. Bibliographie and . Aace, AACE International Recommended Practice No.18R-97, Cost estimate classification system ? as applied in engineering, procurement, and construction for the process industries. TCM Framework: 7.3 ? Cost Estimation and Budgeting, 2011.

. Aie, CO 2 emissions from fuel combustion Highlights 2013, Key World Energy Statistics, 2013.

R. Allam, Improved oxygen production technologies, Energy Procedia, pp.461-470, 2009.

&. Authier, O. Le-moullec-authier, and L. Moullec, Coal Chemical-Looping Combustion for Electricity Generation: Investigation for a 250 MWe Power Plant, Energy Procedia, vol.37, pp.588-597, 2013.
DOI : 10.1016/j.egypro.2013.05.146

. Belaissaioui, Energy efficiency of oxygen enriched air production technologies: Cryogeny vs membranes, Separation and Purification Technology, vol.125, pp.142-150, 2014.
DOI : 10.1016/j.seppur.2014.01.043

. Berstad, Low-temperature CO2 capture technologies ??? Applications and potential, International Journal of Refrigeration, vol.36, issue.5, pp.1403-1416, 2013.
DOI : 10.1016/j.ijrefrig.2013.03.017

G. Beysel and T. Schueler, The proven cryogenic Air Separation Process adapted to the needs of CCS (IGCC & Oxyfuel, 2010.

. Brodyansky, The efficiency of industrial processes: exergy analysis and optimization, 1994.

L. Chang, X. Liu, L. Dai, and Y. Sun, Modeling, Characteristic Analysis, and Optimization of Ideal Internal Thermally Coupled Air Separation Columns, Industrial & Engineering Chemistry Research, vol.51, issue.44, pp.14517-14524, 2012.
DOI : 10.1021/ie3015582

. Châtel-pélage, A pilot-scale demonstration of oxy-combustion with flue gas recirculation in a pulverized coal-fired boiler, The 28 th International Technical Conference on Coal Utilization & Fuel Systems, pp.10-13, 2003.

. Cook, Quantifying the consensus on anthropogenic global warming in the scientific literature, Quantifying the consensus on anthropogenic global warming in the scientific literature, pp.24024-024031, 2013.
DOI : 10.1088/1748-9326/8/2/024024

[. Visser, Dynamis CO2 quality recommendations, Dynamis CO 2 quality recommendations, pp.478-484, 2008.
DOI : 10.1016/j.ijggc.2008.04.006

&. Dickmeis, J. Dickmeis, and A. Kather, Offgas Treatment Downstream the Gas Processing Unit of a Pulverised Coal-fired Oxyfuel Power Plant with Polymeric Membranes and Pressure Swing Adsorption, Energy Procedia, pp.1301-1311, 2013.

&. Dickmeis, J. Dickmeis, and A. Kather, Integration of Oxygen-containing Exhaust Gas into the Air Separation Unit of an Oxyfuel Power Plant, Energy Procedia, vol.51, pp.99-108, 2014.
DOI : 10.1016/j.egypro.2014.07.011

. Dillon, Oxy-combustion processes for CO 2 capture from power plant, IEA Report, 2005.

&. Dowling, A. W. Dowling, and L. Biegler, A framework for efficient large scale equation-oriented flowsheet optimization, Computers & Chemical Engineering, vol.72, 2014.
DOI : 10.1016/j.compchemeng.2014.05.013

&. El-halwagi, M. Manousiouthakishalwagi, and V. Manousiouthakis, Synthesis of mass exchange networks, AIChE Journal, vol.35, issue.8, pp.1233-1244, 1989.
DOI : 10.1002/aic.690350802

. Epri, Engineering and Economic Evaluation of Oxy-Fired 1100 °F (593 °C) Ultra- Supercritical Pulverized Coal Power Plant with CO 2 Capture, p.1021782

. Faber, Flue gas desulphurization for hot recycle Oxyfuel combustion: Experiences from the 30MWth Oxyfuel pilot plant in Schwarze Pumpe, International Journal of Greenhouse Gas Control, vol.5, pp.210-223, 2011.
DOI : 10.1016/j.ijggc.2011.05.027

&. Reddy, S. Reddy, and J. Gilmartin, Fluor's Econoamine FG Plus Technology for Post-Combustion CO 2 Capture, GPA Gas Teatment Conference, pp.20-22, 2008.

&. Fu, C. Fu, and T. Gundersen, Heat Integration of an Oxy-Combustion process for Coal-Fired Power Plants with CO 2 capture by Pinch Analysis, Chemical Engineering Transactions, vol.21, pp.181-186, 2010.

