2. Fe, 3C : austénitisé à 1050°C pendant 60 minutes, refroidi à l'air, déformé par laminage à 600°C de 75% (en 3 ou 4 passes), trempé à une vitesse de 10°C.s ?1 , revenu à 475°C pendant 1 à 50h. 4.1.1 Relation linéaire entre la limite d'élasticité/la résistance mécanique à 550°C, p.156

6. Fluage-À, 166 4.2.1 Influence d'un "simple" traitement thermique : austénitisation 167 4.2.2 Influence de l'étape de laminage en phase austénitique métastable, 178 4.2.6 Sensibilité de la ductilité en fonction de la vitesse minimale de fluage . . . . . . 182 4.2.7 Évolution de la microstructure après sollicitation de fluage . . . . . . . . . . . . 183 4.2.8 Bilan sur les propriétés de fluage à 650°C (temps courts), p.186

F. Abe and F. , revenu à 700 ± 3°C pendant 20 heures Bien que la composition chimique de cet acier soit différente de celle de l'acier de Grade 91 (moins d'éléments d'alliage mais plus de carbone que l'acier de Grade 91), c'est l'acier dont la microstructure est la plus proche de l'acier de Grade 91 et pour lequel il existe un graphique représentant les mécanismes de déformation en fluage en fonction BIBLIOGRAPHIE Bibliographie, Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels. Materials Science and Engineering : A, pp.319-321770, 2001.

F. Abrassart, Influences des transformations martensitiques sur les propriétés des alliages du système Fe-Ni-Cr-Cs, 1972.

. Alamo, Effects of the initial metallurgical condition on the microstructure and mechanical properties of 9Cr-1Mo and 9Cr-1MoVNb thermal aged steels, Microstructures and Mechanical Properties of Aging Materials II, pp.121-134, 1996.

. Aldred, Magnetic properties of neptunium laves phases : High-field measurements on NpAl 2 and NpOs 2, Physical Review B, vol.14, 1976.

K. W. Andrews, Constitution diagrams for Cr-Mo-V steels, Journal of the Iron and Steel Institute, vol.203, pp.721-727, 1965.

B. Armstrong, Effect of ausforming on properties of carbon steel wire, Journal of the Iron and Steel Institute, vol.202, issue.8, pp.655-659, 1964.

. Ault, Increased reliability of a high-strength steel trougth thermal-mechanical treatments, Transactions of the ASM, vol.60, pp.79-87, 1967.

. Banerjee, Ausworking type 422 stainless steel, Transactions of the ASM, vol.56, pp.629-641, 1963.

. Barcelo, Orientation relationship in various 9%Cr ferritic/martensitic steels???EBSD comparison between Nishiyama???Wassermann, Kurdjumov???Sachs and Greninger???Troiano, Phase Transitions, vol.185, issue.8, pp.83601-614, 2010.
DOI : 10.1016/0956-7151(90)90180-O

. Berkowitz, . Keneller, A. Berkowitz, and E. Keneller, Magnetism and metallurgy, 1969.

H. Bhadeshia, Banite in steels, Inst. of Metals, 1992.

H. Bhadeshia, Bainite in steels, Book (Institute of Materials (Great Britain)). IOM Communications, 2001.
DOI : 10.1007/BF02656561

URL : https://hal.archives-ouvertes.fr/jpa-00255655

. Borik, Fatigue properties of an ausformed steel, Transactions of the ASM, vol.56, pp.327-338, 1963.

R. Borrelly, Applications des mesures de pouvoir thermoélectrique à l'étude des alliages métalliques, Mémoires Scientifiques de la Revue de Métallurgie, pp.37-49, 1979.
DOI : 10.1016/0022-5088(80)90043-0

J. Brachet, Correlation Between Thermoelectric Power (TEP) and Martensite Start Temperature (Ms) Measurements of 9Cr-W-V-(Ta) Martensitic Steels, International Conference on Martensitic Transformation (ICOMAT 95), pp.339-344, 1995.
DOI : 10.1051/jp4:1995849

URL : https://hal.archives-ouvertes.fr/jpa-00254098

J. Brachet, Alliages martensitiques 9Cr-1Mo : effet de l'addition de l'azote, du niobium, du vanadium sur la microstructure, les transformations de phases et les propriétés mécaniques, 1991.

