lie algebra generated by the volatility function and its deriva-
tives is of dimension at most 1. The case where n = 0 corresponds to ellipticity. If
a = o2 is bounded from below, one has unifrom ellipticity, which implies that one
may take n = 0 i the above framework. Finally, the differentiability conditions on
b and o are slightly less demanding in this case than in theorem 4.4.5.1, and extra
reqularity may be proven for the density by using theorem 3.4.0.18.

From this result and our weak It6 forula we recover the following result which
is contained in [7]:

Theorem 4.5.1.7. Let 0,b € CZ(R), let x € R such that b(z)o(z) # 0, and let X,
be the solution of:

t t
X, = :c—l—/ b(Xs)ds—l—/ o(Xs)dWy (4.121)
0 0
Then, for any BV path T, with values in S,y (resp WP') one may let € tend to
zero in formula (4.104).

Proof. Similarly to above we start with our weak It6 formula and we only need to
show that all the integrals starting at 0 do exist in LP. We proceed as in the proof
of theorem 4.5.1.5 and we write:

t t
[ oot X < bl [ I leloto e @122

0 Lr 0
In the above inequation, the density exists and the right hand side integral is finite
because of theorem 4.5.1.6. The other terms are dealt with similarly. O]

Remark 4.5.1.7. Once again we expressed the crochet in the Follmer-Protter-
Shiryaev formula as an integral in I'. n = 0 is needed to obtain the t-integrability
of px,; this is a slight improvement over the condition of uniform ellipticity required
in the previous theorem.
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4.5.2 Around the local time
Results in dimension 1

Let (X;) be as in theorem 4.4.3.1, with N = 1. If LF(X) is the local time of the
process X at time ¢ and point K, then the Tanaka formula reads:

X, — K| — | — K|
t t
1
= / sgn(Xs — K)b(s, X;)ds +/ sgn(Xs — K)o(s, Xs)dWs + ELtK(X)
0 0
(4.123)

Moreover the function z — |z — K| isin S, _, for any a > 1 — i and the function

x — sgn(x — K) is in S, _,, for any o > —1%. We therefore may apply theorem

4.4.3.1 and we obtain:
| X — K| - | X — K|

t t
= / sgn(Xs — K)b(s, Xy)ds +/ sgn(Xs — K)o (s, Xs)dWs

16 . €
+ 5/ o(s, X;)*0x 0 Xyds (4.124)

As in the previous section, it is tempting to let € tend to 0 in the above and to
obtain the identification:

t
Lf(X):/ o(s, Xs)*0k 0 Xyds (4.125)
0

which is a time disintegration of the local time in a negative order Sobolev space,
in the sense of Pettis integrals. The results in the previous section do not apply
directly as the absolute value and the sign are not regular enough functions; we
will however prove that similar (and more precise) results do hold. We start with
the:

Lemma 4.5.2.1. Consider a non-degenerate X € Doo- o and f € Cg. Then the
quantities below are well defined and:

F(X) -6k 0X = f(K) 650X (4.126)

Proof. First, since we work in dimension 1, we note that dx € S, _(1-1)_ for any
? P

1 < p < ooand e > 0. In particular, let us choose € such that 1 — i) —e < 1.
Then by theorem 3.2.0.15 0, o X is well defined in D, _(;_1,_.. Also by the chain
’ P
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rule f(X) € Dp1 C Dy 11y, so by Holder’s theorem the left hand side is well
defined, at least in I _q_1)_.
Also, by equation (3.94) for any ¢ € D, px 4 is well defined and there comes:

(f(X) - dxoX,0) = E[f(X)|X = K]pxs(X)
= E[f(K)o|X = K] px(X)
(f(K)-dgoX, o) (4.127)
so we are done. O

Now we will prove the following:

Theorem 4.5.2.1. Let X be as in theorem 4.5.1.2. Then, for any K:
t
LE(X) :/ o(s, K)%0k o X,ds (4.128)
0

and for any r > 2, a < %
L (X) € Dyq (4.129)

Proof. First we shall prove that under these conditions it is legitimate to let € tend
to 0 in equation (4.124). By theorem 4.4.1.3, for any ¢ > 0, X, is non-degenerate
and X; € Dy~ 2. Also, X; admits a density px, which is as in theorem 4.5.1.2.
In particular, this density is continuous and bounded. We therefore may apply
lemma 3.2.0.6 for v = 1 and we obtain that 1x,~x € D,,, and for some p which
does not depend on ¢ and some constant C'(p, «), o < %:

x>k [|py,0 < C (14 [[VXellLe) [P ]l (4.130)

Now since p > 2 by the Burkholder Davies Gundy theorem and Hélder’s inequality:

t
/ o(s, Xs)sgn(Xs — K)dW;
0

t
<c / lo (s, X)llo, o ls9n(Xs — K)llo, .
o 0
(4.131)

]D)p
Gp 111 :
with s=5T Clearly:
lo(8, Xs)lIpga < llo(s, Xo)llpys < llollool| Xsllp, (4.132)
Also, writing the sign as the difference of two indicators:

lsgn(Xs = K)|lp,. < C(1+[[VXlLe) [px.[lse (4.133)
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Now putting everything together and controlling the different terms through the-
orems 4.4.1.3 and 4.5.1.2 the integrability is clear. The other terms are dealt with
similarly so we have obtained:

t
LE(X) = / (s, X,)20k 0 X,ds € D, (4.134)
0

Now, on one hand the previous lemma applies, and on the other hand one can
take r as close to 2 as one chooses, so we are done. L]

Remark 4.5.2.1. A more general result of that type was given in [3]; we simply
want to show how the ideas in theorem 4.1.1.1 relate to the Tanaka formula. Let
us especially note how the term:

/ LE(X)T" (dz) (4.135)

which appears in the Ito-Tanaka formula is related to the following term from our
1t6 formula:

t
/ o(s, X,)?-T" o Xyds (4.136)
0

These terms coincide when they are both defined but the second one may be defined
for more general distributions than just Radon measures if X is reqular enough.

We may also give another result related to the one in |3]|. More precisely, we
will prove:

Theorem 4.5.2.2. Let X be as in theorem 4.5.1.2. Let p > 2 and a < i. Then,
for any t, K € R— LE(X) €D,, is a continuous function.

Proof. Consider Ky < Ky € R. One sees that 1, g, € W), for any a < %'.
Indeed, 1)k, k, € LP and Vg, g, = 0k, — 0k, € Wy a—1. Therefore by lemma
3.2.0.5, for some g:

1151, 521(X¢) ||Dy.0 Cllpx,lloo (T + IVX||za) 1L, 6o [lwee

Cllpx,loe (1 + 1V X 22)
(M1 = Kol + 1(Fd = 8)7*5° (6, — b))l [ 4137)

<
<

Now, for any § > 1 — ;—), K € R — (Id — A)P6g € LP is continuous, so we

may control the RHS. We obtain our result by writing L;"(X) — L (X) with
the Tanaka formula, mimicking the proof of theorem 4.5.2.1 and using the above
estimate. [
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Actually, the proof above gives an even more precise result, which means that
Malliavin regularity may be traded off for trajectory regularity:

Theorem 4.5.2.3. Let X be as in theorem 4.5.1.2. Let p > 2, a < % and v < a.
Then, for any t, K € R+ LE(X) €D, o is a y-Hélder function.

