. Ksolidtemp, =Ksolid_SI_check(I,:); solidguess(qq)=T(I)*0.5; guess=[species(1:Nx)' solidguess]; [species, err, SItst, solids]=NR_method(ASOLUTION

C. Else, +out(8)+out(9)+out(10)+2*out(11)+out(18)+out(19)+out(20), pp.21-22

. T_tab, 500+1,j1+j)=pasdebut2; end if (l)/500-floor((l)/500, j+1)=out2; SI_Ce(l/500+1,j+1), pp.0-2

J. Villermaux, Génie de la réaction chimique -conception et fonctionnement des réacteurs, 1993.

J. Ba?dyga and R. Pohorecki, Turbulent micromixing in chemical reactors ??? a review, The Chemical Engineering Journal and the Biochemical Engineering Journal, vol.58, issue.2, pp.183-195, 1995.
DOI : 10.1016/0923-0467(95)02982-6

J. Cheng, Retrospect and Perspective of Micro-mixing Studies in Stirred Tanks, Chinese Journal of Chemical Engineering, vol.20, issue.1, pp.178-190, 2012.
DOI : 10.1016/S1004-9541(12)60378-4

J. Baldyga and J. R. Bourne, Turbulent Mixing and Chemical Reactions, 1999.

A. N. Kolmogorov, Dissipation of Energy in the Locally Isotropic Turbulence, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.434, issue.1890, 1941.
DOI : 10.1098/rspa.1991.0076

A. N. Kolmogorov, The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.434, issue.1890, 1941.
DOI : 10.1098/rspa.1991.0075

A. Obukhov, Structure of the temperature field in turbulent flow, 1968.

S. Corrsin, On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence, Journal of Applied Physics, vol.22, issue.4, pp.469-473, 1951.
DOI : 10.1063/1.1699986

G. Batchelor, J. Ba?dyga, J. Bourne, S. Hearn-baldyga, J. et al., Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity Interaction between chemical reactions and mixing on various scales Interactions between mixing on various scales in stirred tank reactors, Journal of Fluid Mechanics Chemical Engineering Science Chemical Engineering Science, vol.11, issue.128, pp.113-133, 1959.

R. David, J. Villermaux-baldyga, J. , and S. Rohani, INTERPRETATION OF MICROMIXING EFFECTS ON FAST CONSECUTIVE-COMPETING REACTIONS IN SEMI-BATCH STIRRED TANKS BY A SIMPLE INTERACTION MODEL, Chemical Engineering Communications, vol.89, issue.1-6, pp.333-352, 1987.
DOI : 10.1016/0009-2509(64)85030-2

S. Rohani and J. Baldyga, Micromixing described in terms of inertial???convective disintegration of large eddies and viscous???convective interactions among small eddies???II. Semi-batch and continuous stirred tank reactors, Chemical Engineering Science, vol.42, issue.11, pp.42-2611, 1987.
DOI : 10.1016/0009-2509(87)87012-4

M. Torbacke and Å. C. Rasmuson, Mesomixing in semi-batch reaction crystallization and influence of reactor size, AIChE Journal, vol.78, issue.12, pp.50-3107, 2004.
DOI : 10.1002/aic.10213

J. Chen, C. Zheng, and G. A. Chen, Interaction of macro- and micromixing on particle size distribution in reactive precipitation, Chemical Engineering Science, vol.51, issue.10, pp.51-1957, 1996.
DOI : 10.1016/0009-2509(96)00053-X

S. Li, Mesomixing scale controlling and its effect on micromixing performance Mixing of liquids by mechanical agitation Crystallization technology handbook A fluid mechanical approach to turbulent mixing and chemical reaction. Part III : computational and experimental results fot the new micromixing model, Chemical Engineering Science Chemical Engineering Communications, vol.1, issue.28, pp.62-3620, 1984.

B. K. Johnson and R. K. , Prud'homme, Chemical processing and micromixing in confined impinging jets The effect of incomplete mixing on homogeneous reactions, AIChE Journal Danckwerts, P. Chemical Engineering Science, vol.49, issue.81, pp.2264-2282, 1958.

J. Ottino, Mixing and chemical reactions a tutorial, Chemical Engineering Science, vol.49, issue.24, pp.49-4005, 1994.
DOI : 10.1016/S0009-2509(05)80004-1

G. S. Jeong, Applications of micromixing technology, The Analyst, vol.1, issue.146, pp.460-473, 2010.
DOI : 10.1039/b921430e

J. Garside and N. Tavare, Mixing, reaction and precipitation: Limits of micromixing in an MSMPR crystallizer, Chemical Engineering Science, vol.40, issue.8, pp.40-1485, 1985.
DOI : 10.1016/0009-2509(85)80090-7

N. S. Tavare, Mixing in continuous crystallizers, AIChE Journal, vol.32, issue.5, pp.705-732, 1986.
DOI : 10.1002/aic.690320502

E. A. Mansur, A State-of-the-Art Review of Mixing in Microfluidic Mixers, Chinese Journal of Chemical Engineering, vol.16, issue.4, pp.503-516, 2008.
DOI : 10.1016/S1004-9541(08)60114-7

J. C. Cheng, M. G. Olsen, R. O. Fox, and Y. , A microscale multi-inlet vortex nanoprecipitation reactor: Turbulence measurement and simulation Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation, Applied Physics Letters Chemical Engineering Science, issue.2011, pp.94-63, 2008.

A. Kölbl, M. Kraut, and A. Wenka, Design parameter studies on cyclone type mixers, Chemical Engineering Journal, vol.167, issue.2-3, pp.2-3, 2011.
DOI : 10.1016/j.cej.2010.08.092

A. Blandin, Kinetics identification of salicylic acid precipitation through experiments in a batch stirred vessel and a T-mixer, Chemical Engineering Journal, vol.81, issue.1-3, pp.91-100, 2001.
DOI : 10.1016/S1385-8947(00)00227-8

C. H. Tseng, Continuous precipitation of ceria nanoparticles from a continuous flow micromixer. The International Journal of Advanced Manufacturing Technology, pp.1-4, 2013.

