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ABSTRACT

The automation systems have been prompting the improvement of capability of the Air
Traffic Management (ATM) system. However, there remains substantial debate over the
role of air traffic controller (ATCO), in particular, controller's activities that are closely
related to the operation safety in both current ATM system and future ATM system. As a
matter of fact, researchers and operational experts have long been sought the way to
measure and predict controllers’ activities. With a few exception, most of existing works
are incapable of predicting controllers’ activities correctly. The difficulty roots in the
inadequate knowledge of the dynamics of air traffic controllers. In the context of
transforming of the ATM system, there is a need for a generalized description on air
traffic controllers’ activities.

Recent human dynamics research has unmasked astonishing statistical characteristics
in human activities which indicate there might exist a universal law that governs human
activities. Building upon the previous research on controllers, this thesis analyzes air
traffic controllers’ dynamics from human dynamics perspective using a complex system
approach.

The first part of this thesis presents the study of temporal behaviors of controllers’
communication activities based on two real time simulation datasets and three
operational datasets. The analysis based on a two-week real time simulation dataset is
performed to examine the interaction between traffic activities and controllers’
communication activities. It is, however, found that neither the Dynamic Density nor the
Complexity based on Dynamical System Modeling approach has significant influence on
the controllers’ communications. The use of Detrended Fluctuation Analysis (DFA) found
that the inter-communication times of controller are long-rang correlated. Compared to
exponential distribution, lognormal distribution, and power law distribution, inverse
Gaussian distribution is better to describe the inter-communication times. While taking
the fact that it takes ELEVEN seconds in average for a successful message transmission
into account, a Power law distribution is perfectly fitted to the intervals, with the
exponent & ~3.0. The large exponents suggest the controllers’ activities decay much
faster than other human activities due to the high pressure and stress.

In the second part, a temporal network approach is proposed to study the "spatial
behavior" of controller, aiming at capturing the information propagation process of the
controllers. Accounting for the traffic, we transform the controller's communication
events that contain both temporal information and flights’ information into a network,
allowing us to trace the information flow over the flights. (1) In the time aggregated
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networks, we found that the degree distribution can be described with the normal
distribution which indicate the randomly selection of flights. By leveraging on the
community detection algorithm, we found the correlations between traffic and
communities sizes (i.e. the number of flights) in the networks. (2) In the temporal
networks, we first measure the time dependent degree distribution, and the results show
the similar patterns across all the data. We then define three types of motifs, namely
chain, loop, and star. A changing point was observed at 7, ~150 seconds where both the
percentage of chains and percentage of loops reach at 50%. Chains and loops are
identified to be the most frequently occurred topologies in the controller's
communication as such topological characteristics being reported in other human
communication.

In the third part, we perform the fluctuation scaling analysis of controllers’
communications. Empirical results show that the relationship between the average
communication activities and its standard deviation can be well described by the Taylor's
power law series with & =0.60. On the basis of cognitive studies of structure-based
abstraction, we build a model to test the grouping behavior that can cause the fluctuation
scaling phenomenon. From the simulation results, we draw the conclusion that there
were around 10% flights being grouped when the controllers managed the traffic.

The work presented in this dissertation not only provide a fundamental understanding
of air traffic controllers’ activities, but also may shed light on other human driven system
related aspects.

-1 -



ACKNOWLEDGEMENTS

This dissertation presents three years of research at Telecom ParisTech and
EUROCONTROL Experimental Center under the supervision of Professor Patrick Bellot
and Professor Vu Duong.

I would like to acknowledge Vu for bringing me to EUROCONTROL, the center of
European ATM research. He has confidence in me from my early years in Nanjing
University and Astronautics and Astronautics (NUAA). During these three years, we had
frequent meetings and the numerous discussions that have been very fruitful. Vu not only
gives the valuable advices on the research topics but also encourages me to take the
opportunity to participate international conferences and visiting in the Europe. I am
positive that I would have not been able to have such a wonderful experience if it was not
for Vu’s support and personality.

I would also like to thank Patrick for accepting me in his group, supporting with the
knowledge of information and network science. Thanks to his immense availability, the
discussions with him have been very beneficial in identifying the ATM problems from a
network perspective and learning his field of experience. He will always be there if |
have any scientific and non-scientific problems.

Thanks to Dr. Frizo Vormer and Soufiance Bouarfa for the discussions at
EUROCONTROL. T still remember the first time Soufiance and I met at Charles de
Gaulle Airport, when he picked me up at the first day I arrived in Paris. I am enormously
grateful to Soufiance for his help in the beginning days in Paris.

I am also grateful to Professor Minghua Hu from NUAA for his supports in my first
two years of Ph.D. study in NUAA. Working in his group has solid my background in
ATM. He brought me to different air traffic control centers, providing a platform for me
to learn the knowledge from the filed.

I would also like to thank Professor Chenping Zhu from NUAA for the discussions and
advices in statistical mechanics. He has greatly inspired the physical view of controllers’
activities I present in this dissertation.

Special thanks go for Horst Horing and Laurent Box from EUROCONTROL, Dr.
Carol Manning from FAA, Vlad Popescue from Georgia Institute of Technology, and
Zheng Zhao from NUAA, for the providing and discussing controllers’ communication
data.

Additionally, I would like to thank two EUROCONTROL staff, Dr. Colin Meckiff for

- 10T -



his support in this research, and Remi Dheyriat-Gauthier for taking care most of my
administrative works in France.

Personally, I would also like to thank all my friends at Telecom, Bo Wang, Zizhu Wang,
Feng Yan, Hao Cai, Yunfei Wei Yuan Yang, and Guisong Xia, and friends in Nanjing,
Chen Zhang, Jin Zhang, Honghai Zhang, and Zheng Zhao.

Most of all, I would like to thank my family, who supported me closely while more
than 5000 miles away.

-1V -



Table of Contents

AADSTTACT. ...ttt et ettt e b e et naeenaae s I
ACKNOWIEAZEIMENLS ...ttt sttt et I
RESUIME ...ttt ettt et eaaees 1
0.1 CONLEXLE ..ttt et ettt ettt e et e e et e e et e e st e e eabeeeeabeeensee s |
0.1.1 BaACKGIOUNA ...ttt ettt e ee e et e e e e enneeesnaee e 1
0.1.2 Enoncé du probléme et la portée de la recherche.............ccccoovvvveeieeeereerreeennn, 2
0.1.3 IMOTIVALION ...ttt ettt ettt ettt et e s eesbeesaneenbeeaas 3
0.1.4 Objectif de 1a recherche .........c.cooeiiiiiiiiiiiiii e 5
0.1.5 CONIIDULIONS ...ttt et sttt e i 6
0.2 Les dONNEES d@ tESIES ...cuvveruiieiieiiieiie ettt ettt ettt ettt et e e et eseeeenbeesaeeens 6
0.2.1 Dy DAta@Sset.......cccueiiiiiiiiiiiiiiiciieeceee e 7
0.2.2 D, DAtASET...c..oiiiiiiiiiiiieiieee e 7
0.2.3 Dy Dataset........ccoovuiiiiiiiiiiiiiiiici 7
0.2.4 D, DAtaSeL.....c.ccouiiiiiiiiiiiieiesiece ettt 7
0.2.5 Dy Dataset........ccooviiiiiiiiiiiiiiiiiii 8
0.3 Les caractéristiques temporelles des activités de communication des contrdleurs .. 8
0.3.1 DEEINITIONS ...ttt ettt ettt et s e e bt e sete e bt essteenbeesnbeenseesneeans 9
0.3.2 Les corrélations entre les activités des controleurs et la complexité du trafic
T3 (<1 1 BSOS PSSP SRR 10
0.3.3 DFA des activités des CONIIrOIEULS .......cc.eeruieriiiiiiiiiiiieeiieecee e 13
0.3.4 Les temps iNter-COMMUNICALION ......eeeuvereeiiniieniieieeieenteete st see e e 16
0.3.4.1 TempPS INEET-AITIVEE ......eeeerreeerieeiieeeitieeireeeieeesteeesteeesereeesreessneessseeennnes 16
0.3.4.2 Longueurs des écarts inter-COmmuniCation ............eecuereereeerueneeneeeennenne 18

0.4 Les caractéristiques spatiales des activités de communication des contrdleurs ..... 19
0.4.1 Transformer les séries temporelles en réseau.........coevvuereeniercriineeneeienenn 19
0.4.1.1 Définition des NOUAS ......cc.eerviiiiiiiiiiiie e 20
0.4.1.2 Détermination des aretes ..........ceervueerieeriieniienieeniie e eieesteeieeseeenieeeaeeens 20
0.4.1.3 Réseau temporel agré@e........c.vvvvviieiiiiiiiieeieeeiee e 20
0.4.1.4 Réseaux teMPOTELS.......ccuiruiriiriiriiiieeiee et 21
0.4.2 RESUILALS ..ottt et 23
0.4.2.1 Distribution des degrés (Degree Distribution) .........cccceceeveeverieneeriennne. 23
0.4.2.2 Les corrélations entre les réseaux communautaires et le trafic aérien ...... 25
0.4.3 REsCAUX tEMPOTELS ..c..eeuviiiiiiiiiieieriieieeteet ettt 26
0.4.3.1 Distribution des degrés dépendant du temps.........cccccveevevveerieeenieeeinieenne. 26
0.4.3.2 MOtifs dU TESEAU .......eeiiiieiieeiiieiieee et 28

0.5 Fluctuation d’échelle des activités de communication des contrdleurs.................. 29
0.5.1 Résultats @MPITIQUES ......cocveeuiiririiiriiriieieeienit ettt 30
0.5.2 MOGRIL.......eentieeeeieeee ettt ettt 33
0.6 CONCIUSIONS.....utiiiiieiie ettt ettt ettt et et e et esate et e s neeeseesneeenseeeees 35
Chapter 1 INtrodUCHION........ccouiiiiiie ettt saee e e e ee e 37
1.1 BaCKGIrOUNd.....co.eiiiiiiiiiiiicitcec e 37
1.2 Problem Statement and Scope of Research ...........coccveeiiieeiiiiiiiieiiieciec e, 38



1.3 IV LOTIVALION ettt e e e e e e e e e e e e e e e e e e e eeeaeaaeeeeeeeeeenaaaaeas 39

1.4 Objective 0f RESEArCh ....c...oiuiiiiiiiiiiiiicc e 40
1.5 CONLITDULIONS ...ttt ettt ettt et e s e eaeeas 40
1.6 Organization of the TheSIS .......ccccuiriiiiriiriiie e 41
Chapter 2 Air Traffic Control and Air Traffic Controllers' Activities.......cc.ccevverueennenne 42
2.1 Air Traffic Control (ATC) and ATC SyStem ........ccccueevuieriiiiiieiiieiieeieeie e 43
2.1.1 The Static (Physical) Part of ATC System ..........cceccvvevviieiiiieiieeeieeeeeeeen 43

2 1101 ATLSPACE ..ttt e 45

B B RN 4 oo o USRS 46
2.1.1.3 REGUIATIONS ...ttt 46
2.1.1.4 SOTEWATE....c..eiiiieiieee ettt e 46
2.1.2 The Dynamical Part of ATC SyStem .........ccccoeevuiriiniiiiiniinieeneeneeeeeeene 46
2. 12T ATECTATE e 46
2.1.2.2 WERATNET ...t 47
2.1.3 Human Part of ATC SySteIm ........cceviiiiiiiiieiiieeiieeeiee et 47
2.1.4 Characteristics 0f ATC SySteIm......cccuevieriiriiriiniirienieieeiesie e 48
2.2 The Role of Air Traffic Controller...........ccueeviieeriiieeiieeie e 49
2.2 1 ATC TaASKS c.eveiieiiieeee ettt ettt et e e et e e e aeeeennaeesanee s 49
2.2.1.1 Separation tasKS .........cceeruieiiiieiiiieeiie et 50
2.2.1.2 MONItOTING tASKS ...c.veiuviriiiiiiieiiiesieete ettt 50
2.2.1.3 Constraint tasks ........eeoueerieiiiiiieiieeeee e 50
2.2.1.4 Coordinate taSKS ........c.cceviieriuiieiiriieeiieeeiee ettt e 51
2.2.1.5 Information tasks ...........cooieiiiiiiiiiiieee e 51
2.2.1.6 ReqUEST taSKS ....eoueiiiiiiiiiiiicie e 51
2.2.1.7 Other taSKS ...eouieiiiiiiieeeee e 51
2.2.2 Controller as a Black BOX .......cccviiiiiiiiiiicciie e 52
2.2.2.1 Inputs of the cONtroller ..........c.coeviiiiiiiiiiiieee e 52
2.2.2.2 Outputs of the CONtroller...........cooiiviiiiiiiiiniiiiiieceee 54
2.2.3 VOICE COMMUNICATION ...evtteiiieiieeittesite ettt ettt ettt ettt e seae e e e eneeeneees 54
2.2.3.1 Standard Phraseology ..........cccceoueriiiiiieniiiiiieneeececeeeeeeee e 54
2.2.3.2 Contents of the ATC communiCations..........ccccueevueerieriieenieeieenienieeneene 55
2.2.4 Information Diffusion via Voice Communication.............ccceeeevvveerveeerveeennenn. 56
2.2.5 SUMMATY ..eeiitiieiiiieeiie ettt eete e et eestee et eeeeaeeesaeeensaeessseeesnseeessseeesnseeensseens 57
2.3 The State-of-the-Art on the Research of Air Traffic Controllers' Activities........... 57
2.3.1 Tasks Demands: Air Traffic Complexity........ccccceveviriieniieiniieeie e, 57
2.3.1.1 Dynamics DENSILY ....cueeeriiieriieeiiiieeiiie ettt e e e e e e 58
2.3.1.2 Other CompleXity MEIICS ....cueerviieiiieiieeiieriie ettt seae e 60
2.3.2 Internal Activities: Cognitive Activities and Workload ...........c.cccccvvevnieenneen. 61
2.3.3 External Activities: Voice Communication Activities and Performance.......... 64
2.3.4 DISCUSSION ....vvieeiiiieeiiieeeiteesteeesteeesaeeesssaeesseessaeessseesssseesssseesssaeessseeessseeensseens 65
2.4 Chapter SUMMATY .......cooouieiiiieiieiieeie ettt ete et stte et eseeeebeesaaeesbeessaeesaesnseeseeenns 66
Chapter 3 The Temporal Characteristics of Controllers' Communication Activities ....... 67
3.1 INEEOAUCHION. ...ttt sttt et 68
3.1.1 Human Dynamics: Empirical Evidences ...........cccccceeviiiiiiieiiiieeieeeiie e, 68
3.1.2 Human Dynamics: MOdelS.........ccoeriiiiiiiiiiiiiiiieeieeiee et 69
3.1.2.1 BEAMOMEL .. 69

-VI -



3.1.2.2 Cascade PoiSSON MOAEL......cooommmmeeeeeee e 69

3.1.2.3 Interaction MoOdel ........c.coouiiiiiiiiiiiiiee e 69
3.1.3 Comparison with Air Traffic Controller's ACtiVIties .........cccceevvueeviinieinnennenns 70
314 ODBJECTIVE ..cniiiiteeei ettt sttt et 72
3. 1.5 DETINITIONS .ttt ettt st et ens 72

R I D | - PSPPSRI 73
3.2.1 D) DAASEL ..ttt 74
3.2.2 Dy DAtASEL ..cueiiiiiieiiieiieie e 75
3.2.3 Dy DAtaSet ....c..ooviiiiiiiiiiiiiiic 75
3.2:4 D, DAtaSEL ..ccueiiuiiiiiiiiiieieceeeet et 75
3.2.5 Dy DAtaSet ....c..oviiiiiiiiiiiiiic 76

3.3 Correlations between Airspace Activities and Controllers' Communication

ALCTIVITICS ..ttt e et e et e et eeetteeeabaeesataeesasaeeessaeessseeesssaeenssaeensseeensseeenns 76
3.3.1 Communication MEaSUTEMENTS. .....c..eeeueeriieriiiniieaiieiie ettt et sieesneens 76
3.3.2 Dynamic density (DD) ......coceviiiiiiiniiiiiieeeeeee e 78
3.3.3 Complexity based on dynamical system modeling (C-DSM)}.........cccceneee. 78
3304 RESUILS ..ttt et e et e e e aae e eae e e eaaa e 79

3.3.4.1 Correlations between C and TV ........ccocoovirurieirinieieieieeeeeees 81

3.3.4.2 Correlations between communication, DD, and C-DSM..................cc...... 81

3.4 Temporal Characteristics of Controller's Communication.............cccceeevvreueennneennen. 85
3.4.1 Periodic Patterns of Controllers' Communication.............ceceeveeereeniennieennenns 85
3.4.2 Detrended Fluctuation Analysis (DFA)........cccoviiieiiiiiieiiecieeeeee e 87
3.4.3 Inter-communication Times DiStribution ............cccceeiieniiiiienieiieiceeee, 90

3.4.3.1 Inter-arrival TIMES ......cccueiieriieienieieeecee e 92

3.4.3.2 Inter-communication Gap Lengths.........c.cccccvveviiiiiiiiieiiiiiieceeeeee e 95

3.5 Psychological Interpretation of the Intervals..........ccccoceriiniiiiniiniiiiiicce 97

3.6 Chapter SUMIMATY ......oeeiiiieiiiieeiieeeiteeeiee e et e e eteeesteeesaeeesaeeesbeeesneessneeenneesnneens 98

Chapter 4 The Spatial Behavior of Controllers' Communication Activities .................. 100

4.1 INEOAUCTION ...ttt ettt et 100
4.1.1 The Spatial Behavior of the Controllers...........ccccoeeveriiniiniiiiniiieiceeee. 101
4.1.2 MOTIVATIONS entiiiiieiieeiieette ettt sttt ettt st sbe e et et st e e bt e esbeebeesaeeenbeeens 101
4.1.3 ODBJEOIIVES ..ttt sttt ettt sttt sttt 102
4.1.4 Related WOTK ....couiiiiiiiiiiie e 102

4.1.4.1 Structure-based ADSraCtion...........ccueevuieriieiieriieiie et 102

4.1.4.2 HUman MODIIILY .....ooeviiiiiiiieciecce et 103

4.2 MEROA ... e e e et e e eaeeearae s 104
4.2.1 ANetwOrk APProach........covouiiiiiiiiiiiiieeiieeee e 104
4.2.2 Mapping Time Series to @ NetWOrk ........ccccceevuerieniniieniiniiicnecieeesceeeen 104

4.2.2.1 Definition of the NOdES .......ccceeviiiiiiiniiiiiiiceeee e 105

4.2.2.2 Determination of the EAZes ........ccccooeiiiiiiiiiiiiiicce, 105

4.2.2.3 Time Aggregated NetWork .........ccceeeiiieiiiiiiiiecie e 107

4.2.2.4 Temporal NetWOTKS ......c.ccoviieiiieriiiiieiieeieeeee et 107
4.2.3 Network Analysis TeChNIqUES.........ccccevcviieiiiiieiiieecieeeee e 108

4.2.3.1 Classic TeChNIQUES .......c.eevuiieiiieriieeiieniie ettt ettt e 108

- VII -



4.2.3.2 Community DeteCtion .........ccccueeriiiieriiireriieeriee e 108

4.2.3.3 MOtifsS DEtECtION ....ccueieiiieiiieiieciie et 112

A3 DALA ..ottt st 113
44 RESUILS ..ottt ettt ettt ettt et nte e e enneens 114
4.4.1 Time Aggregated NetWorks........c.covoiiiiiiiiiiiieeieecee e 115
4.4.1.1 Degree DiStribution ..........ccceevievieriiniiiiiiienieeiee e 115
4.4.1.2 Correlations between Network Community and Air Traffic .................... 117

4.4.2 Temporal NEtWOTKS ......cc.eriiiiiiiiiiiiieiicrecee et 118
4.4.2.1 Time Dependent Degree Distribution............ccceeevevieeniieeniiecniieciee e 119
4.4.2.2 NetWork MOLIES .....ooouiiiiiiiieeiieie e 121

4.5 Chapter SUMMATY ....cccoviieiiieeiiieerieeerieeesieeeseteeesiaeestaeeesareeessreessneesnsneessseesnneens 122
Chapter 5 Fluctuation Scaling in the Controllers' Communication..........cc.cceceveevuenne. 123
5.1 INErOAUCTION. ....iiiiiiieette ettt ettt e 123
5.2 FIuctuation SCAlINE .......cccueeiiriiiiiiiirieeieeitete ettt 124
5.2.1 Temporal Fluctuation Scaling ...........cccceeviiiiiiiiieniiieeeeieeeeeee e 124
5.2.2 Ensemble Fluctuation Scaling..........cccevieviiiiiniiiiniiniicicnicsceicceeseeeene 124

5.3 DAtA .t 125
S RESUILS ..ottt ettt et 126
5.4.1 Temporal Fluctuation Scaling ...........cccceeviiieniiiieiiieeieeeeee e 128
5.4.2 Ensemble Fluctuation Scaling..........ccccevieviriiniiiiniiniicenicseeceeeneeieene 129

S5 IMOMEL e 132
5.6 Chapter SUMIMATY ......cc.eeriiriirieiieniierieete ettt ettt sttt seeenae e 134
Chapter 6 Implications of Air Traffic Controllers’ Dynamics.........cccccceceenieniiiniennenn. 135
6.1 Implications for a Model-based Simulation for the ATM System..........c.ccccueuee. 135
6.2 Implications for the Study of Cognitive ACHVITIES ......cccuvveererreeiiieeieeeiiee e 136
6.2.1 Implications for the Resource Allocation............ccceveevierieniineenicnicneccenne. 137
6.2.2 Implications for the Systems Desi@n.........cccceevvieeiiieeriieeniieeiee e 138

6.3 Implications for other Human-Driven Complex Systems .........ccccceeeevierienennnene 138
Chapter 7 Conclusions and PerspectiVes .........eeecvieerieeeiieeeiiee e 139
7.1 SUIMIMATY ..ottt sttt et et aee 139
7.2 PEISPECLIVES ...vveeevieeiiieeeiiieeeiieeeeitee ettt e etteeeeaeeetaeeentaeesnsaeesssaeeasseeennseeesseesnsseesnnes 140
RETRIETICES ...ttt ettt ettt et e et e s eneeas 142
F N 0 81S) 116 To TSRS 153

- VIII -



List of Figures

Figure 0- 1 Le role de contrdleur de la circulation aérienne ...........c..ccccoeeevieninienecnnennne. 3
Figure 0- 2 Benchmarking des activités humaines en termes d’urgence et de durée......... 5
Figure 0- 3 Définitions des activités de communication d'un contrdleur. ........................ 10
Figure 0- 4 DFA 2 fonction log,, F'(s) par rapport a I’échelle de temps log,, s ............. 14
Figure 0- 5 La distribution de densité de probabilité d'inter-communication des

COMEIOLEULS ...ttt ettt et ettt e et e st e et e e bt e enbeenseeenneas 18
Figure 0- 6 Répartition des écarts inter-communication supérieurs a 11 secondes.......... 18
Figure 0- 7 Exemple d'une série de données de communication............ccceecvereeenueevennnnne 22
Figure 0- 8 Le réseau temporel associé aux événements de communication.................... 23
Figure 0- 9 Distribution des degrés normalisé en données.............ceceveeveriineeneniennnne. 25

Figure 0- 10 Effets de la distance temporelle minimum 7, sur la distribution des degrés

n

A'AGIEGALION. ...ttt et 25
Figure 0- 11 Fréquence du degré dans chaque secteur de D, Dataset. .......cccccceuenuennen. 27
Figure 0- 12 Pourcentage de trois types de motifs détectés dans les trois ensembles de

AONNEES. ...ttt ettt 29
Figure 0- 13 Fluctuation d’échelle pour les activités de communication............c..c....... 32
Figure 0- 14 Mise a I'échelle de fluctuation dans tous les secteurs. ..........cocevvevueruennnnne. 33
Figure 0- 15 Des résultats de simulation de  en fonction de g, ..ooovvviiiiiiiniiinnninnnns 35
Figure 1- 1 Visualized communication trunks between controllers and pilots................. 39
Figure 2-1 Three parts of the ATC SYStem.........cceevuiriiriiiiiinieniiieeieeeeee e 44
Figure 2-2 Sectors' boundaries in the MUAC. .........cccoviiniiiiiiiniiiincccece 45
Figure 2-3 Trajectories of Aircraft Flying in the Paris TMA ........ccccoiiniiiiiiiniiicnne 47
Figure 2-4 Air traffic controller in the continuous environment. ..........cccccoceeverveneennenne. 48
Figure 2-5 The role of air traffic controller. ..........cc.cooiriiiiiiiniiiiiiece 49
Figure 2-6 Systematic perspective of air traffic controller in the ATC system. ............... 53
Figure 2-7 Three aspects of the study on air traffic controllers' activities ...........c...c....... 58
Figure 2-8 Model air traffic controller's mental workload. Picture was exactly copied

from (Loft, Sanderson et al.) ........ccoocuieiiiiiiiiii e 63
Figure 3- 1 The distributions of response times for the letters. ..........cocevevvininiincnnne. 68
Figure 3- 2 Benchmarking of human activities ...........ccooeeverieriineriiinieneeiecieeceeeee 71
Figure 3- 4 Definitions of communication activities of a controller.............ccccevevuennene. 73
Figure 3- 5 Statistical results on traffic volume and communication activities ............... 82

Figure 3- 6 Correlation coefficients as a function of observation time window ¢, in ACC

-IX -



Figure 3- 7 Number of communication events per hour of US datasets ............c.cccuee.. 86

Figure 3- 8 Distribution of the length of communication of controllers and pilots ......... 86
Figure 3- 9 DFA 2 function log,, F'(s) versus timescale 108, 8 .....cccccooviviiniiiinnnnn. 88
Figure 3- 10 Probability density distribution of inter-communication of controllers ...... 94
Figure 3- 11 Distribution of inter-gap lengths larger than 11 seconds ............ccceeeenneennee. 94
Figure 3- 12 Distribution of inter-communication gap lengths............cccccoeevviercieenienn. 96
Figure 3- 13 Illustration of the diffusion model ............ccceieiiiiiiiieeiiee e 98
Figure 4- 1 The visibility graph algorithm. .............cccooveiiiieiiie e, 106
Figure 4- 2 Example of a series of communication data. ............ccceeeevveevciieenciieecieeenenn 110
Figure 4- 3 The associate network of the communication events in Fig. 4-1. ............... 111
Figure 4- 4 An example of a sequence of communication networks.. ...........cceeeneee. 112
Figure 4- 5 Three types of motifs, chain, loop, and star. ...........ccccceeeevveercieencieceiee e 113
Figure 4- 6 Overview of traffic activities and controller communication activities in Paris
TIMA LA ...ttt 114
Figure 4- 7 Normalized degree distribution in &, dataset ...........c.ccocoeviviiiniiiccncnenne. 117
Figure 4- 8 Effects of minimum temporal distance 7 on the aggregate degree
ISTIIDULION. ...ttt e 117
Figure 4- 9 Time dependent degree of each flight in a sector with 7 . =60 seconds.
................................................................................................................................. 119
Figure 4- 10 Frequency of degree in each sector in D, dataset.........ccccceeueruenennenn 120
Figure 4- 11 Percentage of three types of motifs detected in the three datasets....... 121
Figure 5- 1 Traffic flow between Paris TMA SECtOTS. ......ccceevuervirieneriinicnieienecieenee 126
Figure 5- 2 Empirical distribution of inter-arrival rate (a ~ ¢) and service times (d ~ f) in
THE SECTOTS. ..eutieiiieeite ettt ettt ettt et s e et e et e b e st ens 127
Figure 5- 3 Fluctuations in traffic activities in the sectors. Sectors are represented with
COLOTS. ittt ettt et et e 128
Figure 5- 4 Temporal fluctuations in the controllers' communications. .........c...ccceenneee. 129
Figure 5- 5 Fluctuation scaling for communication activities. .........ccecueevueenveenieeneennnen. 131
Figure 5- 6 Fluctuation scaling in all SECtOTS.......c..eeviviieriieeiiieeiiecieeee e 132
Figure 5- 7 Simulation results on the « as a function of g, ...cccooeniiiniini 134
Figure 6- 1 Cognitive tasks of air traffic controller.............cocoeviriniiiiiniiicee, 137



List of Tables

Table 0- 1 Comparaison entre les activités des controleurs aériens et d’autres activités ... 4
Table 0- 2 Les coefficients de corrélation entre la communication et les facteurs de la

CITCULALION. Lttt ettt et as 12
Table 0- 3 Exposants d'échelle DFA de chaque secteur de chaque exercice.................... 15
Table 0- 4 Probabilités d’accord pour les données empiriques (en-TR) .........ccccvvveenneeenn. 17
Table 0- 5 Les coefficients de corrélation de la taille moyenne de la collectivité et du

nombre de vols dans 1€ SECTEUT ........couiiiiiiiiiiiiiiieeece e 26
Table 2- 1 List of items pronounced with standardized phraseology.........c.cccceeeuveernnnnn. 55
Table 2- 2 Communication Messages CateGOTICS. ......uueervreerireerieeeiieeeireeeieeeeieeenieeenns 65
Table 3- 1 Comparison between air traffic control and other human activities................ 72
Table 3- 3 Information on the 50 exercises in the ATCOSIM database ............cccceeeuneee 75
Table 3- 4 General information on the Dy Dataset ............cccceevivininininiieiicncncncncnnne 77

Table 3- 5 Regression results of the values of weight w,. Values in the parentheses are

DIEEALIVE. ..eeeuiieeiieeeitee ettt e ettt e et e e e teeesteeessaaeeasseeessaeanssaeanssaeansseeensseeansaeennseeennseeennses 80
Table 3- 6 Correlation coefficients between communication and traffic factors. Values in
the parentheses are NEGATIVE. ......ccveeeriieeiiieeieeeee ettt e sree e e e e eaeees 84
Table 3- 7 DFA scaling exponents of each sector of each exercise.........ccceeuveeevuveernnennns 89
Table 3- 8 Probability fitting to the empirical data (inter-TRS)........cccceevvirerciriniieeiens 93
Table 4-1 Summary of the main features of the networks obtained over a minimum
WEIZht OF LINK IV, oo 115

Table 4- 2 Correlation coefficients of average community size and number of flights in
TRE SECLOT ...ttt 118

-XI -



RESUME

0.1 Contexte

L’industrie du transport aérien offre un service de transport pour le grand public dans le
but de permettre le commerce, les affaires et les voyages d'agrément. Pour fournir un
transport aérien sUr et précis, la gestion du trafic aérien (ATM, Air Traffic Management)
tend a une gestion dynamique et intégrée de la sécurité de 1’espace aérien grace a la
fourniture d'équipements et de services sans couture (seamless) en collaboration avec
toutes les parties (ICAO 2005). En tant qu’élément clé de I'ATM, le contrdleur du trafic
adrien est étroitement lié a la sécurité et a l'efficacité du systéme. Depuis 1960 (Davis,
Danaher et al. 1963), il y a des efforts en cours pour étudier les facteurs humains dans le
systtme ATM, ce qui contribue a notre compréhension des activités de contrdleurs
aériens. Cette thése portera sur l'analyse empirique de la dynamique des contrdleurs
aériens d'un point de vue «systéme complexe» en explorant les caractéristiques

temporelles et spatiales de leurs activités de communication ainsi que leurs fluctuations.

0.1.1 Background

Les controleurs aériens, appelés simplement « controleurs », sont les personnes qui
sont responsables de la maintenance et de 1’efficacité d’un écoulement siir et ordonné du
trafic aérien. Utilisant les systemes CNS (Communication, Navigation and Surveillance),
les contrdleurs dirigent les avions se déplacant sur le sol et dans l'air. Ils sont tenus de
prendre des décisions rapides en réponse aux changements du trafic. La communication
vocale était le principal moyen utilisé par les controleurs pour controler le trafic aérien
avant 1'émergence de la communication de données numériques entre le contrdleur et les
avions. Cependant, c’est encore le seul et principal canal de communication
d'informations entre les pilotes et les contrdleurs dans la plupart des centres de contrdle.
En fournissant des instructions et des autorisations aux pilotes a travers le systeme de
communication, les contrdleurs dirigent le trafic aérien avec plusieurs objectifs.
L'objectif principal est de s'assurer que chaque appareil atteigne sa destination sans risque
de collision avec d'autres aéronefs, des phénomenes météorologiques violents, et des
zones dangereuses ou des obstacles. En d'autres termes, tous les avions relevant de sa

compétence doivent respecter les normes de séparation émises par 1'Organisation
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internationale de l'aviation civile (ICAO, International Civil Aviation Organization) ou
l'autorité locale des transports. D'autres objectifs tels que 1'organisation d'une circulation

ordonnée et efficace seront ensuite réalisés.

