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Abstract

Today, wireless communication applications have becomeajarmpart in our life. Smartphones,
for instance, support more and more applications allowm¢pusurf on the web or to talk to our
friends at any place and at any time. New products competedmiding more applications in
only one device that is smaller, lighter, cheaper and ofdriglerformance than similar products
on the market. Dealing with these requirements of recoragle radio architectures is a very
challenging task. One solution can be found in the conteX@aifware De ned Radio (SDR).
Under its umbrella, !exible hardware platforms that sugpmmwide range of different wireless
communication standards are designed. The OpenAirlteExpressMIMO platform developed
by Eurecom and Télécom ParisTech is a very !exible SDR piatfovhose baseband processing
engine is split over different DSPs to enable a fast and easyonent replacement and compo-
nent upgrade.

The main objective of this thesis is to propose the rst prgpe of a receiver chain for the Ex-
pressMIMO platform in general, and in particular to assessapplicability of the platform for
latency critical standards. An interesting represergatif’such a standard is IEEE 802.11p. The
work presented in this thesis is thus settled in the autamabntext where ef cient physical layer
implementations of the IEEE 802.11p standard required fo¥tG-Car and Car-to-Infrastructure
communication are still an open research topic. The rstticbution is a complete design of the
IEEE 802.11p receiver implemented for the ExpressMIMOfptat and was therefore serving
as a proof of concept in general and in particular for stashslaperating on short data sets. Our
results prove, that an ef cient receiver design is feasfblevarious modulation schemes when
applying a centralized control 'ow on the platform. Differtedesign bottlenecks have been iden-
ti ed and solutions to overcome these limitations are sstgp

The combination of Car-to-Car and Car-to-Infrastructusenmunication with information about
traf ¢ jams or merchandising applications within only orevite enables various new applications
for future cars. Therefore we investigate on a possibleimatial execution of IEEE 802.11p and
ETSI DAB. For the design of an appropriate scheduler it is afrmimportance to have rst key
gures at hand. We provide these gures based on a detailatinne performance evaluation and
enhance our obtained results by the derivation of scheglglindelines and the presentation of a
rst scheduler prototype.

Our analysis reveals that the Front-End Processing (FEgtheis heavily charged and that the
required con guration time outreaches the pure executimg for short vectors when consider-
ing an FPGA target. To meet this challenge we introduce arliégdpn Speci ¢ Instruction-set
Processor (ASIP) as the solution of choice when dealing #titbng latency requirements. The
presented solution is not only compared to the programm@BIE engine but also to different
solutions from academia. For design comparison we maimydon architectural differences and
the runtime performance in terms of processing time.

To complete the receiver chain we nally present a rst Pog@ssor prototype. The Preprocessor
connects the external A/D, D/A converters with the remarbaseband engine and is responsible




among others for 1/Q imbalance correction and sample ratearsion. In this context we present
a generic, !exible and hardware optimized Sample Rate CoewéSRC) operating on fractional
ratios with a resolution of 1 Hz between the sampling fregig=n The design supports up to four
different receive and up to four different transmit chasreid is based on bandlimited interpola-
tion.

Ourresults are nally generalized to ease the deploymehitafe standards on the ExpressMIMO
platform.




Résumé

Aujourd’hui, les applications de communication sans |f@artie de notre vie quotidienne. Les
smartphones, par exemple, supportent de plus en plus @tafphs qui nous permettent de surfer
sur le web et de parler a nos amis en tout lieu et a tout momentifalement, les nouveaux pro-
duits se concurrencent sur le nombre de leurs applicati@ssautres facteurs determinants sont la
taille, le poids et la performance qui sont comparés au fi®dancurrents qu’on trouve déja sur
le marché. Répondre aux contraintes des architectures geoables n’est pas toujours une tache
aisée. Des solutions existent dans le domaine de la radimdbtg (Software De ned Radio, SDR)
ou des plateformes lexibles qui prennent en charge un lavgatail de différentes standards de
communication sans | peuvent étre congus. La plateformer@yrinterface ExpressMIMO qui
est développée par Eurecom et Télécom ParisTech est urtoptaé radio logicielle trés !exible:

le traitement des operations dans la bande de base esi sipatifférents DSPs pour permettre
un remplacement ou une mise a jour des composants simplgidt.ra

L'objectif principal de cette thése est de proposer le pegrprototype d'un récepteur pour la
plateforme ExpressMIMO, et d’évaluer le potentiel de lagflarme pour les standards ayant des
latences critiques en particulier. Un cas intéressant tBustandard est la norme IEEE 802.11p
gui spéci e la communication entre plusieurs véhiculesr{tdaCar communication) ainsi que la
communication entre les véhicules et l'infrastructurer(@alnfrastructure communication). Le
travail présenté dans cette thése se focalise donc en partle domaine de I'automobile ou les
implémentations ef caces de la couche physique du stané&tt 802.11p est encore un sujet de
recherche ouvert. La premiére contribution proposée esbrigeption compléte d’'un récepteur
qui est basée sur le standard IEEE 802.11p et qui a été imptémeur la plateforme Express-
MIMO. Ce system a donc servi de démonstrateur a la fois pdisterd’ensemble de la plateforme
et en particulier 'utilisation de standards qui emploidas vecteurs de petite taille. Nos résultats
prouvent qu’une conception ef cace du récepteur est rdialiispour des schémas de modulation
différents lorsqu’un un contréle centralisé existe surligforme. Des goulots d’étranglement
ont pu étre identi és et des solutions ont été proposées ganonter ces limitations.

La combinaison dans un seul dispositif de la communicatiarivéhicules avec I'information
sur les embouteillages ou sur la proximité de commerces gietiverses applications nouvelles
pour les futures automobiles. Par conséquent, nous étudiod possible exécution multimodal
du IEEE 802.11p et du ETSI DAB. Pour la conception d’'un ordgoroeur de taches approprié,
il est d'une importance principale avoir un permier apergiffié des performances. Nous four-
nissons des chiffres qui sont basés sur une évaluatiorlléétdés performances d’exploitation et
nous utilisons ces résultats pour déduire I'ordonnancemgtiimal et nous présentons un premier
prototype d’ordonnanceur.

Notre analyse, lors des expérimentations sur une cible FR&#&Ile que le Front-End Process-
ing (FEP) DSP est lourdement chargé et que le temps de caatigarrequis dépasse le temps
d’execution dans le cas d'operations sur des vecteurs dte patle. Pour relever ce dé , nous
proposons un Application Speci ¢ Instruction-set Proceg&\SIP) comme solution lorsque les




Y

contraintes de latence sont fortes. La solution présergséaa seulement comparée au DSP
programmable, mais aussi a d'autres solutions du mondensitizire. Pour la comparaison des
conceptions nous nous concentrons principalement suiiffésetices dans les architecture et la
performance d’exécution en termes de temps de traitement.

Pour compléter la chaine de réception, nous présentons wm premier prototype de Prépro-
cesseur DSP. Le Préprocesseur connecte les convertiggBues D/A avec les autres composants
de la bande de base. Il est également reponsable, entrs,alegréa correction du déséquilibre
entre les voies | et Q et du ré-échantillonnage. Dans ce xi@nteous présentons un convertisseur
générique et !exible pour le ré-échantillonnage (SampléeRzonverter, SRC) qui travaille sur
des rapports fractionnaires de fréquence d’échantillgarevec une résolution de 1 Hz entre les
fréquences. La conception prend en charge jusqu’a quadieeh différentes en transmission et
en récpetion et est basée sur une interpolation a bandédimit

Nos résultats sont nalement généralisés et nous montrossngtre approche facilite le dé-
ploiement de futures standards sur des plateformes tel xpre&MIMO .
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Today, wireless communication applications have becomajarmpart in our life. Almost every
day we check our emails either on smartphones or on persomgduters via Wireless Local Area
Network (WLAN) connections. Besides we communicate via mabile phones or we consult
navigation systems or online maps to nd our way in case we hast our bearings. Especially for
the young generation it is impossible to imagine living inerld where they cannot be connected
to their friends at any place and at any time. More and morepamigs have recognized this trend
and seek to bring new products to the market that integrate maqaplications in only one device,
that is smaller and lighter, that costs less and that hasteehjgerformance than competing ones.

Another interesting market for wireless communicationicles can be found in the automotive
industry. It is a well known fact that the demographic chalegals to a rising percentage of old
people, especially in Europe. In countries like Germanyrelikere is no age limit for car driv-
ing, there is a high need for new safety applications likeedp@easurements, obstacle warnings
or distance measurements to the car driving in front. Twotkess in this context are Car-to-
Car communication (C2C) and Car-to-Infrastructure (C2Mmmunication which also include the
provision of non-safety applications like toll collectiotourist information or mobile internet.
Standards of interest are IEEE 802.11p which is an enhandeshéhe well known IEEE 802.11a
standard used for WLAN connections, and ETSI DAB (DigitaldkuBroadcasting). To combine
these two standards, two approaches are imaginable. Hitagrare implemented individually
and come with their own receivers and transmitters that bave integrated in the car, or both
of them are combined in only one device. As it is the case ferntobile phone market, these
devices should be small, cheap, of high performance andabeleasily adaptable to future stan-
dards. Especially the latter is very time consuming andyegien integrating separate standard
technologies in a car. Therefore, a single architectureisheapable to process whatever wireless
communication standard is the preferable solution, eafigais there is a high interest in combin-
ing IEEE 802.11p with LTE (3GPP Long Term Evolution) in vallar system in the near future.
To deal with these increasing requirements for recon glealdio architectures is a very chal-
lenging task. One solution can be found in the context of@# De ned Radio (SDR). A major
aim of SDR is to provide !exible platform solutions suppaodia wide range of different wireless
communication standards in a multimodal fashion. This aggh does not only come with the
advantage of a faster development and a faster deploymemvefstandards but also with the
automatic adoption to the surroundings.




2 1. INTRODUCTION

As initially stated, we exemplify the execution of latengitical standards on the ExpressMIMO
platform by means of the IEEE 802.11p standard. We furthegsiigate in the combination with
a DAB receiver. As IEEE 802.11p has been in draft versiontily 2010, ef cient physical layer
receiver implementations are still an open research téyid.to our knowledge, so far little effort
has been spent on the description of a possible multimod& @Btform processing of these two
standards of interest.

The chosen target platform is the OpenAirinterface Exviél8ED platform developed by Eure-
com and Télécom ParisTech. In contrast to other SDR pla#fpthe baseband processing func-
tions are split over several independent Digital SignalkcBssor (DSP) engines or hardware ac-
celerators like Channel De/Encoder, (De)lnterleaver onFEnd Processor (FEP) which can be
executed in parallel. This enables not only a higher peréorra of the whole design but further
allows an easy component replacement in case future upldatesne necessary. The platform
is capable to process up to eight different channels simedtasly (four channels in transmis-
sion, four in reception) by reusing the existing programi@absources. Main design challenge is
the synchronization of these resources by providing a maixiraccuracy and by meeting all the
real-time requirements. The platform can further be eredlatith the Library for ExpressMIMO
baseband, callelibembh enabling an easy receiver validation and veri cation inuagpsoftware
environment.

At the very beginning of this thesis, the work on this platfiowas still ongoing. The presented
receiver is thus the very rst complete design that has bemeldped and evaluated on this target
platform and that was emulated with the help of libembb. Isweerefore serving as a rst proof
of concept of the whole design. Executing standards thatatgen very small vector lengths, like
IEEE 802.11p, require a fast baseband processing enginehd@sing this standard as a rst use
case permitted us to evaluate the current platform desigmtbottlenecks and possible solutions
to overcome them.

To pave the way for a complete receiver chain, the Preprocgsstotype had to be designed.
The latter connects the external Analog to Digital (A/D) didital to Analog (D/A) converters
with the entire platform and embeds among others a Samp&e®&atverter (SRC) for sample rate
adjustment and I/Q imbalance correction.

To achieve all these contributions, the basic objective® lteeen grouped in ve different tasks
which are more detailed in the following:

1. The rst step is theemulation of the IEEE 802.11p receiver with the help of the Li
brary for ExpressMIMO baseband (libembb) to (1) validate the chosen algorithms in a
pure software environment, (2) to verify if the platform &tionality is suf cient for the
IEEE 802.11p receiver design and (3) to obtain rst perfang® gures based on the pure
processing time of the DSP engines. This task is an iterative In case it already turns
out at this step, that real-time processing is not possi@@& &hen neglecting the commu-
nication overhead, the algorithms have to be reworked anddeagain.

2. After a successful completion of the rst task, the depeh@nt continues witlthe imple-
mentation of the IEEE 802.11p receiver and its performance \ealuation on the Ex-
pressMIMO platform . This proof of concept comprises a cycle accurate simuraitio
Modelsim and the receiver validation on the real hardwaaéqim.

3. Once the work on the IEEE 802.11p receiver is nalized, a@if on the questidmow DAB
and IEEE 802.11p can be executed simultaneously on the Ex@eMIMO platform .
Due to different standard properties, this task is verylehging. For the implementation




of a scheduler prototype we recall the performance gurdaiobd with libembb to derive
basic guidelines for an ef cient standard scheduling.

4. Theidenti cation of design bottlenecks and the provision of pasible solutionss related
to the tests on the hardware platform as mentioned in thenddesk. Based on the obtained
results, possible algorithmic and design improvementsdamti ed and possible solutions
are provided and implemented.

5. To complete the IEEE 802.11p receiver chain, the nal taskudes thamplementation
of a Preprocessor DSP engine prototypeHere we mainly focus on the SRC as the most
critical part of the Preprocessor in terms of area and spacguenption.

1.2 Outline and Contributions
The work presented in this thesis is structured as follows:

1. First an overview of the basic terminology when talkingatbSDR applications is given
in Chapter 2. Besides a presentation of latest SDR systamms dicademia and industry,
a detailed description of the OpenAirinterface Expressiklidlatform is provided. This
description includes a detailed overview of the architects well as a presentation of the
basic design methodology.

2. The IEEE 802.11p receiver is presented in Chapter 3. |IEEE18p is an enhancement

of the well studied IEEE 802.11a standard commonly used ilAWIlsystems. In contrast
to the latter, the IEEE 802.11p bandwidth has been reduceamhéyhalf, from 20 MHz to
10 MHz, to obtain OFDM (Orthogonal Frequency Division Mpléxing) symbols that are
longer in time domain. This results not only in systems wélgé delay spreads to avoid
Inter Symbol Interference (ISI) but also in stronger laterequirements which is a major
design challenge as it requires a very fast baseband erjiheugh the standard has been
in draft form till July 2010, there are already few acadenmd aome industrial transceiver
solutions available. These solutions are mostly limitetheoautomotive context so that an
ef cient transceiver design on SDR platforms that are ledito wireless communications
standards in general is still an open research topic. Imgheimg the IEEE 802.11p receiver
on the ExpressMIMO platform comes therefore with the achgmtthat there are no limi-
tations in possible combinations with other standardslikE. Especially the combination
with the latter is of high interest for future applicatior®esides, the strong latency require-
ments of IEEE 802.11p make this standard the ideal rst use dar the platform as it
allows us to identify possible design bottlenecks. Theiobthresults are further extended
by a possible combination of IEEE 802.11p and DAB. The comiimm of C2C and C2I
communication with information about traf ¢ jams or mercitiising applications within
only one device enables a lot of different future car apgibces. Preferred target technol-
ogy are lexible SDR platforms allowing the execution of thedifferent standards at low
costs. The work on this task is still an open research topibesecessary scheduler design
is very challenging. For its design it is very important tedarst key gures at hand.
The results of this work have been obtained within the Dekd-r@roject PROTON (Pro-
grammable telematics on-board unit) / PLATA (PLAteformeéhéatique multistandard
pour I'Automobile) [1]. The implementation of the DAB reger was in the responsibility
of our german project partners.
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Major contributions presented in this chapter are:

an ef cient physical layer implementation of the IEEE 80RyIreceiver prototype for
the ExpressMIMO platform (without the Preprocessor) tlest been validated on the
platform itself

a Matlab prototype of the IEEE 802.11p receiver for alganiih validation

an IEEE 802.11p receiver emulation prototype based on ity for ExpressMIMO
baseband. The presented receiver is the rst complete m@siglemented with the
help of this library

the identi cation of possible design improvements as wslltlzeir implementation.
These are especially of interest for standards operatirgiort data sets.

the derivation of a low latency scheduler design to executétipte platform DSP
engines simultaneously

a detailed comparison of IEEE 802.11p and DAB

a runtime performance comparison of IEEE 802.11p and DARd®as their emula-
tion prototypes

a derivation of basic guidelines for an ef cient IEEE 8021dnd DAB scheduling on
the ExpressMIMO platform as well as an implementation ofst scheduler design in
software

Results have been presented and / or published

(a) atthe Acropolis Summer School 2012 on Cognitive Wirel@emmunications (Poster
Presentation)

(b) atthe 7th Karlsruhe Workshop of Software De ned RadR)s |
(c) atthe 15th EUROMICRO Conference on Digital System De¢igSD’'12) [3]

. One design bottleneck that has been identi ed in the prs/ichapter is the need for an
optimized FEP design for standards operating on short étsardhen Field Programmable
Gate Arrays (FPGAS) are chosen as target technology. Lioniaof this design were re-
lated to the huge communication overhead when comparectpute execution time for
short vector lengths. The FEP contains a vector processiihgnd a DFT (Discrete Fourier
Transform) / IDFT (Inverse Discrete Fourier Transform)tuamd allows to implement dif-
ferent air-interface algorithms like channel estimatiorsynchronization. To overcome the
observed limitations, the vector processing unit has beglaced by an Application Speci ¢
Instruction-set Processor (ASIP) solution. For develaptee have chosen the Language
for Instruction-Set Architectures (LISA) that has gainemnenercial acceptance over the
past years. To evaluate the proposed architecture, we ceritga the programmable DSP
solution as well as to two recent ASIPs from academia. Thepewison is based on the
actual processing related to the cycle counts.

In Chapter 4 two different ASIP solutions are presented. Té$teone is based on the old
FEP speci cation that has been reworked to gain a higheopadnce of the design. Major
contribution is the second version of the ASIP that has be&nded by general purpose
instructions and whose internal latencies have been desmlesigni cantly.




The obtained results of this work have been accomplishemliaboration with RWTH
Aachen, Germany, in context of the cluster of ICT researdiwork of excellence NEW-
COM++ [4] and in context of the European FP7 project ACROP®(Advanced coexis-
tence technologies for radio optimization and unlicengeztsum) [5].

Major contributions presented in this chapter are:

a rst ASIP implementation based on the old FEP speci cation
a second ASIP implementation based on the new FEP spedadrcati

a thorough comparison of the latest ASIP version with thegmmmable FEP DSP
engine as well as with different ASIP solutions from academi

Results have been presented and / or published

(a) at workshops of the ACROPOLIS project
(b) within an of cial research deliverable of NEWCOM++ [6]
(c) at the DASIP’12 conference [7]

. In the remainder of this thesis we focus on the design ofsa Preprocessor DSP engine
(Chapter 5) which is the only missing DSP engine in the IEEE B0p receiver chain. The
Preprocessor connects the A/D, D/A converter interfack thié remaining baseband engine
and is responsible among others for I/Q imbalance cornecsample synchronous interrupt
generation, framing and sample rate conversion. Mostatits the Sample Rate Converter
(SRC) whose behavior can change dynamically at runtime.SR1€ deals with the relation
between the sampling rate at the A/D, D/A converters sidetl@dbaseband side. Process-
ing the converters with a xed master clock comes with thezadage of a low phase noise.
In the past, one SRC was dedicated to each standard of intertefor the ExpressMIMO
platform, this approach is too space consuming. That is wigyfractional SRC architec-
ture capable to process up- and downsampling is preferred.

The obtained results of this work have been accomplishdumiite cluster of ICT research
network of excellence NEWCOM++.

Major contributions presented in this chapter are:

a design of a fractional SRC able to process up to eight diftechannels (four in
reception and four in transmission). All channels are etexton the same parame
terizable hardware architecture. To guarantee a contgwdter processing, context
switches between them happen instantaneously withoutelay.d

an implementation of a rst Preprocessor prototype for pafaconcept and to com-
plete the IEEE 802.11p receiver chain.

an implementation of different C-models for design valiolatand veri cation.
Results have been presented and / or published

(a) at the NEWCOM++ Winterschool on #Flexible Radio and fRelarechnologies#,
2009
(b) at the 6th Karlsruhe Workshop of Software De ned RadRjs [

(c) inthe FREQUENZ journal [9]




5. The report nally concludes with the derivation of guithels for a further standard deploy-
ment on the ExpressMIMO platform in Chapter 6




Chapter 2

SDR Baseband Processing

The need for the design of exible SDR platforms for the aotom context is the main motivation
for the work presented in this thesis. This chapter enharoa® basic terminology and presents
the different possible solutions to be considered wheiniglitbout SDR systems. These solutions
motivate the implementation of the chosen target platfomsgnted in Section 2.3. Besides archi-
tectural details of the OpenAirinterface ExpressMIMO foain we further introduce the related
software emulation environment and describe the basiclderent methodology of transceiver
applications.

2.1 Software De ned Radio

During the past years two major trends could be observederdtimain of wireless communi-
cations. Not only that the number of wireless communicatistandards was increasing rapidly,
more and more standards have also been merged in more smgibidevices like mobiles phones
that include GPS and internet. To keep these devices asasfadissible one preferable solution is
the design of a global system that can also easily be updafetlre standards. Costs are reduced
not only because of the decreased manufacturing costs smdak to the decreased (re)design
time in case of standard upgrades.

One solution to this challenging problem has been propogell blitola in [10] where he intro-
duced the term o$oftware De®ned Radi®ased on his initial de nition, SDR has further been
de ned by the Wireless Innovation Forum (WIF, former SDR @o) [11] and the EU Recon-
guration Radio Colloquium [12]. According to these souscehe ideal interpretation of SDR
is a system where (1) the wideband digitization occurs rexhe antenna and (2) where the ac-
tual transceiver application is running either on a desl®@por on a very fast General Purpose
Processor (GPP). Till now, common processors are stillagitdnough to provide an ef cient im-
plementation of such a system [13]. Therefore today’s apgres focus on baseband design for
lexible hardware platforms, multiprocessor systems onidk on Chips (NoCs). The candidates
for such designs are manifold and comprise among othersdgtioin-Speci ¢ Integrated Circuits
(ASICs), ASIPs, DSPs or FPGAs. The nal design choice depamdthe application to be de-
signed and related to that on different criteria like powetiency, 'exibility, recon gurability

and usability. Flexibility in SDR systems is usually rethte recon gurability and thus represent-
ing a system that is able to change its behavior dynamicalgase the surrounding environment
is changing. Or more speci cally, the wireless network adl a® its equipment can dynamically
adapt to environment changes. Recon gurability can beeiased by two different factors: (1)
a higher programmability of the design typically achievedusing FPGAs or microcontrollers
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and (2) by a modular design approach. The more modular aitertire is, the easier it is to
replace components in case future standards or improveréntrrent standards require design
upgrades.

SDR systems have rst been developed for military targethéncontext of projects like SPEAK-
easy [14] and JTRS [15]. Since then, SDR has moved towardsniy daily life applications like
the automotive context on which we will mainly direct oureatiion in this thesis. However, an
exact de nition of SDR can still not be found in the literaturin 2005, the Federal Communica-
tions Commission (FCC) de ned SDR as #a radio that includgaresmitter in which operating
parameters of frequency range, modulation type or maximutpub power (either radiated or
conducted), or the circumstances under which the traresmufierates in accordance with Com-
mission rules, can be altered by making a change in softwéf®w making any changes to
hardware components that affect the radio frequency eomssi [16]. In contrast, WIF has split
SDR in several so-calletiers. Their separation is performed by means of capabilitiestlansithe
extend of (re)con gurability of a certain system.

Tier O - Hardware Radio (HR)
Tier 0 is the simplest example of an SDR system. For its implaation only hardware
components are used which results in a complete redesigiseaf modi cations.

Tier 1 - Software Controlled Radio (SCR)
In this tier, the control functions are implemented in s@aifitey resulting in a limited number
of programmable functions like interconnections.

Tier 2 - Software De ned Radio (SDR)

Designs related to this tier are usually split into two patte control part implemented
in software and the !exible hardware part. For the desigrheflatter, dedicated hardware
blocks such as ASICs, FPGAs, DSPs, etc can be used to in¢chedexibility of the design.

A well-known tier 2 application are SDR platforms.

Tier 3 - Ideal Software Radio (ISR)
At this tier, the entire system is programmable. Analog eosion is performed only at the
antenna, speaker and microphones.

Tier 4 - Ultimate Software Radio (USR)
Tier 4 has been de ned for comparison purposes only. Hergytbtem is fully programmable
and switches between the air-interfaces can be performmilliseconds.

The work presented in this thesis can be assigned to tier Reashiosen target architecture is a
lexible SDR platform. To motivate this design choice an axew of different SDR systems is
given in Section 2.2.

2.2 Related Work

Today’s wireless communication systems all follow a comnpoocessing 'ow illustrated in

Fig. 2.1. After receiving the signal samples from the Mediecéss Control (MAC) layer, the
transmitter chain, TX, embraces source encoding, chamuelding, digital modulation and D/A
conversion before the signal is transmitted through theidRBcequency (RF) back-end. In the
other direction, the receiver chain, RX, is composed of ab édénverter, digital demodulation,
channel decoding and source decoding before the samplg&/areto the MAC layer.
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Figure 2.1: Overview of a Wireless Communication System

The required basic building blocks for a possible mappirthes$e different tasks on a !exible SDR
platform being capable to execute different wireless compation standards simultaneously by
reusing the same HW resources is shown in Fig. 2.2. Thes&dblmmprise different kinds of
processors and a main CPU responsible for the SW controlpteagmocessors are fast processing
engines that operate in the order of ns. Once started théyrpeautonomously and my inluence
the scheduling decisions of the main CPU by timing and syowibations events that may occur
after a prede ned number of generated output samples. Caraghe to which we also refer to in
this thesis is a preprocessing unit including a SRC. Thestasklock processors instead operate
in the order of 10s ofs and are regularly scheduled by the main CPU which conselyuesults

in higher SW dependencies when compared to the sample pmse£ommon usage are among
others vector processing units required for the computatiodifferent air-interface operations
(e.g. channel estimation, synchronization, etc.). Altftodifferent approaches are possible for
these kind of hardware accelerators, we will mainly focuswa different types in this thesis:
(1) basic processing units that can be combined with micrmoters and (2) ASIPs where the
decoding of the program instructions is merged with the ggemg unit.

increasing!SW!dependencies
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Figure 2.2: Basic Building Blocks for Hardware Mapping
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With each new upcoming standard, the computational coritplex the existing designs is in-
creasing. Therefore there is a high need for !exible ardhitees that meet the requirements of
all current wireless communication standards and thatemgef cient when dealing with the in-
creasing performance requirements of new ones. This icidlgechallenging for standards with
short data sets. In general, ve keywords summarize the mtztienges in the design of !exible
SDR systems:

1. Flexibility , which stands for the ef cient integration of new featuraghe existing design
as well as dynamic switching between standards at runtime.

2. Portability , which measures how easy the design components can bestradsfrom one
system to another.

3. Scalability, which de nes how easy a design can deal with the requiresnehtuture up-
coming standards.

4. Performance which stands for the ef ciency of the application implentagions.
5. Programmability , which is important when realizing a multimodal processitlegign.

Further criteria are the amount of required computatiommsygs consumption, number of stan-
dards being supported and computational latency.

During the past years, an increasing number of differentraersial SDR solutions has already
been presented. These solutions have been designed uffargrditechnologies like !exible
hardware platforms, microprocessor systems or NoCs. Biangéhe domain of commercial SDR
design is VANU SDR [17] whose work has started in the the |80 at MIT for a GSM soft-
basestation in context of the SpectrumWare project.

In the following, an overview of different commercial saauts is given. The list does not demand
to be complete, but shall rather illustrate the differersigle strategies.

USRP2 in combination with GNU Radio: GNU radio [18] is a free software develop-
ment toolkit for SDR applications. It includes over 100 difint signal processing blocks
and is the primary platform using PC drivers for the Unive&aftware Radio Peripheral
(USRP) developed by Ettus Research [19]. The motherboarthios among others A/D
and D/A converters, an FPGA for sample rate conversion antipiulnput, Multiple Out-
put (MIMO) connectors while the daughterboards containRReequipment. The connec-
tion to the PC is established via a Gigabit Ethernet. The a/s@nal processing is done
by running GNU radio on the desktop PC. The main drawback isfdbsign is the huge
latency for data processing due to GNU radio.

Deep eXecution Processor (DXP)The DXP ([20], [21]) is a low power Single Instruc-
tion, Multiple Data (SIMD) processor that was initially ddeped by Icera before the latter
was taken over by NVIDIA. It has been designed for wirelessimainication algorithms
and control code whereas the implementation of the phyfgak is a GNU radio based
software code running on the DXP. The data path of the DXP hdepth of four and the
con guration is done by pointing to a con guration map thaintains different con gura-
tions and parameters required for processing. Per clodecyoe of these con gurations
can be provided. Up to now, there is no information aboutitgctural details available.
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Intel (former In neon) MuSIC 1 chip: The MuSIC 1 chip presented in [22] is based on
an SIMD chip that has been designed for mobile phones. Tluasries with a small overall
design and very low power consumption. The processing it egr four SIMD cores
operating at a frequency of 300 MHz. Each of them contains fioocessing elements and
can operate independently to implement hardware multitgskBesides, programmable
hardware accelerators are included for Itering and chadagencoding. As all components
access the same memory, a multilayer bus bridge is usednfiaitaneous memory access
support. Apart from that the chips come with a digital irted to the RF front-end.

ST-Ericsson EVP:The EVP [23] is already available in silicon since 2007 and planned
to be used in cellular systems starting from 2008. Like theSMl1 chip it belongs to the
SIMD class. The EVP is a high performance vector processasechieved frequency is
of about 300 MHz. It operates on 256 bit vectors with a size@bit and supports Very
Long Instruction Words (VLIW) to enable a parallel vectoogessing. The architecture
is divided into four basic blocks which are: Program Contloit, Vector Data Computa-
tion Unit, Scalar Data Computation Unit and Address ComjmutaJnit. The Vector Data
Computation Unit operates on integer, xed-point and carpdiata types. Its functions
include different arithmetic and logical operations. Irdiidn, an interleaver for shufling
and a channel decoder are part of the design. A major drawbiatiie EVP is the low
performance for complex bit based operations.

Systemonic HiperSonic 1:The Hipersonic 1 [24] is an Application Speci ¢ Signal Pratiu
(ASSP) baseband design which is split in a hard-wired logiccobmputationally intensive
processing and a con gurable SIMD/VLIW based DSP unit cht@DSPwhich is used
for DSP intensive algorithms. The HiperSonic 1 has beergdesl for IEEE 802.11a and
HIPERLAN/2 based 5 GHz WLAN applications.

Freescale MSC8156 high-performance DSP:the MSC8156 [25] is a programmable DSP
unit build on the StarCore technology. It is a multi-accaler platform for (Inverse) Fast
Fourier Transform (FFT/IFFT) computations, turbo decgdamd Viterbi decoding. It fur-
ther includes serial rapid I/O interfaces, a PClexpressfate and Double Date Rate (DDR)
controllers for high-speed. Other modules such as integlsaor channel decoders are not
included in the design.

Sandbridge SB3011 Platform:The Sandbridge SB3011 platform is presented in [26]. It
includes four DSPs each running at a minimum frequency of Bz at 0.9 V. The chip

is fabricated at a 90 nm technology. Each DSP can proces$plaubiperations per cycle
including data parallel vector operations. Up to 32 indejeen instructions can be executed
simultaneously. The interconnection is established viaidirectional ring network. Fur-
ther the platform contains among others an ARM926EJ-S peareand different interfaces
like USB or Ethernet. This DSP is used for front-end procegsinly.

