L. Enfin-un-mécanisme-détaillé-Écrit-par, Catoire (tableau B.8) sert de base assez souvent aux calculs numériques effectués aujourd'hui concernant la combustion en phase gazeuse de l'aluminium

C. Annexe, 3 : Postions préférentielles optimisées des adsorbats de l'étude

D. Annexe, Conversion des facteurs pré-exponentiels pour les réactions d'adsorption dissociative

A. Avec and . Le-taux-de-couverture, recouvrement) de l'espèce adsorbée A, il représente l'occupation d'une espèce en surface (sans unité). t est le temps en seconde, A DUM le facteur préexponentiel donné par Dumesic [33] en Pa -1 .s -1 , E a l'énergie d'activation en J.mol -1 , R la constante des gaz parfaits en J.mol -1

. [. Avec and . Et, les concentrations ou fractions surfaciques en mol.cm -2 et [A 2 ] la concentration volumique en mol.cm -3 . A CHEM

D. Annexe, Mécanisme Swihart-Catoire [89] [90]. Les réactions élémentaires sont suivies de A le facteur pré-exponentiel (mol-cm-s-K)

E. Annexe, 1: Champs aérodynamiques de combustion de gouttes, Les conditions sont tirées des travaux de Bucher

E. Annexe, 6 : Calcul du diamètre de résidus Nous traçons en fonction de le diamètre de la particule d'aluminium

L. Toche, Propulsion ? Détonation ? Pyrotechnie Une histoire des Poudres entre 1945 et 1975 Comité pour l'histoire de l'armement terrestre (COMHART), 1995.

F. Giliberti, M. Angelone, M. Fiorillo, C. Milana, and F. Serraglia, VEGA Solid Rocket Motors Qualification Status after Launcher Maiden Flight, 63rd International Astronautical Congress, 2012.

J. Quinchon, J. Tranchant, and E. Cohen-nir, Les poudres, propergols et explosives 4, 1993.

P. Bauer, Aérothermochimie, Propulseurs aéronautiques et spatiaux, 2009.

A. Davenas, Technologie des propergols solides -Chapitre 4, MASSON, 1988.

J. F. Trubert, Agglomeration and combustion of aluminum particles in solid rocket motors, Space Solid Propulsion, p.44, 2000.

N. S. Cohen and L. D. Strand, An improved model for the combustion of AP composite propellants, AIAA Journal, vol.20, issue.12, pp.1739-1746, 1982.
DOI : 10.2514/3.8013

E. W. Price, R. K. Sigman, J. K. Sambamurthi, and C. J. Park, Behavior of aluminum in solid propellant combustion, Georgia Institute of Technology, 1982.

A. Gany and L. H. Caveny, Agglomeration and ignition mechanism of aluminum particles in solid propellants, Proceedings of the Combustion Institute, pp.1453-1461, 1979.
DOI : 10.1016/S0082-0784(79)80137-X

A. A. Razdobreev, A. I. Skorik, Y. V. Frolov, and V. A. Ermakov, Agglomeration of aluminum particles in conditions of nonsteady heating, Combustion, explosion and shock waves, pp.63-67, 1981.
DOI : 10.1007/BF00784253

V. A. Babuk, V. A. Vasilyev, and M. S. Malakhov, Condensed Combustion Products at the Burning Surface of Aluminized Solid Propellant, Journal of Propulsion and Power, vol.15, issue.6, p.783193, 1999.
DOI : 10.2514/2.5497

M. Salita, Survey of Recent Al2O3 Droplet Size Data in Solid Rocket Chambers, Nozzles, and Plumes, OTAN -Research and Technology Organisation RTO EDUCATIONAL NOTES EN-023 AVT-096, 2002.

S. R. Turns, S. C. Wong, and E. Ryba, Combustion of Aluminum-Based Slurry Agglomerates, Combustion Science and Technology, vol.52, issue.1-6, pp.1-6, 1987.
DOI : 10.1149/1.2411436

M. Marion, C. Chauveau, and I. Gökalp, Studies on the Ignition and Burning of Levitated Aluminum Particles, Combustion Science and Technology, vol.115, pp.4-6, 1996.

S. Gallier, J. Kratz, N. Quaglia, G. Fouin, N. Cesco et al., Detailed analysis of a quench bomb for the study of aluminum agglomeration in solid propellants, Progress in Propulsion Physics, 2013.
DOI : 10.1051/eucass/201608197

M. Salita, Deficiencies and requirements in modeling of slag generation in solid rocket motors, Journal of Propulsion and Power, vol.11, issue.1, pp.10-23, 1995.
DOI : 10.2514/3.23835

N. Cesco, Etude et modélisation de l'écoulement diphasique à l'intérieur des propulseurs à poudre, Ecole Nationale, 1997.

J. Chauvot, L. Dumas, and K. Schmeisser, Modeling of alumina slag formation in solid rocket motors, 31st Joint Propulsion Conference and Exhibit, 1995.
DOI : 10.2514/6.1995-2729

J. Dupays, J. Godfroy, F. Orlandi, P. Prevot, M. Prévot et al., Inert condensed phase driving effect of combustion instabilities in Solid Rocket Motor, 5th International Spacecraft Propulsion Conference, p.8, 2008.

F. Vuillot and G. Casalis, Motor Flow Instabilities ? Part 1, OTAN -Research and Technology Organisation RTO EDUCATIONAL NOTES EN-023 AVT-096, 2002.

M. W. Beckstead and K. P. Brooks, Distributed combustion in solid propellants The United States Air Force Office of scientific research -Bolling Air Force Base, 1993.