Pour améliorer la capacité du controleur a gérer le trafic, différents outils d'aide a la
décision ont été¢ développés et déployés. Malgré 1'éventail de plus en plus large de
'automatisation qui a ét¢ introduite dans les systemes ATM, des scénarios a la fois dans
les concepts SESAR et NextGen montrent que les contrdleurs de la circulation aérienne
continuent de constituer la principale fonction du systeme de 1'avenir. La compréhension
de la complexité du comportement de I'opérateur et de son management représente un

défi pour la communauté de recherche.
0.1.2 Enoncé du probléme et la portée de la recherche

Bien comprendre les comportements des contréleurs du trafic aérien est d'une
importance cruciale pour la sécurité et I’efficacité du systtme ATM. En raison des
interactions non linéaires entre le trafic aérien, l'espace aérien et le contrdleur de la
circulation aérienne, les études existantes n'ont pas réussi a saisir la nature instinctive des
activités du controleur. Les travaux de recherche basés sur la psychologie et les sciences
cognitives ont atteint des résultats importants sur la fagon dont se comporte le controleur
quand il contréle la circulation, en étudiant la charge de travail mental, la complexité
cognitive, etc. Cependant, décrire quantitativement les comportements du contrdleur en
fonction de la répartition du trafic et des configurations différentes de 1'espace aérien, est

encore mal compris.

Beaucoup de taches des contrdleurs se font pendant la communication avec un aéronef
ou apres la communication avec un aéronef. Pour I’exécution de ses taches, un controleur
accepte les données en entrée, les informations sur le processus, il définit les priorités et
les actions a réaliser (Rodgers et Drechsler, 1993). La réponse des controleurs a ces
taches est toutes les communications qui sont reflétées dans la charge de travail des
controleurs (Stein, 1985). Bien qu'il existe de nombreux facteurs affectant les activités
des contrdleurs, et qui par conséquent influent sur le systéme, d'un point de vue systeme
cd sont les communications vocales du controleur qui influent principalement sur le
fonctionnement du systeme. Par définition, l'activité est un systéme cohérent de
processus internes, de comportements et de motivations externes qui sont combinés pour
atteindre des objectifs conscients (Bedny et Meister, 1997). Nous supposons que l'activité

de communication vocale du controleur encapsule les efforts cognitifs et physiques du



controleur qui sont nécessaires pour accomplir sa mission principale qui est d'assurer la

sécurité et l'efficacité du trafic aérien (voir la figure 0-1).

Sector CNS and

. Traffic situation
automation systems

| | Decision support
- tools

ice comiy
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I

Communication
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Navigation
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Surveillance Weather
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Figure 0- 1 Le role de controleur de la circulation aérienne

Cette these examine la dynamique des communications vocales des contréleurs aériens.
Les données empiriques ¢tudiées dans cette these sont les données de communication
vocale entre les controleurs et les pilotes. Des données a la fois opérationnelles et de

simulation ont été enregistrées dans des secteurs d’approche et des secteurs en-route.

0.1.3 Motivation

La science et l'ingénierie ont longtemps étudié les principes de la compréhension des
systemes complexes (Guckenheimer et Ottino2009). Dans notre domaine, l'impulsion
pour ces ¢études est motivée par la nécessité de modéliser et de comprendre
fondamentalement le systtme ATM. Le renforcement des bases de connaissances des
activités humaines est nécessaire pour atténuer 1’occurrence d’événements dangereux.
Dans ce systéme complexe, le contrdleur en tant qu’élément essentiel a une influence
directe sur le systeme qui est en constante évolution. De grands efforts ont été faits pour
la mesure et la prédiction de la charge de travail du contréleur aérien. Ces travaux sont

encore insuffisants pour prédire le comportement et les performances du contréleur en

-3-



raison de la dynamicité de la charge de travail (Loft, Sanderson et al. 2007).

Depuis 2005, les enquétes sur les données de différents types de d’activités humaines
montrent qu'il y a des schémas similaires d'activités entre les étres humains. Ces activités
vont de la correspondance ordinaire (Barabasi 2005), de la communication par courrier
¢lectronique (Malmgren, Hofman et al. 2009), de la communication par messages courts
(Wu, Zhouet al. 2010), de I’'impression de documents (Harder et Paczuski 2006), de
I’évaluation de films en ligne (Zhou, Kiet et al. 2008), a la mobilité humaine (Gonzalez,
Hidalgo et al. 2008). Ces résultats indiquent qu'il peut y avoir des lois universelles qui
régissent les activités humaines.

Table 0- 1 Comparaison entre les activités des contrdleurs aériens et d’autres activités

Activité du controleur Activité humaine normale
Caractéristiques Pression élevée Pression peu élevée
Période de 2 heures Durée longue
Méthodes d’étude Psychologie Data mining
Sciences cognitives Statistiques
Résultats Description comportementale Mesures quantitatives
en fonction des activités internes Schémas universels
Modele non prédictif Peu d’études sur les activités
Résultats dépendant du trafic, de I’espace  dirigées par les taches
Inconvénients aérien et autres facteurs. Ne peut pas étre appliqué
Echelle trop petite pour étre adaptce a simplement a I’ATM.
I’ATM en entier.

Le point commun entre les activités du controleur et d’autres activités est ’”ADAPTATION.
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Figure 0- 2 Benchmarking des activités humaines en termes d’urgence et de durée

D'un point de vue systéme complexe, les humains évoluent en réponse aux besoins liés
aux évolutions de I'environnement contextuel grace a 'adaptation, pour éviter I'échec et
pour garantir des performances utiles et fiables a un colit minimal. Les activités qui sont
analysées dans la recherche sur la dynamique humaine sont généralement a basse
pression et a longues durées. Aucune activité a haute pression telle que le contrdle du
trafic aérien n’a été bien étudiée. Une meilleure compréhension des activités humaines
sous haute pression facilitera I’évitement des erreurs humaines qui peuvent conduire a
une catastrophe systéme, en particulier pour les systemes de sécurité concernés, tels que

le systétme ATM ou bien aussi les centrales nucléaires.

0.1.4 Objectif de la recherche

Compte tenu des motivations présentées ci-dessus, l'objectif de cette recherche est
d'explorer la dynamique des activités de communication du contrdleur aérien, de fournir
une premiere démonstration de la compréhension physique des régles selon lesquelles le

contrdleur aérien controle le trafic. Plus précisément, I'objectif est :

(1) d’enquéter sur les comportements temporels des activités de communication des

controleurs;

(1)) de démontrer ['utilisation de la dynamique des réseaux pour étudier les



comportements spatiaux;

(111) d'étudier les variations d'échelle des fluctuations des activités de communication

tout en prenant le contréleur comme une composante de I'ATM ;

(1iv) de modéliser et simuler les mécanismes sous-jacents que les controleurs emploient,
ce qui pourrait également s'étendre a expliquer et prévoir des activités humaines

similaires.

0.1.5 Contributions

La proposition principale de cette these est de fournir une compréhension physique des
activités de contrdleurs aériens. Sur la base des analyses des activités de communication
vocale des contréleurs aériens, nous fournissons une étude systématique des propriétés

statistiques de leurs communications.

Nous avons trouvé que les communications des controleurs semblent étre des

processus a mémoire longue par l'utilisation de 1'analyse de fluctuations redressées.

Nous avons montré que les communications des controleurs présentent des
caractéristiques statistiquement du genre heavy tailed. Les comportements collectifs des
controleurs sont caractérisés par une forme en loi de puissance, tandis que les modeles

individuels se montrent beaucoup plus hétérogenes.

Une approche a base de réseau temporel a été proposce pour retracer les activités des

contrdleurs, ce qui contribue a la quantification des activités humaines.

Nous avons capturé les phénomenes de fluctuation des activités de communication des
controleurs. De tels phénomenes sont bien expliqués par notre modele qui décrit le
comportement de regroupement des contrdleurs. Les fluctuations d’échelle peuvent nous

amener a ¢valuer la capacité du secteur.

Notez que bien que cette thése se concentre sur les activités des contréleurs aériens, il

offre aussi des approches et des résultats qui vont au-dela du domaine ATM.

0.2 Les données de testes

Les données opérationnelles et les données de simulation en temps réel ont été
recueillies pour étudier les comportements de communication des contrdleurs. Deux
ensembles de données de simulation en temps réel, a savoir les données de simulation
TMA Pariset et les données de corpus ATCOSIM, viennent du Centre expérimental
d'EUROCONTROL, tandis que deux jeux de données réelles ont été enregistrés dans



différents centres ATC aux Etats-Unis d'Amérique et en Chine.

0.2.1 D, Dataset

Le premier jeu de données contient des données de simulation TMA Paris, qui ont été
enregistrées au cours de deux semaines de simulation en temps réel au Centre
Expérimental EUROCONTROL en juin 2010. Le but de cette simulation était de tester la
viabilité des améliorations proposées par le frangais DSNA pour le systtme ATM

desservant Paris-Charles De Gaulle, Paris-Orly et Paris-Le Bourget.

0.2.2 D, Dataset

Le deuxieme ensemble de données qui a été analysé est I'Air Traffic Control
ATCOSIM Simulation Speech Corpus du Centre Expérimental EUROCONTROL. 11 se
compose de dix heures de données de communication, qui ont été enregistrées au cours
de simulations ATC en temps réel qui ont ét€¢ menées entre les 20/01/1997 et 14/02/1997
(Hering 2001). Seule la voix des contrdleurs a été¢ enregistrée et analysée. Chaque
enregistrement se compose d'environ une heure de données de communication. Les
données sont composées du signal de parole et de la transcription de 1'énoncé, avec
'annotation complete et les métadonnées pour tous les énoncés. Les données de
simulation enregistrées ne comprennent pas toutes les informations sur le trafic ou

l'espace aérien correspondant aux données de communication.

0.2.3 D, Dataset

Pour étudier les effets des autres facteurs sur la communication du contréleur, comme
la culture, nous avons obtenu les données opérationnelles de plusieurs centres de controle
de la circulation aérienne aux Etats-Unis d'Amérique. D, Dataset est fondés sur les
données opérationnelles enregistrées a Kansas City en 1999. Il se compose de 8
¢chantillons, comprenant quatre secteurs, a savoir le secteur 14, le secteur 30, le secteur
52, et le secteur 54. Au total, il y a 999 événements de communication. En moyenne,
chaque échantillon de trafic dispose de 125 événements de communication. Environ 47%
de la communication a été faite par le contrdleur radar, 53% a été faite par les pilotes et

les autres contrdleurs, voir (Manning, Mills et al. 2002) pour plus de détails.

0.2.4 D, Dataset

Les données D, Dataset ont été recueillies a partir de 840 heures d’enregistrement des

communications controleurs-pilotes a Chicago (ZAU) Air Route Traffic Control Center



pendant le fonctionnement quotidien. L’analyse de la parole a d'abord été menée afin de
récupérer les informations temporelles sur les communications vocales. Par 1'utilisation
de boite a outils de segmentation parole, tels que des boites a outils Spkdiarization
(Peignier et Merlin2010), le silence ou l'activité audio ont été identifiés avec un seuil de 2
secondes. Puis I'heure de début et de fin de chaque événement de communication peut
étre obtenue. Au total, il y a 59,589 événements de communication contrdleur / pilote
dans cet ensemble de données. La diarisation de paroles permettant de calculer des

données précises sur « qui a parlé et quand » est a I’étude.

0.2.5 D, Dataset

Les données D, Dataset ont été recueillies au Shanghai Air Traffic Control Centre au
début des années 2012. Les activités de communication des controleurs ont été
enregistrées manuellement sur le site pendant les heures de pointe. Il y a plus de vingt

picces d’enregistrement incluant au total 6,025 activités de communication de contrdleurs.

0.3 Les caractéristiques temporelles des activités de communication
des controleurs

Les études antérieures sur les communications des contrdleurs mettent I'accent sur les
relations entre les événements de communication et la charge de travail mental des
controleurs plutdét que sur les propriétés dynamiques de la communication. Jusqu'a
présent, il y a un manque de compréhension quantitative des mécanismes qui régissent

'activité des controleurs.

Les analyses sur différentes gammes de jeux de données des activités humaines ont
montré que, a la différente de la croyance commune qu’elles respectent des distributions
de Poisson, les schémas des activités humaines ont une distribution en loi de puissance
du type heavy tailed. Avec le plein essor des preuves empiriques de la dynamique des
activités humaines, on a trouvé des motifs similaires, ce qui suggere qu'il existe des
mécanismes universels régissant les activités humaines. On pourrait argumenter qu'il
existe des différences significatives entre les activités des contrdleurs aériens et les autres
activités humaines quotidiennes. Néanmoins, l'apparition de la recherche sur la
dynamique des activités humaines fournit les aspects méthodologiques de Ila
compréhension des activités des controleurs aériens dont nous discuterons dans cette

section.



0.3.1 Définitions

Pour examiner les activités des contrdleurs du trafic aérien, nous allons donner les

définitions suivantes qui seront utilisés dans la présente section et par la suite.

(1) Evénement de communication (TR). Il est défini lorsque le controleur presse le
bouton Push-to-talk et le maintient enfoncé afin d'envoyer le message aux aéronefs. Il est
aussi appelé « Transmission » (TR). La transmission vide est également considérée

comme un événement de communication compléte.

(2) Transaction (CT). Une conversation compléte entre un aéronef et un controdleur.
Elle est composée de transmissions (TR) séparées qui sont alternativement effectuées par
le contréleur et le pilote. Ceci est défini comme « Communication Transaction » (CT)
(Hunter et Hsu, 1977). Par exemple, les deux premiers événements de communication
bleus sur la Figure 0-3 pourraient étre un CT si les quatre premieres bandes sont a propos

de la conversation entre PL1 et le controleur.
Les mesures temporelles qui seront utilisés sont:
(1) L;: la durée de 1'événement de communicationi

(2) 7,: le temps inter-arrivée, c'est a dire la différence de temps entre deux événements

de communication consécutives i et i+/;

(3) 7,,: la longueur de l'intervalle inter-communication. Il est défini comme la longueur

de temps entre deux TC consécutives.

La recherche sur les communication des controleurs aériens a défini plusieurs mesures
de communication pour identifier les relations entre les communications et la charge de
travail des contrOleurs dont beaucoup sont liés a une fenétre de temps ¢, (Bruce,
Freeberg et al 1993 ; Cardosi 1993 ; Porterfield 1997 ; Morrow et Rodvold ; Corker, Gore
et al 2000). Apres le travail de (Manning, Mills et al 2002), nous listons deux mesures a
I'étude :

C) : le nombre d'événements de communication qui se produisent dans ¢, ;

C”: la densité de communication, définie comme C” =L (C")” et Best le paramétre

d'équilibre de la fréquence de communication.
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Figure 0- 3  Définitions des activités de communication d'un controleur. En bleu sont les
communications faites par le contrdleur, en jaune et violet foncé sont les communications faites par
les pilotes. Les données ont été enregistrées dans I'ATC Chicago Center.

0.3.2 Les corrélations entre les activités des contréleurs et la complexité
du trafic aérien

Dans cette section, nous présentons les résultats sur les corrélations entre les activités
de communication des controleurs et des activités de l'espace aérien. L'activité¢ de
I’espace adérien est l'activité associée a l'avion et aux conditions météorologiques se
déplagant a travers le secteur. Ici, nous utilisons deux indicateurs de complexité du trafic
aérien, a savoir la densité¢ dynamique (DD) et la complexité du trafic aérien basé sur une
approche modélisation de syst¢eme dynamique (C-DSM).

Dans le tableau 0-2, nous présentons les coefficients de corrélation qui montrent les
relations entre les activités de communication du controleur et les différents facteurs de la
circulation aérienne de chaque secteur. La fenétre de temps 7, et le temps
d'échantillonnage en DD sont a 2 minutes tandis que l'exposant S est 2. Les parametres

pondérés pour le calcul DD sont obtenus par les tests de régression.

Il peut étre vu a partir de la table que DD est tout a fait en corrélation avec les
événements de communication et la densité¢ de la communication. Alors que le C-DSP
montre une relation trés faible avec les communications, le C-DSM dans la plupart des
secteurs sont en corrélation négative avec le DD. Les deux derniéres colonnes présentent
les coefficients de corrélation moyenne et 1'écart-type associé. Une fois encore, le DD et

C-DSM semblent étre indépendants les uns des autres.
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A partir des résultats obtenus a ce jour, nous tirons la conclusion que la complexité du

trafic aérien a peu d'impact sur la dynamique de la communication du controleur.
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Table 0- 2 Les coefficients de corrélation entre la communication et les facteurs de la circulation. Les
valeurs entre parenthéses sont négatives.

Nbr d’événements de communication Densité de ommunication DD VS C-

COMM VS DD| COMM VS C-DSM| COMM VS DD| COMMVSC-DSM|  DSM

Mean STD Mean STD Mean STD Mean STD Mean STD
AOUS 0.74 0.06 (0.10) 0.08 0.67 0.13 (0.08) 0.03| (0.26) 0.10
AP 0.36 0.19  (0.01) 0.03f 031 0.19 (0.00) 0.03f 0.17 020
AR 0.54 0.12 (0.06) 0.10, 055 0.5 (0.03) 0.03 (0.13) 0.09
CREIL 0.26 0.18 0.00 002 022 021 (0.00) 0.02] 021 0.16
DENPG| .57 0.09  (0.01) 0.03f 053  0.07 (0.02) 0.02| (0.12) 0.08
DEPPO 0.71 0.09 (0.02) 0.04 0.59 0.13 (0.02) 0.03| (0.12) 0.08
DESPG| 055 0.14  (0.01) 0.03f 050  0.09 (0.02) 0.02 (0.15) 0.05
INIPO 0.55 0.16f  (0.01) 0.05 049  0.15 (0.01) 0.03| (0.09) 0.15
INNPG 0.68 0.09  (0.02) 002 065  0.05 (0.03) 0.02| (0.21) 0.06
INSPG 0.42 0.23 (0.01) 0.03] 045 024  (0.02) 0.03| (0.15) 0.13
ITBPG 0.50 0.14 0.02 003 033  0.16 0.01 0.03f 0.12 0.11
ITMPO 0.26 0.30 (0.04) 0.04 0.20 0.27 (0.03) 0.05 (0.02) 0.17
ITNPG 0.68 0.11 (0.04) 0.04 049  0.09 (0.05) 0.03| (0.07) 0.10
ITSPG 0.64 0.13 (0.04) 0.05 046  0.13 (0.03) 0.03 (0.09) 0.21
OGRT 0.62 0.07 (0.02) 0.05 0.64 0.04 (0.03) 0.04/ (0.11) 0.12
OYOT 0.67 0.21 (0.00) 0.03] 065  0.14  (0.01) 0.04/ (0.10) 0.09
TE 0.65 0.16f  (0.01) 0.04 064  0.14  (0.02) 0.03| (0.04) 0.20
THLN 0.70 0.20 0.03 0.06 0.57 0.16 0.03 0.07] 0.06 0.18
T™ML 0.62 0260  (0.01) 0.05f 050 025 (0.01) 0.02| (0.16) 0.07
TP 0.65 0.13 (0.02) 0.09 0.60  0.12 (0.01) 0.05| (0.05) 0.16
uJ 0.62 0.15 (0.05) 0.05f 056  0.17 (0.02) 0.04/ (0.06) 0.14
VILLA 0.26 0.27 0.02 0.05f 020 022 0.04 0.07] (0.04) 0.12
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0.3.3 DFA des activités des contréleurs

Pour examiner la statistique d'auto-affinité des événements inter-communication de
chaque ensemble de données, une analyse du deuxieme ordre fluctuation redressée (DFA)
a été réalisée. DFA a été largement utilisée pour analyser les caractéristiques statistiques
de processus stochastiques diftérents (Peng, Buldyrev et al, 1994 ; Kantelhardt,
Zschiegner et al 2002). En bref, la série temporellex,,# € N est d'abord convertie en un
processus non borné Y, par sommation cumulative. Puis la série temporelle convertie est
divisée en N, = N /s observations pour une longueur de fenétres . Des tendances locales
peuvent étre trouvées par la forme linéaire ou polynomiale des données Y, dans la fenétre,
et la fluctuation F'(s) est calculée par I'écart racine carrée moyenne de la tendance (root
mean-square deviation). En regle générale, F(s) va augmenter avec la longueur de la
fenétres . Un tracé log-log de F(s) en fonction de s est construit. Une relation linéaire
indique F'(s) oc s* qui permet de dire si la série temporelle semblent étre processus a
mémoire longue ou un bruit en 1/ /. Généralement, la propriété statistique de la série

temporelle sera révélée par I'exposant « de la maniere suivante :
o o <0.5: anti-corrélés;
e o ~(.5: non corrélées, le bruit blanc;
e o >(0.5: corrélation;
e ~1:lebruiten 1/ f, un bruit rose;
e o >1: non-stationnaire, marche aléatoire, sans limite;
e o ~1.5: bruit brownien.

Ci-dessous, nous rapportons les résultats utilisant la région 5<s<100 pour

I’estimation d’ ¢ .

Comme le montre la figure 0-4, quatre exposants sur cinq sont autour de 0,65,
indiquant que les ensembles de données sont corrélés a long terme. Notez que D,
Dataset a été construit a partir de huit de longs échantillons de 15 minutes et il y a moins
de 470 communications de controleurs. Le peu de données dans D, Dataset pourrait étre
la raison principale pour laquelle les communications des controleurs ne sont pas
corrélées. En revanche, les quatre autres ensembles de données présentent une forme en
loi de puissance plus lente que la décroissance exponentielle. Il suggere que les

comportements en communication des contrdleurs sont dépendants du long terme. Les
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exposants de chaque secteur de chaque exercice de D, sont donnés dans le tableau 0-3.

2
o D1 Dataset
1.8+
o D2 Dataset
+ D3 Dataset
v D 4 Dataset
1.6+
D5 Dataset
—~ 14r o ? -
L
e
g
= 1.2+ B
1 | —
0.8+ 4
a
L L L L L L

0.8 1 1.2 1.4 1.6 1.8 2
Iogms

Figure 0- 4 DFA 2 fonction log,, F'(s) par rapport a I’échelle de temps log,, s
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Table 0- 3 Exposants d'échelle DFA de chaque secteur de chaque exercice

100607B | 100610A | 100610B | 100611A | 100611B | 100614B | 100615A | 100615B | 100616A | 100616B | 100617A | 100617B | 100618A | 100618B | Mean Std
AOUS 0.47 0.50 0.49 0.44 0.54 0.49 0.73 0.50 0.57 0.51 0.54 0.47 0.57 0.51 0.52 0.07
AP 0.45 - - 0.56 0.61 0.61 0.56 0.41 0.62 0.59 0.84 0.69 0.62 0.58 0.60 0.11
AR 0.62 0.51 0.46 0.61 0.44 0.64 0.60 0.61 0.44 0.63 0.57 0.46 0.70 0.37 0.55 0.10
CREIL 0.75 0.56 0.97 0.42 0.37 0.54 0.78 0.45 0.60 0.62 0.60 0.59 0.76 0.75 0.62 0.16
DENPG | 0.69 0.50 0.57 0.68 0.49 0.61 0.59 0.55 0.72 0.43 0.62 0.64 0.66 0.61 0.60 0.08
DEPPO 0.67 0.54 0.60 0.47 0.62 0.75 0.71 0.66 0.56 0.47 0.65 0.64 0.48 0.54 0.60 0.09
DESPG 0.53 0.56 0.65 0.53 0.56 0.49 0.65 0.62 0.62 0.45 0.66 0.53 0.59 0.53 0.57 0.07
INIPO 0.61 0.53 0.47 0.53 0.65 0.54 0.67 0.74 0.54 0.68 0.68 0.50 0.60 0.46 0.59 0.09
INNPG 0.67 0.63 0.66 0.61 0.79 0.63 0.55 0.57 0.59 0.72 0.48 0.53 0.62 0.67 0.62 0.08
INSPG 0.53 0.47 0.60 0.56 0.54 0.61 0.65 0.61 0.55 0.49 0.52 0.59 0.59 0.42 0.55 0.06
ITBPG 0.60 0.58 0.49 0.78 0.74 0.76 0.77 0.71 0.90 0.55 0.71 0.59 0.65 0.54 0.67 0.12
ITMPO 0.61 0.61 0.58 0.61 0.46 0.62 0.73 0.57 0.68 0.65 0.62 0.57 0.70 0.54 0.61 0.07
ITNPG 0.56 0.57 0.55 0.62 0.57 0.53 0.54 0.63 0.61 0.71 0.49 0.61 0.63 0.68 0.59 0.06
ITSPG 0.53 0.64 0.48 0.56 0.56 0.49 0.61 0.59 0.55 0.51 0.56 0.56 0.58 0.49 0.55 0.05
OGRT 0.58 0.60 0.49 0.74 0.93 0.46 0.70 0.52 0.59 0.46 0.58 0.56 0.68 0.43 0.60 0.14
OYOT 0.73 0.63 0.71 0.72 0.43 0.54 0.52 0.53 0.63 0.60 0.58 0.64 0.59 0.64 0.61 0.09
TE 0.74 0.73 0.49 0.50 0.42 0.69 0.70 0.54 0.67 0.61 0.82 0.57 0.64 0.58 0.62 0.11
THLN 0.61 0.71 0.82 0.48 0.73 0.69 0.55 0.53 0.74 0.58 0.49 0.66 0.58 0.57 0.62 0.10
TML 0.74 0.66 0.61 0.45 0.43 0.48 0.70 0.65 0.46 0.26 0.69 0.59 0.63 0.35 0.55 0.15
TP 0.61 0.51 0.56 0.56 0.61 0.69 0.36 0.62 0.56 0.56 0.53 0.38 0.76 0.43 0.55 0.11
uJ 0.57 0.64 0.63 0.58 0.49 0.53 0.61 0.70 0.65 0.47 0.48 0.58 0.48 0.63 0.57 0.07
VILLA 0.74 0.62 0.60 0.83 0.64 0.76 0.57 0.77 0.76 0.18 0.71 0.72 0.69 0.38 0.64 0.17
Mean 0.62 0.58 0.59 0.58 0.57 0.60 0.63 0.59 0.62 0.53 0.61 0.57 0.63 0.53
Std 0.09 0.07 0.12 0.11 0.14 0.10 0.10 0.09 0.10 0.13 0.10 0.08 0.07 0.11
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0.3.4 Les temps inter-communication

Dans ce qui suit, nous avons examiné les données empiriques inter-communication en
utilisant Maximum Likelihood Estimation (MLE) pour estimer quatre types de

distribution, de la distribution exponentielle, a savoir la distribution log-normale, la

distribution loi de puissance, et la distribution Gaussienne inverse.

0.3.4.1 Temps inter-arrivée

Comme le montre le tableau 0-4, le meilleur mod¢le différe seclon les ensembles de
données. La Gaussienne inverse est le meilleur modele pour ajuster les données obtenues
a partir des bases de données D, etD,, alors qu'il a échoué a capturer les moments
d'inter-arrivée de moins de 15 secondes (voir la figure 0-5 a7 ~10'? seconde) des
ensembles de D, et D,. La distribution en loi de puissance est beaucoup mieux pour
décrire tous les temps inter-arrivée dans les jeux de données D, de D, et, avec un seuil
minimum a 12 secondes et 13.3 secondes, respectivement. La diversité de la répartition
des temps d'inter-arrivée pourrait résider dans les modeles de trafic qui ont été¢ évoqués
ci-dessus. Par rapport aux données opérationnelles dans des ensembles de données D,
et D,, les communications faites par les contrleurs des deux premiers ensembles de
données sont exploitées pendant les heures de pointe. Les accords en loi de puissance
pour les deux premiers ensembles de données nécessitent des temps minimum inter-
arrivée supérieurs a 11 secondes. Il peut étre vu dans la Figure 0-6 que les intervalles
inter-communication qui sont a plus de 11 secondes présentent la décroissance sont la loi
de puissance. Les formes en loi de puissance avec des exposants 2,64 et 2,71 semblent
capturer les comportements collectifs des contrdleurs, ce qui suggere que les processus
de décision sous-jacentes des controleurs sont les mémes que ceux expliqués par les
modeles de la dynamique humaine. Que les controleurs suivent individuellement la
méme regle n'est pas établi. Pour tester cette hypothése, nous analysons les longueurs des
¢carts inter-communication des contréleurs calculés a partir des ensembles de données
D, et D,.
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Table 0- 4 Probabilités d’accord pour les données empiriques (en-TR)

Nom PDF Paramétres D, D, D, D, D,
A 19.1842 17.0713 17.9953 39.6385 25.6036
Exponentielle de ™ LR -314251 -37863.6 -1657.19 -250009 -25307
AIC 628504 75729.2 3316.38 500020 50616
H 2.59313 2.56279 2.38417 3.36411 2.70115
Log normale 1 exp (Inx— Iu)z o 0.756983 0.686706 0.946182 0.779025 0.977448
w2702 20672 LR -296732 -35578.7 -1596.06 -242184 -24661
AIC 593468 71161.4 3196.12 484372 49326
a 242 2.7078 2.8 4.4108 3.9468
Lo de X 12 13.3387 20 1333269 97
puissance x ¢ LR -155460 -15598 -332.322 -7706.4 -1039.2
AIC 310924 31200 668.644 15416.8 2082
Prop 46.62% 43.41% 17.61 2.91% 3.49%
H 19.1842 17.0713 17.9953 39.6385 24.6435
Gaussienne 2T _a-pw) p) 23.5348 27.5143 13.1099 48.5121 15.9193

eXp—————xX

inverse T p 2ﬂ2 LR -223361 -26511 -1188.36 -192603 -19067.9
AIC 446726 53026 2380.72 385210 39219.8
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Figure 0- 6 Répartition des écarts inter-communication supérieurs a 11 secondes

0.3.4.2 Longueurs des écarts inter-communication

Les longueurs des écart inter-communication des ensembles de données D, et D, ont
¢été obtenus en utilisant le schéma proposé. Pour estimer les exposants pour la distribution

en loi de puissance, nous adoptons I'algorithme donné dans (Clauset, Shalizi et al).

Dans l'ensemble de données D, , il est trés intéressant d'observer que les

comportements dynamiques des interactivités de la plupart des contrdleurs individuels,
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représentés par un secteur d’un exercice, peut étre décrit par une loi de puissance bien
que les exposants varient entre 2.0 ~ 3.8. Nous constatons €galement que les exposants
pour les secteurs du ACC sont normalement entre 2.0 et 3.0. En revanche, les exposants
pour les secteurs d'approche sont généralement plus grands que 3.0. Cependant, les
distributions de longueurs des écarts inter-communication dans les ensembles de données
sont plus hétérogenes. Bien que les intervalles montrent de longues queues, la plupart

des données ne peuvent pas étre décrites par une loi de puissance.

0.4 Les caractéristiques spatiales des activités de communication des
controleurs

En fait, le processus de gestion du trafic est un processus de diffusion d'informations
par le controleur. Afin de gérer le trafic, le controleur doit recueillir et diffuser les
informations relatives afin d’éviter les conflits de trafic et d’assurer que les avions
peuvent atteindre leurs destinations avec succes. Les types d'informations et les sources
pour accumuler les informations sont généralement bien connus. Cependant, on sait peu
de choses sur la fagon dont les contrdleurs diffusent les informations. Comme les avions
se déplacent a grande vitesse dans le secteur, les relations physiques entre les aéronefs
changent rapidement. Bon nombre des mesures de complexité sont basées sur les
mesures de ces relations de nature physique. Au contraire, nous pensons que la
distribution spatiale réelle des avions dans le secteur n’est pas exactement la méme que
celle présente dans les esprits des contrdleurs. Bien que certaines mesures de complexité
influent les activités cognitives des controleurs, ces mesures ne peuvent pas prédire
correctement la complexité. Ceci est en grande partie attribuable a des changements

dynamiques dans les processus cognitifs des contrdleurs.

Le comportement spatial que nous avons défini capture deux aspects des activités

cognitives des controleurs:

(1) La représentation du trafic dans l'esprit des contrdleurs, c'est a dire les relations
entre les vols reconnus par le contrdleur apres le traitement de la situation actuelle du

trafic.

(2) Le processus dynamique se produisant sur la forme de la propagation de

l'information.

0.4.1 Transformer les séries temporelles en réseau

Nous proposons une nouvelle méthode pour la transformation des données des activités

temporelles en un réseau non orienté pondéré. L'hypothése est que la communication de
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chaque controleur est liée a un vol, sans tenir compte des événements qui ne sont pas liés

a des vols (par exemple la communication avec le contréleur en second).

0.4.1.1 Définition des noeuds

Les nceuds du réseau sont les vols qui traversent le secteur. Chaque nceud aura une
période de temps de validité correspondant a son temps de vol dans le secteur, de sorte
que le contréleur ne peut pas traiter le vol avant que le vol entre ou apres qu’il sorte de ce
secteur. Dans 1'étude actuelle, les communications avec les autres contrdleurs ne sont pas

encore considérées.