A major drawback of SIMD designs is the low performance clehdecoder whose improvement
is still an open research topic. When talking about VLIW m%8ors instead, the major challenge
is to cope with the resulting large program executables ereticessive register le write ports
resulting in a high power dissipation. For this reason, EBAR)SP and the Synchronous Transfer
Architecture (STA) provide specialized instructions andltiple register les. STA has has been
proposed by researchers of TU Dresden in [27] as an exten$itire concept of the Task Trig-
gered Architecture (TTA, [28]). Using STA, a network is fagthin which each functional unit
is connected to other functional units. The delay betweenrtedes is one clock cycle. Based
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on the STA design, Register Transfer Level (RTL) code andikition models can be generated
automatically.

Another design methodology with the aim of building netwsdke NoCs. One example for a NoC
based platform is MAGALI [29] which is developed by CEA, Fecan This NoC supports differ-
ent OFDMA/MIMO standards and offers a high recon guratigresd of the system. One major
drawback of using NoCs is the power consumption which séfl to be optimized. Furthermore
these systems may include possible deadlocks or livelocltseir network.

2.3 OpenAirinterface ExpressMIMO Platform

The OpenAirinterface ExpressMIMO platform ([30], [31])shbeen developed by Eurecom and
Télécom ParisTech. It potentially supports a wide rangsftdrént standards like GSM, UMTS,
WLAN, DAB, LTE as well as their multimodal processing and BrFrequency Division Duplex
(TDD / FDD) modes. The platform is capable to process up tateilfferent channels simul-
taneously (four in reception, four in transmission) by iegshe same HW resources. As each
channel may support a different wireless communicationdsted, the main design challenge is
the synchronization of these resources by providing a maixiraccuracy and by meeting all the
real-time requirements.

ExpressMIMO is used for experimental purposes only. Tioeeethe chosen target technology
are FPGAs which come with a reduced design time, highermmtexibility, simple ease of use
and lower costs for small quantities when compared to otbletisns. Nevertheless ASICs are
considered in a future version once the whole basebandrdkaigbeen validated.

In contrast to the previously presented solutions, theecidesign of the ExpressMIMO platform
is split over two different FPGAs from Xilinx: (1) a Virtex 5X330 for the baseband process-
ing and (2) a Virtex 5 LX110T for interfacing and control (F@&3). To simplify testing on the
platform, the two FPGAS can run stand-alone if required. tAapdifference is that the baseband
processing being responsible for the signal processingedfransceiver is split over different DSP
engines that are explained more detailed in Chapter 2.3TA@underlying hardware architecture
further allows to process four receive and four transmitncleds in parallel by using the same
resources.

The interface and control FPGA transfers the signal comiamf/ going to the MAC layer and
contains the main CPU (SPARC LEONS3 processor) being regigerfer the main control !'ow of
the system. The two FPGAs are connected via an AMBA / AVCI D8é&ge while the different
DSPs on the baseband side are connected via an AVCI crosabarnly seven DSPs plus the
VCI RAM and the main CPU are connected with each other, thiopaance of this crossbar is
suf cient for the design of the ExpressMIMO platform.

The available memory space is distributed in a non-uniforay.wEach DSP engine has its own
memory space that is also mapped onto a global memory mays. gidtal map is provided to
the main CPU and to the DSPs and is consulted in case of DMAfeenbetween the DSPs or
between the two FPGAs. For internal processing, the DSHg agdpcal addressing scheme. In
addition, an external DDR memory is available for mass gi@n the baseband side and a DDR2
memory (size 16 MByte) contains the LEON3 program code anceaused for mass storage on
the control side.

Currently the whole design is running at a frequency of 100z2\Mbdt the target is to increase this
frequency to the maximum possible one of the main CPU (133 Nithe future.
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Figure 2.3: Baseband Architecture of the ExpressMIMO Biatf

2.3.1 Control

The interface and control FPGA connects the ExpressMIM@gsta with the external host PC
by a JTAG and a PClexpress connection (8-way when connegtaddésktop PC, 1-way when
connected to a laptop). The FPGA is further connected to a ®DBRRmory available for mass
storage of samples. Main component on the FPGA is the 32 BIREALEON3 processor from
Gaisler Aerolex [32] that serves as main CPU for the basehaodessing. In the future it is
considered to replace it by a multiprocessor solution. Aerasting candidate is the Xilinx Zynq
[33] which includes a ARM Cortex A9. In contrast to LEON3 rimg at a maximum possible
frequency of 133 MHz, Xilinx Zyng can be processed up to 8002vIH

Currently, all DSPs are controlled by the LEON3 processoo wan program them by writing
into or reading from the memory-mapped control registesthe memory-mapped local mem-
ories inside the DSPs. Data transfers between DSPs and ti@irEHON3 can be established by
either writing directly at corresponding global memory eeldes or by DMA transfers. Observed
programming latencies are related to the bridge connettiagwo FPGAs. To minimize these
latencies, it is planned to investigate in the effects ofdritiiuted control 'ow on the platform.
From the software point of view, the platform includes thdg&erent kinds of possible execution
nodes: (1) the main CPU LEONZ3, (2) the microcontroller (UR3ttcan be included in each of
the DSPs and (3) the DSPs itself. It is obvious that whentsithe control low the design of
the C application code running on LEONS3 will become more lelmgling. But on the other side
a distributed control !'ow will result in a more ef cient traceiver processing, especially when
executing multiple standards in parallel.

2.3.1.1 Choice of the Operating System for LEON3

The SPARC LEONS3 processor is supported by various Oper&tistems (OS) like eCos, RTEMS
(Real-Time Executive for Multiprocessor Systems) andRE®@S (free Real-Time Operating Sys-
tem) which are all free and VXWorks which is not free. The mgimilarity between them is that
they all use function calls (or static links) instead of systcalls to reduce their internal latencies.
For single processor systems, all of them achieve a very geddrmance which would make
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them ideal candidates for the current version of the Expéd®© platform. However, a future
version of ExpressMIMO will include a multiprocessor systelo avoid a time-consuming soft-
ware redesign it is therefore recommended to choose a fregitB$ultiprocessor support.

A disadvantage of RTEMS is that it needs to run one instantkeoDS per processor in the sys-
tem. FreeRTOS has not multiprocessor support at all and@bs enultiprocessor support is still
limited [34]. Therefore we decided to opt for MutekH ([3536]) which was originally designed
to support multiprocessor heterogeneity of nowadaysaais. In contrast to the mentioned OS,
MutekH provides a shared memory multiprocessors suppatthas been designed with strong
multiprocessor support in mind. It further provides optied function calls by using an appro-
priate set of inline functions. This reduces the latencyailscto the kernel which are frequent
in parallel applications that are split in multiple threadgake advantages of several processors.
For SPARC processors, unlike other kernels, MutekH usesatHfanction call convention. This
improves the interrupt latency and makes the function @ak ttar more deterministic. Usually,
SPARC comes with 32 general purpose registers that are alwaiple by the program. 24 of
them are organized in a register window that is split ovegetdifferent groups of eight registers.
They are stated asut , local andin . The visible window per time instance is determined by
the so-calledCurrent Window PointerUsingsave andrestore instructions that can be found
at the beginning and at the end of each function, this poistenoving. The register windows
are overlapping, so theut registers are renamed whsave is called and become thie regis-
ters. In addition to that, the Window Invalid Mask (WIM) retgr indicates if a window is invalid
which results in copying the whole stack to the memory. Adl thentioned processing operations
sometimes result in a huge overhead which is very criticamprocessing standards with strong
latency requirements. Therefore, MutekH has been optirigea !at registers model where the
compiler does not usgave andrestore instructions. The extra register windows which are not
needed by the regular code can then be used to implement fastilinterrupts context switching
for free. All of these improvements reduce the latency sogmtly and make the ExpressMIMO
platform also suitable for the processing of standards slithrt data sets. For multimodal pro-
cessing, MutekH supports POSIX threads so that differanstreivers can be executed on LEON3
simultaneously.

2.3.2 Baseband Design and Emulation
2.3.2.1 Generic DSP Shell

The architecture of the different DSP engines is based oaralatdized DSP Shell (Fig. 2.4)
which is composed of

a Control Sub-System (CSS)

The CSSis common to all DSP engines and is specialized thnpaigameters. It optionally
contains a local 8 bit UC (6502) and a 64 bit DMA engine as wesllaaset of control
and status registers plus several arbiters and FIFOs fat-oytput requests and responses.
Furthermore, the CSS acts as a gateway with the surroundisigsiystem by using two
64 bit wide AVCI compliant interfaces. The rst one is a slaitarget) interface through
which read and write requests to the internal control anustegisters and to the Memory
Sub-System (MSS) are received. The second one is a masdtatdin interface required
by the DMA to perform data transfers between the MSS and mattenemory areas. In
addition, a set of input and output interrupt lines is usadsignaling and synchronization
with the host system.

The architecture of the UC inside the CSS is based on a Conméxiction-Set Computer
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(CISC) with 6 internal registers. Its address bus has a wifitt6 bit and the reserved UC
address space in the MSS has a size of 2 kB.

a Processing Unit (PU)

The PU is custom de ned and depends on the functionality ®DP. It is the main com-
ponent of each DSP engine. The instructions required foPtherocessing are received
through the CSS and are stored in the control registers. &ygmnming a DSP just means
writing the parameters into the right registers.

a Memory Sub-System (MSS)

Like the PU, the MSS is custom de ned and depends on the fumality of the DSP. The

MSS contains the address space for the program and data meimthie UC with a size

of 2 kByte and the input-output data space with a variable orgreize. To increase the
maximum achievable frequency after place and route, thebeumf registers before and
after the actual RAM inside the MSS is variable and may diffetween the different DSP
engines.

DSP%unit=
Processing%Unit
Arbiter -{---------- A """" - % % @
v E 8
Interrupts<t1—=|  cTRL uca 7 Micro$
—> UC%memory<< - -| - controller
memory
Uc J=f
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Figure 2.4: OpenAirinterface Standardized DSP Shell

From the LEONS3 point of view, all DSP engines are seen as a mehbiock mapped onto the
global memory map. The size of each of these memories is detvByte and is aligned on a
1 MByte boundary. The UC and the DMA access memory spacegeiisis memory but without
having access to the global memory map.

For the time being, the UC has not been integrated in the CESTyee current version of the
receiver is thus orchestrated by a centralized control !dvere the whole transceiver program is
running on the main CPU.

In the future a global control !ow including the UC will be aligd to reduce the interrupt rate and
the communication overhead to the main CPU. Currently,dtier starts a DSP by writing a value
in the so-calledgost (Ip GO and STatus) register. Once the operation is nishethtarrupt
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is raised. Each DSP unit has three different interrupt liumesd for signaling to the host system
when the scheduled task is nished: (1) UIRQ (UC), (2) DIRQMB) and (3) IIRQ (PU). As
an alternative, the main CPU can poll tibsy !ag of the igost register to get to know about
the end of the PU processing. An important CSS feature isai@tnew command can already
be prepared in the command registers. Once this happeieatg !ag is set to one to indicate
that no more command can be prepared. The same rules applgllastven programming the
DMA engine included in the CSS. In this case, the regidggyst provides the main CPU with
the status information.

2.3.2.2 Overview of the different DSP engines

In general, the baseband design takes place between themFdnd back-end and the decoded
signal samples. It represents the implementation of theipallayer while MAC layer operations
are performed on the host PC. As mentioned earlier the bademacessing of the Express-
MIMO platform is structured in independent DSP engines Whitow an easy upgrade to future
standards. Other advantages include the effective useectrsimn, mobility, increased network
capacity, maintenance of cost reduction and a faster dewvelot of new services. The DSPs have
been designed in such a way that they support the most cotigmatily intensive tasks in an ef -
cient way. Prior to that, a detailed analysis of the commitiealbetween the standards has been
carried out to make sure that the platform supports all ctifnéreless communications standards
by minimizing the resource consumption without the lackighhaccuracy. The nal designs are
programmable, recon gurable at runtime and can be proddssgarallel which is of a signi cant
importance for multimodal applications.

In the context of different studies throughout the past yeseven different DSPs have been iden-
ti ed:

Preprocessor (PP)The Preprocessor connects the external RF with the baselyatem.
The four A/D and four D/A converters (AD9832) provide 2x14 &i 128 Ms/s in TX and
2x12 bit at 64 Ms/s in RX. Besides, the Preprocessor is usebtdsic sighal processing
functions including sample rate conversion, an NCO (Nuoadlsi Controlled Oscillator),
I/Q imbalance correction as well as framing, (re)synchzation and sample synchronous
interrupt generation. More details about the functiogaditthis DSP are provided in Chap-
ter 5.

Front-End Processor (FEP):The FEP is responsible for the different air-operations lik
channel estimation, synchronization, etc. A detailedyaislof the required operations and
a rst FEP design have already been carried out in [37] ane: iiaxther been detailed and
optimized in the past years. The resulting design contawvector processing unit as well
as a DFT/IDFT unit. Supported input and output data typesraegers of 8 or 16 bit or
complex values with a size of 16 or 32 bit.

The FEP comprises ve vector operations. The two input wscéwe denoted axs [i] and

Y [i], the result vector is denoted A$i].

Component-Wise Addition(CWA): Z[i] = X[i]+ Y][i]
Component-Wise Product(CWP):Z[i] = X[i] Y]i]
Component-Wise Square of ModulugCWSM): Z[i] = jX [i]j2
MOVe (MQOV): copies a vector from one MSS location to another
Component-Wise Look-up Table(CWL): Z[i] = Y[X[i]]
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Input vectors can further be modi ed by applying force to@enegate or absolute value
operations to the real and imaginary part while the outpgtoreZ [i] can be rescaled or
saturated. In addition t@[i] the FEP can provide some more results (sum / max, min /
argmax, argmin o [i]) if required. These values are further denotedS8A values .
Another important feature of the FEP is its lexible Addresen@ration Unit (AGU) that
can be used for address skipping or address repetition ahdltbws an easy realization of
circular buffers inside the FEP MSS. The latter is split inrfdifferent banks each with a
size of 16 kB. For vector operations, the two input vectois e output vector have to be
stored in different memory banks. More details about thi$[28e provided in Chapter 4
where an ASIP implementation of the FEP is presented.

(De)Interleaver ((DE)INTL): This DSP is a block (De)lnterleaver with a throughput of
one sample per cycle. Its MSS is split over three differentnmges: input and output
memory space have a size of 64 kB, the permutation table nyehasr a size of 128 kB.
Further operations supported are puncturing, value tepetnd value insertion by using
the zero or one forcing option. All operations can eitherrafgeon bit or on byte. The
basic functionality of the (De)lInterleaver is illustratied-ig. 2.5. The address of the output
buffer is directly correlated to the address of the pernmutabuffer containing the related
input buffer address.

input!buffer output!buffer

257 0x0000 ——— 111 0x0000
4 67

135 @ 12

17 257 0x0003

22 OXFFFF 2 OxFFFF @
permutation!buffer

0x0047 0x0000
0x00AA

@ 0x2567

0x0000

O0xFA13 OXFFFF

Figure 2.5: lllustration of the basic (De)Interleaver Fimality

Channel Decoder (CHDEC): The Channel Decoder implements trellis based decoding
algorithms - more speci cally a Viterbi (< 256 states, trbaek algorithms) and 8-state
Turbo decoders (max-log-map / sliding window algorithm) tiinary convolutional codes
to cover almost all current systems. There are no restnisticoncerning the choice of
the generator polynomial. Accepted code rates are 1/2 éhdThe size of the traceback
window is 5 xk with k as the constraint length. Supported constraint lengthg arel 9 for
the Viterbi decoder and 4 for the Turbo decoder. For therldiie number of iterations can
be programmed from 1 to 8. To increase the performance ofiatda with short data sets,
a tail-biting option has been added to the Viterbi decodbe WISS of the Channel Decoder
is split over three different sections: (1) input data mem@82 kB), (2) output data memory
(16 kB) and (3) intermediate data memory (40 kB).
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Channel Encoder: The Channel Encoder contains a convolutional encoderkhdgclic
codes and m-sequences. For the time being this DSP is nadettlin the design of the
ExpressMIMO platform.

Mapper and Detector: These DSPs perform a set of different modulation schemeshwhi
are BPSK, QPSK, 8PSK, 16-QAM, 32-QAM, 64-QAM and 256-QAM €lihput memory
of the mapper has a size of 8 kB, the output memory a size of 1@&kBh input symbol
is considered as an address of a Look-Up Table (LUT) with @ afz4 kB from where the
related output value is read.

All DSPs and the VCI RAM are connected via a generic Advanceti® Component Interface
(AVCI) crossbar ([38], [39]). The VCI RAM is used for tempoyssample storage on the baseband
side. It is mapped onto the global memory map and has a sizé kB1The resource allocation
of all connected devices is handled by a Round Robin policy.

2.3.2.3 Processing Times

The processing time of all DSPs and DMA transfers is detestiinand can be precalculated if
required. Tab. 2.1 illustrates how to compute these timethidDSP engines and DMA transfers
being considered in the remainder of this report.

Operation Number of Cycles

FEP - DFT/IDFT T=2+(13+ %) (b"Fo)

L = 2" components vector

FEP - Vector Operations T = b5;tc+ 11+ x +y

x =4 for CWL

y = 1 if SMA value computations
X = y = 0 when others

DE(INTL) number of samples 16
CHDEC (Viterbi) number of samples 16
DMA: LEON - DSP numbe? OTOYIES, 24

4

direct: LEON - DSP 7

direct: DSP - LEON 10

DMA: DSP - DSP numberotbyiest 24
direct: DSP - DSP 18

Table 2.1: ExpressMIMO Cycle Counts

Memcopy transfers denoted d&ect  correspond to transfers where LEONS3 reads / writes
directly in the baseband memory locations by using the dlot@amory map.

2.3.2.4 Receiver Emulation using the Library for ExpressMMO baseband (libembb)

The emulation environment of the ExpressMIMO platformedllibrary for ExpressMIMO base-

band (ibembh allows an easy validation and veri cation of the design ipwre software en-

vironment. It is developed by the System on Chip Laboratdryé&écom ParisTech and is an
open-source C++ library that has already been applied fierdiit European projects like SACRA
[40] or PLATA [1]. The functions included in libembb are l@tcurate and represent all functions
on the baseband side. The API of libembb provides basic camdsnfor the main CPU and the
local UCs as well as synchronization and signaling inclgdénror messages. In the future the
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design will be extended by a cycle accurate SystemC model.

Currently, two different implementations are provided) &C++ emulation layer and (2) C-
language hardware dependent drivers. In case of the sdsgihchronous application ,
no parallelism is supported. The application is designet thie libembb C-API and the code that
is run in emulation and on the hardware target is the sameegsattallelism of the different DSPs
on the platform is not yet exploit. In contrast parallelisastbeen added for treesynchronous
application . The emulation code running on the desktop PC is now muigatied and can
be used unmodi ed for hardware processing where it expthigsparallelism of all resources.

Fig. 2.6 illustrates this general processing !ow.

application
(transceiver%code)

y

[ libembb%API ]

emulatlon
(bit$accurate HW%drivers
C++%functions)
Y
ExpressMIMO
Desktop PC

Platform

Figure 2.6: libembb Processing Flow

2.3.3 Development Methodology

The transceiver design methodology applied for any deséyeldped for the ExpressMIMO plat-
form can be divided in several steps.

Step one is thdevelopment of a purely functional modelwhich is the common starting point for
all transceiver designs. The goal of this step is to analysealgorithmic part of the transceiver, to
identify the required resources, the data !ow and data dégecies. Thus, it is already possible
to identify bottlenecks when processing several transtgiin a multimodal way on the platform.
The considered models are typically sequential and do riduihg exploit the parallelism of the
target platform. For the design of the ExpressMIMO platfpthe presented libembb library is
used for the functional model design.

Step two is thecycle accurate HW/SW co-simulation This step allows to fully exploit the par-
allelism on the platform. A common approach is the HW/SW icaedation in discrete event
simulators such as Modelsim. The parallelism on the platfarcludes simultaneous processing
of the DSPs, data transfers using the DMAs as well as the @tpa of commands in the stan-
dardized DSP shell. Results of this step are cycle accusatermance gures of the developed




20

transceiver to get to know the actual performance of thegdesinfortunately the usage of Mod-
elsim is only appropriate for standards with short data agtihe initialization time of a standard
like DAB for example is already in the order b€ cycles.

The nal step is thdransceiver validation on the hardware platform where the design is tested
and validated on the real hardware platform. For this stepknown snapshots are applied before
the signal received through the RF is decoded.

2.4 Conclusions

In this chapter, an introduction to the basic terminolog$BiR has been given. Based on the pre-
sented existing industrial and academic solutions, the faelexible SDR platform design was
enhanced and explained more detailed using the example @plenAirinterface ExpressMIMO
platform. As the further chapters are all related to thigdtuplatform we presented a detailed
description of the architecture and introduced the libfaryExpressMIMO baseband (libembb)
used for transceiver emulation in a software environment.




21

Chapter 3

IEEE 802.11p Recelver for the
ExpressMIMO Platform

In the automotive context, SDR platforms are of high inteasghey allow to combine Car-to-Car
and Car-to-Infrastructure communication with informati@about traf®c jams or merchandising
applications within only one device. In best case, futurgrages of such platforms only result in
a software update and do not require a time consuming hardwedesign. This chapter focuses
on the implementation of an IEEE 802.11p receiver for ther&sgMIMO platform. In contrast
to other standards, the data sets of IEEE 802.11p are veryt slm@ thus require a very fast
baseband processing. This makes this standard the idedli&<ase for the platform to identify
bottlenecks in the platform design and to obtain ®rst perforce ®gures.

After a short description of the IEEE 802.11p standard andesentation of existing transceiver
solutions, the main part of this chapter focuses on theréiftereceiver implementations for the
ExpressMIMO platform. These include a Matlab model, an atiori prototype obtained with
libembb and the prototype running on the real hardware. Ed¢bntext of a case study we further
concentrate on the combination of C2X communication and@ Riormation which is still an
open research topic. For this purpose we have a close lookettfferences between the two
invoked standards, IEEE 802.11p and ETSI DAB. Considetgaipplied centralized control
“ow, resource management and thus the scheduling are asktortf@ppen in the main CPU. For
the design of an ef®cient scheduler it is very important teel@rst key ®gures at hand. These
®gures are obtained by a performance comparison of the anolatds using libembb. Based on
these results we derive ®rst guidelines for an ef®ciendstihg on the ExpressMIMO platform
and present a ®rst scheduler prototype. Our gained expariensummarized at the end of this
chapter to provide guidelines for a future standard deplegin

3.1 Motivation

Currently, experts focus on the design for C2C and C2I comicatinn also known as Vehicle-to-
Vehicle and Vehicle-to-Infrastructure communication.eTdasic concept of C2C communication
is the following: once one car sends messages to many otiaeasnireless communication chan-
nel the cars spontaneously form an ad hoc network which i&hkras Vehicular Ad Hoc Network
(VANET). VANETS extend the drivers view of the road which miag limited due to darkness
or obstacles and take into account that the driver may nem@ $ione to react to an unexpected
event. Possible use cases focus on the reduction of trahs jand accidents and include collision
prevention, monitoring of hazardous vehicles, accidemhimgs, active navigation, etc.
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C2X (X = Car, Infrastructure) communication is part of fiduntelligent Transport Systems (ITS).
An excellent overview of ITS is given in [41]. In this docunterot only various scenarios are
presented but also the frequency allocation differencésdsn several countries are enhanced.
Possible applications in ITS are not only safety applicetjdout also traf ¢ jam avoidance, toll
collection, tourist information, mobile internet, etc. deneral they can be divided in non-safety
and safety applications where the higher priority is givethe latter. To distinguish between the
different ITS applications, [42] proposed a set of impatrtaiteria for C2X communication which
are usability, robustness, cost, ef ciency, scalabilitg alevelopment effort.

In August 2008, the Commission of European Communitiesdéetthat the 5.875 - 5.905 GHz
frequency band is dedicated for safety related applicat@iTS [43]. The division of this fre-
guency band is de ned by the European Telecommunicaticasdards Institute (ETSI) in [44]. It
is subdivided in several channels with a width of 10 MHz theat be combined to achieve higher
data rates. A standard of main interest in this context is \MULBEE 802.11p ([45], [46]) which is
an enhancement of the well-known IEEE 802.11a standard [A€pntrast to the latter the band-
width of IEEE 802.11p has been reduced from 20 MHz to 10 MH4s Tésults in OFDM symbols
that are longer in the time domain and thus in systems witfelaelay spreads to avoid ISI. ISI
is of major importance for vehicular use cases where theraharare strongly time-varying. So
a reliable reception of the transmitted signal can still bargnteed. The IEEE 802.11p standard
is also known under the name Wireless Access in Vehiculaire@mwments (WAVE) which has its
origin in 1999 when the US Federal Communication Commissaitotated 75 MHz of the Ded-
icated Short Range Communication (DSRC) spectrum exdlysior C2X communication. A
good overview of DSRC is provided in [48]. As the standard lbeen in draft form till July 2010
an ef cient transceiver design is still an open researclctophis task is quite challenging as com-
pared to other standards, IEEE 802.11p transceivers cotheverny strong latency requirements
and thus require a very fast baseband processing engine.

An important ITS project is the German SimTD project [49],amtr C2X communication is im-
plemented on the physical and on the MAC layer. In the corié&mTD, real experiments are
performed in the region around Frankfurt am Main in Germargst tracks include the highway
as well as some parts of downtown Frankfurt. The goals of Eimfe manifold. Besides the
de nition of scenarios and their identi cation in real expaents, experts mainly focus on the im-
plementation of C2X functions to improve the road safetan8ards of interest are IEEE 802.11p
and GPRS and UMTS that have been integrated in case WLAN isvadlable.

3.1.1 Related Work

The IEEE 802.11p standard has been in draft form till Julyd®2@d ef cient physical layer imple-
mentations for SDR platforms are still an open researctctdgp to now, most of the published
papers focus on theoretical and performance aspects. Sheties are beyond the scope of this
report but will nevertheless be mentioned for the sake offitetaness.

A general performance evaluation of the IEEE 802.11p stahuheluding the MAC layer has
been derived during analysis and simulation in [50] or [){hers papers focus on measurements
that have been taken under real conditions to nd out hovabddi the packet transmission is by
determining the Packet Error Rate (PER). In [52] a measunestady has been carried out on a
C2I trail on an Austrian highway using an IEEE 802.11p prigtet Their main observations are
that shadowing effects because of trucks lead to a strongtyulating performance, especially for
long packet lengths and high vehicle speeds. Apart from thay state that #the maximum data
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volume that can be transmitted when a vehicle drives by asidadunit is achieved at low data
rates of 6 and 9 Mbit/s.# In addition, [53] presents severdsurements related to IEEE 802.11
a/b/g for vehicular environments and proves that the vehdidtance and the line of sight are of
main importance for the performance as well. Besides ancgtigh level measurement study
using the LinkBird-MX v3 unit produced by NEC has been catieit in [54].

To sum up, all the mentioned papers prove that (1) the nunfiqeaiakets to retransmit increases
with a larger packet length and (2) that the communicatioigea are reduced when a higher mod-
ulation order is applied.

Other studies focus on the different types of possible cblanand the identi cation of possi-
ble scenarios or on the improvement of existing channemastirs that are also related to IEEE
802.11a for vehicular environments. [55] presents six betale fading models for real mea-
surements using vehicles and analyzes their PER. Theselsrargecalled (1) VTV (Vehicle to
Vehicle) way Oncoming, (2) VTV Urban Canyon Oncoming, (3)\R(Roadside to Vehicle) Sub-
urban Street, (4) RTV Expressway, (5) VTV Expressway samextion with wall, and (6) RTV
urban canyon. A detailed description of the scenarios cafolred [56]. This article is based
on the work presented in [55] and gives the results for thierdint scenarios with the help of a
channel emulator. Apart from that, the differences betwl&dtE 802.11a and IEEE 802.11p in
vehicular scenarios are enhanced. Their conclusion idEkE 802.11a performs worse because
of #the high delay spread of the vehicular channels thaidote interference among symbols in
case of 802.11a#.

In the context of this report, we mainly focus on the physlagkr implementation of the IEEE
802.11p receiver. Different software implementationhefstandard have recently been described
in [57] which focuses on the transceiver design, [58] whheeghysical layer of the whole IEEE
802.11p transceiver chain has been implemented as a Skowalision or [59] where an existing
IEEE 802.11a Matlab simulation environment has been uddateleal with IEEE 802.11p. Be-
sides [60] focuses on the simulation of the IEEE 802.11 mlaysayer implementation using the
NS2 simulator. The latter is a network simulator that hagioally been developed for networking
research.

In addition to these academic publications, different caroial products supporting IEEE 802.11p
became available during the past years:

The LinkBird-MX v3 unit produced by NEC [61] embeds a LINUX machine which is
based on a 64 bit MIPS processor working at 266 MHz. It can begcwed either for recep-

tion or transmission and further contains two DCMA-82-N1InMPCI cards with Atheros

802.11 radio chips.

NXP and Cohda Wirelessdeveloped a !exible SDR implementation of WAVE callstkK3
[62]. Itincludes among others a GPS module, a CAN bus irnteréand Ethernet and is based
on the NXP MARS platform which has been developed for theraotve context. The
MARS platform consists of a combination of Tensilica Vedi8Ps and hardware accel-
erators and can run several automotive standards simalialye While the physical layer
and the real-time portions of the MAC layer are part of the MgABlatform, the remaining
MAC layer and the network layer are running on ARM11 processo

Another solution is the combination of theSU (Wireless Safety Unit) platform from
DENSO and the Openwave Engine developed by BMW63]. Besides the physical layer
implementation of IEEE 802.11p this transceiver suppdwsrequired MAC protocols for
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US, Europe and Japan. Furthermore it includes CAN2.0, B#emnd a 400 MHz power
PC that can process one or two standards in parallel. Thiptahas been presented in
[64].

[65] provides an implementation of #BEE 802.11p frame-encoder based on GNU radio
[18] which has beerwombined with USRP2[19] and compares it to a former implemen-
tation based on a modi ed Atheros chipset. Although the Iltegaresented in this paper
mainly focus on the comparison the authors have carriecttoey, further illustrate that the
GNU radio receiver is fully compliant with the IEEE 802.1¢40 standards.

Using the ExpressMIMO platform instead of any of the mergiisolutions has one important
advantage. As this platform is not limited to the automotiemtext but potentially supports a
wide range of different wireless communication standasdell as their multimodal processing,
the integration of new standards results in best case ordysoftware update and not in a time
consuming hardware redesign. This is important as dedmitdact that experts currently focus
on the combination of IEEE 802.11p with ETSI DAB, a combioatiof the rst with LTE is
strongly considered for future designs. A project thatadgeexamines how LTE and WLAN can
be combined in an ef cient way is CoCarX [66]. Soitis only atteaof time till the work on rst
transceiver designs supporting both standards will start.

3.1.2 Contributions

The contributions described in this chapter are manifoldinvtontribution is the presentation of
an ef cient physical layer implementation of the IEEE 80RoIeceiver prototype for the Express-
MIMO platform. On the way to the nal design rst a Matlab mddeas been written to facilitate
the receiver debugging before we implemented an emulatioteirof the receiver with the help
of libembb. As the work on this emulation library was stillgming by the time of our receiver
development, the presented model is the rst complete Iidzdesign that has been implemented.
Therefore it further served as a proof of concept for thisalifp and as basis for a case study in
which we focus on the multimodal execution of two differemteivers on the ExpressMIMO plat-
form. Based on our results, we derive rst guidelines for nient scheduling and present a rst
scheduler prototype.