S. Gallier and F. Godfroy, Aluminum Combustion Driven Instabilities in Solid Rocket Motors, Journal of Propulsion and Power, vol.25, issue.2, pp.509-521, 2009.
DOI : 10.2514/1.37664

J. F. Widener and M. W. Beckstead, Aluminum combustion modeling in solid propellant combustion products, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1998.
DOI : 10.2514/6.1998-3824

O. Orlandi, Modélisation et simulation numérique de la combustion d'une goutte isolée d'aluminium, 2002.

S. Gallier, F. Sibe, and O. Orlandi, Combustion response of an aluminum droplet burning in air, Proceedings of the Combustion Institute, pp.1949-1956, 2011.
DOI : 10.1016/j.proci.2010.05.046

M. Salciccioli, M. Stamatakis, S. Caratzoulas, and D. Vlachos, A review of multiscale modeling of metal-catalyzed reactions: Mechanism development for complexity and emergent behavior, Chemical Engineering Science, vol.66, issue.19, pp.4319-4355, 2011.
DOI : 10.1016/j.ces.2011.05.050

G. Kresse and J. Furthmüller, total-energy calculations using a plane-wave basis set, Physical Review B, vol.54, issue.16, pp.11169-11186, 1996.
DOI : 10.1103/PhysRevB.54.11169

P. Atkins and J. Paula, Chimie Physique -3ème édition, 2008.

M. Boudart and G. Djega-mariadassou, Cinétique des réactions en catalyse hétérogène, 1982.

V. P. Zhdanov, Elementary Physicochemical Processes on Solid Surfaces, Fundamental & Applied Catalysis ed, 1991.

J. A. Dumesic, D. F. Rudd, L. M. Aparicio, J. E. Rekoske, and A. A. Treviño, The Microkinetics of Heterogeneous Catalysis, 1993.

O. Deutschmann and J. Warnatz, Applied Combustion Diagnostics -Chapitre 20, 2002.

A. G. Naumovets, Adsorption on metals: a look from the not-too-far East, Surface Science, vol.299, issue.300, pp.706-721, 1994.
DOI : 10.1016/0039-6028(94)90691-2

D. D. Eley and P. B. Moore, The adsorption and reaction of CO and O2 on Pd???Au alloy wires, Surface Science, vol.111, issue.2, pp.325-343, 1981.
DOI : 10.1016/0039-6028(80)90712-8

J. Warnatz, M. D. Allendorf, R. J. Kee, and M. E. Coltrin, A model of elementary chemistry and fluid mechanics in the combustion of hydrogen on platinum surfaces, Combustion and Flame, vol.96, issue.4, pp.393-406, 1994.
DOI : 10.1016/0010-2180(94)90107-4

M. Försth, F. Gudmundson, J. L. Persson, and A. Rosén, The influence of a catalytic surface on the gas-phase combustion of H2 + O2, Combustion and Flame, vol.119, issue.1-2, pp.144-153, 1999.
DOI : 10.1016/S0010-2180(99)00045-0

U. Dogwiler, P. Benz, and J. Mantzaras, Two-dimensional modelling for catalytically stabilized combustion of a lean methane-air mixture with elementary homogeneous and heterogeneous chemical reactions, Combustion and Flame, vol.116, issue.1-2, pp.243-258, 1999.
DOI : 10.1016/S0010-2180(98)00036-4

A. D. Allian, K. Takanabe, K. L. Fujdala, X. Hao, T. J. Truex et al., Chemisorption of CO and Mechanism of CO Oxidation on Supported Platinum Nanoclusters, Journal of the American Chemical Society, vol.133, issue.12, pp.4498-4517, 2011.
DOI : 10.1021/ja110073u

T. Liu and C. Hsieh, Analysis of agglomerate size from burning aluminized AP/RDX/HTPB propellants in quench bomb, Journal of Propulsion and Power, vol.12, issue.5, pp.995-997, 1996.
DOI : 10.2514/3.24133

A. Dokhan, E. W. Price, J. M. Seitzman, and R. K. Sigman, The effects of Bimodal Aluminum with Ultra-Fine Aluminum on the burning rates of solid propellants, Proceedings of the Combustion Institute, pp.2939-2945, 2002.

O. G. Glotov, Condensed combustion products of aluminized propellants. IV. Effect of the nature of nitramines on aluminum agglomeration and combustion efficiency, Combustion, Explosion, and Shock Waves, vol.39, issue.5, pp.436-449, 2006.
DOI : 10.1007/s10573-006-0073-z

O. G. Glotov and V. A. Zhukov, Evolution of 100-??m aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant. I. Experimental approach, Combustion, Explosion, and Shock Waves, pp.662-670, 2008.
DOI : 10.1007/s10573-008-0100-3

S. E. Olsen and M. W. Beckstead, Burn time measurements of single aluminum particles in steam and CO2 mixtures, Journal of Propulsion and Power, vol.12, issue.4, pp.662-671, 1996.
DOI : 10.2514/3.24087

R. O. Foelsche, R. L. Burton, and H. Krier, Ignition and Combustion of Aluminum Particles in H/O/NCombustion Products, Journal of Propulsion and Power, vol.14, issue.6, pp.1001-1008, 1998.
DOI : 10.2514/2.5365

Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, Combustion of bimodal nano/micron-sized aluminum particle dust in air, Proceedings of the Combustion Institute, 2001.
DOI : 10.1016/j.proci.2006.08.103

L. Leibowitz and L. W. Mishler, A study of aluminum-water reactions by laser heating, Journal of Nuclear Materials, vol.23, issue.2, pp.173-182, 1967.
DOI : 10.1016/0022-3115(67)90062-1

R. P. Wilson and F. A. Williams, Experimental study of the combustion of single aluminum particles in O2/Ar, Proceedings of the Combustion Institute, pp.833-845, 1971.
DOI : 10.1016/S0082-0784(71)80085-1

P. Bucher, R. A. Yetter, F. L. Dryer, E. P. Viceni, T. P. Parr et al., Condensed-phase species distributions about Al particles reacting in various oxidizers, Combustion and Flame, vol.117, issue.1-2, pp.351-361, 1999.
DOI : 10.1016/S0010-2180(98)00074-1