B. Palanisamy and B. Paul, Continuous flow synthesis of ceria nanoparticles using static T-mixers, Chemical Engineering Science, vol.78, pp.46-52, 2012.
DOI : 10.1016/j.ces.2012.04.032

Y. Ying, A high throughput methodology for continuous preparation of monodispersed nanocrystals in microfluidic reactors, Chemical Engineering Journal, vol.135, issue.3, pp.209-215, 2008.
DOI : 10.1016/j.cej.2007.03.009

M. Ashar-sultan, Experimental study of flow regime and mixing in T-jets mixers, Chemical Engineering Science, vol.73, pp.388-399, 2012.
DOI : 10.1016/j.ces.2012.02.010

M. A. Ansari, Vortex micro T-mixer with non-aligned inputs, Chemical Engineering Journal, vol.181, issue.182, pp.181-182, 2012.
DOI : 10.1016/j.cej.2011.11.113

F. Lince, D. L. Marchisio, A. A. Barresi, N. , J. Kastner et al., A comparative study for nanoparticle production with passive mixers via solvent-displacement: Use of CFD models for optimization and design, Chemical Engineering and Processing: Process Intensification, vol.50, issue.4, pp.356-368, 2008.
DOI : 10.1016/j.cep.2011.02.015

H. Schwarzer, Predictive simulation of nanoparticle precipitation based on the population balance equation, Chemical Engineering Science, vol.61, issue.1, pp.61-167, 2006.
DOI : 10.1016/j.ces.2004.11.064

C. Lindenberg, Experimental characterization and multi-scale modeling of mixing in static mixers, Chemical Engineering Science, vol.63, issue.16, pp.4135-4149, 2008.
DOI : 10.1016/j.ces.2008.05.026

C. Lindenberg and M. Mazzotti, Experimental characterization and multi-scale modeling of mixing in static mixers. Part 2. Effect of viscosity and scale-up, Chemical Engineering Science, vol.64, issue.20, pp.64-4286, 2009.
DOI : 10.1016/j.ces.2009.06.067

H. Haberkorn, Early stages of particle formation in precipitation reactions???quinacridone and boehmite as generic examples, Journal of Colloid and Interface Science, vol.259, issue.1, pp.112-126, 2003.
DOI : 10.1016/S0021-9797(03)00024-9

W. M. Li, . Hervé, and E. D. Plasari, Elaboration de nanoparticules de magnetite par precipitation Effect of mixing and other operating parameters in sol?gel processes, Cristallisation et Précipitation Industrielles, pp.47-7202, 2008.

Y. Chung, Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber, Lab on a Chip, vol.4, issue.1, pp.70-77, 2004.
DOI : 10.1039/b310848c

F. Salvatori, Determination of nucleation and crystal growth kinetics of barium carbonate, Powder Technology, vol.128, issue.2-3, pp.114-123, 2002.
DOI : 10.1016/S0032-5910(02)00184-5

I. Valente, Nanoprecipitation in confined impinging jets mixers: Production, characterization and scale-up of pegylated nanospheres and nanocapsules for pharmaceutical use, Chemical Engineering Science, vol.77, pp.217-227, 2012.
DOI : 10.1016/j.ces.2012.02.050

J. M. Gillian and D. J. Kirwan, IDENTIFICATION AND CORRELATION OF MIXING TIMES IN OPPOSED-JET MIXERS, Chemical Engineering Communications, vol.10, issue.12, pp.195-1553, 2008.
DOI : 10.1002/cjce.5450760326

E. Gavi, D. L. Marchisio, and A. A. Barresi, On the Importance of Mixing for the Production of Nanoparticles, Journal of Dispersion Science and Technology, vol.27, issue.4, pp.548-554, 2008.
DOI : 10.1016/0021-9797(70)90008-1

E. Gavi, Turbulent precipitation in micromixers: CFD simulation and flow field validation, Chemical Engineering Research and Design, vol.88, issue.9, pp.1182-1193, 2010.
DOI : 10.1016/j.cherd.2010.01.025

S. W. Siddiqui, Characteristics of a Confined Impinging Jet Reactor: Energy Dissipation, Homogeneous and Heterogeneous Reaction Products, and Effect of Unequal Flow, Industrial & Engineering Chemistry Research, vol.48, issue.17, pp.48-7945, 2009.
DOI : 10.1021/ie801562y

D. L. Marchisio, L. Rivautella, A. A. Barresi, J. , J. Bourne et al., Design and scale-up of chemical reactors for nanoparticle precipitation, AIChE Journal, vol.27, issue.1, pp.1877-1887, 1995.
DOI : 10.1002/aic.10786

J. Bourne, R. Gholap, and V. Rewatkar, The influence of viscosity on the product distribution of fast parallel reactions, The Chemical Engineering Journal and the Biochemical Engineering Journal, vol.58, issue.1, pp.15-20, 1995.
DOI : 10.1016/0923-0467(94)02878-E

M. Kashid, A. Renken, and L. Kiwi-minsker, Mixing efficiency and energy consumption for five generic microchannel designs, Chemical Engineering Journal, vol.167, issue.2-3, pp.2-3, 2011.
DOI : 10.1016/j.cej.2010.09.078

M. P. Roustan and -. L. , Agitation. Mélange -Concepts théoriques de base, Techniques de l'Ingénieur, pp.1-22, 1999.

O. G. Söhnel, J. Dirksen, T. Ring-roelands, and C. M. , Oxford: Butterworth-Heinemann. 391. 59 Fundamentals of crystallization: kinetic effects on particle size distributions and morphology Analysis of nucleation rate measurements in precipitation processes.Crystal growth & design Etudes cinétiques et caractérisation de l'agglomération dans une précipitation homogène Velocity Gradients in Internal Work in Fluid Motion On the collision of drops in turbulent clouds, Centre Réacteur et Processus, pp.46-2389, 1943.

J. Abrahamson, Collision rates of small particles in a vigorously turbulent fluid Coagulation in turbulent flow: theory and experiment, Chemical Engineering Science Journal of Colloid and interface Science, issue.113, pp.30-1371, 1975.