&. Fu, C. Fu, and T. Gundersen, Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes, Energy, vol.44, issue.1, pp.60-68, 2012.
DOI : 10.1016/j.energy.2012.01.065

&. Fu, C. Fu, and T. Gundersen, Techno-economic analysis of CO 2 conditioning processes in a coal based oxy-combustion power plant, International Journal of Greenhouse Gas Control, vol.2012, issue.9, pp.419-427

. Gopan, Process design and performance analysis of a Staged, Pressurized Oxy-Combustion (SPOC) power plant for carbon capture, Applied Energy, vol.125, pp.179-188, 2014.
DOI : 10.1016/j.apenergy.2014.03.032

. Ghannadzadeh, General methodology for exergy balance in ProSimPlus?? process simulator, Energy, vol.44, issue.1, pp.38-59, 2012.
DOI : 10.1016/j.energy.2012.02.017

URL : https://hal.archives-ouvertes.fr/hal-00878635

. Hagi, Efficiency evaluation procedure of coal-fired power plants with CO 2 capture, cogeneration and hybridization

. Higginbotham, Oxygen supply for oxyfuel CO2 capture, International Journal of Greenhouse Gas Control, vol.5, issue.S1, pp.194-203, 2011.
DOI : 10.1016/j.ijggc.2011.03.007

. Hinderink, Exergy analysis with a flowsheeting simulator???I. Theory; calculating exergies of material streams, Chemical Engineering Science, vol.51, issue.20, pp.4693-4700, 1996.
DOI : 10.1016/0009-2509(96)00220-5

. Hong, Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor, Energy, vol.34, issue.9, pp.1332-1340, 2009.
DOI : 10.1016/j.energy.2009.05.015

. Hong, Operating pressure dependence of the pressurized oxy-fuel combustion power cycle, Energy, vol.35, issue.12, pp.5391-5399, 2010.
DOI : 10.1016/j.energy.2010.07.016

. Ipcc, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

. Ipcc, Summary for Policymakers In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

C. Jacobs, ExerCom v2.2 manual for AspenPlus version 2006 & 2006.5 (local PC version) The Netherlands, 2009.

. Kanniche, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture, Applied Thermal Engineering, vol.30, issue.1, pp.53-62, 2010.
DOI : 10.1016/j.applthermaleng.2009.05.005

URL : https://hal.archives-ouvertes.fr/hal-00442868

&. Kather, A. Kownatzki-kather, and S. Kownatzki, Assessment of the different parameters affecting the CO 2 purity from coal fired oxyfuel process, International Journal of Greenhouse Gas Control, vol.5, pp.204-209, 2011.

. Larsen, Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles, Energy, pp.503-510, 2014.

[. Goff, Energétique industrielle, Tome 1 : Analyse thermodynamique et mécanique des économies d'énergie, Technique et documentation-Lavoisier, 1979.

. Leclerc, High Recovery Near-Zero Emissions CPU, The 3rd Oxyfuel Conference, pp.9-13, 2013.

&. Linnhoff, B. Vredeveld-linnhoff, and D. Vredeveld, Pinch technology has come of age, Chemical Engineering Progress, vol.80, issue.7, pp.33-40, 1984.

&. Linnhoff, B. Linnhoff, and J. Flower, Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks, AIChE Journal, vol.24, issue.4, pp.633-642, 1978.
DOI : 10.1002/aic.690240411

&. Linnhoff, B. Linnhoff, and E. Hindmarsh, The pinch design method for heat exchanger networks, Chemical Engineering Science, vol.38, issue.5, pp.745-763, 1983.
DOI : 10.1016/0009-2509(83)80185-7

&. Malvasi, M. Malavasi, and E. Rosetti, High-efficiency combustors with reduced environmental impact and processes for power generation derivable there from, International Patent WO, 2005.

&. Marek, E. Swiatkowski-marek, and B. Swiatkowski, Reprint of ???Experimental studies of single particle combustion in air and different oxy-fuel atmospheres???, Applied Thermal Engineering, vol.74, pp.35-42, 2014.
DOI : 10.1016/j.applthermaleng.2014.05.026

. Mcdonald, FutureGen 2.0: Power Block Design and Integration, The 3 rd Oxyfuel Combustion Conference, pp.9-13, 2013.

. Mirza, Technological evaluation of cryogenic CO 2 purification units (CPU), The 3rd Oxyfuel Combustion Conference, pp.9-13, 2013.

&. Moghtaderi, B. Wall-moghtaderi, and T. Wall, Integrated chemical looping air separation in large-scale oxy-fuel plants, 2013.

