.. Techniques-de-microscopie-et-d-'imagerie, 90 2.3.1 Microscope Électronique à Balayage (MEB), p.91

.. Simulation-numérique-par-eléments-finis, 100 2.7.1 Code de calcul Z-set, p.100

. Un-autre-paramètre, et (200) en calculant un rapport d'intensité I 110 /I 200 . A l'état de repos de la fibre K29, le rapport est très proche de 1, ce rapport montre une contribution équivalente à la diffraction des plans (200) et (110). Expérimentalement , sans considérer de halo amorphe, le rapport est de 0.99. Selon certains auteurs [Iyer and Vijayan, intensité caractéristique du pic (110) peut devenir plus importante que celle du pic Ce phénomène semble lié aux différents procédés de mise en oeuvre ou des traitements thermiques et donc aux contraintes résiduelles présentes au sein de la fibre [Iyer and Vijayan, 2000.

. Traitement-mécanique-en-sollicitation-longitudinale, 150 4.1.1 Effet de l'essai de fatigue sur la sollicitation cyclique, p.150

.. Dissipation-longitudinale-et-mécanismes-moléculaires, 155 4.2.1 Effet de la charge maximale de sollicitation, p.156

M. Morphologie, 159 4.3.1 État de la surface d'une fibre sollicitée

S. R. Allen, Tensile recoil measurement of compressive strength for polymeric high performance fibres, Journal of Materials Science, vol.8, issue.2, pp.853-859, 1987.
DOI : 10.1007/BF01103520

R. Allred, R. E. Allred, and D. K. Roylance, Transverse moisture sensitivity of aramid/epoxy composites, Journal of Materials Science, vol.21, issue.3, pp.652-656, 1983.
DOI : 10.1007/BF00745562

A. , B. Alwis, K. G. Burgoyne, and C. J. , Accelerated creep testing for aramid fibres using the stepped isothermal method, Journal of Materials Science, issue.14, pp.434789-4800, 2008.

. Andrews, Deformation micromechanics in high-modulus fibers and composites, Composites Science and Technology, vol.48, pp.1-4255, 1993.

Y. Andrews, M. C. Andrews, and R. J. Young, Analysis of the deformation of aramid fibers and composites using raman-spectroscopy, Journal of Raman Spectroscopy, issue.8, pp.24539-544, 1993.

. Arrieta, Hydrolytic and photochemical aging studies of a Kevlar??-PBI blend, Polymer Degradation and Stability, vol.96, issue.8, pp.961411-1419, 2011.
DOI : 10.1016/j.polymdegradstab.2011.05.015

. Arrieta, X-ray diffraction, Raman, and differential thermal analyses of the thermal aging of a Kevlar??-PBI blend fabric, Polymer Composites, vol.665, issue.3, pp.362-367, 2011.
DOI : 10.1002/pc.21041

C. Baley, Influence of kink bands on the tensile strength of flax fibers, Journal of Materials Science, vol.39, issue.1, pp.331-334, 2004.
DOI : 10.1023/B:JMSC.0000007768.63055.ae

. Baley, Influence of the absorbed water on the tensile strength of flax fibers. Macromolecular symposium, pp.195-201, 2005.

. Besson, Mécanique non-linéaire des matériaux Us patent 3767756 : Dry jet wet spinning process. [Bourbigot and Flambard Heat resistance and flammability of high performance fibres : a review, Hermes Science Publication. Fire and materials, vol.26, pp.155-168, 1973.

. Bourbigot, Study of the thermal degradation of high performance fibres-application to polybenzazole and p-aramid fibres. Polymer degradation and stability, pp.283-290, 2001.

. Bourmaud, Importance of fiber preparation to optimize the surface and mechanical properties of unitary flax fiber. Industrial corps and products, pp.662-667, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00717229

. Brown, Electron paramagnetic resonance studies of Kevlar 49 fibres: Stress-induced free radicals, Polymer, vol.25, issue.6, pp.759-765, 1984.
DOI : 10.1016/0032-3861(84)90003-X

. Bunsell, An apparatus for fatigue-testing of fibres, Journal of Physics E: Scientific Instruments, vol.4, issue.11, p.868, 1971.
DOI : 10.1088/0022-3735/4/11/017

. Bunsell, Fatigue and creep failure of organic fibres subjected to cyclic loading, Journal of Materials Science Letters, vol.10, issue.11, pp.1101-1103, 1986.
DOI : 10.1007/BF01742212

. Burgoyne, C. J. Burgoyne, and K. G. Alwis, Visco-elasticity of aramid fibres, Journal of Materials Science, vol.43, issue.14, pp.437091-7101, 2008.
DOI : 10.1007/s10853-008-3032-0

H. Cayzac, Analyses expérimentale et numérique de l'endommagement matriciel d'un matériau composite. Cas d'un pultrudé thermoplastique renforcé de fibres de verre, 2014.

E. Chailleux and P. Davies, Modelling the Non-Linear Viscoelastic and Viscoplastic Behaviour of Aramid Fibre Yarns, Mechanics of Time-Dependent Materials, vol.7, issue.3/4, pp.291-303, 2003.
DOI : 10.1023/B:MTDM.0000007199.01142.f8

J. Chambers, Parallel-lay aramid ropes for use as tendons in prestressed concrete, 1986.

C. , H. Chang, C. Hsu, and S. L. , An analysis of strain-induced frequency changes in poly(p-phenylene terephthalamide) single fibers, Macromolecules, vol.23, issue.5, pp.1484-1486, 1990.