Apart from that the presented IEEE 802.11p receiver is tis¢ prototype that is running on the
ExpressMIMO platform and has been used in particular totifjepossible bottlenecks when
processing standards with short data sets on the platfoonmedtice the latencies in the design, we
further identi ed and implemented possible improvemenkewaccessing the different resources
on the hardware platform. These may be considered in a fuwersgon of the asynchronous
application mode of libembb. In addition, we also derivedwa latency design of a scheduler
necessary when executing multiple DSPs in parallel.
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3.2 Description of the IEEE 802.11p Packet Structure

Having a look at today’s different wireless communicatitemslards, one can distinguish between
two different types: (1) frame based standards (e.g. LTEBP&nd (2) packet based standards
(e.g. WLAN). IEEE 802.11p is part of the second category. Wteveloping a packet based
transceiver for a multimodal system, one major disadvantaghat the arrival time of the next
packet is not known in advance. This introduces an indetésmi requiring a !exible scheduler
design in case multiple standards are processed simultsiyess we will detail later in this Chap-
ter.

IEEE 802.11p is an OFDM standard, which means that its higdni@dée signal is split over several
independent signals with lower data rates. These signalsarsmitted over orthogonal frequen-
cies to avoid ISI. Compared to other strategies, OFDM is @aplementable, has a lower ISl and
offers a higher spectral ef ciency due to the dense submaspacing. On the other side, the Peak-
to-Average power ratio of the transmitted signal is high.uJthe provision of a very accurate
synchronization procedure to detect the beginning of theketaat the receiver side is unavoid-
able. The IEEE 802.11p OFDM symbols are composed of 80 suleisa Please note that in the
remainder of this document, one sub-carrier may also betddras a complex 'sample’ with a
width of 32 bit where real and imaginary part both have a sfzE6abit. Per OFDM symbol, 16
sub-carriers represent the guard interval which sepatatesieighbor OFDM symboils to avoid
them to interfere with each other. These guard intervaldaild using a cyclic pre x technique
meaning that the guard interval is identical with the last pathe OFDM symbol. The remaining
64 sub-carriers contain 4 comb pilots needed for channghatbn / compensation, 12 nulled
carriers and the transmitted information.

Once an OFDM symbol is received, the DFT transforms it to thgdency domain. In the trans-
mitter the sub-carriers have been rearranged to match pigsiof the IDFT as shown in Fig 3.1.
This has to be reverted on the receiver side.

Figure 3.1: IEEE 802.11p OFDM Symbol Carriers before anerd®eordering

The packet structure shown in Fig 3.2 is similar to the onde@fE 802.11a. Each packet consists
of a constant and a variable part. For a channel spacing ofH®, e constant part has a length
of 40 s. Itis composed of the Preamble and the SIGNAL Field:

Short Training Symbol (STS): The STS is part of the Preamble and is formed by 10 repe-
titions of the same 16 samples sequence. Each sequencedmagladf 16 s. The STS is
required for the packet synchronization where the actugihioéng of the packet is detected.
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Long Training Symbol (LTS): The LTS is part of the Preamble as well and consists of a
guard interval of 32 samples and two identical OFDM symbdleese contain the block
pilots that are needed for channel estimation. Two symb@speovided to improve the
quality of the calculated channel estimate. The duratiothefLTS is similar to the one of
the STS (= 16 s).

SIGNAL eld: The SIGNAL eld speci es how to decode the transmitted mesgsalt is
BPSK modulated with a code rate of 1/2 and contains all redurarameters for the sub-
sequent DATA eld detection. More speci cally, the outputthe Viterbi Decoder contains
the information about RATE and LENGTH. RATE identi es the duation scheme and the
code rate of the DATA eld, LENGTH corresponds to the the nmbf octets in the MPDU
(MAC Protocol Data Unit) requested by the MAC layer. Furtharameters have to be cal-
culated or retrieved from LUTs based on these two valuessé parameters are the code
rate, the data bits per OFDM symb® {yps), the number of transmitted symbolN §m),
the number of data bitNata ), the number of padding bitdN(aq), the number of carrier
bits per symbol N cpps) and the parametef o4 used for normalization in the mapper. An
overview of the modulation dependent parameter valuesigged in Table 3.1.

160%samples 160%samples 80%sampl88%samples  80%samples
16us 16us 8us 8us 8us
-t -t -
STS LTS SIGNAL | DATA 1| --- | DATA_N
Synchronization Channel Estimation Decoding Message
0of%DATA% Decoding
Field
Parameters

(a) IEEE 802.11p Packet (Channel Spacing of 10 MHz)

‘ PLCP%FreambIF SIGNAL%Field DATA%Field

PLCP%header

<3 —

’ RATE ‘ reserved‘ LENGTH ‘ parit* tai‘ SERVICE| PDSU| t%il pad%b{i

Tawbit | 1wbit 129%bit. 1%bit  6%bit  16%bit variable  6%bit
(b) IEEE 802.11p Packet with a Detailed View on the SIGNAL &mel DATA Field

Figure 3.2: IEEE 802.11p Packet Structure

In contrast to the constant part of the packet, B#IA eld consists of a variable number of
OFDM symbols. Its length is not known before the decodingcedure of the SIGNAL eld is
nished. The contained LENGTH parameter can vary betweemd 4095 which results in a
DATA eld length of 1 to 1366 OFDM symbols. All decoded SIGNAEId parameters apply on
the whole DATA eld and may not change before the next packetceived. The time between
the end of one packet and the reception of the following o lisast 10 s. Table 3.2 shows the
modulation parameters for the applied 10 MHz channel sgacin
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Code Rate | Nppsc | Ncpps | Nabps | Data Rate (Mb/s)
BPSK 1/2 1 48 24 3
BPSK 3/4 1 48 36 4.5
QPSK 1/2 2 96 48 6
QPSK 3/4 2 96 72 9
16-QAM 1/2 4 192 96 12
16-QAM 3/4 4 192 144 18
64-QAM 2/3 6 288 192 24
64-QAM 3/4 6 288 216 27

Table 3.1: Modulation dependent Parameters decoded in@&A_ Field

Parameter Value
Number data sub-carriers 48
Number pilot sub-carriers 4
Subcarrier frequency spacing 10 MHz/64
Packet length 1 - 1366 DATA symbols
Modulation Schemes BPSK, QPSK, 16/64-QAM
Code rates 1/2, 2/3, 3/4
Data rates 3,4.5,6,9,12, 18, 24, 27 Mb/s

Table 3.2: IEEE 802.11p Speci cation Parameters (10 MHzr@eaSpacing)

3.3 IEEE 802.11p Receiver Algorithms

This section describes the different receiver algorithppiad to decode the IEEE 802.11p packet.
To improve the overall performance of the design, the FEPatjpeis are performed on the whole
OFDM symbol including all 64 sub-carriers. The removal & ttulled carriers and the reordering
of the remaining ones are done by the Deinterleaver.

3.3.1 Packet Synchronization

A disadvantage of OFDM systems is their high sensitivityrtorig and frequency synchronization
errors. Therefore the packet synchronization algorithedue detect the beginning of the packet
has to be chosen properly to lower the PER. As the moment im dipacket arrives is not known
in advance, the incoming samples have to be analyzed conthu making this algorithm the
most latency critical one in the whole design. This is in agpjeoto frame based standards where
the beginning of the frame has to be detected only once atamting of the receiver process-
ing. Possible techniques for packet synchronization at@ aw cross-correlation. The preamble
of the IEEE 802.11p receiver is suitable to both but [67] Hess that the cross-correlation per-
forms slightly better. To speed up processing, we decidedmnabine an energy detector with an
overlapping DFT-based correlator. The energy detectorpeises only one function that can be
expressed as

%55

E(X)= jrx[i)i? (3.1)

i=0

with ry as the received signal.
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The operations to be performed in the FEP are listed in Tale 3he number of cycles are
calculated using the equations provided in Chapter 2.3.e€all direct DMA transfers denote
memcopy operations where LEON3 directly accessed thescklaemory regions without invok-
ing the DMAs.

Function DSP/DMA | samples| bytes | cycles
sum computation FEP 256 | 1024 140
fep2leon direct 1 4 11

Table 3.3: Energy Detection Operations

The subsequent packet synchronization is performed oeekrtbwn reference STS denoted as
STSet . As the size of the DFT window has been set to 256 due to the &T@H of 160, the
STS has to be zero extended before its DFT can be computesicdihibe done ofline before the
receiver is started. The DFT window is shifted by the size i @ FDM symbol (80 samples).
Maximum possible is a shift of 96 samples which correspondlé window size minus the size
of the STS. So it can be guaranteed that there is always orgowimhich contains the whole
received STS.

The received signal after the DFR, can be expressed as

Ry=(€ "H X,)+ Z, (3.2)

X, are the signal componentg,, the noise components ar#l "H the channel based error
component. The packet synchronization algorithm can tleestdted as

& = IDFT (Rx DFT(STSef) ) (3.3)

In case the result of this step is beyond a prede ned thrésttioé resulting timing offset can be
computed as
is = argmax (jokj?) (3.4)

is corresponds to the maximum absolute value of the crosglation of the symbol timing esti-
mate. The operations to be performed for the packet synization are listed in Table 3.4.

Function DSP /DMA | samples| bytes | cycles
DFT FEP 256 | 1024 143
CwP FEP 256 | 1024 139
IDFT FEP 256 | 1024 143
energy/max/argma FEP 256 | 1024 143
fep2leon direct 1 4 11

Table 3.4: Packet Synchronization Operations

The energy detection and the packet synchronization aferpexd by the FEP only, as depicted
in Fig. 3.3. The comparison to an energy threshold and theisi¢igsision of whether the receiver
proceeds to channel estimation is currently in the respditgiof the main CPU but may be
delegated to the UC or to a microprocessor or sequencer draeband side in a future version
of the receiver prototype.
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Figure 3.3: Preamble Data and Control Flow

3.3.2 Channel Estimation

In vehicular systems, the channels are strongly time-agrgue to correlated fading caused by
the multipath propagation. This results in a variation & #mplitude and / or the relative phase
in the received signal. Therefore the channel estimatiareiig important. Like IEEE 802.11a,
IEEE 802.11p de nes two different pilot patters: block armhib pilots. The block pilots are
carried by the LTS while the four comb pilots are included acle of the OFDM symbols of the
SIGNAL and the DATA eld. They can be found at positions -2%, 7 and 21. Speci c for
IEEE 802.11p is, that the polarity of the comb pilots chargetsveen the OFDM symbols. The
sequence de ning this polarity can be generated from thensbling sequence (generator polyno-
mial S(x) = x’ + x* + 1) when the all one initial state is applied. In addition, alHave to be
replaced by -1s and all Os by 1s. The rst element of the obthsequence de nes the polarity of
the comb pilots in the SIGNAL eld, the subsequent ones aeglusr the DATA eld.

A good paper about the different types of channel estimasdg8]. It proves that the best perfor-
mance is achieved by the comb-type channel estimatorwfetidoy the block-comb-type channel
estimator. The rst one uses the four comb pilots and obtdias/alues for the remaining carriers
via interpolation techniques. As interpolation in gen@@ines with a considerable computation
effort we decided to rely on the block-comb-type channehestor. Applying this kind of channel
estimator, a rst channel estimate is calculated based emlibck pilots and the four comb pilots
are used for a subsequent amplitude and phase correctiao Joit is assumed that the channel
does not change during the reception of one packet. Compardet comb-type channel esti-
mator, the block-comb-type channel estimator reduces ahgpatational complexity while still
achieving a good performance.

The channel estimate based on the LTS block pilots denotéd &scalculated once for the whole
packet:
'q = DFT (LTSreceived) DFT (LTSreference) (3-5)

Like for the packet synchronization, the computationsedtisin Table 3.5 are carried out by the
FEP.

Function | DSP/DMA | samples| bytes | cycles
FFT FEP 64| 256 39
CWP FEP 64| 256 43

Table 3.5: Channel Estimation Operations
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3.3.3 SIGNAL and DATA Field Detection

SIGNAL and DATA eld detection are carried out by FEP, Deiméaver and Channel Decoder
(Fig. 3.4).

|

EER) DEINTL

b ! |

AVCI Crossbar / VCI RAM LEON3

CHDEC

Figure 3.4: SIGNAL and DATA Field Data and Control Flow

The SIGNAL eld is included in the constant part of the packét detection procedure has to be
nished before starting the DATA eld detection, as the paeters describing the latter are to be
extracted from the SIGNAL eld. As stated in Chapter 3.2 thearameters comprise the number
of OFDM symbols contained in the DATA eld, the modulatiorh&me (BPSK, QPSK, 16-QAM,
64-QAM), the code rate (1/2, 3/4, 2/3), the number of sublieas, etc. While for the SIGNAL
eld detection, the three DSPs have to be executed one aftghar, they can be executed in par-
allel for the DATA eld detection but by operating on diffeteOFDM symbols. By the time the
results presented in this report have been obtained, ther@hBecoder operated on the complete
received message before the result was transferred to th@ lisdfer. In the future, tail-biting will
be included so that this DSP can operate on smaller vectarsam be executed in parallel to
the FEP and to the Deinterleaver. The main difference of tAh€Deld OFDM symbols when
compared to the SIGNAL eld is that the latter is always BPSHKdulated with a code rate of 1/2
while the rst can be modulated with four different modutatischemes, each of them exhibiting
two different code rates.

3.3.3.1 Channel Compensation (FEP)

The channel compensation comprises the multiplicatioh thie channel estimate as well as fur-
ther corrections based on the comb pilots. The latter caxjpegsed as

Ran = (A(H)e 1" Ry) (3.6)
with N 1 X
i= 21, 7;7;21
and X
A(H) = iHij? (3.8)
i= 21, 77,21

Rn.i are the received anﬂp;i the known comb pilotsA(H)e i"n is used to correct the phase

offset. This approximation still contains an unknown egdeyel term stated a&(H ). Its correc-
tion is only necessary for 16/64-QAM demodulation wheredéleulation of the remaining bits is
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based orRg.,. One drawback identi ed in the design is that the result efshm is always stored
as a complex 64 bit value which is distributed over two conBee 32 bit memory entries in the
FEP MSS. Currently this result is modi ed in the main CPU tooaplex 32 bit value that can be
used for further processing in the FEP.

The operations to be performed for the channel compensattisted in Table 3.6.

Function DSP /DMA | samples| bytes | cycles
CwWP FEP 64 256 43
fep2fep (4 times) direct 4*1 4*4 76
dot product FEP 4 16 44
fep2leon (2 times direct 2*1 2*4 22
leon2fep direct 1 8 64
CWP FEP 64 | 256 43

Table 3.6: Channel Compensation Operations

For the SIGNAL eld, the real part oRq., directly serves as input for the Deinterleaver. No
additional data detection is required. To sum up, the FEPatipes needed for the SIGNAL eld
detection are summarized in Table 3.7.

Function DSP /DMA | samples| bytes | cycles
FFT FEP 64 256 39
Channel Compensation FEP

fep2deintl FEP DMA 64 64 32

Table 3.7: SIGNAL Field Detection Operations (FEP)

3.3.3.2 Data Detection (Decoding, FEP)

The data detection for IEEE 802.11p can be done by the FEP @&sl ribt require the Mapper
DSP engine.

ForBPSK, only the real part oRq.,, serves as input to the Deinterleaver.
For QPSK, real and imaginary part &q., are both signi cant.

For 16/64-QAM, the missing bits are calculated as a functiofiRgf, as stated in [69].
For 16-QAM, only two remaining bits have to be calculated

Rezn = P==(1 A1) AH) absRen) (3.9)
while for 64-QAM, four bits are missing
Rezn = P ) AH)  absRen) (3.10)

Rasn = P #) AH) absRezn) (3.11)
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The root term in the equations is already known after the SIGMId detection (parameter
referred to aX mog)-

The result of the multiplication of the root term wif(H) and? ¥ does not change
during the whole DATA eld detection and can be computed oatter the SIGNAL eld
detection is nished. The parameti€iyqq iS used for normalization in the transmitter where
it is multiplied with the output values to achieve the samerage power for all %:hemes.
K mod dependﬁ on the modulation scheH@. For BPSK it is set to 1, R8KQto1= 2 for
16-QAM to1= 10and for 64-QAM tol= 42

Ra:n, Rda2n andRys., can directly be written into the Deinterleaver MSS. The resglibit re-
ordering as illustrated in Fig. 3.5 is performed by the Deviletaver.

Only theabsterm has to be calculated at runtime while the other factorateeady be prepared
onceK mog is known. The required functions for 16/64-QAM are listedrable 3.8.

Function DSP /DMA | samples| bytes | cycles
16-QAM

fep2leon direct 4*1 4*4 44
fep2fep direct 64 | 256 129
CWP FEP 64| 256 43
leon2fep direct 1 4 8
CWP FEP 64| 256 43
additional 64-QAM

leon2fep direct 1 4 8
CWP FEP 64| 256 43

Table 3.8: Data Field Initialization Operations

The data detection operations for the different modulasohemes are listed in Table 3.9. For
BPSK and QPSK, the result of the channel compensation istake

The resulting DATA eld detection operations are listed iable 3.10. The copy operations of the
result are split over several transfers as the results aredsin different banks of the FEP MSS.

Function DSP /DMA | samples| bytes | cycles
16-QAM

type change FEP 64 | 256 43
absolute valug FEP 64| 256 43
CWA FEP 64 256 43
64-QAM

type change FEP 64| 256 43
absolute valug FEP 64 | 256 43
CWA FEP 64| 256 43
type change FEP 64 | 256 43
absolute valug FEP 64 | 256 43
CWA FEP 64 256 43

Table 3.9: Data Detection Operations
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Figure 3.5: Bit Constellations for the IEEE 802.11p Datadatbn
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Function DSP/DMA | samples| bytes | cycles
FFT FEP 64 256 39
Channel Compensation FEP
Data Detection FEP
BPSK
fep2deintl FEP DMA 64 64 32
QPSK
fep2deintl FEP DMA 64 128 40
16-QAM
fep2deintl (2 times) FEP DMA 2*64 | 2*128 80
64-QAM
fep2deintl (3 times) FEP DMA 3*64 | 3*128 120

Table 3.10: DATA Field Detection Operations

3.3.3.3 Deinterleaver

The Deinterleaver operates on a block of 8 bit samples arettsethe two permutations applied
by the transmitter to reduce the impact of burst errors btridiging the affected bits over the
received sub-carriers. It is stated in the standard spation [45] that the rst permutation in
the transmitter ensures that adjacent bits are modulatednam-adjacent sub-carriers while the
second permutation in the transmitter ensures that theejhits are mapped onto less and more
signi cant bits of the constellation.

The rst permutation of the Deinterleaver is de ned by

i =s floor(j=s)+(j + floor (16 j=Ncpps)) mod(s); j =0;1:5Nepps 1 (3.12)
with s = max(Nppsc=2; 1).
The second permutation is de ned by

The deinterleaving is performed before the Channel Decstiere the number of bits is decreased
by one half. The size of the permutation table per OFDM synigiblus2 N gnps. FOr our receiver,
the nal permutation tables do not only consider the two paations de ned above. Instead, they
also remove the nulled carriers, bring the carriers in thtrorder, reorder the bits as required by
the data detection and insert zeros is case the code ratedgstrto 1/2. In the transmitter, higher
rates (2/3 and 3/4) are achieved by puncturing where sonmteeadricoded bits are omitted in the
transmitter. To revert this effect, the Deinterleaver carubed as well.

For an ef cient generation of the permutation tables we leva C code that generates them for
receiver emulation and for the real hardware processing difference between the two modes
is that in the rst case a simple 16 bit array is suf cient talide the tables in the design while
for the latter, a 32 bit representation is required so thattditles can be DMA transferred to the
baseband side before the receiver is started.

3.3.3.4 Channel Decoder

The Channel Decoder detects the codeword that has beemttimusbased on the result provided
by the Deinterleaver. This means that the codeword is malpaekito the corresponding informa-
tion bit sequence. In the transmitter a convolutional eecdslused. The generator polynomials
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of the encoder argg = 133g andg; = 171g and the constraint length K is set to 7. Per symbol,
the Channel Decoder tak@s N gpps input symbols a 8 bit to compute gyps Output bits. At the
time when we obtained the results presented in this thdsssChannel Decoder had been exe-
cuted only once after all Deinterleaver operations has b@shed. The new version instead will
contain tail-biting.

3.3.3.5 Descrambling and CRC Check

Before the output of the Channel Decoder is forwarded to t#&CNayer implemented on the
host PC, the sequence has to be scrambled and CRC checkdt tharismitter, the bits were
scrambled to randomize the data pattern. The work of a timéogvery circuit is thus simpli ed
and dependencies between the signal’s power spectrum artchtismitted data are eliminated.
The generator polynomial for the IEEE 802.11p (de)scramiBl&(x) = x’ + x*+ 1. When
descrambling the starting point of the sequence are the Sk &f the SERVICE eld (Fig 3.2).
The sequence is then periodically repeated.

3.4 System Presentation and Receiver Versions

3.4.1 Required Resources on the ExpressMIMO platform

As shown previously, only VCI RAM, FEP, Deinterleaver anda@hel Decoder are needed to
decode the packets of the IEEE 802.11p receiver (Fig. 31&.Preprocessor will be included in a
future version of the design. After each interrupt, the Ryegssor will copy 640 complex samples
a 32 bhit into the circular input buffer memory being part of tREP MSS. This corresponds to a
memcopy operation of eight OFDM symbols. Including the Rvepssor will not change the pre-
sented results in this chapter as the copy operation willdmelled by a local UC on the baseband
side and not by the main CPU.

**************************************************************************************

Baseband FPGA
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X - Prelprocessor Frontlend
Radio T processor
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Figure 3.6: Baseband Architecture of the ExpressMIMO Biatf
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3.4.2 Matlab Prototype of the IEEE 802.11p Receiver

A rst version of the IEEE 802.11p receiver has been impletadnn Matlab for fast algorithm
validation. To generate the test signals, a Matlab tratensbde provided by the Telecommuni-
cations Research Center Vienna [70] has been used. In@ddiifferent real snapshots provided
by BMW have also been tested to validate the chosen algasitfrour design.

3.4.3 Emulation of the IEEE 802.11p Receiver

The emulation prototype of the IEEE 802.11p receiver has designed with a sequential execu-
tion in mind. Thus it does not fully exploit the possible carrency of the DSPs on the platform.

Currently, the receiver emulation is considered untimdthatTs why concurrency is not yet mean-
ingful. Instead, receiver emulation is important to idgntihe required DSP functions and the way
how they are programmed (= how the control register parambsve to be set) in a pure software
environment which speeds up the design #ow signi cantly.

To enable a simple integration of other standards in caseutifmodal processing and to simplify

updates due to changes in the baseband and thus in libembbclweed an additional layer be-

tween the receiver code and libembb cakeghressmimo_emu (Fig. 3.7). So the receiver calls

only the functions de ned irxpressmimo_emu which then calls the libembb routines.

IEEE"802.11p" - <_»-
feceivoreode <—>’ expressmlmo_emu‘ libembb

Figure 3.7: Emulation Codestructure

In the following a code example for a DFT operation is giverte Tunction call in the receiver
code looks as follows:

emm_fep_ fft(256, DFT_ADDR_in, DFT_ADDR_out, 0);

The rst value indicates the size and the last value if a DFamiDFT has to be performed.
The function de nition can be found iaxpressmimo_emu :

void emm_fep_fft (uint32_t size, uint32_t src, uint32_t ds t,
uint32_t inverse)
{
FEP_CONTEXT*ctx = &ctxf;
FEP_FFT;
fep_start(ctx);
}

TheFEP_CONTEXTS an enumerate that contains pointer to all the control satdsregisters of
the FEPFEP_FFTis a macro where all the necessary parameters using libeouitibes are set:

#define FEP_FFT { \
uint32_t src_addr_index, dst_addr_index; \
uint32_t src_memquarter, dst_memquarter; \
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src_addr_index = get_addr_index_fft(offset_src); \
dst_addr_index = get_addr_index_fft(offset_dst); \
src_memquarter = get_fep_mss_bank(offset_src); \
dst_memquarter = get_fep_mss_bank(offset_dst); \

fep_set | (ctx, size); \

fep_set_i (ctx, inverse); \
fep_set_bx(ctx, src_addr_index); \
fep_set_bz(ctx, dst_addr_index); \
fep_set_gx(ctx, src_memquarter); \
fep_set_qz(ctx, dst_memquarter); \
fep_set_wx(ctx, 3); \
fep_set_wz(ctx, 3); \
fep_set_op(ctx, FEP_OP_FT); \

Due to the applied local addressing scheme of the whole FEB,M® FEP MSS bank and the
related offset inside the bank have to be identi ed befotéregpthe parameters.

The emulation prototype of the IEEE 802.11p receiver sugpt different modulation schemes
and code rates. It has been annotated by cycle counts anlegtby the generation of trace les
for an ef cient receiver evaluation. Apart from that it antatically generates les that can be used
to plot (intermediate) results in Matlab or Octave. All taehhancements allow an easy validation
of the receiver and the identi cation and implementatiometessary algorithmic improvements
in a pure software environment.

3.4.4 Hardware Prototype of the IEEE 802.11p Receiver

In the future design #ow, the code written for emulation caeadly be compiled for the hardware
platform even for standards with short data sets. Currexdth parameter setting function (e.g.
fep_set_l(ctx, size) ) rstreads the related register value from the FEP congglsters,
modi es the bits that corresponds to the parameter in thef@&iU and writes the register value
back. As this is done for each of the parameters, this praeeduvery time consuming and
ends up at an average programming time of around 425 ns pempter. If one imagines that a
standard FEP operation requires at least 14 parametershitisus, that this procedure is too time
consuming in case of strong latency requirements. To gdtigfse strong real-time constraints,
the emulation code has therefore been revised and optimeetal times before being ported on
the ExpressMIMO platform. The improvements included theicd of an appropriate OS for the
main CPU (more speci cally LEON3), a #exible scheduler teexte the different DSP engines
simultaneously, grouping of DATA OFDM symbols and the gatien of command words of#ine
before the receiver is started.

3.4.4.1 C Code Optimization

Performance improvements can already be obtained by gitigiihe C code running on the main
CPU to decrease the overhead due to functions calls aftepitagion. Modi cations include
a higher number of inline functions and macros as well as #danmumber of parameters set
dynamically at runtime.
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3.4.4.2 Interrupt Handler

The interrupt handler provided by MutekH is very fast andcegnt. The time measured on the
platform from the moment an interrupt is raised on the basetside till the main CPU reacts
and continues with the next assembly command takes onlyt&®us. This time is negligible
for common standards but not for standards like IEEE 802ddphe overhead caused by the
interrupt handler results in a signi cant performance dfogcall: the duration of one OFDM
symbol is 8 s). An alternative to interrupts is to poll the status reggistof the DSP engines. In
this case the time the main CPU takes to continue with theamsdémbly command is only about
436 ns.

3.4.4.3 Command Preparation at Runtime

The standardized DSP shell supports the preparation ofdkecommand while the PU is still
busy. As soon as a command is prepared, the pending #ag iotllcregisters is set to one. It
depends on the data dependencies of the code where thiefeatube used. In case of the energy
detection, for instance, command preparation is not plessid the result of the FEP operation
is required for the decision of how to proceed in the prograw.#Instead it can be observed
for the packet synchronization that this feature lowersctmunication overhead signi cantly.
While the DFT is running, the CWP command can already be progred. And while the CWP
is running, the IDFT command can be prepared, etc. The conwation #ow is thus executed in
parallel to the DSP processing and the receiver performafiteese operations is only limited by
the processing time of the DSP and not by the communicatierhead any more.

3.4.4.4 Scheduling

When compared to other wireless communication standanés|BEEE 802.11p standard is ex-
tremely latency critical due to the short time availabletkie acknowledgement packet has to be
sent. That is why we abandoned the overhead that the usageSiXRhreads would have en-
tailed. Instead, we relied on a very simple thread model eloere thread is assigned to each
concurrent platform entity, such as the Processing Unitistla@ DMA engines.

Per thread, two different data items are checked and updated

a position pointerto the next code function that shall be executed. This poiatapdated
when the control #ow moves on to the next potentially blogkattivity on the platform
which is either a DSP or a DMA operation.

acondition pointerto a memory location indicating if the task is runnable or (@ot). busy
#ag of the DSP).

The question whether a thread can be executed depends otatile a&f the DSP engine. If the
DSP is ready, the thread is runnable immediately while itaslked when the DSP is in busy state.
For the moment the scheduler is based on a Round Robin paltaydould be an interesting task
to experiment with different scheduling policies in theui.

Fig. 3.8 illustrates the scheduling of the different DSPireg. Once, the results of a DSP are
available, they are copied into the MSS of the subsequent D&ifhg this time, both DSPs are
busy. In contrast to the SIGNAL eld, the structure of the D}¥\Teld allows to decode different
data symbols in parallel. The processing #ow depends onuhrdear of DATA OFDM symbols
available in the FEP MSS:
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1. Assuming the case that the Preprocessor provides one @HBM symbol as soon as it
is received, the scheduler has to wait till the next symbalalable before it can schedule
the next IEEE 802.11p task to the FEP (Fig. 3.11(a)).

2. When more DATA OFDM symbols are available in the FEP MS&,REP can be started
again once it nished the decoding procedure of one symbigl. &11(b)). The time the
different DSP engines are busy will increase as the schedaketo take care of the FEP
and the Deinterleaver tasks in parallel.

STS LTS SIGNAL DATA_1 DATA 2

INTL

CHDEC

(a) DSP Engine Scheduling when only one DATA OFDM Symbol igilable

STS LTS SIGNAL  DATA_Group

- B

INTL

CHDEC

(b) DSP Engine Scheduling when several DATA OFDM Symbolsaaeslable

Figure 3.8: IEEE 802.11p DSP Processing and Scheduling

3.4.45 Symbol Grouping

Another possible optimization in the design #ow is the gingmpf DATA OFDM symbols for the
FEP so that the FEP can operate on larger vectors. It is obvi@t the required communication
overhead is strongly correlated with the number of DATA OFB¥inbols that are grouped. The
more symbols are grouped, the less the communication cagrhehe choice of the maximum
group size depends on the number of OFDM symbols suppliethdyPteprocessor pacquisi-
tion cycle An acquisition cycle corresponds to the time Xll samples are stored in the output
FIFO of the Preprocessor MSS. Currently the maximum grome Bas been set to eight. The
operations to be performed in the FEP for each OFDM symbolpcim@® DFT, channel compen-
sation and data detection. Compared to the case when symbel/mbol is processed, 28 FEP
commands can be saved for the considered maximum group size.

The actual group size applied at runtime is determined aaticaily. It is set to the minimum
between the number of OFDM symbols available in the FEP M3tz maximum group size.
This ensures, that the FEP is always processing and notdaldokcase not enough OFDM sym-
bols are provided. Table 3.11 recalls the FEP operationsepted in Table 3.6, Table 3.9 and
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Table 3.10 and shows which operations are currently grauped

To continue the processing over the grouped output vectdhed-EP, the Deinterleaver permuta-
tion table generation has been modi ed to enable a Deiraregleprocessing of the whole grouped
result vector. Per possible group size one permutatioe talprovided due to the different sizes of
the input vectors. At runtime, the decision which permotatiable to take is chosen dynamically.
In a future version of the receiver, the same will apply fa& @hannel Decoder.