&. Moran, M. J. Shapiro-moran, and H. Shapiro, Fundamentals of Engineering Thermodynamics, 5 th Edition The Atrium, Southern Gate, p.340, 2006.

. Naikawa, Internally Heat-Integrated Distillation Columns: A Review, Chemical Engineering Research and Design, vol.81, issue.1, pp.162-177, 2003.
DOI : 10.1205/026387603321158320

&. Neveux, T. Le-moullec-neveux, and L. Moullec, Wet Industrial Flue Gas Desulfurization Unit: Model Development and Validation on Industrial Data, Industrial & Engineering Chemistry Research, vol.50, issue.12, pp.7579-7592, 2011.
DOI : 10.1021/ie102239q

. Neveux, Modélisation et optimization des procédés de captage de CO 2 par absorption chimique, Thèse de doctorat, 2013.

&. Okkes, A. G. Badger-okkes, and B. Badger, Get acid dew point of flue gas, Hydrocarbon Processing, pp.53-55, 1987.

. Palkes, Economics and feasibility of rankine cycle improvements for coal fired power plants, 2004.

. Paufique, Future oxycombustionsystems, The 3 rd Oxyfuel Combustion Conference, pp.9-13, 2013.

&. Perry, R. J. Perry, and J. Green, Perry's Chemical Engineers' Handbook, 1997.
DOI : 10.1021/ed027p533.1

J. Polasek, S. Donnelly, and J. Bullin, Process simulation and optimization of cryogenic operations using multi-stream brazed aluminum exchangers, Proceedings of the 68th GPA annual convention: Gas Processors Association, pp.100-106, 1989.

. Pourchot, Integration of Oxy Combustion in a Large Size USC PC Plant for a Competitive Solution, The 3 rd Oxyfuel Conference, pp.9-13, 2013.

&. Prosser, N. Shah-prosser, and M. Shah, Air Separation Units for Oxy-coal Power Plants, 2nd Oxyfuel Combustion Conference, pp.12-16, 2011.

. Repasky, ITM Oxygen technology: scale-up toward clean energy applications, International Pittsburgh Coal Conference 2012, pp.15-18, 2012.

. Repasky, Ceramic and Coal: ITM Oxygen Power Generation with Reduced CO 2 -Emissions, Detailed Engineering Study Results, AIChE Spring National Meeting, 2013.

. Ritter, Energetic evaluation of a CO 2 purification and compression plant for the Oxyfuel process, 1st Oxyfuel Combustion Conference, pp.7-10, 2009.

&. Rosen, M. A. Bulucea-rosen, and C. A. Bulucea, Using Exergy to Understand and Improve the Efficiency of Electrical Power Technologies, Entropy, vol.11, issue.4, pp.820-835, 2009.
DOI : 10.3390/e11040820

&. Rousseaux and . Apostol, Environmental value of energy, 2000.

. Scheffknecht, Oxy-fuel coal combustion???A review of the current state-of-the-art, International Journal of Greenhouse Gas Control, vol.5, issue.S1, pp.16-35, 2011.
DOI : 10.1016/j.ijggc.2011.05.020

. Shah, Selectrion of Suitable Oxygen Carriers for Chemical Looping Air Separation: A thermodynamic Approach, Energy&Fuels, vol.26, pp.2038-2045, 2012.

. Shah, Effect of flue gas impurities on the performance of a chemical looping based air separation process for oxy-fuel combustion, Fuel, vol.103, pp.932-942, 2013.
DOI : 10.1016/j.fuel.2012.09.018

. Shah, Integration options for novel chemical looping air separation (ICLAS) process for oxygen production in oxy-fuel coal fired power plants, Fuel, vol.107, pp.356-370, 2013.
DOI : 10.1016/j.fuel.2013.01.007

&. Smith, A. R. Smith, and J. Klosek, A review of air separation technologies and their integration with energy conversion processes, Fuel Processing Technology, vol.70, issue.2, pp.115-134, 2001.
DOI : 10.1016/S0378-3820(01)00131-X

&. Soundararajan, R. Gundersen-soundararajan, and T. Gundersen, Coal based power plants using oxy-combustion for CO2 capture: Pressurized coal combustion to reduce capture penalty, Applied Thermal Engineering, vol.61, issue.1, pp.115-122, 2012.
DOI : 10.1016/j.applthermaleng.2013.04.010

. Stein-brzozowska, Impact of the oxy-fuel combustion on the corrosion behavior of advanced austenitic superheater materials, Energy Procedia, vol.4, pp.2035-2042, 2011.
DOI : 10.1016/j.egypro.2011.02.085

. Szargut, Exergy Analysis of Thermal Chemical and Metallurgical Processes, 1988.