0.4.1.2 Détermination des arétes

Pour déterminer si deux nceuds sont reliés ou déconnectés, nous devons d'abord
calculer les distances temporelles 5(i, j,7) =¢, —1, -/ entre vol iet jvol au temps (¢,) ou
le vol ia été appelé, 7, le temps lorsque le vol ja été appelé et /, est la durce de
communication de I’événement i. Comme il n'y aura pas de relations entre I'équipage i et
les vols entrants apres que i a été transférée au secteur aval, nous définissons le temps de
services;, comme la fenétre de temps ou le vol 7 reste au sein du secteur. Ci-dessous,

nous décrivons les méthodes pour construire un réseau agrége et un réseau temporel.
0.4.1.3 Réseau temporel agrégé

Une fenétre de temps prédéfinie 7. est utilisée pour déterminer la connectivité entre

n

les nceuds. Si O(i, j,t) est plus petit quez_. , alors nous disons que ces deux vols sont liés

et un lien sera ajouté entre les noeuds correspondants, faute de quoi les noeuds ne sont pas
connectés directement. La matrice d'adjacence A du réseau G peut étre obtenue que
I, Ifot(i,j,0)<r

0, otherwise.

min >

and s, Ns; #J

A(, j) ={

Surtout, nous définissons 4(i,i) = 0. Notez qu'il peut y avoir plus qu’un seul lien entre
un vol iet vol j, nous définissons deux autres matrices N et W en plus de la matrice
d’adjacence 4. Alors que N(i, j) est le nombre de A(i, j) ayant eu lieu durant toute la
période de temps considérée, W (i, j) indique la force de la relation entre les deux vols. 11
y a certaines circonstances ou le controleur doit relire les pilotes ou envoyer des accusés
de réception. Pour filtrer ce type de bruit, nous utilisons N, le seuil pour la
détermination de la stabilité. Basé sur o(i, j,¢) et N(i,j), la distance relationnelle,

W(i, j), est calculé comme
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1 1 .
WG, )= ——— ———————|exp" "
N(Za]) 5t(i,j,zt):<rmin f(é‘l(l, ]:t))

N(i,j)>N,

min

ou f(x) est la fonction qui calcule le poids donné au parametre x. Dans cette these,

nous utilisons simplement f'(x) = x .

A des fins d'illustration, dans la figure 0-7 et la figure 0-8, nous présentons un schéma

des séries temporelles de communication et son réseau associé.
0.4.1.4 Réseaux temporels

Le réseau G construit plus haut contient beaucoup d'informations sur les activités de
communication du controleur. Il est prévu que les propriétés du réseau peuvent décrire la
dynamique du comportement du controleur. Le comportement en fonction du temps, c'est
a dire la séquence des communications, est toutefois exclue. Afin de capturer cela, nous
nous référons a (Pan et Saramédki 2011) et nous définissons le réseau temporel G(¢) par
un ensemble de quadrupletse = (i, j,¢,0t) indiquant les vols i et j en correspondance au
temps t avec une fonction de colit 6. De méme, il y aura pas de relation entre les vols

ietj siles temps de service s, et s, ne se recoupent pas. Ainsi, nous avons :

L, IfotG,j,0) <t

0, otherwise.

min >

and s, Ns, #J

e(i, j,t,0t) :{

Pour analyser les dynamiques temporelles locales, nous introduisons la fenétre de

temps d’observationz,, .

Le réseau temporel sera ensuite divisé en n=(7,, 1T, . )/, réseaux instantanés.

ax
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Figure 0- 7 Exemple d'une série de données de communication. Historique des activités de
communication construit a partir des messages du contrdleur. La partie supérieure affiche les
¢vénements de communication de I'avion. Chaque ligne horizontale grise représente un autre avion,
chaque ligne verticale correspondant & un événement de communication. Le coté bas donne la
succession d'actions de communication du contréleur, chaque ligne verticale représente un événement
de communication au cours du temps.
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Figure 0- 8 Le réseau temporel associé¢ aux événements de communication de la figure 0-7. Chaque
nceud correspond a un vol, et la taille des nceuds correspond a la fréquence des communications avec
le contréleur. Les couleurs représentent les différentes communautés qui ont été identifiés a l'aide de
l'algorithme de (Lancichinetti, Radicchi et al. 2011).

0.4.2 Résultats

0.4.2.1 Distribution des degrés (Degree Distribution)

Nous nous concentrons d'abord sur l'analyse du réseau agrégé a différentes échelles
temporelles. Les changements de la topologie du réseau ont ét¢ mesurés avec des
caractéristiques qui mettent I'accent sur la distribution des degrés qui ont été utilisés dans
des recherches antérieures sur la dynamique du réseau. Le degré k, du vol i est le nombre
de ses voisins dans le réseau, ce qui indique combien de vols en relation avec le vol i. Par
conséquent, nous avons

k=Y al,))

Jn (57> Npin
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La distribution des degrés d'un graphe est définie comme une distribution de
probabilité discréte qui exprime que la probabilité de trouver un nceud avec un degré k.
Par construction, on peut dire qu'il y a une forte probabilité pour un vol iavec un grand
degré s'il y a plus de vols dans le secteur quand le vol i le traverse. Pour donner une

description générale, nous introduisons le degré normalisé, qui est défini comme

ok

N traffic

<\ i
ou N traffic

est le nombre de vols dans le secteur quand le vol i le traverse.

La Figure 0 - 9 montre la distribution des degrés normalisée pour le jeu de données ) .
A notre grande surprise, les distributions ont des formes assez degré similaires dans tous
les secteurs. Avec 7, fixe et N . <3, au lieu de répartitions aléatoires, la plupart des
données peuvent étre décrites par une distribution de Poisson ou une distribution normale.
Ces tendances apparaissent fréquemment dans le réseau aléatoire étudiée par (Erdos et
Rényi 1959) ou chaque arc est présent ou absent, avec une probabilité¢ égale. Ceci
suggere que les paires de vols sont uniformément sélectionnées. Avec 'augmentation

de N

min >

la distribution se déplace vers la gauche ce qui signifie qu'il y a moins de vols
avec des degrés élevés tandis que la plupart des vols ont peu de vols voisins, et la
moyenne de degré pour tous les vols diminue. Un autre type de distribution se dégage
peut-étre lorsque N, . dépasse 3. La plupart des vols ont un faible degré, tandis que trés

peu de vols ont encore des voisins.

Pour examiner les effets de la distance temporelle minimum«z_. sur la structure du
réseau, nous avons regroupé les degrés dans chaque ensemble de données. Dans la Figure
0-10, nous pouvons voir qu'il y a une tendance claire qu’a la fois le degré et le degré

normalisé¢ augmentent lorsque 7, s’accroit. Ceci n'est pas étonnant car la probabilité de

lier plus de vols sera plus élevée quand 7, augmente. Il convient de noter que 1'écart
entre les degrés avec la méme distance temporelle, mais avec des valeurs minimums de
poids N_. =1 et N_ =2 sont beaucoup plus grande que d'autres différences. Nous
voyons que la plupart des vols vont probablement voler sans intervention supplémentaire
du contrdleur, c'est-a-dire qu’ils ne sont pas impliqués dans un conflit. Par exemple, la
plupart des vols dans le secteur en route regoivent seulement un message d’arrivée et un
message de sortie si le vol n'a pas besoin de changer de vitesse ou d'altitude. Quand on

augmente le seuil du nombre minimal de liens, ce bruit est éliminé par filtrage.

Bien que l'analyse des réseaux de temps agrégé montre une image générale de la fagon

dont se déroulent les communications du contréleur avec les vols, les schémas
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dynamiques, tels que la maniere dont l'attention du controleur est attirée, ne peuvent pas

étre identifiés. Par conséquent, nous aurons besoin des réseaux de temps ordonnés pour

¢tudier I’évolution du comportement dans le temps.
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Figure 0- 10 Effets de la distance temporelle minimum 7,

Les marqueurs bleus sont les degrés moyens k,des nceuds, tandis que les marqueurs noirs sont le

A

degré normalisé &,

n

sur la distribution des degrés d'agrégation.

0.4.2.2 Les corrélations entre les réseaux communautaires et le trafic aérien

Récupérer I'image détaillée du trafic a partir des communications du controleur est d'un
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grand intérét et d’une difficulté certaine. Les relations physiques réelles entre les
appareils dans le secteur ne sont pas exactement la méme que celle dans l'esprit du
controleur. Pouvoir découvrir l'anormal dans les communications du contrdleur qui
correspondent a une situation de circulation dangereuse et conflictuelle aidera a prévenir
que de tels événements se produisent. Voici notre offre premiere tentative de lier les
activités de communication du contréleur avec les activités de trafic. Une fagon de se
reproduire le trafic du réseau qui a généré les communications du contréleur est
l'utilisation de la technique de détection de communauté. Nous avons choisi l'algorithme
qui a été développé dans (Lancichinetti, Radicchi et al. 2011) pour la détection de

communauté. Les analyses ont été effectuces sur la matrice .

Nous avons trouvé que les corrélations entre la taille de la collectivité en moyenne et la
valeur du trafic dans le secteur dépend du type de secteur (voir le tableau 0-5). La plupart
des secteurs en route se trouvent étre mieux corrélées que les secteurs d'approche. Les p-
valeurs des secteurs d'approche, par exemple ITBPG, ITMPO ITNPG, sont proches de
zéro. Il se peut que les communications dans ces secteurs sont différentes des autres et

que le réseau des temps agrégés est incapable de démasquer le comportement.

Table 0- 5 Les coefficients de corrélation de la taille moyenne de la collectivité et du nombre de vols
dans le secteur

Sectors Corr. Coef. P Sectors Corr. Coef. P
AOUS 0.1063 0.7175 ITMPO 0.9451 0

AP 0.9653 0 ITNPG 0.9924 0

AR 0.4314 0.1235 ITSPG 0.9871 0
CREIL 0.9272 0 OGRT 0.5729 0.0323
DENPG 0.7971 0.0006 OYOT 0.5769 0.0308
DEPPO 0.7443 0.0023 TE 0.4568 0.1006
DESPG 0.424 0.1308 THLN 0.7919 0.0007
INIPO 0.667 0.0092 TML 0.8194 0.0003
INNPG 0.5954 0.0247 TP 0.6681 0.009
INSPG 0.4672 0.0921 ulJ 0.8643 0.0001
ITBPG 0.9811 0 VILLA 0.7268 0.0032

0.4.3 Réseaux temporels

0.4.3.1 Distribution des degrés dépendant du temps

Nous pensions que la structure l'espace aérien peut avoir un effet sur la dynamique des
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communications qui n'a pas €té découvert par le réseau des temps agrégés. Les études sur
les activités cognitives du contréleur ont constaté que la structure de I'espace aérien joue
un role important lorsque le controleur gere le trafic (Histon et Hansman Jr, 2008). Pour
tester cette hypothese, nous calculons la distribution empirique du degré en fonction du
temps de chaque secteur dans chaque ensemble de données. A notre grande surprise, les
distributions de probabilité¢ du degré ont des formes assez similaires, ce qui suggere que
la structure l'espace aérien a peu d'effet sur la communication. Pendant ce temps, nous
n'avons pas vu beaucoup de différence dans les distributions par rapport a la fenétre de
temps 7, . La Figure 0 — 11 montre la répartition empirique du degré sur les données de
D, avec 7,, variant de 60 secondes a 110 secondes. Fait intéressant, les résultats
statistiques révelent que la plupart des vols ont deux voisins. La raison pourrait en étre le
bon ordonnancement des communications avec les vols. Pour vérifier cette hypothese,

dans ce qui suit, nous étudions les motifs du réseau.
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Figure 0- 11 Fréquence du degré dans chaque secteur de ), Dataset.
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0.4.3.2 Motifs du réseau

Contrairement a la détection de motifs de réseau couramment utilisée, ce que nous
essayons d'analyser sont les modeles les plus souvent apparus dans les communications
des controleurs. Nous allons calculer les motifs du réseau temporel avec une fenétre

d’observation 7, .

La Figure 0-12 montre la fréquence des trois types de motifs en fonction de la fenétre
de temps 7, . Clairement, les topologies en chaines sont les modeles les plus produits.
Avec l'augmentation de z,,, a la fois les motifs boucles et étoiles se développent
rapidement. Nous savons que si nous augmentons la durée de r,, la probabilité
d’accroissement du nombre de vols augmente. Par conséquent, il pourrait y avoir une
forte probabilité pour que les boucles et les étoiles se produisent. Nous pouvons voir qu'il
y a un point de changement a 7, ~150 secondes dans les trois ensembles de données, 1a
ou la possibilité¢ d'avoir des chaines et des boucles sont presque les mémes. Par rapport
aux motifs en boucle, les motifs étoilés croissent beaucoup plus lentement. Méme quand
la fenétre de temps d'observation atteint cinq minutes, le pourcentage de motifs étoilés est
inférieur a 20%. Pendant ce temps, nous notons que le pourcentage de motifs en boucle

semble atteindre son point culminant a 60%.

On s'attendrait a ce que le contréleur retourne vers un vol avec lequel il a déja
communiqué. Cependant, les résultats obtenus ici suggerent qu'il n'est pas le cas. Les
chaines et les boucles sont les motifs apparaissant le plus souvent dans les
communications du contrdleur, ces caractéristiques topologiques ont été signalées dans la
propagation de l'information dans d'autres types de communication sociales humaines
(Zhao, Tian et al.2010).

Dans I'analyse du réseau en temps cumulé, nous avons présenté notre hypothese que la
probabilité de choisir un avion pour communiquer est uniformément répartie dans le
temps. Le réseau temporel révele plutdt que la chaine et les modeles de boucles sont les

modeles les plus courants pour les dynamiques temporelles locales.
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Figure 0- 12 Pourcentage de trois types de motifs détectés dans les trois ensembles de données. Les
cercles indiquent le pourcentage de chaines; les carrés représentent les boucles et les étoiles
représentent les motifs étoilés. Les secteurs ont €té tracées avec des couleurs différentes dans (b) et (c).

0.5 Fluctuation d’échelle des activités de communication des
controleurs

Pour caractériser la relation entre la fluctuation de l'activité d'un élément et l'activité

utilisée dans de nombreuses disciplines, par exemple I'écologie (Taylor, 1961
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moyenne dans un systéme complexe, la loi de puissance de Taylor a été largement

; Taylor et

Taylor, 1977 ; Taylor, Taylor et al, 1983 ; Grenfell, Wilson et al 1998 ; Sether, Tufto et al
2000 ; Bjernstad et Grenfell 2001), le débit des rivieres (Sadegh Movahed et Hermanis
2008), les comportements humains (Hausdorft, Purdon et al 1996 ; Cai, Zhou et al 2007),
les marchés financiers (Gopikrishnan, Plerou et al 2000 ; Sato, Nishimura et al, 2010 ;
Bolgorian et Raei, 2011), et les activités sociales (Onnela et Reed-Tsochas 2010). La loi

de puissance de Taylor, qui a ét¢é nommé d'aprés L.R. Taylor, en reconnaissance de son



article (Taylor, 1961), est généralement sous la forme suivante:

Sfluctuation =~ const.x average”, where a €[1/2, 1].

Notre intérét est de capter les phénomenes d'adaptation des activités de contrdleur de la
circulation aérienne en utilisant les activités de communication vocale du controleur

comme un proxy.

0.5.1 Résultats empiriques

Pour minimiser les effets des facteurs énoncés ci-dessus sur les activités de
communication du contrdleur, nous effectuons 1'analyse des fluctuations d’ensemble. De
méme que pour les travaux de Taylor, nous calculons la moyenne des activités de
communication du contrdleur Zet |'écart-type o en fonction des différents volumes des
vols entrant dans le secteur. Quand un vol est dans le secteur, le controleur donne des
instructions de controle et des autorisations pour éviter les conflits et amener le vol dans

le prochain secteur. Ainsi, les activités de communication peuvent étre obtenue par

i

N
=2V

n=1

ou N, est le nombre de vols entrés dans le secteuri, et V,, est le nombre d'activités de
communication avec le vol »n. Le calcul peut étre fait a travers tous les secteurs avec des

quantités différentes de vols entrants.

Il a été constaté¢ que la moyenne et I'écart-type des activités de communication se
développent rapidement avec I'augmentation du nombre de vols. Puis nous avons tracé
I'écart-type en fonction de la moyenne des activités de communication dans la Figure 0-
13. En dépit de I’hétérogénéité des modeles de trafic et des configurations de I'espace
aérien, nous pouvons clairement observer un ajustement linéaire des données empiriques
dans le tracé log-log (ligne rouge), ce qui indique que I'écart type des activités et les
activités moyennes présentent clairement une loi de puissance de Taylor avec o = 0.58.
En raison de I'initialisation du trafic pour les premiers vols, il y a de fortes fluctuations au
début de points de données. Lorsque nous ajoutons un autre ensemble de données, les
données ATCOSIM, dans la figure, la pente de la ligne est légeérement modifiée.
L'ensemble des données peut encore étre décrite par deso =(f)” avecar = 0.60 . Nous
soulignons que 1’ensemble de données ATCOSIM et les données TAM Paris ont été
enregistrées en 1997 et 2010 respectivement. Au total, les données de communication de

cinquante-cinq controleurs ont été incluses. Ici, nous avons montré que leurs
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comportements peuvent étre caractérisés par des tendances similaires de fluctuations
d’échelle.

Il est possible que la structure des routes adriennes et les types de secteurs (en-route,
approche, tour et sol) puissent avoir une influence particuliere sur les communications du
controleur. Pour examiner cette question, nous répétons le tracage d'échelle pour tous les
secteurs (voir Figure 0- 14). Nous pouvons voir que o differe d'un secteur a I’autre, et la
plupart varient entre 0.50 et 0.64. Quelques secteurs, AP, CREIL, INSPG, et VILLA
présentent des anomalies, ce qui pourrait étre les résultats de faibles volumes de trafic et
de temps de service de courte durée. Interpréter ces derniers « est difficile en raison du
fait qu'il n'y a que quatorze ensemble de données des exercices de communication pour

un secteur (quelques rares secteurs ayant moins).
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Figure 0- 13 Fluctuation d’échelle pour les activités de communication. (a) les résultats a partir de
données TMA Paris, et en (b) on ajoute les données ATCOSIM (les points rouges dans la figure en
médaillon). Les exposants sont montrés avec l'erreur = 0.04 en raison de données logarithmiques
classées. Des points ont été classés logarithmiquement et les log sigma ont été moyennés pour une
meilleure visibilité, les barres d'erreur représentent les écarts-types a l'intérieur des bacs. L'encart
montre la méme chose, mais sans classement.
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Figure 0- 14 Mise a 1'échelle de fluctuation dans tous les secteurs. L'axe x est la moyenne des activités
de communication, tandis que 1'axe y est les écarts logarithmiques normalisés.

0.5.2 Modeéle

Pour expliquer le comportement observé, on pourrait suggérer I'hypothese du processus
de jet de pieces de monnaie (Eisler, Bartos et al. 2008 ; Onnela et Reed-Tsochas, 2010).
Considérons les deux systemes suivants S, et S, les deux avec n éléments. Le i-iéme
¢lément de S, en 1 pieces de monnaie. Un coté de la piece de monnaie est marqué zéro,
tandis que l'autre coté est marqué un. L'activité du i-ieme élément f; est définie comme

la somme de la valeur des picces des lorsqu’on les jette de facon indépendante. De toute
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évidence, < fl> i et la variance o, oc Vi, cela donnea =1/2. Pour S, , le i-iéme élément
es une seule piece de monnaie qui d'un coté est égal a zéro tandis que l'autre est i. Cela
équivaut a jeter les i pieces entierement couplées. Ensuite, nous avons < ﬁ) ieto, i,
par conséquent ¢ =1 . Un exemple d'utilisation de ce procédé est de modéliser le
comportement de décision des utilisateurs de Facebook sur 1'adoption d'application, dans
lequel les pieces sont biaisées et les lancers sont couplés via des signaux locaux et
mondiaux (Onnela et Reed-Tsochas, 2010).

Du point de vue contrdle du trafic aérien, nous allons prendre les deux facteurs

suivants en compte.

(1) La capacité du secteur (C,). La capacité du secteur est le nombre maximum
nominal de vols qui peuvent étre dans le secteur. Le contrdleur de la circulation
aérienne n'acceptera pas de vol en entrée en son secteur lorsque la capacité du

secteur est atteinte.

(11) Le regroupement (G, ). (Histon et Hansman Jr, 2008) ont identifié quatre types
de stratégies que le contrdleur utilise pour atténuer la complexité cognitive,
parmi lesquels le regroupement est la plus commune. Selon les caractéristiques
des vols, le controleur de la circulation aérienne considére plusieurs vols (G, )
comme un groupe a contrdler. Dans un tel cas, les communications avec ces
m vols sont couplées. Par exemple, si il y a m vols (m = 2) qui sont prévus pour
étre impliqués dans un conflit, le contréleur va communiquer avec ces m vols

en alternance pour résoudre le conflit potentiel.

Tout en prenant la capacité du secteur et le comportement de regroupement en compte,
nous développons le modele ci-dessous pour reproduire le phénoméne observé.
Premicrement, nous définissons un facteur de regroupement g, par g, =G, /C,, qui
décrit le pourcentage de vols qui seront regroupés. Puis nous changeons les régles de
lancer dans le « systeme de picces de monnaie » décrit plus haut : il y aura g, xs piéces
enticrement couplées lorsque la taille du systeme est s . Nous effectuons 1000
simulations Monte Carlo avec g, variant de 0.01 a 1.0. Les résultats des tests sont
présentés dans la Figure 0- 15. On peut voir sur la figure que l'exposant se situe entre
0.58 et 0.65 quand g, €[0.08,0.15] . « atteint prés de 1 lorsque le facteur de
regroupement est supérieur a 0,8. En raison de la non linéarité, il y a quelques points avec
o un peu fluctuant autour de 1. Par conséquent, une conclusion peut étre tirée qu'il y a

environ 10% des vols regroupés lorsque le controleur du trafic aérien gere le trafic. Notre
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modele permet de capturer le comportement global du regroupement par le contréleur de

la circulation aérienne.
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Figure 0- 15 Des résultats de simulation de & en fonction de g,

0.6 Conclusions

Dans cette these, nous avons présenté les études sur les comportements des
communications des controleurs du point de vue systeme complexe et dynamique des
activités humaines. Plus précisément, nous avons vu le controleur de la circulation
aérienne comme un systéme complexe, et avons examiné ses comportements temporels

et spatiaux, et leurs fluctuations.

Cette these est une contribution a la fois dans le domaine de la gestion du trafic aérien
et celui de la dynamique des activités humaines. Nos travaux ont été présentés lors de
conférences internationales dans les domaines de la gestion du trafic aérien et dans des

publications dans les revues.
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CHAPTER 1 INTRODUCTION

Air transport industry offers transport service to the general public for the purpose of
enabling commence and leisure travel. To provide a safe and accurate air transport, Air
Traffic Management (ATM) aims at dynamically and integrated managing air traffic and
airspace safely, economically and efficiently through the provision of facilities and
seamless services in collaboration with all parties (ICAO 2005). As the core part of ATM
system, air traffic controller is closely related to the system’s safety and efficiency. Ever
since 1960s(Davis, Danaher et al. 1963), there have been ongoing efforts to study human
factors in the ATM system, contributing to our understanding of air traffic controllers’
activities. This thesis will focus on the empirical analysis of air traffic controllers’
dynamics from a complex system perspective, exploring the temporal, spatial, and
fluctuation characteristics of their communication activities.

1.1 Background

Air traffic controllers (ATCO), or controllers, are the people who are responsible for
expediting and maintenance a safe and orderly flow of air traffic. Being supported with
Communication, Navigation, and Surveillance (CNS) systems, controllers direct aircraft
moving on the ground and in the air. Voice communication was the primary means used
by controllers to control air traffic before the emerging of digital data communication
between controller and aircraft. However, it is still the only channel for information flow
between pilots and controllers in the most Air Traffic Control (ATC) centers. By
delivering the instructions and clearances to the pilots through communication systems,
controllers direct air traffic with several goals. The primary goal is to ensure each aircraft
reach its destination without collision with other aircraft, severe weather, and dangerous
area/obstacle. In other words, all the aircraft under jurisdiction must adhere to separation
standards issued by the International Civil Aviation Organization (ICAO) or local
authority. Other goals such as organizing an orderly and efficiency traffic flow will then
be achieved.

There are typically three types of ATC centers where air traffic controllers work. These
centers provide service to aircraft that are in different flights phases. The Tower Control,
or aerodrome control, is responsible for the aircraft moving on airport ground, taking off,
and landing. The Approach and Terminal Control, handles departures, arrivals, and over-
flights. The En Route Control, or Area Control, provides air traffic control service to air
craft operating en route between approach/tower control.
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In order to keep the traffic manageable, the controlled airspace/airport will be
subdivided into sectors. Each sector is typically positioned with one or two controller,
with unique frequency for the communication between controller and pilots. There is an
executive controller, (under radar control environments, is usually referred as a radar
controller, i.e. “R-side” controller, or lead controller), who is responsible for radio
communications with aircraft, monitoring the radar screen to maintain safe separation,
and communicating with other controllers. A second controller, known as assistant
controller or D-side controller, may be assign to the position assisting the lead controller
with processing flight plan information and coordination with other units. In this thesis,
we refer to air traffic controllers as executive controllers.

Air traffic controllers are required to make quick decision in response to the rapidly
changed traffic. They maintain a valid mental representation of the current traffic
situation, which is commonly referred to as situational awareness and is related to
workload. Controller workload is a critical capacity constraint when sector is getting
congested. To avoid high workload situations, controllers often enforce extra separations
between consecutive aircraft entering sector from same transfer point, or deny any
aircraft access into their sectors. To enhance controller’s capability in handing traffic,
various decision support tools have been developing and deploying. Despite the wider
and wider range of automation that has been introduced into ATM systems, scenarios in
both Single European Sky ATM Research (SESAR) and Next Generation Air
Transportation System (NextGen) concepts still reckon that air traffic controllers
continue to constitute the core function of the future system. The complexities of
understanding of operator’s and manager’s behavior pose a challenge to the research
community.

1.2 Problem Statement and Scope of Research

To fully understand air traffic controller’s behaviors is of quantifiable importance to
the system operating safety and efficiency. Duo to the nonlinear interactions between air
traffic, airspace and air traffic controller, it is very difficult to capture the instinct nature
of controller’s activities. Research based on psychology and cognitive science has
achieved important findings on how controller behaves when controlling traffic, such as
the mental workload, cognitive complexity etc. However, how to quantitative describe
controller’s behaviors under different traffic distribution and airspace configuration, is
still poorly understood.

This thesis examines the air traffic controller dynamics with controllers’ voice
communication as a proxy. The empirical data investigated in this thesis was the voice
communication data between controllers and pilots. Both operational and simulation data
were recorded in the radar surveillance approach or en route sectors without data
communication activities, where voice communication is the only way that controllers
and pilots communicate. Thus, controllers' voice communication activity encapsulates
both cognitive efforts and physical efforts to accomplish the mission of ensuring traffic
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safety and efficiency.

Controller communication activity is defined as the event that controller press the
push-to-talk button and hold in order to send the transmissions to aircraft, disregarding
the contents of the transmissions. Particularly, empty transmission is also seen as a
complete communication activity. Figure 1- 1 gives an example of the communication
activities between controllers and pilots.
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Figure 1- 1 Visualized communication trunks between controllers and pilots.

1.3 Motivation

Science and engineering have long sought the principles for understanding of complex
systems(Guckenheimer and Ottino 2009). The impetus to this study is driven by the need
to fundamentally model and understand the ATM system. Stronger foundations for the
knowledge of human activities are needed to mitigate unsafe events of the system. In this
complex system, controller as a core part has direct influence on the system evolving.
Great efforts have been made into measuring and predicting of the workload and taskload
of the controllers. These work are still inadequate to predict controller’s behavior and
performance due to the unknown dynamic property of the workload (Loft, Sanderson et
al. 2007).

Since 2005, investigations on various kinds of human activities data show that there
are similar activities patterns among human beings which are irrelevant to the context of
activities. These activities are ranging from human correspondence(Barabasi 2005),
email communication(Malmgren, Hofman et al. 2009), short message
communication(Wu, Zhou et al. 2010), through printing(Harder and Paczuski 2006), on-
line film rating(Zhou, Kiet et al. 2008), to human mobility(Gonzalez, Hidalgo et al.
2008). Empirical results indicate that there may be universal laws that govern human
activities.
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From a complex system point of view, human, evolves in response to contextual
environment changing requirements through adaptation, to avoid failure and for useful
and reliable performance at minimum cost. Activities which have been analyzed in
human dynamics research are typically with low pressure. Up until now, there is no
activity with high pressure such as air traffic control has been well investigated. A deeper
understanding of human activities under high pressure will facilitate to avoid human
errors that may result in system catastrophe.

1.4 Objective of Research

Given the motivation presented above, the objective of this research was to explore
human dynamics in air traffic controller communication activities, to provide an initial
demonstration of the physical understanding of the rules by which air traffic controller
control the traffic. Specifically, the objective was to

(1) investigate temporal behaviors of controllers’ communication activities;
(i1) demonstrate the use of network dynamics to study spatial behaviors;

(ii1) explore the fluctuation scaling of communication activities while taking controller
as a component of ATM complex system;

and (iv) model and simulate the underlying mechanisms that controllers employ which
could also extend to explain and predict other similar human activities.

1.5 Contributions

The main proposal of this thesis is to provide a physical understanding of air traffic
controllers’ activities. Based on the analyses of the air traffic controllers’ voice
communication activities, we provide a systematic study of the statistical properties of
their communications.

We have found that controllers’ communications appear to be long-memory processes
by the use of Detrended Fluctuation Analysis;

We have shown that controllers’ communications exhibit heavy tailed feature. The
collective behaviors of controllers are characterized by the power law form, while the
individual patterns show much more heterogeneous.

A temporal network approach has been proposed to trace the controllers’ activities,
contributing to the quantifying of human activities.

We have captured the fluctuation scaling phenomena of controllers’ communication
activities. Such phenomena were well explained by the model that mimics controllers’
grouping behavior. The fluctuation scaling may lead us to evaluate the capacity of the
sector.

Note that although this dissertation is focusing on the air traffic controllers’ activities, it
rather offers the approaches and results beyond the ATM domain.

_40 -



1.6 Organization of the Thesis
Following this first introductory chapter, the thesis is structured as follows:

Chapter 2 describes the background of air traffic control and air traffic controllers’
activities. The air traffic control system was decomposed into three distinct parts, i.e. the
physical part (static part), the dynamical part, and the human part. Related work on the
study of air traffic controllers are reviewed and discussed.

Our main contributions are presented in chapters 3, 4, and 5.

Chapter 3 presents the analysis of the temporal characteristics of controllers’
communication activities. The correlations between air traffic complexity and
communications is fist examined. Then a Detrended Fluctuation Analysis was performed
to investigate the long range correlations of controllers’ communications. The inter-
communication times are analyzed in the last part of this chapter.

Chapter 4 proposes a temporal network approach to study the spatial behavior of air
traffic controllers’ communications. A novel method is proposed to transfer controllers’
communication time series into a network. By leveraging the network science, we
analyze the degree distributions, the community structure, and the network motifs, to
quantify controllers’ communication trajectories.

Chapter 5 induces the fluctuation scaling methods to uncover the grouping behavior
from the observed phenomena. Both temporal fluctuation scaling and ensemble
fluctuation scaling are analyzed. Based on the empirical results, we develop a model to
explain the underlying mechanism, capturing the grouping behavior of controllers’
communications.

Chapter 6 discusses the implications of our study on the air traffic controllers’
dynamics in the ATM field and other human-driven systems.

Finally, Chapter 7 concludes this thesis and gives a discussion of the achieved work
and highlights the future research directions.
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CHAPTER 2 AIR TRAFFIC CONTROL AND AIR TRAFFIC
CONTROLLERS' ACTIVITIES

As a human-driven system, Air Traffic Management (ATM) system has been
progressed with the introduction of new technologies together with the enhancements
from the methods employed by the operators. The system has been significantly
improved its capability, safety and efficiency. But how to meet the continuous growth of
traffic demand is still an urgent and practical task being faced by the researchers and the
engineers of the field. The technologies and the methodologies not only improve the
system capability but also increase the system complexity. Large number of parts of the
system being interconnected keeps the structure of the whole system unportrayable.
Prediction and control of the system is quite difficult due to the linear and non-linear
interactions between the elements. For instance, although the local sectors' behavior may
be clear, the global picture of the system could be still unknown.

Modeling the ATM system from a complex system approach may be an effective way
to analyze the whole system and the subsystems. Although there is a rich literature in
modeling and analysis of sector-based system, little has been done toward understanding
of the mechanism by which ATM system evolves. The difficulty roots in the inadequate
knowledge of the underlying system dynamics. In particularly, air traffic controllers'
dynamics has less been quantitatively analyzed. As the decision-maker and executor of
the system, the performance of the controller is closely interconnected with the system
safety and efficiency. Although the automation systems have been progressively
deployed in the system, scenarios in both SESAR and NextGen concepts still reckon that
air traffic controllers continue to constitute the core function of the future system. The
prediction of controller's performance with respect to traffic activities is therefore of
quantifiable importance.

In order to investigate air traffic controllers' activities, it is very important to
understand their tasks and operational context within which they operate. This chapter
first presents a short overview of the air traffic control and air traffic control system
based on the book by Nolan (Nolan 2010) in Section 2.1, then followed with the detail
description of the role of air traffic controller in Section 2.2. Related work on air traffic
controllers' activities are reviewed in Section 2.3. This chapter ends with summary in
Section 2.4.
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2.1 Air Traffic Control (ATC) and ATC System

Air traffic control (ATC) is the service provided by the air traffic controllers or
controllers, who are responsible for expediting and maintenance a safe and orderly flow
of aircraft traffic. The history of air traffic control can be traced back to 1920s shortly
after Wright brother's experiment in flight. In the early period, air traffic controllers used
colored flags standing in a prominent location on the airfield to communicate with pilots.
There are several drawbacks of this form of air traffic control. The first one and the most
important one is that the flags were difficult to be seen by the pilots, which will result in
the misunderstanding between controllers and pilots. The second one is that controllers
had to stand near the approach end of the runway, which is subjective to the weather
conditions. Flags were soon replaced by light guns due to these limitations. Controller
manipulated a light gun that can direct a narrow beam of high-intensity colored light to a
specific flight. Meanings of the messages sent to pilots are indicated by the color of the
light.