. Brachet, Propriétés mécaniques et microstructures d'aciers martensitiques à 9-12Cr, pp.5-6, 1993.

. Brachet, Effet de la composition chimique sur le comportement d'aciers ferritique-martensitiques de base 9-12Cr, pp.5-6, 1995.

. Brown, Embrittlement in an ausformed 12% chromium steel, Journal of the Iron and Steel Institute, pp.660-665, 1964.

R. Buhler, H. Buhler, and K. Rittman, Investigations into ausforming of steel wire in the stable austenitic state. The Technical Journal for the wire industry, pp.155-159, 1972.

V. Bungart, Untersuchungen ??ber den Aufbau des Systems Eisen-Chrom-Kohlenstoff, Archiv f??r das Eisenh??ttenwesen, vol.29, issue.3, pp.193-203, 1958.
DOI : 10.1002/srin.195802238

. Bush, An investigation of the mechanical anisotropy of ausformed steels, Transactions of the ASM, vol.57, pp.991-999, 1964.

. Caballero, Thermoelectric power studies on a martensitic stainless steel, Scripta Materialia, vol.50, issue.7, pp.501061-1066, 2004.
DOI : 10.1016/j.scriptamat.2003.12.017

. Cerri, Evolution of microstructure in a modified 9Cr???1Mo steel during short term creep, Materials Science and Engineering: A, vol.245, issue.2, pp.285-292, 1998.
DOI : 10.1016/S0921-5093(97)00717-X

G. Cherepanova and V. Kal-'ner, Thermomechanical treatment of steel, Metallovedenie i Termicheskaya Obrabotka Metallov, pp.58-62, 1963.
DOI : 10.1007/BF00654329

. Chilukuru, Coarsening of precipitates and degradation of creep resistance in tempered martensite steels, Materials Science and Engineering: A, vol.510, issue.511, pp.510-51181, 2009.
DOI : 10.1016/j.msea.2008.04.088

. Cho, Influence of rolling temperature on the microstructure and mechanical properties of secondary hardening high Co???Ni steel bearing 0.28wt% C, 28% C. Materials Science and Engineering : A, pp.27-287286, 2010.
DOI : 10.1016/j.msea.2010.07.069

A. Cottrell, Dislocations and Plastic Flow in Crystals, American Journal of Physics, vol.22, issue.4, 1953.
DOI : 10.1119/1.1933704

. Danon, Heterogeneous austenite grain growth in 9Cr martensitic steels: influence of the heating rate and the austenitization temperature, Materials Science and Engineering: A, vol.348, issue.1-2, pp.122-132, 2003.
DOI : 10.1016/S0921-5093(02)00632-9

. Dronhofer, On the nature of internal interfaces in tempered martensite ferritic steels, Zeitschrift f??r Metallkunde, vol.94, issue.5, pp.511-520, 2003.
DOI : 10.3139/146.030511

. Dronhofer, On the role of martensite in the formation of microstructures in heat resistant 9 to 12% chromium steels, Le Journal de Physique IV, vol.11, issue.PR8, pp.235-240, 2001.
DOI : 10.1051/jp4:2001840

I. Dryukova, Anisotropy of the properties of steel after thermomechanical treatment, Metallovedenie i Termicheskaya Obrabotka Metallov, pp.41-43, 1965.
DOI : 10.1007/BF00655816

T. Duckworth, W. Duckworth, and P. Taylor, Ausforming of high-alloy steels, pp.61-68, 1965.

. Duckworth, Ausforming of En24, En30, and experimental 3%Cr-Ni-Si steel, Journal of ther Iron and Steel Institute, pp.135-142, 1964.