B. Legrand, M. Marion, C. Chauveau, I. Gökalp, and E. Shafirovich, Ignition and Combustion of Levitated Magnesium and Aluminum Particles in Carbon Dioxide, Combustion Science and Technology, vol.2, issue.1, pp.151-174, 2001.
DOI : 10.1007/BF00790146

V. Sarou-kanian, J. C. Rifflet, F. Millot, G. Matzen, and I. Gökalp, Influence of nitrogen in aluminum droplet combustion, Proceedings of the Combustion Institute, pp.2063-2070, 2005.
DOI : 10.1016/j.proci.2004.08.160

URL : https://hal.archives-ouvertes.fr/hal-00429416

V. Sarou-kanian, J. C. Rifflet, F. Millot, and I. Gökalp, Aluminum combustion in wet and dry CO2: Consequences for surface reactions, Combustion and Flame, vol.145, issue.1-2, pp.220-230, 2006.
DOI : 10.1016/j.combustflame.2005.10.014

URL : https://hal.archives-ouvertes.fr/hal-00429424

E. Bocanegra, P. Chauveau, C. Gökalp, and I. , Experimental studies on the burning of coated and uncoated micro and nano-sized aluminium particles, Aerospace Science and Technology, vol.11, issue.1, pp.33-38, 2007.
DOI : 10.1016/j.ast.2006.10.005

S. Mohan, L. Furet, and E. L. Dreizin, Aluminum particle ignition in different oxidizing environments, Combustion and Flame, vol.157, issue.7, pp.1356-1363, 2010.
DOI : 10.1016/j.combustflame.2009.11.010

C. Badiola, R. J. Gill, and E. L. Dreizin, Combustion characteristics of micron-sized aluminum particles in oxygenated environments, Combustion and Flame, vol.158, issue.10, pp.2064-2070, 2011.
DOI : 10.1016/j.combustflame.2011.03.007

M. Epstein, H. K. Fauske, and T. G. Theofanous, On the mechanism of aluminum ignition in steam explosions, Nuclear Engineering and Design, vol.201, issue.1, pp.71-82, 2000.
DOI : 10.1016/S0029-5493(00)00263-6

J. Servaites, H. Krier, J. C. Melcher, and R. L. Burton, Ignition and combustion of aluminum particles in shocked H2O/O2/Ar and CO2/O2/Ar mixtures, Combustion and Flame, vol.125, issue.1-2, pp.1040-1054, 2001.
DOI : 10.1016/S0010-2180(01)00225-5

N. Glumac, H. Krier, T. Bazyn, and R. Eyer, TEMPERATURE MEASUREMENTS OF ALUMINUM PARTICLES BURNING IN CARBON DIOXIDE, Combustion Science and Technology, vol.24, issue.3, pp.485-511, 2005.
DOI : 10.1016/S0010-2180(01)00225-5

T. Bazyn, H. Krier, and N. Glumac, Evidence for the transition from the diffusion-limit in aluminium particle combustion, Proceedings of the Combustion Institute, pp.2021-2028, 2007.

G. Schloffel, A. Eichhorn, H. Albers, C. Mundt, F. Seiler et al., The effect of a shock wave on the ignition behavior of aluminum particles in a shock tube, Combustion and Flame, vol.157, issue.3, pp.446-454, 2010.
DOI : 10.1016/j.combustflame.2009.12.001

P. Lynch, H. Krier, and N. Glumac, A correlation for burn time of aluminum particles in the transition regime, Proceedings of the Combustion Institute, pp.1887-1893, 2009.
DOI : 10.1016/j.proci.2008.06.205

S. Yuasa and H. Isoda, Ignition and combustion of metals in a carbon dioxide stream, Proceedings of the Combustion Institute, pp.1635-1641, 1988.
DOI : 10.1016/S0082-0784(89)80175-4

S. Yuasa, S. Sogo, and H. Isoda, Ignition and combustion of aluminum in carbon dioxide streams, Proceedings of the Combustion Institute, pp.1817-1825, 1992.
DOI : 10.1016/S0082-0784(06)80213-4

X. Zhu, M. Schoenitz, and E. L. Dreizin, Environments, The Journal of Physical Chemistry C, vol.113, issue.16, pp.6768-6773, 2009.
DOI : 10.1021/jp809816u

URL : https://hal.archives-ouvertes.fr/hal-01372014

E. L. Dreizin, Experimental study of aluminum particle flame evolution in normal and micro-gravity, Combustion and Flame, vol.116, issue.3, pp.323-333, 1999.
DOI : 10.1016/S0010-2180(97)00331-3

E. L. Dreizin, Experimental study of stages in aluminium particle combustion in air, Combustion and Flame, vol.105, issue.4, pp.541-556, 1996.
DOI : 10.1016/0010-2180(95)00224-3

E. L. Dreizin, On the mechanism of asymmetric aluminum particle combustion, Combustion and Flame, vol.117, issue.4, pp.841-850, 1999.
DOI : 10.1016/S0010-2180(98)00125-4

P. and E. Bocanegra, Etudes expérimentales et modélisation de la combustion des nuages de particules micrométriques et nanométriques d'aluminium, 2007.

R. Friedman and A. Ma?ek, Ignition and Combustion of Aluminum Particles in Hot Ambient Gases, Combustion and Flame, vol.6, issue.9, 1962.

V. A. Ermakov, A. A. Razdobreev, A. I. Skorik, V. V. Pozdeev, and S. S. Smolyakov, Temperature of aluminum particles at the time of ignition and combustion, Combustion, Explosion, and Shock Waves, vol.8, issue.2, pp.256-257, 1982.
DOI : 10.1007/BF00789629

S. Yuasa, Y. Zhu, and S. Sogo, Ignition and combustion of aluminum in oxygen/nitrogen mixture streams, Combustion and Flame, vol.108, issue.4, pp.387-396, 1997.
DOI : 10.1016/0010-2180(95)00104-2

M. A. Trunov, M. Schoenitz, and E. L. Dreizin, Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles, Combustion Theory and Modelling, vol.4, issue.4, pp.603-623, 2006.
DOI : 10.1557/JMR.1998.0088

A. A. Razdobreev, A. I. Skorik, and Y. V. Frolov, Ignition and combustion mechanism in aluminum particles, Combustion, Explosion, and Shock Waves, vol.41, issue.No. 3, pp.177-182, 1976.
DOI : 10.1007/BF00744882

M. W. Beckstead, A Summary of Aluminum Combustion, OTAN -Research and Technology Organisation RTO EDUCATIONAL NOTES EN-023 AVT-096, 2002.