From this, we may recover an already well-known result:

Corollary 4.5.2.1. Let X be as in theorem 4.5.1.2. Then, for any t, the (space)
trajectories of Ly,(X) are almost surely v-Hélder for any v < %

We aready know that this corollary is optimal (cf, for example, the case of
the Brownian motion), therefore there is little hope to extend theorem 4.5.2.1 to
the case p < 2. Actually, in [3] it is shown that the Brownian motion provides
a counter example. Let us also note that the case p = 2 has been dealt with by
other methods (chaos expansion) for the Brownian motion only, see [51] and [50].

Here is another result of the same type:

Theorem 4.5.2.4. Let X be as in theorem 4.5.1.2. Then 55 LE (X)) is well defined
n ]D)p’_(l_%)_e for any e > 0, and:
0

t a t
K _ 7 o 25/
aKLt (X) 2/0 a(s,K)aKa(s,K)dKOXsds /0 o(s, K)*0% o Xsds (4.138)

Finally, K € R — LE(X) € D, _q-1)_c 18 a continuous function.
’ P

It is interesting to compare this with the following result from [13]|: if W is
a brownian motion, then for every ¢, x — L¥(W) is a semimartingale in its own
filtration and there is the:

Theorem 4.5.2.5 (Bouleau-Yor formula). Let f be a differentiable function on R,
with a locally bounded derivative and let W be a 1-dimensionnal Brownian motion.
Then:

! !/ ]' ! xT
FOV) = £+ [ rovgaw. =5+ [ paaon (1.139)
It is then possible to show that the term:
[ r@aiio (4.140)
R

coincides with one of the type:

Af(z)%Lf(W)dm (4.141)

where the latter is defined as a Pettis integral in some negative order Gross-Sobolev
space. Also, such a quantity could be defined for a more general stochastic process
than the Brownian motion, ie one which verifies the hypotheses in theorem 4.5.1.2.
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Results in multiple dimensions

Some authors have shown how to define the local time of a multi-dimensionnal
Brownian motion as a distribution on the Wiener space, see for example [27]
and the references therein. In this paragraph we will show how the method we
developped in the previous paragraph allows us to extend this idea to more general
diffusions.

We start be recalling that, if w,, denotes the volume of the n-dimensionnal unit
ball, the fundamental solution E,, of the Laplace operator is defined as follows:

Ea(e) = - log(Jal) = - log(|z) (4.142)

and if N > 2: .
E e 4.143
V@) =~y (1.143)
By design, AE, = dp. Also, it can be checked that E, € S, y_1)_. for any
€ > 0. Now let X be the unique strong solution of the SDE:

X, = o (4.145)

Suppose that the conditions of theorem 4.4.3.1 hold for some s > N (1 — %) (if the
coefficients are Holder in time and 2 + € in space this is verified for small enough
p). Then we may apply the weak Tt6 formula and we obtain:

En(Xy — K) — En(Xe — K)

t t
= / bi(S, Xs)aiEN(Xs - K)dS +/ Sgn(Xs - K)0<S7Xs>dWs
I 5
+ 3 lo(s, Xs)|“0k 0 Xds (4.146)

Now we may apply the same method as in the dimension 1 case in order to prove
that under these conditions:

Theorem 4.5.2.6. Suppose that the conditions of theorem 4.4.5.1 hold for some
s> N(1- %) and p > 2. Then for any ¢ > 0 the local time of X s well defined in
D, 1_na—1)_e as the following Bochner integral:

’ P

t
LE(X) ::/ lo(s, K)|*0x o X,ds (4.147)
0
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Let us remark that since there has to be p > 2 in the theorem above, unless
N =1 there always is:
1
1—N~(1——><0 (4.148)
p

Therefore, the local time of a multi-dimensionnal process is not a proper random
variable in general. This is the case even for very regular processes: for example
it is well known that the brownian local time is not defined as a stochastic process
in dimension N > 2.

We finish this section with the following result, which is obtained by applying
the Ito formula to K%E,, rather than E,,:

Theorem 4.5.2.7. Let X be as in the previous theorem, p > 2 and t > 0.

1
a<1—N-<1——)<O (4.149)
p

Then, for any v > 0, the function:
K eRY = Ly(K) € Dyory (RY) (4.150)
18 y-holderian.

This allows us to understand our weak Ité6 formula as a multi-dimensionnal,
weak extension of the Bouleau-Yor formula.



Chapter 5

Applications to some problems in
analysis

5.1 Variational inequations in a markovian frame-
work

In this section, we still consider X}*(z) the unique strong solution on [u,T] of the
stochastic differential equation (4.77) such that X, = x. Here, we suppose that
the assumptions of theorem 4.4.3.1 hold for some s > 2, n <k —2and > 0. We
will note s =1+ 6. We note A; for the generator of X:

At = Z ai,j(ta x)@zaj + Z bz(t, ZL‘)@Z (51)

and:
K, =0+ A, (5.2)

We note Z; 1 the set of all stopping times 7 such that ¢ <7 <T a.s. Now we give
ourselves some continuous, bounded and positive functions f and g and a C(®%),
positive function r» and we consider the following problem:

Ku—ru < —g (5.3)

u > f (5.4)

(K —ru)(f—u) = 0 (5.5)
uT) = f (5.6)

We will note (A) for the set of assumptions we made on X, f, g, etc. and (V) for
the variational problem we consider. Now we prove:

111



112 CHAPTER 5. APPLICATIONS TO SOME PROBLEMS IN ANALYSIS

Theorem 5.1.0.8. Under (A), let u € BV (C°) be a solution of the problem (V).
Then:

u(t,x) = sup E {f(Xﬁ(a:))exp (- /t Tr<u,X;(g;))du)

o + /t " gls, X!(2)) exp (- /t Sr(u,X;(x))du) ds} (5.7)

Proof. We will only prove the case where t = 0, the other cases being similar. We
note X; = X?(z). We also introduce:

I, = exp <— /O tr(u,Xu)du) (5.8)

We note that we have the injection C° < S, _y/,—. for any € > 0. Therefore,
for p big enough and e small enough so that N/p + € < s — 1, we may apply
the generalized 1t6 formula in theorem 4.4.3.2 and for any € > 0 we obtain the
following;:

Lou(t, Xy) — leu(e, X) —/ s ((Asu)(s, Xs) — (ru)(s, Xy)) ds —/ lsu(ds, Xs) = M,

(5.9)
for some weak martingale M. Also K;u—ru+ g is a negative distribution, therefore
the following is a positive distribution on the Wiener space:

Dy = My — lu(t, z2) + Lou(e, X.) — / Lg(s. X.)ds (5.10)
Now for e > 0 introduce the processes
v = P, [ltu(t,Xt) + /t lsg(s,XS)ds] (5.11)
0
and
M = P, M, (5.12)

These have moments of all orders. We note that the following is a positive random
variable:

Dy := P,D,= M —v}+ P, {leu(e,Xe) +/ lsg(s,Xs)ds} (5.13)
0

Let 7 be any stopping time; we evaluate at ¢t = 7 and take expectations. M® is a
uniformly integrable martingale starting from 0, so:

E[M®] =0 (5.14)
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We know that the Ornstein-Uhlenbeck semigroup preserves the expectations, so:

E [Pa [leu(e,Xe)—i— /O Elsg(s,Xs)dsH _E {leu(e,Xe)jL /0 ezsg<s,xs)ds] (5.15)