C. Noguera, Simulation of the nucleation and growth of binary solid solutions in aqueous solutions, Chemical Geology, vol.269, issue.1-2, pp.89-99, 2010.
DOI : 10.1016/j.chemgeo.2009.05.025

URL : https://hal.archives-ouvertes.fr/insu-00556508

V. Pacary, A. G. Walton, H. Füredi, E. , M. Djarova et al., ENSIC: Nancy. p. 277. 68 The Formation and Properties of Precipitates Inclusion of isomorphous impurities during crystallization from solutions. Progress in crystal growth and characterization of materials, Laboratoire Réactions et Génie des Procédés Makowski, and W. Orciuch, Interaction between Mixing, Chemical Reactions, and Precipitation. Industrial & Engineering Chemistry Research, pp.111-134, 1979.

T. Meyer, Barium sulfate precipitation as model reaction for segregation studies at pilot scale, Chemical Engineering and Processing: Process Intensification, pp.31-307, 1992.
DOI : 10.1016/0255-2701(92)87004-Z

R. Pohorecki and J. Ba?dyga, The use of a new model of micromixing for determination of crystal size in precipitation, Chemical Engineering Science, vol.38, issue.1, pp.79-83, 1983.
DOI : 10.1016/0009-2509(83)80136-5

R. Pohorecki and J. Ba?dyga, The effects of micromixing and the manner of reactor feeding on precipitation in stirred tank reactors, Chemical Engineering Science, issue.8, pp.43-1949, 1988.

B. Marcant and R. David, Experimental evidence for and prediction of micromixing effects in precipitation, AIChE Journal, vol.37, issue.11, pp.1698-1710, 1991.
DOI : 10.1002/aic.690371113

H. Schwarzer and W. Peukert, Combined experimental/numerical study on the precipitation of nanoparticles, AIChE Journal, vol.92, issue.12, pp.3234-3247, 2004.
DOI : 10.1002/aic.10277

J. Gradl, Precipitation of nanoparticles in a T-mixer: Coupling the particle population dynamics with hydrodynamics through direct numerical simulation, Chemical Engineering and Processing: Process Intensification, pp.45-908, 2006.
DOI : 10.1016/j.cep.2005.11.012

H. Casanova and L. P. Higuita, Synthesis of calcium carbonate nanoparticles by reactive precipitation using a high pressure jet homogenizer, Chemical Engineering Journal, vol.175, issue.0, pp.175-569, 2011.
DOI : 10.1016/j.cej.2011.09.051

K. Sue, Continuous hydrothermal synthesis of Fe2O3, NiO, and CuO nanoparticles by superrapid heating using a T-type micro mixer at 673K and 30MPa, Chemical Engineering Journal, vol.166, issue.3, pp.947-953, 2011.
DOI : 10.1016/j.cej.2010.11.080

X. Zhou, W. Huebner, and H. Anderson, Particles, Chemistry of Materials, vol.15, issue.2, pp.378-382, 2003.
DOI : 10.1021/cm020597c

URL : https://hal.archives-ouvertes.fr/hal-00445066

G. Mouret, Production of Al2O3?TiO2 catalyst supports with controlled properties using a co-precipitation process Cerium: A Guide to Its Role in Chemical Technology. 1992: Molycorp. 82 The phase stability of cerium species in aqueous systems -I. EpH diagram for the Ce-HClO4-H2O system, Powder Technology Kilbourn, B.T. Journal of the Electrochemical Society, vol.190, issue.8112, pp.84-88, 2002.

R. Wang, P. A. Crozier, and R. Sharma, Structural Transformation in Ceria Nanoparticles during Redox Processes, The Journal of Physical Chemistry C, vol.113, issue.14, pp.113-5700, 2009.
DOI : 10.1021/jp8107232

G. Adachi and N. Imanaka, The binary rare earth oxides. Chemical reviews, pp.1479-1514, 1998.

M. Palard, Effect of hydrothermal ripening on the photoluminescence properties of pure and doped cerium oxide nanoparticles, Materials Chemistry and Physics, vol.120, issue.1, pp.79-88, 2010.
DOI : 10.1016/j.matchemphys.2009.10.025

URL : https://hal.archives-ouvertes.fr/hal-00480699

M. Hirano and E. Kato, Hydrothermal Synthesis of Cerium(IV) Oxide, Journal of the American Ceramic Society, vol.67, issue.10, pp.777-780, 1996.
DOI : 10.1111/j.1151-2916.1996.tb07943.x

B. Djuri?i? and S. Pickering, Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders, Journal of the European Ceramic Society, vol.19, issue.11, pp.1925-1934, 1999.
DOI : 10.1016/S0955-2219(99)00006-0

H. Chang and H. Chen, Morphological evolution for CeO2 nanoparticles synthesized by precipitation technique, Journal of Crystal Growth, vol.283, issue.3-4, pp.457-468, 2005.
DOI : 10.1016/j.jcrysgro.2005.06.002

Z. Yang, Single-crystalline ceria nanocubes: size-controlled synthesis, characterization and redox property Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, Nanotechnology Journal of Catalysis, vol.18, issue.181, pp.229-206, 2005.

F. Zhang, Cerium oxide nanoparticles: Size-selective formation and structure analysis, Applied Physics Letters, vol.80, issue.1, pp.127-129, 2002.
DOI : 10.1063/1.1430502

E. C. Souza and E. N. Muccillo, Effect of solvent on physical properties of samaria-doped ceria prepared by homogeneous precipitation, Journal of Alloys and Compounds, vol.473, issue.1-2, pp.560-566, 2009.
DOI : 10.1016/j.jallcom.2008.06.027

J. E. Spanier, Size-dependent properties of CeO(2-y) nanoparticles as studied by Raman scattering Some kinetic and thermodynamic features of reactions between partially segregated fluids, Physical Review B Chemical Engineering Science, vol.64, issue.274, pp.653-668, 1972.