M. W. Beckstead, Correlating Aluminum Burning Times, Combustion, Explosion, and Shock Waves, vol.11, issue.4, pp.533-546, 2005.
DOI : 10.1007/s10573-005-0067-2

T. A. Brzustowski and I. Glassman, Spectroscopic Investigation of Metal Combustion, Aeronautical Engineering Laboratory Report, issue.586, 1961.
DOI : 10.1016/B978-1-4832-2730-6.50008-7

K. K. Kuo, Principles of Combustion -2 edition, 2005.

Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, Effect of particle size on combustion of aluminum particle dust in air, Combustion and Flame, vol.156, issue.1, pp.5-13, 2009.
DOI : 10.1016/j.combustflame.2008.07.018

O. E. Kashireninov, Metals vapour oxidation in diffusion flames, Pure and Applied Chemistry, vol.62, issue.5, pp.851-859, 1990.
DOI : 10.1351/pac199062050851

P. Bucher, R. A. Yetter, F. L. Dryer, T. P. Parr, D. M. Hanson-parr et al., Flames structure measurement of single, isolated aluminum particles burning in air, Proceedings of the Combustion Institute, pp.1899-1908, 1996.
DOI : 10.1016/S0082-0784(96)80012-9

W. Felder and A. Fontijn, reaction near 1400 K, The Journal of Chemical Physics, vol.64, issue.5, 1976.
DOI : 10.1063/1.432461

Y. Liang and M. W. Beckstead, Numerical simulation of quasi-steady, single aluminum particle combustion in air, 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998.
DOI : 10.2514/6.1998-254

E. B. Washburn, J. N. Trivedi, L. Catoire, and M. W. Beckstead, The Simulation of the Combustion of Micrometer-Sized Aluminum Particles with Steam, Combustion Science and Technology, vol.17, issue.8, pp.502-1517, 2008.
DOI : 10.1080/00102208708947057

URL : https://hal.archives-ouvertes.fr/hal-01221133

A. Fontijn and W. Felder, ???AlO+CO from 300 to 1900 K, a non???Arrhenius reaction, The Journal of Chemical Physics, vol.67, issue.4, 1977.
DOI : 10.1063/1.434986

M. K. King, Modeling of single particle aluminum combustion in CO2?N2atmospheres, Proceedings of the Combustion Institute, pp.1317-1328, 1979.

R. E. Mc-clean, H. H. Nelson, and M. L. Campbell, Kinetics of the reaction aluminum(2P0) + water over an extended temperature range, The Journal of Physical Chemistry, vol.97, issue.38, pp.9673-9676, 1993.
DOI : 10.1021/j100140a024

M. T. Swihart and L. Catoire, Thermochemistry of aluminum species for combustion modeling from Ab Initio molecular orbital calculations, Combustion and Flame, vol.121, issue.1-2, pp.210-222, 2000.
DOI : 10.1016/S0010-2180(99)00128-5

URL : https://hal.archives-ouvertes.fr/hal-01221116

M. T. Swihart and L. Catoire, Reactions in the Al???H???Cl System Studied by ab Initio Molecular Orbital and Density Functional Methods, The Journal of Physical Chemistry A, vol.105, issue.1, pp.264-273, 2001.
DOI : 10.1021/jp003526e

URL : https://hal.archives-ouvertes.fr/hal-01221174

M. T. Swihart, L. Catoire, B. Legrand, I. Gökalp, and C. Paillard, Rate constants for the homogeneous gas-phase Al/HCl combustion chemistry, Combustion and Flame, vol.132, issue.1-2, pp.91-101, 2003.
DOI : 10.1016/S0010-2180(02)00426-1

J. L. Prentice, Combustion of Pulse-Heated Single Particles of Aluminum and Beryllium, Combustion Science and Technology, vol.230, issue.5, pp.385-398, 1970.
DOI : 10.1149/1.2423366

E. B. Washburn, J. A. Webb, and M. W. Beckstead, The simulation of the combustion of micrometer-sized aluminum particles with oxygen and carbon dioxide, Combustion and Flame, vol.157, issue.3, pp.540-545, 2010.
DOI : 10.1016/j.combustflame.2009.11.005

M. Schoenitz, C. Chen, and E. L. Dreizin, Oxidation of Aluminum Particles in the Presence of Water, The Journal of Physical Chemistry B, vol.113, issue.15, pp.5136-5140, 2009.
DOI : 10.1021/jp807801m

K. P. Brooks and M. W. Beckstead, Dynamics of aluminum combustion, Journal of Propulsion and Power, vol.11, issue.4, 1995.
DOI : 10.2514/3.23902

L. Catoire and M. T. Swihart, High-Temperature Kinetics of AlCl[sub 3] Decomposition in the Presence of Additives for Chemical Vapor Deposition, Journal of The Electrochemical Society, vol.149, issue.5, pp.261-267, 2002.
DOI : 10.1149/1.1467366

URL : https://hal.archives-ouvertes.fr/hal-01221159

B. Legrand, Etude de la combustion de particules d'aluminium et de magnésium : influence de la composition du mélange gazeux et de la pression, 2000.

D. F. Rogowski, P. Fontijn, and A. Marshall, High-Temperature Fast-flow reactot Kinectics of the reactions of Al with Cl2, Al with HCl, and AlCl with Cl2 over wide temperature Ranges, American chemical society, vol.93, issue.3, pp.1118-1123, 1989.