Finally:
t
v¥ =P, {ltu(t,Xt) —I—/ lsg(s,XS)ds] (5.16)
0

‘t:'r

Since for any p lLyu(t, X;) + fot lsg(s, Xs)ds is bounded in L? (by ||u|loo + T|g]/c0),
the process Lu(-, X.) + [, Lsg(s, X,)ds is uniformly integrable. Therefore, so is vf*
as a bivariate process, and letting a tend to 0 we obtain:

Elv,] = E {zTu(T, X))+ /0 ' lsg(s,Xs)ds} (5.17)

Putting everything together one obtains:

E [leu(e,XE)—i— /0 Elsg(s,Xs)ds} > B {ZTU(T,XTH /0 Tlsg(s,Xs)ds] (5.18)

Since this is for any stopping time 7 and for any e, letting € tend to 0 there comes:

u(0,z) > sup E[l u(r, X;)] (5.19)

TEZo,T

Now to finish the proof we just need to find one stopping time 75 for which
u(0,2) = Ell,u(19, X;,)] stands. Consider the open set:

D = {(t,y),u(t,y) # f(y)} (5.20)

and define a stopping time as:
T, = inf{t, (t, X;) ¢ D} (5.21)

If 7, = 0 a.s. then u(0,2) = f(z) and it is clear that 7, realizes the supremum in
this case. Otherwise, from the 0 — 1 law for the Brownian filtration, 7, > 0 a.s.
Now let (u,,, m € N) be a smooth approximation of u. By the usual 1t6 formula,
for every m and for every t > ¢ > 0:

lt/\mum<t A Tx,s Xt/\m) - le/\fzum(e A Tx, Xe/\m)

tATz
— / ls (0s + Ag + 1) up (s, Xs)ds + Mt(m’n’e) (5.22)

NTzx
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where (M(m’"’e),t > ¢€) is a martingale in the Brownian filtration starting at e.

Now let ¢ € D. One has:

E [¢ ) /Mm Is (0s + As + 1) up(s, Xs)ds]

NTg

¢
= K {qﬁ . / ls (0s + Ag + 1) up (s, XS)I(S,XS)EDZ} ds
t
= / E [ls(b (0s + As + 1) um(s,XS)l(&Xs)eDzds}
t
- / / (as + As + T) um(57 y)1(S,y)€Dprs,ls¢(y)dde

_ / / (B + Au + 1) (5, 9.0 () dyds
Jet[xRNND

Similarly:

tAT:
5 [¢ yi zsg<s,xs>ds] -/ o5 90 a.0(y)dyds
ENT le,t[xRNND

By theorem 3.4.0.18 we know that for s > 0:
PX.1s6 € Sps
Then, by writing the integration by parts:
Pxoo(@) = B [(Id+£) (1, ¢) - (Id + £)"* (3, 0 2,)
one checks that the following path is continuous (for any value of p):

s €)e, T px, 1.6 € Spo

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

Now we know that (05 + As + 1) u,, — g converges to 0 in the sense of distributions

on D; more precisely on D we have the equality:

Eaijaiju = —0wu — g+ ru — X;b;0;u

(5.28)

and u € §, ~_ for any p so the convergence takes place in Sp_ﬂ_1_e(D>5 in
’p ’p

particular it takes place in S, _5(D) for small enough p. Choosing such a small p

and p* for the regularity of px, ;.4 one finally gets:

tATx
/ L [(Ds + Ay + 1) (5, Xo) + (s, X)] ds — 0

NTg

(5.29)
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at least in . We therefore have:

tATx

Line, W(t A oy Xinr,) — lenr, u(€ A Toy Xenr, ) + / lsg(s, Xs)ds = Mt(s) (5.30)

ENT,

where M (9 is a weak martingale. Now M) is a proper, bounded in L? process
because the LHS is, so it is straightforward to check that M is a martingale
in the usual sense. In particular the expectations of the LHS and the RHS both
are 0 at any time. Also, the LHS is bounded surely by 2||ullo + T|g|lcc s0 by
taking expectations and letting € tend to 0 and ¢ tend to infinity by the dominated
convergence theorem one gets:

Bt )+ [ tgls Xods| = (0.0 (531)

so by the definition of 7,:

B[1ns06) + [ ugts. x0s] = uto.) (52)

and the proof is finished. O

Remark 5.1.0.2 (Improvements w.r.t the previous results). The coefficients b, o,
r need 2 or 3 reqularities, not smoothness. f only needs to be continuous. There is
no need for ellipticity, nor even for hypoellipticity: only Malliavin nondegeneracy
conditions are required.

Remark 5.1.0.3 (A simpler proof under stronger hypotheses:). Suppose K; is
hypoelliptic and r is smooth. Since Kyu = ru in the sense of the distributions on
D, u has to be a smooth function on D because r is smooth. Therefore the classical
1to formula may be applied, and if T, announces T,:

L, Xo) — u(0,2) = /0 L (tols, X.)Vuls, X.))dW, (5.33)

Therefore the left hand side above is a (usual, strong) discrete time martingale
convergeing a.s. to . u(7,, X, )—u(0,x) and since 1,, announces T, our martingale
is uniformly integrable, so the convergence takes place in L' and this yields:

uw(0,2) = E [l u(re, X;,)] (5.34)

which finishes our proof.
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Remark 5.1.0.4. Another method might have been the following: since

ATz
/ ls (0s + As + 1) up (s, Xs)ds — 0 (5.35)

ATz
in I, one may use the positive distribution methods to deduce from this that the
convergence takes place in law. Then on may prove that the LHS is tense (perhaps
need to restrict to increasing compacts) by the Aldous criteria. From this we deduce
that our sequence of martingales is tense (one tense term + one term converging
to 0); we also know that it converges in finite distributions. Therefore the limit has
to be a local martingale (see [31] for the precise criterion) and since it is bounded
a.s. by the Burkholder-Davies-Gundy theorem and the Nouvikov criterion it is a
martingale. This is similar but more complicated; it was the first idea I had.

Remark 5.1.0.5 (On the condition: v € BV (C?)). In our theorem we worked
under the hypothesis that u € BV (C°). In practice this might be hard to verify or
one may only have that wu is BV in time for every point in space and C° in space
for every point in time but not have joint reqularity. Then, one may still make the
following observation: w € BV (S') if and only if for every ¢ € S, t — (u(t,-), ¢)
1s a BV function. In our precise case, there is:

() = (ult, ), 6) = / u(t, ) - 6(x)da (5.36)

and it is then easy to derive:
Var(a) < /Var (u(-,x)) - ¢(x)dx (5.37)

Then we see that if x — Varu(-,x) in LP, by Hélder’s theorem uw € BV (L?). More
generally, if there exists some d > 0 such that:

Var (u(-, )
(1+ |af2)"?
then uw € BV (S, _s). Indeed we have already observed that:

o= (1) 0@)| <€ U6, (5.39)

Lr (5.38)

We now prove the following reciprocal to the previous theorem:

Theorem 5.1.0.9. Under the assumptions (A), the function:

u(t,z) = sup E {f(Xi(x))eXp (- /t Tr(u,XZ(x))du)

o o [ o X e <_/:T(“’X5(x”d“) ds} o

is a solution to the variational inequation (V).
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Proof. That u(t,z) > f(z) and u(7T,x) = f(x) are obvious. Also, it is known (cf
[33]) that u is jointly continuous. Finally it is decreasing in time because so is the
set Z;r, hence u is BV in time and:

Var (u(-,z)) = u(0,z) — u(T, x) (5.41)
Therefore:
supVar (u(, 7)) < 2 || £l (5.42)

so by the same arguments as in remark 5.1.0.5 one gets u € BV (Sp7,N/p,€). We
now consider the following adapted process:

t
Sy = lLu(t, Xy) +/ lsg(s, Xs)ds (5.43)
0

We will prove it is supermartingale. Indeed, from the expression of w and the
strong Markov property X has as the strong solution of an SDE, one has:

I, Tl
u(t,X;) = sup E {—f(XT) —|—/ —g(s,Xs)dsLE} (5.44)
t<r<r Ll ¢l
and since . and [ l,9(s, X,)ds are adapted processes:
Sy = sup F {le(XT) +/ lsg(s,XS)ds|}—t] (5.45)
t<r<T 0

One sees that this is the Snell envelope for the cost function

Y, = 1, f(X) + /0 Clag(s, Xo)ds (5.46)

therefore by the results in [33] we know that it is a supermartingale. Also, S is
(almost) surely bounded:

[Se] < [ulloe + (T = D)lglloe < [I.flloe +Tllglloe (5.47)

In particular, S is a class D supermartingale, therefore it admits a Doob-Meyer
decomposition, cf [17]:
St — U(O, l‘) = Mt -+ Dt (548)

where M is a martingale and D is a decreasing process, and My = Dy = 0. Now
since u € BV (8p7,N/p,5), as in the proof of the previous theorem, one may write
the weak Itd formula:

t t
Lou(t, Xo)—leu(t, X.) = / s (0s + Ag + 1) u(s, Xs)ds+/ lso(s, Xs)0p0(s, Xs)dWj
‘ ‘ (5.49)
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and therefore:

t ¢
Sp—Se = / Is ((0s + As + 1) u(s, Xs) + g(s, X)) d3+/ lso(s, Xs)0.0(s, Xs)dW;

(5.50)
The first term of the RHS is a weak BV process, and it second term is a weak
martingale. Now apply the operator (Id+ £)~2 for big enough k so they become
a BV process and a martingale, respectively. Also by (5.48):

Lau(t, Xy) —u(e, X¢) = (My — M) + (D; — D,) (5.51)

so by the unicity of the decomposition of a semimartingale as a local martingale
plus a BV process one may identify:

(Id+ )2 /t lo(s, X,)0,0(s, Xs)dW, = (Id+L£)~*(M, — M,)
6 (5.52)
(Id+ L) 2 /t (s (35 + Ay + 1) u(s, X,) + g(s, X,))ds = (Id+L)"*(D; — D,)
E (5.53)

s0 in particular:
/t L (8 + A, + 1) uls, X.) + gs, X)) ds = D, — D, (5.54)

therefore this weakly BV process is a proper process, and it is decrasing. Now let
¢ be smooth and a.s. positive. For any 0 < e <t < w:

E [d) /Gu I (05 + Ag + 1) u(s, X,) + g(s, Xy)) ds]

< E [gb /et ((0s + Ag + 1) u(s, Xs) + g(s, Xy)) ds] (5.55)

SO:

E [gzﬁ /tu L (0s + Ay + 1) u(s, X.) + gs, X)) ds}

= [ B @+ A s, X + (s, X ds
<0 (5.56)
The function under the integral is:
s o B[ (0t A+ r)uls, Xo) + g(s, X0))
= [+ A ) uls) + g5, o)y (5.57)
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which is bounded on |e, T'[, therefore it is licit to take limits in the Newton ratio
and to differentiate at least in the absolutely continuous sense to obtain, for all
S > €

Eols ((0s + As + 1) uls, Xs) + g(s, Xs))] <0 (5.58)

Apply this to ¢ = h(Xj) for some regular enough, positive function h. Then there
comes:

Also by proposition 3.4.0.5 supp(px,) = supp(px,;,) because [ is a.s. strictly
positive. From this we deduce that (0; + A;+7)u+ g < 0 in the sense of the
distributions on supp(px,). To finish the proof, we only need to verify that
(0s + As+7r)u+ g = 0 in the sense of the distributions on the open set

supp(px,) N{u(s,-) # f}. As in the proof of the previous theorem, we introduce:

D =A{(t,y) ult,y) # f(y)} (5.60)
and define a stopping time as:
T, = inf{t, (t, Xy) ¢ D} (5.61)

We note that 7, < oo a.s. because we consider a finite horizon problem; also 7,
is the smallest optimal stopping time for our optimal stopping problem. By the
Doob stopping theorem and the definition of 7, one sees that:

EllL f(X..) + /0 " Lg(s, X.)ds] = E[S..] = u(0,2) + E[D..] (5.62)

and therefore F[D, ] = 0. Now let (u,) be a smooth approximation of u. By
methods similar to thoses developed in the proof of the previous theorem, there
comes:

b {/EtATI ls ((0s + As + 1) um(s, Xs) + g(s, X)) ds

NTg
=[]0 A s + gl 0)duds (569
Jet[XxRNNU
so by taking limits and comparing with E[B; | one sees that for any s:
((Os + As+71)u+g,px,0.); =0 (5.64)

and since we already know that (0s + As + r)u + g is a negative distribution we
are done. O
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Remark 5.1.0.6. [52] and some references therein provide results about the sup-
port of px,. In particular, within the hypotheses we made on b and o, the results
in [52] imply that {px, > 0} is an open, connected set, so we may work with the
distributions on supp(px,). Also, in many cases, for example when A is elliptic,
we have lower bounds for px,, so px, has full support.

Remark 5.1.0.7. By using results on positive distributions it should be possible
to get rid of the necessity that the discount factor l; is reqular. Then the results
would hold simply with a continuous interest rate.

Remark 5.1.0.8. To do: extend the results to the case where the horizon is not
finite and to the case where the domain is not RY.

5.2 On a quasi variational inequation



Conclusion
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Appendix A

Some results in topology

In this appendix we give some results on the theory of topological vector spaces
which are required for our study. Especially, we will make use of the structure
of § and & as nuclear spaces, barreled spaces and Montel spaces, so we recall
the results about those spaces which are relevant to our purpose. We will mostly
follow [69], [24], [64], [36] and [57].

Let us consider a field K = R or C which we equip with its archimedean
topology. Let E be some vector space on K; we equip F with a topology ©. We
recall the:

Definition A.0.0.1 (Toplogical vector space). (E,©) is a topological vector space,
TVS for short, if the applications (x,y) — x+y and (\,z) — \-x are continuous
on E X E and K X E respectively.

We recall that the topology of a TVS is fully defined by a basis of neighbour-
hoods of 0.

In the sequel of this appendix, F, F),... will denote topological vector spaces
(we omit to note their respective topologies).

A.1 Locally convex topological vector spaces

A.1.1 First definitions

Definition A.1.1.1 (Locally convex topological vector space). A TVS E is said
to be locally conver if 0 € E has a basis of neighbourhoods consisting in conver
sets.

A crucial notion will be that of:

Definition A.1.1.2 (Barrel). A part A C E is a barrel if it verifies:
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e A is absorbing: for every x € E there exists ¢ >0 s.t. |\ <c= \-x € A;
o A is balanced: for every x € A, for every X s.t. [N\ <1, A-xz € A;
e A is closed;
o A is conver.
We have the:
Proposition A.1.1.1. In a TVS, 0 has a basis of neighbourhoods consisting in

barrels.