Function DSP /DMA | grouping
FFT FEP no
CwWP FEP yes
fep2fep (4 times) direct no
dot product FEP no
fep2leon (2 times) direct no
leon2fep direct no
CwWP FEP yes
16-QAM

type change FEP yes
absolute value FEP yes
CWA FEP yes
64-QAM

type change FEP yes
absolute value FEP yes
CWA FEP yes
type change FEP yes
absolute value FEP yes
CWA FEP yes
DMA transfers to DEINTL

fep2deintl FEP DMA yes

Table 3.11: DATA OFDM Symbol Grouping

3.4.4.6 Command Preparation before starting the Receiver

An ef cient way to optimize the centralized control #ow ispoepare the commands and to store
them in a memory on the control side before starting the veceMhen applying a centralized
control #ow, the DSP engines are all programmed by LEONS3.pReaxmeter, the programming
time takes around 425 ns. In case only one parameter has tattenwthe communication over-
head is negligible, but usual FEP commands, for instangapadse at least 14 different parame-
ters. This results in a total programming time of at leastsGer operation. When preparing the
commands in advance, the required programming time atnenis signi cantly reduced to 70 ns
per 32 bit command register. In case of the FEP which has ghesk registers, the programming
time is therefore decreased from around6to 420 ns. Fortunately most of the IEEE 802.11p
commands are static and can easily be prepared. In casenagtaras set dynamically at runtime,
the performance gain depends on the number of parameteessit and how they are distributed
over the 32 bit command registers. For the IEEE 802.11pvecet maximum one parameter is
set dynamically per operation. The related timing overhisatkgligible as only one additional
assembly command is required for this operation. For thencand preparation, the same macros
than for the receiver emulation are used.
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3.5 Results

The presented results have been obtained with the emulattaiatype of the IEEE 802.11p re-
ceiver and by a cycle-accurate HW/SW co-simulation. Priothiat, the whole receiver chain
has been validated on the hardware platform itself for areefee frequency of 100 MHz. The
results have been retrieved using the JTAG and the PClexpmection. To achieve a higher
performance this frequency will be increased in the nearréut The maximum achievable fre-
guency considering the FPGA target is determined by the @Rid which can be processed up
to 133 MHz.

To get exact gures about the receiver performance, diffetest signals have been generated for
validation. First, test signals generated with the Matlefienence model have been used. These
signals are based on the example provided in the annex ofdhdasd speci cation and can be
generated for any packet length, code rate and modulattoense. Second, our receiver has been
validated by testing different snapshots provided by oA project parther BMW. These have
been generated with the Densobox, NEC Linkbird and a SimTBorogcle. All of them were
QPSK modulated.

3.5.1 Remarks
For the scheduler a Round Robin policy is applied.

Results of the Channel Decoder are provided under the assumtpat the tail-biting is

already included in the current design. For the tests on #néware platform the Chan-
nel Decoder is invoked only once, once the Deinterleaverltesf all DATA symbols are

available.

The receiver is considered to be real-time capable if theqasing time of the constant
part is below 40 s and if FEP, Deinterleaver and Channel Decoder take less8tha per
OFDM symbol when performing the DATA eld detection.

3.5.2 Resource Consumption Results obtained with libembb

The emulation prototype of the IEEE 802.11p receiver givestinsight in the resource con-
sumption of the different DSPs with the aim to answer theofeihg questions:

1. Which DSP is used most of the time?
2. How much processing time is required for DMA transfers?

3. Considering only the processing time, can the receivexbeuted in real-time on the plat-
form? If not, where are the bottlenecks?

4. Would it be possible to execute the receiver together wtitler transceivers? If not, where
are the bottlenecks?

Thanks to the emulation environment libembb, these resaltsalready be obtained at an early
design stage and allow an easy improvement of the standani@érimentation in a pure software
environment.

First results of the IEEE 802.11p receiver have already Ipeesented in [2] but since then the
design has further been optimized. Basically, the prongssine of the receiver without consid-
ering the communication overhead can be split into two pdifsbusy time of the DSPs and (2)
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dead time. The latter is the time when no new receiver taskbeascheduled as the end of the
Preprocessor acquisition cycle is not yet reached. Forimaital processing, the dead time is of
major importance as during these time slots tasks of anatia@dard can be scheduled without
decreasing the performance of the blocked one.

For our receiver we assumed that the Preprocessor collé8ts@nplex samples before they are
transmitted to the FEP. This corresponds to an acquisityote @uration of 64 s. In case the
beginning of the packet corresponds to the rst sample inGédh@ sample window, the constant
part and three DATA OFDM symbols can be processed till theesy$as to wait for the next sam-
ples. There are two options to identify the time slot avddab process another standard. Either
to validate all possible scenarios for the 640 sample windote rely on an earliest deadline rst
policy. The rstis not an appropriate approach as the evalnaf all possible scenarios is a very
time consuming procedure. Furthermore the results have t@worked completely in case the
reference frequency is modi ed. An example analysis udmigmethod has been illustrated in the
Deliverable D2.4 of the PLATA project. In case of the eatlidsadline rst policy, the deadline
should be based not on every operation but on a group of épesatSuitable groups for IEEE
802.11p are the constant part and the OFDM symbol groupsedD&ATA eld. This means that
the processing of the constant part has to be nished within gwhile the size of the time slot
available for the DATA eld detection depends on the grougeghat is set dynamically at runtime.

Table 3.12 illustrates the execution and the memcopy runfonthe constant part for the applied
frequency of 100 MHz. All times represent the busy times efI§Ps meaning that DMA trans-
fers between the DSPs are considered twice as both DSPssyr@lming that time. Applying a
higher frequency than the chosen one (e.g. 1/2 faster) weasldt in a reduced processing time of
1/2 as no communication overhead is considered in this xbn&e results in the table illustrate
that the total processing time is far below the available 40 So around 25 s are left for the
communication with the main CPU.

Task DSP | memcopy total
energy detection 1.40 s 0.11 s| 151 s
packet synchronization] 5.65 s 0.11 s| 5.76 s
channel estimation 0.82 s -1082 s
Signal Field (FEP) 1.69 s 194 s| 3.63 s
Signal Field (DEINTL)| 0.64 s 0.98 s| 162 s
Signal Field (CHDEC)| 0.64 s 0.63 s| 1.27 s

Table 3.12: Task Runtime for the DSP Engines - Constant Part

In Fig. 3.9 illustrates the distribution of the processiimye over the different resources. The FEP
is required most of the time, followed by the DMA transferstba baseband side. Deinterleaver
and Channel Decoder operate only on vectors with a size cid®kes and thus need only a small
amount of the overall processing time.

For the DATA eld detection, the actual processing time degseon the modulation scheme, the
code rate, the symbol grouping and the number of symbolstet in the eld Nsym. Table 3.13
lists the different processing times for a group size of B value) and a group size of 8 (second
value) for the different modulation schemes and code ré&testhe latter, the average processing
time per symbol is given. It can be seen that the FEP and thet&kiaver execute their tasks
within the required 8 s while for 64-QAM with code rate 3/4 this is almost not pogsit5o we
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see already at this step that either an optimization of then@&l Decoder or a higher frequency

is necessary (when applying a frequency of 133 MHz, the rements are ful lled for all DSP
engines).

FEP DEINTL

68% 5% memcopy leon 8%
memcopy baseband 14% LEON3
CHDEC

5%

Figure 3.9: Runtime Distribution - Constant Part

DSP BPSK BPSK QPSK QPSK
rate 1/2 rate3/4 rate 1/2 rate 3/4
FEP 3.07 s/256 s| 3.07 s/256 s| 3.15 s/2.64 s| 3.15 s/2.64 s

DEINTL | 1.62 s/0.85 s | 195 s/1.184 s| 2.28 s/151 s| 294 s/2.17 s
CHDEC | 1.27 s/092 s| 176 s/1.36 s| 2.14 s/1.79 s| 3.01 s/2.66 s

DSP 16-QAM 16-QAM 64-QAM 64-QAM

rate 1/2 rate 3/4 rate 2/3 rate 3/4
FEP (init) 2.67 s 2.67 s 3.18 s 3.18 s
FEP 484 s/3.83 s| 484 s/2.83 s| 653 s/502 s| 653 s/502 s

DEINTL | 4.08 s/2.17 s 54 s/442 s| 7.12 s/593 s| 7.78 s/6.59 s
CHDEC | 3.88 s/353 s| 562 s/527 s| 7.36 s/7.01 s| 823 s/8.01 s

Table 3.13: Task Runtime for DSP Engines (including memgpey DATA OFDM Symbol

The results in the following present the runtime distribatfor the minimum and the maximum
group size. For the Deinterleaver processing, the worst saassumed when the permutation
table is copied from the VCI RAM into the Deinterleaver MSS$ &ach DATA symbol group.
This effect mainly occurs for short packet lengths wheregtmip size is not always constant
while for a long packet length it can be assumed, that the pition table is copied only three
times (in worst case): for the rst/ last group and for the eénng groups with the length of the
max group size. Not copying the permutation table reducestisy time of the Deinterleaver by
around 17 %.

Fig. 3.10 and Fig. 3.11 show the runtime distribution resfdt the minimum case (BPSK, coding
rate 1/2) and the maximum case (64-QAM, coding rate 3/4).I1&\fbr BPSK the FEP takes most
of the resources, it is the Deinterleaver for 64-QAM. Thesacgefor that can be found in the longer
permutation table required for 64-QAM. Recalling Table, 3t number of data bits per symbol,
Ndbps is 24 for the BPSK example and 216 for the 64-QAM example teguin permutation
table lengths of 48 and 512 entries for a group size of one. ré&sdts further illustrate that the
resource distribution is almost similar for the two differgroup sizes. But this will change most
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probably once the communication overhead is consideredetls What changes already is the
overall processing time that has been reduced by 17 % for Bittskby 13 % for 16-QAM per
group. It is worth to mention, that the results of these guaee based on a sequential processing
#ow. The possible parallelism of the different DSPs is notstdered yet.

When changing the overall packet length and thus the humbeAGA OFDM symbols in the
DATA eld, the processing time depends on the size of the gsouf Nsym is a multiple of eight,
the overall processing time is achieved by multiplying theven results by eight. The percentage
values will not change. INsyn can be splitin groups of eight plus a group with size x, thealve
processing time will be eigth times the values related tocagrof eight plus the values for the
group X. The probability of a percentages change will depemdhe overall size of the packet
but in any case the percentage values will be between thellivstrated cases in Fig. 3.10 and
Fig. 3.11.

FEP
34%

memcopy baseband 28%

DEINTL
13%

memcopy leon 12%

(a) BPSK, coding rate 1/2

FEP
19%

i

memcopy baseband 12%

DEINTL
35%

memcopy leon 14 %

(b) 64-QAM, coding rate 3/4

Figure 3.10: Runtime Distribution - Data Field (group siz&)=
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35%

memcopy baseband 24%

DEINTL
12%
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FEP
17%

memcopy baseband 10%

DEINTL
34%

memcopy leon 17%

(a) BPSK, coding rate 1/2 (b) 64-QAM, coding rate 3/4

Figure 3.11: Runtime Distribution - Data Field (group siz8)=

3.5.2.1 Case Study: Multi-Standard Processing of IEEE 8021p and ETSI DAB
A) Motivation

The combination of C2X communication (IEEE 802.11p) and GPEformation (ETSI DAB

[44]) brings not only safety but also commercial bene tsalyinable use cases of the latter are for
example entertainment and comfort applications like lodf@rmation about restaurants, internet
in the car, TV, etc. The standards supporting these newcagtiains are less latency critical and
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reliability is not of such importance than for safety apations.

The ETSI DAB standard used for TPEG information has beenldpgd between 1987 and 2000.
Although the standard was not very successful at the begintie work on it has been restarted
in Germany in 2011 in the context of DAB+. The aim is to develgpapplications that can reuse

the already existing infrastructure.

The necessary scheduling of IEEE 802.11p and DAB includiegésource management for mul-
timodal processing is still an open research topic. Forréeon there is not so many information
available yet. In a recent paper ([71]), an SDR control fraork to provide the required co-
existence services and necessary interface was presentéeiframework is based on an SDR
technology demonstrator presented in [72]. The goals efdemonstrator are manifold. It is not
only used to prove that different wireless communicati@ndards can be dynamically installed
or started but also that they can run in a coordinate fasHibis means that all standards are real-
time compliant and that the hardware resources can be stmagdef cient manner. In [71], the
presented scheduling is performed by putting the operaéiquest from the standards into a com-
mon timeline which is executed in small slices that are dadleheduling windowTheir selection

is not static as it depends on the number of active channeishvate the wireless communica-
tion standards to be processed in parallel. Further theyifgidhree different types of scheduling
tasks:

A rigid operation is an individual operation whose time slot has a xed stad and time.
Their length does not exceed the scheduling window and tifierelt operations do not
depend on each other.

A set of multiple rigid operations that have boolean reladidike and or or are called
lexible operations. As an example they mention a primary uplink/downlink slair gTXxX1
+ RX1) which is followed by two backup slot pairs as appliedifstance in Bluetooth.

The last type of scheduling tasks @e@ntinuous operationswhich may exceed the window
length. So they have to be scheduled piecewise.

The work presented in this context is based on the rst typscbkduling tasks.
B) ETSI DAB Receiver Mapping on the ExpressMIMO Platform

The DAB [44] prototype has been developed at BMW and TUM arsbeently been presented in
[73]. The standard de nes four different transmission nmeodéiere mode | is the most commonly
used. Table 3.14 lists the modulation parameters for thbegppansmission mode I. In contrast
to IEEE 802.11p, DAB is a frame based standard where eaclefra® a duration of 96 ms.

Parameter Value

frame duration 96ms, 76 Symbols
symbol duration (total, useful, guard)1.246ms, 1ms, 246us
null symbol duration 1297ms

transmission bandwidth 1.536 MHz

OFDM type 2048-FFT, 1536 used
modulation D-QPSK

bitrate 2.4 Mbps

Table 3.14: ETSI DAB Speci cation: Transmission mode |
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The DAB frame structure is shown in Fig. 3.12. Each frame hasgth of 96 ms and consists of
a Synchronization Channel (SC), a Fast Information Cha(ii€l) and a Main Service Channel
(MSC). While the SC is required for basic demodulator fumtdi (transmission frame synchro-
nization,...) the FIC is needed for a fast information as@®l contains information on the MSC
data such as labels, type, length or protection level. Bmsmission mode | it is composed of 12
Fast Information Blocks (FIB), each with a size of 256 bit.ddaand data service components are
carried by the MSC. For transmission mode | it is build of 4 @oom Interleaved Frames (CIF)
where each CIF is composed of 864 so-called capacity urdtshtve a size of 64 bits.

Synchronization Fast"Information Main"Service
Channel Channel Channel
| | |
| | |
1 1 1
] FIB1 I lFIBlZ| CIF1| | CIF4’

Figure 3.12: ETSI DAB Frame

The basic DAB receiver structure is sketched below. Goitgtimo much details would go beyond
the scope of this report. For more details about the diftemigorithms please refer to [74].

1. To lock to the DAB signal, an initial time synchronizati¢8Tl) and a coarse and ne
frequency estimation (SFC, SFF) are performed. STI is @recanly once by using a
sliding window. Goal is to nd the zeros that are separating different frames. All these
operations can be performed by the FEP, except the slidingowi operation to determine
the actual start of the frame and thictan to nd the actual frequency offset which are in
the responsibility of the main CPU.

2. Once the synchronization is performed, changes causeyydtgm variations have to be
tracked. This is done by tracking time (TTI) and ne frequgméfset (TFF). These opera-
tions are performed by the FEP as well, except for the detertion of the frame start the
actual frequency offset.

3. Next the ne frequency is corrected based on the estimdiX)and the OFDM symbols
are demodulated (FFT, DEM). The DAB OFDM symbol consistsk#@.active carriers and
is modulated using DQPSK (differential QPSK). For DQPSK dduiation, the carriers of
the current OFDM symbol are just multiplied with the casi@f the previous one. The
OFDM demodulation (FFT) is thus performed using a 2048-DF¢r. both operations the
FEP is needed.

4. For frequency deinterleaving (FDI) which is performe@ioone OFDM symbol the Dein-
terleaver is taken. Instead, the time deinterleaving tacedhe fading channel effects runs
on the main CPU. The reason for that is that this operatiorr®pmmed over the span of sev-
eral frames (total depth of 384 ms). This size does not t thsMSS of the Deinterleaver.
The time deinterleaver is not needed when decoding the FIC.

5. Unpuncturing (PNT) is performed by the Deinterleaver. BDdupports a wide range of
different code rates between 8/9 and 1/4.

6. For Viterbi Decoding (VIT), the Channel Decoder DSP isuiegd. The constraint length is
7 and 8 bit for soft decision are used.
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7. Finally, energy dispersal (EDI), audio decoding (MP2) #me extraction of additional in-
formation from the FIC are done in the main CPU. EDI is perfedniy the XOR of the
current sequence with a pre-de ned pseudo-random one.

To simplify the DAB receiver implementation we enhancedabditional layer called
expressmimo_emu that has previously been presented by the missing DAB fonstiThe run-
time results can be seen in Table 3.15. As the FEP memory iietino 4x4 kSamples, the FEP
context has to be saved and restored several times in the DPR2 control side. Fig. 3.13 illus-
trates the runtime distribution for one DAB frame of 96 ms. dtlof the processing resources are
due to the memcopy operations between the baseband engitiegeaDDR2. The overall process-
ing time is about 8.22 ms and the longest single DSP call foamé of 96 ms is a Deinterleaver
task of 1.23 ms. So there are a lot of resources for IEEE 8p24dsks available.

Task DSP Memcopy total

SFF 0.1 ms (17.2%)| 0.48 ms (82.8%) 0.58 ms
STI 0.33 ms (9.2%) 3.26 ms (90.8%) 3.59 ms
SFC | 0.3ms (21.6%) 1.09 ms (78.4%) 1.39 ms
TTI 1.06 ms (18.1%) 4.80 ms (81.9%) 5.86 ms
TFF | 1.60 ms (13.0%) 10.7 ms (87.0%) 12.3 ms
FFT | 2.54 ms (25.5%) 7.43 ms (74.5%) 9.97 ms
DEM | 2.95 ms (14.3%) 17.6 ms (85.7%) 20.6 ms
FDI | 4.37 ms (18.6%) 19.1 ms (81.4%) 23.5 ms
PNT | 6.08 ms (56.8%) 4.65 ms (43.2%) 10.7 ms
VIT 1.52 ms (24.6%) 4.65 ms (75.4%) 6.17 ms

Table 3.15:; Task Runtime for DSP Engines and Memcopy for @mi®d of Audio Data

FEP DEINTL

11% 12% memcopy leon 73%
memcopy baseband 0% LEON3
CHDEC

4%

Figure 3.13: DAB Runtime Distribution for 1 DAB Frame (96 ms)

C) Runtime Distribution Comparison of ETSI DAB and IEEE 802.11p

The differences between the two standards are listed ineTaldl6. While the DAB receiver

is operating on long vectors and has no latency requirem&BEE 802.11p needs a very fast
baseband engine to ful Il the strict latency requirementse critical DSP in the design is the FEP.
Although Deinterleaver and Channel Decoder also requiie gome resources to process both
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standards, usual tasks to be scheduled comprise only omatiope Instead, the FEP processing
is split in a lot of different tasks that can be grouped to roamperations like channel estimation
or data detection. The FEP DAB runtime distribution for arfeaof 96 ms is given in Table 3.17.
Most of the tasks are vector processing operations, thabeaplit easily at runtime if necessary.
Critical are the DFT / IDFT operations requiring a procegdime of 9.493 s. A major challenge
processing the two standards simultaneously is that thedsdér has to ensure, that these 27
operations can be scheduled without causing problemsédirtting of the IEEE 802.11p receiver.

ETSI DAB IEEE 802.11p

frame based standard packet oriented standard

2048-OFDM 64-OFDM

OFDM symbol duration of 1 ms | OFDM symbol duration of 64 s

DAB frame duration of 96 ms variable packet length (between 48 and 10.968 ms)

deterministic timing and processingprocessing time depends on packet size
modulation scheme, interarrival time

Table 3.16: Comparison of ETSI DAB and IEEE 802.11p

Duration | Number of Calls
0.113 s 443
1.813 s 10
3.520 s 15
6.933 s 42
9.493 s 27
13.760 s 15

Table 3.17: FEP DAB Runtime Distribution for one Frame (9§ ms

Table 3.17 illustrates the FEP runtime distribution for EBEE 802.11p receiver. The group size,
denoted by N, strongly in#uences the number of tasks to bedsitd. Taking the worst case
example of BPSK with a code rate of 1/2, the number of DATA OFByhbols is 1366. For a
group size of one, there are 2740 operations a 0s4®ut for a group size of eight (plus one group
with a size of six), this can be reduced to 1376 operationsagzoing Table 3.16 with Table 3.17
it can be seen, that all entries in the IEEE 802.11p tableraadlar than the second entry in the
DAB table. To avoid a permanent scheduling of IEEE 802.1%kdat is therefore recommended
to group the FEP functions into execution groups. For theanfedeaver and the Channel Decoder
grouping of commands is only of interest when the DSP comneamdoe combined with DMA
transfers.

Duration | const. part | init 16-QAM | init 64-QAM | BPSK/QPSK | 16-QAM | 64-QAM
0.39 s 2 N N N
0.43 s 3 2 3 2 5 8
0.44 s 1 N N N
1.39 s 1
14 s 2
143 s 2

Table 3.18: FEP Runtime Distribution IEEE 802.11p
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D) Presentation of a Possible Scheduling on the ExpressMIM®latform

The scheduler being developed for the ExpressMIMO plattoasto be able to cope with different
wireless communication standards that may have contréendg requirements. Challenging in
our case is the real-time processing of IEEE 802.11p despitke simultaneous processing of
DAB. Reconsidering the presented results, not much timeftsfér DAB FEP tasks once the
beginning of a packet has been detected. Furthermore thkesbbeduling is unpredictable as
the arrival time of the next IEEE 802.11p packet is not knowadvance.

The main goal of the scheduler is to keep the invoked DSPs tmasy of the time to achieve the
best cost-performance relation. Factors to be consideheshwesigning the scheduler are (1) the
data dependencies for both standards, (2) the processiagfithe tasks to be scheduled and (3)
the available memory space to avoid unnecessary memcopstgpes. For (3) it is important to
group IEEE 802.11p operations in so-calledecution Groupshat comprise all the operations
that have to be scheduled at once. To recall, possible graipbe the constant part of the packet
and the different groups of the DATA eld. In addition the DARsign has to make sure, that after
each group, the DAB can use the resource it asked for witlomsirhg any information. For the
FEP, this is not a big problem. The MSS of the FEP is organiaddur different banks of same
size. While the IEEE 802.11p receiver uses all four banksDAB requires only three out of the
four banks for its processing. So all known values, like #ference STS, as well as the circular
buffer of the incoming samples of the IEEE 802.11p receiaerlwe stored in this unused memory
bank.

Another challenge is that the scheduler has to be able taeehlinamically at runtime how to
copy the data samples from one DSP to another. In case th®B8&xis busy, the samples have to
be stored into the VCI RAM to unblock the just executed DSRiiernext task. If the next DSP
is not busy, the samples can be copied directly (Fig. 3.14).

receiver'l ’vci2chdec | chdec | chdec2deintl | deintl | deintl2v4i

receiver'2 ’ vci2fep | fep | fep2vci | |vci2chdec | chdec ‘

Figure 3.14: Flexible Memcopy Scheduling at Runtime

When scheduling DAB FEP tasks it is recommended to split timonsmaller operations to guar-
antee the real-time behavior of the IEEE 802.11p receimasrder to avoid unnecessary memcopy
operations, the scheduler has to decide dynamically aimerif a splitting of vector operations is
necessary or not. The only operations that are not splih@er®AB DFT / IDFT operations which
take 9.493 s. To ensure a high performance of both standards we thersfoommend to add a
separate DFT / IDFT unit in the design.

For DAB, the long Deinterleaver tasks are only executed ftiome to time. In case IEEE 802.11p
requires the same resource, its samples have to be buffetied YClI RAM and executed at once
as soon as the DAB Deinterleaver task is nished. To do so tBe Ean already continue pro-
cessing without being blocked till the IEEE 802.11p sampkas be copied. The same is applied
for the Channel Decoder. It is obvious that this only workth# main scheduler knows exactly
at runtime how many data symbol groups are stored in the VQVIRA that it can program the
Deinterleaver and the Channel Decoder accordingly.

Within our collaborative work, a rst scheduler has been liempented and tested in a software
environment only. Nevertheless we enhance the followingimentation for the hardware pro-
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cessing.

Both receivers are single-threaded. The parallelism ofiifierent DSPs on hardware is realized
within the execution groups by programming the differentF3Susing a Round Robin sched-
uler. Each receiver task to be scheduled contains a #aggtdtihe task isblocking  or
unblocking . Blocking operations occur only within an execution groum atate, that the
scheduler is not allowed to give the DSP to another applinatht the end of the execution group,
the #ag is set to unblocking to force the next action by theedaler. The scheduling queues of
the DSPs and the DMA engines have therefore a depth of onlycomenand. We still have to
include the deadlines of the macro operations. They have fwrdvided with the rst command
of an execution group and should represent the availableepsing time of the whole group and
not of single tasks.

When applying a distributed control #ow in the future, ité&commended to execute the content
of the execution groups on the baseband side. In this caseydin CPU would only take care of
the main scheduling of the execution groups and not of sitagles.

3.5.3 Runtime Performance Analysis - Hardware Results

The hardware results have been obtained via a cycle acddvst&W co-simulation using Mod-
elsim. Besides the processing time that we already anaiyzth@ previous section, the presented
results now include the communication overhead when aaewd control #ow is applied and
exploit a parallel processing of the different DSP enginethe ExpressMIMO platform.

The communication overhead can be observed when none of $is 3 busy. By evaluating
the relation between this factor and the processing timb®TiSPs, clear statements about the
receiver performance can be made.

3.5.3.1 Constant Part

Table 3.19 lists the DSP processing time and the commuaicatierhead for the different algo-
rithms implemented for the constant part. These are enatgction, packet synchronization, the
calculation of the channel estimate and the SIGNAL eld déts. The communication overhead
of the rst two entries contains the programming time of tiee@tions as well as the value com-
parison to a known threshold in the main CPU or, more spellycthe LEON3 processor. The
latter takes 350 ns once the result stored in the FEP MSS leaiscopied to LEONS.

The SIGNAL eld detection requires three different DSP evas: FEP, Deinterleaver and Chan-
nel Decoder. The busy times including the DMA transfers amaraarized in Table 3.19. The
DMA transfer of the results between the DSPs are therefansidered twice (once per affected
DSP) meaning that sum of the busy times does not correspahé taverall DSP processing time
of the SIGNAL eld. The additional communication time regeil for the FEP processing is re-
lated to the channel compensation algorithm where thetre$uhe FEP sum operation has to
be transformed into a complex 32 bit value in LEON3. Durinig time, the FEP should not be
interrupted by another task. Furthermore, the calculatifaine parameters needed for the DATA
eld detection (number of DATA OFDM symbols, code rate,refjuires an additional processing
time of 2.74 s.

To sum up, the overall processing time of the constant padait 23 s plus the time required
for an internal DMA transfer in the FEP MSS due to some interestrictions. This additional
processing time may vary and causes an additional worstrasessing overhead of 2& when
using the internal FEP DMA engine but can be reduced to 6.&hen using the MOV operation
of the FEP instead. Not considering this variable transfiee tonly 40% of the Signal Field pro-
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cessing time is required by the communication overheads \due is still not optimum but can
only be decreased by a distributed control #ow on the platfor

total proc. time | DSP proc time | communication overhead
Energy Detection 2.82 s | 1.51 s(53.5%) 1.31 s(46.5%)
Synchronization 8.01 s | 5.76 s(71.9%) 2.25 s(28.1%)
Calculation 1.65 s | 0.82 s(49.7%) 0.83 s (50.3%)
Channel Estimate
Signal Field 11.64 s | 5.26 s (45.2%) 6.38 s (54.8%)

Table 3.19: Runtime Performance Results

DSP proc time | communication overhead
FEP 2.99 s (58.3%) 2.14 s (41.7%)
DEINTL 162 s -
CHDEC 1.27 s -

Table 3.20: DSP Busy Times (Constant Part) including the DMansfers between the DSPs

3.5.3.2 Variable Part (DATA Field)

The FEP operations of each DATA eld OFDM symbol comprise taain tasks: channel com-
pensation and data detection. The average processing siraeftanction of the group size for
the data detection is illustrated in Fig. 3.15. BPSK and QR&Knot listed, as the result of the
channel compensation can directly serve as input for thatBdeaver. For 64-QAM, the com-
putation of the remaining bits results in a higher processime of the FEP than for 16-QAM as
two more bits have to be calculated. Furthermore it can bergbd, that for an increasing group
size, a boundary value is reached which is equal to the pweepsing time of the DSP plus the
communication overhead plus some delays due to the schedule

Fig. 3.16 illustrates the performance loss when applyingbarid Robin scheduler. For that the
average processing time of the Deinterleaver for 16-QAMitcode rate of 3/4 is given. The
dotted curve represents the ideal case where tasks of tharEte Deinterleaver are scheduled
instantaneously while the other curve shows the resultsnatfeRound Robin scheduler is applied.
Finally Fig. 3.17 and Fig. 3.18 illustrate the overall presiag time including the DMA transfers
of the DATA symbols for the FEP and the Deinterleaver. As eige BPSK and QPSK perform
best as onlyRy.n has to be copied from the FEP to the Deinterleaver. A cené@dlcontrol #ow
is possible for BPSK, QPSK and 16-QAM as the processing tifiieeorequired DSP engines is
below 8 s which corresponds to the duration of one OFDM symbol.

More detailed results concerning the DSP processing tirdel@communication overhead for a
group size of eight are given in Table 3.21 and Table 3.22 th&FEP, the DSP processing time
takes between 40.1% and 56.03%. Best performs 64-QAM aglthigamal operations related to
the data detection can be programmed while the FEP is busis dily the DSP processing time
increases while the additional communication overheadnesralmost unchanged. For the Dein-
terleaver, the processing time takes between 52.41% aid@%6.The highest value is achieved
for 64-QAM with a code rate of 3/4 as the Deinterleaver operain the largest possible vector in
this design with a size of 8*432 samples.
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Figure 3.15: Average Processing Time Data Detection

Figure 3.16: Round Robin Scheduler for 16-QAM
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Figure 3.17: Average FEP Processing Time

Figure 3.18: Average Deinterleaver Processing Time
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total proc. time DSP proc time | communication overhead
BPSK 50.62 s| 20.5 s(40.5%) 30.12 s (59.5%)
QPSK 51.26 s | 21.14 s (41.2%) 30.12 s (58.8%)
16-QAM 61.74 s | 30.67 s(49.7%) 31.07 s (50.3%)
64-QAM 71.75 s| 40.2 s(56.0%) 31.55 s(44.0%)

Table 3.21: FEP Busy Times DATA Field (group size of eight)

total proc. time DSP proc time | communication overhead
BPSK (1/2) 116 s| 6.08 s (52.4%) 552 s (47.6%)
BPSK (3/4) 1461 s| 8.48 s(58.0%) 6.13 s (42.0%)
QPSK (1/2) 16.36 s | 10.88 s (66.5%) 5.48 s(33.5%)
QPSK (3/4) 25.14 s | 15.68 s (62.4%) 9.46 s (37.6%)
16-QAM (1/2) 30.96 s | 22.64 s(73.1%) 8.32 s(26.9%)
16-QAM (3/4) 40.24 s | 32.24 s (80.1%) 8 s(19.9%)
64-QAM (2/3) 52.15 s | 43.36 s (83.1%) 8.79 s (16.9%)
64-QAM (3/4) 55.51 s | 48.16 s (86.8%) 7.35 s(13.2%)

Table 3.22: Deinterleaver Busy Times DATA Field (group ssteight)

3.6 Conclusions

In this chapter, we have presented a rst receiver protofgp¢he ExpressMIMO platform. Cho-
sen standard was IEEE 802.11p that is used for C2C and C2I ooination. Its short data sets
and strong latency requirements made these standard dnrigtease case to identify possible
bottlenecks in the design. The different implementatiarctirrent version of the ExpressMIMO
platform considering an FPGA target included a Matlab gyqe, an emulation prototype using
libembb and the prototype running on the real hardware.