&. Szargut, J. Szargut, and T. Stryrylska, Approximate determination of the exergy of fuels, Brennstoff-Warme Kraft, vol.16, pp.589-596, 1964.

&. Tan, R. R. Tan, and D. Foo, Pinch analysis approach to carbon-constrained energy sector planning, Energy, vol.32, issue.8, pp.1422-1429, 2007.
DOI : 10.1016/j.energy.2006.09.018

. Tranier, Air Separation Unit for Oxy-Coal Combustion Systems, 1st International Oxyfuel Combustion Conference, pp.8-11, 2009.

. Umeda, Heat-Exchanger System Synthesis, Chemical Engineering Progress, vol.74, issue.7, pp.70-76, 1978.

. Umeda, A thermodynamic approach to the synthesis of heat integration systems in chemical processes, Computers & Chemical Engineering, vol.3, issue.1-4, pp.1-4, 1979.
DOI : 10.1016/0098-1354(79)80046-0

&. Van-der-ham, L. V. Van-der-ham, and S. Kjelstrup, Improving the Heat Integration of Distillation Columns in a Cryogenic Air Separation Unit, Industrial & Engineering Chemistry Research, vol.50, issue.15, pp.9324-9338, 2011.
DOI : 10.1021/ie200383s

P. Viebahn, J. Nitsch, M. Fischedick, E. Andrea, D. Schüwer et al., Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany, International Journal of Greenhouse Gas Control, vol.1, issue.1, pp.121-133, 2007.
DOI : 10.1016/S1750-5836(07)00024-2

. Wall, Gas cleaning challenges for coal-fired oxy-fuel technology with carbon capture and storage, Fuel, vol.108, pp.85-90, 2013.
DOI : 10.1016/j.fuel.2011.03.037

. Wall, Integrated Chemical Looping Air Separation (ICLAS), The 3rd Oxyfuel Combustion Conference, pp.9-13, 2013.

. Wall, An overview on oxyfuel coal combustion ? State of the art research and technology, Chemical Engineering Research and Design, pp.1003-1016, 2009.

A. Wan, A process integration targeting method for hybrid power systems, Energy, vol.44, issue.1, pp.6-10, 2012.

&. Wang, Y. P. Wang, and R. Smith, Wastewater minimisation, Chemical Engineering Science, vol.49, issue.7, pp.981-1006, 1994.
DOI : 10.1016/0009-2509(94)80006-5

. Wang, The thermodynamic method for selecting oxygen carriers used for chemical looping air separation, Journal of Thermal Analysis and Calorimetry, vol.24, issue.12, pp.1-7, 2012.
DOI : 10.1007/s10973-012-2596-8

. Wei, Influence of SO2 on the phase structure, oxygen permeation and microstructure of K2NiF4-type hollow fiber membranes, Chemical Engineering Journal, vol.217, pp.34-40, 2013.
DOI : 10.1016/j.cej.2012.12.009

. Widder, Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage, 2011.
DOI : 10.2172/1031992

M. B. Wilkinson, R. S. Panesar, and R. Allam, CO 2 capture via oxyfuel firing - Optimization of a retrofit design Concept for a Refinery power station Boiler, First National Conference on Carbon Sequestration, pp.15-17, 2001.

. Xiong, Oxy-combustion Pulverized-Coal-Fired Power Plant, Energy & Fuels, vol.25, issue.5, pp.2405-2415, 2011.
DOI : 10.1021/ef200023k

. Yi, -Containing Atmospheres: Degradation Mechanism and Materials Design, Chemistry of Materials, vol.22, issue.23, pp.6246-6253, 2010.
DOI : 10.1021/cm101665r

URL : https://hal.archives-ouvertes.fr/in2p3-00025581

. Zebian, Multi-variable optimization of pressurized oxy-coal combustion, Energy, vol.38, issue.1, pp.37-57, 2012.
DOI : 10.1016/j.energy.2011.12.043

. Zhang, Post-combustion carbon capture technologies: Energetic analysis and life cycle assessment, International Journal of Greenhouse Gas Control, vol.27, pp.289-298, 2014.
DOI : 10.1016/j.ijggc.2014.06.016

&. Zhelev, T. K. Zhelev, and L. Ntlhakana, Energy-environment closed-loop through Oxygen Pinch, Computers & Chemical Engineering, vol.23, issue.S, pp.79-83, 1999.
DOI : 10.1016/S0098-1354(99)80021-0