. Cheng, Experimental investigation of the transverse mechanical properties of a single Kevlar?? KM2 fiber, International Journal of Solids and Structures, vol.41, issue.22-23, pp.22-236215, 2004.
DOI : 10.1016/j.ijsolstr.2004.05.016

P. Imagerie-raman-de-matériaux-et-dispositifs-nano-]-colomban, Understanding the nano-and macromechanical behaviour , the failure and fatigue mechanisms of advanced and natural polymer fibres by raman/ir microspectrometry, Advances in Natural Sciences : Nanoscience and Nanotechnologie, p.13001, 2013.

. Colomban, Micro-raman study of the fatigue and fracture behaviour of single pa-66 fibres : Comparison with single pet and pp fibres, Engineering Fracture Mechanics, issue.16, pp.732463-2475, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00120388

C. , C. Connor, C. Chadwick, and M. M. , Characterization of absorbed water in aramid fibre by nuclear magnetic resonance, Journal of Materials Science, issue.14, pp.313871-3877, 1996.

R. J. Davies and M. Burghammer, Thermal-and stressinduced lattice distortions in a single kevlar49 fibre studied by microfocus x-ray diffraction, Journal of Materials Science, issue.18, pp.444806-4813, 2009.

. Davies, Simultaneous microRaman and synchrotron radiation microdiffraction: Tools for materials characterization, Applied Physics Letters, vol.87, issue.26, p.264105, 2005.
DOI : 10.1063/1.2159087

. Davies, Studying morphological variations across single fibres using an X-ray waveguide, Journal of Synchrotron Radiation, vol.12, issue.6, pp.765-771, 2005.
DOI : 10.1107/S0909049505016286

. Davies, Simultaneous Microfocus Raman and Microfocus XRD:?? Probing the Deformation of a Single High-Performance Fiber, Macromolecules, vol.39, issue.14, pp.394834-4840, 2006.
DOI : 10.1021/ma0600658

. Davies, Onaxis microbeam wide-and small-angle scattering experiments of a sectioned poly(p-phenylene terephthalamide) fiber, Applied Physics Letters, issue.10, p.92101903, 2008.

G. Derombise, Comportement à long terme des fibres aramides en milieux neutres et alcalins, 2009.
URL : https://hal.archives-ouvertes.fr/pastel-00539927

. Derombise, Long-term mechanical behavior of aramid fibers in seawater, Polymer Engineering & Science, vol.30, issue.7, pp.511366-1375, 2011.
DOI : 10.1002/pen.21922

. Derombise, Degradation of aramid fibers under alkaline and neutral conditions: Relations between the chemical characteristics and mechanical properties, Journal of Applied Polymer Science, vol.1, issue.5, pp.2504-2514, 2010.
DOI : 10.1002/app.31145

. Deteresa, Composite applications : the role of matrix, fiber, and interface, 1992.

D. Dobb, M. G. Dobb, and D. Dobson, Developments in oriented fibres, pp.115-131, 1987.

. Dobb, Microvoids in aramid-type fibrous polymers, Polymer, vol.20, issue.10, pp.201284-1988, 1979.
DOI : 10.1016/0032-3861(79)90157-5

. Dobb, Supramolecular structure of a high-modulus polyaromatic fiber (Kevlar 49), Journal of Polymer Science: Polymer Physics Edition, vol.15, issue.12, pp.152201-2211, 1977.
DOI : 10.1002/pol.1977.180151212

. Dobb, Role of microvoids in aramid fibers, Journal of Materials Science, issue.14, pp.273876-3878, 1992.

R. Dobb, M. G. Dobb, and R. M. Robson, Structural characteristics of aramid fibre variants, Journal of Materials Science, vol.21, issue.1, pp.459-464, 1990.
DOI : 10.1007/BF00714056

J. W. Downing and J. A. Newell, Characterization of structural changes in thermally enhanced Kevlar-29 fiber, Journal of Applied Polymer Science, vol.23, issue.1, pp.417-424, 2004.
DOI : 10.1002/app.13021

D. Durville, Numerical simulation of entangled materials mechanical properties, Journal of Materials Science, vol.40, issue.22, pp.5941-5948, 2005.
DOI : 10.1007/s10853-005-5061-2

URL : https://hal.archives-ouvertes.fr/hal-00114864

D. Durville, Simulation of the mechanical behaviour of woven fabrics at the scale of fibers, International Journal of Material Forming, vol.49, issue.7???8, pp.1241-1251, 2010.
DOI : 10.1007/s12289-009-0674-7

URL : https://hal.archives-ouvertes.fr/hal-00495110

R. Edmunds and M. A. Wadee, On kink banding in individual PPTA fibres, Composites Science and Technology, vol.65, issue.7-8, pp.1284-1298, 2005.
DOI : 10.1016/j.compscitech.2004.12.034

. Jeguirim, Transverse compression behavior of polyamide 6.6 rovings: Experimental study, Textile Research Journal, vol.66, issue.1, pp.77-87, 2012.
DOI : 10.1177/0040517511418563

R. H. Ericksen, Creep of aromatic polyamide fibres, Polymer, vol.26, issue.5, pp.733-746, 1985.
DOI : 10.1016/0032-3861(85)90111-9

C. Fairhurst, On the validity of the ???Brazilian??? test for brittle materials, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol.1, issue.4, pp.535-546, 1964.
DOI : 10.1016/0148-9062(64)90060-9

K. Fukuda, M. Fukuda, and H. Kawai, Fundamental-studies on the interaction between moisture and textiles .13. moisture sorption mechanism of aromatic polyamide fibers -diffusion of moisture in poly(p-phenylene terephthalamide) fibers, Textile Research Journal, vol.63, issue.4, 1993.

C. Galiotis, A study of mechanisms of stress transfer in continuous-fiber and discontinuous-fiber model composites by laser raman-spectroscopy, Composites Science and Technology, vol.48, pp.1-415, 1993.