H. Fleischer, R. Fleischer, and W. Hibbard, The relation between the structure and mechanical properties of metals, NPL Symposium, pp.15-42, 1963.

B. Fournier, Fatigue-fluage des aciers martensitiques à 9-12%Cr : comportement et endommagement, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00203753

. Fournier, Creep-Fatigue Interactions in a 9 Pct Cr-1 Pct Mo Martensitic Steel: Part II. Microstructural Evolutions, Metallurgical and Materials Transactions A, vol.51, issue.401, pp.330-341, 2009.
DOI : 10.1007/s11661-008-9687-y

URL : https://hal.archives-ouvertes.fr/hal-00359188

. Fournier, Analysis of the hysteresis loops of a martensitic steel, Materials Science and Engineering: A, vol.437, issue.2, pp.197-211, 2006.
DOI : 10.1016/j.msea.2006.08.087

URL : https://hal.archives-ouvertes.fr/hal-00144997

. Fournier, Creep-fatigue interactions in a 9Cr-1 Mo martensitic steel : Part i. mechanical test results, Metallurgical and Materials Transactions A, pp.321-329, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00359183

. Fournier, Microstructural evolutions and cyclic softening of 9%Cr martensitic steels, Journal of Nuclear Materials, pp.386-38871, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00379172

. François, Comportement mécanique des matériaux -viscoplasticité, endommagement, mécanique de la rupture, mécanique du contact, 1995.

. Frost, . Ashby, H. J. Frost, and M. Ashby, Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics, 1982.

V. Gaffard, Experimental study and modelling of high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steel weldments, 2004.

. Gerberich, Influence of decomposition products in ausformed H-11, Transactions of the ASM, vol.57, pp.324-336, 1964.

R. Grange, Strengthening steel by austenite grain refinement, ASM Transactions Quarterly, vol.59, issue.1, pp.26-48, 1966.

A. Gulyaev, Structural changes occuring during thermomechanical treatment and their influence on mechanical properties. Metallovedenie i Thermicheskaya Obrabotka Metallov, pp.9-17, 1965.

. Gutiérrez, Evolution of (V,Nb :C,N) complex precipitates during long-term tempering in astm a213 t91 steels, Acta Microscopia, vol.16, issue.12, pp.278-279, 2007.

. Hollner, High-temperature mechanical properties improvement on modified 9Cr???1Mo martensitic steel through thermomechanical treatments, Journal of Nuclear Materials, vol.405, issue.2, pp.101-108, 2010.
DOI : 10.1016/j.jnucmat.2010.07.034

URL : https://hal.archives-ouvertes.fr/hal-00523277

R. Honeycombe, Isothermal transformation in iron-chromium-carbon alloys, Metallurgical transactions A, vol.9, pp.1207-1221, 1976.

M. Hyspecka, L. Hyspecka, and K. Mazanec, Propriétés mécaniques des aciers après traitement thermo-mécanique, Mémoires Scientifiques Revues Metallurgiques, vol.LXV, pp.17-25, 1968.

J. Irani, The application of the thermomechanical treatments to steels, BISRA Open Report MG, vol.67, issue.60, 1969.

. Jakobova, The effect of heat treatment on the properties of forgings from modified chromium steels, Advanced Heat Resistant Steels for Power Generation, pp.322-331, 1999.

T. Johari, O. Thomas, and G. , Structures and strength of ausformed steels, Transactions of the ASM, vol.58, pp.563-578, 1965.

W. M. Justusson and D. Schmatz, Some observations on the strength of martensite formed from cold-worked austenite, Transactions of the ASM, vol.55, pp.640-653, 1962.