M. Fernández-garc?a, Structural Characteristics and Redox Behavior of CeO2???ZrO2/Al2O3 Supports, Journal of Catalysis, vol.194, issue.2, pp.385-392, 2000.
DOI : 10.1006/jcat.2000.2931

J. Rebellato, M. M. Natile, and A. Glisenti, Influence of the synthesis procedure on the properties and reactivity of nanostructured ceria powders, Applied Catalysis A: General, vol.339, issue.2, pp.108-120, 2008.
DOI : 10.1016/j.apcata.2007.12.031

N. C. Wu, Effect of pH of Medium on Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders, Journal of the American Ceramic Society, vol.118, issue.2, pp.85-2462, 2002.
DOI : 10.1023/A:1006653305821

Z. Wu, Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption, Langmuir, issue.21, pp.26-16595, 2010.

H. Yang, Microwave-assisted synthesis of ceria nanoparticles, Materials Research Bulletin, vol.40, issue.10, pp.40-1690, 2005.
DOI : 10.1016/j.materresbull.2005.05.014

B. Corradi and A. , Synthesis and characterization of nanosized ceria powders by microwave???hydrothermal method, Materials Research Bulletin, vol.41, issue.1, pp.38-44, 2006.
DOI : 10.1016/j.materresbull.2005.07.044

I. Moog, Sur des oxydes de cérium contenant du fer nanostructurés et de morphologies contrôlées, Institut de Chimie de la Matière Condensée de Bordeau. 2012, p.183

J. Aubin, M. Ferrando, and V. Jiricny, Current methods for characterising mixing and flow in microchannels, Chemical Engineering Science, vol.65, issue.6, pp.2065-2093, 2010.
DOI : 10.1016/j.ces.2009.12.001

G. C. Koltsakis and A. M. Stamatelos, Catalytic automotive exhaust aftertreatment, Progress in Energy and Combustion Science, pp.1-39, 1997.
DOI : 10.1016/S0360-1285(97)00003-8

A. Laachir, by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements, J. Chem. Soc., Faraday Trans., vol.21, issue.10, pp.1601-1609, 1991.
DOI : 10.1039/FT9918701601

URL : https://hal.archives-ouvertes.fr/hal-00005942

N. Guillén-hurtado, A. Bueno-lópez, and A. García-garcía, Catalytic performances of ceria and ceria-zirconia materials for the combustion of diesel soot under NOx/O2 and O2. Importance of the cerium precursor salt, Applied Catalysis A: General, vol.437, issue.438, pp.166-172, 2012.
DOI : 10.1016/j.apcata.2012.06.028

E. Aneggi, C. De-leitenburg, and A. Trovarelli, On the role of lattice/surface oxygen in ceria???zirconia catalysts for diesel soot combustion, Catalysis Today, vol.181, issue.1, pp.108-115, 2012.
DOI : 10.1016/j.cattod.2011.05.034

C. Bueno-ferrer, Relationship between surface area and crystal size of pure and doped cerium oxides, Journal of Rare Earths, vol.28, issue.5, pp.647-653, 2010.
DOI : 10.1016/S1002-0721(09)60172-1

C. Shih, Y. Chen, and M. Hon, Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process, Materials Chemistry and Physics, vol.121, issue.1-2, pp.99-102, 2010.
DOI : 10.1016/j.matchemphys.2010.01.001

A. Trovarelli and P. Fornasiero, Catalysis by ceria and related materials, 2013.
DOI : 10.1142/p249

I. Atribak, A. Bueno-lópez, and A. García-garcía, Role of yttrium loading in the physico-chemical properties and soot combustion activity of ceria and ceria???zirconia catalysts, Journal of Molecular Catalysis A: Chemical, vol.300, issue.1-2, pp.103-110, 2009.
DOI : 10.1016/j.molcata.2008.10.043

F. Tessier, Powder preparation and UV absorption properties of selected compositions in the CeO2???Y2O3 system, Journal of Solid State Chemistry, vol.181, issue.5, pp.181-1204, 2008.
DOI : 10.1016/j.jssc.2008.02.034

URL : https://hal.archives-ouvertes.fr/hal-00400670

S. Tadokoro and E. Muccillo, Influence of the precursor purity and the precipitating agent on impedance spectroscopy of CeO2:Y2O3 ceramics, Journal of Alloys and Compounds, vol.374, issue.1-2, pp.190-193, 2004.
DOI : 10.1016/j.jallcom.2003.11.090

Z. Pu, Study of Oxygen Vacancies in Ce0.9Pr0.1O2-? Solid Solution by in Situ X-ray Diffraction and in Situ Raman Spectroscopy, The Journal of Physical Chemistry C, issue.50, pp.111-18695, 2007.

G. Xiao, Synthesis of doped ceria with mesoporous flowerlike morphology and its catalytic performance for CO oxidation, Microporous and Mesoporous Materials, vol.120, issue.3, pp.426-431, 2009.
DOI : 10.1016/j.micromeso.2008.12.015

M. A. Ma?ecka, L. K?pi?ski, and W. Mi?ta, Synthesis, structure and morphology of CeO2 and CeLnOx mixed oxides (Ln=Pr, Tb, Lu) prepared by microemulsion method, Journal of Alloys and Compounds, vol.451, issue.1-2, pp.567-570, 2008.
DOI : 10.1016/j.jallcom.2007.04.110

P. Fornasiero, Modification of the Redox Behaviour of CeO2Induced by Structural Doping with ZrO2, Journal of Catalysis, vol.164, issue.1, pp.173-183, 1996.
DOI : 10.1006/jcat.1996.0373

C. Binet and M. Daturi, Methanol as an IR probe to study the reduction process in ceria???zirconia mixed compounds, Catalysis Today, vol.70, issue.1-3, pp.155-167, 2001.
DOI : 10.1016/S0920-5861(01)00415-1

G. Graham, Characterization of model automotive exhaust catalysts: Pd on Zr?rich ceria?zirconia supports, Catalysis Letters, vol.67, issue.2/4, pp.99-105, 2000.
DOI : 10.1023/A:1019086026110

M. Boaro, On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts, Applied Catalysis B: Environmental, vol.52, issue.3, pp.225-237, 2004.
DOI : 10.1016/j.apcatb.2004.03.021

L. Zhang, Structure Evolution Process of Ce0.65Zr0.25Y0.1O1.95 Prepared by Oxidation-Coprecipitation Method. Acta Physico-Chimica Sinica, pp.24-1342, 2008.