. Galiotis, Strain dependence of the raman frequencies of a kevlar-49 fiber, Polymer Communications, issue.12, pp.26354-355, 1985.

. Gardner, Polymers for Fibers and Elastomers, p.91, 1984.

. Gardner, -phenylene terephthalamide) from Neutron Fiber Diffraction Studies, Macromolecules, vol.37, issue.25, p.37, 2004.
DOI : 10.1021/ma048445l

URL : https://hal.archives-ouvertes.fr/jpa-00209917

. Garza, Bound water in kevlar 49 fibers, 1981.

. Giannopoulos, . Burgoyne, I. P. Giannopoulos, and C. J. Burgoyne, Accelerated and real-time creep and creep-rupture results for aramid fibers, Journal of Applied Polymer Science, vol.162, issue.5, pp.3856-3870, 2012.
DOI : 10.1002/app.36707

G. Gouadec, Analyse (micro)mécanique et (nano)structurale de solides hétérogènes par spectroscopie Raman, 2001.

. Gouadec, . Colomban, G. Gouadec, and P. Colomban, Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties, Progress in Crystal Growth and Characterization of Materials, pp.1-66, 2007.
DOI : 10.1016/j.pcrysgrow.2007.01.001

URL : https://hal.archives-ouvertes.fr/hal-00120432

. Graham, Spatially resolved nanomechanical properties of Kevlar?? fibers, Polymer, vol.41, issue.12, pp.414761-4764, 2000.
DOI : 10.1016/S0032-3861(99)00661-8

B. Guimaraes, G. B. Guimaraes, and C. J. Burgoyne, Creep behaviour of a parallel-lay aramid rope, Journal of Materials Science, vol.18, issue.9, pp.2473-2489, 1992.
DOI : 10.1007/BF01105061

. Hadley, The Transverse Compression of Anisotropic Fibre Monofilaments, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.285, issue.1401, pp.285275-286, 1401.
DOI : 10.1098/rspa.1965.0103

. Haraguchi, Uniplanar orientation of poly(p-phenylene terephthalamide) crystal in thin film and its effect on mechanical properties, Journal of Applied Polymer Science, vol.23, issue.3, pp.903-914, 1979.
DOI : 10.1002/app.1979.070230325

. Hasegawa, Meeting of the crystallographic society of japan, p.6521, 1973.

. Havel, ???Smart??? Raman/Rayleigh imaging of nanosized SiC materials using the spatial correlation model, Journal of Materials Science, vol.39, issue.20, pp.6183-6190, 2004.
DOI : 10.1023/B:JMSC.0000043585.29016.5a

W. Hearle, J. W. Hearle, and B. S. Wong, Flexural fatigue and surface abrasion of kevlar 29 and other high modulus fibers, Journal of Materials Science, issue.12, pp.122447-2455, 1977.

A. Hindeleh, A. M. Hindeleh, and S. M. Abdo, Relationship between crystalline-structure and mechanical-properties in kevlar 49 fibers, Polymer Communications, vol.30, issue.6, pp.184-186, 1989.

. Hindeleh, Solid-state morphology and mechanical properties of Kevlar 29 fiber, Journal of Macromolecular Science, Part B, vol.2391, issue.3, pp.23289-309, 1984.
DOI : 10.1080/00222348408219461

. Hodson, Deformation and failure processes of kevlar 49 single filaments, Composite Technology Review, vol.5, issue.4, pp.115-117, 1983.

. Hsieh, Wetting characteristics of poly(p-phenylene terephthalamide) single fibers and their adhesion to epoxy, Journal of Colloid and Interface Science, vol.144, issue.1, pp.127-144, 1991.
DOI : 10.1016/0021-9797(91)90243-2

. Hudson, The controlled failure of rock discs and rings loaded in diametral compression, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol.9, issue.2, pp.241-248, 1972.
DOI : 10.1016/0148-9062(72)90025-3

. Huh, Microstructure analysis of high performance fibers in compression, Polymer Engineering & Science, vol.33, issue.3, pp.684-692, 2003.
DOI : 10.1002/pen.10056

. Ii, Thermomechanical and ultrasonic properties of high-modulus aromatic polyamide fibers, Macromolecules, vol.19, issue.7, 1986.
DOI : 10.1021/ma00161a006

. Iyer, Low temperature crystallographic data on kevlar 49 fibres, Journal of Materials Science, vol.38, issue.1, pp.133-139, 2003.
DOI : 10.1023/A:1021178219377

V. Iyer, R. V. Iyer, and K. Vijayan, Decomposition behaviour of kevlar 49 fibres : Part i. at t approximate to t-d, Bulletin of Materials Science, issue.7, pp.221013-1023, 1999.

V. Iyer, R. V. Iyer, and K. Vijayan, Effect of thermal spikes on the structural characteristics of kevlar fibres, Journal of Materials Science, issue.22, pp.355731-5739, 2000.

. Iyer, Crystallographic data on axially compressed Kevlar 49 fibres, Bulletin of Materials Science, vol.56, issue.1, pp.1-7, 1999.
DOI : 10.1007/BF02745666

C. Jaeger, J. Jaeger, and N. Cook, Fundamentals of rock mechanics, 1969.

V. Jauzein and P. Colomban, Types, structure and mechanical properties of silk. Handbook of Tensile Properties of Textile and Technical Fibres, pp.144-178, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00456142

. Jawad, . Ward, S. A. Jawad, and I. M. Ward, The transverse compression of oriented nylon and polyethylene extrudates, Journal of Materials Science, vol.11, issue.7, pp.1381-1387, 1978.
DOI : 10.1007/BF00553190

. Jiang, Processing and characterization of thermally crosslinkable poly p-phenyleneterephthalamide-co-p-1,2-dihydrocyclobutaphenylenetereph thalamide (ppta-co-xta) copolymer fibers, Macromolecules, issue.9, pp.283301-3312, 1995.