. Kaneko, Characterization of carbides at different boundaries of 9Cr-steel, Materials Science and Engineering: A, vol.374, issue.1-2, pp.82-89, 2004.
DOI : 10.1016/j.msea.2003.12.065

. Kimura, Long-term creep deformation property of modified 9Cr???1Mo steel, Materials Science and Engineering: A, vol.510, issue.511, pp.510-51158, 2009.
DOI : 10.1016/j.msea.2008.04.095

B. Kleber, La mesure du pouvoir thermoélectrique : une technique originale de contrôle des alliages métalliques, 2005.

H. Klueh, R. Klueh, and D. Harries, High-chromium ferritic and martensitic steels for nuclear applications, 2001.
DOI : 10.1520/MONO3-EB

T. Koppenaal, The current status of thermomechanical treatment of steel in the soviet union, Transactions of the ASM, vol.62, pp.24-37, 1969.

. Kula, . Lopata, E. Kula, and S. Lopata, Preferred orientation in warm-worked and heat-treated 4340 steel, Transactions of the Metallurgical Society of AIME, vol.215, pp.980-985, 1959.

. Lai, The effect of austenitizing temperature on the microstructure and mechanical properties of as-quenched 4340 steel, Metallurgical Transactions, vol.1, issue.68, pp.1663-1670, 1974.
DOI : 10.1007/BF02646340

V. Lambard, Développement d'une nouvelle nuance martensitique ODS pour utilisation sous rayonnement à haute température, 1998.

C. Langford, G. Langford, and M. Cohen, Microstructural analysis by high-voltage electron diffraction of severely drawn iron wires, Metallurgical Transactions A, vol.227, issue.4, pp.901-910, 1975.
DOI : 10.1007/BF02672314

R. Larn and J. Yang, The effect of compressive deformation of austenite on the bainitic ferrite transformation in Fe???Mn???Si???C steels, Materials Science and Engineering: A, vol.278, issue.1-2, pp.278-291, 2000.
DOI : 10.1016/S0921-5093(99)00597-3

D. Latham, The current position of thermomechanical treatments applied to engineering and tool steels, Journal of the Iron and Steel Institute, pp.50-57, 1970.

J. Laurencin, Microstructure et dureté de la martensite dans les aciers, Rapport CEA/DEN, p.71, 2000.

. Lee, . Lee, S. Lee, and Y. Lee, Effect of austenite grain size on martensitic transformation of a low alloy steel, Materials Science Forum, pp.475-4793169, 2005.

. Li, Effect of thermo-mechanical treatment on microstructure and mechanical properties of P92 heat resistant steel, Materials Science and Engineering: A, vol.559, pp.882-888, 2013.
DOI : 10.1016/j.msea.2012.09.040

. Lindgren, Dislocations, vacancies and solute diffusion in physical based plasticity model for AISI 316L, Mechanics of Materials, vol.40, issue.11, pp.40907-919, 2008.
DOI : 10.1016/j.mechmat.2008.05.005

E. Lips and H. V. Zuilen, Improved hardening technique, pp.103-105, 1954.

. Liu, Effect of Minor Compressive Deformation in Austenite on Martensitic Transformation in Modified 9-12%Cr Ferritic Steel, Advanced Materials Research, vol.299, issue.300, pp.299-30061, 2011.
DOI : 10.4028/www.scientific.net/AMR.299-300.61

G. Loupias, C. Note, and . Ltmex, Détermination du coefficient de poisson et du module d'young d'aciers 9Cr et d'un acier ODS14Cr à différentes températures, 2013.

K. Maalekian, M. Maalekian, and E. Kozeschnik, Modeling mechanical effects on promotion and retardation of martensitic transformation, Materials Science and Engineering: A, vol.528, issue.3, pp.1318-1325, 2011.
DOI : 10.1016/j.msea.2010.10.030

. Maki, . Wayman, T. Maki, and C. Wayman, Substructure of ausformed martensite in Fe-Ni and Fe-Ni-C alloys, Metallurgical Transactions A, vol.2, issue.10, pp.1511-1518, 1976.
DOI : 10.1007/BF02656393

. Mannan, Selection of materials for prototype fast breeder reactor. Transactions-Indian Institute Of Metals, pp.155-178, 2003.

