P. Abrahamsen, A Review of Gaussian Random Fields and Correlation Functions, Norsk Regnesentral, 1997.

R. Adler and J. Taylor, Random Fields and Geometry, 2009.
DOI : 10.1137/1.9780898718980

D. Allard, Validation d'un modèle géostatistique pour l'interpolation : application à un évènement pluvieux, Analyse statistique des données spatiales, pp.403-414, 2006.

A. Almendral, P. Abrahamsen, and R. Hauge, Multidimensional scaling and anisotropic covariance functions, Proceedings of the Eight International Geostatistics Congress, pp.187-196, 2008.

E. B. Anderes and S. Chatterjee, Consistent estimates of deformed isotropic Gaussian random fields on the plane, The Annals of Statistics, vol.37, issue.5A, pp.2324-2350, 2009.
DOI : 10.1214/08-AOS647

E. B. Anderes and M. L. Stein, Estimating deformations of isotropic Gaussian random fields on the plane, The Annals of Statistics, vol.36, issue.2, pp.719-741, 2008.
DOI : 10.1214/009053607000000893

E. B. Anderes and M. L. Stein, Local likelihood estimation for nonstationary random fields, Journal of Multivariate Analysis, vol.102, issue.3, pp.506-520, 2011.
DOI : 10.1016/j.jmva.2010.10.010

P. M. Atkinson and C. D. Lloyd, Non-stationary variogram models for geostatistical sampling optimisation: An empirical investigation using elevation data, Computers & Geosciences, vol.33, issue.10, pp.1285-1300, 2007.
DOI : 10.1016/j.cageo.2007.05.011

S. Banerjee, A. E. Gelfand, J. R. Knight, and C. F. Sirmans, Spatial Modeling of House Prices Using Normalized Distance-Weighted Sums of Stationary Processes, Journal of Business & Economic Statistics, vol.22, issue.2, pp.206-213, 2004.
DOI : 10.1198/073500104000000091

J. J. Barber, Modeling And Prediction Of Nonstationary Spatial Environmental Processes, 2002.

L. Bel, Non Parametric Variogram Estimator. Application to Air Pollution Data, Quantitative Geology and Geostatistics, vol.13, pp.29-40, 2004.
DOI : 10.1007/1-4020-2115-1_3

P. Billingsley, Probability and measure, 1995.

J. B. Boisvert and C. V. Deutsch, Programs for kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances, Computers & Geosciences, vol.37, issue.4, pp.495-510, 2011.
DOI : 10.1016/j.cageo.2010.03.021

J. B. Boisvert, J. G. Manchuk, and C. V. Deutsch, Kriging in the Presence of Locally Varying Anisotropy Using Non-Euclidean Distances, Mathematical Geosciences, vol.39, issue.3, pp.41585-601, 2009.
DOI : 10.1007/s11004-009-9229-1

D. Bolin and F. Lindgren, Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping, The Annals of Applied Statistics, vol.5, issue.1, pp.523-550, 2011.
DOI : 10.1214/10-AOAS383

I. Borg and P. Groenen, Modern Multidimensional Scaling: Theory and Applications, Journal of Educational Measurement, vol.40, issue.3, 2005.
DOI : 10.1007/BF02289341

I. Borg, P. Groenen, M. , and P. , Applied Multidimensional Scaling, 2012.
DOI : 10.1007/978-3-642-31848-1

L. Bornn, G. Shaddick, and J. V. Zidek, Modeling Nonstationary Processes Through Dimension Expansion, Journal of the American Statistical Association, vol.49, issue.1, pp.281-289, 2012.
DOI : 10.1111/j.1467-9868.2005.00532.x

URL : http://arxiv.org/abs/1011.2553

C. A. Calder and N. Cressie, Some topics in convolution-based spatial modeling, Proceedings of the 56th Session of the International Statistical Institute, 2007.