A.1.2 Characterization by seminorms

Definition A.1.2.1 (Seminorm). p: E +— Ry is a seminorm on E if it verifies:
o For every z,y € E p(z +y) < p(x) +p(y);
o For every N €K, x € E: p(A-x) = |\ - p(z)

We note that if p is a seminorm there has to be p(0) = 0. The continuity of
seminorms is easily characterized:

Proposition A.1.2.1. Let p be a seminorm on E. Then the three following are
equivalent:

o The open unit ball {x|p(x) < 1} is an open set;
e p is continuous at 0;
® D is conlinuous.

Also, in that case, the open unit ball of p is a barrel.
Conversely there is the:

Proposition A.1.2.2. Let T be a barrel in E. Then there exists a unique semi-
norm p such that T is the open unit ball of p and p is continuous if and only if T
s a neighbourhood of 0. p is the gauge of the barrel T':

p(z) =inf{\ >0z e \-T} (A.1)
These two results combine into the:

Theorem A.1.2.1. In a locally convex topological vector space, the open unit balls
of the continuous seminorms form a basis of neighbourhoods of 0.
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Now if we introduce the:

Definition A.1.2.2 (Basis of continuous seminorms). A family P of continuous
seminorms on a locally convexr TVS is a basis of continuous seminorms if for every
p € P, there exists ¢ € P such that p = O(q).

the two notions combine in the:
Theorem A.1.2.2. In a locally conver TVS:

o Let P be a basis of continuous seminorms; if p € P we note U, for its open
unit ball. Then the A\U,, A >0, p € P are a basis of neighbourhoods of 0.

o Conversely if one gives oneself a basis of neighbourhoods of 0 consisting in
barrels, then the associated seminorms are a basis of continuous seminorms.

The result we will use in practice is the following:

Corollary A.1.2.1. Let E, F be two locally convex TVS. Then a linear mapping
f+ E — F s continuous if and only if for every continuous seminorm q on F
there exists a continuous seminorm p on E such that for every x € E:

q(f(x)) < p(x) (A-2)

Especially a linear form on E is continuous if and only if it is continuous for at
least one continuous seminorm on E.

A.1.3 Metrizable locally convex TVS
First we recall the general:

Definition A.1.3.1 (Metrizable TVS). The TVS E is said to be metrizable if it
15 Haussdorf and if 0 € E admits a countable basis of neighbourhoods.

and:

Theorem A.1.3.1. A TVS is metrizable if and only if its topology is defined by
a translation-invariant distance.

In the case of locally convex TVS, we have the more precise:

Theorem A.1.3.2. Let E be a metrizable, locally conver TVS; there exists a
countable basis of continuous seminorms (p;);en on E. Let also (a;) € Ry be such
that Y a; < oo and define:

ZCLJ p] I_y) (A3)

1+ pi(z —y)

Then d is a translation-invariant distance on E which defines the toplogy on E.
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We also introduce the:

Definition A.1.3.2 (Fréchet space). A Fréchet space is a metrizable, locally con-
vex TVS which is complete.

A.2 Duality

Let F be a TVS (FE is not necessarily locally convex); we note E’ for its topological
dual, ie the vector space of the continuous linear forms on E. We recall that a
subset A of a general TVS F is called bounded if for every neighbourhood U of 0
there exists a number A such that U C A - A and we introduce the following:

Definition A.2.0.3 (Polar of a subset). Let A C E. We define the polar set of A

as:
A° = {x' € E' | sup|/(z)| < 1} (A.4)
z€A
We note that A° is a convex and balanced set and that there is:
(AUB)"=A°NDB° (A.5)
and
(A-A)° = (1/A) - A° (A.6)

Moreover if A is bounded then A° is absorbing. One may therefore prove the:
Theorem A.2.0.3. Let & be a nonempty family of bounded sets in A such that:
o For every A, B € & there exists C € & such that AUB C C;
o For every A € G and \ € K there exists B € & such that - A C B.

Then, &° := {A° A € &} defines a basis of neighbourhoods of 0 for a certain
topology on E'.

Relevant examples are:
e The weak topology, obtained by taking the finite subsets of E for &;

e The convex-compact topology, obtained by taking the convex and compact
subsets of I for &;

e The compact topology, obtained by taking the compact subsets of E for G;

e The strong topology, obtained by taking all bounded subsets of F for &.
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A.3 Barreled spaces and Montel spaces

A.3.1 Barreled spaces

Definition A.3.1.1 (Barreled space). A topological vector space E is said to be
barreled if every barrel in E is a neighbourhood of 0 in E.

It may be proved that any Baire space is barreled; we will only need the
following:

Theorem A.3.1.1. Any Fréchet space is barreled.

Barreled spaces have many properties which are useful in analysis. The one we
will use is the following:

Theorem A.3.1.2 (Closed graph theorem). Let E and F be two TVS; suppose

that E is barreled and that F is complete. Then, if u : E — F is a linear map
with closed graph, then u is continuous.

A.3.2 Montel spaces

Definition A.3.2.1 (Montel space). A TVS E is said to be a Montel space if it
verifies the following properties:

e F is Haussdorf;

e F is locally conver;

o F is barreled;

e Fvery closed and bounded space in E is compact.

We are interested in the following property of Montel spaces:

Theorem A.3.2.1. In the dual of a Montel space, every weakly convergent se-
quence 18 strongly convergent.

Let us also mention:

Theorem A.3.2.2. The strong dual of a Montel space is a Montel space.
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A.4 Nuclear spaces

A.4.1 Topological tensor products

Let E and F be two TVS and let B(E, F') be the vector space of continuous bilinear
forms on E x F. For (z,y) € E x F we consider the evaluation mapping:

Upy = f € B(E,F)— f(z,y) €K (A.7)
Clearly, u,, € B(E, F)’, the dual space of B(E, F'). Now let us consider:
x=(z,y) € EXF+u,, € B(E,F) (A.8)

We note £ ® F for the linear hull of x(E x F) in B(E, F')’; it will sometimes make
intuitive sense to note x ® y for u,,,.

Definition A.4.1.1 (Tensor product). E® F is the topological tensor product of
E and F.

Definition A.4.1.2 (Canonical bilinear map). x is the canonical bilinear map of
Ex Finto E® F.

We have the:

Theorem A.4.1.1. Let E, F' and G be three topological vector spaces. Then the
following application:

we LE®QF,G)—uox e B(E,F;G) (A.9)
15 an 1somorphism. Especially, there is:
(E® F) ~B(E,F) (A.10)
We may characterize the topology on E ® F' through the following:

Theorem A.4.1.2. Let p and q be two seminorms on E and F respectively, such
that p and q are the gauges of the barrels T, and T, respectively. Then, the following
defines a seminorm on E ® F':

r(2) = inf {3 pla) - aly) | u =3 @y} (A11)

Moreover there 1s:
r(z@y)=px)-q(y) (A.12)

and r is the gauge of the smallest barrel containing x (T x Ty). We note:

r=p®q (A.13)
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If £ and F' are metrizable locally convex TVS with respective countable basis
of seminorms (p;) and (g;) we will usually equip £ ® F with the metrizable locally
convex TVS topology with basis of seminorms (p; ® g;). In the case where E and
I are Banach spaces, we simply obtain a Banach space structure on £ ® F', with
norm || - ||z ® || - || 7. This special case is relevant to the construction of the spaces
Dy, in Malliavin calculus.