With the development of radio communication technologies, voice communication
between air traffic controllers and pilots emerges, and it soon becomes the prevalent way
for air traffic control. Apart from the advancement of the communication technology, the
developments of navigation systems and surveillance systems have also improved the
way of air traffic control. In the early days, pilots had to use landmarks for navigation,
thus controllers had to calculate aircraft's position through the aircraft speed and the
position reported by the pilot, which is known as procedure control. Currently, most of
the air traffic control centers have been equipped with radar surveillance systems. Radar
surveillance control is predominant in the ATC control centers around the world.

To ensure that aircraft in the airspace are manageable, the airspace is divided into
different classes then into small units that are referred as sectors. Facilities that provide
air traffic control service are known as control centers. There are typically three types of
control centers where air traffic controllers work. These centers provide service to
aircraft that are in different flights phases. The Tower Control, or Aerodrome Control, is
responsible for the aircraft moving on airport ground, taking off, and landing. The
Approach or Terminal Control, handles departures, arrivals, and over-flights. The En
Route Control, or Area Control, provides air traffic control service to air craft operating
en route between approach/tower control. The service provided by the control center may
be combined or subdivided mainly according to historical traffic volume.

The organization of the current ATM system is very complicated and differs from
nation to nation. However, from a system point of view and based on the characteristics
of its elements, the current ATC system can be roughly divided into three parts, namely
the static part, the dynamical part, and human part (see Figure 2-1).

2.1.1 The Static (Physical) Part of ATC System

The static part, or physical part, of the ATC system is the resource of the system,
including airspace, airports, and other facilities such as communication, navigation, and
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surveillance systems. To enhance the capability of this part will always need huge
financial support and long time to implement. For example, it typically takes more the
one year to build another runway in an existing airport in order to meet the growing
traffic demands. Compared to the CNS and decision support tools, the airspace and

airports are the two major resources of the ATC system.
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Figure 2-1 Three parts of the ATC system

_44 -

Traffic predict

Aircraft flow
Helicopters
Hot air balloons

< Thunderstorm
ATC SySte m Weather Turbulence
Dynamical Part Fog

Military activities
Space activities

Executive controller
Data controller

Caption
First officer

ATFM manager
Technicians



2.1.1.1 Airspace

The airspace above a notion or union will be categorized by the authority with the
intension of providing pilots maximum flexibility with acceptable levels of risk. It also
facilitates the national agencies to provide different levels of security and control. ICAO
has adopted the classification scheme based on the flight rules and interaction between
aircraft and air traffic controller. The airspace are recommended to be classified into
seven categories, known as Class A, B, C, D, E, F and G. Classes A to E are referred to as
controlled airspace, while Classes F and G are uncontrolled airspace. The classification
scheme will differ from nation to nation according to the nation's needs.

In order to keep the traffic manageable, the controlled airspace will be subdivided into
sectors. The three dimensional boundaries of a sector adapt to the air route structure and
other local operation needs. In general, sector boundaries are static. Sector may be
combined or split depending on the traffic situation or operational constraints. Figure 2-2
shows the non-uniformed sector boundaries in the MUAC (Maastricht Upper Area
Control Centre), which is operated by EUROCONTROL providing air traffic control for
the upper airspace above 24,500 feet of Belgium, the Netherlands, Luxemburg and north-
west Germany, covering 55% of European air traffic. The three dimensional volume, the
route structure, and the availability of flight levels will determine the sector's instinct
capability in serving air traffic.

B
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-

Figure 2-2 Sectors' boundaries in the MUAC. Sectors are separated by the pink dot lines.
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2.1.1.2 Airport

Airport is the place where aircraft take off and land. In the civil aviation, passengers
and cargo are loaded into an aircraft in an airport. Major physical resources of an airport
include the runways, taxiways, and apron/gates. Usually, the runway system is the most
critical resource. Most of flight delays are due to the limited capacity of the runway
system. For the controllers, the operating of aircraft on the airport's ground is different
from that operating in the air.

2.1.1.3 Regulations

Out of the safety, security, and efficiency concern, Separation standards, procedures,
and other rules regarding on air traffic control are detailed in the regulations by the ATC
authorities.

2.1.1.4 Software

There is a lot of computer-aided software being used in the ATC system, improving the
performance of data-processing and providing advices for the controllers. Such tools
include flight plan pre-processing tool, conflict detection tool, departure/arrival managers,
etc.

2.1.2 The Dynamical Part of ATC System

Two major elements in the dynamical process in the sector are the aircraft and the
weather.

2.1.2.1 Aircraft

Air traffic controller provides service to the aircraft in the sector while keeping all the
aircraft operate safely. Aircraft in the sector operate under a variety of rules depending on
the sector category and air traffic control requirements. These rules refer to flight rules,
including:

e [FR (Instrument Flight Rules). Aircraft flying under IFR rules are obliged to fly by

reference to instruments in the flight deck and electronic signals.

* VFR (Visual Flight Rules). Pilot flying under VFR rules is responsible for
separation from other aircraft and dangerous obstacles. Generally, the weather
condition is clear that allows pilot to see where the aircraft is going.

* SVFR: i.e. Special visual flight rules.

Aircraft flying in the sector may follow the route formed by the navigation aids or
follow the instruction issued by the controller. The temporal-spatial distribution of
aircraft in the sector forms air traffic situation that will impact on air traffic controllers'
activities.

Aircraft moving in the sector is the process of consuming the resource of the system.
Once there is not enough available capacity for the incoming air traffic flow, airspace
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congestion will appear. In Figure 2-3, the trajectories of flights in the Paris terminal areas
show the aggregated results of the consuming process.
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Figure 2-3 Trajectories of Aircraft Flying in the Paris TMA

2.1.2.2 Weather

Weather is the second dynamical element that consumes the resource in the airspace
system. Severe weather such as thunderstorms and turbulence will result in the
dramatically reduction of sector capacity. For example, airport will have to close due to
the unexpected snowstorm. Weather's activities also influence the behavior of aircraft, as
pilots will not fly the predefined route to avoid the weather. Unlike aircraft, the
movement of weather cannot be controlled, and it is difficult to be predicted.

2.1.3 Human Part of ATC System

The staffs involved in the ATC system are two kinds, air traffic controllers and pilots.
For the system point of view, pilots can be represented by the aircraft. Although pilots in
certain circumstance retain the responsibility for the separation, e.g. under VFR rules or
in the free flight context, the only manager in the system is the controller.

Each sector is typically positioned with one or two controller, with unique frequency
for the communication between controller and pilots. There is an executive controller,
(under radar control environments, is usually referred as a radar controller, or "R-side"
controller), who is responsible for radio communications with aircraft, monitoring the
radar screen to maintain safe separation, and communicating with other controllers. A
second controller, known as assistance controller or D-side controller, may be assign to
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the position assisting the executive controller with processing flight plan information and
coordination with other units(see (Academies 2010)[p.14 - 17]). Note that executive
controller is the one who gives instructions and clearances to the pilots (Figure 2-4).

Miid

Figure 2-4 Air traffic controllers are in the continuous environment: executive controller
and the assistance controller. Picture was exactly copy from (Academies 2010)

2.1.4 Characteristics of ATC System

In the above described the air traffic control system is mainly from a sector's
perspective. The air traffic control system is a typical complex system. It exhibits all the
characteristics that a complex system has (Duong 2009):

1. Structural Complexity (Combinatorial or detail complexity). The whole ATC system
is composed of a large number of interconnected parts. The interactions among the
elements are non-linear, and cannot be described.

2. Behavioral Complexity (Dynamic complexity). When a small part of the system
changes its behavior, the impacts of the change are not predictable.

3. Nested Complexity (Multi-levels organizational complexity). The complex
physical/technical systems are embedded in a larger system. The two-way interactions
between adjacent levels create nested complexity.

4. Evaluative Complexity. In the system, it is difficult to evaluate the stakeholders'
performance, because the good performance to one may not be good to anther. That will
result in the difficulty in decision making.
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2.2 The Role of Air Traffic Controller

Being supported with communication, navigation, and surveillance systems and other
automation systems, controllers direct aircraft moving on the ground and in the air
through  delivering the instructions and clearances to the pilots (see

Figure 2-5). Air traffic controllers are required to make quick decision in response to
the rapidly changed traffic. Under high pressure, controllers have to achieve several goals.
The primary goal is to ensure each aircraft under jurisdiction must adhere to separation
standards issued by the ICAO or local authority. Other goals such as organizing an
orderly and efficiency traffic flow will then be achieved.

Sector CNS and Traffic situation
automation systemsy

__ __ || Decision support
- tools

Voice communication Wpice / r
Communi cation .
Controller }« »( Pilots
systems

Navigation
\ systems

- 1] Surveillance Weather
systems

Other
controllers

Figure 2-5 The role of air traffic controller.

2.2.1 ATC Tasks

The tasks performed by the air traffic controller are interdependent. Rodgers et. al. have
extensively studied the tasks and goals of controllers (Rodgers and Drechsler 1993;
Endsley and Rodgers 1994). Based on these research, Histon and Hansman summarized
seven categories of tasks:

e Separation tasks
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* Monitoring tasks

* Constraint tasks

* Request tasks

* Coordination tasks
* Information tasks
e  Other tasks.

Many of controllers' tasks are time-shared, and they may be implemented simultaneous.
For example, when controller accepts a constraint tasks, he/she has to keep the aircraft
with accepted separation and monitoring the conformance of the aircraft to the ATC
clearance. The deploying of automation systems has been alleviating some of controllers'
taskload; however controllers still have to perform most of the tasks. In the following, we
briefly summarize the descriptions of each task based on (Endsley and Rodgers 1994;
Histon 2002).

2.2.1.1 Separation tasks

The primary objective of air traffic control is to ensure the safety of aircraft. Separation
rules are made according to the performance of aircraft, airspace structure, terrain, and
weather condition etc. Aircraft in flight are defined as a moving cube with three
dimensions in order to calculate the probability risk of collision. Both lateral and vertical
distances should be met for the separation with other aircraft, obstacles, weather, and
other hazardous areas such as the military airspace.

Under radar surveillance, the separations are normally defined in physical distance. For
instance, the separation standards for en route flights are 5 nautical miles in lateral and
1000 feet in vertical in the United States. In the airspace where there is no radar
surveillance or satellite surveillance, aircraft will have to maintain the separation
standard in minute. In the airport, the required time separation for two consecutive
aircraft taking off will be determined by the wake types of two aircraft and the standard
Instrument Departure (SID) routes which they are using. Standard for aircraft taxing is
also depending on the types of aircraft.

2.2.1.2 Monitoring tasks

Pilots are obliged to implement the clearance issued by the air traffic controllers.
However, controllers have the responsibility to monitor the conformance of the aircraft to
prevent the deviation from the intentions of controllers. Besides, by monitoring the air
traffic situation and airspace, controllers can prepare the necessary traffic control
strategies for both expected and unexpected situations.

2.2.1.3 Constraint tasks

Histon and Hansman have defined constraint tasks based on the sources of constraints.
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This kind of tasks is imposed to the aircraft when crossing sector boundary. The main
reason for such constraints is the limited capacity in the downstream sectors or airports.
One common constraint occurs when implements the traffic management initiatives.
Aircraft being handed into the same downstream sector has to meet the flow restrictions
that are either in the form of minutes-in-tail or miles-in-tail. Performing constraint tasks
will cost aircraft delay and the constraints may propagate in the whole air transport
network.

Letter of Agreement (LOA) is signed by the adjacent agencies if the constraints occur
regularly. For instance, the LOA regarding flow restriction when there is thunderstorm in
the terminal area will be used by all the parties who involved in the LOA.

2.2.1.4 Coordinate tasks

When there is no need for the officially implement a traffic management initiatives and
the problem can be solved locally, controller has to communicate with other controllers,
and pilots for the coordination. In the sector with high traffic volume, there may be a
controller who is in charging coordination. The coordination is commonly happened
between the sectors that are in the same ATC control center.

2.2.1.5 Information tasks

The automation systems and decision support tools provide the important information
for the controllers, whereas the value of the information provided by the systems depends
on the accuracy of the input. Once controller modifies the flying route of an aircraft,
he/she has to update the information that will be used by such tools. Another source of
the tasks is to disseminate information to pilots regarding on the altimeter settings,
weather conditions, and other operational information. It is the responsible of controller
to distribute flight data in cases of automation links failure.

2.2.1.6 Request tasks

Pilots would request to controller to fly the preference route if airspace environment
allows. In the airspace where the presence of weather is different from forecasted, pilots
usually request to deviation from the predefined trajectory. In the abnormal situation, for
instance the fuel of the aircraft reaches emergency, pilot will ask for the priority of
landing or a shortcut flying.

2.2.1.7 Other tasks
There are tasks that depend on the airspace. In detail, these tasks include:
* providing advisory services to the flights;
* providing full route clearances to departure from non-towered aircraft;
* dealing with "pop-up" aircraft;

* responsible for ensuring the other controllers are not overwhelmed;
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e Others.

2.2.2 Controller as a Black Box

From a system perspective, air traffic controller is the control part of the ATC system.
The operation process is outlined in Figure 2-6. The inputs of the controllers are the air
traffic situation information and advices information given by the decision support tools.
The outputs are the commands that modify aircrafts' motions after evaluating the current
traffic, which will have further impact on the air traffic situation.

2.2.2.1 Inputs of the controller

The information flows into air traffic controller are from three sources: the pilots,
surveillance systems, and decision support systems.

In the radar surveillance control center, there is a radar screen at controllers'
workstation, which displays the information about the flights' positions and speeds
depending on the types of the radar. Primary radar can detect the distance and azimuth of
aircraft from radar site through the delay between the transmission and reception the
pulse reflected by the aircraft. The secondary radar can compute both lateral position and
altitude of the aircraft if aircraft equipped with an operating transponder. There are four
types of radar systems that are used in air traffic control in the United States: precision
approach radar, airport surveillance radar, air route surveillance radar, and airport surface
detection equipment( see (Nolan 2010) on pp. 342-343). Aside from the main radar
screen, there might be a small screen displays weather information in the sector obtained
from primary radar or weather surveillance radar.

Pilots are the most important source of information in the area where there is no radar
coverage. Controller has to calculate the positions of aircraft from the reports of pilots.
Even under radar surveillance control, control will have to confirm certain information
through the communication with pilots. Such information as pilots' intension will help
controller to predict traffic situation.

In the current system, most ATC centers are equipped with decision support tools that
can alleviate the workload and taskload of air traffic controller. For example, the
trajectory predicted by the automation system can detect potential conflicts between
aircraft; the departure manager and arrival manager provide the optimized departure and
arrival sequences of flights respectively. The information from decision support tools is
necessary in some busy control centers.
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Figure 2-6 Systematic perspective of air traffic controller in the ATC system.

In summary, the information from all the sources that may be processed by the
controller is categorized into the following groups:

L

II.

I1I.

IV.

Airspace information. It is used to estimate the availability of controlled airspace,
including air route, flight levels, navigation aids, and special used airspace.

Aircraft positions and aircraft performance data. It's about aircraft type, position,
speed, destination, pilot's intentions. From these data, controller can project
aircraft positions so that can form a picture of future traffic situation.

Weather information. Present weather and forecasted weather are being used by
controller to determine the implementation of related control strategies such as
flight rerouting.

Advised information. Given by the decision support tools, the advised
information shows the overview of current and future air traffic situation.
However, controllers do not need to accept the recommended control initiatives.

Regulations and other constraints. Separation standards and additional
constraints must be complied by the aircraft by means of implementation of ATC
clearances issued by the controllers.

Information I, III, and V can be further grouped as the contextual information. In
practice, air traffic controllers establish the "knowledge library" about the contextual
information and the traffic control strategies regarding on different traffic situations.
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2.2.2.2 Outputs of the controller

Having processed the information described above, the main out comings of the
controller are a series of clearances and instructions that change aircraft states. Such
clearances can either directly modify aircraft's motion in heading, altitude, speed, and
rate or climb/descend, e.g. "Air France 605, heading 160", or place requirements on the
flights that indirectly changes aircraft dynamics (e.g. "Air France 605, reach FL 270 in
five minutes). Pilot's requests on the change of trajectories should be approved by the
controller. Other outputs are to perform the information tasks or to communicate with
other controllers.

2.2.3 Voice communication

ATC clearances and instructions are sent to pilots through communication systems.
Therefore, the safe operation of air traffic control system ultimately depends on the
reliable and accurate communication between controllers and pilots. Any
miscommunication between them might contribute to an aircraft accident. Ever since
radio communication being used in air traffic control in the early 1930s, verbal
communication has being a primary way for information flow between air traffic
controllers and pilots. Although there have been significant improvement in the ATC
communications system, such as the data communication, human communication
between air and ground is still the most reliable way in the air traffic control.

In the current system, each controller is assigned one or more radio frequencies for
communication with pilots, while the communication with other controllers in the same
facility or in adjacent facilities may use telephone equipment. In order to ensure the safe
and efficient of air traffic, communication between pilots and controllers must be in a
clear and unambiguous way.

2.2.3.1 Standard Phraseology

To maximum utilize the capacity of communication channel while reducing the risk of
misunderstanding, controllers and pilots use standardized phraseology during air-ground
communication based on ((ICAO) 2007). The content of a transmission made by
controller should always use the following message format:

1. Identification of the aircraft, which will alert the intended receiver of the coming
transmission.

2. Identification of calling controller. It is to identify who is initiating the
communication. This will not always appear when the communication between
controller and pilot has been established.

3. The contents of the message. Both ICAO and local authority can defined the
format of the message.

4. Termination. It happens in the communication with other ATC facility.
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Table 2- 1 shows the items in communication that air traffic controllers should use
standardized phraseology.

Table 2- 1 List of items pronounced with standardized phraseology

* Numbers and letters e  Minimum descent or decision height altitudes

* Time * Radio frequencies

* Altimeter settings * Runway numbers

e Altitudes * Microwave landing system or TACAN channels
(in the United States)

* Flights Levels * Route and navigation aid descriptions

* Headings * Air traffic control facilities

* Speeds *  Wind direction and velocity

2.2.3.2 Contents of the ATC communications

Manning et. al. have classified ATC communications into seven groups based on the
contents of the communication events, namely address, courtesy, advisory, request,
readback, instructional clearances, and frequency changes (Manning, Mills et al. 2002).
In the book by Nolan (Nolan 2010), most common phrases used by controllers are
described in detailed. The following up summarizes the standard communication phrases
that can change traffic dynamics.

e (learance

Pilot's request on the perform a specific maneuver has to be agreed by the controller.
Then a clearance is issued by the controller authorizing pilot to proceed the request.
A clearance is general began with aircraft identification followed with "clear for
doing something". For example, "Air France 654 cleared for take off" authorizes AF
654 to take off.

* Departure instructions

When aircraft is taking off from an airport, a departure instruction will be issued by
controller either use Standard Instrument Departure routes or a heading.

e Altitude assignment

There are several ways on the change of aircraft's altitude. Air traffic controller has
to clearly direct pilot to reach the desired flight levels.

Maintain.: Controller will assign an altitude or flight level at which aircraft has to fly
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further on after it reaches the altitude. The communication phases are "climb and
maintain" or "descend and maintain".

Cruise. It 1s used by controllers to authorize an aircraft to operate an any altitude
between the assigned altitude and the minimum IFR altitude. It can also be used to
authorize pilot to conduct any instrument approach procedure published for the
destination airport.

Cross at: By using this clearance, air traffic controller requires an aircraft to cross a
particular navigational fix at a predefined altitude.

* Required Reports

Controllers may request pilot to report the state of the flight, such as altitude, speed,
rate of climb/descend. Sometimes, they will ask pilots to report when aircraft
crossing a particular fix or intersection, reaching an altitude, or leaving an altitude.

* Holding Instructions

Due to the traffic in downstream sectors or airports reaching saturation, air traffic
controller may issue handing instructions to the aircraft. A holding pattern requires
pilot flying a modified racetrack patterns in reference to a fix or a navigational aid.

2.2.4 Information Diffusion via Voice Communication

Many of the tasks presented in Section 2.2.1 are done through communicating with an
aircraft or after communicating with an aircraft. In performance these tasks, a controller
accepts inputs, process information, prioritizes, and acts(Rodgers and Drechsler 1993).
Controllers' response to these tasks, are all communication-related which are reflected in
the controllers' workload (Stein 1985). Before the slowly emerged data link
communication, verbal communication was the only way for controller and pilot to
exchange information. Recent work have demonstrate that controllers have clear
preference for the data communication while pilots are reluctant to use data
communication (Lacher, Battise et al. 2011). Therefore, verbal communication is likely
to remain the prime means for controller-pilot communication for many years. Although
there are many factors affecting controllers' activities and consequently influence the
system, from a system perspective, it is the controller's voice communications that
influence the system operation. By definition, the activity is a coherent system of
internal processes and external behavior and motivation that are combined directed to
achieve conscious goals (Bedny and Meister 1997). Thus we assume controller’s voice
communication activity encapsulates both cognitive efforts and physical efforts to
accomplish the mission of ensuring traffic safety and efficiency.

Controller’s communication activity is referred as the event that controller press the
push-to-talk button and hold in order to send the transmissions to aircraft. Normally the
contents of the transmission should contain the information that to which aircraft the
communication is addressed. It is very rare that one transmission includes more than two
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flight call-signs separated by “break”. Hence, air traffic controllers' communication
activity with pilots can be seen as the information diffusion process.

2.2.5 Summary

Air traffic controllers are inter-linked with the other parts of the ATC system, and play
a vital role to keep the system operate safely and efficiently. In the en route or approach
sector, air traffic controller has to deal with a large number of aircraft that come from
variety of directions with diverse speeds and altitude, heading to different destinations.
There are two important issues regarding on the controller element in the ATC system.
The first one is safety concerned. To prevent aircraft accident or incident occurs, air
traffic controllers have to work avoiding high workload and fatigue. The second is the
capacity constraints. When controllers cannot maintain a safe traffic flow in the sector,
then the sector resource cannot meet traffic needs. Constraints will be issued to limit
incoming traffic.

Researchers and engineers have long sought to analyze the air traffic controllers'
activities. In the Section 2.3, a brief literature review on the studies of air traffic
controllers shall be presented.

2.3 The State-of-the-Art on the Research of Air Traffic Controllers' Activities

In this dissertation, air traffic controller is regarded as an adaptive element of ATC
system. The dynamics of controllers' behaviors is of particular interest to us. To have a
systematic view of air traffic controllers' activities, we organize the related research work
into three parts according to the structure illustrated in Figure 2-7, the tasks demands,
internal activities, and the output strategies. It should be mentioned that the research
work in each part are not independent, with many of which are related to the mental
workload.

2.3.1 Tasks Demands: Air Traffic Complexity

Investigation on the tasks demands as the factors that drive controllers' activities has a
very long history (Arad 1964; Couluris and Schmidt 1973; Hurst and Rose 1978).
Examinations on the relationships between workload and task demands are extensively
conducted. Existing work on the analysis of tasks demands that affect controllers'
workload are mainly focusing on three aspects, air traffic factors, airspace factors, and
operational constraints(Loft, Sanderson et al. 2007). In fact, distinguish either one of the
three to analyze will lead to inappropriate. In this part, our focus is given into the work
on air traffic complexity.
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Figure 2-7 Three aspects of the study on air traffic controllers' activities: tasks demands,
internal activities, and output strategies.

2.3.1.1 Dynamics Density

In ecarliest work, factors that have been examined to relate to workload were the
observable variables. These traffic factors include: air traffic density, the distribution of
arrival/departure/overflying flows(Rodgers and Drechsler 1993), the number of
airports(Davis, Danaher et al. 1963), number of aircraft under control, peak value of the
traffic, time spent on communication(Hurst and Rose), changes of flights routes, number
of aircraft handle in/off (Stein ; Mogford, Guttman et al.).

With the dramatic growth in traffic demands, solely depending on the observable
traffic factors is incapable to capture the characteristics of workload. There were
consensuses among research and operational communities that the understanding of the
inter-correlations between traffic factors is essential to measure and to predict workload.
Many researchers have tried to demonstrate the complexity factors that reduce sector
capacity by increasing controller workload. Metrics derived from traffic data, such as
dynamic density to indicate traffic complexity, were proposed as an important input for
workload models.

The dynamic density concept attempts to measure control-related workload as a
function of both the traffic volume and traffic complexity (Mogford, Guttman et al. 1995;
Laudeman, Shelden et al. 1998; Sridhar, Sheth et al. 1998). Mogford and Guttman et al.
summarized more than 40 types of complexity factors based on observation and
interview. They found that air traffic complexity is closely related to the number of
aircraft, airspace structure, separation standard, aircraft performances, traffic flow, and
weather. A specific research about airport tower ATC complexity was conducted by
Koros et al.(2003). Heavy traffic, congestion of communication channel, and runway/
taxiway configuration are the major complexity factors affecting controller workload.
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Especially when heavy traffic interacts with other complexity factors, it will have a great
impact on ATC complexity.

The first mathematical model to quantify dynamic density was developed by
Laudeman et al (1998). They defined dynamic density as the method to estimate
workload as a function of aircraft density and control complexity. Dynamics
characteristics, aircraft density, and conflicts are three kinds of complexity factors. In
detail, there are nine factors f in total: (1) Number of aircraft with heading change; (2)
Number of aircraft with speed change; (3) Number of aircraft with altitude change; (4)
Number of aircraft with 3-D Euclidean distance between 0-5 NM excluding violations; (5)
Number of aircraft with 3-D Euclidean distance between 5-10 NM excluding violations;
(6-8) Number of aircraft with 3-D Euclidean distance between 0-25NM, 25-40NM, 40-
70NM and vertical separation less than 2000/1000 feet above/below 290,00 feet; and (9)
Number of aircraft in the sector. The equation to calculate dynamic density is

DD:iwixfi,
i=1

where w, is the associated weight. The weights are obtained and validated through the
regression tests on the observations data from Oakland control center.

There are main drawbacks of the approach for dynamic density, which include overly
relying on linear technology, ignoring the self-adjustment of controller workload, and the
predefined problem solving method violating with the real source of workload (Averty,
Athenes et al.). In fact, most of traffic factors are non-linearly interacted (Chatterji and
Sridhar 2001; Kopardekar and Magyarits 2002; Kopardekar and Magyarits 2003).
Chatterji et al.(2001) pointed out the limitations of existing approach to calculate the
dynamics density. One reason is that the non-linear relationship existing between
different complexity factors. Another aspect is that the cognitive factor should be
considered when analyzing the impact of traffic geometry on ATC control progress.
Simply depending on controller’s observable behavior to reflect controller workload has
huge limitation.

The performance of dynamic density predictability depends on time window (Baart
2001). Masalonis et al.(2003) investigated the validity of the dynamic density when used
in tactical traffic flow management. They integrated four types of dynamic density
factors and obtained 41 types of complexity factors. After refinement of these complexity
factors, a dynamic density adaptive model including twelve complexity factors was
developed.

To anticipate and quantify workload ahead of time, some researchers proposed using
dynamic density as an estimator of workload, which can be obtained through the linear
combination of the predicted dynamic density factors(Kopardekar and Magyarits 2002;
Klein, Rogers et al. 2008; Bloem, Brinton et al. 2009).

Although the study of dynamic density has been extensive, there are still essential

-59 -



questions that cannot be answered. A key hurdle is the nonlinear inter-correlations among
the complexity factors. A contradiction exists between this methodology and its objective.
The basis of derivation of dynamic density is the correlations between dynamic density
and workload, whereas the workload cannot be estimated correctly.

2.3.1.2 Other Complexity Metrics

Beside dynamic density, there are other approaches being proposed to measure sector
complexity (Chatterji and Sridhar 2001; 2002; Masalonis, Callaham et al. 2003; Busing
and Hansman 2006; Kopardekar, Rhodes et al. 2008).

The first type is based on the dynamical system modeling approach. To avoid
measuring workload, Delahaye and Puechmorel et al. attempted to define and calculate
traffic complexity from flights' trajectories, which they believe it can capture the instinct
characteristics of complexity(Delahaye, Paimblanc et al. 2002; Delahaye, Puechmorel et
al. 2004; Delahaye and Puechmorel 2010). The brief idea is to compute the disorder of
traffic geometry using the relative positions and velocities of the aircraft. Noted that the
overall evolution of traffic situation was not involved, Delahaye et al. proposed a non-
linear dynamical modeling approach. The trajectories of aircraft are represented as a
vector field. Complexity maps are measured as the Lyapunov exponents of the associated
dynamical system.

Another approach to define and compute traffic complexity is based on the analysis of
the disturbance of the traffic, i.e. the Input-Output approach (Lee, Feron et al. 2007; Lee,
Feron et al. 2009). Control activity was illustrated in detail in respond to operation
environment change. They introduced a “complexity map” that provides complexity for a
given traffic situation. Then a scalar measure of air traffic complexity can be extracted
from the complexity map.

A third trend in the study of complexity is the use of probabilistic measure accounting
for the uncertainty in the future aircraft positions (Prandini, Putta et al. 2010; Prandini,
Piroddi et al. 2011). Aircraft trajectory is predicted by the nominal trajectory based on
current state and intent, together with the prediction error modeled by Brownian motion.
Manipulating on the proximities in time and space of the aircraft will obtain the
complexity maps for different consecutive time intervals.

With the deployment of new automation system, the determination of complexity
factors has to change accordingly. For example, to evaluate the relationships between air
traffic complexity and controllers' workload in the data communication environment, a
link between complexity and controllers' subjective workload has to be reestablished by
relating new complexity factors to workload indicators (Djokic, Lorenz et al. 2010).

Air traffic complexity should account for the traffic dynamics to measure the difficulty
and effort to safely managing the traffic within a sector, aiming at evaluating controllers'
mental workload. In the future air traffic control system with separation responsibility
delegated to air crew, air traffic complexity could be useful for predicting conflicts and
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trajectory management. Traffic factors that may drive controllers' activities have been
commonly identified. How these factors interact with each other is poorly understood.
Description of the inter-relationships of the complexity factors based on the observation
or enumerating cannot measure and predict complexity correctly, because that there are
too many traffic situations which could not be anticipated. Thus, a great deal of work
remains. How to account for controller active behavior is very critical. In the following,
cognitive analyses on controllers' activities will address this important issue.

2.3.2 Internal Activities: Cognitive Activities and Workload

It is thought that workload, at a microscopic level, is one of the main factors affecting
controllers’ performance. Great efforts have been focusing on measuring and predicting
controllers' workload. Earliest work was based on queuing theory and examination of
controller routine work. A queuing model was proposed by Schmidt et al. based on the
hypothesis of the single-channel of man’s information-processing activity, trying to
quantify and predict the workload factors affecting controller performance (Schmidt
1976; Schmidt 1978; Robertson, Grossberg et al. 1979). Gawron (Gawron, Ball et al.
1989) pointed out that controller workload could not be measured only by observation;
data mining technology is also needed in order to calculate workload. The prevalent
approach to measure workload is based on the controllers’ subjective rating (Manning,
Mills et al. 2002). Controller are asked to report the workload rate that they were
experiencing either they are controlling traffic or just afterwards. On-line ratings distracts
controller from perceiving and controlling traffic, then could influence the workload
results. Whereas for the workload obtained after work, it may fail to capture the essential
property of workload as it emerges from the complex interaction of current traffic
situation and controller.

While tasks demands factors derived from traffic and airspace configuration provide us
a general picture of the origin of workload, investigation on how controller mitigates the
impact of these factors by making and selecting strategies is the core to model and
predict workload. As stated in (Kopardekar and Magyarits 2003; Masalonis, Callaham et
al. 2003; Loft, Sanderson et al.), the dynamics properties of workload incorporated with
controller strategies management should be investigated in order to measure workload
correctly. Cognitive task analyses have demonstrated that air traffic controllers have to
achieve many tasks. Three higher level control tasks are (1) the control task of
maintaining situation awareness; (2 the control subtasks of detection conflicts and (3)
resolving conflicts(Kallus, Van Damme et al. 1997; Neal, Griffin et al. 1998; Hilburn
2004; Loft, Sanderson et al. 2007). Such cognitive tasks management is directly related
to the controllers' workload. When managing the traffic, controllers maintain a valid
mental representation of the current traffic situation, which is referred to as situation
awareness. Conflict detection is connected to the workload in that the difficulty to detect
conflicts imposes additional constraints on the controllers, because it will decrease the
time available to resolve the conflict. Most of the ATC control systems have the function
to detect the conflicts in user defined time horizon. Literatures on the conflict resolution
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report various algorithms for conflict resolution. Interviews with controllers explicated
that controllers have a "conflict resolution library" for the sectors they are working
in(Neal, Griffin et al. 1998; Kallus, Van Damme et al. 1999). Such knowledge is
accumulated during their daily operations. When to resolve the conflict is depending on
the traffic and varies from controller to controller.

The sources that attribute to cognitive complexity are proposed and classified into
three distinctly different classes, environmental, operational, and display(Cummings and
Tsonis 2006). Environmental sources include the number of aircraft in the sector, weather,
and congestions etc. When the airspace reaches saturation, the requirement to maintain
traffic operated under operational constraints will increase controllers' workload, which is
the operational source of cognitive complexity. By transferring the high level cognitive
tasks that needs for mental computation to low level cognitive tasks and visualizing that
in the display, will alleviate controllers' workload. Environmental sources are found to be
the predominant among the three during two experimental tests.