Based on the obtained results we can state

that the IEEE 802.11p receiver can be executed in real-imBPSK, QPSK and 16-QAM.
Assuming a higher target frequency like it is automatic#tly case when ASICs are con-
sidered, 64-QAM is real-time compliant as well.

that a further reduction of the communication overhead céylme achieved by a distributed
control low using the UC or by a microprocessor or sequencethe baseband side.

that polling is the preferable solution to determine the ehthe DSP processing when
working with a standard with short data sets

that commands have to be prepared for latency critical staisd For standards with long
data sets like DAB or LTE, the real-time behavior is still tgarteed even if this recommen-
dation is not considered. When processing a vector operatier a size of 4096 samples,
for instance, the required processing time would be aboutWhile the programming
time of the DSP stays at a maximum of 360 ns.

that further improvements of the FEP have to include a !exiblpe choice of the sum
operation.
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Apart from that this chapter presented a possible mappinbeoDAB standard on the Express-
MIMO platform. The results obtained using the libembb ligraave been compared to the IEEE
802.11p receiver results to get basic key gures that areoitapt for the design of an appropri-
ate scheduling algorithm. As critical DSP engine we havatided the FEP. Although it is not
the computationally most intensive DSP, it has to executstmbthe tasks including the latency
critical ones. Therefore we strongly recommend either &fasd further improved design or the
including of a second FEP in the baseband design. Based qumdligled key gures we further
derived guidelines for an appropriate scheduler and haagepted a rst prototype.
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Chapter 4

ASIP Design for Front-End Processing

One of the key DSP engines on the ExpressMIMO platform isrv@-End Processor (FEP). To
overcome performance limitations of the FPGA target wherteting standards with short data
sets as identi®ed in the previous chapter, we replaced tttervarocessing unit of the manually
designed programmable solution by a tool-based ASIP defigrdevelopment, the Language for
Instruction-Set Architectures (LISA) that has gained cemwial acceptance over the past years
has been chosen.

To evaluate the proposed ASIP, it is compared to the prograioherDSP solution as well as to two
recent ASIPs from academia. The thorough comparison betiesn is carried out in terms of
architectural differences and in terms of the runtime parfance. For the latter, the processing
time based on the actual cycle counts as well as the comntioniaaverhead on the ExpressMIMO
platform is considered. In addition, we provide syntheswuits for different target technologies.

4.1 Motivation

To recall Chapter 2.3.2.2, the FEP has been designed asécgenst-end for OFDM/A (Orthog-
onal Frequency Division Multiplexing / Multiple Access)CS-DMA (Single Carrier FDMA), W-
CDMA (Wideband Code Division Multiple Access) and SDMA (8paDivision Multiple Access)
air-interface operations. For the evaluation of the IEEE.80p standard, we considered a pro-
grammable DSP solution which is denotedG&EPin the following. This DSP is composed of
a vector processing unit combined with a DFT / IDFT unit. la firevious chapter, we identi ed
the need for a second FEP block or for an additional DFT / IDRiT to increase the performance
especially when processing standards with short data Bkt drawback of the design was the
huge communication overhead that leaded to a signi carfopmance drop. It is worth to note,
that these limitations are related to the FPGA target andadte nal ASIC one. For the re-
design of the FEP we took the chance to collaborate with RWHdh&n University (Germany)
to evaluate the ASIP design methodology for ExpressMIM@@ien design. Another aim of our
collaboration was to overcome the C-FEP drawbacks for vegeration processing by removing
the DFT / IDFT unit from the standardized DSP shell and byaeiply the vector processing unit
by an ASIP solution called-FEP. Following this approach, the A-FEP can easily be embedded
in the baseband processing engine of the ExpressMIMO ptatémd FEP tasks can be split and
scheduled on the two FEP solutions simultaneously. Fogdesialuation, the A-FEP is not only
compared to the C-FEP but also to other ASIP solutions froad@mia in terms of architectural
differences and processing time.
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But where is the main advantage of ASIPs when compared ta ¢dcbnologies? Important
factors to be considered for SDR platform design are areapamger consumption as well as
the production costs. Major goal is to decrease the areacamidrtimize the power as much as
possible by maintaining the performance. In [75], a detiadeerview of the different System on
Chip (SoC) implementation techniques is provided. Teabgiek of interest are

General Purpose Processorghat can be divided into two categories, GPP proper for gen-
eral purpose applications and microcontrollers for indalsapplications.

Digital Signal Processorwhich are a subcategory of Application Speci ¢ Processd P
DSPs are programmable microprocessors used for extensiverital real-time applica-
tions that are specialized for the digital signal processiomain.

Application Speci ¢ Integrated Circuits which are also a subcategory of ASPs. They
are implemented in hardware, usually with a Hardware Dptori Language (HDL) like
VHDL or Verilog.

Application Speci ¢ Instruction-set Processorswhich are a subcategory of ASPs as well.
They can be seen as a class of microprocessors coming witbcéakped Instruction-Set
Architecture (ISA).

The authors conclude, that ASIPs, tend to be suitable catedichs they are meant to Il the gap
between GPPs and ASICs. Being tailored to a speci ¢ apjinaASIPs offer a higher !exibility
than ASICs by exhibiting a lower energy consumption than &S®HDSPs at the same time. Or in
other words, ASIPs allow to tradeoff the performance of AS#Qainst the !exibility of GPPs.

By additionally taking the advantage of high level tool® titototyping is facilitated whereas the
generated design is not hardware optimized and may not t#éuwcated resource (e.g. FPGA).
On the other side, VHDL allows a resource-ef cient FPGA dasalthough the implementation
requires a lot of time and resources. This drawback is oveecby tools like System Generator
from Synopsis which speed up the VHDL design process by aleigd block design and by the
support of fast design modi cations.

4.1.1 Related Work

During the past years, lots of different solutions for !eelfront-end processing as well as dif-
ferent ASIP design approaches and architectures have beposed. The work presented in this
section does not demand to be complete but shall give anievenf these different strategies.
Usually, ASIP architectures are evaluated in terms of feegy, area, power consumption and
the number of Millions of Operations or Instructions Per@et(MOPS / MIPS). Unfortunately,
the latter does not provide any information about the prsiogstime of the different air-interface
operations like channel estimation or data detection. &fbes we opted for the processing time
based on the cycle counts. Two recent ASIP solutions pnogitliis information are the ASIPs
developed by ETH Zirich [76] and by the Cairo University [.7&¥ these two solutions are mainly
considered for comparison in the remainder of this chaptéetailed architectural description is
provided at the end of this section.
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4.1.1.1 Front-End Processing Solutions

For the design of !exible front-end processing, [23] and][A&ve endorsed the ef ciency of a

vector processing unit combined with SIMD operations. 8iltgh a higher performance can be
obtained by exploiting instruction level parallelism usMLIWS or by task level parallelism.

In Chapter 2.2 an overview of commercial and academic SDRopfa solutions has been pro-

vided, where !exible front-end processing was supporte@byiD and VLIW designs. Examples

that have already mentioned comprise the EVP provided byrig3$6on [79] which is a key DSP

engine for 3G+/4G applications on low-power terminal amttures, the Systemonic HiperSonicl
[24], the Freescale MSC8156 high-performance DSP [25] badSandbridge SB3011 Platform
[26].

Further solutions to be mentioned are

C66x Baseband DSPThe C66x Baseband DSP is provided by Texas Instruments [8D] a
supports 2-way SIMD operations for 16 bit data and 4-way Sidfierations for 8 bit data.
The instructions are based on 128 bit vectors.

SODA (Signal-Processor On-Demand Architecture) SODA [81] is a fully programmable
SDR architecture that consists of multiple processingiest{PE), a scalar control proces-
sor and a global scratch-pad memory that are all connected shared bus. The design
of each PE includes an SIMD vector processing pipeline, a Digine, a scalar and an
AGU pipeline as well as local memories. The architecturaiithbr composed of an ARM
Cortex-M3 processor being responsible for top level taskswell as a system bus that
connects a global memory and four different processing efgésnwhere the latter support
data-level parallelism. Achieved performance is 2 Mbit's\WW-CDMA and 24 Mbit/s for
IEEE 802.11a (including Viterbi decoding).

ADRES: ADRES [82] is a coarse-grained recon gurable processdrdiaports instruction-
level parallelism by tight coupled VLIW instructions. lwsmplate consists of a set of dif-
ferent basic components whose types and interconnectierspaci ed at design time.

SAMIRA: SAMIRA [83] is based on the STA approach that has already rtemduced
in Chapter 2.2. It is a low-power high-performance !oatipgint vector DSP that supports
instruction level parallelism in a VLIW fashion. Per cyckach vector processing unit is
able to compute eight single precision !oating point operad. The whole design runs at a
frequency of 212 MHz.

RaPID: The datapath of the RaPID design consists of a variable nuntblinear array
functional units (FUs) that can be Arithmetic Logic UnitsL(8s), multipliers, registers or
storage units. They are connected via a recon gurable n&tviRurpose and quantity of the
FUs are determined at design time. In [84] a 4 antenna OFD®Ivecbased on RaPID has
been presented. Algorithms of interest in this paper armgraynchronization and the FFT
of the four receive streams. These algorithms have also toe@ped on ASIC, FPGA and
DSP targets for design comparison. Main conclusion of theepa that RaPIDs |l in the
gap between ASICs and DSPs when considering the perforrtarste relation.

Tensilica ConnX Baseband EngineTensilica [85] is one of the big industrial provider for
front-end DSPs. Its ConnX Baseband Engine [86] targets lathigpughput for OFDM and
MIMO applications and includes among others complex carti@hs for synchronization,
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FIR lters, FFT, complex vector multiplication, vector mit operations, minimum search,
support for searching and sorting functions, division apens, and so on. Basis of the
design is the Tensilica Xtensa Processor featuring SIMBungons. Per instruction, six-
teen 18 bit multiplications, eight 20 bit additions or foulr it additions may be executed
in parallel. Additionally, the baseband engine supportsekecution of three instructions
simultaneously (3-way VLIW architecture). Running at 4004%) the vector processing
performance is similar to the one of the EVP but ConnX addéity comes with !exible
SIMD processing, con gurable hardware blocks and an extémstruction-set.

Coresonic Solutions:Another big industrial provider for front-end DSP solutsois Core-
sonic. In the following, some products are presented:

— Coresonic’s LeoCore:The LeoCore ([87]) is speci cally designed for baseband pro
cessing applications. Its design is based on SIMT (Singl&runtion stream Multiple
Tasks) where parallel tasks are controlled by a singleunstm !ow. SIMT architec-
tures obtain the same performance as SIMD / VLIW ones but avgmaller program
size and a simpli ed control hardware.

— Coresonic’s BBP1 processorThe BBP1 processor ([88]) is a multi-standard base-
band processor mainly designed for WLAN standards. |tsh@awk processing core
comprises an ALU and a complex-valued MAC unit as well as da¢anories and
specialized data processing blocks that can be programtmadtane.

— Coresonic’s BBP2 processorThe BBP2 processor ([89]) is an improvement of the
BBP1 processor by enhancing the rst with the ability for tisthndard processing.
Its design includes two 4-way SIMD units operating on 16 binplex vectors. Up to
three different contexts for three different tasks are sujgol.

4.1.1.2 ASIP Design Approaches for Front-End Processing &tions

One common approach when designing ASIPs is the usage efdtiff Architecture Description
Languages (ADL). In general, these languages can be granplecee different categories ([90]):

1. Instruction-set centric languagesmainly focus on the instruction-set of the processor. As
stated in [90], they represent the programmer’s view of tichigecture and are mainly used
to describe the instruction encoding, assembly syntax ehedwuior. Examples are nML [91]
or ISDL [92].

2. Architecture centric languages mainly focus on the structural aspects for the architec-
ture. In contrast to instruction-set centric languagesy ttepresent the designer’s view.
Therefore, functional building blocks as well as intercections are used to describe the
hierarchy of the processor architecture. One example &f adanguage is MIMOLA [93].

3. Mixed instruction-set and architecture oriented language are the combination of the
two previous listed language types. Here, instructiondestription and structural aspects
are combined which leads to ADLs being able to target all iptss#\SIP domains includ-
ing architecture exploration and implementation as we#iyastem integration and software
development tool generation. Examples are EXPRESSIONgRAd]LISA [95], [96].

During the past years, lots of different ASIP solutions famt-end processing have been pro-
posed, that were designed using the presented ADLs. Sonfe @frthitectures focus only on
some air-interface algorithms while other designs arertadl to the processing of a speci ¢ group
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of standards. Examples for the rst group are [97] where dehequalization based on the TTA
approach is presented, [98] which focuses on an ASIP forredastimation, [99] which presents
an ASIP for signal detection and coarse time synchronizaiging LISA or [100] which focuses
on a lexible ASIP design for wireless communication stamidarAs a case study [100] presents
the implementation of a HSDPA / WLAN equalizer and shows thatproposed architecture is
capable to process the IEEE 802.11a standard in real-time.

One example where the processing is tailored to a speci agud standards is [101] where the
proposed ASIP supports the execution of the IEEE 802.1%adalard only.

In contrast to these ASIP solutions, the A-FEP being desigoethe ExpressMIMO platform
shall support

1. awide range of different wireless communication stadsland

2. awide range of different air-interface operations

in a multimodal fashion including MIMO reception and transsion.

Most of the presented solutions are based on RISC (Redustdidtion-Set Computer) archi-
tectures. In contrast to CISC architectures which combiitaraetic, logic and memory access
instructions in only one instruction with a variable lengtie length of the RISC instructions is
xed at design time [102]. This results in a simpli cation tife overall design process, especially
the automatic code generation. Usually, RISC processerbaged on a load-store policy using a
set of general purpose registers. Programming is realigédeoprocessor’s instruction-set that is
stored in the Program Memory (PM).

The presented A-FEP prototype is based on a RISC archigeemnl has been designed using
LISA. Compared to ADLs like nML, ISDL or EXPRESSION, LISA cas with various advan-
tages. It provides not only cycle-accurate processor nsdoiel also supports VLIW / SIMD /
MIMD (Multiple Instruction, Multiple Data) instructionds strongly C/C++ oriented so that the
language is easier to learn, supports instruction aliaamgvell as complex instruction coding
schemes and allows to determine the abstraction level girtbeessor model.

4.1.1.3 ASIP Solutions for Design Comparison

In this section, the three solutions chosen for design coisgain Chapter 4.9 are presented. The
rst ones are the two ASIP solutions developed by ETH Zirigé][which we denote aASPE A

in the following. Their architectures are based on the Age@tream Processing Engine (ASPE)
[103] which is a coarse-grained ASIP architecture beingndped for data processing. Main
advantage when compared to other solutions are the lowés based on the shortened design
time and the limited runtime recon gurability for bug xe8esides ASPE designs come with a
better performance when compared to VLIW architecturegdltiee reduced load/store overhead.
Each ASPE design is connected to a GPP taking care of theotanti of performance uncritical
tasks and includes three different building blocks whosantjty and type can be selected from a
library at design time, depending on the target application

1. Functional Units (FU) contain the arithmetic operations and can be combimé@dplement
more complex ones like CORDIC. The number of internal pigeltages is !exible and can
be chosen at design time.

2. Storage Units(SU) are used for local data storage. They are connectecetblils via a
runtime con gurable network.
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3. Sequencer Units(SEQ) control the con gurable network between FUs and SUkeyT
further support control related tasks like zero-overhemgp$ or a data dependent control
low.

The clock frequency is limited by the complex control netkwotn theory, each ASPE design
should be able to schedule concurrent accesses of SEQsRUshd herefore, the control network
becomes a major design bottleneck in case only one SEQ is used

In [76], rst a Single Input Single Output (SISO) receiveiltaed to the processing of the IEEE
802.11a standard is presented. Its ASPE A con gurationtigildel in Table 4.1.

Ressource| Quantity | Comments

SEQ 1 Program Memory (512 words a 192 bit)
- storage of the program control !ow

- storage of the 16 bit command words

FU complex-valued multiply and accumulate unit
complex-valued arithmetic logic units
SuU register le (16 registers)

input data buffer (64x32 bit)
data storage (256x32 hit)

olR| RN P

Table 4.1: ASPE A Con gurations for the IEEE 802.11a/n Reeei

In contrast, the presented 2x2 MIMO receiver is tailoredn® lEEEE 802.11n standard and en-
hances the described con guration by a second ASPE ASIPtedérsASPE B Tasks to be per-
formed on ASPE B are MMSE (Minimum Mean Square Error) estiomeand MIMO detection to
achieve a higher performance of the overall design. Theskes &@re neglected for the comparison
to the A-FEP.

The last ASIP solution chosen for comparison has been deseloy the Cairo University and was
presented in [77]. As this design only covers synchroriraéind acquisition of different OFDM
standards like HIPERLAN/2, IEEE 802.11a or LTE, it is dembésSync-ASIAn the remainder
of this chapter. The Sync-ASIP includes six 12 bit real agiddree 13 bit real multipliers, two
12 bit rounders, two 24 bit accumulators, ten 13 bit multipks and two 24 bit shifters that are
distributed over three different pipeline stages. Like &SR, it supports more complex vector
processing algorithms like CORDIC, maximum likelihood arrelation functions whereas the
maximum vector length is set to 256. This corresponds to thgimum correlation length re-
quired for IEEE 802.16e and LTE. The MSS is accessed via alsi®pU and is build of 286
word dual-port banks a 24 bit. The instruction-set of thecSASIP is composed of program !ow
instructions (conditional / unconditional jumps, move), optimized instructions to facilitate the
implementation of the synchronization tasks and vectdrussons.

The synthesis results for the presented solutions are tlosviog: For a 0.13 m CMOS target
process, the ASPE A SISO receiver con guration obtains guieecy of 160 MHz and requires a
silicon-area of 1.9 mr Instead the ASPE A MIMO receiver has been synthesized fot& Gn
CMOS target process. For a target frequency of 160 MHz theosilarea is 7.6 mf) although
the ASIP can be executed up to 250 MHz.

Synthesizing the Sync-ASIP for the same target, the olddimgiuency is 120 MHz and the area
is 1.1 mnf.
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4.1.2 Contributions

All results presented in this chapter have been obtainedliaboration with the RWTH Aachen
University (Germany). For the LISA design we used the PreaeBesigner from Synopsis (for-
mer Coware).

Throughout the collaboration, two different versions a &SIP were developed:

1. The rst version of the A-FEP, called A-FEP-V1, has beesigeed together with a col-
league and was based on the FEP speci cation he derivedgdhisnPhD thesis. We will
denote this rst C-FEP design as C-FEP-V1. Soon after theltesf our work were pre-
sented in his thesis report [37], the speci cation of the Ft&B been reworked for design
and performance improvements and some of the additionaER-¥1 features have been
included in the current design of the C-FEP. For this reasuhadso to overcome the draw-
backs of the rst design (mainly the low frequency), we opfeda second ASIP version
- although the rst version was already very lexible. In théhapter we provide a short
introduction and overview of the main results of this rst#eP version and mainly focus
on the second contribution.

2. The second contribution is a new ASIP design based on thid-B# speci cation. In con-
trast to the rst version, the A-FEP also includes generappse instructions and does not
only replace the FEP but also extends it by UC operations. Utids kept in the stan-
dardized DSP shell for the handling of DMA transfers but rtdlgorithmic processing.
Compared to the rst version of the A-FEP the second versiomeas with an enlarged
instruction-set and obtains a higher frequency.

4.2 ASIP Design Methodology

The traditional process of embedded processors desigrecgiibover four different phases [95]:

1. Architecture Exploration Phase

In this phase, the micro-architecture is xed and the irdtamn-set is de ned based on a
detailed HW/SW partitioning. There, the target applicatims to be analyzed to determine
critical operations that may require a dedicated hardwappart through specialized in-
structions. Furthermore the designer has to identify whistructions are required for pro-
cessing and how the application functionalities have to Bpped onto the chosen processor
architecture by achieving a maximum performance. The siéfiss phase are performed
in an iterative way and repeated till the best solution isithuThis is very time consuming
as every change in the architecture results in a manualigedesthe processor.

2. Architecture Implementation Phase
In this phase, the previously designed processor is tremsf in an HDL model using
languages such as VHDL or Verilog. The outcome of this phasess as input for synthesis.

3. Software Application Design Phase
In this phase different software development tools necgssgorogram the processor are
designed. These tools include C-Compiler / assembler étihdebugger / simulation tools.
In contrast to the hardware design where accuracy, resoungewer consumption are im-
portant characteristics, main goal of the software desidga obtain fast simulation models.
This results in a reimplementation of the tool-suite. Thecpss is time consuming and
comes with a high probability of consistency problems.
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4. System Integration and Veri cation Phase
In this phase, different co-simulation interfaces are tbped so that the software simulator
can be integrated in a system simulation environment. Mzations are time consuming as
the interfaces have to be changed manually in case of actumi&k changes.

The two hardware and two software phases are usually exetuparallel by different groups of
designers. This results in a potential inconsistency ofig®gns and thus in very long develop-
ment periods.

The major advantage of the LISA processor design platforthas HDL code and software de-
velopment tool generation are based on the same LISA modiehwhduces problems due to
inconsistency signi cantly. In general, the software amddware development processes are iter-
ative and are executed in parallel. Based on the functigmedisation a rst LISA description
model is implemented. Through compilation either a sofenraodel or a synthesizable hardware
model can be generated. While the rst can further be vadidiand evaluated with the help of
software development tools, the latter can be simulatedblg like Modelsim or can directly be
synthesized. Based on the results of these two design !dvesfunctional speci cation and the
LISA model are reworked. It is worth to mention, that the heack and the software !ow are an-
alyzed in parallel so that design optimizations and bug arshe LISA description level directly
in'uence both design !ows.

4.3 Front-End Processing Algorithms

The FEP has been designed to deal with the different airfatte operations at the transceiver
side including OFDM/A, SC-FDMA, W-CDMA and SDMA. The resilgy set of operations to
be executed at the transceiver side has been identi ed hdBd comprises channel estimation,
synchronization, carrier / coarse frequency offset egtonaand data detection. In [23] it has been
shown that these operations can be build from componem-westor operations and a DFT /
IDFT unit:

component-wise vector additioZ:[i] = X [i] + Y][i]

component-wise divisiorZ[i] = X [i]=Y[i]

component-wise vector produc[i] = X[i] YIi]
v = PN 1y -

dot product:X:Y = 5" X[i] YIi]

energy calculationE(X) = 2, " jX[i]j

max/min, argmax / argmin operations

DFT/IDFT

To increase the programmability and thus the !exibility betdesign, both A-FEP versions do
not contain the dot product and the energy calculation djp@isilike stated above. Instead their
computation is based on basic vector operations. An eneigylation can simply be computed
by a vector square modulus and a vector sum. Similarly, the@awluct of two vectorX [i] and

Y [i] can be computed by a component wise vector multiplicatiahaavector sum.
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4.4 First Version of the A-FEP (A-FEP-V1)

The rst version of the A-FEP (A-FEP-V1) was implemented eétiger with a colleague by the
end of his thesis. As a detailed description of our work caeaaly be found in [37] we will just
provide an overview of the architecture and the main resuiltisis section.

4.4.1 Functional Speci cation

Like it is the case for the current version of the A-FEP, th&RBP-V1 is embedded in the for-
mer version of the standardized DSP shell whose archiedsuslightly simpli ed and does not
support any command preparation. The A-FEP-V1 replacesdbior processing unit of the for-
mer C-FEP version (C-FEP-V1) which implements directlylthsic functions resulting from the
air-interface analysis. These functions are componesgwaiddition, component-wise division,
component-wise product, dot product, energy calculatioth mmaximum / minimum, argmax /
argmin calculations. To obtain the desired throughput af Wwector elements per cycle, two or
four complex input vector elements a 32 bit are read in andasrie/o result vector elements a
32 bit are written back. All real and imaginary parts are espnted in Q1.15 format while the
vector length differs between 1 and 8192 complex vector efes

The C-FEP-V1 vector operations can either be performed emttole vector or on a sub-band
level. For the latter, a large vector is split into differsnb-vectors of same size. Inside each sub-
band, the parameteskip andoffset may enable a skipping of addresses (Fig. 40ffset

is the distance between the start of the sub-band and therertbr element. Starting from this
vector elementskip de nes the distance between two consecutive vector eleidrihe end of
the sub-band is reached.

- | P K4 >

-t |
offset skip

A
Y

sub"band#size

Figure 4.1: De nition of Skip and Offset within one Sub-band

The size of the input output data space of the MSS is 128 kBadhess delay is two cycles. Ad-
ditionally an LUT can be stored at any memory location. Thldd contains the possible division
factors%, wherex can be any value in a Q1.15 format. Without optimizations,réquired LUT
would have a size of 64 kbit. To decrease this memory, we siedpthe table by

1. storing only positive values. In case a negative valuedsired it is negated in the A-FEP-
V1 pipeline.

2. ignoring most of the repeated values (e.g. between asi#teand2!? 1 only each 64th
value is stored).

The resulting table has a size of 10.2 kbit.
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4.4.1.1 ASIP Enhancements

In addition to the C-FEP-V1, the A-FEP-V1 has been enhangebimne features that have become
part of the current version of the C-FEP. Besides the sumbdiifferent data types which are 8, 16
or 32 bit integer values and pre- and post-processing vaad aations including absolute value
calculation, zeroing, negation and rescaling, anotheome&jhancement of the A-FEP-V1 is the
very lexible AGU. Thanks to programmable addressing schemector elements can be read
(written) from (to) non-contiguous addresses in the MSStHeumore address skipping, address
repetition and periodic addresses as well as address w@ppimplement circular buffers inside
the MSS are supported.

4.4.2 Architecture
4.4.2.1 Instruction Set

The instruction-set of the A-FEP-V1 consists of three défd types of instructions, each having
a size of 32 bit.

1. Control Instructions: The control instructions arOP (no operation) JMP (jump to a
given address in the program memory) 4R (interrupt request).

2. Con guration Instructions: The con guration instructions program the AGU and are only
set in case of parameter changes.
- agu_cfg_vectolbasic AGU processing parameters like the vector size &ye se
- agu_set_vecO_addstart address rst input vector)
-agu_set vecl addsstart address second input vector)
- agu_set_res_addfstart address result vector)
-agu_cfg_sub_vec énumber of sub-vectors and their size)
- agu_cfg_sub_vec_[offset, skip)
-agu_set lut_add(start address LUT)

3. Arithmetic Instructions: Arithmetic instructions are executed over multiple cycldwse
actual number depends on the vector length. While execthiegse instructions, the Pro-
gram Counter keeps its value and does not increment tillakierésult vector elements are
in the pipeline.

- vec_mult(complex vector multiplication)

- vec_addcomplex vector addition)

- vec_sub(complex vector subtraction)

- vec_div(complex vector division with a real vector)

- vec_mult_r(complex vector multiplication with a real vector)

- vec_abs_squarébsolute square of a complex vector)

- vec_sum(sum over a complex or a real vector)

- vec_shift(vector shift)

- vec_squardvector square)

-vec_max_mincomplex vector maximum / minimum in combination with argmhargmin)
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4.4.2.2 Pipeline Structure

The pipeline is split over six different stages.

In Pre-Fetch (PFE) the Program Counter is incremented by one each cycle tb fai next
instruction from the Program Memory. The only exception aréhmetic instructions that are
executed over multiple cycles. There the Program Counfeozen.

Due to the two cycles delay when reading from the MSSRiteh (FE) stage is kept empty.

In theDecode (DC)stage, the instruction is loaded from the Program Memorpebding on the
instruction to be performed, the top level process is aigttialn case of arithmetic operations, the
signals to read the rst input vector elements from the MSSsat.

Execute 1 (EX1)andExecute 2 (EX2)contain the ALU operations required for the arithmetic
vector operation processing. In addition, EX1 containesshAGU functions as well as the LUT
access. Per cycle, two or four input vector elements areinda¥d 1 to achieve a throughput of two
vector elements per cycle. To reuse the existing resoutitses/ector elements are reallocated to
the multiplier ports in case ofec_abs_square ,vec_sum,vec_max_min ,vec_square
andvec_div_s . To give an example: The multiplier consists of eight 32 bitltipliers. In
default case, the rst one multiplies the real part of thet vector with the real part of the second
one. In case ofec_square it has to multiply the real part of the rst vector with itselSo a
reallocation of the signals before starting the multipl&necessary. In case the multipliers are
not needed, the vector elements are sign extended. In EXRthe vector elements are inverted
if necessary which is the case for a subtraction for instaridee ALU consists of two adders
that compute the sum of three 32 bit values and two addercdmapute the sum of two 32 bit
values. Furthermore it contains shift left / right and maxirt rargmax / argmin operations and a
truncation unit that is activated in case none of the othe Alinctions is executed.

Finally, the results are truncated to 32 bit vector elemantbwritten back in th&Vriteback (WB)
stage. The necessary addresses are generated in WB as well.

A simpli ed architecture view of the whole pipeline is proldd in Fig. 4.2.

4.4.3 Design Comparison

Compared to the C-FEP-V1, the A-FEP-V1 exhibits a highegmmmability and thus a higher
lexibility at runtime. The throughput of both designs is teeme for common operations except
for dot product and energy calculation. There the througlgbihe A-FEP-V1 is decreased by
a factor 2 as two vector processing instructions are requoethe calculation of the result. In
terms of memory, the input / output data space of both vessioithe same. Only difference is
that the MSS of the A-FEP-V1 includes a Program Memory fogmn code storage while the
C-FEP includes some additional memory space required bfEie/ IDFT unit.

Synthesizing the A-FEP-V1 for the baseband engine FPGAedEttpressMIMO platform (Xilinx
Virtex 5 LX330, speed grade -2) the design obtains a maximwgguiency of 78.6 MHz after
place and route and needs 7493 function generators, 1874sid3, 1394 DFFs or latches and
8 DSP48E slices.

In the future, an ASIC target may also be considered. TaRldigts the results for a 65nm target
library with low power and high voltage threshold. It is caeterized for a typical manufacturing
process at 1.2 \Volts power supply and 2&emperature.
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Design Target clock period | Target Freq. | Silicon area Slack | Max Freq.
(ps) (MHz) (m ?/FG) (ps) (MHz)
3300.00 303.03 107968 | 1585.00 204.71
C-FEP-V1 5400.00 185.19 97987 | 114.00 181.36
5430.00 184.16 99497 0.00 184.16
2000.00 500.00 91686 | 1095.00 323.10
A-FEP-V1 3095.00 323.10 93495 0.00 323.10
3291.00 303.86 82166 0.00 303.86
3350.00 298.51 82168 0.00 298.51

Table 4.2: Synthesis Results for the C-FEP-V1 and the A-WEP-

Based on these results we can state that the hardwired CvEEFerforms better than the A-
FEP-V1 in terms of area and frequency. The silicon area asg® by 19% and the decrease in
the maximum achievable frequency is almost 70%. In additiba obtained frequency for the
FPGA target is not high enough to process the A-FEP-V1 on #pedssMIMO platform where a
frequency of at least 100 MHz is required. The critical path be found in EX1 (LUT access).

4.5 Functional Speci cation

To overcome the !lexibility limitations of the rst C-FEP digm, there was a need for the design
of a new version. The underlying functional speci catiorthie same for both designs, C-FEP and
A-FEP, except for the DFT / IDFT unit which is therefore nexgal in this context.

4.5.1 Vector Processing

Like for the previous version, the throughput of the arattitees is two samples per cycle. That is
why the number of input vectors read in and output vectortewriback to the MSS depends on
the operation to be performed. In contrast, now four difiedata types are supported: vectors of
8 or 16 bit signed integersnt8 ,intl6 ) and vectors of complex numbers where real and imag-
inary parts are 8 or 16 bit signed integecpx16 , cpx32 ) as well as type conversions between
them.

The C-FEP includes a set of basic vector operations listethbie 4.3. The maximum vector
length of all operations 8.