. Jones, The lateral deformation of cross-linkable ppxta fibres, Journal of Materials Science, issue.11, pp.322855-2871, 1997.

. Josse, MEASURING INTERFACIAL ADHESION BETWEEN A SOFT VISCOELASTIC LAYER AND A RIGID SURFACE USING A PROBE METHOD, The Journal of Adhesion, vol.80, issue.1-2, pp.87-118, 2004.
DOI : 10.1063/1.1571058

. Kamst, A new method for the measurement of the tensile strength of rice grains by using the diametral compression test, Journal of Food Engineering, vol.40, issue.4, pp.227-232, 1999.
DOI : 10.1016/S0260-8774(99)00051-5

S. Kawabata, Measurement of the Transverse Mechanical Properties of High-performance Fibres, The Journal of The Textile Institute, vol.40, issue.4, pp.432-447, 1990.
DOI : 10.1080/00405009008658721

. Kim, Themodified-single fiber test: A methodology for monitoring ballistic performance, Journal of Applied Polymer Science, vol.20, issue.2, pp.876-886, 2008.
DOI : 10.1002/app.27684

. Kim, Normal vibrational analysis of a rigid rod polymer: poly(p-phenylene terephthalamide), Polymer, vol.27, issue.1, pp.34-46, 1986.
DOI : 10.1016/0032-3861(86)90353-8

W. F. Knoff, Relationship between the tensile and shear strength of aramid fibres, Journal of Materials Science Letters, vol.46, issue.40, pp.1392-1394, 1987.
DOI : 10.1007/BF01689299

W. F. Knoff, Mechanical Behavior of Respirable Fibrils of Kevlar Aramid Fibre, Glass, and Asbestos, Journal of the Textile Institute, vol.84, issue.1, pp.130-137, 1993.
DOI : 10.1007/BF00541602

. Konopasek, . Hearle, L. Konopasek, and J. W. Hearle, The tensile fatigue behavior of para-oriented aramid fibers and their fracture morphology, Journal of Applied Polymer Science, vol.21, issue.10, pp.2791-2815, 1977.
DOI : 10.1002/app.1977.070211017

. Kotani, The measurement of transverse mechanical properties of polymer fibers, Journal of Materials Science, issue.21, pp.295551-5558, 1994.

. Kotera, Elastic Modulus of the Crystalline Regions of Poly (p-phenylene terephthalamide) Single Fiber Using SPring-8 Synchrotron Radiation, Polymer Journal, vol.66, issue.12, pp.391295-1299, 2007.
DOI : 10.1080/00222348408219461

. Lacks, . Rutledge, D. J. Lacks, and G. C. Rutledge, Thermal expansion and temperature dependence of elastic moduli of aromatic polyamides, Macromolecules, vol.27, issue.24, pp.277197-7204, 1994.
DOI : 10.1021/ma00102a031

M. Lafitte, Caractérisation de la fibre aramide Kevlar 29 : Etude du comportement et des propriétés mécaniques en tension et en torsion, 1981.

M. H. Lafitte and A. R. Bunsell, The fatigue behaviour of Kevlar-29 fibres, Journal of Materials Science, vol.20, issue.8, pp.2391-2397, 1982.
DOI : 10.1007/BF00543749

M. H. Lafitte and A. R. Bunsell, The creep of kevlar-29 fibers, Polymer Engineering and Science, vol.57, issue.3, pp.182-187, 1985.
DOI : 10.1002/pen.760250307

. Languerand, Inelastic behavior and fracture of high modulus polymeric fiber bundles at high strain-rates, Materials Science and Engineering: A, vol.500, issue.1-2, pp.216-224, 2009.
DOI : 10.1016/j.msea.2008.09.075

. Lavrov, . Vervoort, A. Lavrov, and A. Vervoort, Theoretical treatment of tangential loading effects on the Brazilian test stress distribution, International Journal of Rock Mechanics and Mining Sciences, vol.39, issue.2, pp.275-283, 2002.
DOI : 10.1016/S1365-1609(02)00010-2

[. Clerc, Influence of temperature on the mechanical behaviour of polyester fibres, Journal of Materials Science, vol.88, issue.1, pp.417509-7523, 2006.
DOI : 10.1007/s10853-006-0835-8

URL : https://hal.archives-ouvertes.fr/hal-00133587

. Lee, . Santhosh, C. Y. Lee, and U. Santhosh, The role of the fibrillar structures in the compressive behavior of rigid-rod polymeric fibers, Polymer Engineering and Science, vol.62, issue.14, pp.33907-912, 1993.
DOI : 10.1002/pen.760331407

. Lee, A Dynamic Small Angle X-Ray Scattering Study of Stressed Kevlar?? 49/Epoxy Composites, Journal of Composite Materials, vol.10, issue.2, pp.114-137, 1985.
DOI : 10.1177/002199838501900202

. Lee, Structure and property development in poly(p-phenylene terephthalamide) during heat treatment under tension, Journal of Polymer Science Part B: Polymer Physics, vol.33, issue.1, pp.1-14, 1995.
DOI : 10.1002/polb.1995.090330101

. Lefeuvre, Elementary flax fibre tensile properties : correlation between stress-strain behaviour and fibre composition. Industrial corps and products, pp.762-769, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988036

. Li, The evolution of structure and properties of poly(p-phenylene terephthalamide) during the hydrothermal aging, Journal of Applied Polymer Science, vol.92, issue.2, pp.552-558, 2012.
DOI : 10.1002/app.36822

. Li, Hydrothermal aging mechanisms of aramid fibers via synchrotron small-angle X-ray scattering and dynamic thermal mechanical analysis, Journal of Applied Polymer Science, vol.42, issue.2, pp.1291-1296, 2013.
DOI : 10.1002/app.38419

. Li, On the morphology of aromatic polyamide fibers (Kevlar, Kevlar-49, and PRD-49), Journal of Macromolecular Science, Part B, vol.9, issue.2, pp.22269-290, 1983.
DOI : 10.1080/00222348308215504

. Li, Internal structure of kevlar(r) fibers by atomic-force microscopy, Polymer, issue.21, pp.344573-4575, 1993.