G. P. Kuznetsov, O. I. Leipunskii, and V. M. Puchkov, Effects of Nitrogen on the combustion of Aluminum, Combustion, Explosion and Shock Waves, vol.19, issue.3, pp.270-276, 1983.

Y. Kwon, A. A. Gromov, A. P. Ilyin, E. M. Popenko, and G. Rim, The mechanism of combustion of superfine aluminum powders, Combustion and Flame, vol.133, issue.4, pp.385-391, 2003.
DOI : 10.1016/S0010-2180(03)00024-5

A. A. Gromov, Y. I. Pautova, A. M. Lider, A. G. Korotkikh, U. Teipel et al., Interaction of powdery Al, Zr and Ti with atmospheric nitrogen and subsequent nitride formation under the metal powder combustion in air, Powder Technology, vol.214, issue.2, pp.229-236, 2011.
DOI : 10.1016/j.powtec.2011.08.014

V. M. Gremyachkin, A. G. Istratov, and O. I. Leipunskii, Model for the combustion of metal droplets, Combustion, Explosion, and Shock Waves, vol.11, issue.3, pp.313-318, 1975.
DOI : 10.1007/BF00740536

V. M. Gremyachkin, A. G. Istratov, and O. I. Leipunskii, Theory of the combustion of small drops of metal, Journal of Applied Mechanics and Technical Physics, vol.4, issue.2, pp.180-184, 1975.
DOI : 10.1007/BF00858407

C. R. Zaseck, S. F. Son, and T. L. Pourpoint, Combustion of micron-aluminum and hydrogen peroxide propellants, Combustion and Flame, vol.160, issue.1, pp.184-190, 2013.
DOI : 10.1016/j.combustflame.2012.10.001

R. W. Bartlett, J. N. Ong, W. M. Fassell, J. Papp, and C. A. , Estimating aluminium particle combustion kinetics, Combustion and Flame, vol.7, pp.227-234, 1963.
DOI : 10.1016/0010-2180(63)90187-1

V. I. Malinin, E. I. Kolomin, and I. S. Antipin, Combustion particles in flows of reactive gas, combustion, Explosion, and Shock Waves, pp.36-42, 1999.

R. J. Gill, C. Badiola, and E. L. Dreizin, Combustion times and emission profiles of micron-sized aluminum particles burning in different environments, Combustion and Flame, vol.157, issue.11, pp.2015-2023, 2010.
DOI : 10.1016/j.combustflame.2010.02.023

O. Dufaud, M. Traoré, L. Perrin, S. Chazelet, and D. Thomas, Experimental investigation and modelling of aluminum dusts explosions in the 20L sphere, Journal of Loss Prevention in the Process Industries, pp.226-236, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508588

P. Gasca, Zirconium -modélisation ab initio de la diffusion des défatus ponctuels

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Journal of Non-Crystalline Solids, vol.192, issue.193, p.14251, 1994.
DOI : 10.1016/0022-3093(95)00355-X

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, p.3865, 1996.
DOI : 10.1103/PhysRevLett.77.3865

B. Hammer and J. Norskov, Theoretical surface science and catalysis?calculations and concepts Advances in Catalysis, pp.71-129, 2000.
DOI : 10.1016/s0360-0564(02)45013-4

A. Osmont, Elaboration d'une méthode théorique de calcul des enthalpies de formation en phase gazeuse et condensée des molécules et radicaux de masse molaire élevée -Application à l'énergétique, 2007.

A. Ferrari, A. Meyer, and C. Pisani, Quantum Chemical Calculation of Surfaces and Interfaces of Materials -Chapter, 2009.

A. Cooper, Precise lattice constants of germanium, aluminum, gallium arsenide, uranium, sulphur, quartz and sapphire, Acta Crystallographica, vol.15, issue.6, pp.578-582, 1962.
DOI : 10.1107/S0365110X62001474

S. Krishnan and D. L. Price, X-ray diffraction from levitated liquids, Journal of Physics: Condensed Matter, vol.12, issue.12, p.145, 2000.
DOI : 10.1088/0953-8984/12/12/201

M. Calatayud, A. Markovits, and C. Minot, Quantum Chemical Calculations of Surfaces and Interfaces of Materials -Chapitre 11, 2009.

T. Smith, Chlorine adsorption on clean aluminum, Surface Science, vol.32, issue.3, p.527, 1972.
DOI : 10.1016/0039-6028(72)90180-X

C. S. Kim, V. M. Bermudez, and J. N. Russell-jr, Interaction of ammonia with hydrogen on Al(111), Surface Science, vol.389, issue.1-3, pp.162-176, 1997.
DOI : 10.1016/S0039-6028(97)00409-3

V. Zhukov, I. Popova, and J. T. Yates-jr, Initial stages of Al(111) oxidation with oxygen???temperature dependence of the integral reactive sticking coefficient, Surface Science, vol.441, issue.2-3, pp.251-264, 1999.
DOI : 10.1016/S0039-6028(99)00614-7

J. H. Head, V. Kairys, and Y. Shi, Computation of adsorbate vibrational frequencies: methyl, methylidyne and methoxy adsorbed on the Al(111) surface, Journal of Molecular Structure: THEOCHEM, vol.464, issue.1-3, pp.153-162, 1999.
DOI : 10.1016/S0166-1280(98)00547-8

J. E. Crowell, J. G. Chen, D. M. Hercules, and J. T. Yates-jr, The adsorption and thermal decomposition of water on clean and oxygen???predosed Al(111), The Journal of Chemical Physics, vol.86, issue.10, p.5804, 1987.
DOI : 10.1063/1.452510

J. G. Chen, P. Basu, L. Ng, and J. T. Yates-jr, A comparative study of the reactivities of H2O, CH3OH, and CH3OCH3 toward Al(111), CH3OH, and CH3OCH3 toward Al, pp.397-418, 1988.
DOI : 10.1016/0039-6028(88)90861-8

K. Jacobi, M. Bertolo, P. Geng, W. Hansen, and C. Astaldi, H2O-induced quenching of the negative-ion resonance scattering for N2 physisorbed on Al(111), Chemical Physics Letters, vol.173, issue.1, pp.97-102, 1990.
DOI : 10.1016/0009-2614(90)85310-9

H. Brune, J. Wintterlin, J. Trost, G. Ertl, J. Wiechers et al., Interaction of oxygen with Al(111) studied by scanning tunneling microscopy, The Journal of Chemical Physics, vol.99, issue.3, p.2128, 1993.
DOI : 10.1063/1.465278

H. L. Yu, M. C. Munoz, and F. Soria, On the initial stages of oxidation of Al(111) by leed analysis, Surface Science Letters, vol.94, issue.2-3, p.184, 1980.