C. Morales, F. Gamerman, D. Paez, and M. , State space models with spatial deformation, Environmental and Ecological Statistics, vol.64, issue.2, pp.191-214, 2013.
DOI : 10.1007/s10651-012-0215-2

Y. Chang, N. Hsu, and H. Huang, Semiparametric Estimation and Selection for Nonstationary Spatial Covariance Functions, Journal of Computational and Graphical Statistics, vol.19, issue.1, pp.117-139, 2010.
DOI : 10.1198/jcgs.2010.07157

J. P. Chilès and P. Delfiner, Geostatistics : modeling spatial uncertainty, 2012.
DOI : 10.1002/9781118136188

G. Christakos, Random Field Models in Earth Sciences, 2012.

A. Cohen and . Jones, Regression on a Random Field, Journal of the American Statistical Association, vol.54, issue.328, pp.1172-1182, 1969.
DOI : 10.1080/01621459.1969.10501048

T. Cox and A. Cox, Multidimensional Scaling, Second Edition, 2000.
DOI : 10.1201/9781420036121

N. Cressie and G. Johannesson, Fixed rank kriging for very large spatial data sets, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.100, issue.1, pp.209-226, 2008.
DOI : 10.1111/j.1467-9868.2007.00633.x

D. Damian, P. D. Sampson, and P. Guttorp, Bayesian estimation of semi-parametric non-stationary spatial covariance structures, Environmetrics, vol.12, issue.2, pp.161-178, 2001.
DOI : 10.1002/1099-095X(200103)12:2<161::AID-ENV452>3.0.CO;2-G

N. Desassis and D. Renard, Automatic Variogram Modeling by Iterative Least Squares: Univariate and Multivariate Cases, Mathematical Geosciences, vol.68, issue.10, pp.1-18, 2012.
DOI : 10.1007/s11004-012-9434-1

URL : https://hal.archives-ouvertes.fr/hal-00767008

D. 'hondt, O. López-martínez, C. Ferro-famil, L. Pottier, and E. , Spatially nonstationary anisotropic texture analysis in sar images, IEEE T. Geoscience and Remote Sensing, vol.45, pp.12-13905, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00255779

P. Diggle and P. Ribeiro, Model-based geostatistics, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.47, issue.3, 2007.
DOI : 10.1111/1467-9876.00113

I. L. Dryden and K. Mardia, Statistical Shape Analysis, 1998.

M. Ecker, D. Oliveira, V. Isakson, and H. , A note on a non-stationary point source spatial model, Environmental and Ecological Statistics, vol.39, issue.1, pp.59-67, 2013.
DOI : 10.1007/s10651-012-0207-2

M. D. Ecker and V. D. Oliveira, Bayesian Spatial Modeling of Housing Prices Subject to a Localized Externality, Communications in Statistics - Theory and Methods, vol.31, issue.13, pp.2066-2078, 2008.
DOI : 10.1023/A:1007762613901

J. Felder, Développement de méthodes de traitement d'images pour la détermination de paramètres variographiques locaux, 2011.

M. Fuentes, A high frequency kriging approach for non-stationary environmental processes, Environmetrics, vol.41, issue.5, pp.469-483, 2001.
DOI : 10.1002/env.473

M. Fuentes, Interpolation of nonstationary air pollution processes: a spatial spectral approach, Statistical Modelling, vol.2, issue.4, pp.281-298, 2002.
DOI : 10.1191/1471082x02st034oa

M. Fuentes, Spectral methods for nonstationary spatial processes, Biometrika, vol.89, issue.1, pp.197-210, 2002.
DOI : 10.1093/biomet/89.1.197

G. S. Fuglstad, Non-stationary spatial modelling with applications to spatial prediction of precipitation, 2013.

G. S. Fuglstad, Do we need non-stationarity in spatial models ?, 2014.

C. Gaetan and X. Guyon, Spatial Statistics and Modeling, 2009.
DOI : 10.1007/978-0-387-92257-7

P. H. Garcìa-soidàn, M. Febrero-bande, and W. Gonzalez-manteiga, Nonparametric kernel estimation of an isotropic variogram, Journal of Statistical Planning and Inference, vol.121, issue.1, pp.65-92, 2004.
DOI : 10.1016/S0378-3758(02)00507-4

A. E. Gelfand, P. Diggle, and P. Guttorp, Handbook of spatial statistics, 2010.

M. G. Genton and O. Perrin, On a time deformation reducing nonstationary stochastic processes to local stationarity, Journal of Applied Probability, vol.84, issue.01, pp.236-249, 2004.
DOI : 10.1016/S0167-7152(98)00278-8

T. Gneiting and A. E. Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, Journal of the American Statistical Association, vol.102, issue.477, pp.359-378, 2007.
DOI : 10.1198/016214506000001437

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Gosoniu and P. Vounatsou, Non-stationary partition modeling of geostatistical data for malaria risk mapping, Journal of Applied Statistics, vol.18, issue.1, pp.3-13, 2011.
DOI : 10.1214/aos/1176325750