. Maruyama, Strengthening mechanisms of creep resistant tempered martensitic steel, ISIJ International, issue.6, pp.41641-653, 2001.

. Mathon, Experimental study and modelling of copper precipitation under electron irradiation in dilute FeCu binary alloys, Journal of Nuclear Materials, vol.245, issue.2-3, pp.224-237, 1997.
DOI : 10.1016/S0022-3115(97)00010-X

. Mathon, SANS study of the microstructural evolution of martensitic steels under thermal ageing and neutron irradiation, Physica B: Condensed Matter, vol.276, issue.278, pp.276-278939, 2000.
DOI : 10.1016/S0921-4526(99)01299-5

URL : https://hal.archives-ouvertes.fr/hal-00725142

S. Mauriès, Caractérisation et modélisation de la séquence de précipitation de carbures au cours du traitement thermique d'aciers martensitiques alliés, 2008.

B. Mcevily, . Bush, J. Mcevily, and R. Bush, An investigation of the notch-impact strength of an ausformed steel, Transactions of the ASM, vol.55, pp.654-666, 1962.

. Mcevily, On the formation of alloy carbides during ausforming, Transactions of the ASM, vol.56, pp.753-767, 1963.

. Mecking, . Estrin, H. Mecking, and Y. Estrin, The effect of vacancy generation on plastic deformation, Scripta Metallurgica, vol.14, issue.7, pp.815-819, 1980.
DOI : 10.1016/0036-9748(80)90295-1

B. Michaut, Influence de la décomposition isotherme partielle de l'austénite en ferrite sur la microstructure et sur les propriétés mécaniques d'un acier à 9%Cr (Grade 91) Rapport CEA, 2013.

. Miyamoto, Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite, Acta Materialia, vol.58, issue.19, pp.586393-6403, 2010.
DOI : 10.1016/j.actamat.2010.08.001

. Miyamoto, Quantitative analysis of variant selection in ausformed lath martensite, Acta Materialia, vol.60, issue.3, pp.601139-1148, 2012.
DOI : 10.1016/j.actamat.2011.11.018

G. Monkman, F. Monkman, and N. Grant, An empirical relationship between rupture life and minimum creep rate in creep-rupture tests, Proceedings of the ASTM, pp.593-620, 1956.

F. Montheillet, Métallurgie en mise en forme, 2009.

. Moorjani, . Coey, K. Moorjani, and J. Coey, Magnetic glasses (methods and phenomena their applications in science and technology, 1984.

. Moorthy, An assessment of low cycle fatigue damage using magnetic Barkhausen emission in 9Cr??????1Mo ferritic steel, International Journal of Fatigue, vol.21, issue.3, pp.263-269, 1999.
DOI : 10.1016/S0142-1123(98)00079-6

. Morito, Effect of block size on the strength of lath martensite in low carbon steels, Materials Science and Engineering: A, vol.438, issue.440, pp.438-440237, 2006.
DOI : 10.1016/j.msea.2005.12.048

G. Murry, Aciers. généralités. Techniques de l'ingénieur Propriétés et usages des aciers et des fontes, base documentaire : TIB349DUO.(ref. article : m300). fre, 2014.

. Nagesha, Influence of temperature on the low cycle fatigue behaviour of a modified 9Cr???1Mo ferritic steel, International Journal of Fatigue, vol.24, issue.12, pp.241285-1293, 2002.
DOI : 10.1016/S0142-1123(02)00035-X

M. Nakagawa, H. Nakagawa, and T. Miyazaki, Effect of retained austenite on the microstructure and mechanical properties of martensitic precipitation hardening stainless steel, Journal of Materials Science, issue.16, pp.343901-3908, 1999.

. Ning, Variation of martensite phase transformation mechanism in minor-stressed T91 ferritic steel, Journal of Nuclear Materials, vol.393, issue.1, pp.54-60, 2009.
DOI : 10.1016/j.jnucmat.2009.05.006

. Nishiyama, Martensitic transformation. Materials science and technology, 1978.