M. Kerkar, D. Fisher, D. P. Woodruff, and B. Cowie, Adsorption site determination for oxygen on Al(111) using normal incidence standing X-ray wavefield absorption, Surface Science, vol.271, issue.1-2, p.45, 1992.
DOI : 10.1016/0039-6028(92)90860-9

J. Jacobsen, B. Hammer, K. W. Jacobsen, and J. K. Norskov, Electronic structure, total energies, and STM images of clean and oxygen-covered Al(111), Physical Review B, vol.52, issue.20, p.14954, 1995.
DOI : 10.1103/PhysRevB.52.14954

J. Trost, H. Brune, J. Wintterlin, R. J. Behm, and G. Ertl, Interaction of oxygen with Al(111) at elevated temperatures, The Journal of Chemical Physics, vol.108, issue.4, p.1740, 1998.
DOI : 10.1063/1.475546

H. Brune, J. Wintterlin, G. Ertl, and R. J. Behm, Direct Imaging of Adsorption Sites and Local Electronic Bond Effects on a Metal Surface: C/Al(111), Europhysics Letters (EPL), vol.13, issue.2, p.123, 1990.
DOI : 10.1209/0295-5075/13/2/005

S. Mezhenny, D. C. Sorescu, P. Maksymovych, and J. T. Yates, I on the Al(111) Surface ??? An STM and Density Functional Theory Study, Journal of the American Chemical Society, vol.124, issue.47, p.14202, 2002.
DOI : 10.1021/ja0208761

E. P. Go, K. Thuermer, and J. E. Reutt-robey, H adsorption and the formation of alane oligomers on Al(111), Surface Science, vol.437, issue.3, pp.377-385, 1999.
DOI : 10.1016/S0039-6028(99)00725-6

H. Hjelmberg, Hydrogen chemisorption on Al, Mg and Na surfaces ??? calculation of adsorption sites and binding energies, Surface Science, vol.81, issue.2, p.539, 1979.
DOI : 10.1016/0039-6028(79)90119-5

F. P. Netzer and T. E. Madey, Adsorption of H2O on Al, Surface Science Letters, vol.127, issue.111 1, pp.102-109, 1983.

S. Jin and J. D. Head, Theoretical investigation of molecular water adsorption on the Al(111) surface, Surface Science, vol.318, issue.1-2, pp.204-216, 1994.
DOI : 10.1016/0039-6028(94)90355-7

S. A. Flodström and C. W. Martinsson, An Auger electron spectroscopy study of CO interaction with an Al(111) surface; electron beam stimulated chemisorption, Applications of Surface Science, vol.10, issue.1, pp.115-123, 1982.
DOI : 10.1016/0378-5963(82)90139-8

K. Khonde, J. Darville, and J. M. Gilles, The interaction of CO with Al(111) at room temperature, Surface Science, vol.126, issue.1-3, pp.414-421, 1983.
DOI : 10.1016/0039-6028(83)90737-9

B. N. Persson and J. E. Müller, Cluster study of the interaction of a Co molecule with an aluminium surface, Surface Science, vol.171, issue.1, pp.219-225, 1986.
DOI : 10.1016/0039-6028(86)90572-8

F. Abild-pedersen and M. P. Andersson, CO adsorption energies on metals with correction for high coordination adsorption sites ??? A density functional study, Surface Science, vol.601, issue.7, pp.1747-1753, 2007.
DOI : 10.1016/j.susc.2007.01.052

T. Nakajima, T. Tanaka, and K. Yamashita, A theoretical study of aluminium chemical vapour deposition using dimethylaluminium hydride: a surface reaction mechanism on Al(111), Surface Science, vol.444, issue.1-3, pp.99-112, 2000.
DOI : 10.1016/S0039-6028(99)00980-2

F. Libisch, C. Huang, M. Pavone, and E. A. Carter, Origin of the Energy Barrier to Chemical Reactions of O2 on Al(111): Evidence for Charge Transfer, Not Spin Selection, Physical Review Letters, vol.109, issue.19, 2012.

C. Lanthony, On the early stage of aluminum oxidation: An extraction mechanism via oxygen cooperation, The Journal of Chemical Physics, vol.137, issue.9, p.94707, 2012.
DOI : 10.1063/1.4746943

A. J. Kowrowski, Oxygen Abstraction from Dioxygen on the Al(111) Surface, Physical Review Letters, vol.87, issue.24, p.246103, 2001.
DOI : 10.1103/PhysRevLett.87.246103

A. J. Komrowski, H. Ternow, B. Razaznejad, B. Berenbak, J. Z. Sexton et al., Dissociative adsorption of NO upon Al(111): Orientation dependent charge transfer and chemisorption reaction dynamics, The Journal of Chemical Physics, vol.117, issue.18, p.8185, 2002.
DOI : 10.1063/1.1519107

H. Liu, H. Xiang, and X. G. Gong, on Al surface with hybrid functionals, The Journal of Chemical Physics, vol.135, issue.21, p.214702, 2011.
DOI : 10.1063/1.3665032