M. Li, Phase Transformation in the Surface Region of Zirconia Detected by UV Raman Spectroscopy, The Journal of Physical Chemistry B, vol.105, issue.34, pp.8107-8111, 2001.
DOI : 10.1021/jp010526l

G. ?tefani?, S. Popovi?, and S. Musi?, Influence of pH on the hydrothermal crystallization kinetics and crystal structure of ZrO2, Thermochimica Acta, vol.303, issue.1, pp.31-39, 1997.
DOI : 10.1016/S0040-6031(97)00243-8

P. D. Southon, Formation and Characterization of an Aqueous Zirconium Hydroxide Colloid, Chemistry of Materials, vol.14, issue.10, pp.4313-4319, 2002.
DOI : 10.1021/cm0211913

Y. V. Kolen-'ko, Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process, Materials Science and Engineering: C, vol.23, pp.6-8, 2003.

D. Monte, R. , and J. Ka?par, mixed oxides, J. Mater. Chem., vol.3, issue.31, pp.633-648, 2005.
DOI : 10.1039/B414244F

X. Wu, Role of Surface Adsorption in Fast Oxygen Storage/Release of CeO2 - ZrO2 Mixed Oxides, Journal of Rare Earths, vol.25, issue.4, pp.416-421, 2007.
DOI : 10.1016/S1002-0721(07)60448-7

S. Letichevsky, Obtaining CeO2???ZrO2 mixed oxides by coprecipitation: role of preparation conditions, Applied Catalysis B: Environmental, vol.58, issue.3-4, pp.3-4, 2005.
DOI : 10.1016/j.apcatb.2004.10.014

R. Si, Urea-Based Hydrothermally Derived Homogeneous Nanostructured Ce1-x Zr x O2 (x= 0-0.8) Solid Solutions: A Strong Correlation between Oxygen Storage Capacity and Lattice Strain, The Journal of Physical Chemistry B, issue.33, pp.108-12481, 2004.
DOI : 10.1021/jp048084b

B. M. Reddy, ) Mixed Oxides by Raman Spectroscopy, X-ray Photoelectron Spectroscopy, and Other Techniques, The Journal of Physical Chemistry B, vol.107, issue.41, pp.107-11475, 2003.
DOI : 10.1021/jp0358376

A. S. Deshpande, Synthesis and characterization of stable and crystalline Ce1- xZrxO2 nanoparticle sols, Chemistry of Materials, issue.13, pp.16-2599, 2004.

C. F. Oliveira, Effects of preparation and structure of cerium-zirconium mixed oxides on diesel soot catalytic combustion, Applied Catalysis A: General, vol.413, issue.414, pp.292-300, 2012.
DOI : 10.1016/j.apcata.2011.11.020

A. I. Kozlov, Effect of Preparation Method and Redox Treatment on the Reducibility and Structure of Supported Ceria???Zirconia Mixed Oxide, Journal of Catalysis, vol.209, issue.2, pp.417-426, 2002.
DOI : 10.1006/jcat.2002.3644

H. Jen, Characterization of model automotive exhaust catalysts: Pd on ceria and ceria???zirconia supports, Catalysis Today, vol.50, issue.2, pp.309-328, 1999.
DOI : 10.1016/S0920-5861(98)00512-4

N. Guillén-hurtado, A. Bueno-lópez, and A. García-garcía, Surface and structural characterisation of coprecipitated Ce x Zr1???x O2 (0???????x???????1) mixed oxides, Journal of Materials Science, vol.169, issue.324, pp.47-3204, 2012.
DOI : 10.1007/s10853-011-6158-4

M. Yashima, up to 1176 K, Crystal Growth & Design, vol.13, issue.2, pp.829-837, 2013.
DOI : 10.1021/cg301530t

E. Mamontov, Lattice Defects and Oxygen Storage Capacity of Nanocrystalline Ceria and Ceria-Zirconia, The Journal of Physical Chemistry B, vol.104, issue.47, pp.11110-11116, 2000.
DOI : 10.1021/jp0023011

G. Vlaic, Relationship between the Zirconia-Promoted Reduction in the Rh-Loaded Ce0.5Zr0.5O2Mixed Oxide and the Zr???O Local Structure, Journal of Catalysis, vol.168, issue.2, pp.386-392, 1997.
DOI : 10.1006/jcat.1997.1644

M. Pijolat, Surface and structural characterization of CexZr1-xO2 CEZIRENCAT mixed oxides as potential three-way catalyst promoters, Journal of the Chemical Society Faraday Transactions, issue.24, pp.94-3717, 1998.
URL : https://hal.archives-ouvertes.fr/emse-00610096

K. Kenevey, Thermal stability of Pd or Pt loaded Ce0.68Zr0.32O2 and Ce0.50Zr0.50O2 catalyst materials under oxidising conditions, Applied Catalysis B: Environmental, vol.29, issue.2, pp.93-101, 2001.
DOI : 10.1016/S0926-3373(00)00196-X

URL : https://hal.archives-ouvertes.fr/emse-00609100

M. Yashima, Zirconia-Ceria Solid Solution Synthesis and the Temperature-Time-Transformation Diagram for the 1:1 Composition, Journal of the American Ceramic Society, vol.31, issue.11, pp.76-1745, 1993.
DOI : 10.1111/j.1151-2916.1993.tb06643.x

M. Daturi, Surface investigation on CexZr1-xO2 compounds, Physical Chemistry Chemical Physics, vol.1, issue.24, pp.5717-5724, 1999.
DOI : 10.1039/a905758g

A. Martinez-arias, Spectroscopic Characterization of Heterogeneity and Redox Effects in Zirconium???Cerium (1:1) Mixed Oxides Prepared by Microemulsion Methods, The Journal of Physical Chemistry B, vol.107, issue.12, pp.2667-2677, 2003.
DOI : 10.1021/jp026563+

Y. Zhang, Controlled Synthesis, Characterization, and Morphology-Dependent Reducibility of Ceria???Zirconia???Yttria Solid Solutions with Nanorod-like, Microspherical, Microbowknot-like, and Micro-octahedral Shapes, Inorganic Chemistry, vol.48, issue.5, pp.48-2181, 2009.
DOI : 10.1021/ic802195j