. Li, Comparative study of the internal structures of Kevlar and spider silk by atomic force microscopy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.12, issue.4, pp.1891-1894, 1994.
DOI : 10.1116/1.578978

. Lim, Mechanical behavior of A265 single fibers, Journal of Materials Science, vol.45, issue.303, pp.652-661, 2010.
DOI : 10.1007/s10853-009-3979-5

. Lim, Effects of gage length, loading rates, and damage on the strength of PPTA fibers, International Journal of Impact Engineering, vol.38, issue.4, pp.219-227, 2011.
DOI : 10.1016/j.ijimpeng.2010.11.009

. Liu, Morphology and crystal structure in single crystals of poly(p-phenylene terephthalamide) prepared by melt polymerization, Polymer, vol.37, issue.8, pp.371413-1430, 1996.
DOI : 10.1016/0032-3861(96)81140-2

. Liu, RETRACTED ARTICLE: Surface modification of aramid fibers with novel chemical approach, Polymer Bulletin, vol.79, issue.3, pp.259-275, 2011.
DOI : 10.1007/s00289-010-0313-y

Y. Liu, X. Y. Liu, and W. D. Yu, Static Torsion and Torsion Fatigue of UHMW-PE and Aramid Filaments, High Performance Polymers, vol.17, issue.4, pp.593-603, 2005.
DOI : 10.1177/0954008305052793

H. Ma, C. C. Ma, and K. Hung, Structure and dynamic mechanical properties of poly(ethylene terephthalate-co-4,4???-bibenzoate) fibers, Polymer, vol.48, issue.6, pp.275-292, 2008.
DOI : 10.1016/j.polymer.2007.01.026

A. Marcellan, Microstructures, micromécanismes et comportement à rupture de fibres PA 66, 2003.

. Marcellan, (Nano)structure, skin/core and tension behaviour of polyamide fibres, Journal of Raman Spectroscopy, vol.35, issue.4, pp.308-315, 2004.
DOI : 10.1002/jrs.1162

URL : https://hal.archives-ouvertes.fr/hal-00166080

E. Mc-ewen-]-mc-ewen, Stresses in elastic cylinders in contact along a generatrix, Philosophical Magazine, issue.303, pp.40454-459, 1949.

. Mead, Accelerated aging of nylon 66 and Kevlar 29 in elevated temperature, elevated humidity, smog, and ozone, Industrial & Engineering Chemistry Product Research and Development, vol.21, issue.2, pp.158-163, 1982.
DOI : 10.1021/i300006a006

. Meraldi, J. Meraldi, J. Ribiere, and G. Mirone, Monofilament aramide et procédé pour l'obtenir. EP Patent 0,435,975. [Mirone Role of stress triaxiality in elastoplastic characterization and ductile failure prediction, Engineering Fracture Mechanics, issue.8, pp.741203-1221, 1996.

M. Mooney, D. A. Mooney, and J. M. Macelroy, -phenylene terephthalamide):?? Determination of Water Transport Properties, Langmuir, vol.23, issue.23, pp.2311804-11811, 2007.
DOI : 10.1021/la7017538

URL : https://hal.archives-ouvertes.fr/in2p3-01255903

. Morgan, Aging studies of kevlar 49 fibers, 1984.

. Morgan, The relationship between the physical structure and the microscopic deformation and failure processes of poly(p-phenylene terephthalamide) fibers, Journal of Polymer Science: Polymer Physics Edition, vol.21, issue.9, pp.1757-1783, 1983.
DOI : 10.1002/pol.1983.180210913

M. Northolt, Tensile deformation of poly(p-phenylene terephthalamide) fibres, an experimental and theoretical analysis, Polymer, vol.21, issue.10, pp.1199-1204, 1980.
DOI : 10.1016/0032-3861(80)90088-9

M. G. Northolt, X-ray diffraction study of poly(p-phenylene terephthalamide) fibres, European Polymer Journal, vol.10, issue.9, pp.799-804, 1974.
DOI : 10.1016/0014-3057(74)90131-1

. Northolt, Yielding and hysteresis of polymer fibers, Polymer, issue.18, pp.363485-3492, 1995.

. Northolt, The tensile strength of polymer fibres Advances in polymer science, pp.1-108, 2005.

V. Northolt, . Aartsen, M. G. Northolt, and J. Van-aartsen, On the crystal and molecular structure of poly-(p-phenylene terephthalamide), Journal of Polymer Science: Polymer Letters Edition, vol.11, issue.5, 1973.
DOI : 10.1002/pol.1973.130110508

V. Northolt, . Aartsen, M. G. Northolt, and J. Van-aartsen, Chain orientation distribution and elastic properties of poly (p-phenylene terephthalamide), a ???rigid rod??? polymer, Journal of Polymer Science: Polymer Symposia, vol.28, issue.7, 1977.
DOI : 10.1002/polc.5070580120

. Northolt, M. G. Van-der-hout-]-northolt, and R. Van-der-hout, Elastic extension of an oriented crystalline fibre, Polymer, vol.26, issue.2, pp.310-316, 1985.
DOI : 10.1016/0032-3861(85)90047-3