L. Gosoniu, P. Vounatsou, N. Sogoba, N. Maire, and T. Smith, Mapping malaria risk in West Africa using a Bayesian nonparametric non-stationary model, Computational Statistics & Data Analysis, vol.53, issue.9, pp.3358-3371, 2009.
DOI : 10.1016/j.csda.2009.02.022

R. Gradshteyn, Table of Integrals, Series, and Products, 2007.

G. Guillot, R. Senoussi, and P. Monestiez, A Positive Definite Estimator of the Non Stationary Covariance of Random Fields, Quantitative Geology and Geostatistics, vol.11, pp.333-344, 2001.
DOI : 10.1007/978-94-010-0810-5_29

P. Guttorp and A. M. Schmidt, Covariance structure of spatial and spatiotemporal processes, Wiley Interdisciplinary Reviews: Computational Statistics, vol.24, issue.4, pp.279-287, 2013.
DOI : 10.1002/wics.1259

T. C. Haas, Kriging and automated variogram modeling within a moving window, Atmospheric Environment. Part A. General Topics, vol.24, issue.7, pp.1759-1769, 1990.
DOI : 10.1016/0960-1686(90)90508-K

T. C. Haas, Lognormal and Moving Window Methods of Estimating Acid Deposition, Journal of the American Statistical Association, vol.22, issue.412, pp.950-963, 1990.
DOI : 10.1002/0471725218

P. Harris, M. Charlton, and A. S. Fotheringham, Moving window kriging with geographically weighted variograms, Stochastic Environmental Research and Risk Assessment, vol.21, issue.8, pp.1193-1209, 2010.
DOI : 10.1007/s00477-010-0391-2

D. Higdon, A process-convolution approach to modelling temperatures in the north atlantic ocean, Environmental and Ecological Statistics, vol.5, issue.2, pp.173-190, 1998.
DOI : 10.1023/A:1009666805688

D. Higdon, Space and Space-Time Modeling using Process Convolutions, pp.37-56, 2002.
DOI : 10.1007/978-1-4471-0657-9_2

D. Higdon, J. Swall, and J. Kern, Non-stationary spatial modeling, Bayesian Statistics, vol.6, 1999.

D. Holland, N. Saltzman, L. H. Cox, and D. Nychka, Spatial Prediction of Sulfur Dioxide in the Eastern United States, geoENV-II -geostatistics for environmental applications, pp.65-76, 1999.
DOI : 10.1007/978-94-015-9297-0_6

J. Hughes-oliver, T. Heo, and S. Ghosh, An autoregressive point source model for spatial processes, Environmetrics, vol.71, issue.4, pp.575-594, 2009.
DOI : 10.1002/env.957

J. M. Hughes-oliver and G. Gonzàlez-farìas, Parametric covariance models for shock-induced stochastic processes, Journal of Statistical Planning and Inference, vol.77, issue.1, pp.51-72, 1999.
DOI : 10.1016/S0378-3758(98)00186-4

J. M. Hughes-oliver, G. Gonzalez-farias, J. C. Lu, C. , and D. , Parametric nonstationary correlation models, Statistics & Probability Letters, vol.40, issue.3, pp.267-278, 1998.
DOI : 10.1016/S0167-7152(98)00103-5

J. M. Hughes-oliver, J. C. Lu, J. C. Davis, and R. S. Gyurcsik, Achieving Uniformity in a Semiconductor Fabrication Process using Spatial Modeling, Journal of the American Statistical Association, vol.6, issue.441, pp.931252-1252, 1998.
DOI : 10.1080/00401706.1992.10484904

R. Ingebrigtsen, F. Lindgren, and I. Steinsland, Spatial models with explanatory variables in the dependence structure, Spatial Statistics, vol.8, pp.20-38, 2014.
DOI : 10.1016/j.spasta.2013.06.002

S. Iovleff and O. Perrin, Estimating a Nonstationary Spatial Structure Using Simulated Annealing, Journal of Computational and Graphical Statistics, vol.13, issue.1, pp.90-105, 2004.
DOI : 10.1198/1061860043100

J. C. Kern, Bayesian process-convolution approaches to specifying spatial dependence structure, 2000.

H. M. Kim, B. K. Mallick, and C. C. Holmes, Analyzing Nonstationary Spatial Data Using Piecewise Gaussian Processes, Journal of the American Statistical Association, vol.100, issue.470, pp.653-668, 2005.
DOI : 10.1198/016214504000002014