P. Yu, The Phase Stability of Cerium Species in Aqueous Systems, Journal of The Electrochemical Society, vol.153, issue.1, pp.74-79, 2006.
DOI : 10.1149/1.2130572

M. Aoun, Are barium sulphate kinetics sufficiently known for testing precipitation reactor models?, Chemical Engineering Science, vol.51, issue.10, pp.51-2449, 1996.
DOI : 10.1016/0009-2509(96)00101-7

J. Ba?ldyga, W. Podgórska, and R. Pohorecki, Mixing-precipitation model with application to double feed semibatch precipitation, Chemical Engineering Science, vol.50, issue.8, pp.50-1281, 1995.
DOI : 10.1016/0009-2509(95)98841-2

D. L. Marchisio, A. A. Barresi, and M. Garbero, Nucleation, growth, and agglomeration in barium sulfate turbulent precipitation, AIChE Journal, vol.55, issue.9, pp.48-2039, 2002.
DOI : 10.1002/aic.690480917

J. Commenge and L. Falk, Villermaux???Dushman protocol for experimental characterization of micromixers, Chemical Engineering and Processing: Process Intensification, pp.50-979, 2011.
DOI : 10.1016/j.cep.2011.06.006

URL : https://hal.archives-ouvertes.fr/hal-00777226

R. S. Torrest and W. Ranz, Improved Conductivity System for Measurement of Turbulent Concentration Fluctuations, Industrial & Engineering Chemistry Fundamentals, vol.8, issue.4, pp.810-816, 1969.
DOI : 10.1021/i160032a035

S. H. Wong, M. C. Ward, and C. W. Wharton, Micro T-mixer as a rapid mixing micromixer, Sensors and Actuators B: Chemical, vol.100, issue.3, pp.359-379, 2004.
DOI : 10.1016/j.snb.2004.02.008

V. Hessel, Laminar mixing in different interdigital micromixers: I. Experimental characterization, AIChE Journal, vol.9, issue.3, pp.566-577, 2003.
DOI : 10.1002/aic.690490304

M. I. Nunes, Micromixing assessment of confined impinging jet mixers used in RIM, Chemical Engineering Science, vol.74, pp.276-286, 2012.
DOI : 10.1016/j.ces.2012.02.054

J. Bourne, F. Kozicki, and P. Rys, Mixing and fast chemical reaction???I, Chemical Engineering Science, vol.36, issue.10, pp.36-1643, 1981.
DOI : 10.1016/0009-2509(81)80008-5

M. C. Fournier, L. Falk, and J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency???Experimental approach, Chemical Engineering Science, vol.51, issue.22, pp.51-5053, 1996.
DOI : 10.1016/0009-2509(96)00270-9

J. R. Bourne, Mixing and the selectivity of chemical reactions, Organic Process Research & Development, pp.471-508, 2003.

A. Zoulalian and J. Villermaux, Influence of chemical parameters on micromixing in a continuous stirred tank reactor, in Chemical Reaction Engineering-II, pp.348-361, 1975.

J. R. Bourne, O. M. Kut, and J. Lenzner, An improved reaction system to investigate micromixing in high-intensity mixers. Industrial & engineering chemistry research, pp.31-949, 1992.

J. Baldyga, J. R. Bourne, and B. Walker, Non-isothermal micromixing in turbulent liquids: Theory and experiment, The Canadian Journal of Chemical Engineering, vol.47, issue.3, pp.76-641, 1998.
DOI : 10.1002/cjce.5450760336

P. Guichardon and L. Falk, Characterisation of micromixing efficiency by the iodide???iodate reaction system. Part I: experimental procedure, Chemical Engineering Science, vol.55, issue.19, pp.55-4233, 2000.
DOI : 10.1016/S0009-2509(00)00068-3

P. Guichardon, L. Falk, and J. Villermaux, Characterisation of micromixing efficiency by the iodide???iodate reaction system. Part II: kinetic study, Chemical Engineering Science, vol.55, issue.19, pp.55-4245, 2000.
DOI : 10.1016/S0009-2509(00)00069-5

D. A. Palmer, R. W. Ramette, and R. E. Mesmer, Triiodide ion formation equilibrium and activity coefficients in aqueous solution, Journal of Solution Chemistry, vol.96, issue.9, pp.673-683, 1984.
DOI : 10.1007/BF00650374

L. Falk and J. M. Commenge, Performance comparison of micromixers, Chemical Engineering Science, vol.65, issue.1, pp.405-411, 2010.
DOI : 10.1016/j.ces.2009.05.045

URL : https://hal.archives-ouvertes.fr/hal-00799578

J. R. Bourne, Comments on the iodide/iodate method for characterising micromixing, Chemical Engineering Journal, vol.140, issue.1-3, pp.638-641, 2008.
DOI : 10.1016/j.cej.2008.01.031

A. Kölbl, M. Kraut, and R. Dittmeyer, Kinetic investigation of the Dushman reaction at concentrations relevant to mixing studies in microstructured cyclone type mixers, Chemical Engineering Science, vol.101, issue.101, pp.454-460, 2013.
DOI : 10.1016/j.ces.2013.07.008

A. Kölbl and S. Schmidt-lehr, The iodide iodate reaction method: The choice of the acid, Chemical Engineering Science, vol.65, issue.5, pp.1897-1901, 2010.
DOI : 10.1016/j.ces.2009.11.032

J. J. Custer and S. Natelson, Spectrophotometric Determination of Microquantities of Iodine, Analytical Chemistry, vol.21, issue.8, pp.1005-1009, 1949.
DOI : 10.1021/ac60032a040

C. Herbo and J. Sigalla, Principes de l'iodim??trie absorptiom??trique, Analytica Chimica Acta, vol.17, pp.199-207, 1957.
DOI : 10.1016/S0003-2670(00)87013-0

E. Nauman, The droplet diffusion model for micromixing, Chemical Engineering Science, vol.30, issue.9, pp.1135-1140, 1975.
DOI : 10.1016/0009-2509(75)87016-3

J. M. Ottino, W. E. Ranz, and C. W. Macosko, A lamellar model for analysis of liquidliquid mixing, Chemical Engineering Science, issue.6, pp.34-877, 1979.