. Olson, . Cohen, G. Olson, and M. Cohen, Kinetics of strain-induced martensitic nucleation, Metallurgical Transactions A, vol.55, issue.4, pp.791-795, 1975.
DOI : 10.1007/BF02672301

. Orlovà, Microstructural development during high temperature creep of 9% Cr steel, Materials Science and Engineering: A, vol.245, issue.1, pp.39-48, 1998.
DOI : 10.1016/S0921-5093(97)00708-9

E. Orowan, Fracture and strength of solids, Reports on Progress in Physics, vol.12, issue.1, 1948.
DOI : 10.1088/0034-4885/12/1/309

. Palaparti, Creep Properties of Grade 91 Steel Steam Generator Tube at 923K, 6th International Conference on Creep, Fatigue and Creep-Fatigue Interaction, pp.70-77, 2013.
DOI : 10.1016/j.proeng.2013.03.221

. Panait, Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600°C for more than 100, 000hs. Materials Science and Engineering : A, pp.16-174062, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00491033

. Pesicka, The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels, Acta Materialia, issue.16, pp.514847-4862, 2003.

A. Pineau, Etude du durcissement des aciers par un traitement thermomécanique (austénitoformage ) et d'un alliage par précipitation cohérente et ordonnée, 1969.

E. /. Piozin and . Nt, Rapport bibliographique de première année : Influence des traitements thermomécaniques sur la microstructure et les propriétés mécaniques à haute température d'aciers martensitiques à 9%Cr, 2013.

. Polcik, On the microstructural development of the tempered martensitic Cr-steel P 91 during long-term creep???a comparison of data, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing, pp.252-259, 1999.
DOI : 10.1016/S0921-5093(98)00887-9

. Rajasekhar, Influence of austenitizing temperature on microstructure and mechanical properties of AISI 431 martensitic stainless steel electron beam welds, Materials & Design, vol.30, issue.5, pp.1612-1624, 2009.
DOI : 10.1016/j.matdes.2008.07.042

P. Ravizza, Quelques essais de d??formation de l'aust??nite m??tastable effectu??s sur un acier a outils, Revue de M??tallurgie, vol.61, issue.6, pp.577-585, 1964.
DOI : 10.1051/metal/196461060577

. Raymond, Strain hardening of austenite and its effect on subsequently transformed martensite, Journal of the Iron and Steel Institute, pp.203933-937, 1965.

. Remillieux, Y. Cizeron-]-remillieux, and G. Cizeron, Influence d'un traitement thermomécanique en phase austénitique métastable sur les caractéristiques mécaniques d'un acier du type 35 NCD 16, Mémoires Scientifiques Revues Métallurgistes, pp.1-10, 1972.

M. Roberts, Effect of transformation substructure on the strength and toughness of fe-mn alloys, Metallurgical Transactions, vol.1, pp.3287-3294, 1970.

. Rodriguez-carvajal and J. Rodriguez-carvajal, Study of micro-structural effects by podwer diffraction using the program fullprof

J. Rodriguez-carvajal, Recent developments of the program fullprof. Commission on Power Diffraction, p.26, 2001.

P. Rosenberg, J. Rosenberg, and H. Piehler, Calculation of the taylor factor and lattice rotations for bcc metals deforming by pencil glide, Metallurgical Transactions, vol.12, issue.no. 55, pp.257-259, 1971.
DOI : 10.1007/BF02662666

L. Sandström, R. Sandström, and R. Lagneborg, A model for static recrystallization after hot deformation, Acta Metallurgica, vol.23, issue.4, pp.481-488, 1975.
DOI : 10.1016/0001-6160(75)90087-5

. Sarikaya, Retained austenite and tempered martensite embrittlement in medium carbon steels, Metallurgical Transactions A, vol.218, issue.6, pp.1121-1133, 1983.
DOI : 10.1007/BF02670450

. Sauzay, Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel, Materials Science and Engineering: A, vol.400, issue.401, pp.400-401241, 2005.
DOI : 10.1016/j.msea.2005.02.092