. Zheng, CO2-tolerant alkaline-earth metal-free single phase membrane for oxygen separation, Chemical Engineering Science, vol.101, pp.240-247, 2013.
DOI : 10.1016/j.ces.2013.06.039

H. Hagi, T. Neveux, L. Moullec, and Y. , Efficiency evaluation procedure of coal-fired power plants with CO 2 capture, cogeneration and hybrdization

H. Hagi, M. Nemer, L. Moullec, Y. Bouallou, and C. , Performance assessment of first generation oxy-coal power plants through an exergy-based process integration methodology, Energy, vol.69, pp.272-284, 2014.
DOI : 10.1016/j.energy.2014.03.008

URL : https://hal.archives-ouvertes.fr/hal-01299433

B. Belaissaoui, L. Moullec, Y. Hagi, H. Favre, and E. , Energy efficiency of oxygen enriched air production technologies: Cryogeny vs membranes, Separation and Purification Technology, vol.125, pp.142-150, 2014.
DOI : 10.1016/j.seppur.2014.01.043

URL : https://hal.archives-ouvertes.fr/hal-01275611

H. Hagi, M. Nemer, Y. Le-moullec, and C. Bouallou, Towards Second Generation Oxy-pulverized Coal Power Plants: Energy Penalty Reduction Potential of Pressurized Oxy-combustion Systems, Poster présenté au congrès International Conference on Greenhouse Gas Technologies (GHGT-12, pp.6-9
DOI : 10.1016/j.egypro.2014.11.046

URL : https://hal.archives-ouvertes.fr/hal-01299351

H. Hagi, M. Nemer, Y. Le-moullec, and C. Bouallou, Optimal Integration of the Flue Gas Heat for the Minimization of the Energy Penalty of Oxy-fired Power Plants, Poster présenté au congrès International Conference on Greenhouse Gas Technologies (GHGT-12, pp.6-9
DOI : 10.1016/j.egypro.2014.11.772

URL : https://hal.archives-ouvertes.fr/hal-01299862

T. Neveux, H. Hagi, L. Moullec, and Y. , Performance Simulation of Full-scale Wet Flue Gas Desulfurization for Oxy-coal Combustion, Conférence orale présentée au congrès International Conference on Greenhouse Gas Technologies (GHGT-12, pp.6-9
DOI : 10.1016/j.egypro.2014.11.049

H. Hagi, M. Nemer, Y. Le-moullec, and C. Bouallou, Exergy-based methodology for the minimization of the energy penalty of oxy-pulverized coal power plants with CCS, Conférence orale présentée au congrès 41 th Topical Oriented Technical Meeting, pp.10-11, 2014.

H. Hagi, M. Nemer, Y. Le-moullec, and C. Bouallou, Assessment of the Flue Gas Recycle Strategies on Oxy-Coal Power Plants using an Exergy-based methodology. Poster présenté au congrès 16 th Conference Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (PRES'13), 29 septembre, Chemical Engineering Transactions, vol.35, pp.343-348, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00880103

H. Hagi, M. Nemer, Y. Le-moullec, and C. Bouallou, Exergy-based methodology for the minimization of the energy penalty of oxy-pulverized coal power plants with CCS, Conférence orale présentée au congrès 3 rd Oxyfuel Combustion Conference (OCC3), 9-13 septembre 2013, Ponderrada (Espagne)

H. Hagi, M. Nemer, Y. Le-moullec, and C. Bouallou, Comparison of cryogenic air separation processes based on energetic and exergetic criteria, Poster présenté au congrès 3 rd Oxyfuel Combustion Conference (OCC3), 9-13 septembre 2013, Ponderrada (Espagne)

H. Hagi, M. Nemer, Y. Le-moullec, and C. Bouallou, Pathway for advanced architectures of oxypulverized coal power plants: minimization of the global system exergy losses, Poster présenté au congrès International Conference on Greenhouse Gas Technologies (GHGT-11), pp.1331-1340, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01475361

H. Hagi, M. Nemer, Y. Le-moullec, and C. Bouallou, Conception et analyse à l'échelle système de différentes configurations de centrales à charbon pulvérisé avec captage du CO 2 par oxy-combustion

H. Hagi, M. Nemer, Y. Le-moullec, and C. Bouallou, Optimisation rationnelle d'une centrale à charbon pulvérisé fonctionnant en oxy-combustion pour le captage du CO 2, Conférence orale au congrès 14e congrès de la Société Française de Génie des Procédés (SFGP), 8-10 octobre 2013, 2013.

H. Hagi and L. Moullec, Engineering and Economic Evaluation of 1300°F (700 °C) Series Oxy-PC Plant, Electric Power Research Institute (EPRI), p.2012