Component-Wise Addition (CWA) Z[i]= X[i]+ Y]i]
Component-Wise Product (CWP) Z[i]= X[i] YI]i]
Component-Wise Square of Modulus (CWM) | Z[i] = jX[i]j?
Move (MOV) Z[i]1= X[i]
Component-Wise Iter by a Lookup table (CWL) Z[i] = Y[X]i]]

Table 4.3: C-FEP Vector Operations

Inputs can be modi ed on-the-ly before the actual computat{zeroing, absolute values, negate,
conjugate, re-scaling, etc.) and outputs can also be mddifter computation and before storage.
Optionally, sum, max, min, argmax and argmin (8idAvalues) can be computed on-the-ly for
each of these operations and independently on real andnarggparts. In the C-FEP, the CWL
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vector operation consists in Itering an integer vecxdji] through another ong,[i], which is used
as an LUT. A programmable number of most signi cant bits & domponents oX [i] addresses
the LUT. Optionally, the remaining least signi cant bitsnche used to interpolate or extrapolate
between two consecutive entries of the table. This operaproximates non-linear operations
like the invert, log, square root, sine, cosine, etc. A congoi-wise division can be computed
by rst running CWL to store the inverse of the division facto the MSS and a component-wise
multiplication afterwards.

For the A-FEP design, the functionality of the C-FEP is splir different instructions (Table 4.4).

Component-Wise Addition (CWA) Z[i]= X[i]+ Y]i]

Component-Wise Product (CWP) Z[i]= X[i] Y]]

Component-Wise Square of Modulus (CWSM) Z[i] = jX [i]j2

Move (MOV) Z[i]1= X[i]

Component-Wise Iter by a Lookup table (CWL)Z[i] = Y [X[i]], only division implemented
Component-Wise Square (CWS) Z[i] P X[i]?

Vector Sum (VECS) Z= X

Vector Shift (VECSI) Z[i]= X[i]>>1,Z[i]= X][i] <<

Vector max / min (VMM) Z = max(X[i]), Z = min (X[i])

Table 4.4: A-FEP Vector Operations

It can be seen that the SMA value computation is representdtely own instructionsyec_sum,
vec_max_min ) and that additionally, a shift operation has been implaet:n The complete
CWL functionality is not included in the current A-FEP prtpe yet. For the moment only a
division can be performed to ful Il the requirements presehin Chapter 4.3. How the complete
CWL functionality could be included in the A-FEP is illusted in Chapter 4.8.

4.5.2 Memory Sub-System (MSS)

The MSS is build of a set of different memory blocks:

. UCM, the 2 kBytes microcontroller program and data memory.

. MIO, the 64 kBytes input-output data space

1

2

3. TMP, the 50 kBytes temporary DFT/IDFT memory

4. TWD, the DFT/IDFT 2 kBytes twiddle factors read-only memory
5

. PM, the 4 kBytes A-FEP Program Memory

For the C-FEP, the MSS is made up of UCM, MIO, TMP and TWD. TME awD are local
private memories and are hidden to the host system. As the/BHT unit is currently not part
of the A-FEP, TMP and TWD have been removed from its MSS. Aalaiilly, a Program Memory,
has been included to store the instructions of the prograie.c®lO and UCM are the same for
both designs. From the external view, the MSS is seen as drerex@t memory block that can
be accessed by the processing unit, the DMA, the target Ai€liace and the UC. The highest
priority is given to the processing unit, followed by UC, DNéfd AVCl-Interface.

The number of cycles required till the instruction is avaléain the A-FEP pipeline or till the
C-FEP has read a value is xed to three cycles.
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4.5.3 Address Generation Unit (AGU)

The addressing schemes are programmable and allow to hpild vectors from non-contiguous
data sets in the MSS. Symmetrically, the results can bedsaineon-contiguous locations. In both
directions, address skipping and (periodic) address itepetire supported. In addition, the MSS
sections can be turned into circular buffers. Possible Qaries for these buffers are one half, one
quarter or one eighths of an MSS bank. Fig. 4.3 illustratesatrapping section distribution over
one MSS bank for an input or output vector typariB

wrap#=#3 wrap#=#2 wrap#=#1 wrap#=#0

0 0 0
2047
4095

0

8191

16383

#1/24# 1/4 1/8

8ithit

Figure 4.3: Wrapping Sections FEP MS&8 )

The number of components, per wrapping section can be expressed as
ne =21 WreP =k (4.1)

wherek depends on the vector type and represents the number offigrtgsctor elemenir(t8
k=1,intl6 :k=2,cpx16:k =2,cpx32: k =3). wrap represents the chosen wrapping
section as shown in Fig. 4.3.

The address of the rst component inside this wrapping eactilenoted aky, can be calculated
if the addressed MSS bank is known.

by = bank _index (bank_indexmod n¢) 4.2)

Both, n¢ andky remain unchanged for each vector. Consequently, thesesvahn be calculated
as soon as the required parameters are available.

Each address depends on the memory bank and on an addressTdfis latter is type dependent
and has therefore to be multiplied with the number of bytethefinput / output vector elements

(k).
addr_offset= u; k (4.3)

u; is the bank indice inside the memory bank. For its calcutatist an increment factor is needed
which is based on two different parametemsandm. n is the integer part of the incrememn

is the fractional part. By choosing these two values apjatgly, address skipping and address
repetition can easily be implemented. The increment may batween each of the two input
vectors and the result vector.

(
+1= i
G = n+1=m !fmSO (4.4)
n ifm=0
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Finally, the resulting bank indice for each of the addressesbe expressed as
ui = bxg+ bank_index+ ( 1)"-S9"h incc modng (4.5)

The sign of the increment can either be positive or negalivease of the latter, the addresses are
decremented.

In read mode, addresses can also be periodic. For that a @@ provided that represents the

number of addresses to be generated within one period. @isceatiue is reached, the increment

factor is reset to zero.

Table 4.5 presents possible addressing schemes for diffeagameter settings.

vector type int8 | int16 | cpx32 | cpx32 cxp32
bank_index 15 3 2 0 1011
incr_sign 1 0 0 0 0

n 1 1 0 1 6

m 0 2 2 5 0

address period 5 0 0 0 0
wrap 3 3 3 3 0

uo/addr_offsety | 15/15 3/6 2/8 0/0 | 1011/4044
u;/addr_offset; | 14/14 4/8 2/8 1/4 | 1017/4068
up/addr_offset, | 13/13| 6/12| 3/12 2/8 | 1023/4092
us/addr_offsety | 12/12 | 7/14 3/12 3/12 | 517/2068
us/addr_offset, | 11/11| 9/18| 4/16| 4/16| 523/2092
us/addr_offset | 15/15| 10/20| 4/16| 6/24| 529/2116
ug/addr_offsety | 14/14 | 12/24| 5/20 7/28 | 535/2140

Table 4.5: AGU Adress Generation Examples

4.6 Architecture of the C-FEP

The C-FEP is a programmable DSP engine that has been degtddggbe System on Chip Lab-
oratory (LabSoC) of Télécom ParisTech. Like for all other3%n the ExpressMIMO platform,
the required processing parameters are included in the €88 standardized DSP shell. These
parameters de ne the input / output data types, the vecter, sitc.

The pipeline architecture is illustrated in Fig. 4.4. It denseen that the processing core is split
over two identical processing units (PU). To ful Il the régements of the DFT / IDFT as well,
each of them embeds twenty-foRb 18 bit signed multipliers and twelve 43 bit accumulators.
For DFT processing, they implement two radix-4 butterliag the same resources are used for
the vector processing as well.
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On the Xilinx Virtex5 FPGA target, the PUs are mapped on thellwaied DSP48E slices. Please
note, that the pipeline has to be emptied before the nexbvegieration can be executed. When
processing large vectors, the instruction fetches / ddathés ratio is close to zero. But on the
other side this results in a signi cant performance dropeeggly when processing standards with
short data sets which is worse when compared to a classicryarocessor and even worse than
with a DSP.

4.6.1 Synthesis Results

Synthesizing the C-FEP (PU and MSS) for the Xilinx Virtex 5330 FPGA with a speed grade
of -2, a maximum frequency of 96 MHz is achieved after place eute by requiring 20119
function generators, 5030 CLB slices, 10945 DFFs or latcBgdlock RAMs and 24 DSP48E
slices. Although the maximum processing frequency of theréssMIMO platform is currently
set to 100 MHz, this frequency value is acceptable as the imguom the FPGA changes once all
the DSPs are considered for synthesis. For the IEEE 802ethHiver where we included Channel
Decoder, Deinterleaver, FEP and VCI RAM, the obtained C-FE&uency slightly increases so
that the platform design can be processed at the mentiorget feequency.

For the ASIC target (65nm target library), only the procegséngine of the C-FEP has been
synthesized as the new MSS design is still not nalized. Theimum frequency achieved is
about 450 MHz; the required area is 0.48fm

4.7 A-FEP Design

The A-FEP design is based on the same functional specira®the C-FEP but has been op-
timized for an ef cient processing of standards with shatadsets. Like all other designs it is
embedded in the standardized DSP shell so that the A-FEPecadded as a separate unit in the
baseband engine if necessary. In this case, latency ttiiskes can be scheduled to the A-FEP
while DFT / IDFT and latency non-critical tasks are still hetresponsibility of the C-FEP.

4.7.1 Instruction-Set and Opcode

The instruction-set of the ASIP comprises three differgpes of instructions: (1) con guration
instructions needed by the AGU, (2) Arithmetic Vector Opiera(AVO) instructions and (3) Gen-
eral Purpose (GP) instructions.

The number of theon guration instructions can vary and depends on the amount of AGU pa-
rameters to be updated. Per AVO instruction, between 3 an@8 ikstructions are needed which
results in an average overhead of maximum 6 cycles per ati&iru For long vector operations
this overhead is negligible.

Table 4.6 gives an overview of these instructions and tharpaters associated with each of them.
The parameters are further detailed in Table 4.7.

The second type of instructions are the nine diffe®O instructions identi ed in context of
the functional speci cation. Each instruction has the saeteof parameters where the vector type
or a downscaling factor can be set. Table 4.8 gives an owervig¢hese instructions and the pa-
rameters associated with each of them. The parametersrtrerfdetailed in Table 4.9.
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instruction opcode | parameters

agu_cfgl 0010 vec_size || wrap_vecO || wrap_vecl || wrap_res || mss_\motk||
mss_bank_vecl || mss_bank_res

agu_cfg2 0011 type_vecO || type_vecl || type_res || incr_n_vecO || ingeai || incr_n_res
|| cwl_enable

agu_cfg3 0100 incr_m_vecO || incr_m_vecl || incr_m_res || |_cwl_vecl

agu_cfg_writeindex | 0101 index_res || incr_sign_vecO || incr_sign_vecl || incn Sigs

agu_readindex 0110 index_vecO || index_vecl

agu_period 0111 period_vecO || period_vecl

Table 4.6: Instruction Set and Opcode (AGU Con gurationtinstions)

Parameter Type Description

vec_size uint15 Vector lengtht | 2')

type_vecO, type_vecl, type_res uint2 Type of components

mss_bank_vec0O, mss_bank_vecl, mss_bank| reist2 MSS bank

index_vecO, index_vecl, index_res uintl4 Base bank index

incr_n_vecO, incr_n_vecl, incr_n_res uint7 Integer part of index increment
incr_m_vecO, incr_m_vecl, incr_m_res uint8 Fractional part of index incremenin(6 1)
incr_sign_vecO, incr_sign_vecl, incr_sign_res uintl Sign of index increment

period_vecO, period_vecl uintl4 Period

wrap_vec0, wrap_vecl, wrap_res uint2 Wrapping section

Table 4.7: Overview of the AGU Con guration Instruction Bareters

instruction opcode | opcode | parameters
1000 XXXX mod_vO0 _real || mod_v1_real || mod_vO_img ||

mod_v1_img || maxmin || res_shift || shift_info ||
interpolate || scale_vecO || scale_vecl || scale_res ||
info_res

vec_mult 0000

vec_add 0001

vec_square_modulus 0010

vec_square 0011

vec_move 0100

vec_sum 0101

vec_shift 0110

vec_max_min 0111

vec_cwl 1000

Table 4.8: Instruction Set and Opcode (AVO Instructions)
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Parameter Type Description

mod_vO0 real| uint2 modi cation real part vector 0

mod_v1_real| uint2 modi cation real part vector 1

mod_v0_img | uint2 modi cation imaginary part vector 0

mod_v1_img| uint2 modi cation imaginary part vector O

maxmin uintl =1 if max processing

res_shift uint3 number of right shift before the output value modi cation
shift_info uint5 MSB = 1 if left shift, the remaining bits tell how many positi®to shift
interpolate uintl =1 if interpolation (currently not used)

scale_vecO | uintl =1 if downscaling by 256

scale_vecl | uintl =1 if downscaling by 256

scale_res uintl =1 if downscaling by 256 / saturation

info_res uintl =1 use the real part (cpx->int)

Table 4.9: Overview of the AVO Instruction Parameters

For the A-FEP, the component-wise divisicf[i] = Y [i]=X]i]) is realized as a component-wise
multiplication of Y[i] and 1=X[i] by using the CWL instruction. This introduces an additional
delay of three cycles a@s=X[i] has rst to be read from an LUT that has been stored in the MSS
before. To access the LUT, the 11 LSBXfi] are used. In contrast to the C-FEP, the component-
wise division can be performed with only one instruction lltiis split over two vector operations

in case of the C-FEP.

The last type of instructions are tl@&P instructions, including NOP, IRQ and load / store in-
structions as well as conditional branch, compare and camfild) instructions. For these in-
structions, a Register le with a size of 16 registers a 32hbis been addedmmediatevalues
denote values included in the instruction word, wisite anddst refer to registers in the Regis-
ter le. Per cycle, one instruction is read from the Prograranbry. Only exception is thiead
instruction, where a value has to be read from the MSS whicbhdaces an additional delay of 3
cycles.

IRQ & NOP instructions:

For IRQ, an output pin of the A-FEP is set to one for one cycldspin can be interpreted
by the CSS and is connected to the CSS IRQ pin to signal the GRiihthat the processing
of a scheduled task is nished. Table 4.10 gives an overvikth&se instructions.

instruction | opcode
nop 00000..0
irq 00010..0

Table 4.10: Instruction Set and Opcode (IRQ, NOP)

ALU instructions:

Each of the two main instructionaju_rr andalu_ri  (Table 4.11), can further be spec-
i ed by a set of sub-instructions like xor, or, etc. The regalalways written back to the
Register le. ALU operations can either be performed betwaego register values or be-
tween a register value and an immediate value. In case tlseguént instruction requires
the result of an ALU instruction, a NOP has to be included leetthe two as the processing
is split over two different pipeline stages.
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alu_rr (ALU operation between two register values) 1001 | opcode | srcl || src2 || dst
alu_ri (ALU operation between a register value and an immediatd@p10 | opcode | srcl || dst || imm16
opcode

xor 0000

or 0001

and 0010

sub 0011

add 0100

addc (add with carry) 0101

asr (arithmetic shift right) 0110

asl (arithmetic shift left) 0111

addu (add unsigned) 1000

adduc (add with carry unsigned) 1001

subu (sub unsigned) 1010

Table 4.11: Instruction Set and Opcode (GP - ALU)

load / store instructions:

Load / store instructions load a value from the MSS or store the MSS. For load in-
structions,src always denotes the MSS bank while tinem16 value contains the 16 bit
address offset inside this banist is the destination register in the Register le. For store
instructions, thesrc denotes the register in the Register le, whilst stands for the MSS
bank in which the value has to be stored. Like for the loadicsibns, themm16 value
contains the 16 bit address offset inside the MSS bank. FabRzgives an overview of the
load / store instructions and the parameters associatbdeaith of them.

1011 | opcode | src || dst || imm16
Idc_ri (load sign extended immediate) 0000
lui_ri (load zero extended immediate) 0001
lhu (load half word unsigned) 0010
Ibu (load byte unsigned) 0011
Ib (load byte) 0100
Ih (load half word) 0101
Iw (load word) 0110
sb (store byte) 0111
sh (store half word) 1000
sw (store word) 1001

Table 4.12: Instruction Set and Opcode (GP - LOAD / STORE)

branch instructions:

Branch instructions inluence the address of the Programm@uand apply on values stored
in the Register le. A special instruction imove wheresrc2 denotes the new address of
the Program Counter. Otherwise a branch to the addressdeayy theimm16 value is
performed depending on the outcome of the comparison ofdhes stored in the Register-
le at addressesrcl andsrc2 . Table 4.13 gives an overview of the branch instructions
and the parameters associated with each of them.
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1100 | opcode | srcl || src2 || imm16
mov (move) 000
bge (branch if greater or equal than) 001
ble (branch if less or equal than) 010
bgt (branch if greater than) 011
blt (branch if less than) 100
bne (branch if not equal) 101
beq (branch if equal) 110
bal (branch and link) 111

Table 4.13: Instruction Set and Opcode (GP - BRANCH)

compare instructions:

Comparisons can be performed either between two registeesar between a register
value and an immediate value. In case the subsequent itisiris based on the outcome
of the comparison, a NOP has to be included as the processisgli over two different
pipeline stages. Table 4.14 gives an overview of the compateictions and the parameters
associated with each of them.

cmp_ri (compare register value to immediate)1101 | opcode | srcl || src2 || dst
cmp_rr (compare two register values) 1110 | opcode | srcl || dst || imm16
opcode

geu(greater or equal - unsigned) 0000

leu (less or equal - unsigned) 0001

gtu (greater than - unsigned) 0010

Itu (less than - unsigned) 0011

ge(greater or equal) 0100

le (less or equal) 0101

gt (greater than) 0110

It (less than) 0111

ne (not equal) 1000

eq (equal) 1001

Table 4.14: Instruction Set and Opcode (GP - COMPARE)

4.7.2 Pipeline

To achieve a high performance, the pipeline of the A-FEPistsef 11 stages (Fig. 4.5). Due
to three cycles delay when accessing the MSS, the pipelis@lied when performing an AVO
instruction, a branch (in case the required program memddyess is stored in the MSS) or a
load instruction. For AVO instructions, the next instroctifrom the Program Memory is read as
soon as the last vector elements are read from the MSS. Irastid the C-FEP, the pipeline does
not have to be emptied before the next instruction can beegseel which reduces the internal
latencies signi cantly.

The throughput of the A-FEP is two components per clock cialéVO instructions. Some extra
clock cycles (14 or 17) are spent in initialization and teration. Independent of the instruction
type, the writeback (either in the Register le or in the MSByays happens in the last pipeline
stage. In case a following GP instruction requires the presly computed GP result, bypasses
are used to gain a higher performance of the processor.
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Pre-Fetch (PFE): The Program Counter indicating the address offset of theinsttuction
to be fetched from the Program Memory is incremented in PFEEAYO instructions are
multi-cycle ones, the Program Counter keeps its value duhis time and is decremented
by three (it takes three cycles to inform PFE that an AVO utdton is processed) before
the next instruction is loaded.

Fetch (FE): Due to the MSS delay till the fetched instruction is avaiglihe FE stage is
kept empty.

Decode (DC):In DC, the top level processes are activated depending dngtrection that
has been decoded.

Execute 0 (EX0): This pipeline stage contains only AGU processes (read mode)

Execute 1 (EX1):In this stage the samples read from the MSS are availablecawaifded
to the rst ALU that scales the vectors down by 256 in case &iated parameters are set.

Execute 2 (EX2):EX2 contains the ALU responsible for the input value modtioa (force
to zero, negate, absolute value calculation). This stagalisactivated if an AVO instruc-
tion is processed.

Execute 3 (EX3):EX3 contains 8 multipliers (17 x 17 bit) and a sign extensiogase the
multipliers are not required. This stage is only activafethi AVO instruction is processed.

Execute 4 (EX4): EX4 contains inversion, shift operations and max/min ojj@na. This
stage is only activated if an AVO instruction is processed.

Execute 5 (EX5): EX5 contains 2 adders that compute the sum of two 34 bit valRes
adders that compute the sum of three 34 bit values and a signséon in case the adders
are not required. This stage is only activated if an AVO untiion is processed.

Execute 6 (EX6): EX6 contains a truncation unit. How the results are trurttaiepends
on the instruction that is processed.

Writeback (WB): In WB, the write addresses are nally generated and the autpluies
are modi ed depending on the parameters being part of theuict®on word. The actual
number of vector elements to be written back depends on #teigtion to be processed.

4.7.3 Synthesis Results

Synthesizing the A-FEP together with its MSS for the Xilinktgx 5 LX330 FPGA (speed grade

-2) a maximum frequency of 105 MHz has been obtained aftazepand route. Compared to

the former version of the A-FEP, the frequency could thusnizeeiased by almost 30 MHz but

with the cost of additional resources. This is also due tofdleg that the A-FEP-V1 has never

been synthesized together with its MSS. Resources reghirede A-FEP for the FPGA target

are 13122 function generators, 3281 CLB slices, 6433 DFHatches, 17 block RAMs and 8

DSP48E slices.

For the ASIC target where only the processing engine of theER- has been synthesized, a
maximum frequency of about 550 MHz with an area of 0.18%srachieved.
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4.7.4 Cycle Counts

The cycle counts of the A-FEP design depend on the instrudkiat is processed. In case only
one AVO instruction is processed and the A-FEP is stoppenivadirds, the number of cycles are
N7 + 15 with N as the vector length. Usually, AVO and AGU instructions aaet pf a program
code. As the AGU instructions are executed rst to programAleU, 3 cycles have to be added
for the very rst AGU instruction and 1 cycle for all subsegqu@nes. This is due to the fact that
the A-FEP can execute different instructions simultangouBSor subsequent AVO instructions,
% +4 cycles have to be added.

4.8 Component-Wise Lookup Table - Example of a Possible Futa
A-FEP Instruction

The complete CWL instruction allows to read out a vector flamLUT and to store the resulting
vector in the MSS. Optionally it is possible to interpolatgveeen two consecutive LUT entries.
Input and output vector types have to be signed integer sakith a size of 16 bit. The vector
length is speci ed by the parameterFor the LUT access, thé (1 Il 14) most signi cant
bits of the input vectoX are used. The resulting length of the LUT is therefgfe

Each vector elemerntof X [i] is split into two parts:Xint andXgrac - Xint IS @n unsigned inte-
ger stored in thél most signi cant bits ofX [i]. The remaining bits are denoted ag,c . The
AGU processing is similar to the other AVO instructions wdenly one input vector is read (e.qg.
vec_sum). For LUT accesgjy; directly serves as address offset in case the pararsetée-

ing part of the instruction word is set to zero, meaning that represents an unsigned address
value. Otherwise, the address is signed 2fthas to be added 1% [i] rst. This is necessary as
otherwise2® 1and 2% would be interpreted &> 1 and2!®

¢, .
f(i) ifls=0

80 i< 2':YJ[i]= fi 2 ifls=1

(4.6)

The functionf represents an arbitrary function stored in the LUT (e.ge,stosine,...). How it is
stored depends da as illustrated in Table 4.15:

Y Is=0 Is=1

Y[O] f(0) fFC2" %)
Y2 T I [f@" T 1) [f( 1D

Y[2II l] f (2” l) f (O)

Y2 1 [f@" 1) |[f@" T 1)

Table 4.15:Y[i] LUT Organization

Once the vector element is read from the LWJoc can be used to interpolate or extrapolate
between its entries. Extrapolation is performed wkgn = 2" 1 which is the last LUT entry.
The following equations illustrate how the result vectoth CWL instruction is computed:
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uint 16(X[i) ifls=0

X = 4.7
X[i]+2% ifls=1 4
Xint =rsh(x; 16 1) (4.8)
Xfrac = X mod 216 ! (4.9)
y0 =Y [Xint ] (4.10)
1= Y [Xint + 1] if Xint < 2! 1 (interpolation) (4.11)

2 Y[Xint]l Y[Xine 1] if xint =2" 1 (extrapolation) '
c1=2"1 Xirac (4.12)
co:%15 cl (4.13)

15 . . - . . .

2] = 2 y0 if li =0 (no interpolation/extrapolation) (4.14)

c0 y0+cl vyl ifli =1 (interpolation/extrapolation)

Like for the other AVO instructions, the throughput of th@gline has to be two vector elements
per cycle. A possible pipeline processing for the CWL instian could be:

1. The AGU is enabled only for the address computation ofripativectorX [i].

2. After the MSS delay of three cycles, the 16 bit valug] is retrieved.
(Same AGU processing like for the other AVO instructions#)

3. Once, the valuX [i] is available, it is modi ed in case the paramelr is set to one.

uint 16(X[i)) ifls=0
X[]+2%  ifls=1

4. Based on the obtained valXdi], Xin: andxsac can be determined:

Xint =rsh(x; 16 1I)

Xfrac =X mOd 216 I

Then the address; is set to get the required vector element from the LYTi]).

5. In case ofls = 0, the output of the CWL operation iB8[i] = Y|[Xin:] and no further
processing is required. If not, the interpolation / exttafion mode is enabled. For that,
the necessary vector elemegts= Y [Xint ] andys = Y [Xjnt +1 ] have to be provided. Due
to the data bus width of 32 bit, the latter is read automdyicahen readingyY [Xint ]. Once
the two vector elements are available, Equation (4.11) eacoimputed:

Y [Xint +1] if Xine < 2 1 (interpolation)

1=
y 2 Y[ximt] Y[Xint 1] if xiw =2" 1 (extrapolation)
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6. Then the required interpolation factors can be estimased

Cl = 2“ 1 Xfrac
0=2% cl

7. The resulting output vect@|i] is then obtained as

Z[i]=c0 y0O+cl vyl

The simple case is when no interpolation / extrapolatioredgiired. For processing, the existing
pipeline could be reused, although it is recommended td #t@fLUT access in EX5, assuming
the LUT read signals are set in EXZ [i] is available in EX1). In contrast, additional instructions
or additional adder or multiplier resources are requiradstep 5 to 7 to speed up processing.
Alternatively these equations could also be computed byoa giiogram consisting of a vector
subtraction y1), a vector multiplication @), a vector subtractionc{) and a component-wise
multiplication ¢[i]) based orcpx32 vector elements where the imaginary part values are set to
zero.

4.9 Design Comparison and Runtime Performance

4.9.1 Design Comparison A-FEP vs C-FEP

The main differences between the two designs are to be fautlteir processing engines (Ta-
ble 4.16) as their MSS is almost identical. Instead of thegyRnm Memory included in the A-FEP
MSS, the MSS of the C-FEP contains twiddle factor and temyatata memories for DFT / IDFT
computation with an overall size of 52 kB.

How these differences inluence the performance espearatign processing standards with short
data sets is elaborated more detailed the next section.

Objective C-FEP - processes all required air-interface operations
A-FEP - processes all required air-interface operations

- processes UC instructions (decreased communicatiomead)
Architecture | C-FEP - vector operations, DFT / IDFT

- next command can be prepared when the PU is busy

- pipeline has to be emptied after each operation

- implementation of the complete CWL operation

- for division, two operations are necessary

- 11 to 16 cycles for initialization / termination
A-FEP - vector operation / AGU / GP instructions

- multiple instruction processing

- component-wise division using an LUT

- fast paths for GP instructions

- 14 to 17 cycles for initialization / termination

- for division only one instruction necessary

Table 4.16: Design Comparison A-FEP vs C-FEP
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4.9.2 Runtime Performance

The runtime performance of a DSP engine on the ExpressMIM@qgrm depends on two differ-
ent factors:

the DSP processing time and

the time required for the communication !ow between the n@RU and the DSP engines.

For a standard like IEEE 802.11p that is operating on shad dats, the second factor is of
main importance as it determines the overall performancenwdxecuting the standard on the
platform. Table 4.17 lists the number of cycles and the ekacuimes of the IEEE 802.11p

receiver algorithms presented in Chapter 3.3 for a frequefd 00 MHz. The results consider

only the pure processing times, the communication overfea€glected.

algorithm cycles | cycles | execution time | execution time
A-FEP | C-FEP | A-FEP C-FEP

energy detection 302 151 3.06 s 151 s

channel estimation (CWP) | 45 43 0.45 s 0.43 s

data detection (16-QAM, init) 173 267 1.73 s 2.67 s

data detection (16-QAM) 114 129 1.14 s 1.29 s

data detection (64-QAM, init) 219 318 2.19 s 3.18 s

data detection (64-QAM) 341 387 341 s 3.87 s

Table 4.17: A-FEP Cycle Counts and Execution Times for tHeEHB02.11p Receiver

At a rst glance, the C-FEP performs better for the energyedién. But it has to be considered,
that the A-FEP performs the comparison to the thresholdevidbelf while it is the main CPU in
case of the C-FEP.

For channel estimation, only the cycle counts of the peréaf@WP operation are given, as the
DFT has to be computed by the C-FEP. In case only one vectoatipe is executed, the process-
ing times of the two designs are almost identical.

For the data detection, the performance of the A-FEP isidtie to the reduced internal latencies
of the pipeline architecture.

The presented results focus only on the pure processing tifithe DSPs while the communica-
tion overhead is neglected. In the following, the A-FEP arBEP solutions will be compared to
recent ASIPs from academia taking the examples of two @iffepacket algorithms.

4.9.2.1 Auto-Correlation Based Packet Detection Algoritm

The packet detection algorithm presented in [76] is peréartaking the STS of the IEEE 802.11a/n
receiver. Similar to the presented packet detection aflyarfor our IEEE 802.11p receiver, packet
detection is performed by a sliding window over the incomsagnple stream[d]. The main dif-
ference is that the auto-correlation is not calculatedhizkie received and the reference STS but
taking the rst and the second half of the received STS. Thaltimg auto-correlation function for

a single receiver can be expressed as

9( 1
P.[d]=  (r[d+m] r[d+m+L]) (4.15)

m=0
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wherelL is set to 80 samples which corresponds to half the size of Tis Afterwards, the energy
inside the current window is computed as

9( 1
RL[d] = jr[d+ m+ LJj? (4.16)

m=0
and the beginning of the packet is found if

jRL[d]j?
2

Otherwise the window is shifted and the whole procedurdssfeom the beginning.

jPL[d)i? > (4.17)

Extending this packet detection algorithm to the 2x2 MIMGeaaauto-correlation and energy
computation are performed individually over the two reeestreams while for comparison, the
average results are used.

1 X

PL:avg [d] = > PiL [d] (4.18)
j=1
1 X

Ri:avg [d] = 2 RjL [d] (4.19)

j=1
The resulting set of instructions and the cycle counts ofteEP for the SISO case are provided
in Table 4.18.

instructions cycles
P.[d] agu_cfg (6x) 9

vec_move L/i2+4

agu_cfg (4x) 4

vec_mult L/i2+4

agu_cfg (2x) 2

vec_sum L/2+4
R[d] agu_cfg (2x) 2

vec_square_modulusL/2 + 4

agu_cfg (2x) 2

vec_sum L/2+4

agu_cfg (2x) 2

vec_square_modulusL/2 + 4
P2 > B | nop (7x) 7

Iw 5

nop 1

Iw 5

nop 1

bgt 8

Table 4.18: A-FEP Instructions for the Auto-CorrelationsBd Packet Detection
In general, this results in a total amount6f % + 72 cycles including the GP instructions and
6 %+24 cycles if the latter are not taken into account. If the C-FE®sied instead, the algorithm
can be simpli ed (see Table 4.19).
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operations cycles
P[d] vector move L/2+11

vector multiplication + sum | L/2 + 12
R[d] vector square_modulus + sumL/2 + 12
jPL[d]j? > w vector square_modulus + supL/2 + 11

Table 4.19: C-FEP Operations for the Auto-Correlation BleRacket Detection

The resulting amount of cycles4s % + 46 when only the pure processing time is considered.

But how do these results change when the communication eaédrts considered? Table 4.20
provides the resulting cycles counts and processing tiorethé A-FEP, the C-FEP and ASPE A
for the SISO and the MIMO case.

It can be observed that the performance of A-FEP and ASPE Alarest identical for this packet
detection algorithm, although the latter is optimized fue tEEE 802.11a/n standard. Comparing
A-FEP to C-FEP, the communication overhead of the rstisdodue to reduced internal latencies
of the design and due to the GP instructions that reduce tinencmication overhead between the
A-FEP and the main CPU. Therefore it can be stated that théemenmtation of algorithms is
simpli ed when using the A-FEP as the required processimgbeadone by only one resource. No
synchronization between the different processing engmesjuired.