A brief summary of some relevant work on cognitive complexity is presented by
Hilburn (2004). Decomposing cognitive tasks reveals what controllers have to do in an
abstract level. The understanding of the shift of strategies between the cognitive tasks is
far behind. That is about the strategies created by controllers about how to use the
available resources to achieve these tasks. Notably, few work have significantly
contributed to our understanding of the mechanisms that radar controllers use to mediate
cognitive complexity so that simplifying mental workload(Kirwan, Scaife et al. 2001;
Schaefer, Meckiff et al. 2001; Histon 2002; Histon, Hansman et al. 2002; Histon and
Hansman Jr 2008; Histon and Hansman 2011). For instance, Busing et al.(2005) analyzed
the traffic characteristics both in the structure route environment and in the free flight
environment. They believed that the operate mode used by controller can be reflected
through his external behavior. By changing the system performance (e.g. efficiency),
controller internal cognitive method could be obtained. In the work done by Histon et al,
it showed that a recognized underlying structure could act as the basis for abstractions
internal to the controller, which can simplify the controller’s working mental model.
Standard flow, critical points, grouping, and responsibility are the four common types of
structure-based abstractions. The most effective way to mitigate cognitive complexity is
to reduce the “order”. To test the hypothesis, transitions between operation modes of
controllers were observed during human-in-the-loop experiments that were set with
different traffic levels. The results suggest that controllers modify their structure-based
strategies in response to the change of traffic situation (Histon and Hansman 2011).

The last groups of studies on workload are based on controllers' physiological
indicators that are recorded when they are controlling air traffic (Collet, Averty et al.
2009; Dasari, Crowe et al. 2010). For instance, research on eye movement parameters has
found that eye activities are correlated with cognitive demands. In (Ahlstrom and
Friedman-Berg 2005; Martin, Cegarra et al. 2011), Ahlstorm and Friedman-Berg
measured controllers’ eye movement activities during real-time simulation, including
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blink durations, mean pupil diameter etc. They concluded that eye movement activities
measures can provide a measure of controller workload. The statistical analyses of these
measures can indeed capture the fluctuations in workload levels. However, both the
difficulty of recording physiological parameters and the highly dependent factors such as
airspace configuration, air traffic distribution, and controller’s experience etc., make it
unsuitable for predicting workload or available resource of controller (Di Stasi, Marchitto
et al. 2010).

In a paper that deserves to be better known, Loft et. al. present an exhaustive review on
the modeling and predicting workload in en route air traffic control(Loft, Sanderson et
al.). They argue that the link between task demands and workload is largely connected to
the manner in which controllers manage their resources. Building on the previous
research, a model that integrate the tasks demand and controllers' capability has been
proposed (Figure 2-8 ). A recent report found that spatial context can help air traffic
controller to reduce prospective memory error and the response costs to ongoing tasks,
providing evidences the effective use of appropriate decision support tools in the air
traffic control(Loft, Finnerty et al. 2011).
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Figure 2-8 Model air traffic controller's mental workload. Picture was exactly copied
from (Loft, Sanderson et al.)
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2.3.3 External Activities: Voice Communication Activities and Performance

Before the slowly emerged data link communication, for instance the Controller Pilot
Data Link Communication (CPDLC), voice communication was the only way for
controller and pilot to exchange information. It is still the primary controller-pilot
communication way in most of air traffic control centers.

Analysis of air traffic controller voice communication data has a long history. In the
past, communication events were extensively used to measure workload (Cardosi 1993;
Manning, Mills et al. 2002; Manning, Fox et al. 2003; Coftey, Harrison et al. 2011; Lamb,
Bartlett et al. 2011). Communication times (Corker, Gore et al. 2000), Communication
durations are all found to be good measures of workload (Porterfield). The number of
communications between controller and pilots were found significant related to both
traffic volume and traffic complexity (Bruce, Freeberg et al.). Porterfield investigated the
correlations between the controller's communication duration of the 4 minutes prior to a
rating and the controller's subjective workload ratings. It was found that the correlation
coefficient was 0.88 with p <0.01(Porterfield). Rantanen et. al. investigated the impact
of audio delay and pilot delay in air traffic controllers’ communication on controllers'
performance and workload(Rantanen, McCarley et al. 2004). Manning et al. have
examined the relationship between communication events, subjective workload and
objective task-load measures. The communication events used in their study were total
number of communications, total time spent communicating, average time spent for an
individual communication, and communication content. Although some measures of
communication events are highly correlated with workload, the analysis indicates that
voice communication metric does not make a unique contribution to the workload
evaluation (Manning, Mills et al. 2002; Manning and Pfleiderer 2006).

There are researchers investigating controllers' communication from other perspectives.
A series of reports on the statistical analyses of voice communications between pilots and
controllers' can be found in (Hunter, Blumenfeld et al. 1974; Hunter and Hsu 1977;
Hunter, Blumenfeld et al. 1998). Based on a two-hours voice communication during peak
traffic period in the New York area on April 30, 1969, Hunter et al. analyzed the
controllers' communications, then developed a simulation model that is able to
characterize "general" sector functions (as contrasted with individual sectors). Recent
work on the study of radio channel utilization can also be found in (Popescu, Augris et al.
2010).

Time required for an air traffic controller to successfully transmit a message containing
a maneuver required for traffic avoidance to a pilot was analyzed in (Cardosi 1993).
According to the procedure and practices in air-ground communication, the required time
can be broken down into three components:

(1) the duration of controller's message;

(i1) time between the end of the controller's message and the beginning of the pilot's
message;
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(iii) the duration of the pilot's acknowledge.

Analysis on forty-six hours voice communication data that was recorded from Air
Route Control Centers show that it takes ELEVEN seconds in average for a successful
message transmission. These findings are very important for our analysis of temporal
behavior of controllers' activities.

A model of air ground communications in air traffic control has been develop in
MITRE with the aim to add communication process in a fast time simulation models of
Center for Advanced Aviation System Development (CAASD) of the MITRE
Corporation (Monticone, Snow et al. 2006; Monticone, Snow et al. 2006). In Table 2- 2 a
comprehensive list of communications messages is presented. In the model, triggers that
cause a communication event are based on aircraft proximities (aircraft to airspace
proximity and aircraft to aircraft proximity), voice tape transcription data, or obtained
from host amendments.

Table 2- 2 Communication Messages Categories

Message Category Data Voice
Logon (data communication DLIC N/A
only)
TRACON-to-Center
Handoft: Transfer of -
L . Sector-to-sector within Center )
communications (pllOt must| Boundary Cross]ng
change frequencies) and Initial/Center-to-Center
Contact (an initial contact with|Center-to-TRACON
the controller using nextN A ATCT-to-TRACON
frequency)
N/A TRACON-to-ATCT
Altimeter setting Instruction Altimeter setting Instruction
. .. . Beacon code setting
gt()lt]tr(/)gilr . InitiatedBeacon code setting instruction instruction
i
Az Advisoty ‘Weather advisory Weather advisory

Traffic advisory Traffic advisory
Heading Change Heading Change
Altitude Change Altitude Change

Controller Initiated Clearance  [Route Change Route Change
Speed Change Speed Change
Crossing Constraint Crossing Constraint

Pilot Initiated Clearance/Altitude Change Altitude Change

Request Route Change Route Change

2.3.4 Discussion
To summary, there are three major problems in the study of air traffic complexity. The
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first one is the deadlock in the calculation of complexity by correlating to workload, i.e.
the contradiction between its approach and its objective. The objective is to obtain the
metrics that is able to reflect the role of traffic in controllers' mental workload, whereas
controllers' workload cannot be measured and predicted correctly so we have to look at
the traffic. Second, the analysis of traffic complexity through the aircraft trajectories has
difficulty to capture controllers' and pilots' intentions. Although one may argue that some
complexity metrics reflect the intrinsic characteristics of the traffic, it is human at the end
that are responsible for ensuring aircraft safely, either by manually management or by the
design of automation system to manage it. Finally, identifying the complexity at the
microscopic level focusing on the local dynamics fails to explain the emerged
macroscopic characteristics of system behavior observed in a larger scope. It roots back
in the inadequate knowledge about how air traffic controllers carry out control tasks.

Although the studies on workload and other human factors related topics have been
impressive, up until now, quantifying and predicting the controllers’ activities remains an
open problem. One might think that a key hurdle that prevents us from an in-depth
investigation of the air traffic controllers' activities is the limit knowledge about the
correlations between air traffic dynamics and air traffic controller’s dynamics. Classical
methods usually focus on the specific problems, e.g. analysis of controller’s workload in
a certain sector. With a few exception (Histon and Hansman Jr 2008; Clarke, Durand et al.
2011), much less has been done toward the understanding of the dynamics process of air
traffic controllers' activities.

Deviated from our ever believed hypothesis that human activities are randomly
occurred and are difficult to describe, the patterns of human activities do exhibit
similarity among human beings, suggesting that there exist universal mechanisms govern
human activities (Barabasi 2005; Malmgren, Stouffer et al. 2009). Research on human
dynamics sheds light on the study of controllers' activities. A straightforward question is
that whether there are the same types of activities patterns among the controllers. We
would argue that the data-driven approach can be adapted to the analysis of controllers'
activities with the knowledge of controllers' internal activities. This thesis will study the
temporal, spatial, and fluctuation scaling behaviors of air traffic controllers' activities
with controllers' voice communication as a proxy. We believe that such approach can be
easily extended into the future operation environments.

2.4 Chapter Summary

Air traffic controllers are in a continuous environment, and they are inextricable linked
with the system. Their behaviors might depend on the unique sector structure, the
dynamical changed traffic, and the individual knowledge and experience. Compared with
workload, less is known, at the macroscopic level, on the adaptive property of the
controllers' activities.
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CHAPTER 3 THE TEMPORAL CHARACTERISTICS OF
CONTROLLERS' COMMUNICATION ACTIVITIES

Previous investigations on controllers' communication are focusing on the relationships
between communication events and controllers' mental workload rather than the
dynamical property of the communication. So far, there is a lack of quantitative
understanding of the mechanisms that govern controllers' activity.

As a matter of fact, it has been long assumed that most of human activities are
randomly occurred which are described by the Poisson process. Because of the electronic
devices being widely used in human daily life, the historical data of human activities can
then be recorded forming large empirical datasets. Analyses on various ranges of human
activities' datasets have shown that, different from common belief respecting random-
based Poisson distributions, patterns of human activities are fitting into power law
distribution with heavy-tail patterns. Burgeoning empirical evidences from human
dynamics recently founded the similar patterns among human being, suggesting that
there exist universal mechanisms governs human activities. One would argue that there
are significant differences between air traffic controllers' activities and other human daily
activities. Nevertheless, the emerged human dynamics research provides the
methodological aspects of the understanding of air traffic controllers' activities, which we
shall discuss in this chapter.

The organization of this chapter is as follows. Section 3.1 presents the brief literature
review on human dynamics, as well as the comparisons between examined human
activities and air traffic controllers' communication activities. In Section 3.2, we show the
five different datasets that have been analyzed, which includes two real-time simulation
datasets and three operational datasets. Then the correlations between air traffic and
controllers' communication are given in Section 3.3. Two widely studied complexity
metrics, the Dynamic Density (DD) and the Complexity based on Dynamical System
Modeling (C-DSM) approach, have been constructed from the aircraft trajectory data to
examine the interaction between traffic activities and controller’s communication
activities. The investigation on the temporal characteristics of controller activities is
presented in Section 3.4. Psychological interpretation of the temporal characteristics of
controllers' activities is discussed in Section 3.5. This chapter ends with conclusions and
discussions in Section 3.6.
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3.1 Introduction

3.1.1 Human Dynamics: Empirical Evidences

We used to assume that most of human actions occur randomly. The basic assumption
of human dynamics models, which are used from communications to risk assessment,
had been that the temporal characteristics of human activities could be approximated by
Poisson processes. The difficulty of collecting experimental and real data had limited the
quantitative investigation of human activity, which resulted in that the hypotheses and
conclusions were given in qualitative. Thanks to the rapid development in electronic
information technology, human activities data can be easily record which provides a
perfect platform for studying human behavior. There is increasing evidences showing
that the inter-event times, defined by the time difference between two consecutive
activities, indeed follow non-Poisson statistical distribution. Heavy-tailed distributions of
inter-event times have been widely reporting from various kind of human activities,
ranging from correspondence (Oliveira and Barabasi 2005), email communication
(Malmgren, Stouffer et al. 2008; Malmgren, Hofman et al. 2009), through printing
behavior (Harder and Paczuski 2006), online films rating (Zhou, Kiet et al. 2008), short
message texting(Wu, Zhou et al. 2010), to human mobility (Gonzalez, Hidalgo et al.
2008). Instead of randomly occurring as assumed previously, the temporal patterns of
human actions exhibit the bursts of frequent actions separated by long periods of
inactivity. The similarities of the distribution of inter-activities times among human
beings indicate that the way human do things is irrelevant to the contextual conditions.
For example, Figure 3- 1 plots the distributions of response times for the letters replied
by three famous scientists. In can be seen from the figure, all the inter-events times are
well described by the Power Law form with exponent & =1.5. In Appendix I give the
summary of different human activities that have been analyzed.
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Figure 3- 1 The distributions of response times for the letters replied by Einstein, Darwin
and Freud respectively. It is an exact copy from(Vaquez, Oliveira et al. 2006).

The statistical characteristics of the inter-activities indicate there may exist universal
mechanism underlying that govern human activities. Based on the observed phenomena,
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relative models have been proposed to mimic how human behave when execute tasks.
3.1.2 Human Dynamics: Models

3.1.2.1 B-A Model

For the first time, a priority queuing model was developed by Barabasi to show the
bursty nature of human activity rooted from the decision-based queuing process when
human execute tasks (Barabasi 2005). Heavy-tailed distributions can be explained by a
simple hypothesis, i.e. humans execute their tasks based on some perceived priority,
setting up queues that generate very uneven waiting time distribution for different task.
In detail, when human has a list of tasks with different priorities to do, the rule by which
he selects a task to execute was given as:

* with a probability of p choosing the highest priority one; or
e with a probability 1— p randomly selecting a task.

After the execution, the task will be removed from the task list, and a new task
assigned with a different priority will be added in the task list. Such simply rule can
reoccur the bursty phenomena of activities' pattern.

3.1.2.2 Cascade Poisson Model

Malmgren et al argued that the correspondence patterns are better described by a
lognormal distribution rather than a power-law distribution (Malmgren, Stouffer et al.).
They constructed a double-chain Markov model for formulating the cascading non-
homogeneous Poisson process, demonstrating that the human correspondence patterns
are well described by the circadian cycle, task repetition and changing communication
needs (Malmgren, Hofman et al. 2009; Madl, Baars et al. 2011; Shafiq and Liu 2011).

Poisson process has been long used to simulate the arrival rate of events. A
homogeneous Poisson process has a constant rate p , whereas a non-homogeneous
Poisson process has a rate p(¢) that depends on time. To account for the circadian cycle,
the rate of the non-homogeneous Poisson process is related to the daily and weekly
distributions of active interval initiation, p, and p, :

pP)=N,p,(O)p, (),

where N is the average number of active intervals per week. Then from this process, a

secondary process is initiated which can be modeled by a homogeneous Poisson process
with rate p,, during which N, additional events occur. N, is drawn from some

distribution p(N,).

3.1.2.3 Interaction Model

To examine the interaction among individuals, Wu et al. found a bimodal distribution,
the combination of Poisson and Power-law, of inter-events times of human short message
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correspondence activities(Wu, Zhou et al.). To mimic this phenomenon, they developed a
model which contains three important ingredients: (i) independent random Poisson
processes that initiate tasks; (ii) decision making based on a priority-queuing mechanism
for task execution in individual; and (iii) the interaction among individuals.

Based on observation, two types of tasks of an individual were identified, namely the
interacting task (I-task) and non-interacting task (O-task). To account for the interaction,
the model consisted of two main parts: Priority-queue of tasks of individuals and the
interaction between individuals. The idea of Priority-queue tasks of individuals is the
same as B-A model, except that a processing time 7, is introduced. The probability of

adding an I-task is 4 =A¢,, where A is the rate of initiating an I-task with 7, =1s.

Denote P, and P, as the probability of 4 and B to respond to the received I-task

respectively. If 4 decides to reply the I-task, then the task will be added into A 's task list
with random probability. When the I-task has been executed, it is B's turn to decide
whether or nor to reply with probability P,. Consequently, there will be a number of

mutual interactions until someone decide not to reply.

3.1.3 Comparison with Air Traffic Controller's Activities

Although the studies in human dynamics have been successful in describing human
activities, it should be noted that all the examined data are deliberate human activities.
There is the lack of the evidence from a task-specific activity, as while simple
mechanisms may be incapable of capturing the distinct nature of air traffic controllers'
activities, for example, the dependence on environmental conditions, and urgency or time
pressure. In summary, there are three major characteristics of air traffic controllers'
activities that are different from the above listed activities.

a) Dependence on environmental conditions. The main goal of air traffic controller
is to ensure the aircraft under jurisdiction reach their destinations respectively
while adhere to the separation standards and operation regulations. The
characteristics of sector configuration, operational procedures, and air traffic are
the main objective factors that may determine controllers' behavior. Hence, the
activities dynamics should be sector-specific and thus depending on the sector
configuration, procedures, and traffic.

b) Urgency or time pressure. The air traffic controller has to complete many tasks to
meet the rapidly changed situation. Compared with daily activities, such as email
communication, many of controllers' tasks are more time-pressuring. The
competent controller has the ability to appropriately utilize the resources in the
finite time. It is the strategies which the controller uses to maintain acceptable
workload and performance level that determine his/her activities.

c) Frequently interacting with pilots. Previous studies on ATC communications
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classify controllers’ communication activities into several types based on the
contents of transmissions (Manning, Fox et al. 2003). Most of controller
communications are the interacting with pilots. Normally, controller should give a
prompt response to the pilot when a pilot talks to controller.

To make a further comparison between air traffic controllers' activities and examined
human activities, Figure 3- 2 reports the benchmarking of human activities. Table 3- 1
shows the comparisons in the main characteristics, common methodologies used to study,
and the disadvantages of the methodologies.

s <
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| ,;jiiﬁjagry loan
H

Figure 3- 2 Benchmarking of human activities in terms of task urgency and timescale of
responding to a task.

In spite of the above listed issues in air traffic control, controllers still have the
flexibility to manage the resources, including airspace/airport resources and their own
resources. For example, Histon and Hansman (Histon and Hansman Jr 2008) showed that
a recognized underlying structure could act as the basis for abstractions internal to the
controller, which can simplify the controller's working mental model. Standard flow,
critical points, grouping, and responsibility are the four common type structure-based
abstractions. The reduction of the "order" is the most effective way to mitigate cognitive
complexity. However, the quantified description of the mechanisms by which controller
uses to manage the air traffic are still unknown.
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Table 3- 1 Comparison between air traffic control and other human activities

Air traffic controller's activities Human daily activities

Characteristics High pressure Low pressure

Typically 2 hours work Very long range of activities
Methodologies to  Psychological and Data mining
investigate Cognitive science Statistical mechanics

Descriptive results of human Quantitatively capture
Results behavior activities measures

Explained from internal activities Unmask the universal

patterns

Most of results cannot be predicted ~ There is few investigation

Results depend on traffic and on a specific task-driven
Disadvantages airspace, and other factors. activities

Too microscopic to be adopted to the ~ Cannot be applied into air

whole system traffic control directly

The common point between controllers' activities and other activities is: ADAPTATION.

3.1.4 Objective

The understanding of mechanisms that underlie air traffic controllers' activities is
fundamental to predict and control their activities, which in turn to manage the ATM
system. Inspired by the human dynamics research, our purpose here is to investigate the
tasks execute mechanisms of the controllers. More precisely, the similar data-driven
approach has been employed to analyze the temporal behavior of controllers'
communication. Our hypothesis lies upon the question whether or not controllers'
dynamics obeys the same power law patterns. In spite of the variety of tasks, the
underlying cognitive process might be universal.

3.1.5 Definitions

As described in the previous chapter, there is unique frequency in a sector for as the
communication channel between air traffic controller and each aircraft pilot with that
sector's jurisdiction. Air traffic controller and pilots have to use this channel to exchange
information alternately. To examine air traffic controllers' activities, we shall give the
following definitions that will be used in this chapter and hereafter.

(1) Communication event. It is defined as that controller press the push-to-talk button
and hold in order to send the message to aircraft, which is also termed as "Transmission"
(TR). Particularly, empty transmission is also seen as a complete communication event.
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(2) Communication Transaction. A complete conversation between aircraft and
controller is composed of separate TRs, which are alternatively made by controller and
pilot. This is defined as "Communication transaction" or "CT"(Hunter and Hsu 1977).
For example, the first two blue communication events in Figure 3- 3 could be a CT if the
first four strips are about the conversation between PL1 and the controller.

The timing measurements that will be used include:
(1)L, : the length of communication event i;

(2) 7, : the inter-arrival time, i.e. the time difference between two consecutive
communication events;

(3) 7, : the inter-communication gap Length. It is defined as the time length between
two consecutive CTs'.

Figure 3- 3 also illustrates the example of the timing measurements.

Figure 3- 3 Definitions of communication activities of a controller. Blue trunks are the
communications made by controller, while yellow and dark pink trunks are made by
pilots. Data was recorded in ATC Chicago Center.

3.2 Data

Both operational data and real-time simulation data were collected to study the
controllers' communication behaviors. Two real-time simulation datasets, namely Paris
TMA simulation data and ATCOSIM corpus data, are from EUROCONTROL
Experimental Center, while two real datasets were recorded in the different ATC centers
in the United States of America and one is from Chinese ATC center.
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3.2.1 D, Dataset

The first dataset is Paris TMA simulation data, which was recorded during a two weeks
real-time simulation at EUROCONTROL Experimental Center in June 2010. The
purpose of this simulation was to test the viability of improvements proposed by French
DSNA to the ATM system serving Paris-Charles De Gaulle, Paris-Orly and Paris-Le
Bourget airports.

The simulation involved around one hundred participants over two weeks: forty-five
controller positions and thirty-five pilot positions. Thirty sectors were simulated, which
includes eleven sectors of the Athis-Mons Control Center, thirteen approach positions,
two military positions and four feeds. Traffic samples for simulation were based on the
real traffic rate on 29 May, and 12 June, 2009. For each main configuration (facing west
and facing east), two samples with heavy traffic were prepared.

There are twenty exercises, with an average of two hours long for each exercise.
Among them, fourteen exercises are identified as good exercises that can be analyzed.
Apart from traffic initialization and the end of simulation, each exercise has about one
hour and thirty minutes long. There are 79,847 controllers' communication activities in
total (4,885 were with length of one seconds, and 12 were more than 30 seconds). Form
the recorded data we pick up three data sets that are necessary for our investigation. For
each exercise, the data include:

a) Radio communication data. This one contains the start times and end times of the
communication made by the controller and pilots. The content of communication
is unavailable. An average of 300 communication events made by the controller
were identified in each sector of each exercise.

b) Pilots manipulating data. Pilots' data was retrieved from the flight simulator. The
simulator recorded every manipulation related to changes of flight motion. Hence,
we could find in this data set all call-signs and the time of pilot's entering
instructions to change flight's motion (could be 1~2 seconds differences with the
actual entering time due to system delay), as well as the types of instructions. We
use these data under the assumption that the clearances were granted by controller
few seconds before.

c) Transfer Information. Each piece of record contains flight call-sign, transfer time,
the sector it is leaving and the sector it will be transferred to. Throughput of the
sector varies from 30 to 100 during the measured period.

d) Trajectory. Similar as radar surveillance environments during ATC operation, the
simulation system has recorded the position of every aircraft in terms of longitude
and latitude, every five seconds. Each piece of record consists of simulation time,
sector on the frequency, position (longitude, latitude, altitude), and velocity
(TAS/CAS, turning rate, climb/descend rate) etc.
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3.2.2 D, Dataset

The second dataset has been analyzed is the ATCOSIM Air Traffic Control Simulation
Speech corpus of EUROCONTROL Experimental Center. It consists of ten hours of
communication data, which were recorded during ATC real-time simulations that were
conducted between 20/01/1997 and 14/02/1997 (Hering 2001). Only controllers' voice
was recorded and analyzed. Each record consists of circa one hour of communication
data. Both speech signal data and transcription of the utterance, together with the
complete annotation and meta-data for all utterances, can be found in the database. The
recorded simulation data does not include any information on traffic or airspace
corresponding to the communication data.

The general information of the whole fifty exercises is shown in Table 3- 2, while
detailed information on each exercise is not given here.

Table 3- 2 Information on the 50 exercises in the ATCOSIM database

Total Average
Length of the exercise (hh:mm:ss) 59:18:37 1:11:10

Number of the flights (has only one transfer) 3121 (1966) 62.42 (4)

Number of the communication events that 10078 (1276) 201.56 (26)
identified with flight call-signs (unidentified)

3.2.3 D, Dataset

To investigate the other factors' effects on the controller's communication, such as
culture, we obtained the operational data from several air traffic control centers in the
United States of America. D, Dataset were based on the operational data recorded in the
Kansas City in 1999. It consists of 8 samples, including four sectors, namely Sector 14,
Sector 30, Sector 52, and Sector 54. In total, there are 999 communication events. On
average, each traffic sample has 125 communication events. Around 47% of
communication was made by the radar controller, 53% was made by the pilots and the
other controllers (see (Manning, Mills et al. 2002) for details).

It was found that each traffic sample is around 15 minutes long with around 10 flights
in the sectors. The number of the identified flights in each sample is 15~20, while the
flights with both hand in and hand out message is even fewer. It could be used to test the
collective phenomena from human dynamics point of view. Therefore, we complement
the temporal part with this dataset.

3.2.4 D, Dataset

D, dataset was collected from around 840 hours controllers/pilots voice
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communication data that have been recorded in Chicago (ZAU) Air Route Traffic
Control Center during daily operation. Speech analysis was firstly conducted in order to
retrieve the temporal information of communication from the voice data. By the use of
speech segmentation toolkit, such as Spkdiarization toolkits (Meignier and Merlin 2010),
silence/audio activity were identified under a 2 seconds threshold. Then the start time and
end time of each communication event can be obtained. In total, there are 59,589
controller/pilot communication events in this dataset. Speech diarization to calculate
accurate data on 'who spoke when' is under investigation.

3.2.5 D, Dataset

D, dataset was collected from Shanghai Air Traffic Control Center in the early of 2012.
Controllers’ communication activities were recorded manually on site during the traffic
busy hours. There are more than twenty pieces of records, including in total 6,025
controllers’ communication activities.

Table 3- 3 shows the general information about this dataset.

3.3 Correlations  between Airspace Activities and Controllers'
Communication Activities

In this section, we show the results on the correlations between controllers'
communication activities and airspace activities. The airspace activity is the activity
associated with the aircraft and weather moving through the sector. The measurement of
airspace activity can be the counted number of aircraft under control of the sector during
a traffic sample (7"), or be other air traffic complexity measures. Here we use traffic
count and another two air traffic complexity metrics, namely the dynamic density (DD)
and the air traffic complexity based on dynamical system modeling approach (C-DSM).
Because the computation of air traffic complexity and traffic count will need detailed air
traffic information, therefore the analysis in this section is based on the D, Dataset.

3.3.1 Communication Measurements

Research on the air traffic controllers' communication have defined several
measurements of communications to identify the relationships between communication
and controllers' taskload or workload, many of which are related to a time window
t, (Bruce, Freeberg et al. 1993; Cardosi 1993; Porterfield 1997; Morrow and Rodvold ;
Corker, Gore et al. 2000). Following the work in (Manning, Mills et al. 2002), we list two
measurements in the study:

e (" the number of communication events occurring in 7, ;

e C”: the communication density, which defined as C” =L (C")” , and } is the
parameter to balance the frequency of communication.
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Table 3- 3 General information on the D, Dataset

Sector | Sector Record Time Num. of Num. of .
type name date period flights comm Duration
APP 1 N/A 1300 74 287 1h49m
APP 1 N/A 1500 81 367 1h49m
APP 2 N/A 0900 34 191 Oh53m
APP 2 N/A 1300 57 310 1h25m
APP 2 N/A 1400 46 237 1h03m
APP 2 N/A 1500 58 326 1h26m
APP 3 N/A 0900 44 247 1h31m
APP 3 N/A 1300 48 264 1h40m
APP 3 N/A 1500 43 194 1h34m
APP 4 N/A 0900 20 230 lh1lm
APP 4 N/A 1500 25 247 2h07m
ACC 9 0320 1000 39 190 1h26m
ACC 9 0320 1200 37 156 1h42m
ACC 9 0320 1400 68 253 2hl16m
ACC 9 0321 1000 31 108 1h21m
ACC 10 0300 1000 31 138 1h37m
ACC 10 0300 1300 53 220 2h03m
ACC 10 0300 1400 35 125 1h22m
ACC 14 0319 1300 62 235 1h47m
ACC 14 0319 1500 79 277 2h08m
ACC 14 0321 1300 72 329 1h57m
ACC 14 0321 1500 52 259 1h31m
ACC 91 0321 1000 49 237 1h43m
ACC 91 0322 0900 38 178 1h54m
ACC 91 0322 1300 49 222 1h58m
ACC 91 0322 1500 43 200 1h38m
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3.3.2 Dynamic density (DD)

The first complexity metric that was selected here to correlate controller's
communication dynamics is the dynamic density (DD) (Laudeman, Shelden et al. 1998;
Sridhar, Sheth et al. 1998). Nine traffic factors considered to contribute to the air traffic
complexity can be obtained from the trajectory data. Then DD is calculated as

DDzzg:wixfi,
i=1

where
*  f,: Number of aircraft in the sector;
*  f,: Number of aircraft with heading change greater than 15°,
*  f,: Number of aircraft with speed change greater than 10 knots or 0.02M;
* f,: Number of aircraft with altitude change greater than 750 feet;

* f;: Number of aircraft with 3-D Euclidean distance between 0-5 NM excluding
violations;

* /.. Number of aircraft with 3-D Euclidean distance between 5-10 NM excluding
violations;

* /. : Number of aircraft with 3-D Euclidean distance between 0-25 NM and vertical
separation less than 2000/1000 feet above/below 290,00 feet;

* f.: Number of aircraft with 3-D Euclidean distance between 25-40 NM and
vertical separation less than 2000/1000 feet above/below 290,00 feet;

* f,: Number of aircraft with 3-D Euclidean distance between 40-70 NM and
vertical separation less than 2000/1000 feet above/below 290,00 feet;

* w;: the associated weight.

3.3.3 Complexity based on dynamical system modeling (C-DSM)}

The second complexity metric being constructed is from dynamical system modeling
approach (Delahaye, Puechmorel et al. 2004; Delahaye and Puechmorel 2010). The
objective of dynamical system modeling is to uncover the inherent complexity of the air
traffic by the means of measuring the disorder of the traffic pattern, to capture all the
feature of complexity. Given a set of N observations of aircraft with each observation
containing time-related position and velocity, it is first to find a vector field
N:RxR’ — R’ which meet certain criteria. Based on this vector field, the Lyapunov
exponents are then computed indicating the sensitivity to the initial conditions of the
underlying dynamical system.

As the complexity map built from Lyapunov exponents presents the aggregate metric
of the complexity, our purpose is however to investigate the characteristics of the
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dynamic process of controller. Therefore, we employ the linear dynamical system
modeling from (Delahaye and Puechmorel 2010) to calculate the traffic complexity.
From the aircraft position X =[x,,y,,z]" and the speed ¥ =[v/,v,v!]", the dynamical
system is given as:

By minimizing the error
2
2

E(X)= 2”2—(@7@)‘

the coefficient matrix A4 can be obtained. Consequently, we compute the Eigen values of
the matrix 4 that control the evolution of the system, with the real part of the values
relating to the convergence or the divergence property of the system.

3.3.4 Results

For each sector in the exercise, we calculate the number of aircraft in the sector during
the 7, , the DD, and the real-part of the Eigen values of matrix 4 obtained from the C-
DSM approach.