J. Baldyga and J. R. Bourne, Simplification of micromixing calculations. I. Derivation and application of new model, The Chemical Engineering Journal, vol.42, issue.2, pp.83-92, 1989.
DOI : 10.1016/0300-9467(89)85002-6

J. Baldyga and J. R. Bourne, Comparison of the engulfment and the interaction-by-exchange-with-the-mean micromixing models, The Chemical Engineering Journal, vol.45, issue.1, pp.25-31, 1990.
DOI : 10.1016/0300-9467(90)80022-5

R. Zauner and A. G. Jones, On the influence of mixing on crystal precipitation processes???application of the segregated feed model, Chemical Engineering Science, vol.57, issue.5, pp.821-831, 2002.
DOI : 10.1016/S0009-2509(01)00417-1

R. O. Fox, On the relationship between Lagrangian micromixing models and computational fluid dynamics, Chemical Engineering and Processing: Process Intensification, pp.521-535, 1998.
DOI : 10.1016/S0255-2701(98)00059-2

J. Villermaux and L. Falk, A generalized mixing model for initial contacting of reactive fluids, Chemical Engineering Science, vol.49, issue.24, pp.5127-5140, 1994.
DOI : 10.1016/0009-2509(94)00303-3

J. K. Park and K. J. Lee, Diffusion Coefficients for Aqueous Boric Acid, Journal of Chemical & Engineering Data, vol.39, issue.4, pp.891-894, 1994.
DOI : 10.1021/je00016a057

L. Hui and D. G. Leaist, Thermal diffusion of weak electrolytes: aqueous phosphoric and iodic acids, Canadian Journal of Chemistry, vol.68, issue.8, pp.68-1317, 1990.
DOI : 10.1139/v90-203

L. Cantrel, R. Chaouche, and J. Chopin-dumas, Diffusion Coefficients of Molecular Iodine in Aqueous Solutions, Journal of Chemical & Engineering Data, vol.42, issue.1, pp.216-220, 1997.
DOI : 10.1021/je960178u

N. Zech and D. Landolt, The influence of boric acid and sulfate ions on the hydrogen formation in Ni???Fe plating electrolytes, Electrochimica Acta, vol.45, issue.21, pp.45-3461, 2000.
DOI : 10.1016/S0013-4686(00)00415-1

H. A. Liebhafsky and G. M. Roe, The detailed mechanism of the Dushman reaction explored by computer, International Journal of Chemical Kinetics, vol.13, issue.7, pp.693-703, 1979.
DOI : 10.1002/kin.550110703

A. Barton and G. Wright, Kinetics of the iodate???iodide reaction: catalysis by carboxylate and phosphate ions, J. Chem. Soc. A, vol.0, issue.0, pp.2096-2103, 1968.
DOI : 10.1039/J19680002096

S. Dushman, The Rate of the Reaction between Iodic and Hydriodic Acids, The Journal of Physical Chemistry, vol.8, issue.7, pp.453-482, 1904.
DOI : 10.1021/j150061a001

E. Abel and F. Stadler, Revision der Kinetik der HJO3-HJ Reaktion, Z. phys. Chem, vol.122, pp.49-1926, 1926.

A. F. Barton, H. N. Cheong, and R. E. Smidt, Kinetics of the bromate???iodide and iodate???iodide reactions by pH-stat techniques, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.72, issue.0, pp.568-574, 1976.
DOI : 10.1039/f19767200568

S. M. Schildcrout and F. A. Fortunato, Spectrophotometric study of the rate of the aqueous iodate-iodide reaction, The Journal of Physical Chemistry, vol.79, issue.1, pp.31-34, 1975.
DOI : 10.1021/j100568a007

G. Schmitz, Kinetics and mechanism of the iodate???iodide reaction and other related reactions, Physical Chemistry Chemical Physics, vol.1, issue.8, pp.1909-1914, 1999.
DOI : 10.1039/a809291e

J. Rouquerol, Adsorption by powders and porous solids: principles, methodology and applications, 2013.

D. R. Sellick, Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation, Applied Catalysis B: Environmental, vol.132, issue.133, pp.132-133, 2013.
DOI : 10.1016/j.apcatb.2012.11.036

J. P. Jolivet, J. Livage, and M. Henry, De la solution a l'oxide, 1994.

P. Mcfadyen and D. Fairhurst, Zeta Potentials of Nanoceramic Materials- Measurement and Interpretation, British Ceramic Proceedings. 1993. Institute of ceramics

D. Faria, L. A. , and S. Trasatti, The Point of Zero Charge of CeO2, Journal of Colloid and Interface Science, vol.167, issue.2, pp.352-357, 1994.
DOI : 10.1006/jcis.1994.1370

J. B. Stankovi?, S. K. Milonji?, and S. P. Zec, The influence of chemical and thermal treatment on the point of zero charge of hydrous zirconium oxide, Journal of the Serbian Chemical Society, vol.78, issue.7, pp.78-987, 2013.
DOI : 10.2298/JSC121010149S

M. Kosmulski, The Significance of the Points of Zero Charge of Zirconium (Hydr)Oxide Reported in the Literature, Journal of Dispersion Science and Technology, vol.98, issue.4, pp.529-538, 2002.
DOI : 10.1016/S0021-9673(00)96980-2

D. R. Lide, CRC handbook of chemistry and physics, 2004.

L. Lutterotti and M. Bortolotti, Object oriented programming and fast computation techniques in MAUD, a program for powder diffraction analysis written in java, IUCr: Compcomm Newsletter, issue.1, pp.43-50, 2003.