C. Oudet, Contribution à l'étude de l'endommagement par fatigue des fibres de polyester à usage technique, 1986.

. Panar, Morphology of poly(p-phenylene terephthalamide) fibers, Journal of Polymer Science: Polymer Physics Edition, vol.21, issue.10, pp.1955-1969, 1983.
DOI : 10.1002/pol.1983.180211006

. Pauw, Analysing the nanoporous structure of aramid fibres, Journal of Applied Crystallography, vol.32, issue.4, pp.837-849, 2010.
DOI : 10.1107/S0021889810017061

. Pauw, Strain-induced internal fibrillation in looped aramid filaments, Polymer, vol.51, issue.20, pp.514589-4598, 2010.
DOI : 10.1016/j.polymer.2010.07.045

M. Peltier, Etude théorique de l'essai brésilien, Rilem bulletin, vol.19, pp.33-74, 1954.

L. Penn, L. Penn, and F. Larsen, Physicochemical properties of kevlar 49 fiber, Journal of Applied Polymer Science, vol.23, issue.1, pp.59-73, 1979.
DOI : 10.1002/app.1979.070230106

M. Penn, L. Penn, and F. Milanovich, Raman spectroscopy of Kevlar 49 fibre, Polymer, vol.20, issue.1, pp.31-36, 1979.
DOI : 10.1016/0032-3861(79)90038-7

S. Phoenix, S. L. Phoenix, and J. Skelton, Transverse Compressive Moduli and Yield Behavior of Some Orthotropic, High-Modulus Filaments, Textile Research Journal, vol.291, issue.12, pp.44934-940, 1974.
DOI : 10.1177/004051757404401203

. Pinnock, The Compression of Anisotropic Fibre Monofilaments. II, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.291, issue.1425, pp.291267-278, 1425.
DOI : 10.1098/rspa.1966.0094

R. Pinzelli, Fibres aramides pour matériaux composites, A3985), 1995.

. Pisanova, Three techniques of interfacial bond strength estimation from direct observation of crack initiation and propagation in polymer???fibre systems, Composites Part A: Applied Science and Manufacturing, vol.32, issue.3-4, pp.435-443, 2001.
DOI : 10.1016/S1359-835X(00)00054-3

G. Prasad, K. Prasad, and D. T. Grubb, Deformation behavior of Kevlar fibers studied by Raman spectroscopy, Journal of Applied Polymer Science, vol.41, issue.910, pp.9-102189, 1990.
DOI : 10.1002/app.1990.070410923

. Ran, Structural changes during deformation of Kevlar fibers via on-line synchrotron SAXS/WAXD techniques, Polymer, vol.42, issue.4, pp.1601-1612, 2001.
DOI : 10.1016/S0032-3861(00)00460-2

. Ran, Studies of the mesophase development in polymeric fibers during deformation by synchrotron saxs/waxd, Journal of Materials Science, issue.13, pp.363071-3077, 2001.

R. J. Farris, Fatigue and creep of high-performance fibers : Deformation mechanics and failure criteria, International Journal of Fatigue, vol.30, issue.5, pp.793-799, 2008.

. Rao, The evolution of structure and properties in poly(p-phenylene terephthalamide) fibers, Polymer, vol.42, issue.13, pp.425925-5935, 2001.
DOI : 10.1016/S0032-3861(00)00906-X

. Rao, Structure???property relation in poly(p-phenylene terephthalamide) (PPTA) fibers, Polymer, vol.42, issue.13, pp.425937-5946, 2001.
DOI : 10.1016/S0032-3861(00)00905-8

F. Rao, Y. Q. Rao, and R. J. Farris, Thermal transitions studied by iso-strain force-temperature test (iftt) Polymer Testing, pp.20-26, 2008.

. Rebouillat, Characterization of KEVLAR fibers using selected probes, Journal of Applied Polymer Science, vol.58, issue.8, pp.581305-1315, 1995.
DOI : 10.1002/app.1995.070580812

. Rebouillat, Thermally-induced changes in kevlar fiber surface evidenced by inverse gas-chromatography, Polymer, issue.23, pp.364521-4523, 1995.

. Riekel, -phenylene terephthalamide), Macromolecules, vol.32, issue.23, pp.327859-7865, 1999.
DOI : 10.1021/ma990267m

URL : https://hal.archives-ouvertes.fr/hal-00307305

. Rojstaczer, Thermal expansion of Kevlar fibres and composites, Journal of Materials Science Letters, vol.13, issue.10, pp.1233-1236, 1985.
DOI : 10.1007/BF00723467

. Sawyer, The fibrillar hierarchy in liquid crystalline polymers, Journal of Materials Science, vol.23, issue.1, pp.225-238, 1993.
DOI : 10.1007/BF00349055

. Schadt, Terephthalamide ring dynamics of poly(p-phenyleneterephthalamide), Macromolecules, vol.26, issue.24, pp.6503-6508, 1993.
DOI : 10.1021/ma00076a030

. Schadt, Dynamic structure of poly(p-phenyleneterephthalamide), Macromolecules, vol.26, issue.24, pp.6509-6516, 1993.
DOI : 10.1021/ma00076a031

. Schaefer, Microscopic Dynamics and Macroscopic Mechanical Deformation of Poly(p-phenyleneterephthalamide) Fibers, Macromolecules, vol.28, issue.4, pp.1152-1158, 1995.
DOI : 10.1021/ma00108a050

. Schulten, Studies on the thermal degradation of aromatic polyamides by pyrolysis-field ionization mass spectrometry and pyrolysis gas chromatography, Die Angewandte Makromolekulare Chemie, pp.1551-1571, 1987.

. Shubha, Moisture uptake by kevlar fibers, Journal of Materials Science Letters, vol.12, issue.1, pp.60-62, 1993.