K. Honkala and K. Laasonen, Oxygen Molecule Dissociation on the Al(111) Surface, Physical Review Letters, vol.84, issue.4, p.705, 2000.
DOI : 10.1103/PhysRevLett.84.705

L. Osterlund, I. Zoric-acute, and B. Kasemo, on Al(111), Physical Review B, vol.55, issue.23, p.15452, 1997.
DOI : 10.1103/PhysRevB.55.15452

T. Sasaki and T. Ohno, Density functional study on the dissociation process of oxygen on the Al(111) surface, Surface Science, vol.454, issue.456, pp.454-456, 2000.
DOI : 10.1016/S0039-6028(00)00063-7

G. C. Poon, T. J. Grassman, J. C. Gumy, and A. C. Kummel, Direct and precursor-mediated hyperthermal abstractive chemisorption of Cl2/Al(111), The Journal of Chemical Physics, vol.119, issue.18, p.9818, 2003.
DOI : 10.1063/1.1615471

D. A. Danner and D. W. Hess, Reaction of atomic and molecular chlorine with aluminum, Journal of Applied Physics, vol.59, issue.3, p.940, 1986.
DOI : 10.1063/1.336567

K. Mitsutake, J. Yamauchi, A. Sakai, and M. Tsukada, Theoretical study of dissociative adsorption of Cl2 on the Al surface, Surface Science, vol.324, issue.2-3, p.106, 1995.
DOI : 10.1016/0039-6028(94)00707-1

M. F. Jarrold and E. J. Bower, Chemisorption on the microsurface of metal clusters: activation barriers and chemical reactions for carbon monoxide, nitrogen, oxygen, and methane on aluminum cluster, Journal of the American Chemical Society, vol.110, issue.20, p.6706, 1988.
DOI : 10.1021/ja00228a017

B. Cao, A. K. Starace, O. H. Judd, and M. F. Jarrold, Melting Dramatically Enhances the Reactivity of Aluminum Nanoclusters, Journal of the American Chemical Society, vol.131, issue.7, p.2446, 2009.
DOI : 10.1021/ja809516h

H. F. Berger and K. D. Rendulic, An investigation of vibrationally assisted adsorption: the cases H2/Cu(110) and H2/Al(110), Surface Science, vol.253, issue.1-3, p.325, 1991.
DOI : 10.1016/0039-6028(91)90603-P

J. Boh, G. Eilmsteiner, K. D. Rendulic, and A. Winkler, Adsorption and abstraction of atomic hydrogen (deuterium) on Al(100), Surface Science, vol.395, issue.1, p.98, 1998.
DOI : 10.1016/S0039-6028(97)00620-1

J. Harris, On the adsorption and desorption of H2 at metal surfaces, Applied Physics A Solids and Surfaces, vol.48, issue.1, p.63, 1988.
DOI : 10.1007/BF00619699

D. J. Henry, A. Varano, and I. Yarovsky, First Principles Investigation of H Addition and Abstraction Reactions on Doped Aluminum Clusters, The Journal of Physical Chemistry A, vol.113, issue.20, pp.5832-5837, 2009.
DOI : 10.1021/jp810688f

X. Chen, B. Yang, D. Tao, and Y. Dai, Theory Study of AlCl Disproportionation Reaction Mechanism on Al (110) Surface, Metallurgical and Materials Transactions B, vol.28, issue.1, pp.137-145, 2009.
DOI : 10.1007/s11663-009-9321-4

A. Mesarwi and A. Ignatiev, Photodesorption studies of adsorbate covered aluminum surfaces, Surface Science, vol.166, issue.1, pp.75-86, 1986.
DOI : 10.1016/0039-6028(86)90532-7

T. C. Chiang, G. Kaindl, and D. E. Eastman, Photoemission from physisorbed Co on clean and Xe-covered Al(111), Solid State Communications, vol.36, issue.1, pp.25-28, 1980.
DOI : 10.1016/0038-1098(80)90184-2

J. E. Müller, Cluster studies of the interaction of atoms and molecules with aluminum surfaces using total energy calculations, Surface Science, vol.178, issue.1-3, pp.589-607, 1986.
DOI : 10.1016/0039-6028(86)90335-3

T. , F. Jr, and R. L. Wells, Adsorption of water on clean aluminum by measurement of work function changes, Surface Science, vol.32, issue.3, pp.543-553, 1972.

C. T. Rettner, D. J. Auerbach, J. C. Tully, and A. W. Kleyn, Chemical Dynamics at the Gas???Surface Interface, Chemical Dynamics at the Gas?Surface Interface, pp.13021-13033, 1996.
DOI : 10.1021/jp9536007

E. A. Carter, Linking chemical physics and surface science: thermochemistry of adsorbates from purely gas phase data, Chemical Physics Letters, vol.169, issue.3, p.218, 1990.
DOI : 10.1016/0009-2614(90)85191-E

E. Shustorovich, ChemInform Abstract: The Bond-Order Conservation Approach to Chemisorption and Heterogeneous Catalysis: Applications and Implications, ChemInform, vol.37, issue.41, pp.101-163, 1990.
DOI : 10.1002/chin.199141310

A. Vannice, Kinetics of catalytics reactions, 2005.
DOI : 10.1007/b136380

C. Engdahl and G. Wahnstrom, Transient hyperthermal diffusion following dissociative chemisorption: a molecular dynamics study, Surface Science, vol.312, issue.3, p.429, 1994.
DOI : 10.1016/0039-6028(94)90734-X

N. D. Lang and A. R. Williams, Theory of atomic chemisorption on simple metals, Physical Review B, vol.18, issue.2, p.616, 1978.
DOI : 10.1103/PhysRevB.18.616

B. Hammer, Y. Morikawa, and J. K. Norskov, CO Chemisorption at Metal Surfaces and Overlayers, Physical Review Letters, vol.76, issue.12, p.2141, 1996.
DOI : 10.1103/PhysRevLett.76.2141