We conclude this paragraph with the:

Theorem A.4.1.3. Let E and F be two metrizable, locally convexr TVS. Then
any element of E® F' may be written in the form:

i=1
where Y |\;| < 0.

A.4.2 Nuclear mappings in Banach spaces

Let E and I’ be two Banach spaces; we equip the strong dual E’ of E with its
natural Banach space structure. If:

VEE'@F =Y fioy (A.15)
=1

we define an element u € L(E, F) as:

u(e) =Y filz) -y (A.16)

Then the linear mapping;:
vEFE @F—ueL(EF) (A.17)

is an (algebraic) isomorphism; let us note 7 for the extension of this isomorphism
to the completion of E' ® F. Then the nuclear linear mappings in L(E, F') are
those linear applications which are in the image of 7.

A.4.3 Nuclear mappings in a locally convex TVS

We start with some notation.
Let T be a barrel in the vector E. Then, the familly (n™!-T,n € N — {0})
is a neighbourhood basis of 0 for some metrizable locally convex TVS topology
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on E. Let also p be the gauge of T; then a norm is defined on the vector space
Er := E/p~'(0) by:
2] = p(=) (A.18)

for any = € . We note E7 the completion of Ep for this norm and we note that
the canonical injection:

¢r: E— Er (A.19)

is continuous.
Now let B be a bounded and non-empty barrel in E; we define a subspace of
E as:

E, = U n-B (A.20)
n=1

The gauge pp of B is a norm on F; and we note Eg for the normed space (E1, pp).
If B is complete Ep is a Banach space. We introduce the following notation for
the canonical embedding:

and we note that g is continuous. Finally, we note that if 7" and B coincide then
the spaces Er and Ep coincide as well.
We introduce the following:

Definition A.4.3.1 (Bounded linear map). Let E and F be two locally conver
TVS. w € L(E, F) is said to be a bounded linear map if there exists a neighbourhood
U of 0 € E such that u(U) is a bounded subset of F'.

Let us note that if u is a bounded mapping, one may take U to be a barrel;
then w(U) is included in a bounded barrel B C F' and one may write:

u :¢BOUOO¢U (A22)

where ug € L(Ey, Fg). Also, if F is a Banach space, uy has a continuous extension
to L(Ey, Fg) which we still denote ug. This leads us to the following:

Definition A.4.3.2 (Nuclear mapping). A mapping between two locally convex
TVS E and F is said to be nuclear if it may be written as in equation (A.22), with
U a barrel, B a bounded barrel such that Fg is a Banach space and ug a nuclear
mapping (in the sense of Banach spaces).

It is interesting to note that for every G-topology on L(E, F'), the nuclear maps
are contained in the closure of E'® F' (viewed as a subspace of L(E, F')). Therefore
from theorem A.4.1.3 one obtains the:
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Theorem A.4.3.1 (Characterization of nuclear maps). Let E and F' be two locally
conver TVS. A linear map uw € L(E, F) is nuclear if and only if it may be written:

u(@) =Y An- fal@)  yn (A.23)

where (\,) € I'(K), (fn) is an equicontinuous sequence in E' and (y,) is a sequence
included in some bounded barrel B C F' for which Fg is complete.

Sometimes we will abusively note:

W= Au- fo®yn (A.24)
n=1

A.4.4 Nuclear spaces
Having defined the notion of nuclear mapping we are able to introduce the:

Definition A.4.4.1 (Nuclear space). A locally convex TVS is said to be nuclear
if it admits a base B of neighbourhoods of 0 such that:

o Bvery V € ‘B is a barrel;
e For every V € B, the canonical mapping E — Eg is nuclear.
The following characterizaztion is more tractable:

Theorem A.4.4.1. Let E be a locally convex TVS; the three following are equiv-
alent:

o F is nuclear;
e Any continuous linear map from E into any Banach space B is nuclear;

o Let B be a base of neighbourhoods of 0 which are all barrels; then for every
Ty € B there exists Ty € B such that Ty C Ty and the canonical map
Ep, — Ep, is nuclear.

For Fréchet spaces, the following is even simpler:

Theorem A.4.4.2. A Fréchet E space is nuclear if and only if it is the projec-
tive limit of a sequence of Hilbert spaces with nuclear injections, ie there erists a
decreasing sequence of Hlibert spaces (H,) such that:

oo

E=()H. (A.25)
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and for every m < n:
H, — H, (A.26)
18 nuclear.

We mention a couple more results about nuclear spaces:

Theorem A.4.4.3. A Fréchet space is nuclear if and only if its strong dual is
nuclear.

Theorem A.4.4.4. A complete barreled space which is nuclear is a Montel space.
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The Bochner and Pettis integrals

For this appendix our setting will be a Banach space X and a measured space
(Q, F,v); we will also note X' for the strong topological dual space of X. The aim
is to define and study the measurability and the integrability of X-valued borelian
functions on . We stick to the case of a positive measure for simplicity. Our
reference is [18], where all the proofs may be found.

B.1 Measurability

Definition B.1.0.2 (Simple function). f : Q — X is called a simple function if
one may write a finite linear combination:

where E; € F and o; € X.

Definition B.1.0.3 (Strong measurability). f : Q — X is (strongly) measurable
if there exists a sequence (f,) of simple functions such that the following holds in
the v-a.s. sense:

T [[f = fullx =0 (B.2)

Definition B.1.0.4 (Weak measurability). f: Q — X is weakly measurable if for
every * € X' the real-valued function (x*, f) is measurable in the usual (finite-
dimensionnal) sense.

One may verify that in the case where X is of finite dimension, these two
notions of measurability coincide with the usual one. Also there is the:

Theorem B.1.0.5. f : Q2 — X is v-measurable if and only if the two following
conditions hold:

133
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e f is v-weakly measurable;
e There exists a separable subspace Y of X such that [ is v-a.s. Y -valued.

In particular, if X is a separable Banach space, as will be the case in our
practical applications, the notions of weak and strong measurability coincide.

B.2 The Bochner integral

If fis a simple function, f = ). 1p5,a;, we define its (Bochner) integral as:

/Qfdl/ = Z v(E;)a; (B.3)

Then let us introduce the:

Definition B.2.0.5 (Bochner integrability). We say that a (strongly) measurable
function f : Q0 — X is v-Bochner integrable if there exists a sequence of simple
functions such that:

lim / lf — fallxdv =0 (B.4)
n—0o0 Q
and then we set:

/Q fdv = lim /Q Fudv (B.5)

Now we state the more convenient characterization which we will use in prac-
tice:

Theorem B.2.0.6. f : ) — X is v-Bochner integrable if and only if:

/wmw<w (B.6)
Q

We will also make use of the following results:

Theorem B.2.0.7 (Dominated convergence theorem). Let (f,) be a sequence of
Bochner-integrable functions. We suppose that:

o lim, oo v ({||f — fullx > €}) =0 for every e > 0;

o There exists a v-integrable, R -valued function g such that ||f,|| < g for
every n.
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Then f is (strongly measurable and) Bochner integrable and:

lim /Q fody = /Q fdv (B.7)

Theorem B.2.0.8 (Absolute continuity of the Bochner integral). Let f be a
Bochner integrable function; then:

lim /fdy:O (B.8)
E

v(E)—0

where the integrals above are well defined as:

[ 1= [ 1esar (B.9)

Theorem B.2.0.9 (Triangle inequality). If f is a Bochner integrable function

then:
/ fav| < / 1 /llxdv (B.10)
Q X Q

Theorem B.2.0.10 (Differentiation). If f and g are two Bochner integrable func-
tions such that for every E € X:

/ fdv = / gdv (B.11)
E E
then f =g v-a.s.