The calculation of DD needs the predetermined weighting factors, and these factors
differ from sector to sector. Past work on the DD is aiming at predicting workload. Thus,
the determination of weighting factors are based on either the regression tests on the
relations between workload and DD elements or on controllers' subjective rating. Here
our purpose was to find the relationships between controllers' communication activities
and traffic factors. Considering the diversity of traffic patterns, we calculate the nine
traffic factors £, in the same sector of all the simulation exercises, as well as the numbers
of communication events occurred in the same widow. Then a multiple regression test on
the communications and nine factors is conducted, and the results of the weights are
presented in Table 3- 4. The last two rows of the table are the regression results and
controllers' subjective rating in (Sridhar, Sheth et al.). Not surprisingly, it is found that the
average values of fitting coefficients of our dataset are different from that was used by
Sridhar et. al. It is mainly because of the responses variables we used are the number of
communication events, whereas Sridhar et. at used workload. Traffic factor f,, i.e. the
number of aircraft in the sector, is significantly contributed to the communication,
whereas it does partly contribute to the workload. Both the regression tests with
workload or with communication are failed to capture impact of the traffic factors £, on
controllers' workload, the number of aircraft with 3-D Euclidean distance between 0-25
NM and vertical separation less than 2000/1000 feet above/below 290,00 feet, which
controllers think is important to their workload but the regression tests show no impact.
Nevertheless, we use both the coefficients obtained from regressions and those from
Sridhar et al. to calculate DD then compare DD with controllers' communication
activities.
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Table 3- 4 Regression results of the values of weight w,. Values in the parentheses are

negative.
w, w, w, w, W W w, Wy W,
AOUS 0.64 | 0.41 | 0.37 | 0.59 | 0.08 |(0.02)| 0.08 | (0.11)| 0.06
AR 0.59 | 0.04 | 0.51 | 0.24 |(0.49)| 0.02 | 0.11 |(0.01)| 0.17
AP 0.56 | (0.03)[(0.39)| 0.21 |(0.35)| 0.23 | 0.01 | 0.22 |(0.24)
OYOT 0.57 | 0.16 | 0.56 | 0.50 | 0.29 | (0.22)| 0.05 | 0.09 |(0.06)
OGRT 0.57 |(0.09)| 0.41 | 0.38 |(0.31)] 0.22 |(0.10)|(0.37)| 0.67
TE 0.84 | 0.05 | 0.22 | 0.44 |(0.02)|(0.14)| 0.29 |(0.07)|(0.10)
THLN 0.69 | 0.47 | 0.02 | 0.42 |(0.17)[(0.19)] 0.13 |(0.09) | (0.03)
TML 0.77 | 0.12 | 0.33 | 0.25 | (0.10)| 0.12 | (0.24)](0.05)| (0.18)
TP 0.53 |(0.05)| 0.77 | 0.35 | (0.06)| 0.23 | 0.09 | 0.00 |(0.06)
uJ 0.64 | 021 | 0.42 | 0.16 |(0.29) | (0.08)| 0.25 [(0.09)| 0.01
DENPG 0.91 | 0.15 | 0.43 | 0.16 | (0.10)| (0.07)| 0.18 |(0.15)](0.59)
DEPPO 1.24 | 0.01 |(0.03)] 0.49 | 0.00 |(0.00)|(0.11)](0.16)(0.19)
DESPG 1.03 | 0.16 | 0.19 | 027 |(0.23)] 0.16 |(0.24)| (0.44) | (0.55)
INIPO 0.99 | 0.25 | 0.39 | 0.23 | 0.28 | (0.02)|(0.38)](0.13)](0.07)
INNPG 0.72 | 0.19 | 0.13 | 0.50 |(0.39)| 0.18 | 0.02 | 0.02 | 0.04
INSPG 0.57 | 0.30 | 0.05 | 0.28 | 0.71 |(0.37)](0.00)|(0.17)| 0.11
ITBPG 0.90 |(0.03)|(0.06)|(0.26)| 0.31 | 0.15 | (0.11)](0.21)|(1.35)
ITMPO 0.35 | 0.48 [(0.45)| 0.07 | 0.04 | 0.25 | (0.24)](0.64) | (0.31)
ITNPG 1.32 [(0.25)](0.17) | 0.00 | 0.10 | 0.04 | 0.12 | (0.64) | (0.55)
ITSPG 1.58 [(0.52)] 0.15 | 0.14 | 0.07 [(0.11)| 0.00 |(0.38)| 0.03
VILLA 0.26 | 0.55 [(0.05)| 0.16 | 0.43 | 0.07 |(0.19)](0.16) | (0.94)
CREIL 0.43 | (0.08)| 0.31 |(0.04)|(0.05)|(0.14)| 0.08 |(0.47)|(0.39)
Mean 0.76 | 0.11 | 0.19 | 0.25 | (0.01)| 0.01 | (0.01) | (0.18) | (0.21)
R?sflgl::si;i(;;ﬂ 079 | 217 | 0 | 088 | 1.02 | 1.18 | 0 | 1.85 | 1.85
Subjective Ratings| 1 | 2.4 | 2.45 | 2.94 | 245 | 1.83 | 4 3| 211
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3.3.4.1 Correlations between C" and 7"

Given the transfer in/out times of each aircraft, the number of aircraft under control
within predefined duration is obtained by iteration. The dynamics on traffic volume and
communication events in ACC sectors of Exercise 100607B are illustrated in Fig. 3- 1.

It can be seen in Figure 3- 4 that the communication events vary with the change of
number of aircraft in the sector. With the obtained number of aircraft and the number of
communication events, we can have the correlations between them. To examine the effect
of traffic flow patterns on the correlation results, we calculate the correlations between
CY and T" in each sector with time steps vary from 10 seconds to 300 seconds. It was
observed that the relationships between two quantities fluctuate with time steps (see
Figure 3- 5). Although the total number of aircraft under control is highly correlated with
the number of communication events, which is in agreement with previous study
(Manning, Fox et al. 2003), the strength of the relationships change with the time step.
Meanwhile, it suggests that traffic diversity does influence the correlations results.
Communication in the en route sectors, such as AOUS, TE, are much more likely to link
with traffic volume than that in the Approach sectors, e.g. ITMPO, ITNPG. Possible
reason could be that, traffic in the approach sectors are smoother and order than the
traffic in the en route sectors. Controllers in charge of en route sectors have more
flexibility to control the traffic.

3.3.4.2 Correlations between communication, DD, and C-DSM

In the Table 3- 5, we present the correlation coefficients which show the relationships
between controller's communication activities and different air traffic factors of each
sector. Both the time window ¢, and the sampling time in DD are set to 2 minutes, while
the exponent £ is 2. The weighted parameters for computation DD are obtained by the
regression tests.

It can be seen from the table that DD has quite correlated with both communication
events and communication density. Whereas the C-DSP shows very weak relationship
with communication, the C-DSM in most of the sectors are negative correlated with the
DD. The last two columns present the average correlation coefficients and the associated
standard deviation. Again, the DD and C-DSM seem to be independent from each other.

From the results obtained so far, we draw the conclusion that air traffic complexity has
little impact on the controller's communication dynamics.
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Table 3- 5 Correlation coefficients between communication and traffic factors. Values in
the parentheses are negative.

Number of communication events Communication density DD VS C-

COMM VS DD| COMM VS C-DSM| COMM VS DD| COMM VS C-DsM|  PSM

Mean STD Mean STD Mean STD Mean STD Mean STD
AOUS 0.74 0.06 (0.10) 0.08 0.67 0.13 (0.08) 0.03| (0.26) 0.10
AP 036  0.19]  (0.01) 0.03 031 019  (0.00) 0.03] 0.17 020
AR 0.54  0.12|  (0.06) 0.100 055  0.15 (0.03) 0.03 (0.13) 0.09
CREIL 0.26 0.18 0.00 0.02 0.22 0.21 (0.00) 0.02l 021 0.16
DENPG| .57 0.09 (0.01) 0.03 0.53 0.07 (0.02) 0.02] (0.12) 0.08
DEPPO|  0.71 0.09  (0.02) 004 059 0.3 (0.02) 0.03| (0.12) 0.08
DESPG 0.55 0.14 (0.01) 0.03 0.50 0.09 (0.02) 0.02] (0.15) 0.05
INIPO 0.55 0.16 (0.01) 0.05 0.49 0.15 (0.01) 0.03| (0.09) 0.15
INNPG 0.68  0.09  (0.02) 002 065  0.05 (0.03) 0.02| (0.21) 0.06
INSPG 0.42 0.23 (0.01) 0.03 0.45 0.24 (0.02) 0.03| (0.15) 0.13
ITBPG 0.50 0.14 0.02 0.03 0.33 0.16 0.01 0.03| 0.12 0.11
ITMPO 026 030  (0.04) 004 020 027  (0.03) 0.05 (0.02) 0.17
ITNPG 0.68 0.11 (0.04) 0.04 0.49 0.09 (0.05) 0.03| (0.07) 0.10
ITSPG 0.64 0.13 (0.04) 0.05 0.46 0.13 (0.03) 0.03| (0.09) 0.21
OGRT 062  0.07  (0.02) 0.05| 064  0.04  (0.03) 0.04 (0.11) 0.12
OYOT 0.67 0.21 (0.00) 0.03 0.65 0.14 (0.01) 0.04 (0.10) 0.09
TE 0.65 0.16f  (0.01) 0.04 064 014  (0.02) 0.03| (0.04) 0.20
THLN 0.70  0.20 0.03 0.06f 057 0.6 0.03 0.07, 0.06 0.18
TML 0.62 0.26 (0.01) 0.05 0.50 0.25 (0.01) 0.02] (0.16) 0.07
TP 0.65 0.13 (0.02) 0.09 060  0.12  (0.01) 0.05 (0.05) 0.16
uJ 0.62  0.15  (0.05) 005 056 017  (0.02) 0.04 (0.06) 0.14
VILLA 0.26 0.27 0.02 0.05 0.20 0.22 0.04 0.07] (0.04) 0.12
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3.4 Temporal Characteristics of Controller's Communication

To explore the statistical properties of air traffic controllers’ communication, we
measured the length of communication L, the inter-communication times z,, and the
inter-communication gap length 7, capturing necessary temporal information for all the
first three datasets. Regarding on the D, dataset, speech recognition is being performed
to distinguish the controllers' communication and pilots, and we have succeed in
detecting silence and speech. At the moment, segments clustering are being tested to
group the communication events. Here, we add the inter-events times of radio
communication (including both controllers' and pilots') of D, Dataset, under the
assumption that controller's communication is closer to the pilots' communication.

3.4.1 Periodic Patterns of Controllers' Communication

We acknowledge that controller's communication is highly depending on the air traffic
flow input and output. Apart from D, Dataset, traffic information on the flights in the
sector can be derived from the content of communication in D, Dataset and D, Dataset.
We cannot, however, get the detail traffic data from D, Dataset, because it is
impracticable to decode flights' information manually.

For the purpose of simulation, the D, and D, Datasets were based on the normal
traffic samples, i.e. the busy hours' traffic, whereas the D, Dataset were basically
recorded during 24-hours daily operation. Thus, traffic flow characteristics are more
heterogeneous in the D, Dataset. Consequently, traffic heterogeneity will influence
communication activities. For instance, there would be more traffic in the sector between
10:00AM to 11:00AM, than that between 01:00AM to 02:00AM. We plot the distribution
of the numbers of communication events every hour in Figure 3- 6. It can be seen from
the figure, that there is a clear trend that communication is distributed according to the
time of the day. Nevertheless, the traffic flow characteristics have not been considered in
this work.

The empirical distribution of the length of communication in all four datasets that
made by both controllers and pilots are plotted in Figure 3- 7. While the communications
with the length less than 1 second were disregarded, the ones that are longer than 60
seconds were considered to be the combination of several consecutive events which are
within one minute. In total, 188,499 communication events were identified. It can be seen
from Figure 3- 7 that over 63% events last 3~5 seconds, with few events (less than 13%
of the total) lasting over 10 seconds.
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Figure 3- 7 Distribution of the length of communication of controllers and pilots
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3.4.2 Detrended Fluctuation Analysis (DFA)

To examine the statistical self-affinity of the inter-communication events of each
dataset, a 2nd-order Detrended Fluctuation Analysis (DFA) was performed. DFA has
been widely used to analyze the statistical characteristics of various stochastic processes
(Peng, Buldyrev et al. 1994; Kantelhardt, Zschiegner et al. 2002). In brief, the time series
x,,t€ N, is first converted into an unbounded process Y, by cumulative summation.
Then the converted time series is divided into N = N /s observations with the length of
window s . Local trend can be found by the linear or polynomial fitting of the data ¥, in
the window, and the fluctuation F(s) is computed by the root-mean-square deviation
from the trend. Typically, F(s) will increase with the window length s . A log-log plot of
F(s) against s is constructed, with a linear relationship indicates that F(s) oc s* which
can tell the time series whether appear to be long-memory processes or 1/ f noise.
Typically, the statistical property of the time series will be revealed by the exponent « as

e a<0.5: anti-correlated;

* «a ~0.5:uncorrelated, white noise;

e «a>0.5:correlated;

e a~=l1:1/f noise, pink noise;

* «>1:non-stationary, random walk like, unbounded;

* o ~1.5: Brownian noise.

Below we report the results using the region of 5 <5 <100 for estimating « .

As shown in the Figure 3- 8, four exponents of the five are around 0.65, indicating the
datasets are long-range correlated. Note that D, Dataset was constructed from eight 15-
minutes long samples, and there are in total less than 470 controllers' communications.
Few data points in D, Dataset could be the main reason that controllers' communications
are uncorrelated. In contrast, the other four datasets exhibit a power-like form which is
slower than exponential decay. It suggests that controllers' communication behaviors are
long-range dependent. The exponents of each sector of each exercise of D, is given in
the Table 3- 6.
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Table 3- 6 DFA scaling exponents of each sector of each exercise

100607B | 100610A | 100610B | 100611A | 100611B | 100614B | 100615A | 100615B | 100616A | 100616B | 100617A | 100617B | 100618A | 100618B | Mean Std
AOUS 0.47 0.50 0.49 0.44 0.54 0.49 0.73 0.50 0.57 0.51 0.54 0.47 0.57 0.51 0.52 0.07
AP 0.45 - - 0.56 0.61 0.61 0.56 0.41 0.62 0.59 0.84 0.69 0.62 0.58 0.60 0.11
AR 0.62 0.51 0.46 0.61 0.44 0.64 0.60 0.61 0.44 0.63 0.57 0.46 0.70 0.37 0.55 0.10
CREIL 0.75 0.56 0.97 0.42 0.37 0.54 0.78 0.45 0.60 0.62 0.60 0.59 0.76 0.75 0.62 0.16
DENPG | 0.69 0.50 0.57 0.68 0.49 0.61 0.59 0.55 0.72 0.43 0.62 0.64 0.66 0.61 0.60 0.08
DEPPO 0.67 0.54 0.60 0.47 0.62 0.75 0.71 0.66 0.56 0.47 0.65 0.64 0.48 0.54 0.60 0.09
DESPG 0.53 0.56 0.65 0.53 0.56 0.49 0.65 0.62 0.62 0.45 0.66 0.53 0.59 0.53 0.57 0.07
INIPO 0.61 0.53 0.47 0.53 0.65 0.54 0.67 0.74 0.54 0.68 0.68 0.50 0.60 0.46 0.59 0.09
INNPG 0.67 0.63 0.66 0.61 0.79 0.63 0.55 0.57 0.59 0.72 0.48 0.53 0.62 0.67 0.62 0.08
INSPG 0.53 0.47 0.60 0.56 0.54 0.61 0.65 0.61 0.55 0.49 0.52 0.59 0.59 0.42 0.55 0.06
ITBPG 0.60 0.58 0.49 0.78 0.74 0.76 0.77 0.71 0.90 0.55 0.71 0.59 0.65 0.54 0.67 0.12
ITMPO 0.61 0.61 0.58 0.61 0.46 0.62 0.73 0.57 0.68 0.65 0.62 0.57 0.70 0.54 0.61 0.07
ITNPG 0.56 0.57 0.55 0.62 0.57 0.53 0.54 0.63 0.61 0.71 0.49 0.61 0.63 0.68 0.59 0.06
ITSPG 0.53 0.64 0.48 0.56 0.56 0.49 0.61 0.59 0.55 0.51 0.56 0.56 0.58 0.49 0.55 0.05
OGRT 0.58 0.60 0.49 0.74 0.93 0.46 0.70 0.52 0.59 0.46 0.58 0.56 0.68 0.43 0.60 0.14
OYOT 0.73 0.63 0.71 0.72 0.43 0.54 0.52 0.53 0.63 0.60 0.58 0.64 0.59 0.64 0.61 0.09
TE 0.74 0.73 0.49 0.50 0.42 0.69 0.70 0.54 0.67 0.61 0.82 0.57 0.64 0.58 0.62 0.11
THLN 0.61 0.71 0.82 0.48 0.73 0.69 0.55 0.53 0.74 0.58 0.49 0.66 0.58 0.57 0.62 0.10
TML 0.74 0.66 0.61 0.45 0.43 0.48 0.70 0.65 0.46 0.26 0.69 0.59 0.63 0.35 0.55 0.15
TP 0.61 0.51 0.56 0.56 0.61 0.69 0.36 0.62 0.56 0.56 0.53 0.38 0.76 0.43 0.55 0.11
UJ 0.57 0.64 0.63 0.58 0.49 0.53 0.61 0.70 0.65 0.47 0.48 0.58 0.48 0.63 0.57 0.07
VILLA 0.74 0.62 0.60 0.83 0.64 0.76 0.57 0.77 0.76 0.18 0.71 0.72 0.69 0.38 0.64 0.17
Mean 0.62 0.58 0.59 0.58 0.57 0.60 0.63 0.59 0.62 0.53 0.61 0.57 0.63 0.53
Std 0.09 0.07 0.12 0.11 0.14 0.10 0.10 0.09 0.10 0.13 0.10 0.08 0.07 0.11
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3.4.3 Inter-communication Times Distribution

Building upon prior research on human dynamics, we investigated the distribution of
inter-communication times, the inter-arrival times 7, , and inter-communication gap
lengths 7, . The determination of the inter-arrival times is straightforward, whereas to
calculate the inter-communication gap lengths we need the detailed communication
contents which are unavailable. Because it is impractical to listen to the large datasets to
separate the communication events. Note that Cardosi has examined the time that is
required to successful transmit a message containing a maneuver to a pilot(Cardosi 1993).
She found that the average total time required is 11 seconds. Based on this result and the
empirical distribution of the length of controllers' communication, we propose a simple
scheme to compute the inter-communication gap lengths. Consider that the most of
communication (for both controllers and pilots) last 3~5 seconds and controllers has to
listen to the readback of pilots to ensure pilots understand the instructions correctly, thus
it is assumed that the minimum inter-communication gap lengths might be 8 seconds.
Accounting for Cardosi's founding, the minimum inter-communication gap length is 11
seconds while with a vey small probability the minimum varies between 8 and 11. We
then combine the inter-arrival times that less that the minimum into a communication
transaction.

In the following, we examined the empirical inter-communication data using
Maximum Likelihood Estimation (MLE) to estimate four types of distribution, namely
Exponential distribution, Lognormal distribution, Power law distribution, and Inverse
Gaussian distribution.

(1) Exponential Distribution

Poisson process has long been used to model the stochastic events from various fields,
to express the probability of a given number of events occurring in a fixed interval of
time, e.g. the arrival flights in an airport. An exponential distribution is used to describe
the time between events in a Poisson process. The probability density function of an
exponential distribution is given as

Ae ™, x>0,

f(x;l):{ 0, x<0.

where A is the arrival events rate. If A is constant, then the process is known as
homogeneous Poisson process, whereas if A4 is depending on time, then the process is
referred as non-homogeneous Poisson process.

(2) Lognormal Distribution

Although the Poisson process has been well applied to mimic the arrival aircraft in a
sector or in an airport, Popsecu et. al. have detected a lognormal distribution of inter-
arrival times of air-ground communication from operational voice data (Popescu, Augris
et al. 2010). It might indicate that there should be the similar distribution for the
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incoming traffic. The lognormal distribution has also been reported in biology, hydrology,
and finance, etc. In probability theory, the probability density distribution is

2
Xp _M},x>o’

F o) =—— e {
a x\27mo? 20°

where 4 and o are the parameters that are related to the log-scale and shape
respectively.

(3) Power law Distribution

Power law distribution has been reported in human dynamics studies to describe
heavy-tailed features of human activities. It has attracted particular attention due to its
mathematical properties. Furthermore, power law statistics are a hallmark of critical
phenomena, which appear in a diverse range of natural and man-made systems, ranging
from physics, through biology, to economics, and sociology. In practice, few empirical
data obey power laws. For the most cases, it is convenient to assume a lower bound x, .
over which the data can be described in the form of power law. The power law for a
continuous variable has the form

/()= “‘l(ij .

X X,

min min

A brief history of power law and the empirical evidences of power law distribution can
be found in (Mitzenmacher 2004) and (Clauset, Shalizi et al. 2009).

(4) Inverse Gaussian Distribution

The last probability distribution we shall fit is the inverse Gaussian distribution, also
known as Wald distribution. It describes the distribution of the time a Brownian Motion
with positive drift takes to reach a fixed positive level, i.e. the first passage time of the
Brownian process. The probability density function is in the form of

/1 1/2 —//L(x— 2
| eXxp————— )
27wx 2u°x

SO, )= [ ;
where >0 is the mean and A >0 is the shape parameter. The distribution is bounded
below by zero. To allow for a lower bound greater than zero, a shifted Wald distribution
is defined as

f(0,a,7) = ‘("‘7”“’”2},%0.

a exp{
J27(x—6)’ 2(x-0)
Compared with the standard inverse Gaussian Distribution, the mean of shifted Wald
distribution is £ =a/y , and the shape parameter A1 =a”. Interestingly, shifted Wald

distribution generally produces an excellent fit to the empirical Response Times
distribution in cognitive psychology. We will introduce it in more detail in the
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psychological interpretation part.

3.4.3.1 Inter-arrival Times

To estimate the parameters of each model, we use the method of Maximum Likelihood
Estimation. Table 3- 7 gives the fitting results on every dataset. LR in the table is the
log-likelihood ratio, while the Prop shows the proportion of data points in the dataset
that have value bigger than x . The probability density functions of inter-
communication events time for the datasets have been plotted on log-log scale (Figure 3-
9). The data points were logarithmic binned for better visualization. Dash-lines are the
inverse Gaussian fitting to the each dataset. It can be seen that communication activities
do exhibit the heavy tailed patterns.

As shown in Table 3- 7, the best model to fit the data differs from dataset to dataset. the
Inverse Gaussian is the best to fit the data obtained from D, and D, datasets, while it is
failed to capture the inter-arrival times less than 15 seconds (see Figure 3- 9 at 7 ~10'?
seconds) of D, and D, datasets. The power-law distribution is much better to describe
all the inter-arrival times in the D, and D, datasets, with a minimum thresholds at 12
seconds and 13.3 seconds respectively. The diversity of the distribution of inter-arrival
times might lie in the traffic patterns that have been discussed above. Compared to
operational data in D, and D, datasets, the communications made by controllers of the
first two datasets are operated during busy traffic hours. The power-law fittings for the
first two datasets require the minimum inter-arrival times longer than 11 seconds. It can
be seen in the Figure 3- 10, the inter-communication intervals that are larger than 11
seconds are exhibiting the power law decay. The power-law forms with exponents 2.64
and 2.71 seem to capture the collective behaviors of the controllers, suggesting that the
underlying decision processes of the controllers are the similar ones explained by the
human dynamics models. Whether or not individual controller follows the same rule is
unclear. To test the hypothesis, we analyze the inter-communication gap lengths of the
controllers computed from D, datasets and D; datasets.
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Table 3- 7 Probability fitting to the empirical data (inter-TRs)

Name PDF Parameters D, D, D, D, D,
A 19.1842 17.0713 17.9953 39.6385 25.6036
Exponential de ™ LR -314251 -37863.6 -1657.19 -250009 25307
AIC 628504 75729.2 3316.38 500020 50616
u 2.59313 2.56279 238417 3.36411 2.70115
Lognormal 1 exp {_ (Inx— u)° } o 0.756983 0.686706 0.946182 0.779025 0.977448
2ol 2572 LR -296732 -35578.7 -1596.06 242184 24661
AIC 593468 71161.4 3196.12 484372 49326
a 2.42 2.7078 2.8 4.4108 3.9468
X 12 13.3387 29 133.3269 97
Power Law x“ LR -155460 -15598 -332.322 -7706.4 -1039.2
AIC 310924 31200 668.644 15416.8 2082
Prop 46.62% 43.41% 17.61 2.91% 3.49%
u 19.1842 17.0713 17.9953 39.6385 24.6435
Inverse 217 —ax-w)? A 23.5348 27.5143 13.1099 48.5121 15.9193
Gaussian {2 I } eXPz—ﬂz X LR -223361 -26511 -1188.36 -192603 -19067.9
AIC 446726 53026 2380.72 385210 39219.8
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3.4.3.2 Inter-communication Gap Lengths

Inter-communication gap lengths of D, dataset and D; datasets have been obtained
using the proposed scheme. To estimate the exponents for the power-law distribution, we
adopt the algorithm illustrated in (Clauset, Shalizi et al.).

In the D, dataset, it is very interesting to observe that the behaviors of inter-activities
dynamics of the most of individual controller, represented by a sector in an exercise, can
be fitted with power-law form, although the exponents vary between 2.0 ~ 3.8. We also
find that the exponents fitted for the ACC sectors normally are between 2.0 and 3.0. In
contrast, the exponents for the approach sectors are generally bigger than 3.0. Figure 3-
11 plots the distribution of inter-communication gaps of each sector in exercise 100607B
(the distributions of 13 other exercises are given in the Appendix). However, the
distributions of inter-communication gap lengths in datasets are more heterogamous.
Although the intervals show long tails, most of data can not be fitted with power law (see
Appendix).

A recent report of human dynamics (Wu, Zhou et al. 2010) has shown both empirical
evidences and simulation results for the bimodal distribution rather than the single form
of power law distribution in human communications. A significant difference from the
Barabasi's model (Barabasi 2005) is that, aside from the priority-based queuing for
decision-making, the random Poisson processes as well as the interaction among
individuals contribute to the heavy-tailed feature of human dynamics. We note that
controller's communication shows a heavy tailed behavior, and it is not the bimodal
distribution uncovered in short message-sending activities (Wu, Zhou et al. 2010),
therefore the cut-off and heavy-tail here should be interpreted with caution. The major
factors are the inter-dependence of communication and the dependence on the pilots'
communication. We hypothesize that the Lévy process with positive drift that will well
explain the priority of strategies management process and the adaptive behavior of the
controller.
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Figure 3- 11 Distribution of inter-communication gap lengths of all sectors in the exercise
100607B. ACC sectors are the figures (a)~(j), while approach sectors are the figures
(h)~(t). The last two figures (u) and (v) are the military sectors.
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3.5 Psychological Interpretation of the Intervals

We do observe the heavy-tailed features in the air traffic controllers' communication
activities. Although human dynamics models may explain the origin of the distribution of
the inter-communication gap intervals, the interpretation of controllers' communication
activities should be validated through other theoretical approach.

The communication behaviors of air traffic controllers are the outcoming of their
cognitive processes which have been long investigated in the previous work. To further
investigate the temporal behavior of air traffic controllers' communication activities, we
turn to psychological interpretation. In the psychological item, air traffic controllers'
communication behavior can be represented as a one-choice decisions' activities,
decisions that are based on information varying along with time. Inter-communication
intervals, i.e. when to communicate with pilots, are therefore defined as the response
times. The study of such response times is one of the central questions in psychology.
Experimental investigations of the response times have been conducting aiming to
analyze the psychological process of human being. Based on the analyses of response
times, the computational models have been developed to account for the cognitive
process during a decision making. Prevalent model that has been successfully applied to
a wide range of paradigms is the diffusion model (Ratcliff and Murdock 1978), that
provides a theoretical account for the parameters estimation that can be interpreted in
terms of the cognitive components underlying the decision process. Previous research has
shown that the parameters of the model correspond to the psychological processes that
they are assumed to represent, such as the rate of information accumulation which is
influenced by task difficulty or participant ability, response caution, a priori bias, and the
time taken by processes unrelated to decision making(Ratcliff and Murdock 1976;
Ratcliff and Murdock 1978; Ratcliff, Van Zandt et al. 1999; Ratcliff and Rouder 2000;
Ratcliff 2001; Ratcliff and McKoon 2008; Matzke and Wagenmakers 2009; Ratcliff and
Van Dongen 2011; Jepma, Wagenmakers et al. 2012).

There are four main factors of the diffusion model, the drift rate v, boundary
separation a, starting point z, and non-decision time 7, . Drift rate v accounts for the
mean rate of information accumulation. It is determined by the quality of the information
extracted from the stimulus. The second parameter a is used to quantify the distance
between the two response boundaries, i.e. the time for information accumulated to make
a decision. While the starting point z can be represented as participants' a priori bias for
one the two response alternatives. Non-decision time 7, measures the duration of
processes that are unrelated to the decision process. Figure 3- 12 depicts the diffusion
model.

The primary statistical models that have been generally employed in the cognitive
psychology to analyze the reaction times are ex-Gaussian (i.e. exponentially modified
Gaussian (EMQG)) and shifted Wald distributions. Several studies have tried to interpret
the statistical modeling with the help of diffusion model(Schwarz 2001; Heathcote 2004;
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Matzke and Wagenmakers 2009; Jepma, Wagenmakers et al. 2012). For example,
Schwarz used shifted Wald model to analyze the response times, and concluded that the
shifted Wald model offers a broad cognitive interpretation of its parameters(Schwarz).
The interpretation of the parameters can be tested using standard statistical tools, such as
likelihood ratio tests.

Here we have found the inverse Gaussian distribution, i.e. the Wald distribution, for the
inter-communication times of the two operational datasets, and the power-law
distribution for the inter-communication gap lengths of the two real-time simulation
datasets. Although the related models can well explain the underlying mechanisms, there
are still on going questions about the temporal behavior of the air traffic controllers'
activities.

A

carrect
response

Figure 3- 12 Illustration of the diffusion model. Picture is drawn from (Ratcliff and
Rouder 1998)

3.6 Chapter Summary

The use of the underlying mechanisms that govern system evolution is a basic way to
model, predict and control system. Investigations on historical data have been uncovering
the striking statistical properties of human activities, leading us to a quantitative
understanding of the rules governing human actions. Air traffic complexity has been
studied as one the main factors affecting air traffic controller's workload. The results
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clearly show that complexity cannot reflected by the communication activities, thus
suggesting the adaptive nature of the human system. Then we use detrended fluctuation
analysis to study the controller's inter-communication activities and found that
controllers' communication activities are long-range correlated. Finally we show that
controller's inter-communication does exhibit the heavy-tailed feature similar to other
daily human interactive activities.

The study of temporal characteristics of the controllers' communications, unmask the
underlying rules that controllers execute the tasks. The temporal behavior, defined as the
selective behavior of choosing an aircraft to communicate, may be driven by other
mechanisms that are still unknown. We anticipate that with the knowledge of previous
work on workload and cognitive complexity, the use of data-driven approach will further
advance the understanding of the dynamics of the ATM system as a human-driven system.
We believe that human activity will be quickly adapted to the contextual environment
while human brain, which drives the external activity, evolves slowly.
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CHAPTER 4 THE SPATIAL BEHAVIOR OF CONTROLLERS'
COMMUNICATION ACTIVITIES

Air traffic controllers are able to create control strategies according to the traffic
distribution and airspace environment. The understanding of mechanisms that controllers
use has the potential to both academic and engineering fields. Cognitive studies have
demonstrated the role of structure-based abstraction in mitigating air traffic controllers'
cognitive complexity (Histon, Hansman et al. ; Histon and Hansman Jr ; Histon and
Hansman). They mainly use four types of abstractions that are standard flow, critical
points, grouping, and responsibility. Such findings provide insights into our
understanding of the spatial behavior of the controllers, which is likely related to the
dynamics of their cognitive activities. We define spatial behavior as the way that
controller select an aircraft to communicate with, which is regarding on the information
gathering and diffusion processes during air traffic control. Thus, the study of spatial
behavior has significant scientific and engineering potential. First, it will advance our
knowledge about quantitative description of underlying mechanisms of human not only
doing air traffic control task, but also to other tasks that are with high pressure. Second,
the understanding of spatial behavior can be applied to the development of artificial
intelligent automation systems improving the ATM system performance.

This chapter presents the methodology to investigate the spatial behavior of air traffic
controllers' activities through their communication. In Section 4.1, we first define the
problem, and then summarize the related work. Section 4.2 presents the temporal
network approach that we propose to the analyze controllers' spatial behavior. Empirical
data and network analysis are reported in Section 4.3 and Section4.4. Finally, conclusion
remarks are drawn in Section 4.5.

4.1 Introduction

The last decade has witnessed the improvement of the ATM system in its safety,
capacity, and efficiency. Great efforts have been done to enhance the performance of the
ATM system, ranging from the introduction of new operation concepts, through the
deployment of the advanced automation systems, to the long-term research activities. In
spite of the ongoing deployment of the new technologies and operational concepts in
both SESAR in Europe and NextGen in the US, air traffic controller is, and continues to
be, in the core the ATM system. The understanding of controller’s activities is therefore
critical to the system safety.
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In many problems arising in a human-driven complex system, it is necessary to
evaluate the operator’s activities. Among various internal activities and external activities,
controllers' mental workload has long been investigated in the air traffic management
society (see review on controllers' activities in Section 2.3). Since the ATM system is in
the way of transforming, there are also ongoing attempts to analyze the controller’s
activities in the future operation environment. Human-in-the-loop studies have been
conducted either to develop new cognitive metrics, or to evaluate the decision support
tools under the future operation concepts (Li and Hansman 2009; Kupfer, Callantine et al.
2011). Issues for the implementation of key operational change, such as trajectory-based
operation and data communication, have been progressively identified (Lacher, Battise et
al. 2011). Although the studies on workload and other human factors related topics have
been impressive, up until now, quantifying and predicting the controllers' activities
remains an open problem. Classical methods usually focus on the specific problems, e.g.
analysis of controllers' workload in a certain sector. With a few exception (Histon and
Hansman Jr ; Clarke, Durand et al. 2011), much less has been done toward the
understanding of the dynamics process of air traffic controllers' activities.