. Sawada, Microstructural degradation of Gr.91 steel during creep under low stress, Materials Science and Engineering: A, vol.528, issue.16-17, pp.16-175511, 2011.
DOI : 10.1016/j.msea.2011.03.073

V. Sears, Neutron scattering lengths and cross section. Neutron news, pp.26-36, 1992.

. Shen, M2N nitride phases of 9% chromium steels for nuclear applications, Journal of Nuclear Materials, vol.378, issue.2, pp.153-158, 2008.
DOI : 10.1016/j.jnucmat.2008.04.020

. Shrestha, Creep deformation mechanisms in modified 9Cr???1Mo steel, Journal of Nuclear Materials, vol.423, issue.1-3, pp.1-3110, 2012.
DOI : 10.1016/j.jnucmat.2012.01.005

. Shyne, The strength of martensite formed from cold-worked austenite, Transactions of the ASM, vol.52, pp.346-361, 1960.

. Skarek, Inheritance of defects by martensite in process of ausforming, Journal of the Iron and Steel Institute, pp.205330-331, 1967.

P. Soussan, Etude du fluage des aciers 9Cr1Mo-NbV, 2000.

. Strife, The effect of austenite prestrain above the Md temperature on the martensitic transformation in Fe-Ni-Cr-C alloys, Metallurgical Transactions A, vol.10, issue.no. 3, pp.1471-1484, 1977.
DOI : 10.1007/BF02642861

M. Tanaka, K. Tanaka, and T. Mura, A Dislocation Model for Fatigue Crack Initiation, Journal of Applied Mechanics, vol.48, issue.1, pp.4897-103, 1981.
DOI : 10.1115/1.3157599

G. Taylor, The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.145, issue.855, pp.145362-387, 1934.
DOI : 10.1098/rspa.1934.0106

M. Tetelman, A. Tetelman, and A. Mcevily, Fracture of structural materials, 1967.

B. Thomas and J. Schmitt, Durcissement des aciers -mécanismes, 2002.

G. Thomas, Retained austenite and tempered martensite embrittlement, Metallurgical Transactions A, vol.62, issue.3, pp.439-450, 1978.
DOI : 10.1007/BF02646396

. Totemeier, Effect of normalization temperature on the creep strength of modified 9Cr-1Mo steel, Metallurgical and Materials Transactions A, vol.56, issue.5, pp.1519-1525, 2006.
DOI : 10.1007/s11661-006-0096-9

. Tsuchida, Improvement of Creep Rupture Strength of 9Cr-1Mo-V-Nb-N Steel by Thermo-Mechanical Control Process., ISIJ International, vol.35, issue.3, pp.309-316, 1995.
DOI : 10.2355/isijinternational.35.309

K. Vitek, J. Vitek, and R. Klueh, Precipitation reactions during the heat treatment of ferritic steels, Metallurgical Transactions A, vol.162, issue.6, pp.1047-1055, 1983.
DOI : 10.1007/BF02670443

/. Matériaux-de-coeur-et-chaudière-rcg-r-thématique and . Nt, Fabricabilité forte épaisseur" -Caractérisations mécaniques d'un acier type 9Cr, Rapport CEA DEN, 2004.

. Williamson, . Smallman, G. Williamson, and R. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Philosophical Magazine, vol.2, issue.1, pp.34-46, 1956.
DOI : 10.1107/S0365110X54001879

H. Yang and H. Bhadeshia, Austenite grain size and the martensite-start temperature, Scripta Materialia, vol.60, issue.7, pp.493-495, 2009.
DOI : 10.1016/j.scriptamat.2008.11.043

. Yoshino, Influence of normalizing heat treatment on precipitation behaviour in modified 9Cr???1Mo steel, Materials at High Temperatures, vol.77, issue.4, pp.149-158, 2008.
DOI : 10.2355/isijinternational.41.626

. Yusa, Refinement of grain boundary cementite in medium-carbon tempered martensite by thermomechanical processing, Materials Science and Engineering: A, vol.273, issue.275, pp.273-275462, 1999.
DOI : 10.1016/S0921-5093(99)00328-7

P. Yvon and F. Carré, Structural materials challenges for advanced reactor systems, Proceedings of the E-MRS 2008 Spring Meeting : Third Symposium on Nuclear Materials, pp.217-222, 2009.
DOI : 10.1016/j.jnucmat.2008.11.026

J. Zackay, V. Zackay, and W. Justusson, The properties of martensitic steels formed from strain-hardened austenite, Conference Harrogate, 1962.