J. Singletary, Transverse compression of PPTA fibers, Mechanics of Composite Materials, vol.32, issue.No. 10, pp.319-326, 2000.
DOI : 10.1007/BF02262809

. Singletary, The transverse compression of ppta fibers -part i -single fiber transverse compression testing, Journal of Materials Science, vol.35, issue.3, pp.573-581, 2000.
DOI : 10.1023/A:1004764024568

. Singletary, The transverse compression of ppta fibers -part ii -fiber transverse structure, Journal of Materials Science, vol.35, issue.3, pp.583-592, 2000.
DOI : 10.1023/A:1004716108638

. Socci, Orientation changes in Kevlar?? 49 under axial compression, Polymer, vol.37, issue.22, pp.375005-5009, 1996.
DOI : 10.1016/0032-3861(96)00527-7

K. Sockalingam, J. W. Sockalingam, and M. Keefe, On the transverse compression response of Kevlar KM2 using fiber-level finite element model, International Journal of Solids and Structures, vol.51, issue.13, pp.2504-2517, 2014.
DOI : 10.1016/j.ijsolstr.2014.03.020

B. H. Stuart, A Fourier transform Raman study of water sorption by Kevlar-49, Polymer Bulletin, vol.48, issue.6, pp.727-733, 1995.
DOI : 10.1007/BF00294956

. Sweeney, Influence of thermal treatment conditions on the recoil compressive strength of kevlar-29 fibers, High Performance Polymers, vol.14, issue.2, pp.133-143, 2002.

W. Sweeny, Improvements in compressive properties of high modulus fibers by crosslinking, Journal of Polymer Science Part A: Polymer Chemistry, vol.30, issue.6, pp.1111-1122, 1992.
DOI : 10.1002/pola.1992.080300618

. Tashiro, Elastic Moduli and Molecular Structures of Several Crystalline Polymers, Including Aromatic Polyamides, Macromolecules, vol.10, issue.2, pp.407-420, 1977.
DOI : 10.1021/ma60056a033

. Tavallali, . Vervoort, A. Tavallali, and A. Vervoort, Failure of Layered Sandstone under Brazilian Test Conditions: Effect of Micro-Scale Parameters on Macro-Scale Behaviour, Rock Mechanics and Rock Engineering, vol.6, issue.2, pp.43641-653, 2010.
DOI : 10.1007/s00603-010-0084-7

G. Timoshenko, S. Timoshenko, and J. T. Goodier, Theory of Elasticity The role of folding in the degradation of ballistic fibers, Composites Engineering, vol.4, issue.10, pp.995-1009, 1951.

. Vanderzwaag, Chain stretching in aramid fibers, Polymer Communications, issue.10, pp.28276-277, 1987.

J. Veve, Interprétation microstructurale de l'endommagement par fatigue mécanique des fibres de Polyester pour le renforcement des élastomères, 1987.

. Wagner, Lifetime statistics for single Kevlar 49 filaments in creep-rupture, Journal of Materials Science, vol.11, issue.6, pp.1868-1878, 1986.
DOI : 10.1007/BF00547921

S. B. Warner, On the radial structure of Kevlar, Macromolecules, vol.16, issue.9, pp.1543-1546, 1983.
DOI : 10.1021/ma00243a025

. Washer, Investigating the Effects of Aging on the Raman Scattering of Kevlar Strands, Research in Nondestructive Evaluation, vol.26, issue.3, pp.144-163, 2008.
DOI : 10.1002/pi.4990240203

. Washer, Characterization of Kevlar Using Raman Spectroscopy, Journal of Materials in Civil Engineering, vol.21, issue.5, pp.226-234, 2009.
DOI : 10.1061/(ASCE)0899-1561(2009)21:5(226)

G. Wijk, Some new theoretical aspects of indirect measurements of the tensile strength of rocks, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol.15, issue.4, pp.149-160, 1978.
DOI : 10.1016/0148-9062(78)91221-4

Z. Wilchinsky, On Crystal Orientation in Polycrystalline Materials, Journal of Applied Physics, vol.30, issue.5, p.792, 1959.
DOI : 10.1063/1.1735235

. Wu, Temperature dependence of lifetime statistics for single Kevlar 49 filaments in creep-rupture, Journal of Materials Science, vol.14, issue.5, pp.1851-1860, 1988.
DOI : 10.1007/BF01115731

. Wu, Changes in crystal structure parameters and thermal mechanical properties of poly(p-phenylene terephthalamide) fibers under different annealing conditions, Journal of Polymer Science Part B: Polymer Physics, vol.28, issue.13, pp.2565-2583, 1990.
DOI : 10.1002/polb.1990.090281308

H. Yang, Kevlar Aramid Fiber, 1993.

Y. Yeh, W. Y. Yeh, and R. J. Young, Molecular deformation processes in aromatic high modulus polymer fibres, Polymer, vol.40, issue.4, pp.857-870, 1999.
DOI : 10.1016/S0032-3861(98)00308-5

. Young, Relationship between structure and mechanical-properties for aramid fibers, Journal of Materials Science, issue.20, pp.275431-5440, 1992.

. Yue, Effects of heat treatment on the mechanical properties of Kevlar-29 fibre, Composites Science and Technology, vol.60, issue.3, pp.421-427, 2000.
DOI : 10.1016/S0266-3538(99)00137-2

M. Image, une fibre de Kevlar ayant développé des bandes de glissements induites par le cisaillement sans signe de rupture [Lafitte, 1981.