J. B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, vol.5, issue.1, pp.1-27, 1964.
DOI : 10.1007/BF02289565

J. B. Kruskal, Nonmetric multidimensional scaling: A numerical method, Psychometrika, vol.60, issue.2, pp.115-129, 1964.
DOI : 10.1007/BF02289694

C. Lantuéjoul, Geostatistical Simulation : Models and Algorithms, 2002.
DOI : 10.1007/978-3-662-04808-5

C. Lantuéjoul and N. Desassis, Simulation of a gaussian random vector : A propagative version of the gibbs sampler, The 9th International Geostatistics Congress, 2012.

F. Lindgren, H. Rue, and J. Lindstróm, An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.17, issue.4, 2011.
DOI : 10.1111/j.1467-9868.2011.00777.x

C. D. Lloyd, Local models for spatial analysis, 2011.
DOI : 10.1201/9780203022825

D. Machuca-mory and C. Deutsch, Non-stationary Geostatistical Modeling Based on Distance Weighted Statistics and Distributions, Mathematical Geosciences, vol.28, issue.1, pp.1-18, 2012.
DOI : 10.1007/s11004-012-9428-z

C. Magneron, N. Jeannee, O. Le-moine, and J. F. Bourillet, Integrating Prior Knowledge and Locally Varying Parameters with Moving-GeoStatistics : Methodology and Application to Bathymetric Mapping, volume 16 of geoENV VII -Geostatistics for Environmental Applications, 2010.

K. Mardia and C. Goodall, Spatial-temporal analysis of multivariate environmental monitoring data, Multivariate Environmental Statistics, pp.347-386, 1993.

K. Mardia, J. Kent, and J. Bibby, Multivariate Analysis, 1979.

B. Matérn, Spatial Variation. Lecture Notes in Statistics, 1986.

J. Mateu, G. Fernandez-avilas, and J. Montero, On a class of non-stationary, compactly supported spatial covariance functions, Stochastic Environmental Research and Risk Assessment, vol.4, issue.8, pp.1-13, 2010.
DOI : 10.1007/s00477-011-0510-8

G. F. Matheron, The theory of regionalized variables and its applications, 1971.

T. Matsuo, D. Nychka, P. , and D. , Nonstationary covariance modeling for incomplete data: Monte Carlo EM approach, Computational Statistics & Data Analysis, vol.55, issue.6, pp.2059-2073, 2011.
DOI : 10.1016/j.csda.2010.12.002

A. B. Mcbratney and B. Minasny, Spacebender, Spatial Statistics, vol.4, issue.0, pp.57-67, 2013.
DOI : 10.1016/j.spasta.2013.04.001

D. L. Mcleish, A robust alternative to the normal distribution, Canadian Journal of Statistics, vol.28, issue.2, pp.89-102, 1982.
DOI : 10.2307/3314901

W. Meiring, P. Monestiez, P. D. Sampson, and P. Guttorp, Developments In The Modelling Of Nonstationary Spatial Covariance structure From Space-Time Monitoring Data, Quantitative Geology and Geostatistics, vol.1, pp.162-173, 1997.

J. H. Neto, A. M. Schmidt, and P. Guttorp, Accounting for spatially varying directional effects in spatial covariance structures, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.96, issue.1, pp.103-122, 2013.
DOI : 10.1111/rssc.12027

D. J. Nott and W. T. Dunsmuir, Estimation of nonstationary spatial covariance structure, Biometrika, vol.89, issue.4, pp.819-829, 2002.
DOI : 10.1093/biomet/89.4.819

D. Nychka, S. Bandyopadhyay, D. Hammerling, F. Lindgren, and S. Sain, A multiresolution gaussian process model for the analysis of large spatial data sets, Journal of Computational and Graphical Statistics, 2014.