. Zhang, Comparison of effects of aging on fracture of 9Cr1Mo and 2.25Cr1Mo steel, Materials Science Technology, vol.7, 2000.

. Zhang, Effect of thermomechanical control processing on microstructure and mechanical properties of Fe-0.2C-1.44Si-1.32Mn Hot Rolled TRIP Steel, Journal of the Iron and Steel Institute Research International, pp.1744-50, 2010.

S. Zhong, Etude des évolutions microstructurales à haute température en fonction des teneurs initiales en Y, Ti et O et, de leur incidence sur les hétérogénéités des déformations dans les aciers ODS Fe-14Cr1W, 2012.

S. E. Zinkle, Structural materials for fission & fusion energy, Materials Today, vol.12, issue.11, pp.12-19, 2009.
DOI : 10.1016/S1369-7021(09)70294-9

M. Électronique-À-balayage and (. , 223 B.2.1 Préparation des échantillons, p.224

B. Figure, 8 ? Les deux types de géométries des éprouvettes de dissolution sélective : a) Géométrie 1 et b) Géométrie 2 (côtes en mm)

+. Mo, 9 0,1 -2% Binaire Fe-Mo Houze, 2002.

B. Tableau, 4 ? Coefficients d'influence des éléments en solution solide sur le PTE [Houze, 2002.

. Kleber, des précipités incohérents avec la matrice et si leur fraction volumique est inférieure à 10%, la variation du PTE est considérée comme négligeable En revanche, les précipités cohérents ont une influence sur le PTE. Celle-ci varie en fonction de la nature, de la taille, de la morphologie et de la fraction volumique de ces précipités, 2005.

B. Annexe, Méthodes expérimentales de caractérisation de la microstructure B.7 La diffraction des neutrons La diffraction des neutrons a été entreprise dans le but de déterminer : ? l'évolution de l'élargissement relatif des pics de martensite en fonction de la température de revenu afin de remonter à la densité de dislocations, aux tailles des domaines non désordonnés (sans défauts), aux défauts d'empilement, aux micro-déformations

B. Figure, 11 ? Schéma du type d'éprouvette utilisée pour la diffraction des neutrons (côtes en mm)

L. De-fullprof, Les paramètres ajustables sont les paramètres de maille, l'élargissement du pic (ou la part de fonction Lorentzienne Y) ainsi que l'intensité (proportions relatives), 2001.

. De-la-même-façon and . Qu, à partir des diffractogrammes de G4.1., pour chaque état métallurgique étudié sur 3T2, les micro-contraintes ont èté mesurées avec l'ensemble des pics de martensite

C. Annexe, Méthodes expérimentales de caractérisation des propriétés mécaniques Les différentes méthodes expérimentales de caractérisation des propriétés mécaniques, employées au cours de cette thèse

C. Annexe, Méthodes expérimentales de caractérisation des propriétés mécaniques Figure C.14 ? Schéma du type d'éprouvette utilisée pour les essais de fatigue et de fatigue-fluage

C. La-figure, Un autre type d'éprouvette est évoqué dans ce manuscrit. Il s'agit des éprouvettes de résilience de type

D. Sommaire and C. , 258 D.2 Objectifs, 258 D.3 Présentation du matériau dans les conditions d'austénitisation et de revenu "standard, p.258

A. Résultats, 260 D.5.1 Taille des ex-grains d'austénite et taux de transformation, p.262