B. Bouchaud, pH-distribution of cerium species in aqueous systems, Journal of Rare Earths, vol.30, issue.6, pp.559-562, 2012.
DOI : 10.1016/S1002-0721(12)60091-X

J. Miller and D. Irish, Infrared and Raman spectra of the cerium(IV) ion ??? nitrate ion ??? water system, Canadian Journal of Chemistry, vol.45, issue.2, pp.147-155, 1967.
DOI : 10.1139/v67-030

L. Chen, Size-Related Lattice Parameter Changes and Surface Defects in Ceria Nanocrystals, The Journal of Physical Chemistry C, vol.114, issue.30, pp.12909-12919, 2010.
DOI : 10.1021/jp1031465

S. Tadokoro and E. Muccillo, Effect of solute dispersion on microstructure and electrical conductivity of Ce0.85Y0.13Pr0.02O2????? solid electrolyte, Journal of Power Sources, vol.154, issue.1, pp.1-7, 2006.
DOI : 10.1016/j.jpowsour.2005.03.194

S. Kotrlý and L. ??cha, Handbook of chemical equilibria in analytical chemistry, 1985.

E. Högfeldt, Stability constants of metal-ion complexes: part A: inorganic ligands, 1982.

J. R. Haas, E. L. Shock, and D. C. Sassani, Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures, Geochimica et Cosmochimica Acta, vol.59, issue.21, pp.59-4329, 1995.
DOI : 10.1016/0016-7037(95)00314-P

P. Yu and T. J. O-'keefe, The Phase Stability of Cerium Species in Aqueous Systems, Journal of The Electrochemical Society, vol.153, issue.1, pp.80-85, 2006.
DOI : 10.1149/1.2130574

J. Carrayrou, R. Mosé, and P. Behra, New efficient algorithm for solving thermodynamic chemistry, AIChE Journal, vol.19, issue.4, pp.894-904, 2002.
DOI : 10.1002/aic.690480423

R. Phillips, S. Rohani, and J. Baldyga, Micromixing in a single-feed semi-batch precipitation process, AIChE Journal, vol.42, issue.1, pp.82-92, 1999.
DOI : 10.1002/aic.690450108

P. Mavros and C. Baudou, Quantification of the Performance of Agitators In Stirred Vessels, Chemical Engineering Research and Design, vol.75, issue.8, pp.75-737, 1997.
DOI : 10.1205/026387697524407

M. V. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. phys. Chem, vol.92, pp.129-168, 1917.

A. Authier, Cristallographie géométrique. Techniques de l'ingénieur : Structure de la matière, 1993.

B. Jouffrey and R. Portier, Diffraction des métaux et alliages Interactions particulesmatière . Techniques de l'ingénieur : Essais métallographiques des métaux et alliages, 2007.

B. D. Cullity and S. R. , Elements of X-ray diffraction, Third Edition, vol.1, issue.664, 2001.

J. T. Langford and A. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, Journal of Applied Crystallography, vol.11, issue.2, pp.102-113, 1978.
DOI : 10.1107/S0021889878012844

V. Mote, Y. Purushotham, and B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics, vol.6, issue.1, pp.1-8, 2012.
DOI : 10.1186/2251-7235-6-6

J. Rouquerol, Texture des matériaux pulvérulents ou poreux. Techniques de l'ingénieur : Analyses de surface et de matériaux, 2003.

S. R. Gilliss, J. Bentley, and C. B. Carter, Electron energy-loss spectroscopic study of the surface of ceria abrasives, Applied Surface Science, vol.241, issue.1-2, pp.61-67, 2005.
DOI : 10.1016/j.apsusc.2004.09.018

F. Ye, Microstructural characterization of terbium-doped ceria, Materials Research Bulletin, vol.42, issue.5, pp.943-949, 2007.
DOI : 10.1016/j.materresbull.2006.08.007

M. Lundberg, Mesoporous high surface area Ce0.9Gd0.1O1.95 synthesized by spray drying, Ceramics International, vol.37, issue.3, pp.797-802, 2011.
DOI : 10.1016/j.ceramint.2010.10.024

P. J. Hendra, C. Warnes, and G. , Fourier transform Raman spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.51, issue.6, p.311, 1991.
DOI : 10.1016/0584-8539(95)90097-7

P. Dhamelincourt, Techniques de l'ingénieur CND : méthodes surfaciques, 1999.

J. Mcbride, , where RE=La, Pr, Nd, Eu, Gd, and Tb, Journal of Applied Physics, vol.76, issue.4, pp.2435-2441, 1994.
DOI : 10.1063/1.357593

I. Kosacki, Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ionics, pp.99-105, 2002.

A. Mirgorodsky, M. Smirnov, and P. Quintard, Phonon spectra evolution and softmode instabilities of zirconia during the c?t?m transformation, Journal of Physics and Chemistry of Solids, issue.7, pp.60-985, 1999.

D. J. Kim, H. J. Jung, and I. S. Yang, Raman Spectroscopy of Tetragonal Zirconia Solid Solutions, Journal of the American Ceramic Society, vol.19, issue.5, pp.76-2106, 1993.
DOI : 10.1111/j.1151-2916.1992.tb04222.x

M. Yashima, Raman Scattering Study of Cubic-Tetragonal Phase Transition in Zr1-xCexO2 Solid Solution, Journal of the American Ceramic Society, vol.266, issue.12, pp.1067-1071, 1994.
DOI : 10.1111/j.1151-2916.1994.tb07270.x

F. Zhang, Phases in Ceria-Zirconia Binary Oxide (1-x)CeO2-xZrO2 Nanoparticles: The Effect of Particle Size, Journal of the American Ceramic Society, vol.57, issue.2, pp.1028-1036, 2006.
DOI : 10.1016/S0025-5408(00)00349-4

A. Martínez?arias, EPR study on oxygen handling properties of ceria, zirconia and Zr?Ce (1: 1) mixed oxide samples, Catalysis Letters, vol.65, issue.4, pp.197-204, 2000.
DOI : 10.1023/A:1019089910238

V. G. Keramidas and W. B. White, Raman Scattering Study of the Crystallization and Phase Transformations of ZrO2, Journal of the American Ceramic Society, vol.54, issue.5, pp.22-24, 1974.
DOI : 10.1016/0025-5408(67)90021-9

B. M. Reddy, Surface Stabilized Nanosized CexZr1-xO2 Solid Solutions over SiO2: Characterization by XRD, Raman, and HREM Techniques ?): p. 13545-13552. 230. O'Haver, T. Peak Fitter, The Journal of Physical Chemistry B, vol.1408, 2005.
DOI : 10.1021/jp051438u