D. Nychka and N. Saltzman, Design of Air-Quality Monitoring Networks, Case Studies in Environmental Statistics, pp.51-76, 1998.
DOI : 10.1007/978-1-4612-2226-2_4

D. Nychka, C. Wikle, and J. A. And-royle, Multiresolution models for nonstationary spatial covariance functions, Statistical Modelling, vol.2, issue.4, pp.315-331, 2002.
DOI : 10.1191/1471082x02st037oa

G. W. Oehlert, Regional Trends in Sulfate Wet Deposition, Journal of the American Statistical Association, vol.31, issue.422, pp.390-399, 1993.
DOI : 10.2307/3315064

D. Oliver, Moving averages for Gaussian simulation in two and three dimensions, Mathematical Geology, vol.41, issue.no. 2, pp.939-960, 1995.
DOI : 10.1007/BF02091660

C. Paciorek and M. Schervish, Nonstationary covariance functions for gaussian process regression, Proc. of the Conf. on Neural Information Processing Systems (NIPS), pp.273-280, 2004.

C. J. Paciorek, Nonstationary Gaussian Processes For Regression And Spatial Modelling, 2003.

C. J. Paciorek and M. J. Schervish, Spatial modelling using a new class of nonstationary covariance functions, Environmetrics, vol.99, issue.5, pp.483-506, 2006.
DOI : 10.1002/env.785

O. Perrin and W. Meiring, Identifiability for non-stationary spatial structure, Journal of Applied Probability, vol.43, issue.04, pp.1244-1250, 1999.
DOI : 10.2307/1968466

O. Perrin and W. Meiring, Nonstationarity in r-n is second-order stationarity in r-2n, Journal of Applied Probability, vol.40, issue.3, pp.815-820, 2003.

O. Perrin and P. Monestiez, Modeling of non-stationary spatial covariance structure by parametric radial basis deformations, Quantitative Geology and Geostatistics, vol.11, pp.175-186, 1998.

O. Perrin and R. Senoussi, Reducing non-stationary random fields to stationarity and isotropy using a space deformation, Statistics & Probability Letters, vol.48, issue.1, pp.23-32, 2000.
DOI : 10.1016/S0167-7152(99)00188-1

A. Pintore and C. Holmes, Spatially adaptive non-stationary covariance functions via spatially adaptive spectra, 2004.

E. Porcu, J. Mateu, C. , and G. , Quasi-arithmetic means of covariance functions with potential applications to space???time data, Journal of Multivariate Analysis, vol.100, issue.8, pp.1830-1844, 2009.
DOI : 10.1016/j.jmva.2009.02.013

E. Porcu, J. Matkowski, and J. Mateu, On the non-reducibility of non-stationary correlation functions to stationary ones under a class of mean-operator transformations, Stochastic Environmental Research and Risk Assessment, vol.26, issue.5, pp.599-610, 2010.
DOI : 10.1007/s00477-009-0347-6

R. Team, R : A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2013.

D. Renard, N. Bez, N. Desassis, H. Beucher, and F. Ors, RGeostats : Geostatistical Package, 2014.

M. D. Risser and C. A. Calder, Regression-based covariance functions for nonstationary spatial modeling, Environmetrics, vol.63, issue.1, 2014.
DOI : 10.1002/env.2336

P. D. Sampson, Spatial Covariance, pp.2059-2067, 2006.

P. D. Sampson, Constructions for Nonstationary Spatial Processes, pp.119-130, 2010.
DOI : 10.1201/9781420072884-c9

P. D. Sampson and P. Guttorp, Nonparametric Estimation of Nonstationary Spatial Covariance Structure, Journal of the American Statistical Association, vol.40, issue.417, pp.108-119, 1992.
DOI : 10.1080/01621459.1992.10475181

O. Schabenberger and C. A. Gotway, Non-stationary covariance. In Statistical methods for spatial data analysis, pp.421-430, 2005.

O. Schabenberger and C. A. Gotway, Statistical methods for spatial data analysis, 2005.

A. M. Schmidt, P. Guttorp, O. Hagan, and A. , Considering covariates in the covariance structure of spatial processes, Environmetrics, vol.65, issue.4, pp.487-500, 2011.
DOI : 10.1002/env.1101

A. M. Schmidt, O. Hagan, and A. , Bayesian inference for non-stationary spatial covariance structure via spatial deformations, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.87, issue.3, pp.743-758, 2003.
DOI : 10.1002/(SICI)1099-095X(199809/10)9:5<565::AID-ENV324>3.0.CO;2-S

I. Schoenberg, Metric spaces and positive definite functions, Transactions of the American Statistical Association, vol.44, pp.522-536, 1938.
DOI : 10.1090/s0002-9947-1938-1501980-0

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. A. Séguret and F. Celhay, Geometric modeling of a breccia pipe -comparing five approaches. Apcom -Application of Computers and Operations research in the Mineral Industry, pp.257-266, 2013.