H. Motz and H. Wise, Diffusion and Heterogeneous Reaction. III. Atom Recombination at a Catalytic Boundary, The Journal of Chemical Physics, vol.32, issue.6, p.1893, 1960.
DOI : 10.1063/1.1731060

O. Deuschmann, L. I. Maier, U. Riedel, A. H. Stroemman, and R. W. Dibble, Hydrogen assisted catalytic combustion of methane on platinum, Catalysis Today, vol.59, issue.1-2, pp.141-150, 2000.
DOI : 10.1016/S0920-5861(00)00279-0

O. Deutschmann, F. Behrendt, and J. Warnatz, Modelling and simulation of heterogeneous oxidation of methane on a platinum foil, Catalysis Today, vol.21, issue.2-3, pp.461-470, 1994.
DOI : 10.1016/0920-5861(94)80168-1

O. Deutschmann, R. Schmidt, F. Behrendt, and J. Warnatz, Numerical modeling of catalytic ignition, Proceedings of the Combustion Institute, pp.1747-1754, 1996.
DOI : 10.1016/S0082-0784(96)80400-0

M. Rinnemo, O. Deutschmann, F. Behrendt, and B. Kasemo, Experimental and numerical investigation of the catalytic ignition of mixtures of hydrogen and oxygen on platinum, Combustion and Flame, vol.111, issue.4, pp.312-326, 1997.
DOI : 10.1016/S0010-2180(97)00002-3

X. Zheng, J. Mantzaras, and R. Bombach, Kinetic interactions between hydrogen and carbon monoxide oxidation over platinum, Combustion and Flame, vol.161, issue.1, pp.332-346, 2014.
DOI : 10.1016/j.combustflame.2013.07.021

A. G. Merzhanov, Y. M. Grigorjev, and Y. A. Gal-'chenko, Aluminium ignition, Combustion and Flame, vol.29, pp.1-14, 1977.
DOI : 10.1016/0010-2180(77)90088-8

A. Zenin, G. Kusnezov, and V. Kolesnikov, Physics of aluminum particle combustion at ultrasonic levitation, 39th Aerospace Sciences Meeting and Exhibit, 2001.
DOI : 10.2514/6.2001-472

T. A. Roberts, R. L. Burton, and H. Krier, Ignition and combustion of aluminummagnesium alloy particles in O2 at high pressures, Combustion and Flame, vol.92, issue.1-2, pp.125-143, 1993.
DOI : 10.1016/0010-2180(93)90203-F

K. Papp and E. Kovàcs-csetényi, Diffusion of hydrogen in high purity aluminium, Scripta Metallurgica, vol.15, issue.2, pp.161-164, 1981.
DOI : 10.1016/0036-9748(81)90321-5

H. K. Birnbaum, C. Buckley, F. Zeides, E. Sirois, P. Rozenak et al., Hydrogen in aluminum, Journal of Alloys and Compounds, vol.253, issue.254, pp.253-254, 1997.
DOI : 10.1016/S0925-8388(96)02968-4

G. A. , Y. Jr, and J. R. Scully, The diffusion and trapping of hydrogen in high purity aluminum, Acta Materialia, vol.46, issue.18, pp.6337-6349, 1998.

V. Sarou-kanian, Etude expérimentale de la combustion de gouttes d'aluminium en convection forcée : Influence de l'atmosphère gazeuse, 2003.

M. Marion, Etudes sur la combustion des particules d'aluminium sous pression, 1996.

J. Duterque, R. Hilbert, and G. Lengellé, Agglomération et combustion de l'aluminium dans les propergols solides, 1999.

J. F. Guéry, CPS -A three dimensional CFD code devoted to space propulsive flows, 36TH AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2000.

J. Gosse, Propriétés de transport des gaz à pression modérée, p.425, 1991.

R. A. Svehla, Estimated viscosities and thermal conductivities of gases at high temperatures, p.132, 1962.

I. Toumi, A weak formulation of roe's approximate riemann solver, Journal of Computational Physics, vol.102, issue.2, pp.360-373, 1992.
DOI : 10.1016/0021-9991(92)90378-C

B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows, Journal of Computational Physics, vol.95, issue.1, pp.59-84, 1991.
DOI : 10.1016/0021-9991(91)90253-H

URL : https://hal.archives-ouvertes.fr/inria-00075479

M. E. Coltrin, R. J. Kee, F. M. Rupley, and E. Meeks, SURFACE CHEMKIN -A software package for the analysis of heterogeneous chemical kinetics at a solid-surface --gas-phase interface Reaction Design, pp.36-37, 2000.

O. Orlandi, S. Gallier, Y. Moonsamy, and N. Cesco, Numerical Simulation of a single aluminum droplet burning in a propellant environment, 5th European Conference for Aeronautics and Space Sciences (EUCASS), 2013.

P. Bucher, L. Ernst, F. L. Dryer, R. A. Yetter, T. P. Parr et al., Detailed studies on the flame structure of Aluminum particle combustion, Progress in Astronautics and Aeronautics, pp.689-722, 2000.

A. Zenin, G. Kusnezov, and V. Kolesnikov, Physics of aluminum particle combustion at convection, 38th Aerospace Sciences Meeting and Exhibit, 2000.
DOI : 10.2514/6.2000-849

B. Glorieux, Mesure de la densité, de la tension superficielle et de la viscosité de l'alumine liquide en fonction de la température et de l'environnement par lévitation aerodynamique associée à l'analyse d'image, 2000.

V. Sarou-kanian, J. C. Rifflet, F. Millot, and I. Gökalp, Dissolution kinetics of carbon in aluminum droplet combustion: Implications for aluminized solid propellants, Combustion and Flame, vol.149, issue.4, pp.329-339, 2007.
DOI : 10.1016/j.combustflame.2007.03.006

URL : https://hal.archives-ouvertes.fr/hal-00429426

R. F. Miller and J. D. Herr, Green Rocket Propulsion by Reaction of Al and Mg Powders and Water, 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2004.
DOI : 10.2514/6.2004-4037