®. Technique-dupont, Effet de la température et du temps d'exposition sur la contrainte à rupture

®. Sommercable, gauche : pneu de vélo (www.equinoxefr.org) et droite : Fibre optique, p.20

.. Passerelle-d-'aberfeldyhutchinson-library, Ecosse, suspensions constituées de faisceaux de fibres de Kevlar ® 29, p.20

P. Réaction-de-polycondensation-entre-le and Å. Le-tcl, produit : unité de répétition de longueur 12, p.23

. Gardner, Figures de diffraction de neutrons de fibres (a) deutérées (b) non-deutérées de PPTA, p.27, 2004.

. Gardner, Figures de diffraction simulée de neutrons de fibres deutérées utilisant le modèle de Northolt (a) et le modèle de Liu (b), p.27, 2004.

. Rao, Structure de la monophase suggérée des fibres de Kevlar ® 29 et 149, p.34, 2001.

. Graham, IFM 12×12 (b) Image IFM 12×12 du bord d'une fibre microtomée de Kevlar ® 49 Le module radial du coeur et de la peau ont été évalués respectivement à 60, p.36, 2000.

. Dobb, Image obtenue par un MET d'une coupe transverse d'une fibre de Kevlar ® 149 montrant la présence d'un défaut rempli d'air, p.36, 1992.

. Dobb, Image obtenue par un MET d'une coupe longitudinale d'une fibre de Kevlar ® 149 préalablement irradiée d'ultraviolet. Une couche entière de 15 nm a été détruite afin de mettre en évidence la présence de vides, p.36, 1992.

. Morgan, Distribution des bouts de chaîne dans la direction transverse dans un plan de défauts, p.37, 1983.

. Morgan, Modèle de l'organisation interne de la fibre, p.38, 1983.

W. Courbes-de, effet de l'amplitude et de la charge maximale appliquée en fatigue ou en fluage sur la durée de vie d'une fibre unitaire de Kevlar ® 29 ; ligne continue : fluage, lignes pointillées : fatigue [Lafitte and Bunsell, p.40, 1982.

. Hodson, Modes de rupture d'une fibre de Kevlar ® 49 lors d'un essai de traction monotone ; a) : Rupture par propagation transversale, « pointed break » , b) : Rupture par propagation biaxiale, « fractured break » , c) : Rupture par « excoriation », « kink and break, p.42, 1983.

. Dobb, Image MET prise en champ clair montrant la distribution des microvides plus importante vers l'exterieur dans la fibre de Kevlar ® 981, p.43, 1992.

. Rao, Variation du module longitudinal selon les paramètres cristallins : (gauche) Angle d'orientation et (droite) Paramètre para-cristallin en fonction du module longitudinal, p.46, 2001.

. Kotera, Courbe Déformation-Contrainte d'une fibre de Kevlar ® 49, p.47, 2007.

D. Vue-schématique, une barre circulaire de rayon R, compressée entre deux surfaces parallèles ; allure du profil de contrainte [Marcellan, p.50, 2003.

L. Modèle-de, Progression des mécanismes de déformation, U le déplacement de la traverse, D le diamètre initial ; (b) Propriétés mécaniques transverses correspondantes, tau max contrainte maximum en cisaillement mesurée en éléments finis, « true strain, p.55, 2000.

. Cheng, Courbe Contrainte-Déplacement d'un essai de trois charge-décharge successifs transverse sur une fibre de Kevlar ® KM2, p.56, 2004.

. Pauw, expérience de la boucle élastique (b) Vue du dessus où la taille du faisceau est représentée par un carreau plus sombre, p.57, 2010.

M. Spectres and . De-carbone, 13 d'une fibre para-aramide (a) sèche (b) 2.7 % d'eau absorbée (c) 5.7 % d'eau absorbée, p.61, 1996.

L. Penn, Montée en température suivie par Calorimetrie Différentielle à Balayage de Kevlar ® 49 sous air et sous azote, p.63, 1979.

. Rao, Symboles pleins : Evolution de la longueur de l'axe c ; Symboles creux : Evolution de la cristallinité équatoriale X. (b) Taille des cristallites. (c) Paramètres transverses de la cellule, Évolution de la structure cristalline du Kevlar ® 29 en température, p.68, 2001.

®. Évolution-de-la-maille-cristalline-du-kevlar, Ligne solide : à température ambiante et ligne pointillée : à 350 ? C, p.69, 2001.

. Rojstaczer, Dilatation » axiale de fibres de Kevlar ® 49 en fonction de la température avec les coefficients thermiques d'expansion, p.70, 1985.

. Wagner, Evolution de la contrainte appliquée en fonction de la durée de vie lors d'un essai de fluage à l'ambiante, à 80 ? C et à 130 ? C d'après, p.70, 1986.

. Mead, Charge à rupture d'un faisceau de fibres de Kevlar ® 29 exposé à 100 % d'humidité relative pour différentes températures d'exposition, p.70, 1982.

. Wu, Young en fonction de la taille apparente des cristallites (gauche) et du degré d'orientation (droite) d'une fibre de PPTA avec soit la tension fixe (courbe noire) ou la température fixe (courbe rouge), Evolution, p.72, 1990.

M. Images and .. Le-long-de-la-fibre, et (b) : surface lisse, (c) : poussières déposées à l'extrême surface, (d) : défibrillation en surface

C. Courbe-médiane, Déformation d'un essai de traction monotone sur fibre unitaire de Kevlar ® 29 Les marquages correspondent aux essais Raman sous chargements investigués, p.117

L. Déplacement-de, CN selon la déformation macroscopique (? CN0 = 1277.4 ± 0.3 cm ?1 ), p.118

. Ii, et Lacks [Lacks and Rutledge, 1994] pour une montée en température jusqu'à 500 K. Les résultats obtenus par Iyer, Coefficients d'expansion de la maille cristalline dans les différentes directions obtenus par Ii, p.69, 1986.