R. L. Smith, Estimating nonstationary spatial correlations, 1996.

M. Stein, Nonstationary spatial covariance functions, 2005.

M. L. Stein, Interpolation of spatial data : some theory for kriging, 1999.
DOI : 10.1007/978-1-4612-1494-6

J. Stephenson, C. Holmes, K. Gallagher, and A. Pintore, A Statistical Technique for Modelling Non-stationary Spatial Processes, Geostatistics, vol.14, issue.2, 2004.
DOI : 10.1007/978-1-4020-3610-1_13

J. Swall, Non-Stationary Spatial Modeling Using A Process Convolution Approach, 1999.

E. Vanmarcke, Random Fields: Analysis & Synthesis, Journal of Vibration Acoustics Stress and Reliability in Design, vol.107, issue.2, 2010.
DOI : 10.1115/1.3269255

J. M. Ver-hoef and R. P. Barry, Constructing and fitting models for cokriging and multivariable spatial prediction, Journal of Statistical Planning and Inference, vol.69, issue.2, pp.275-294, 1998.
DOI : 10.1016/S0378-3758(97)00162-6

J. Vera, R. Macias, and J. Angulo, Non-stationary spatial covariance structure estimation in oversampled domains by cluster differences scaling with spatial constraints, Stochastic Environmental Research and Risk Assessment, vol.106, issue.1, 2008.
DOI : 10.1007/s00477-006-0100-3

J. F. Vera, R. Macias, and J. M. Angulo, A latent class MDS model with spatial constraints for non-stationary spatial covariance estimation, Stochastic Environmental Research and Risk Assessment, vol.24, issue.1, pp.769-779, 2009.
DOI : 10.1007/s00477-008-0257-z

M. Wand and C. Jones, Kernel smoothing. Monographs on Statistics and Applied Probability, 1995.

P. Whittle, Stochastic processes in several dimensions, Bull. Internat.Statist. Inst, vol.40, pp.974-994, 1963.

R. L. Wolpert and K. Ickstadt, Poisson/gamma random field models for spatial statistics, Biometrika, vol.85, issue.2, pp.251-267, 1998.
DOI : 10.1093/biomet/85.2.251

A. Yaglom and R. Silverman, An Introduction to the Theory of Stationary Random Functions, Journal of Applied Mechanics, vol.30, issue.3, 2004.
DOI : 10.1115/1.3636602

H. Zhang and Y. Wang, Kriging and cross-validation for massive spatial data, Environmetrics, vol.23, issue.1, pp.3-4290, 2010.
DOI : 10.1002/env.1023

Z. Zhu and Y. Wu, Estimation and Prediction of a Class of Convolution-Based Spatial Nonstationary Models for Large Spatial Data, Journal of Computational and Graphical Statistics, vol.19, issue.1, pp.74-95, 2010.
DOI : 10.1198/jcgs.2009.07123

F. Fouedjio, N. Desassis, and T. Romary, Estimation of Space Deformation Model for Non-stationary Random Functions, Spatial Statistics, 2014.

F. Fouedjio, N. Desassis, and J. Rivoirard, A generalized convolution model and estimation for non-stationary random functions, Spatial Statistics, vol.16, 2014.
DOI : 10.1016/j.spasta.2016.01.002

URL : https://hal.archives-ouvertes.fr/hal-01421728

C. Lantuéjoul, N. Desassis, and F. Fouedjio, Iterative Simulation of A Gaussian Random Vector : A Propagative Version of the Gibbs Sampler, Gaussian Random Field Simulation Workshop, 2014.

F. Fouedjio, Modèles de Variogramme et Covariance Non-stationnaire : Inférence et Applications, Cours : Les Méthodes de la Géostatistique, 2014.

F. Fouedjio, N. Desassis, and T. Romary, Estimation of space deformation model for non-stationary random functions, 21th International Conference on Compuatational Statistics, 2014.
DOI : 10.1016/j.spasta.2015.05.001

URL : https://hal.archives-ouvertes.fr/hal-01421730

F. Fouedjio, N. Desassis, and J. Rivoirard, A generalized convolution model and estimation for non-stationary random functions, 10th Conference on Geostatistics for Environmental Applications, 2014.
DOI : 10.1016/j.spasta.2016.01.002

URL : https://hal.archives-ouvertes.fr/hal-01421728