4.1.1 The Spatial Behavior of the Controllers

In fact, the process of managing traffic is the information diffusion process by the
controller. In order to manage the traffic, controller has to gather and spread information
to the aircraft to avoid traffic conflict, ensuring aircraft can reach their destinations
successfully. Both the types of information and the sources for accumulating information
are generally clear (see Section 2.2.2.1). However, little is known about the way how
controllers diffuse information. As aircraft are moving in the sector at high speed, the
physical relationships between aircraft change quickly. Many of the complexity metrics
are based on the measurements of such physical relations. Rather, we believe that the
spatial distributed aircraft in the sector are not exactly the same as that in controllers'
minds. Although some complexity measures account for the cognitive parts of the
controllers, such measures cannot predict complexity correctly largely due to the
dynamical changes in controllers' cognitive processes.

The spatial behavior we defined here captures two aspects of controllers’ cognitive
activities:

(1) The layout of the traffic in controllers’ mind, i.e. the relationships between the
flights recognized by controller after processing of current traffic situation.

(2) The dynamical process occurring on the layout for the information propagation.

4.1.2 Motivations

The impetus to study the spatial behavior of controllers is multifaceted. First, the
spatial behavior can provide a fundamental understanding of information process at a
macroscopic level, and consequently will contribute to a more accurate understanding of
workload since both workload and spatial behavior are depending on the cognitive
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activities. Second, it is expected that revealed spatial patterns are related to the physical
position of aircraft in the sector to some extend, thus it will give insights into the airspace
design and air traffic flow planning. Also, it will leverage the development of the
artificial intelligence systems that alleviate controller’s taskload. Last but not the least, it
may be beneficial to our knowledge beyond the ATC domain through the investigation of
the spatial behavior of controllers.

4.1.3 Objectives

Like human dynamics, the research on human mobility indicates that there is a simple
and general rule which governs our spatial activities (see Section 4.1.4.2). Here raise the
question about air traffic controllers' activities. Whether or not there exist the similar
patterns among controllers in selecting aircraft to control, and that phenomena can be
explained by a simple mechanism? Our principal intention was not to find the specific
threshold of mental workload; rather, it was to provide a novel method to reveal the
underlying patterns. On the analogy of the human mobility, the air traffic controllers'
activities problem can be described as the follows. Each flight can be denoted as a place
or node with a validated time frame, and controller has to visit these nodes in order to
transmit the information that is regarding on changing flights’ motions, so that each one
of the flight can reach its destination without involved in a conflict.

Our analysis of air traffic controllers' spatial behavior will be performed on the
temporal sequences of the voice communication data. The time series of controllers’
voice communication events contain rich information about how controllers manage
traffic, since voice communication is the only way for the information flow between
controllers and pilots in the air traffic control centers without data communication (see
Section 2.2.4 Information diffusion via voice communication). Therefore, the sequence
of controller’s communication can be seen as controller’s trajectory of visiting the flights,
i.e. the information diffusion trajectory. One of our main objectives here is to identify the
spatial related patterns in the controllers’ communication. The information propagation
process is also interesting to us.

4.1.4 Related work

4 .1.4.1 Structure-based Abstraction

Although contextual factors such as airspace configurations and traffic distribution will
influence controller’s activities, cognitive analyses have unrevealed the common
strategies employed by controller while controlling traffic (Histon and Hansman Jr
2008). Histon and Hansman have shown that how air traffic controllers use structure
information, which is defined as the physical and informational elements in the working
context, to mitigate cognitive complexity. Four types of structure-based abstractions are
summarized below based on their report.
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e Standard Flow

Standard flows are formed by many aircraft that orderly fly in the same lateral paths.
Controllers concerned that the standard flows are a key structural feature of the sector.
The standard flow abstraction captures the common spatial trajectories, and reduces the
core cognitive tasks of the controllers. For example, aircraft in the standard flow
normally have the same attributes, such as aircraft altitudes, speeds, the events requests
from pilots etc, and it will facilitate to project aircraft trajectory or to predict potential
conflicts. The most powerful mechanism by which standard flow simplifies the mental
workload model is reducing the degrees-of-freedom of the aircraft.

* C(Critical Point

Critical points are the high priority regions that have been identified by the controllers
in the sector during daily operation. Air traffic controllers will pay much attention to the
aircraft that are near critical point. A navigation aid where two different traffic flows
merge into a sing one is an example of critical point.

* Grouping

Grouping abstraction is a kind of aircraft/weather clustering by the controllers. Aircraft
flying with the same route, or aircraft that have the same performance, are the basis of
grouping abstractions. Formulation of these groups also reduces the mental workload
model in that represent the aircraft in the group by the group properties.

* Responsibility

By delegating the tasks to the downstream controller or pilots, controllers can limit
their scope of monitoring, evaluating, and projecting processes.

The above four types of structure-based abstractions describe the powerful
mechanisms that mitigate cognitive complexity and simplify mental workload. Note that
all of them are based on the spatial distributions of aircraft. Quantitatively capturing such
mechanisms are still lacking.

4.1.4.2 Human Mobility

In the past few years there has been a surge of interest in both empirical studies of
human daily activities and development of models to explain the observed phenomena
(Barabasi 2005; Oliveira and Barabasi 2005; Malmgren, Stouffer et al. 2009). We have
presented the existing results on temporal patterns of human actions in Section 3.1.1.
This section will devote to the research on anther side of human activities, i.e. human
mobility.

The dynamic spatial distribution of individuals is fundamental to the successful design
and management of human-driven systems, such as epidemic diseases control (Colizza,
Barrat et al. ; Vespignani ; Song, Koren et al.), transportation engineering (Song, Koren et
al.), and economic forecasting (Song, Qu et al.). Scientists have drawn attention to
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characterize and model the trajectories that humans follow during daily activity the in the
past few years. Quantitative assessments from the circulation of bank notes (Brockmann,
Hufnagel et al.), and mobile phone data sets (Gonzalez, Hidalgo et al. 2008), demonstrate
that the human trajectories show a high degree of temporal and spatial regularity. The
overwhelming results indicate that the aggregated jump-size which is the distances
covered by an individual between consecutive movement, and waiting time — the time
spent by an individual at the same location, are fat-tailed. Both of the two properties can
be well described by the power law form. In (Song, Qu et al. 2010) the limits of
predictability in human mobility has been studied by measuring the entropy of human
trajectory. It was found that there is a 93% potential predictability in human mobility
across the whole data. The underlying similarity among human actions indicates that
there exists the same law, which governs human activity.

Models based on Lévy flights and Random Walk have been proposed to explain the
mechanisms which lead to the scaling law of human trajectories (Colizza, Barrat et al.
2007). While Zhou et al. (Han, Hao et al. 2011) considered the hierarchical organization
of traffic systems as an important factor in their model to mimic the scaling properties of
human mobility. Song et al. (Song, Koren et al. 2010) added two principles that govern
human trajectories into traditional random-walk models. The first one is exploration that
is the slowing down trendy of exploring a new locations; the second principle is
preferential return to the locations visited frequently before.

4.2 Method

4.2.1 A Network Approach

To trace the trajectory of controller visiting flights, we turn to network approach.
Network is widely used to represent the patterns of connections between the components
of complex system. A plausible representation of the relational information transmitting
in dynamic systems such as a social community is stochastic network or temporal
network that is topologically rewiring and semantically evolving over time (Ahmed and
Xing 2009).

Recently, there is increasing interest in the study of temporal networks that encode the
time-dimension into the classic network analysis (Chechik, Oh et al. 2008; Ahmed and
Xing 2009; Holme and Saramiki 2011). For example, it has been used to study the
information spreads on the social network (Liben-Nowell and Kleinberg 2008; Rocha,
Liljeros et al. 2010), or extracting the information from the posts on the Web community
to build the temporal networks to analyze the prostitution activities (Rocha, Liljeros et al.
2010), etc.

4.2.2 Mapping Time Series to a Network

In order to study the spatial behavior of controllers’ activities through a network
approach, we have to construct the network from their activities. To unmask the hidden
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dynamics from the time series, techniques that convert time series into a graph following
with network analysis are being widely reported (Zhang and Small 2006; Xu, Zhang et al.
2008; Gautreau, Barrat et al. 2009; Haraguchi, Shimada et al. 2009; Vassilis 2009).
Methods that transform time series into complex network can be roughly classified into
the three classes (DONNER, Donges et al. 2010):

*  Mutual proximity of different segments of a time series. For example, in the
recurrence plot approach, nodes are defined from the phase space trajectory and a

link between two cycles when two nodes are rather similar (Marwan, Donges et
al. 2009);

* Convexity of successive observations (i.e. visibility graphs). Algorithm for
converting time series into a graph can be found in (Lacasa, Luque et al. 2008);

* Transition probabilities between discrete states (transition networks).
See(Campanharo, Sirer et al. 2011).

We propose a novel method for the transform of the temporal activities data into an
undirected weighted network. The assumption is that each controller’s communication is
related to a flight, disregarding the events that are not related to the flights (e.g.
communication with the assistance controller).

4 2.2 1 Definition of the Nodes

The nodes of the network are the flights traversing the sector. Each node will have a
validated time period that accounts for its flying time in the sector, so that controller
cannot visit the flight before the flight entering or leaving the sector. In the current study,
the communications with other controllers are not considered yet.

4.2.2.2 Determination of the Edges

The edges between the nodes should indicate the relationship between the two flights.
A practical algorithm that transform the time series into a network is the visibility graph
(refer to (Lacasa, Luque et al. 2008)), Given a series of time data, a connection between

two arbitrary data values (7,,y, ) and (¢,,y,) if any other data (¢,,y, ) placed between

them fulfills the criteria that

t,—t

C

t,—t,

a

Y.<y, +(V,= )
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Figure 4-1 shows an example of transferring the random time series data into a graph.

0.9r
0.8f
0.7¢

0.6- |

0.4r |
03r |
02r |

01t |

Figure 4- 1 The visibility graph algorithm. (a) Each of the vertical bars stands for a data
point in the time series with the horizontal denoting the time and Y representing the value
of the data. It is obviously that scaling in both dimensions has no influence on the
connectivity of the nodes. (b) the associated network construct by the visibility graph

algorithm.

The visibility graph algorithm is efficient for large datasets analysis. However, to
determine the connectivity between the flights we must take controllers’ behavior into
account. We can determine the linkages from the physical relationships of flights, for
instance the distances that have been used to calculate the traffic complexity. Rather, we
prefer to link the nodes using the temporal communication data on the hypothesis that
these relations are mapped from the physical relations by the controller. As we know, it
is obviously that the two flights have no relationship if all of their communications were
separated by a long period of time. On the contrary, they should have some kind of

relation if they were called in the short time span.

To determine whether two nodes are connected or disconnect, we first calculate the
temporal distances 6(i, j,#) =1, —1,—1, between flight i and flight ;j at the time (¢, )
when flight i was called, where 7, is the time when flight j was called and /; is the
communication duration of event i. Since there will be no relations between flight i and
the later incoming ones after i has been transferred out to the downstream sector,
therefore we define service time s, , as the time window when flight i is staying within
in the sector. Below we describe the methods to build an aggregated network and a
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temporal network.

4.2.2.3 Time Aggregated Network

A predefined time window 7, is used to determine the connectivity between the
nodes. If6(i, j,¢) is smaller than z_,_, then we say these two flights are related and a link
will be added between the corresponding nodes; otherwise the nodes are not connected
directly. The adjacency matrix 4 of the network G can be obtained as
I, Ifor(,j,t)<r

min >

o and s, Ns; #D
A(,j) = .

0, otherwise.

Especially, we define A(i,i) =0. Note that there may be more than one links between
flight i and flight j, we define another two matrices N and W along with the
adjacency matrix 4. While N(i, j) records the number of link A(i, j) occurred across
the whole time span, W (i, j) indicates the strength of the relation between the two flights.
There are certain circumstances that controller has to read back to the pilots, or to send
acknowledgements transmission. To filter the noise like that, we use N, as the
threshold for the determination of edge-stability. Based on o(i, j,#) and N(i,j), the
relational distance, W (i, j) , is calculated as

1 1
N(la .]) O0t(i,,t)<Tpin f(é‘t(la .]: t))

N(i,j)>N,

N(i.j)

Wi, j)= exp

min

where f(x) is the function to calculate the weight given the parameter x. In the paper
weuse f(x)=ux.

For illustrative purpose, in Figure 4- 2 and Figure 4- 3 we present a scheme of the
communication time series and its associated network.

4.2.2.4 Temporal Networks

The network G constructed above contains much information about the controller’s
communication activities. It is expected that the network properties can recover
controller’s behavior dynamics. The time ordered behavior, i.e. the sequence of
communications, is however excluded. For instance, the degree of flight AC7 in Figure
4- 4 is five which tells that there were five flights have been involved with AC7. From
the snapshots, we can see that the neighbors of AC7 change with time, and the most
frequent degree of AC7 is actually two. In order to capture this, we refer to (Pan and
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Saraméki 2011) and define the temporal network G(z) by a set of quadruplets
e=(i, j,t,0t) indicating the connecting flight i and flight ; at time t with the cost of o7.
Similarly, there will no relation between flights i and j if the service times s; and s,
are not intersected. Thus, we have

1, Ifor, j,1)<
e(i,j,r,&)={0 (hrn)<z

To analyze the local temporal dynamics, we introduce the observation time window 7, .
The temporal network will then be split into n= (7, T, )/, network snapshots.

min >

and s, Ns, #J

, otherwise.

ax

4.2.3 Network Analysis Techniques

4.2.3.1 Classic Techniques

We first focus on the analysis of the network aggregated at different time scales.
Topological changes of the network were measured with characteristics that focus on the
degree distribution which have been used in prior research on network dynamics. The
degree k, of the flight i is the number of the neighbors in the network, which indicates
how many flights that flight i has been involved with. Hence, we have

k=D AG.)).
JN(j)> N

The degree distribution of a graph is defined as a discrete probability distribution that
expresses the probability of finding a node with degree k. By construction, one can tell
that there is high probability for a flight i/ with a bigger degree if there are more flights in
the sector when flight i traverses. To give a general description, we introduce the
normalized degree, which is defined as

A k

k;=—
N traffic

is the number of flights in the sector when flight i traverses the sector.

i
where N, .

4.2.3.2 Community Detection

A community is the dense sub-network within a larger network. The community is of
particular interest because it may not only correspond to the functional unit of a
complex system, but also can tell the properties of the individual community structure.

The community here, i.e. a group of flights, can be seen as certain functional
component as traffic evolves. For instance, the aircraft flying along the same route with
same flight level during the same period could be seen as a community in the sector. The
investigation on the community and its structure is a way to understand how air traffic
controllers clustering aircraft.

Algorithms for detecting communities in complex network being classified into three

- 108 -



groups, hierarchical clustering, optimization methods, and block models, were critical
reviewed in a recent article (Newman 2012). Given the fact that flights in the sector
are changed with time, overlapping community is likely to occur in the network. Hence,
we choose stochastic block models for the community detection. In brief, the block
model is based on the idea of generating networks that contain community structure with
the stochastic process for linkage creating between nodes. Let G be an undirected
network with » nodes, and c, represents the community to which node i belongs to.
Denote p, the probability that there will be an edge between a node in group » and a
node in group c. Again A(i, j) is the element of the adjacency matrix. To identify the
communities in the network that has been generated by the block model, one can simply
maximize the following quantity over p . andc, ,
L=]1pi"a=p, ).

i<j

Since our purpose is to uncover the communities in the network, rather than the development of the
algorithm for community detection. In this article we use an existing algorithm presented in
(Lancichinetti, Radicchi et al. 2011) to find communities in the time aggregated network G .
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Figure 4- 2 Example of a series of communication data. Historical communication
activities constructed from controller speeches. The upper displays communication
events of the aircraft. Each horizontal grey line stands for a different aircraft, with each
vertical line corresponding to a communication event.
succession of communication activities of controller, with each vertical line represents a
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Figure 4- 3 The associate network of the communication events in Fig. 4-1. Each node
corresponds to a flight, and the size of the nodes corresponds to the frequency of
communication with controller. Colors represent the different communities that have
been identified using the algorithm in (Lancichinetti, Radicchi et al. 2011).
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Figure 4- 4 An example of a sequence of communication networks. Each frame of the
first three corresponds to a time interval of duration 7z, and the last one is the network
aggregated from the first three. Each node in the sub panel stands for a flight on the

sector frequency. A link between nodes indicates the communications to the two flights
are related.

4 .2.3.3 Motifs Detection

At a level between nodes and network community, a most investigated network
structure is the network motifs. A network motif is the equivalence class of sub-graphs or
patterns that recur much more often than at random. It was thought that motifs can be
related to the function of the system that networks are built from. Thus, the detection of
network motifs will uncover the information-processing that carry out on the network.

From the air traffic controller’s perspective, it is most likely that controller will shift
attention over the flights according to the flights’ position in the sector. In other word,
route structure and other airspace factors, as well as traffic flow will shape controller’s
communication patterns. Both theoretical and practical studies have found that route
structure (e.g. critical points formed by the merging of two traffic flow) is an important
factor for managing traffic. Our focus on the temporal network motifs takes a first step to
characterize the shape of controller’s communications, thus to capture the information
propagation process.

Given that fact that the maximum number of flights that are in the sector at the same
time is limited, we define the following three basic motifs similarly to the social
communications (Zhao, Tian et al. 2010). The three types of motifs are (i) Chain: That is
to communicate with different flights consequently; (ii)Loop: After calling few flights,
controller talk to the first flights; (iii) Star : It is obviously because the central flight is
very important so that controller has to select it frequently. Figure 4- 5 shows all three
types of motifs. Again, because the maximum number of flights in the sector is limited,
thus the temporal networks will have finite number of nodes. In the result section, we
shall vary the size of motifs and test the frequency of each type of motif that has occurred
in the datasets.
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Figure 4- 5 Three types of motifs, chain, loop, and star.

4.3 Data

In this chapter, we have tested our method on three datasets. The first two datasets, D,
and D, , are the ATCOSIM corpus dataset and Paris TMA datasets that have been
described in Section 3.2, whereas the D, dataset was created from Paris TMA dataset.

Both traffic information and communication information of D, dataset was given in
Table 3- 2. Flight information was decoded from the text of the dataset. Overview of
traffic and communication of D, dataset is reported in Figure 4- 6. Since it cannot
extract flight information from radio communication data, our analysis of D, dataset was
based on the Pilots manipulating data.

We constructed D, dataset from Radio communication, pilots’ manipulating data, and
transfer information data in the D, dataset. Briefly, we match the communication with
flights using the following algorithm.

» Step 1. Sort the communication events, transfer data, and pilots’ manipulate data in
the ascending order. Denote [7,,7 . ] the considered time span for analysis. According to

the transfer information and pilot’s manipulate data, select the nearest controller’s
communication and mark it with the associated flight’s call-sign.

* Step 2. Let ¢, =¢,, do the following.

» Step 2.1. If ¢, >t , then terminate the algorithm. Otherwise, locate the next
transfer event 7, in the transfer data, and letz, =7, . Identify all the flights that are on
the sector’s frequency during time [,,7,], and denote the flights set as F'. Let C' be the
set of communication events during the time [7,,7,].

* Step 2.2. For the communication events in the C* without flight’ call-sign, randomly
select a flight in the F' to be the flight’s call-sign, and delete the flight in F'. Repeat
doing this until all the communication events are assigned with flights’ call-signs. Then
let ¢, =¢, go the Step 2.1.
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Figure 4- 6 Overview of traffic activities and controller communication activities in Paris
TMA data. The height of the bar represents (i)the average number of flights
((i1)controller communication events) in each sector, while error bar shows the standard
deviation across all the exercises. Red bars are the en route sectors, while green bars are
the approach sectors. Military sectors are filled with blue.

4.4 Results

In the section, we present the results and provide an avenue for discussions of our
techniques. Recall that the minimum distance 7, is used to determine the connectivity
between two flights based on their temporal communications’ information. If z_, is big
enough that every flight iis able to link with the flights that are in the sector during time
period s,, whereas the small 7, places a hard constraint on the connectivity between
flights. It is therefore expected that the value of 7, has impact on the network structure.
To test this hypothesis, we selected the value of 7, from 1 minute to 5 minutes with a

10 seconds growth rate. Consider that most of flights were called less than three times by
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the controller, the minimum weight thresholds N . were chosen from 1 to 5. Table 4-1

min

presents general information about the networks constructed by our algorithms.

Table 4-1 Summary of the main features of the networks obtained over a minimum
weight of link N

D1 (ATCOSIM) D2 (Paris UM) D3 (Paris M)
average | variance| average| variance average | variance
#of networks 1250.0 0.0 7681.0 1.1 7000.0 0.0
N, =1 # of nodes 62.0 5.9 49.1 18.1 53.1 18.3
# of edges 597.2 155.0 194.2 117.7 270.8 162.1
# of networks|  1250.0 0.0 7650.0 0.9 7000.0 0.0
N_. =2 # of nodes 62.0 59 49.2 18.0 53.1 18.3
# of edges 313.1 141.7 139.0 91.8 207.4 130.4
# of networks|  1250.0 0.0 7612.0 2.8 7000.0 0.0
N_. =3 # of nodes 62.0 5.9 49.4 17.8 53.1 18.3
# of edges 168.0 105.0 98.9 74.1 157.6 106.7
# of networks|  1249.0 0.2 7518.0 2.7 6996.0 0.5
N . =4 # of nodes 62.0 5.9 49.9 17.4 53.2 18.3
# of edges 89.3 68.8 72.5 61.5 120.4 88.8
# of networks|  1234.0 2.0 7414.0 7.4 6975.0 23
N_. =5 # of nodes 62.0 59 50.2 17.2 53.2 18.2
# of edges 48.0 43.1 53.7 52.3 922 73.9
# of networks|
(total) 6233 37875 34971

4.4.1 Time Aggregated Networks

4.4.1.1 Degree Distribution

Figure 4- 7 plots the normalized degree distribution in D, dataset. To our surprise, the
degree distributions have quite similar shapes across all the sectors. With 7. fixed and
N, <3, instead of randomly distributed, most of data can be described as a Poisson

distribution or Normal distribution. Such trends appear commonly in the random
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network studied by Erdos and Renyi (Erdos and Rényi 1959) with each edge is present
or absent with equal probability. This suggests that the pairs of flights are uniformly
selected. With N _. increases, the distribution moves towards left which means there are
fewer flights have large degree while most flights have few neighbor flights, and the
average of degree for all flights decreases. A different type of distribution possibly
emerges when N_. exceed 3. Most flights have a small degree, while very few flights
still have more neighbors.

To examine the effects of minimum temporal distance 7, on the network structure,
we grouped the degree in each dataset. In Figure 4- 8 we can see that there is a clear
trend that both the degree and normalized degree growing as 7, increases. It is not
surprise because the probability to link more flights will be higher when 7. become
longer. It should be noted that the gap between the degree with the same temporal
distance but with minimum weight value at N . =1 and N_, =2 are much bigger than
other differences. We are acknowledged that most of the flights are probably flying
without controller’s extra intervention that is they are not involved in a conflict. For
example, most of the flights in en route sector receive one transfer in message and one
transfer out message if the flight doesn’t need to change the speed or altitude. When we

increase the threshold of minimum number of links, such noise was filtered away.

While the analysis of time aggregated network show a general picture of how
controller communication with flights, the dynamical patterns, such as how the
controller’s attention is paying to, is cannot be identified. Therefore, we will need the
time ordered networks to investigate the time evolving behavior.
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Figure 4- 7 Normalized degree distribution in k,  dataset. X-axis denotes the

normalized degree of a flight, with y-axis is the probability density. Colors of the lines
represent the minimum distance 7, indicated by the colorbar

Normalized average degree (k)
=)
Average degree (k)

Normalized average degree (k)

e ) S
300 5o 100 150 200 250 300 5
<, (s8C0Nd) <. (s8c0Nd)

Figure 4- 8 Effects of minimum temporal distance 7. on the aggregate degree
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distribution. Blue markers are the average degrees of the nodes &, , while black markers
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are the normalized degree £,

4.4.1.2 Correlations between Network Community and Air Traffic

To recover the detailed picture of traffic from the controller’s communication is of
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great interest and with much difficulty. The physical relations between aircraft in the
sector are not exactly the same as that in controller’s mind. To find out the abnormal in
the controller’s communication that correlates to the severe traffic situation such as
conflict will help to prevent such events occur. Here gives our initial attempt to link
controller’s communication activities to the traffic activities. One way to reoccur the
traffic from the network that generated from controller’s communication is the use of
community detection technique. We chose the algorithm that was developed in
(Lancichinetti, Radicchi et al. 2011) for community detection. The analyses were
performed on W matrix.

We found that the correlations between average community size and the number of
traffic in the sector depend on sector types (see Table 4- 2). Most of the en route sectors
were found to be better correlated than the approach sectors. The p-values of the
approach sectors, for instance ITBPG, ITMPO ITNPG, are approaching zero. It is
possibly that the communications in these sectors are different from the others, and the
time aggregated network is incapable of unmasking the behavior.

Table 4- 2 Correlation coefficients of average community size and number of flights in
the sector

Sectors Corrcoef Sectors Corrcoef

AOUS 0.1063 0.7175 | ITMPO 0.9451 0
AP 0.9653 0| ITNPG 0.9924 0
AR 0.4314 0.1235 | ITSPG 0.9871 0
CREIL 0.9272 0 | OGRT 0.5729 0.0323
DENPG 0.7971 0.0006 | OYOT 0.5769 0.0308
DEPPO 0.7443 0.0023 | TE 0.4568 0.1006
DESPG 0.424 0.1308 | THLN 0.7919 0.0007
INIPO 0.667 0.0092 | TML 0.8194 0.0003
INNPG 0.5954 0.0247 | TP 0.6681 0.009
INSPG 0.4672 0.0921 | UJ 0.8643 0.0001
ITBPG 0.9811 0| VILLA 0.7268 0.0032

4.4.2 Temporal networks

It is with no difficulty to calculate the quadruplets e = (i, j,7,6t) from controller's
communication data. With the quadruplets and the window 7, , we can have n=T7T/7,,
sets of snapshots of network G,"(z;,,%,..,)» Where 7. is the staring time and 7, is the
ending time, such that 77=¢__—¢ . . The following presents the information dynamics
unmasked by the time respecting network properties. While there is an abundance of

measures for characterizing the topological structure of static networks, measures

n
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proposed for the temporal networks are still lacking, with many of which are built on the
concept of time-respecting paths that define which nodes can be reached from which
other nodes within some observation window. Such measures include reachability ratio,
connectivity, distances, and latencies etc(Holme and Saraméki 2011). In the context of air
traffic control, we select the time dependent degree, and motifs to study the temporal
network.

4.4.2.1 Time Dependent Degree Distribution

Time dependent degree of a node can be seen as the number of links activated within a
time window 7, . Frequently appeared links suggest strong relationships between the
nodes. Plotting in the Figure 4- 9, the climax of each hill shows the time dependent
degree distribution of each flight in an exercise in D, dataset. It can be seen from the
figure, most of flights have degree of two, rather than six which was found out in the
time aggregated network (see Figure 4- 7). This indicates that the flights are dynamical
grouped by the controller according to the traffic.

Flight ID 0 3

Time (second)

Figure 4- 9 Time dependent degree of each flight in a sector with 7, =60 seconds.

We expected that airspace structure may have effect on the communication dynamics
that was not uncovered by the time-aggregated network. The studies on the controller’s
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cognitive activities have found that airspace structure plays an important role while
controller control traffic (Histon and Hansman Jr 2008). To test this hypothesis, we
calculate the empirical distribution of time-dependent degree of each sector in every
dataset. To our surprise, the probability distributions of the degree have quite similar
shapes, which suggest that airspace structure has little effect on the communication.
Meanwhile, we didn’t see much difference in the distributions across the entire time
window 7, (Figure 4- 10 shows the empirical distribution of degree in D, dataset with
r,, varying from 60 seconds to 110 seconds). Interestingly, the statistical results reveal
that most of flights have two neighbors. The reason for such could be the orderly
communicating with flights as shown in the Figure 4- 4. To examine this hypothesis, in
the following we investigate the network motifs.

1:,[W=608 Ttw=7OS rtw=808
0.6 0.6 0.6 ‘
304 304 e 3 0.4
C C » C
(0] (0] (0]
> > >
S o o
0.2 0.2 T 0.2

o
~
o
~
o
~

Frequency
Frequency

o
N

Frequency

o
N
o
N

0 5 10 15 0

Figure 4- 10 Frequency of degree in each sector in D, dataset.
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4 .4.2.2 Network Motifs

In contrast to the commonly used network motifs detection, what we are trying to
analyze is the most frequently occurred patterns in the controllers’ communications.
Therefore, we will calculate the motifs for the temporal network snapshot with
observation window 7, .

Figure 4- 11 shows the frequency of three types of motifs as a function of time window
7, .Clearly, the chain topologies are the most occurred patterns. With the increase of 7, ,
both the loops and stars grow quickly. As we know that if we increase the length of 7, ,
the possibility of higher number of flights will increase. Therefore, there might be high
probability for loops and stars occurring. We can see that there is a changing point at
7,, 150 seconds in all the three datasets, where the possibility to have chains and loops
are almost the same. Compared to the loop motifs, star motifs grow much slower. Even
the observation time window reaches five minutes, the percentage of star motifs are less
than 20%. Meanwhile, we note that percentage of loop motifs seems to reach its climax
at 60%.

One would expect that controller will return to a flight that is previously communicated
with. However, results obtained here suggest it is not the case. Chains and loops are the
most frequently motifs in the controller’s communication, such topological
characteristics have been reported in the information propagation in other human social
communication (Zhao, Tian et al. 2010).

In the time aggregated network analysis, we brought forward our hypothesis that the
probability to select an aircraft to communicate is uniformly distributed in the whole time
span. Rather, the temporal network reveals that chain and loops patterns are the most
common patterns at the local temporal dynamics.
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Figure 4- 11 Percentage of three types of motifs detected in the three datasets. Circles
show the percentage of chains; squares represent the loops and stars stands for the star
motifs. Sectors were plotted with different colors in (b) and (c¢).
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4.5 Chapter Summary

A network perspective is extremely useful for understanding the information
propagation process. In this chapter we have presented a temporal network approach to
analyze air traffic controller’s communication activities. Our analyses on network
properties provide the evidence that the probability to select an aircraft to communicate
with are uniformly distributed. The correlations between network communities' sizes and
traffic volume reveal that the communication network do preserve traffic information.
Motifs being a good measure is capable of uncovering the information process on the
temporal network. Our observation suggests that chains and loops are the most frequently
occurred patterns in controller’s communication. To trace information dynamics solely
relying on air traffic controller’s communication data is able to identify the general
information flow patterns. However, information diffusion investigated with airspace
route structure may help to detect more clear characteristics that depend on the airspace
such as the final approach sectors, since network structure may shape information
dynamics. Local temporal dynamics of controller’s communication deserves further
consideration because it contains information about the microscopic dynamics of
controller’s attention.

In the light of network science, there are still open topics for further investigation. With
regard to the future air traffic management operation, the studies of information diffusion
would be an important step. We must note that air traffic controller in the current system
acts as a role to deliver the information to the flights, while in the future there would be
automation systems to do that. The underlying mechanisms uncovered by the controller’s
communication not only help us to the understanding of human activities but also provide
the support to the development of such automation systems.
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CHAPTER 5 FLUCTUATION SCALING IN THE CONTROLLERS'
COMMUNICATION

This chapter introduces the fluctuation issues in the air traffic controllers' activities. In
general, air traffic controller is assigned to a sector where he/she will work for a long
time. If controller has been changed to a new sector, further training, acquisition and
checkout of expertise are necessary. Although the route structure in the sector does
change very often, controllers have to be prepared to face the unexpected traffic
situations that can not be predicted due to uncertainty. Thus, their activities will exhibit
variety during repeated operations or simulations. Here, we report the fluctuation scaling
of controllers' communication activities. Then the associated model to explain observed
phenomena is developed. Several implications are discussed.

5.1 Introduction

Complex systems consist of large amount of interacting elements that are hierarchical
linked. Dynamics at low level elements may result in the emerge of collective behavior at
high level, which is referred as "complex". Activities at an element of the system will
fluctuate within certain range while the whole system operates normally. Take air traffic
control system as an example, a predefined maximum number of aircraft that can be
accepted in the sector is set, in order to avoid high workload that may lead to unsafe
event occurring. Traffic volume in each sector can fluctuate under the maximum value.

Human activities are the results of the stochastic process of the cognitive activities.
Even facing the same traffic situations, controllers' strategies may be not exactly the
same. As we know that both traffic dynamics and controllers' cognitive process are full of
stochastic, controllers are able to adaptive to this environment to control the traffic.