Theorem B.2.0.11 (Hille). Let X and Y be two separable Banach spaces and
T e LAX,Y). If both f and T o f are Bochner-integrable then:

T(/Qfdy> :/QTofdy (B.12)

B.3 The Pettis integral

Lemma B.3.0.1. Consider a weakly measurable f : Q — X such that for every
e X':

@ f) € L) (B.13)
Then for every E € X there exists a unique element Ip € X** such that for every
e X':

Ip(z") :/E<x*,f> dv (B.14)

I is the Dunford integral of f on the measurable set F. If X is reflexive, which
will be the case in our applications, we may consider that Ip € X and we call it
a Pettis integral. Then the Pettis integral coincides with the Bochner integral for
strongly measurable functions.
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Appendix C

Some results in semigroup theory

In this section we give a brief introduction to the theory of semigroups and gen-
erators. We mostly follow [84] and [14]; [60] provides an introduction to how the
theory applies to probability while 1], [70] or [71] relates it to the construction
and the properties of spaces which are of common use in analysis.

C.1 Definition

Let X be some Banach space. We start by introducing the notion with which this
appendix deals:

Definition C.1.0.6 (Semigroup on X). (T})i>0, or T; for short, is said to be a
semigroup on X if it verifies the three following properties:

o Vt>0:T, € LX)
i Vtth 2 0: 7—;51-"—752 = Tt1 © 7—;52
® TO =1d

Definition C.1.0.7 (Semigroup of class C°). A semigroup T} is said to be of class
C° if for every x € X the following limit holds in the strong sense:

limTixr = x (C.1)

t—0

Definition C.1.0.8 (Contraction semigroup). If a semigroup Ty is such that for
every t > 0, |Ti||z.x) < 1, (resp. < 1) we call Ty a contraction semigroup (resp.
a strict contraction semigroup).
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C.2 The infinitesimal generator

Let T; be some semigroup of class C° on X. We introduce the following strong

limit, whenever it exists:
Tix —x

(C.2)

Az = lim
t—0 t
and we introduce the:

Definition C.2.0.9 (Infinitesimal generator of a semigroup). A is the infinitesimal
generator of Ty.

Definition C.2.0.10 (Domain of the infinitesimal generator). The set D(A) of
those x € X such that Ax is well defined is called the domain of A.

The properties of an infinitesimal generator that we will use are summarized
in the:

Theorem C.2.0.12. One has:
e D(A) is a subspace of X and A € L(D(A), X)

e D(A) is dense in X (for the topology of || - || x)

lz||la = ||lz||x + |[|Az||x defines a norm on D(A) and D(A) equipped with
that norm is a Banach space.

o Ifxe X andt >0 then Tyx € D(A) and the following relations hold:
AT = L(ma (C.3)
tr = di tL .
t
Tix —x = / (TsAx)ds (C.4)
0

where the integral is defined in the Bochner sense, see appendix B.

If x € D(A):
AT,z = T, Ax (C.5)

Similarly, one may define powers A" for r € N, D(A™!) being a subspace of
D(A"). Here are the properties we will use about the powers of A:

Theorem C.2.0.13. One has:

o (),enD(A") is dense in X and contains all the Tyx, v € X.
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o If x € D(A") the following hold:

d’l"
prm (Tyx) = A"l = Ty A"z

and as a Bochner integral:

¢
k.. __ X - r—1 r
Tt:U—ZHAx—(T_l)! /O(t s) T A"z ds
o For every x € X:
t t
(Tt—Id)Tx:/ / Tovoys,xwdsy...ds,
0 0

Equation (C.7) justifies that we will sometimes abusively note:

7’;& — €t~A

C.3 Resolvent of a semigroup

We start with the:

Theorem C.3.0.14 (Hille).

1
wy := sup — log ||1; Lo(X) < OO
teRL t
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(C.7)

(C.8)

(C.10)

Then, for A\ > wy, one may define the following integral in the sense of Bochner:

Ry\(A)z ::/ e Mz dt
0

(C.11)

Definition C.3.0.11 (Resolvent of a semigroup). Ry\(A) is the resolvent of the

semagroup 1.

This is interesting because of the:

Proposition C.3.0.1. For A\ > wy, for every v € X, R\(A)x € D(A) and:

RAMN-Id—A)x ==x

(C.12)

Therefore we will sometimes think of R)(A) as the inverse of A - Id — A.
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C.4 Is an operator the generator of a semigroup?

C.5 Fractional powers of a contraction semigroup
and subordination

Suppose that T; is a strict contraction semigroup. Then, using the notation of
theorem C.3.0.14, one has wy < 0 so for 0 < 8 < 1 it is possible to define, in the
sense of Bochner:

(—A)Pzr = M-/Oow—l (A-Id— A" (—Az)d) (C.13)

™ 0

I R sV
- 7 /0 AP (Thr — ) dA (C.14)

We call these fractional powers of A; this makes intuitive sense because within a
hilbertian setting one may diagonalize A and there is:

g osin(Bm) [ A
¥ =z = /0 )\—i—xd)\ (C.15)
1 (et
_ F(ﬁ)'/o i (C.16)

On the other hand, it is possible to construct the family Tf of the so-called
subordinated semigroups from T}; indeed, in the sense of Bochner, define:

Tz = / t A (ds) (C.17)

0

where the )\f are defined through their Laplace transforms as:
/ e N (ds) = e (C.18)
0

Then, the generator of T} is —(—A)P.
Combining the notions of resolvent and of fractional powers, one also may
define (A - Id — A)~* for a general s > 0. Indeed, in the sense of Bochner we set:

(AN Id—A)°z = ﬁ/ t e M T dt (C.19)
0
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Interpolation theory

In this appendix we give a brief review of the real and complex methods of in-
terpolation for Banach spaces. In our applications, we will mostly refer to the
case where the spaces we interpolate are defined as the domain of the infinitesimal
generator of some semigroup, so we also give more specific results for the inter-
polation of semigroups. We mainly follow [10] and [14]; classic examples (Sobolev
and Besov spaces, Holder spaces, etc.) are explained in detail in [1], |[67], |70] and
|71] for example. We give no proofs and refer to these references instead.

D.1 General definitions

In this chapter we will consider two normed spaces Ay and A;; we will also note:

A = (Ag, Ay) (D.1)

Definition D.1.0.12 (Compatible normed spaces). The normed vector spaces Ay
and Ay are said to be compatible if there exists a Haussdorf space A such that the
following (continuous) injections hold:

Apg, Ay — A (D2)

Then it is possible to define the vector spaces Aqg N Ay and Ay + Ay and to equip
them with the norms:

lallagna, = max (alla, alla,) (D.3)
lallaseas =, inf_ (lall, +llella,) (D.4)

We have the easy:

Proposition D.1.0.2. If Ay and Ay are compatible Banach spaces, then Ag N Ay
and Ay + Ay are Banach spaces.
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In practice we will mostly consider the case where Ay C A; = A but we still
state the general results as this does not involve any extra difficulty. We introduce
the:

Definition D.1.0.13 (Intermediate space). A is said to be an intermediate space
in A if the following (continuous) injections hold:

AoﬂA1<—>A<—>A0+A1 (D5)

Definition D.1.0.14 (Interpola:cion space). The intermediate space A in A is said
to be an interpolation space in A if for every T € L.(A) one also has T € L.(A).