Solution | cycles | cycles execution time | comm. overhead | execution time | comm. overhead
(SISO) | (MIMO) | (SISO) (SISO) (MIMO) (MIMO)

ASPEA | 296 650 296 s - 6.5 s -

A-FEP 264 572 264 s 0.48 s 572 s 0.64 s

C-FEP 312 465 312 s 12 s 465 s 12 s

Table 4.20: Design Comparison for the Auto-CorrelationdgbBacket Detection

4.9.3 Energy Based Coarse Packet Detection Algorithm

The second example illustrates the performance diffeeemdeen the A-FEP is compared to a
specialized ASIP for synchronization and acquisition. $lgac-ASIP has recently been presented
in [77] and executes a coarse packet detection algorithnie,H@o energy values denoted as
andb are computed ovdr = 64 vector elements and are divided through each other:

9( 1
a= irn Lj? (4.20)
n=0
9( 1
b= jrnse L (4.21)
n=0
a
m= (4.22)

In case the result is beyond a certain threshold the pratyattibt the beginning of the packet can
be found in the current window is high and an auto-correfabased packet detection algorithm
is applied to nd the exact beginning of the packet.

The resulting set of instructions and the cycle counts ofAtfiEP are provided in Table 4.21.
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instructions cycles
a,b | agu_cfg (6x) 9

vec_abs_squarelL/2 +4

agu_cfg (2x) 2

vec_abs_squareL/2 +4

agu_cfg (2x) 2

vec_sum L/i2+4
m | agu_cfg (4x) 2

vec_cwl 7

agu_cfg (3x) 3

vec_mult 4

nop (7x) 7

Iw 5

nop 1

Iw 5

nop 1

bgt 8

Table 4.21: A-FEP Instructions for the Energy Based Coasad? Detection

Including GP instructions, this results in a total amounBof + 68 cycles, where8 5 + 12

cycles are required for the pure data processing. If the B-BHised instead, the algorithm can
be simpli ed again (see Table 4.22).

instructions cycles
a,b | vec_abs_square +sumL/2 + 12
vec_abs_square + sumL/2 + 12
m | vec_cwl 15
vec_mult 11

Table 4.22: C-FEP Operations for the Energy Based Packetben

Table 4.23 lists the resulting cycles counts and processings for the A-FEP, the C-FEP and
Sync-ASIP for a frequency of 100 MHz. As expected, the weakbgrammable but specialized
Sync-ASIP performs better than the !exible FEP solutiongsi@es, it is worth to note that for
smaller vector lengths, the communication overhead of tHeER is only half of the pure data
processing time while it is twice in case of the C-FEP.

Solution cycles | execution time | communication
overhead

Sync-ASIP| 31 0.31 s -

A-FEP 108 1.08 s 0.56 s

C-FEP 114 1.14 s 2.29 s

Table 4.23: Design Comparison for the Energy Based CoamdeePRetection
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4.10 Conclusions

As an alternative to the C-FEP, we have presented an ASIR@olior !exible front-end pro-
cessing that ful lls the latency requirements of the lategtless communication standards. The
A-FEP can be included as an additional block in the basebagihe for the execution of latency
critical tasks while DFT / IDFT and latency non-critical kascan be executed by the C-FEP. Ob-
served timing differences are due to the reduced commumicaverhead of the A-FEP which
results in a signi cant performance gain when operating tamdards with short data sets, and
which results in a simpli ed algorithm design.

Besides the comparison between these two solutions, thERAHas further been compared to a
previous ASIP version and to recent ASIPs from academia.ofirast to the rst, the A-FEP
exhibits a higher frequency and a greater functionalityr &packet detection algorithm its per-
formance is similar to the ASPE A - a design tailored to thecpssing of the IEEE 802.11a/n
standard. As expected, the performance is worse than thef@aspecialized ASIP for synchro-
nization and acquisition.
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Chapter 5

Flexible Sample Rate Converter Design

After presenting the IEEE 802.11p receiver chain includiigP, Deinterleaver and Channel De-
coder and after focusing on an alternative FEP solution \wh&cmore appropriate for standards
with short data sets, we conclude with the only missing DSftherof the IEEE 802.11p chain -
the Preprocessor. The Preprocessor connects the A/D, Diecter interface with the remain-
ing baseband engine and is responsible among others fomii@alance correction, sample syn-
chronous interrupt generation, framing and sample ratevession. Most critical is the Sample
Rate Converter (SRC). Its behavior can change dynamically ean be tuned to any frequency
band in the wireless communication domain. In the past, &€ Bas dedicated to each standard
of interest. For the ExpressMIMO platform, this approactids space consuming why one frac-
tional SRC architecture capable to process up- and downfags preferred. To ensure a low
phase noise at the A/D and D/A converters, they are triggerigid a ®xed master clock. Dealing
with the relation between the different sampling rates &dfore in the responsibility of the SRC.
In this chapter we propose an ef®cient design for fracti@aahple rate conversion and present
it in the context of the whole Preprocessor DSP engine. Tiiereint models that have been de-
signed comprise C-models for simulation and a VHDL protetiyat has been synthesized for the
ExpressMIMO platform.

5.1 Motivation

The Preprocessor DSP engine establishes the connectiwedrethe A/D and D/A (ADA) con-
verters through the ADA interface and the remaining basgleagine. This task is quite challeng-
ing as the clock frequency at the converter side is 32.768 MHite it depends on the executed
wireless communication standard on the baseband side./8yfor instance, the baseband sam-
pling frequency is 2.048 MHz, while for IEEE 802.11p it is s2tL0 MHz (Fig. 5.1). This results
in a resampling factor of 15 for DAB and 3.2768 for IEEE 8011

The relation between these different sampling rates is coniynhandled by SRCs which are
well-known architectures applied not only in wireless conmigation systems but also in image
processes for instance. For SDR systems, they are one ofdsecnitical and most demanding
elements [104].

Challenges when designing an appropriate SRC solutiom&EkpressMIMO platform are:

A detailed analysis of nowadays wireless communicationdsteds has shown that the SRC
has to support a frequency range®oMHz  fsamp 61,44 MHz with a resolution of
1 Hz.




90

5. FLEXIBLE SAMPLE RATE CONVERTERDESIGN

ADA"Interface
@ >

[} |
i i
TX * i
DA =] interface [ | i J
i i Baseband
A/D"9862 i Preprocessor } Processing
| RX o 1
AD interface : >
i i
o« AR
downsampling
clk"="32.768"MS/s - = 30.72""'MS/s"'LTE
D SRTT 10" "MS/s™|EEE"802.11p
upsampling 20" M/ EEE"802.11a

"2.048"MS/s""DAB

Figure 5.1: The Preprocessor connects the ADA Convertdlstihue remaining Baseband Engine

In the past usually one dedicated SRC was used per standarthig-wide frequency range,
this approach is not applicable as the required resouresgsiabeyond what is available on
the FPGA target. The SRC has therefore to support all pessi@hpling rate ratios (integer
and fractional ones) by only one architecture.

Apart from that the ExpressMIMO platform can process up tar fdifferent channels in
RX and up to four different channels in TX. Each channel isra&l through its own set of
parameters.

Thus, when switching between two channels, the system maygehits behavior dynami-
cally at runtime.

These design challenges lead to different processingrergents which can be grouped in func-
tional and non-functional ones. From the platform perdpedt is of atmost importance that the
required amount of DSP48E slices is reduced as much as [@s3ibis task is not that simple

as due to the high bandwidth of the signal coming from the Adbverters, the data rate is very
high. This leads to a higher hardware complexity and a higlbarer consumption and results in
a higher number of DSP48E slices and thus in a cost intenppication. Besides, the design of
the Preprocessor has to follow the same design approachllikéther DSPs on the platform and
should be embedded in the standardized DSP shell.

Additionally the functional requirements comprise

the preference of a generic design being able to perfornidraad up- and downsampling by
using the same architecture. Upsampling / Downsamplintdstéor increasing / decreasing
the sampling rate. For transceivers where the data rate &I converter side is higher
than the one at the baseband engine, upsampling is perfamiex] while downsampling
is performed in RX.

the support of three different modes: (1) only receptiohpffy transmission and (3) recep-
tion and transmission simultaneously. From the platformspective, the channels of RX
and TX are executed in parallel while the SRC processes tlwrsecutively in a Round
Robin fashion. Therefore the channel switch has to happémnoene cycle.

the avoidance of aliasing when resampling. In this conteid important to tradeoff the
length of the lowpass Iter and thus the number of multigian the design with the com-
plexity of calculating missing lter coef cients.
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the calculation of intermediate values of a discrete-tilgaa such that a certain frequency
band of the signal is not distorted [105].

that a high performance has to be guaranteed to meet thegtipotuiand latency require-
ments of the different wireless communication standards.

that the SRC takes care of the difference between the sagmalias. This approach allows
to x the master clock of the ADA converters to decrease thagenoise. [105]

5.1.1 Related Work

For the SRC design two different approaches are possiblen@dlog solutions to generate a vari-
able clock for the ADA converters or (2) digital solutions @vl the ADA converter clock is xed.
The rst comes with the drawback that the observed phaseerdiffers between the generated
clocks and may lead to a signi cant performance drop. As tbekcis xed for the second ap-
proach, a high performance one with low phase noise can betsdlat design time. Apart from
that, digital Iters come with the advantages of high premis of a possible multiplexing between
different channels and of thermal stability but they ar® alsaracterized by a limited bandwidth
and guantization noise.

In the following different solutions from the analog and tigital domain are presented. The
solution nally chosen for the ExpressMIMO platform is a iad one to keep the phase noise as
low as possible.

5.1.1.1 Analog Solutions

Important terms when talking about how to choose the rightansolution argghase noisand
jitter that both describe the variation of the ideal signal peridictvis equal to the instability of
the sampling clock. While the expression phase noise is wheh talking about the frequency
domain, jitter is in the time domain [106]. For sinusoidajrsils, the phase noise can easily be
estimated while for Gaussian input signals the derivatheagh sample point has to be calculated
[107].

Another important term igperture jitter or aperture uncertaintythat describes the variation be-
tween the samples in the encoding process [108]. Aperttieg jn!uences the system perfor-
mance in three different ways: (1) it increases the systeisen@?) it increases the ISI between
the samples and (3) it increases the uncertainty of the smhgiynal phase. Worst case values
occur, when sampling a sinusoidal signal with the highessibe frequency in the Nyquist band
(= sampling with half of the input sampling rate).

The basic functionality of all analog solutions is the fallag: The input signal is converted into a
digital signal by an A/D converter that is triggered with aighle clock. Different chips that have
been available on the market for years, support two diftecinguit technologies allowing this
lexible clock adjustment. These technologies are Phaseké&d Loops (PLL) and Direct Digital
Synthesizers (DDS).

A PLL is a closed loop frequency control system supportiagtional ratios between the sampling
rates. Its functionality is based on the measurement ofltlasgdifference between the incoming
and outgoing samples of the control oscillator. To convegtresulting voltage into a frequency,
a VCO (Voltage Controlled Oscillator) becomes necessaayithsometimes already included in
the PLL. Advantages comprise low costs, widely availapilitell-known architecture and that the
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PLL output can be locked to the reference clock of the inpatsgh An ef cient PLL solution of

high performance is the ADF4157 [109]. This design is a 6 Gtdetfonal-N frequency synthe-
sizer with a 25 bit xed modulus and a subherz frequency rgsm that consists of a low noise
digital phase frequency detector, a precision change pund@gprogrammable reference divider.

For DDS architectures, the reference clock is scaled dowanfagtor that is provided to the DDS
via a programmable tuning word. The tuning word typicallys lralength of 24 to 48 bit. For
new generation technologies, the DDS power consumptioimigas to the one of PLLs. Other
advantages include the micro-hertz tuning resolutionhtglk output frequency span, the tunable
reference clock oscillator that allows a higher operatanmge than a standard VCO, the possibility
of fast frequency changes, the manual system tuning, theldagntrol interface and the phase-
continuous frequency hops with no over/undershoot or gradtated loop settling time anoma-
lies. On the other side, DDS designs cannot achieve exaptdreies for a division factor unequal
to a power of two. Taking the example of 20 MHz, the obtainesiiitels 19,9999999954 MHz.
To overcome this drawback of an in-accurate frequency géoer [110] has presented a pro-
grammable modulus that leads to an exact frequency gemerati

Another ef cient DDS design is the AD9913 [111]. It comes kwé low power consumption of
max. 98,4 mW, supports a frequency range of up to 250 MHz (warse frequency resolution:
0,058 Hz), has an analog output up to 100 MHz and features & D@Aconverter.

Comparing DDS to PLLs the following observations can be njada]:
DDS support fast frequency changes which make these asttiviés more agile than PLLs.
The DDS supports a higher frequency resolution of up to origomth of a Hertz.
The DDS performance is higher than the one of PLLs.

Multiple DDS can be synchronized to support among othersligiiare phase offset rela-
tions.

PLLs allow to lock their output to the input phase of a refeesnlock.

DDS have a lower output phase noise.

5.1.1.2 Digital Solutions

The major aim when designing SRCs for SDR systems is theédradtresampling support in the
all-digital domain by using high performance DSPs. Genevalviews of simple SRC solutions
are provided among others in [113], [114], [115], [116] o T]. These designs comprise the
sample and hold method as well as different interpolatiqgmr@gches listed below. The basic idea
for all arbitrary ratio interpolation schemes is to use aaleg reconstruction lIter for which the
output is resampled. Additionally, a lowpass lIter is reeu for both, upsampling and downsam-
pling. For upsampling, the lowpass lter is needed as thipss may add undesired spectrum
images to the original signal, despite of the fact that thguist-Shannon sampling theorem is ful-
lled. This theorem states that aliasing occurs in case #ming frequency is greater than two
times the analog frequency of the signal to be resampleddé&wnsampling where the sampling
rate is decreased, there is a high probability that thisrdmaads not satis ed. Thus the aliased
frequency signal components that are not distinguishabtha the original ones have to be Itered
out by a lowpass Iter which has to guarantee a high stopbaetaation.
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For lowpass Iter design, two different Iter types can be ployed: Finite Impulse Response
(FIR) and In nite Impulse Response (lIR) Iters. Before absing the appropriate solution, one
has to consider that an arbitrary fractional rate changeirfa@n result in relatively large values
of the resampling rate. The passband of the Iters has to benerrow for large values of the up-
sampling factor, while the rst stopband is centered abbatibverse of the downsampling factor
for anti-aliasing. Besides, the transition-band has todreomw for large values of the downsam-
pling factor. Designing an FIR Iter with these constraifeads to a very long impulse response.
Although providing linear phase characteristics, mainubacks of FIR Iters are thus the high
guantity of Iter coef cients. On the other side, FIR ltei@re stable and linear phase which means
that their phase changes proportional to the frequency miakes these lters the appropriate so-
lution for SRC designs. Due to the linear phase property tte has a constant group delay so
that no phase distortion can be observed.

The most signi cant error contribution arises from the coieint quantization resulting in changes
of the magnitude response but not of the lter phase. To dseréhe quantity of required hardware
resources like multipliers, the FIR lter can be transfodria a polyphase representation as en-
hanced by [118]. In addition, [119] states that the main athges of such a design include lower
computational requirements, a lower sensitivity to therltoef cient length, less nite arithmetic
effects, lower order Iter design and implementations, &w$ storage of lIter coef cients.

In contrast, IIR lters do not provide linear phase charast&es but have a lower complexity
in terms of the lter order by ful lling the same magnitudesfgonse requirements. In case of
polyphase implementations the number of coef cients isvigancreased since the number of
coef cients in the feed-forward branches of a direct impégrtation of lIR Iters is multiplied by
the number of polyphase branches. Although a polyphaseimgitation of IR Iters has no real
advantage over a polyphase implementation of FIR Iteremmis of performance.

In the following, an overview of different digital SRC salons is provided. As we need a frac-
tional design for the ExpressMIMO platform we mainly focus foactional solutions although
there are a lot of different publications about !exible SRiperating on integer ratios available.

The simplest method for SRC Iter design is th@mple and hold methodvhere the analog

signal is rst sampled and the obtained value is then holdrafards. The solution is easy
implementable and requires only few resources but the aethiperformance is too low for
SDR applications. For multimodal processing one could imageveral FIFOs that are
connected with the sample and hold block via a demultipleRecontext switch becomes
necessary in case a value still has to be hold when the swifobrformed.

The classical SRC method is itacrease the sampling rate by zero insertion and to de-
crease the sampling rate afterwardgFig. 5.2).

x(n) v(k) w(l) y(m)
——{ = LPF"h(x) ~yD —
>, b4
Rate=f_x AN ., Rate=I/D*f x=f_ y

N 3

> Rate=I*f x=f v~

Figure 5.2: Classical SRC Approach
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The interpolation stage increases the sampling rate ofiteived signax(n) by a factorl
to obtain the interpolated signa(k).

x(K); k=0; I; 25

v(k) = .
0 otherwise

(5.1)

As interpolation and decimation stage are not merged onpdssvelter (LPF) is sufecient.
h(l k) is the impulse response of this elter.

p S X
w(l) = h(l  k)v(k) = h(l  kl)x(k) (5.2)
k=1 k=1

Afterwards, the eltered signal is downsampled by a fadbbrand the whole resampling
chain can be expressed as

R
y(m) = w(mD) = h(mD  kl)x(k) (5.3)
k=1

with b
k= bml—c n (5.4)

By combining Equation 5.3 with Equation 5.4 we obtain

pS
y(m) = h(mD b mI—DcI +nl) x(bml—Dc n) (5.5)

%
= h((mD) mod | + nl) x(bml—Dc n) (5.6)

n=1

The required resource consumption of this design is verly gl context switches in case
of multimodal processing become more complex than for timepsa and hold method.
[120] has shown that this standard approach can be transtbimma more efecient design
by taking advantage of a polyphase elter structure for thypineed lowpass elter. Employing
this architecture speeds up the time needed for the ¢ltecge®, but does not decrease the
number of elter coefecients.

Furthermore [121] describes an architecture where theepted standard approach is com-
bined an adjustable number of times which is especially trast in case of high ratios
between the sampling rates. Filter reconegurability is reduired as all «lter taps can be
precomputed and hardwired.

[122] presents a solution wherdawpass elter is combined with A/D and D/A convert-
ers. This approach is not appropriate for the ExpressMIMO ptlatf due to the limited
resources and due to the choice of one single master clock.

Another standard approach angerpolation elters that compute the missing output sam-
ples / lter coefecients at runtime [121]. To reduce the spamnsumption, this slter is
usually combined with the required lowpass elter. The parfance therefore depends on
two different factors: (1) on the number of stored elter cagfnts and (2) on the selected
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interpolation method. For the latter it can be stated thahigher the interpolation polyno-

mial is, the higher is the computational effort and the high¢he space consumption. One
option to deal with this challenging task is the elter coefnt calculation in a recursive

way as presented in [123]. But this increases the latencyesdts in additional resources
needed for the elter coefecient calculation.

A good overview of the fundamentals and the implementatibimterpolation in digital
modems can be found in [124] and [125].

For interpolation, different solutions are possible:

1. nearest-neighbor interpolation
This interpolation technique which is also known as proXimgerpolation or point
sampling is the easiest to implement and comes with a singrld@are architecture.
The missing sample values are chosen by allocating the adlilne nearest neighbor.
To guarantee a high performance, the incoming signal has twérsampled to lower
the resulting phase noise as much as possible. But stilt¢lshnique has only a very
low efeciency when compared to other interpolation methods

2. linear interpolation :
The linear interpolation comes with a better performanam tthe nearest-neighbor
interpolation. As the name suggests, missing values argu@md with the help of
a linear function. Despite a low space consumption, goodr «ttharacteristics are
possible but the slter coefecients need to be precomputed stored in memory. A
possible design improvement is the replacement of the lssvpliéer by a polyphase
elter structure.

3. polynomial interpolation:
The polynomial interpolation is a generalization of theslin interpolation. The main
difference is that the linear function is now replaced by &mpomial one of higher
degree which results in a higher performance of the desig@][ICompared to linear
interpolation, the calculation of the interpolating padynial is computationally ex-
pensive and the improvement is not as much as between neaighbor and linear
interpolation. So the question is if the required space wonpdion justiees this ob-
tained performance gain.
For higher polynomials it is said that only one polynomiaiséx that interpolates the
known samples of the incoming signal. This polynomial i®alalledLagrange poly-
nomial The Lagrange interpolator is a polynomial constructedichsa way that each
sample is exactly represented by a function which has zévevat all other sampling
points. Its formula is only simple for low-order polynonsal The elter coefecients
have to be calculated depending on the input samples sohbdtagrange method
enally serves as coefecient design procedure ([104]).
In general one can say that the Lagrange interpolation flarg(®) etsan(M  1)th
order polynomialy(t) to a set oM data points of the incoming signa(ty):

W1
y(t) = X (ti) i (1) (5.7)
k=0
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with
Yooty

tk {1

P (t) = (5.8)

t=0;t6 k

One possibility of realizing polynomial interpolation st Farrow structure where the
value of the input signal between existing samples is estichg127], [128]). A dif-
ferent solution are Laguerre and Kautz elters ([129]) whaoie higher order forms of
the unit delay elements of an FIR elter. By replacing the w@tays with these archi-
tectures, one (in case of Laguerre slters) or two (in case atitg elters) degrees of
freedom are added to the ¢nal design, leading to a betteopagnce.

Another drawback of the polynomial interpolation is Rursgghenomenon where the
interpolation polynomial may oscillate wildly between ttha points for higher order
polynomials. A way of overcoming this drawback is to use atiratke structure where

the interpolation is carried out at a higher sampling fremye To meet the require-

ments in the pass- and the stopband, a digital pre-elter Ishioe designed [130].

Most efecient in terms of performance is a solution based otympomial interpola-
tion in combination with CIC elters as illustrated by [131€IC (Cascaded Integrator
Comb) elters are a class of FIR elters with only lowpass chaeaistics, a linear phase
response and a constant group delay. Compared to FIR tterg,perform better for
resampling factors higher than 10, due to their higher cdatfmn efeciency ([132],
[133]). The two basic building blocks are calladegrator which is a single pole IIR
elter with unity feedback coefecients andombwhich is an odd-symmetric FIR elter.
Although CIC elters are equivalent to N FIR elters with rectgular impulse responses,
an additional FIR elter at a low sampling rate may be addedabise of the passband
droop (unstable narrow passband). This elter equalizegptssband droop and per-
forms a low rate change, usually by a factor between two agitt.eAdvantages of CIC
elters include the lack of multipliers and thus the lack ofet coefecients, the simple
regular structure based on two basic building blockselittntrol and low costs. Main
disadvantages are the integer resampling, the differefitactures for upsampling
and downsampling, that the bandwidth and frequency regpoutside the passband
are severely limited and that CIC elters are only useful fangle ratios while for small
ratios, FIR slters are preferred.

In [134] a solution based on time-variant CIC elters is prepd. Upsampling is per-
formed by zero-insertion while downsampling correspormdgitking each m-th sam-
ple of the incoming sample stream. This architecture ovessthe traditional draw-
back of only integer ratio support and enables a fractioaitid between the sampling
rates. Unfortunately the structure is quite space consyimmit is a combination of
decimators and interpolators. Further an extra outpukdias to be generated which
leads to a higher complexity of the overall design.

. spline interpolation:

The spline interpolation is the most hardware consumingrjpaiation method [135].
A spline is a piecewise polynomial of small degree, so thablgms due to Runge’s
phenomenon cannot be observed. The easiest approach iisghiedpline interpola-
tion where existing data points are connected by straighsli Better are cubic splines
that represent a cubic polynomial between two existing sesnmr even quadratic
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splines. The spline depends on the previous and the folipaample why it has to be
computed at runtime. An arbitrary sample rate conversiamguB-spline interpolation
for SDR has been introduced by [136]. B-splines are unequakto only for a few
samples and allow an accurate approximation of the ideat siisponse.

5. Whittaker-Shannon interpolation:
The aim of this method is to reconstruct a continuous-timedbaited signalx(t)
from a set of equally spaced sampida] with the help of the ideal impulse response
sinc(t).

t

LB (5.9

x(t) = x[n]sinc(
n=1
The Whittaker-Shannon interpolation is not applicableS&Cs as it only works for
inenite signals. So bandlimiting ok (t) becomes necessary.

6. bandlimited interpolation:
Bandlimited interpolation has been introduced in [137] &b88] and is a mixture
between linear interpolation and Whittaker-Shannon pafation. SRCs based on this
approach are easy implementable and provide the sameeatciné for upsampling
and downsampling. The elter coefscients have to precomgduted stored in a local
memory.

Based on the presented SRC elter solutions, [139] and [1@Bcentrate on how exible SRC
elters could efeciently be implemented. They conclude, tlasingle-stage elter scheme is not
well-suited for preprocessing prior to ene interpolatiofss the eltering should be done at a high
input sample rate, this scheme is computationally intenaivd a large number of elter taps is re-
quired. Besides, the spectral characteristics of the #$edf must be changed for different output
sample rates. Interpolation is considered as the optimuaii®e when dealing with fractional
ratios between sampling rates. However the underlyingvirare structure should not be under-
estimated as power consumption is a major issue in mobileragmnitation systems. That is why
there is a need for hardware architectures which enablesgftamplementations of the necessary
eltering tasks.

5.1.2 Contributions

The main contribution presented in this chapter is the desig fractional SRC for the Express-
MIMO platform which is based on the bandlimited interpadatialgorithm. Its architecture can
process up to four different channels in RX (downsamplingg ap to four different channels
in TX (upsampling). All channels are executed on the samarpaterizable hardware architec-
ture. To guarantee a continuous elter processing, cont@ktkes between them happen instanta-
neously within one cycle.

The provided SRC models comprise *xed- and oating-poinin@eels for quantization measure-
ments and analysis of the elter characteristics, as well ¥siBL prototype.

The SRC is embedded in the Preprocessor DSP engine thdtsrstalihe connection between the
ADA interface and the remaining baseband engine. To ¢ndlizel EEE 802.11p receiver chain a
erst prototype of the Preprocessor has been described in V&t evaluated using Modelsim.
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5.2 Functional Speciecation

The functional speciecation is split over two different parFirst the Preprocessor is specieed and
functional details to be considered for the design of the @Rprovided. Then we focus on the
speciecation of the SRC itself.

5.2.1 Preprocessor Speciscation

The Preprocessor connects the external RF module with imldbaseband processing engine.
To establish this connection, the standardized DSP sheblightly been modieed by a dedicated
interface for a direct access between the processing udittenADA interface (Fig. 5.3). The
latter handles the (de)multiplexing of the complex sampt@aing from and going to the A/D and
D/A converters. In RX / TX, the signal provided by the A/D, Déanverters has a resolution of
12 bit / 14 bit. Sign extension and bit removal become necgssathe Preprocessor operates on
samples in a Q1.15 format. These tasks are handled by the AfeAace as well.

ADA!Interface

|
:} |
interrupts i Processing!Unit
|
i

| o =
BRE-F DA
| £/ css :
i - =|  Mmss
| uc |,

<——IRQ

% VClInterface
i <t
|

Figure 5.3: Modieed Standardized DSP Shell

The main Preprocessor tasks are:
Interface to the ADA converters

I/Q imbalance correction. The quadrature offset comp@nsaliminates the errors caused
by I/Q imbalance. More speciscally, these errors resultriramplitude and phase impair-
ments between the local oscillator paths as well as from wtisihes between | and Q branch
after the analog down conversion.

NCO for carrier frequency adjustment
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Basic signal processing functions like sample rate coivers

Sample synchronous interrupt generation. An interrupteisegated for each RX channel
after a given number of samples has been stored in the MSSisTballed theacquisition
cycle of the Preprocessor. These interrupts may inform the maid ©Rrigger a DMA
transfer or they could inform the local UC so that the datauiematically streamed into a
known baseband memory location.

To guarantee a high performance of these tasks, they ateospli different internal modules
which are 1/Q imbalance (I/Q), a pre-distortion unit in TXOQJR NCO and SRC. Each of the two
different modes supports four different channels that massess a different set of parameters.
In RX, the incoming samples provided by the ADA interfacesp®, NCO and SRC before the
samples are stored in FIFOs in the MSS. In TX, the outgoingpsessnare loaded from FIFOs
in the MSS and pass SRC, NCO, I/Q and PD before they are pasikd ADA interface. All
modules are supervised by a global Preprocessor ControbSillustrated in Fig. 5.4. Main tasks
of this state machine are to schedule the conegured / actig@mrels in a Round Robin fashion, to
trigger the data write / read requires to the ADA interfacd &rthe MSS, to update the parameters
required to program the different modules if necessarygttegate the interrupts at the end of an
acquisition cycle and to supervise the channel switch betvieo channels.

Preprocessor!Processing!Unit

ADAlInterface
TX
MSS
=~ RX
A/D
DMA
CSS CSS

Figure 5.4: Preprocessor Architecture

Possible channel states are active (channel can be sctigdinactive (channel currently not
needed) and suspended (channel shall be processed, batitnstimple passing). To avoid an
unpredictable behavior, channel parameter updates ayeposkible when a channel is not exe-
cuted. This requires a minimum coneguration of two differehannels. A channel switch may
occur after a exed number of generated output samples. Itheahandled exibly at runtime
depending on a CSS parameter providing the maximum numbsaroples to generate before
switching. The minimum number of samples to be processedhmainel depends on the time
necessary to perform a channel switch in the whole DSP engiigimportant that the continu-
ous processing of the Preprocessor is guaranteed, medwintpé channel switch has to happen
instantaneously.
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The different internal modules communicate via a handsigakirotocol that is illustrated in
Fig. 5.5. This protocol guarantees valid data transfers stogs the processing chain in case
of absence of data. When a module provides new data, the elatast signaREQis set at the
same time. So the module requests another one to take itsTdaalata transfer was successful
once the acknowledgement sigieCKis received.

CLK

REQ

ACK [

DATA

Figure 5.5: Handshake Protocol

The MSS and the memory space included in the ADA interfach bontain different FIFOs for
input and output sample storage. These FIFOs are autonarnoysonents that manage their own
memory space. To avoid sample loss, they inform the Prepsocén case they are almost full or
almost empty.

The MSS of the Preprocessor is build of

a context memory for each of the modules. These memoriesguéed in case of a channel
switch to store the context of the previously processed méleamd to provide the context of
the next channel to process. Their size is exible and depamdthe amount of data to be
stored.

eight 32 bit input FIFOs with a size of 4 kB. For each channeb FIFOs are provided.
This is due to the fact as the SRC sample output port has a wi@8 bit while the DMA
data bus width is set to 64 bit.

eight 32 bit output FIFOs with a size of 4 kB.
the elter coefecient memory of the SRC with a size of 2 kB.

one parameter memory per module to enable parameter updidhesit con icts. For the
SRC, each channel has two parameter memories. While onededealuring processing,
the other one can handle parameter updates triggered byaineGRU. Currently, the size
of the SRC parameter memory has been ¢xed to 512 Byte.

Based on this functional speciscation, the following statmts for the SRC design can be made:
(1) The parameter updates are handled by the Preprocesetolddnit and are therefore not in
the responsibility of the SRC.

(2) The moment in time when a channel switch has to happentésrdmed by the Preprocessor
Control Unit. The SRC has to guarantee that the channel lswwappens instantaneously once it
is informed about this event.

(3) The communication between SRC and NCO has to follow tlesgmnted handshaking algo-
rithm.

(4) The suspended mode is handled by the Preprocessor Conito The SRC works as usual.
Only difference is that no samples are passed.
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5.2.2 SRC Speciscation

The SRC elter design is based on the bandlimited interpotatilgorithm presented in [137] and
[138]. Main advantages of this algorithm are (1) that noedldht architectures for up- and down-
sampling are required, (2) that the architecture can beniged for an efecient lter design and
(3) that the combination of Whittaker-Shannon interpolatand linear interpolation results in a
high performance with a reasonable space consumption.