To character the relationship between the fluctuation in the activity of an element and
the average activity in a complex system, Taylor’s power law have been widely reported
in many disciplines, ranging from ecology(Taylor 1961; Taylor and Taylor 1977; Taylor,
Taylor et al. 1983; Grenfell, Wilson et al. 1998; Sather, Tufto et al. 2000; Bjernstad and
Grenfell 2001), river flow(Sadegh Movahed and Hermanis 2008), through human gait
(Hausdorft, Purdon et al. 1996; Cai, Zhou et al. 2007), to financial markets(Gopikrishnan,
Plerou et al. 2000; Sato, Nishimura et al. 2010; Bolgorian and Raei 2011), and social
activities(Onnela and Reed-Tsochas 2010). The Taylor's power law, which was named
after L. R. Taylor in recognition of his paper in 1961(Taylor 1961), is usually in the
following form:

fluctuation ~ const.x average” , where a €[1/2, 1].
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Our interest is to capture the adaptive phenomena of air traffic controller’s activities
using controller’s voice communication activities as a proxy. First, a brief review on
fluctuation scaling methods is summarized in Section 5.2. Then in Section 5.3, we list
two communication datasets that have been investigated. Consequently, Section 5.4
presents the empirical results, and a model was developed in Section 5.5. The chapter
ends with conclusion remarks in Section 5.6.

5.2 Fluctuation Scaling

Here we briefly depict the summary of fluctuation scaling (FS). For a detailed
discussion and the example of using FS to study the effect of social influence, refers to
(Eisler, Bartos et al. 2008; Onnela and Reed-Tsochas 2010).

5.2.1 Temporal Fluctuation Scaling

Let us consider a complex system with many nodes i. For any time block [#,7+ At],
the quantity f that measure the activities of node i can be decomposed as the sum of all
the constituents which contribute to f during the time interval, that is

N (1)

A OEDIN A0

where N/Y(f) is the number of constituents, and ¥ (r)>0 is the value of
nth constituent in the time block.

Then the time average activities f during observed interval [0,T] can be obtained as
1 &N laa

0-1
<ﬁ’>=é§ﬁ’(qm)— S5 gan,

q=0 n=l

where Q =T /At . The variance can be calculated as

2 2
af(At):<‘fiA’ >_<fim> .
Since < fl.A’>EAt< fl> , when one varies the node i while keeping Ar fixed, the

relationship between the standard deviation and the mean of f can follow a power-law
relationship

o (Ao (f)7 .
Normally the exponent ¢, is in range [1/2, 1]. This power-law relationship is known as
fluctuation scaling, or Taylor’s law.

5.2.2 Ensemble Fluctuation Scaling

Because the above calculations were based on temporal average, it is referred as
Temporal Fluctuation Scaling (TFS). Empirical results on TFS were reported in complex
networks(de Menezes and Barabasi 2004), stock markets(Eisler and Kertész 2007),
human dynamics (Eisler, Bartos et al. 2008) etc.
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If there is a well defined size-like parameter S for all the nodes, for instance the linear
extend (L), area (A4), or a fixed constituents (N ), and the i-dependence of < f > and o
is only manifested via S, then we can obtain the Ensemble Fluctuation Scaling (EFS) by
the following steps. First, the ensemble average of f within S can be calculated as

= > Mo,

fAt _
s =
MS Vi:S; =S

where M, is the number of the nodes which have a size S, =S5 . Then the standard
deviation is given by

oA =[ £ - £
Fluctuation scaling can also arise as
o
The classic study of EFS is the given by Taylor(Taylor 1961). The author measured the
means and the variances of the natural populations in the different size of area 4. With

increasing the size of area both the mean and the variance of the population grew, with a
power law relationship between the two quantities.

5.3 Data

Two empirical datasets were analyzed in this chapter. The first one is Paris TMA
simulation data, and the second one is ATCOSIM Corpus Data.

Descriptions on the Paris TMA simulation dataset are given in the Chapter 3 and
Chapter 4. To capture the fluctuation scaling, we will need both controllers'
communication data and traffic data. To measure the average activities and the standard
deviations of the activities needs a series of observations of the same controller (or
sector). Paris TMA simulation data provides fourteen observations on twenty-two sectors.
Information about the sectors in the ATCOSIM dataset is not available. However, we add
the ATCOSIM dataset to examine whether this dataset shows the same phenomena. If the
observations of the two datasets fall into the same range, then the results will be more
promising. Sector relationships of Paris TMA data is shown in Figure 5- 1.
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Figure 5- 1 Traffic flow between Paris TMA sectors. Each node corresponds to a sector,
and the square ones are the feeding sectors which were used for traffic initialization and
finalization. The widths of line arcs are proportional to the traffic volume for the two
sectors with arrow indicates the direction of flow. Data was from exercise 100618A.

5.4 Results

We are acknowledged that air traffic patterns, say input/output flow rate, can influence
air traffic controller’s communication activities. In our previous work, we did find the
strong correlations between air traffic activities and communication activities. Therefore,
it is naturally to analyze the traffic characteristics before looking at controller’s
communication. One of major traffic factors that influence controller’s communication is
the service time 7, which is defined as the duration of a flight stays in the sector. The
longer the service time is, the higher probability of receiving more communication is.
Traffic configurations in terms of traffic complexity or input/output flow rate, together
with the air route structures are heterogeneous in the Paris terminal area. Figure 5- 2
shows the empirical distributions of inter-arrival rate and service times in each sector.
From the shapes of the curves, we could propose the normal distribution to fit the
empirical data of a sector. However, it cannot find a universal distribution function for all
the sectors.
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Figure 5- 2 Empirical distribution of inter-arrival rate (a ~ ¢) and service times (d ~ f) in
the sectors. Results were constructed from Exercise 100618A

Another question arising is that whether there is fluctuation scaling in the traffic-arrival
rate as other transportation systems exhibit Fronczak and Fronczak(Fronczak and
Fronczak 2010). As shown in Figure 5- 3, the number of aircraft in the sectors during the
observation time window (At ) and the associated standard deviations are plotted. There
is a trend in the linear relationships between the two quantities in the log-log plane.
However, we could not give a conclusive remark due to the limited number of sectors
and traffic volume. The sectors’ network in Paris terminal area consists of around twenty-
two sectors, and the Paris TMA simulation traffic data were prepared with only two peak
hours. Comparing with the five years’ traffic data in the Minnesota transportation
network, it is not surprise that the fluctuation scaling didn’t emerge in our data.
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Figure 5- 3 Fluctuations in traffic activities in the sectors. Sectors are represented with
colors.

5.4.1 Temporal Fluctuation Scaling

Given the heterogeneity of traffic in each sector, controllers' communications could be
heterogonous too; simple reason is that controllers' communications are depending on the
traffic activities. To examine the temporal fluctuation scaling in the controllers'
communication activities, we plot the average communications and the standard
deviations in the log-log figures. Reported in the Figure 5- 4, the relationships between
the average f and the standard deviation o cannot be described by a single equation.
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The sector with high traffic volume has higher communications. It indicates that the
temporal distributed traffic has significant impact on the controllers' communication.
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Figure 5- 4 Temporal fluctuations in the controllers' communications. Markers with the
same color stand for the same sector.

5.4.2 Ensemble Fluctuation Scaling

To minimize the above factors’ effects on the controller’s communication activities, we
perform the ensemble fluctuation analysis following the steps depicted in 5.2 . Similarly
to Taylor’s work, we calculate the average of controller’s communication activities
j_”iand the standard deviation o according to the different volume of the flights entering
the sector. When a flight flies into the sector, controller will give several control
instructions and clearances to avoid conflict and hand flight out to the next sector. Thus,
the communication activities can be obtained by
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where N, is number of flights entered the sector i, and V,, is the number of
communication activities with flight ». The calculation can be done through all the
sectors with different amount of entering flights.

It found that both the average and the standard deviation of the communication
activities grow quickly as the number of flights increases. Then we plotted the standard
deviation according to the average of the communication activities in Figure 5- 5. In spite
of the heterogeneities of traffic patterns and airspace configuration, we can clearly
observe a linear fit of the empirical data in the log-log plot (solid red line), which
indicates that the standard deviation of the activities and the average activities do exhibit
a clear Taylor’s power-law relationship with « ~0.58. Because of the initialization of
traffic for the first few flights, there are strong fluctuations at the beginning of few data
points. When we add another dataset, ATCOSIM data, into the figure, the slope of fitting
line changed slightly. The whole dataset still can be described by o = < f >a with
a =~ 0.60 . We emphasize that ATCOSIM dataset and Paris TAM dataset were recorded in
1997 and 2010 respectively. In total, fifty-five controllers’ communication data were
included. Here we have showed that their behaviors can be characterized by the similar
fluctuation scaling patterns.

It is possible that air route structure and sector type (en route, approach, tower, and
ground) may have particular influence on the controller’s communication. To examine
this, we repeat the scaling plot for all the sectors (see Figure 5- 6). We can see that the
fitting o does differ from sector to sector, and most of them vary between 0.50 and 0.64.
Few sectors, AP, CREIL, INSPG, and VILLA exhibit abnormally, which could be the
results of low traffic volume and short service times. To interpret these « is limited due
to the fact that there are only fourteen exercises communication data for a sector (few
sectors with less).
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Figure 5- 5 Fluctuation scaling for communication activities. (a) results from Paris TMA
data, and in (b) we add the ATCOSIM data (the red dots in the inset figure) to compare
the fitting forms. The fitted exponents are shown with error jA0.04 due to logarithmically
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binning data. Points were logarithmically binned and log sigma was averaged for better
visibility, the error bars represent the standard deviations inside the bins. The inset shows
the same axis range, but without binning.
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Figure 5- 6 Fluctuation scaling in all sectors. X-axis is the average of communication
activities, while y-axis is the logarithmic standard deviations.

5.5 Model

To explain the observed behavior, one might suggest the hypothesis of tossing coins
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process Eisler et al. (Eisler, Bartos et al. 2008), Onnela and Reed-Tsochas(Onnela and
Reed-Tsochas 2010). Consider the following two systems S, and S, both with »
elements. The ith element of S, consists of i coins. One side of the coin is marked with
zero while the other side is one. The activity of ith element f; is defined as the sum of
coins’ value when tossing them independently. Obviously, (f}oci and the variance
o, o Vi, then it will lead to & =1/2. For S, , the ith element has a single coin that one
side is zero while the other side is i. That is equal to toss i fully coupled coins. Then we
have (f;)oci and o, «ci, thus  =1. One example of using such process is to model
Facebook users’ decision behavior on application adoption, in which the coins are biased
and tosses are coupled via local and global signals(Onnela and Reed-Tsochas 2010).

From air traffic control perspective, we shall take the following two factors into
account. (i) Sector capacity (C,). Sector capacity is the nominal maximum number of
flights that can be in the sector. Air traffic controller will not accept flight coming into
his/her sector when the flights under control are going to reach sector capacity.
(11)Grouping ( G, ). Histon and Hansman Jr (Histon and Hansman Jr 2008) have
identified four types of strategies that controller use to mitigate cognitive complexity,
among which grouping is the most common one. According to the characteristics of
flights, air traffic controller keeps several flights (G, ) as a group together to control. In
such case, the communications with these m flights are coupled. For example, if there
are m(m > 2) flights that are predicted to be involved in a conflict, then controller will
communicate with these m flights alternately to solve the potential conflict.

While taking sector capacity and grouping behavior into account, we develop the
following model to reoccur the observed phenomenon. First, we define a grouping factor
g,as g, =G, /C,, which tells the percentage of flights that will be grouped. Then we
change the rules of tossing in the "coins system" above as that there will be g, xs coins
fully coupled when the system size is s. We perform 1000 Monte Carlo simulation runs
with g, from 0.01 to 1.0. Test results are shown in Figure 5- 7. It can be seen from the
figure, the exponent lies between 0.58 and 0.65, when g, €[0.08,0.15]. « nearly
reaches 1 when the grouping factor is over 0.8. Due to the nonlinear fitting, there are few
points with « slightly fluctuating around 1. Therefore, a conclusion can be drawn that
there are around 10% flights are grouped when air traffic controller manage traffic. Our
model can capture the overall grouping behavior of air traffic controller.
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Figure 5- 7 Simulation results on the & as a function of g,

5.6 Chapter Summary

We have shown that air traffic controller’s communication activities can be
characterized by the Taylor’s power-law. we present a basic model to simulate the
observed behavior. Although our model cannot identify the dynamics of grouping
behavior of air traffic controller, it is nevertheless useful to characterize the overall
controlling pattern. The detection of fluctuation scaling was particularly noteworthy. On
one hand, it captures the interesting adaptive phenomena of controller activity with
respect to incoming traffic. Together with the temporal characteristics of communication,
it may provide a way to understand the general properties of the controller’s activities
across different incoming traffic. On the other hand, it may reveal the inherent nature of
the system with the controller as an important element in the system. To allow the
activities of an element fluctuate within certain range, is very important to system's safety.
With the system continues to evolve, such complex phenomena are critical to our
understanding of the dynamical aspects of the evolution.
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CHAPTER 6 IMPLICATIONS OF AIR TRAFFIC CONTROLLERS’
DYNAMICS

The filed of air traffic management has a strong interdisciplinary nature, combining of
technological, economic and regulatory aspects. A great number of contributions have
emerged from the interactions between scientists trained in different fields, ranging from
computer science, through mathematics, to psychology. Researchers and operation
experts have contributed to our understanding of air traffic controllers’ behaviors for
several decades. There are still unanswered questions. Either psychologists or air traffic
control specialists only give the descriptive properties of controllers’ activities. So far, the
main obstacle being the difficulty of capturing controllers’ activities is the inadequate
knowledge of human adaptive nature.

The recent surge of physicists into the realms of social science and human behaviors
has been fuelled largely by the availability of huge empirical data. The combination of
the statistical mechanics theory and the observations of human activities have arisen in
part to fulfil the particular need of quantitative illustration of human dynamics. Both
collective behavior and individual behavior being unmasked have scientific value and
potential applications.

In this thesis, we have investigated air traffic controllers’ activities from a complex
system perspective, providing a physical understanding of controllers’ activities.
Investigations on the controllers' activities at a microscopic level have revealed critical
aspects relating to the operators' performance. Here, we address the promising
applications of using controllers' dynamics to the ATM system and other human-driven
systems.

6.1 Implications for a Model-based Simulation for the ATM System

To improve the performance of the air transportation systems, both NextGen in the U.S.
and SESAR in the Europe have entering the deploying stages. Advanced technologies
have being applied into the new system, and new operation concepts, e.g. Trajectory
Based Operation (TBO), 4D Trajectory (4DT) management, are proposed and are under
test. There is no doubt that the system will be safer and more efficient. The technologies
and the methodologies not only improve the system capability but also increase the
system complexity. Model the ATM system from a complex system modeling approach
may be an efficient way to analyze the whole system and the subsystems. Due to the
limitation of common understanding of the mechanisms of ATM system, realistic
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analytical modeling of system has been unfeasible.

As a matter of fact, model-based simulations in ATM have been reduced to fast-time
simulations with approximated representations of controllers’ task-loads. The gap
between low-degree of realism fast-time simulations and high-fidelity real-time human-
in-the-loop simulations has been wide, and validation exercises become extremely costly
to R&D since in many cases, real-time simulations have been required instead of model-
based simulations for their validation tasks. For SESAR validation exercises, NCD/COE
Validation Infrastructure Unit is fostering its effort to develop a suitable model-based
simulation tools. Besides the development of a model-based simulator that shall be
flexible enough to accommodate the highest degree of realism necessary for SESAR
concepts, an exploratory effort is deployed to investigate the possibility to perform ATM
model-based analysis from theories of complex systems involving cognitive sciences and
system sciences.

Air traffic controllers as the core component of is deeply embedded in the ATM system.
It may result in inappropriate conclusions if analyzing controllers’ behavior by separating
them from the system. We have shown our methods to capture the controllers’ behavior
in the continuous environments. The similarity of their behaviors can be easily adapted
into a model-based simulator acting as the role of controller.

6.2 Implications for the Study of Cognitive Activities

Like many other human activities, air traffic controller' activity is cognitive-guided
activity which can be modeled by a full information process, from the receipt of
information, information selection and search, through information integration, decision-
making, to the information communication and providing feedback (Kallus, Van Damme
et al. 1997). Tasks analysis of air traffic controllers’ cognitive aspects revealed the main
activities that have been illustrated in the Figure 6- 1.

Instead of looking at the top-down activity focusing on the core process of air traffic
control, we took air traffic controller as a complex system. Air traffic, airspace, physical
systems, and regulations all can be seen as the input of this complex system. From the
system point of view, the underlying process of controlling traffic is complicated and
stochastic. As many workload studies show, the output of controller is the control
strategy that will be input into air traffic management system. Research based on
psychology, cognitive science, etc., are trying to analyze the detailed dynamics of this
human system. The bottom-up approach has encountered difficulties when the
environment is changed. It mainly because that the interaction dynamics between the
large elements is unknown. In contrast, our up-down approach starts from the
observation of the output of controller, then followed with the model to simulate the
dynamics process, so that it can be adjusted to the most of the situation.
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Figure 6- 1 Cognitive tasks of air traffic controller

6.2.1 Implications for the Resource Allocation

One of the basic messages of the temporal characteristics of controllers’
communication is that the internal dynamics of air traffic controllers may be the followed
the same rules, supporting the hypothesis that controllers are acting proactively according
to the preformatted plans, rules, and mental pictures of the traffic situation (Kallus, Van
Damme et al. 1997). Models of controllers’ behavior are crucial for better resource
allocation. The resource here refers to both the airspace and controllers’ attentions. One
of the key gradients of the future ATM system is the 4D trajectory planning and
management. There are ongoing efforts in the modeling and predicting the uncertainty
and complexity of the 4D trajectories in the sector from mathematics perspective.

Then the question will be raised about the role of air traffic controller in the new
system. How the air traffic controller adapts to the new control environment, such as
under the trajectory management with data-communication? Obviously, air traffic
controller will change the communication behavior from radio-communication to data-
communication. Under the 4DT or TBO, the strategies for conflict detection and
resolution will also different from current radar surveillance control. We should note that
the decision dynamics, deep within the cognitive activities, will change slowly.
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Considering the human correspondence and email communication for example, although
the technology facilitating our communication have been enhanced and the
communication dynamics patterns are different (the exponent « for correspondence is
1.5, while for the email is 1 (see(Barabasi 2005)), the underlying rule governs actives
seems universal. So far there is a lack of evidence from a task-specific activity with
urgency and high pressure. Our work not only provides a first attempt to investigate the
controller's activities, but also complement to the human dynamics study.

6.2.2 Implications for the Systems Design

When designing a system, one must balance the system predictability and flexibility.
Flexibility is the ability of the system to respond to uncertainty in a manner to sustain or
increase its value delivery. The ATM system must have the ability to resistant to the
change of the system, such as unforeseen weather or events, ensuring the air
transportation safe. In the ATM system, there are too many sources of the uncertainty.
Automation systems have significantly improved the performance of the ATM system.
Under normal conditions, these tools work well. However, most of them are unable to
deal with the unexpected situation, such as emergence events. Controllers have to be
involved during such situations, either modifying the automation systems’ input or
controlling the traffic directly.

With the growing technological possibility, automations and decision support tools are
release human parts of the system from the role of decision maker and operator to the
role of monitor. The long time monitoring may cause controller loose the traffic picture.
There is one big concern that in case of system failure, whether or not controller can
quickly take over.

The fluctuation scaling observed through controllers’ activities reflects the flexibility of
the system to certain extent. When there are large fluctuations either in traffic or in the
airspace, controllers’ or supervisors should be attention. Traffic management initiatives
have to be implemented if necessary.

6.3 Implications for other Human-Driven Complex Systems

Despite the potential applications of this study in the air traffic management domain,
there is also a fundamental angle from which to address these questions.

- 138 -



CHAPTER 7 CONCLUSIONS AND PERSPECTIVES

In this final chapter, we summarize the work presented in this dissertation and outline
some future directions.

7.1 Summary

Air traffic controller is a one of the components of the ATM systems. The behaviors of
controllers are directly related to the system performance and safety. Thus, the
understanding of air traffic controllers’ activities is critical to the analysis of ATM
system. Duo to the complex interaction and uncertainty in the ATM system, air traffic
controllers’ activities are difficult to be measured and predicted through the classical
methods. In this dissertation, we have presented the investigations on the controllers’
communication behaviors from the complex system and human dynamics approach.
More precisely, we took air traffic controller as a complex system, and have examined
their temporal, spatial, and fluctuation behaviors.

To examine the effects of air traffic factors on controllers’ communication activities,
we have calculated the dynamics density and the complexity based on the dynamical
system modeling from the empirical traffic data. The correlations results suggest that air
traffic complexity has little impact on the controllers’ communication.

To test the hypothesis that whether controllers’ activities exhibit the same heavy tailed
patterns as other human activities, we have investigated the inter-communication
behaviors of controllers. We found that controllers’ communications do have heavy
tailed features. The overall inter-communication events are fitted into Inversed Gaussian
distributions, can well interpreted by the psychological model, the diffusion model.
When we focus on the inter-communication activities, i.e. restrict the communication
transmissions regarding on the change of flight motions, the collective behaviors are well
described by a power law form, whereas the individuals show much more heterogeneous.
Note that the inter-activities times of controllers decay much faster than the interval times
in other human activities, suggesting that the stress and time pressure push controllers’
activities one follows one quickly.

To capture the traffic dynamics evolution in the controllers’ cognitive activities, we
have analyzed the spatial behavior of their communication activities. We proposed a
temporal network approach to trace and quantify controllers’ communication trajectories.
Time aggregated network analysis revealed that controllers randomly select flights to talk,
whereas time dependent network analysis shows the dynamics of grouping behaviors. By
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leveraging the motifs detections algorithms, we have identified the loops and chains are
the most popular communication patterns.

To explore the adaptive property of controllers’ activities, we analyzed the fluctuation
scaling behavior of controllers’ communication. Throughout the datasets, we observed an
ensemble fluctuation scaling phenomena, leading to uncovering of grouping behavior.
Based on the empirical results, we presented a model to explain the origin of the
fluctuation scaling. It was found that 10% of flights were being grouped for
communication which can result in a fluctuation decay exponent of 0.60.

This thesis contributes to both the field of air traffic management and the filed of
human dynamics. Our work have been presented at international conferences in the
domains of air traffic management and publications in the journals, including

Published articles:
e  WANG Yanjun, Frizo Vormer, Minghua Hu, Vu Duong, “Empirical Analysis of Air Traffic
Controller Dynamics”, Transpiration Research Part C, doi:10.1016/j.trc.2012.04.006;

e  WANG Yanjun, Frizo Vormer, Minghua Hu, Patrick Bellot, and Vu Duong, “Spatial, Temporal, and
Grouping Behaviors in Controller Communication Activities”, Ninth USA/Europe ATM R&D
Seminar, Berlin, Germany, June 14 - 17, 2011;

e  WANG Yanjun, Minghua Hu, Vu Duong, “Fluctuation Scaling in the Air Traffic Controller
Communication Activities”, 2™ ENRI International Workshop in ATM/CNS, Tokyo, Japan, Nov 10-
12,2010,

e  WANG Yanjun, Hu Minghua, “Analysis of Air Traffic Controller Dynamics based on Data Driven
Approach (in Chinese)”, First National Conference in CNS/ATM, 2010;

e  WANG Yanjun, Frizo Vormer, Minghua Hu, Vu Duong, “Empirical Analysis of Air Traffic
Controller Dynamics”, 4™ International Conference on Research in Air Transportation, Budapest,
Hungary, June 1-4, 2010;

Paper being prepared or submitted:

e  WANG Yanjun, Vlad Popsecu, Chenping Zhu, Minghua Hu, Patrick Bellot, Vu Duong,
“Fluctuation Scaling in the Air Traffic Controller Communication Activities”, will be submitted to
the Proceedings of the National Academy of Sciences (PNAS), 2012;

e  WANG Yanjun, Minghua Hu, Patrick, Bellot, and Vu Duong, “A Temporal Network Approach for
the Study of Air Traffic Controller's Activities”, prepared for PLoS ONE;

° WANG Yanjun, Minghua Hu, Patrick Bellot,Vu Duong, “Rapid Decay in the Heavy Tailed Human
Dynamics”, will be submitted to Physica A: Statistical Mechanics and its Applications;

7.2 Perspectives
Although the presented work was based on the controllers’ voice communication
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activities under radar surveillance context, this work however opens a variety of
perspectives. In what follows, we present two distinct directions.

(1) The understanding of human activity:

Psychology analyzes human mind via the study of external behaviour aiming at
understanding individuals and groups by both establishing general principles and
research specific causes.  Psychologists explore the role of mental functions,
physiological and neurobiological processes underlying the cognitive functions and
behaviours. With the growing technologies, there is a trend that scientists from physics,
mathematics, computer science, and other disciplines as well are rushing into the realms
of understanding human activity. The emerged human dynamics is an example of study
human activity in the physicists’ interest.

Out of its important to the ATM system, the study of controllers’ behaviour also stems
possibility of combining the cognitive science and physics to realize a computational
cognitive model. In the system that safety is at the first priority, such as ATM system
and nuclear power plant, the operators’ capability is most important to the system’s
performance. The determination of the limitation of human cognitive capability is
therefore of both scientific value and applied potential.

(i1)) The modelling of complex system

Complex system has been studies through its structure and the dynamics occurring on
the structure. While network science provides an efficient perspective for the description
of the structure, network dynamics has however reached the bottleneck. Furthermore, it
will be more difficult when human is involved in the system. This thesis only focuses on
the controllers’ dynamics at the intermediate level, how to model the ATM system at a
macroscopic level taking the controllers as the components is to be studied. Especially in
the 4D trajectory management, the model of the system help to understand and predict
the critical aspects of the system, such as uncertainty prorogation, system flexibility. In
fact, the ATM can be represented as a bipartite complex system with controllers as one
part and aircraft flow as the other part. Analysis of the bipartite network could lead us to
a new view of the whole system.
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APPENDICES

Appendix I. Summary on the study of human dynamics

Activities

Data sources

Analytical results

Email

communication

129,135 emails sent by 3,188 users in three months in a

university

The response times and inter-
activities are described by Power
law (PL) distribution, both with

exponent 1

Not a PL distribution, can be

explained by cascaded Poisson

process

Lognormal distribution

1493,441 emails sent between 1,052 mangers in a

consulting company between July, 2006 and January, 2007

It found that there are a wide range
of distributions. The waiting times
ranges from instant reply to over

1000 hours.

Correspondences

30801, 14121, 5858, Letters of Einstein, Darwin, and

Florid respectively

The response times are found to be
fitted to a PL distribution with

exponent 3/2

3,335 Letters by Zhongshu Qian from 1995 to 2000.

The response times are found to be
fitted to a PL distribution with

exponent 2.1

Correspondence of 16 writers, actors, politicians, and

scientists for 1500s to 1950s.

The response times is not a PL
distribution, and it can be explained

by cascaded Poisson process

Short message

text

SMS by volunteers with length from 3 months to 6 months

The inter-communication times of
the indicial are described by a PL
distribution, and the exponents vary

from 1.2 to 1.7

37,577,781 sending records by 6,326,713 users during
2006 New Year.

Inter-communication times are from

30 seconds to 20,000 sends. The

- 153 -

exponent of PL distribution is
1.188;
Response times are from 60




seconds to 20,000 seconds, and the

exponent of PL distribution is 1.148

1589,869 records of 147,672 users from three companies

Not a PL distribution. It found that
a bimodal distribution is fitted to
the inter-communication times,
with the first part PL, the later part

is exponential.

Inter-times are described by the

Mobile phone ) )
o Call records of 6,000,000 users in one month truncated power law, with exponent
communication
0.9 cutoff at 48 days.
48409 loan records of 2,247 faculties of Notre Dame | Individuals are described by PL
university in three years distribution with exponent around 1
Individuals are described by PL
Library loan distribution with exponent around
772,504 loan records and 647,048 return records of 13,866 s
faculties of two Chinese universities .
Collective  behavior is more
complicated.
The intervals are fitted into
54,374 transactions initiated by a stockbroker in Sino euro
truncated power law, with exponent
bank from June, 1999 to May, 2003 3
Financial 800,000 orders and 540,000 stock transactions at GSK, | The intervals exhibit heavy tail
activities VOD in March, June, and October in 2002 feature, but not a PL distribution.

Online transactions experiments on five candidates for the
Major of Taipei lasted 30 days with more than 400

volunteers involved.

Collective behavior is found to be a

PL distribution with exponent 1.3

Web surfing

Entertainment website in Hungary from 8 Nov. to 8 Dec.

in 2002

The  behaviors  differ  from
individual to individuals, but all can
be fitted into the PL distribution

with exponent around 1.1

Collective behavior is described by
a PL with exponent 1.2;

Individuals behaviors can also be
described by a PL distribution with

exponent 1.14

Website visiting records at Emory university from 1 April,

2005 to 17 Jan., 2006

Individual behaviors for the same

web are fitted into PL distribution

-154 -

Wwith exponent 1.0, while
Individuals for different webs are

fitted into PL distribution with




exponent 1.25

Internet visiting records in Fifteen days in Shanghai

Science and Technology

The PL exponents for the individual
behaviors vary from 2.1 to 3, while

for the collective behavior is 2.82

17,531,208 records of 7,565,401 users visiting Wiki from
23 Dec., 2004 to 8 Oct. 2008.

Collective  behavior can  be
described by PL distribution with

exponent 1.2

149,087,003 feedbacks from 748,282 users on EBay from
1998 to 2008

Collective  behavior can  be
described by PL distribution with

exponent 1.9

Network Collective  behavior can  be
o 30 billion communication records of 240 million users on
communication described by PL distribution with
MSN in June, 2006
exponent 1.53
Communication records of five volunteers through QQ | The PL exponents for the individual
with periods from 18 months to 1 year behaviors vary from 2.0 to 2.5
Collective  behavior can  be
36,389,566 search requests from 657,426 on American
) described by PL distribution with
online from 1 March to 31 May in 2006
exponent 1.9
Internet
) Within 24 hours  Collective
searching
498,872 search request from mobile clients from 1 April to | behavior can be described by PL
8 April in 2007 distribution; otherwise the best
distribution function is exponential
o ) Collective  behavior can  be
2.2 million blogs published by 45,000 users from Aug. to ) o )
described by PL distribution with
Sept. in 2005
exponent 2.7
Collective  behavior can  be
) ) described by PL distribution with
1,627,697 posts by 20,379 users on bbs.nju.eud.cn until 1
exponent 1.98,
Sept. 2009
Individual behaviors are fitted into
PL form.
bl Blogs by four bloggers on sciencenet.cn with recorded | Individual behaviors are fitted into
0g

number of 588, 191, 536

PL form with cut-off

Users on blogs and micro blogs

Individual behaviors are fitted into
PL form, with exponent from 1.3 to

2.0

Randomly selected 30% users resisted in 2006 on nine

broads of Boards. IE

Collective  behavior can  be
described by PL distribution with

exponent 1.7

Micro blog activities on sina

Collective  behavior can  be

described by PL distribution with
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exponent 1.4

Social network

activities

Messages on 17,788,870 users in Cyworld in Korea from
June, 2003 to Oct. 2005.

Within 36 minutes, the collective
behavior is fitted into PL
distribution with exponent 1.696;
Between 36 minutes and one day,
the PL exponent is 0.910; while
longer than one day, the exponent is

2.276

Tasks executing

6,701,406 visiting records by 9,436 tasks by Turkey robot
of Amazon, from January, 2009 to April, 2010

The PL exponent is 1.48

Over 10,000 activities recorded by the computer when user

open and close the software

The PL exponent is 1

Seven historical record on Linux log by six users. Each log

contains 12,000 to 93,000 commands.

The PL exponent is between 1.47
and 1.74

The distribution function should be

exponential.

Online services

Film selecting activities on site: www.netflix.com,

including 17,770 movies, 447,139 users, nearly 100

millions records

Collective  behavior  is PL
distribution with exponent 2.08;
while the individual behavior is

heavy tail, but not a PL.

Log information of an on online music sharing website

The individual behaviors are heavy

tailed.

54,204,641 book marking records of 220,867 users of
Delicious website from 1 April, 2004 to 1 Nov, 2007

Collective behavior is fitted into PL
distribution with exponent between

1.07 and 2.41

Buying history of 274,148 on 28,620 goods on
360buy.com from 2 Dec., 2008 to 12 Jan., 2010

The collective behavior is described

by PL distribution.

War

54,6789 violent reported

The inter-activities times can be
explained by the cascade Poisson

process.

Wars in the history of China

The distribution of inter-war times

is exponential.

8,627 terror attach in Iran and 772 in Afghan

The distribution is PL  with

exponent between 2.61 and 2.41

Writing

68,022 blogs obtained by Google RSS readers from 11
Feb. 2005 to 2 Oct., 2005

The inter-activities times are fitted
into PL distribution with exponent

1.5

9,641,842 edit records by 81,823 users on Chinese Wiki
website from 26 Oct., 2002 to 7 June, 2009

The inter-activities times are fitted

into PL distribution
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The times of publication of Su Shi, Stanley, Newman,

Barabasi

The inter-activities times are fitted

into PL distribution.

Physical

proximate

54 volunteers in IEEE INFORCOM conferences in May,
2005

The inter-activities times of
individuals are fitted into PL

distribution with exponent 1.4

The exponent for the collective

behavior is 1.6

Spatial position records with the length of 9 months of 100
students of MIT who carry blue teeth mobile

The intervals are fitted into PL

distribution with exponent 1.51.49

50 users with RFID at the conference during 13-17 Oct.,
2008

Power law

51,879 records of face to face communication of 163

volunteers in 73 days in a Japanese company

The inter-activities times are fitted
into PL distribution with exponent

2.52
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Appendix II. Correlations coefficients as a function of time window. ACC sectors in

other exercise in D1 dataset.
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Appendix III. The distributions of the inter-communication times of each sector
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