The key result is the:

Theorem D.1.0.15. If A is an interpolation space in A there exists a number

C > 0 and a number 0 € [0,1] such that for every T € L.(A):

£otaoy Tz (D.6)

Definition D.1.0.15. In the framework of the above theorem, A is said to be an
interpolation space of exponent 6.

[Tl oay < C- | T]

D.2 The real method of interpolation

We start with some notation. Let a € Ay + Ay; we define a borelian function on
R, by the equation:

K(t,a) = inf (Jlaolla, + - [lax]l,) (D.7)

a=ap+ai

If a € Ay N A; we define a borelian function on R, by the equation:
J(t,a) = max ([[al| 4y, t - [|a]|4,) (D.8)

Finally if ¢ is a positive borelian function on R, for 0 < 0 <1 and ¢ € [1, 00| we
introduce the quantity (which is possibly 400):

o dt\ s
w,fo) = ([ (o)) D.9)
On one hand we define a space through K by setting:

lallo.qx = Poq (K(-;a)) (D.10)
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and:

/_lg,q’[( = {(I < Ao + Al

lalloq < o0} (D.11)

On the other hand we define a set A67q,J based on J as the set of those
a € Ap N Ay which may be represented as:

a= /OO u(t)ﬂ (D.12)

t

for some borelian u : R — AgNA; such that @ (J(-,u(-))) < oo and we introduce:
lallo.qr = inf @ (J(-,ul-))) (D.13)
Now we may state the main result in this paragraph:

Theorem D.2.0.16 (Real interpolation). One has:

° (A97q7K, ||a||97q7K) and (Ag,q,J, ||a||9,q7J) are two normed vector spaces, to which
werefer as the K-method (resp. the J-method) real interpolation spaces.

These spaces are interpolation spaces of exponent 0.

If0<6<1andqe€ll,o0 the K and J spaces coincide with equivalence of
norms. Then we simply note Ag, or equivalently (Ao, Al)e,q for that space.

If Ay and A, are Banach spaces then so is Ag,.

If ¢ < 0o then Ay N Ay is dense in Ag,.
We wil also need the two following results:

Theorem D.2.0.17 (Reiteration theorem). If Ay, Ay are two compatible Banach
spaces and if 0 < 0,00, 601,n < 1 verify:

then the following holds:
(AGO,qv A91,q)n7q = Ay, (D.15)

Theorem D.2.0.18 (Duality theorem). If Ay and Ay are two compatible Banach
spaces such that Ag N Ay is dense in both Ag and Ay then:

Ay, = (A, Ay, (D.16)
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D.3 The complex method of interpolation

We introduce:

S = {zEC‘Ogéﬁzgl} (D.17)

Then if Ay and A; are two compaible Banach spaces, we define a vector space

F(A) as the set of those functions f such that:
e fis CYon S;
e f is holomorphic on S°;
e For j € {0,1}: t e Ry — f(j+it) € A;j is continuous;
e For j € {0,1}: limyoo f(j +it) =0
and we state the:

Theorem D.3.0.19. F(A) is a Banach space when equipped with the norm:

Iy = max (sup LGl sup L0+ ) (D)

Now for 0 < 6 <1 we introduce the set:
[A]y = {a € Ao+ Al‘ﬂf e F(A), f(0) = a} (D.19)

and we state:

Theorem D.3.0.20 (Complex interpolation). [Alg is a vector space; it also is a
Banach space if equipped with the norm:

lallo = inf {1 £lrca|£(6) = a} (D.20)

Moreover [A]g is an interpolation space of order 6 and Ay N Ay is dense in [Alg.

Remark D.3.0.1. [10] introduces another complex interpolation method. How-
ever, it s shown that the two methods are equivalents when at least one of the
spaces Ay or Ay is reflexive, which will always be the case in our applications.
Also, we will not make any direct use of the other method, therefore we do not
develop it here.

We will also make use of the following results:
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Theorem D.3.0.21 (Duality theorem). If at least one of the Banach spaces Ay
or Ay is reflexive, then:

[Als = (A5, A (D.21)

Theorem D.3.0.22 (Reiteration theorem). If Ay, Ay are two compatible Banach
spaces and if 0 < 6,0q,0,,n < 1 verify:

then the following holds: B B )
([Alor. [Alao),, = [Ao (D.23)

Theorem D.3.0.23 (Relationship between the complex and real interpolation
methods). One has:

° AgJ C [A]g C Agpo
L4 ([A]Gm [A]Ql)n’p - AQ:P

hd (AgOﬂp()? A@upl)n - A@,p
where § = (1—1) -0 +n- 01 and ; = =0 + L.

D.4 Semigroup interpolation

If T; is a semigroup of class C° with generator G on some Banach space X, it
is interesting to consider the Favard class X, ,,, which is defined, for » € N,
0 <a<randqé€[l,00] as the following real interpolation space:

Xarg = (X,D(A’"))%’q (D.24)
Then we have the:
Theorem D.4.0.24. On X, ,,, the following quantity:
< AT
]l = flzllx + i (T2 = Id)"= |5 70— (D.25)

defines a norm which is equivalent to the usual real interpolation norms.
One may also prove:

Theorem D.4.0.25. Let us write [o] = k and {a} = . Then, x € X, ., if and
only if v € D(A*) and A*x € Xz1,. Also, the following defines a norm on X,
which is equivalent to the previous one:

o A
ol = lella + (16T~ rayaye o) (D20

We recall that || - || 4+ has been defined in appendix C.
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Appendix E

A result from PDE theory

We make use of the following results which we copy from [70]. We start with the:

Definition E.0.0.16 (Good weight function). p is said to be a good weight func-
tion on RY if it is a positive, C™ function such that:

e for any multi-index v, |D7p| = O (p*™M) holds;
e for some a >0, p~® € L.

Now, being given a good weight function p, a non-zero integer m, a real number
4 and a real number v such that v > p + 2m and v > 0, we may introduce:

Definition E.0.0.17 (Family A7, (RN) of differential operators). These are the
differential operators

Au = i Z P by D + Z agD"u (E.1)
1=0 |a|=21 18 <2m
where the b, and the ag are C™ functions and:
° Xi = 3, (v (2m —1) + pl)
e by >C >0
o (<) S o balw)E® = Clef2m
o for 1<l <m—1: (=1)' 3], 1_p ba(2)€* > 0
e for all multi-indezes B and y: DVag = o (pXisth!)

In the above framework, [70] provides the following:
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Theorem E.0.0.26 (Estimates for an operator in A}, (RY)). Let A e A7, (RN),
X € Rand 1 < p < oo. Then there exists a real number C7 and two positive
numbers Cy 3 depending only on A, p and x such that, for any complex number A
such that Re\ < C, the following holds:

C2HUHWp2m(px+pu,px+pV) 2 ||AU — )\UHLP(pX) Z C3||UHWp2m(px+pu,pX+pu) (EQ)
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