5.2.2.1 Derivation of the Filter Structure

In the remainder of this chapter, we will denote the samptatg at the elter input ag;, = %

and the sampling rate at the elter outputlas = T—lz The relation betweef; and T is not pre-

determined and can even express fractional ratios betviieesaimpling rates. The third sampling

rate in the system is the one of the slter itself, denotedr as T—la

The elter derived in this section is a combination of an FIR/fmss elter and a linear interpolation
elter. To obtain a high performance, the ideal lter resperns multiplied with a window function
(please refer to Chapter 5.2.2.2) to obtain the basis wavetd the lowpass elterg(t).

The analog representation of a digital sigréhT1) is computed as

X
x(t) = x(nT1)g(t nTy) (5.10)

n

To getx(t) at a different sampling rate with timinty, the equation above can be expressed as

X
X(kTy) = X(nNT)g(kTo  nTy) (5.11)

n

The digital «lter responsg(n) is sampled at a sampling rate with timifig where
T1=M T; (5.12)
with M as the oversampling factor. So Equation 5.11 can be rewiise

X
X(kTp) = X(nNT1)g(kT, nMT3) (5.13)

n

k has to be chosen so thdlT; kT, < (k®+ 1) Tz or equivalentlyk® = bk%c. kOrepresents a
known elter coefecient that has to be pre-stored in the Posssor MSS whil& represents a elter
coefecient that has to be computed with the help of the linagrpolation function. Considering
this expression ok, Equation 5.13 can be approximated as

X

X(kT2) x(nT1) (1 YI(k® nM)Ta)+ 4 g(K® nM +1)Ts) (5.14)
with T
_ 2

K= ka3 K° (5.15)

For an efecient elter design, the lowpass elter can be debed in a polyphase representation. To
do so,k%is further expressed as
KO= KoM + Iy (5.16)
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wherel, = kmod M and
g,(n) = g((nM + I,)T3); 1k =0;1;, ;M 1 (5.17)

a, (n) is the polyphase elter representation includig different slters. The two elters that are
necessary for each output sample calculation run in paeadtbare selected by the vallye Based
on these considerations, Equation 5.14 can be expressed as

X
x(kT2) x(nT1) @ e K N+ kg, moam (kP N+ 1(lk=M 1)

n
(5.18)
with I () as the unit-valued indicator function.

The resulting elter structure is presented in Fig. 5.6. itlides a polyphase elter structure with
M elters a 19 elter coefecients whereayy (n) is the time-shifted version of the erst ongy(n  1).
For each output sample, two elters are selected dependinthenalue ofl, which is computed
by the modulelnterpolation Control . Per elter, the incoming samples are multiplied
with the elter coefecients before the result is summed up. dampute the result of the linear
interpolation, one elter output is multiplied with the imfmlation factor while the other one is
multiplied with 1 before the sum of the two results is buildandl are calculated by the
Interpolation Control as well.

polyphase!FIR!lowpass!filter

—

. complex!output
complex!input select

—

[ Interpolation ---
- Control  [-------

Figure 5.6: Basic SRC Architecture

5.2.2.2 Lowpass Filter Design

Major challenge in slter design is the right choice of theettcoefecients. As the best performance
is achieved for elters based on the sinc function, best wdaddo retrieve the elter coefecients
directly from the ideal impulse responkét) = sinc(Fst) = % Unfortunately, this im-
pulse response ranges froin to 1 which is not implementable in reality. To get the impulse
response causal, a common approach is the window methocvaldeantages are robustness and
simplicity. Disadvantages on the other side comprise thk ¢d a precise control of the cutoff
frequency which depends on the window size and the eltertleng
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The basic idea of the window method is to multiply the digitizmpulse respondg(n) with a
window w(n). Cutting of the impulse response may lead to undesired teffé® Gibbs phe-
nomenon or leakage effect which can be observed in a higteriggntent. Therefore the right
choice of the window is very important. In [126] a compariswgrdifferent windows like rectan-
gular window, Hanning window, Blackman window oder Kaisenaow is provided.

For our design, it turned out through simulation that the bekievable performance was obtained
using the Kaiser window which is desned as

8 q__

< lo( 1 [™)

Wiaiser (N) = lo( ) for 0 n _ N
: 0 otherwise

where = N7 lo( ) is the zero-order Bessel function of the erst kind:

o,
A

k!

lo(Xx) = (5.19)

k=0

depends on the maximum tolerable approximation error andbeaxpressed $of t .
The latter denotes the so-called #time-bandwidth procafdi#e chosen window in radians. For
the computation of (values are typically between 3 and 9) erst

A = 20ogo (5.20)

has to be computed, withas the maximum tolerable approximation error of the ltdnef can
be obtained.

8
< 0:1102A 87) forA> 50

= 05842A 21)°4+0:07886@A 21) for21 A 50 (5.21)
00 forA< 21

Apart from that, the Kaiser window is sometimes further pzeterized by a value which repre-
sents half of the window’s time-bandwidth product  f in cycles. Itis expressed as= -.

To quantify the trade-off between the main-lobe width arelslile-lobe area of the window, the
valuesN +1 and are important. While the trade-off between side-lobe larel main-lobe
width is determined by the latter, decreasing the windowgtlierN + 1, results in decreasing the
main lobe while the side lob is not affected. has to be chosen so that
A 8
N'= 5585 1 (5.22)

I is the width of the transition region desned as the cutoffjiiency of the stopbands minus

the cutoff frequency of the passbahgt

L=1g I, (5.23)

Fig. 5.7 illustrates the resulting Kaiser window for=5.
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Figure 5.7: Kaiser Window for =5

The elter coefecients retrieved after multiplying the idesinc function with the Kaiser window
are distributed over the polyphase elter bank as derivedquodfion 5.17. Taking the example of a
prototype elter with 15 elter coefecients and 3 elters a 5 H#r coefecients in the polyphase lter
bank, the coefecients are distributed as follows:

- Filter 1: 1, 4,7, 10, 13

- Filter 2: 2,5, 8, 11, 14

- Filter 3: 3, 6, 9, 12, 15

All of these elter coefecients have to be stored in the MSS dodoe loaded before the elter is
started. For our design, the maximum number of slters caradyically be settdl =2, M =4

or M =8 elters. This quantity may differ between the different cinats. The maximum energy
per elter has to be equal to one. Thus the vaMefurther denotes the maximum energy of the
lowpass elter.

Without any optimization, the resulting elter coefecientemory would have a size 8f 19 = 152
entries a 16 bit. This amount can further be decreased whamgtaymmetries between the elter
coefecients into account. For illustration, an example fibr= 4 and seven elter coefecients per
elter is provided in Table 5.1.

elter1 | elter2 | elter3 | elter4
elter coefecient 1 | 0.0000| 0.0689 | 0.1105 | 0.0892
elter coefecient 2 | 0.0000| -0.1201| -0.2018| -0.1739
elter coefecient 3 | 0.0000| 0.2964 | 0.6331 | 0.8991
elter coefecient 4 | 1.0000| 0.8991 | 0.6331 | 0.2964
elter coefecient 5 | 0.0000| -0.1739| -0.2018| -0.1201
elter coefecient 6 | 0.0000| 0.0892 | 0.1105 | 0.0689
elter coefecient 7 | 0.0000 | -0.0544 | -0.0686 | -0.0434

Table 5.1: Filter Coef cient ExampleM = 4, Seven Filter Coef cients per Filter)
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There, the following observations can be made:

Filter 1 comprises only one 1 and Os otherwise. These twaesgatan be hardcoded in the
design and do not need to be stored in the MSS.

The rst three lter coef cients of Filter 3 are equal to thdter coef cients 6 to 4 of Filter
3. Only the last Iter coef cient is unique.

The rstsix lter coef cients of Filter 2 correspond to theimored rstsix Iter coef cients
of Filter 4. Only the last lter coef cients are unique.

Extending these observations for the cas®lof 8 lters, it results that
The Iter coef cients of Filter 1 do not have to be stored iretMSS.
Filter 2 is the mirrored version of Filter 8 (only the lastelt coef cients are unique).
Filter 3 is the mirrored version of Filter 7 (only the lastelt coef cients are unique).
Filter 4 is the mirrored version of Filter 6 (only the lastelt coef cients are unique).

Filter 5 corresponds to Filter 3 in the example above. Thig loalf of its Iter coef cients
have to be stored.

Taking advantage of these observations, the number of coef cients to be stored can be de-
creased to 107 entries a 16 bit.

Remains the question, why choosing an odd number of ltelf camts is preferred to a lter
with an even number of lter coef cients. It was mentionedlea that in caséy points to the last
Iter in the bank, the Iter coef cients of the rst Iter hawe to be right shifted by one entry. For an
even number of Iter coef cients as illustrated in Fig. 5a8( this shift has to be implemented in
hardware which introduces a complexity that could easilglamded by choosing an odd number
of coef cients. There (Fig. 5.8(b)), only the value of twaekr coef cients have to be exchanged
as the second lter is a modi ed version of Filter 1 consigtiof one 1 and Os otherwise.

5.2.2.3 Computation ofiy

The choice of the two lters required for the output samplé&gktion depends on the vallig.
For its computation, rst the next known Iter coef cierit® has to be determined based on the
number of Iter coef cients and on theatio that can be expressed %\% This relation can be
obtained when replacings by % (please refer to Equation 5.12). &®can be computed as

k= bk M ratioc (5.24)
Then the interpolation factor is expressed as
=k M ratio k° (5.25)

andly can be calculated
Iy = k° mod M (5.26)
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(a) Even Number of Filter Coef cients

(b) Odd Number of Filter Coef cients

Figure 5.8: Filter Coef cient Distribution
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Considering !'oating-point values, these calculations quée simple, but for a xed-point rep-
resentation, the quantization error leads to wrong valdidg.oFor illustration, we imagine the
case when the lter has to upsample from 10 MHz to 50 MHz. Thie tzetween these two sam-
pling rates is 0.2 . In a xed-point representation with aoleon of 15 bit, 0.2 corresponds to
b0:2 215¢ = 6553 while the real result i$5535. For the 10th output sample, the valuekSf
is k9 = 524240 which corresponds to a !oating-point value of 15.9985. Tthesvalue obtained
for I is 7 and the last lter in the polyphase lter bank is selectéftthe same is calculated with
loating-point valuesk®obtains a value of 16 ani¢ points to the rst lter.

This quantization error can be expressed as

1

k M (ratio b ratio 215cﬁ) (5.27)

which is equal to zero in case no error is measured. To gueamicorrect computation of
despite quantization, a correction factor has to be intedu AsM is a constant factor, it has to
depend ork only. By solving

k M rato k M bratio 2%c 2—}5 corr k 2—15:0 (5.28)

wherecorr is the correction factor we are looking faorr is obtained as
corr = dM (ratio 2*° bratio 2%c)e (5.29)

The result is rounded up to ensure that the correct Iterliscted. This is tolerable, & mod M
nally is rounded down to obtain the vallg. A drawback of this approach is that the introduced
error will again lead to wrong results, but not before thoasaof output samples have been
computed. To avoid this error, we take advantage of an obdeyeriodicity ofk: For each ratio a
maximum value ok denoted a&yrap can be identi ed after which the values lpfand repeat.

Kwrap ratio = integerValue (5.30)

We observed that resettingonce the maximum value is reached avoids wrong lter sedesti
based on the error introduced with the correction factor .

Please note: The values B, kyrap andcorr have to be precomputed and provided to the SRC
via the parameter memory that is embedded in the MSS.

5.2.2.4 Implementation of a Notion of Time

When deriving the Iter structure of the SRC, we have distiisped between three different time
domains:

the time difference between the two input samples:
the time difference between the two output samples:

the time difference between the two lter coef cients;
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To handle these relation$; and T, do not need to correspond to the real timing values. Instead
it is suf cient if they just express the relation between tampling frequencies. E.g. when
upsampling from 10 MHz to 50 MHz, it is suf cient i1 is set to ve andT, is set to one

to represent the ratio of 0.2 between them. This decisiorasedh on the fact that the required
resolution for the frequency range 8MHz  fsamp 61,44 MHz is 1 Hz which corresponds

to
. 1 1

Y614aMHz  61:44MHzZ
To be sure, the usage of atto step® (8) is recommended, resulting in a required resolution of
60 bit. Computations based on this resolution are very tintespace consuming and may result
in a performance drop of the SRC.

1sz =2:649 10 s (5.31)

In the next subsections, the underlying algorithms regufce the decision when to compute a
new output sample based on the value$pandT, are provided.

5.2.2.5 Upsampling

Upsampling implies that the sampling rate of an incomingaigs increased. Thus the number of
generated output samples is higher than the one of the iapytles as illustrated in Figure 5.9.

T3
B B B B B<-B B fitercoefficients

X X X X ><<T 2>>< % output'samples
A
() o 1 .<L>. input"samples
A 1
fin tbut

Figure 5.9: Upsampling: Relation between Input and Outpum@es

As stated in the algorithm in Fig. 5.10, an output sample iegated in each iteration. In case the
value of the input countdin is greater or equal than the value of the output couater a new
input sample has to be shifted in (provided to) the lowpatear. [The counter values are only reset
in case they are equal.

For a ratio of 0.4 we s€ef; = 10, T, = 4 and initializetin andtout with the values off; and
T, respectively. Then we start the execution of the algorithm:

Iteration 1) tout =4, incrementout by T,

Iteration 2) tout =8, incrementout by T,

Iteration 3) tout =12,tout >tin ,increment both counter values

Iteration 4) tout =16, incrementout by T,

Iteration 5) tout =20,tout =tin ,reset both counters

5.2.2.6 Downsampling

Downsampling implies that the sampling rate of an incomiggal is decreased. Thus the number
of generated output samples is lower than the one of the sgmples as illustrated in Figure 5.11.
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tin = T1
tout = T2

loop{
calculate

if tout < tin then

tout += T2
else
shift
if tout = tin then
tin = T1
tout = T2
else
tin += T1
tout += T2
end if
end if

Figure 5.10: SRC Upsampling Algorithm

T3 . -
B B B B B--B B fitercoefficients

X X T2 X output"samples
A
® ® 1 .&». input"samples
A |
'Ein té)ut

Figure 5.11: Downsampling: Relation between Input and Gufamples
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As stated in the algorithm in Fig. 5.12, an input sample is/joled to the lowpass lIter in each
iteration. In case the value of the input courtter is greater or equal than the value of the output
countertout a new output sample is generated. The counter values aregesdy in case they
are equal.

tin = T1

tout = T2

loop{
shift

if tin < tout then
tin += T1

else
calculate

if tout = tin then

tin = T1

tout = T2
else

tin += T1

tout += T2
end if

end if

Figure 5.12: SRC Downsampling Algorithm

5.3 System Integration

5.3.1 Preprocessor Prototype

To complete the IEEE 802.11p receiver chain, a prototypéefRreprocessor has been imple-
mented. This version is not fully optimized yet, but alre@niyludes some of the major function-
alities of this DSP engine which are

the connection to the ADA interface
the design of the MSS including the FIFOs

a rst design of the processing unit embedding the SRC andsaversion of the main
control

a small wrapper to connect the SRC to the ADA interface

scheduling of the active channels in a Round Robin fashion
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parameter update at runtime
RX interrupt generation

channel switch state machine that signals to the SRC wheraaneh switch has to be
performed

provision of the input samples to the SRC

storage of the SRC output samples in the MSS (RX) and theiigiom to the ADA interface
(TX)

Still missing are the suspended mode and the implementaftié@, NCO and PD. The nalization
of the Preprocessor is thus part of our future work.

5.3.2 C-Models of the SRC

Before the SRC was described in VHDL, two different C-Modetsre implemented for proof of
concept and to de ne the dynamics of the SRC parameters.eTpamameters were the sampling
rates and their ratio, the number of Iters embedded in thgpgi@ase Iter bank and the number
of required bits for the xed-point representation of thegraeters. The only difference between
the two models is the value representation. While one isémphted using a xed-point repre-
sentation, the other one is based on a !oating-point ones atows to get clear numbers about
the quantization error and about the Signal to Noise RatitR)Snecessary to evaluate the SRC
performance. The SNR can be expressed as

=)

1P n 2
=] Xideal (N)
no1 (5.32)
1

SNR =10lo P
J10 170 () Xidea ()2

n

with x(n) as the obtained ankliges (N) as the ideal result. In addition the xed-point model
enables a fast validation and veri cation of the nal VHDLslgn.

5.3.3 VHDL Model

The top level view of the SRC is illustrated in Fig. 5.13.

Although the input samples are complex ones where real aadiirary part have a size of 16 bit,
the processing is based on real values where real and inmagiaga processes are executed in
parallel. The Iter coef cients and the values computed bg tnterpolation Control (IPC) are the
same for both execution chains.lUnad Coefficients ,the Iter coef cients are loaded from
the MSS and stored in local registers. The connection betwresse registers and the FIR Iters
is established via multiplexers that are triggered by theeda. Despite the fact that only a subset
of the Iter coef cients is stored in the MSS, all 8 x 19 lteroef cients have to be provided to the
two FIR Iters when required. Table 5.2 illustrates how tlealr Iter coef cients are generated
from the lter coef cients stored in the MSS. 0/1* denote®tbhifted version of the second lIter
value in casdy points to the last Iter in the polyphase Iter bank and CCx&ribtes the mirrored
version of CCx where only the last Iter coef cients are uni

Ik, andl are provided by the modul®C . To save one multipliefyl ratio is a parameter
given to the SRC. The other parameterslafg, and the correction factaorr. The architecture
of this module is shown in Fig. 5.14.
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5. REXIBLE SAMPLE RATE CONVERTERDESIGN

IN_REAL —= Processing Real"Part

m—T= OUT_REAL

|

Select
Coefficients

|

>( Load"Coefficients ’—'> © ng

Interface"MSS | < -

VCl"Interface

Sample <»—?
Computation

IN_IMG —= Processing Imaginary"Part

H—> OUT_IMG

Connection
Context"Memor,

<’—‘>{" context"Memoi

Output"Sample]
~| Calculation

—= OUT"Samples

Select
Coefficients

Figure 5.13: SRC Top Level View
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Figure 5.14: Module InterpolationControl
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M =2 M =4 M =8
k=0 CI=0/1 Cl=0/1 Cl=0/1

Cll=CM CllI=CC1 CcCll=cCccC1
k=1 ClI=CM Cl=CC1 Cl=CC1

Cll=0/2* Cll=CM Cll=CcC2

I =2 CI=CM  CI=CC2
Cll=CC1* Cll=CC3
Ik =3 Cl=CC1* CI=CC3
Cll=0/1* Cll=CM
I =4 Cl=CM
Cll = CC3*
k=5 Cl=CC3*
Cll = CC2*
k=6 Cl=CC2*
Cll = CC1*
=7 Cl=CC1*
Cll = 0/1*

Table 5.2: Generation of the Missing Filter Coef cients

andl are delayed by six cycles §sis needed before the FIR lIter processing and the two
interpolation factors afterwards for the calculation af tutput samples.

The modulo operation in the design is realized by forwarding
the LSB ofly in caseM =2
the two LSB ofly in caseM =4
the three LSB ofy in caseM =8

The FIR lIter is split over the modulefRegisterbank  and FIR . For illustration, Fig. 5.15
provides a simple architecture for an FIR lIter with four €t coef cients.

The input samples are rst shifted via registers and thertiplidd with the Iter coef cients cO
to c3. For thenth lter coef cient, the samples are delayed hy 1 cycles. Finally, the multipli-
cation results are summed up.

In case of our prototype, the registerbank consists of 8 »efysters a 16 bit. The output of the
registerbank is the same for both lters in the polyphaserlbank. At a rst glance, such an
architecture does not seem to be very critical. But one hag @ware of the fact that each lter
in the polyphase Iterbank consists of 19 multipliers anddiRlers that are distributed over a 5
stage adder pipeline. An alternative could be a sequeritallter solution, but this would result
in 18 cycles necessary to build the sum of the multiplier otg@nd would thus result in a sig-
ni cant performance drop. Another issue are the invoked B Pslices when mapping the Iter
on the FPGA target. Per lter, 19 of these elements are reduitesulting in a total number of 76
DSPA48E slices out of the available 172 ones.

For the generation of each output sample, the two invoked @RS are executed in parallel. In
the moduleOutput Sample Calculation , the two Iter results are nally multiplied with
andl before their sum is build to generate the output samplestieagither provided to the




114 5. REXIBLE SAMPLE RATE CONVERTERDESIGN

c0
v
Input Samples . > > Outp}ut samples
v A
cl
v
. » »
\/ A
c2
v
. » »
v A
c3
v
>

Figure 5.15: Example FIR Filter with 4 Filter Coef cients

ADA interface (TX) or that are stored in the MSS (RX).

The decision about when to shift a new sample in Registerbank  and when to compute

a new output sample are made by the modsdenple Computation  where the difference

between the two different sampling rates is handled. Inieigul6 the signal settings for the

upsampling mode are illustrated. In case a new sample haslmabed from the MSS, the lIter
execution continues once it is available.

« oy
e |
get_sample |

shift j ’—L

Figure 5.16: Example: Upsampling by a factor of 3

Figure 5.17 illustrates the downsampling process by a fadttwo whereT; is set to 2 and’; is
set to 1. The whole process is triggerechtt_req , allowing to read one sample per cycle as
long as samples are available. Each new sample is thendshiftetheRegisterbank . To do
soshift is set to one. Depending on the internal counter values, 2and value is computed
by the SRC ¢alc is set to one each second cycle).

To realize an instantaneous channel switch, all registetise design are duplicated. In Fig. 5.18
an example for the processing of four different channelsasiged. Whether these channels are
RX or TX ones is not important as the scheduling does not dkpearthe execution mode. The
four channels are invoked in a Round Robin fashion. While,jristance, CH2 is executed, the
values of CH1 are stored in the context memory, and the valful€$i3 are loaded.
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« L

nco_req

]
ack | |
]

shift
calc

Figure 5.17: Example: Downsampling by a factor of 2.5

processed"channel >—< CH2 >< CH3 >< CH4 ><

stored"channel CH4 CH2 CH3

loaded"channel CH2 CH3 CH4

Figure 5.18: Channel Scheduling

The rst time a channel is executed, the modules of the SR@ lhabe synchronized, including
the load procedure of the rst lter coef cients. For this mose, a parameter in the CSS control
registers can be set.

The control of the SRC is split over two different state maekithat are executed in parallel. One
is responsible for the handling of the context switch, theobne takes care of the normal SRC
processing, including the synchronization of the diffémreodules once a channel is executed for
the rsttime.

5.4 Performance Analysis

5.4.1 C-Model Performance Results

The maximum achievable SNR value is determined by the ADArexar performance. After
[140], it can be estimated as
SNR=(6:02 r +1:76)dB (5.33)

with r as the signal resolution in bits. In RX / TXis equal to 12 / 14 bit which results in a
maximum SNR of 74 dB / 86.04 dB.

Taking the C-models, the SNR values of different known irgighals like sinusoidals or sweeps
are computed automatically when executing the code. To dthedncoming !oating-point sig-
nal is A/D converted, quantized to 16 bit, resampled and Averted to obtain a !oating-point
representation. Then the ideal result without ADA cona@rsind nally the SNR are computed.

In case no interpolation is required, the SRC easily obttiesmaximum SNR values for si-
nusoidal and sweep test signal. When interpolation becamesssary, the SNR depends on




116 5. REXIBLE SAMPLE RATE CONVERTER DESIGN

the ratio between the sampling frequencies, on the ovelganfactor and on the input sig-
nal type. Table 5.3 lists some results obtained for an examyinusoidal signal de ned as
y(x) = 1sin(x9+ sin(¥X)+ sin (%) + cogx9 with x°= 2 fx

mode ratio | SNR
upsampling 1.45 | 80.12 dB
upsampling 2 86 dB
downsampling| 4.3 73.8dB
downsampling| 5 74 dB

Table 5.3: SRC Results for a Sinusoidal Test Signal

In case white Gaussian noise test signals are used, the SINBecabtained by evaluating the
Power Spectral Density (PDS) which describes how the sigmakr in time domain is distributed
over the frequencies. Before starting the SRC, the tesakigtowpass Itered and oversampled.
Upsampling by a factor of 2.5 results in an SNR of around 82 dilenthe SNR is very close to
the maximum possible one in case no interpolation is needed.

Different results are obtained when modifying the adjustalber parameters or when changing
the resolution of internal signals in the architecture. &a@imple sinusoidal signal de ned as
y(x) = sin(2 1000000 x) we observed that

The resolution of the lter coef cients can be at maximum 2& Otherwise, the number
of DSP48E slices increases which is not acceptable as thiealteady uses almost 43 % of
the available ones.

In case of realizing a lIter structure witkl = 16 orM = 32, the higher resource consump-
tion does not justify the gained performance. Not only thatermemory space is required
for the lter coef cient storage, also the time to load themthe SRC increases signi cantly
(Fig 5.19).

Changing the parameter of the Kaiser window also leads to different SNSRilts. This
parameter controls the width of the main lobe of the Iter gmdvides information about
its 3 dB cutoff frequency. Therefore the obtained resultg 820) do not only depend on
the test signal but also on the lIter characteristics.

Finally we compare the two different C-models to get an ideaua the quantization noise. For
the sinusoidal test signal, results are provided in Talgle 5.

ratio | oating-point SNR | exed-point SNR
0.2 68.120699 67.061089

0.5 82.138105 68.991791
0.69 | 68.130715 67.037849

1.7 68.147434 65.075775
1.875| 94.336565 67.939613

2.0 inf 76.64704

Table 5.4: SRC Results for a Sinusoidal Test Signal for Quatidn Noise Measurements
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Figure 5.19: SNR Performance for Changing M

Figure 5.20: SNR Performance for Changing Beta
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5.4.2 Synthesis Results

When synthesizing the SRC for the baseband FPGA target, mmaaxfrequency of 130.005 MHz
is obtained after place and route. Required resources are

- 32899 function generators (15.87 %)

- 8225 CLB slices (15.87 %)

- 20013 DFFs or latches (9.54 %)

- 30 Block RAMs (10.42 %)

- 82 DSP48E slices (42.71 %)

For the rst Preprocessor prototype, a maximum frequen@B8a261 MHz has been obtained after
place and route. Required resources in this case are

- 41007 function generators (19.78 %)

- 10252 CLB slices (19.78 %)

- 26206 DFFs or latches (12.49 %)

- 55 Block RAMs (19.10 %)

- 82 DSP48E slices (42.71 %)

5.5 Conclusions

In this chapter, we focused on the Preprocessor DSP engiceniplete the design of the IEEE
802.11p receiver. Most critical part in terms of performamand space consumption is the SRC
embedded in the processing unit of the Preprocessor. Tkemiexl design is a !exible high per-
formance Iter based on bandlimited interpolation. It sagp fractional ratios between the xed
sampling rate of the ADA converters and the sampling ratdsdady’s wireless communication
standards with a resolution of 1 Hz. Up to four channels imlatitections, RX and TX, are sup-
ported that may possess a different set of parameters tingsul dynamic system changes at
runtime. To guarantee an continuous processing of the SRaBnel switches happen instanta-
neously.

To complete the IEEE 802.11p receiver chain we further piteskea rst prototype of the Prepro-
cessor that includes already the main features of this D§Pen

The performance evaluation has shown that the SRC perfaenaainly depends on two different

factors: (1) the sampling rate of the wireless communicasimndards in process and (2) the ratio
between the sampling rates. It is obvious that the lesspialation is required and the lower the

ratio, the higher the measured performance is. Possiblgrdestensions to obtain an excellent

performance even for high upsampling ratios could be

splitting the ratio in two parts: an integer and a fractiooaé. Integer resampling could be
performed by CIC lters while our SRC solution could be usedthe fractional part.

processing the SRC several times. This approach is nob&iia a continuous processing
of the SRC would no longer be guaranteed in this case.

Besides, the performance of the current design could beased by the implementation of an
addressable registerbank or by the realization of highderodters. The latter comes with the
drawback of a longer lter initialization time and more memaequired for the lter coef cient
storage. Apart from that it is also imaginable to increageRheprocessor frequency by adding
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more registers between the MSS control part and the actudRRAs it is already done for the
other DSP engines on the ExpressMIMO platform.
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Chapter 6

Conclusions and Future Work

The work presented in this thesis is strongly connectedtéstidrends in the automotive industry
that demand for a combination of C2X and TPEG informationan8ards of interest are IEEE
802.11p and ETSI DAB. To combine these two we have chosenphmach of a !exible SDR
platform that is not limited to the automotive context buttineless communication standards in
general. The thesis focused on an ef cient physical laysigiteof the IEEE 802.11p receiver for
the OpenAirinterface ExpressMIMO platform by followingetibasic development methodology
described in Chapter 2.3. This included (1) the developragptirely functional models using the
emulation library of the platform, (2) the cycle accurate H\®W co-simulation via Modelsim
and (3) the receiver validation on the hardware platforme @issing component was the Prepro-
cessor where a rst solution including a fractional SRC hesrbprovided. Based on the obtained
results we identi ed design bottlenecks and presentedilplessolutions to overcome these draw-
backs. Apart from that we had a look at a multimodal procegssiithe two standards of interest,
IEEE 802.11p and ETSI DAB.

In the introduction, all these objectives have been expressa list of different tasks that had to
be accomplished throughout this thesis:

1. Emulation of the IEEE 802.11p receiver with the help of tlilerary for ExpressMIMO
baseband callelibbembb

2. Implementation of the IEEE 802.11p receiver and its parémce evaluation on the Ex-
pressMIMO platform

3. Focusing on the question how DAB and IEEE 802.11p can beut@ simultaneously on
the ExpressMIMO platform

4. ldentiecation of design bottlenecks and the provisiorpo$sible solutions

5. Implementation of a Preprocessor DSP engine prototypertiplete the IEEE 802.11p re-
ceiver chain

In the following we recall these tasks to summarize the aeltiecontributions as well as design
limitations and possible future enhancements.
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6.1 Receiver Emulation

Thanks to the emulation library of the ExpressMIMO platforibhembb, easy receiver valida-
tion and veriecation in a pure software environment becamssfble. The functions included in
this bit-accurate C++ library represent all functions @ teal hardware platform, including basic
commands for the main CPU and the local microcontrollerse diésign of the emulation pro-
totype of the IEEE 802.11p receiver has been implemented avgequential execution in mind
where no concurrency of the DSPs was exploited. Advantafjggsoapproach were (1) the fast
improvement of algorithms and (2) the creation of srst pemiance sgures based on the pure pro-
cessing time of the DSPs. The latter has been facilitatechtanaotation with cycle counters and
by an automatic generation of trace ¢les that can be intéedrby software programs like Matlab
or Octave. To enable a simplieed integration of standardsaise of multimodal processing and to
simplify updates due to changes in the baseband, we furkteneed our design by an additional
layer, calledexpressmimo_emu .

The presented receiver code supports all modulation scham code rates of the standard and
could theoretically be executed on the hardware platfosalfitwithout any modiscations. Un-
fortunately, this approach still results in a signiecantfoemance drop for standards operating on
short data sets, so that a redesign of the receiver code baterassary.

Limitations:

Currently, no parallelism of the DSP engines is exploite@mhbxecuting the receiver code
on the hardware platform. Therefore the code has been aebigith a sequential execution
in mind and has not been optimized for its execution on the&sgMIMO platform.

The emulation model can only serve as an input for a runtinatyais based on the pure
processing times of the DSPs and the data transfer times @MAs. Not supported is an
estimation of the resulting communication overhead.

Possible future enhancements:

In the future, libembb will be extended to exploit hardwaeggtlelism on the platform.

Once this is *nished, it would be an interesting task to r@gteshe current emulation re-
ceiver prototype and to carry out a detailed performancéysisaon the ExpressMIMO plat-
form. This would give an idea about the efsciency of the nelaelnbb design, especially
when executing standards with short data sets.

The obtained performance egures could be compared to then@d receiver prototype
presented in Chapter 3 to identify possible design bottlesién either of the two design
approaches.

6.2 Receiver Implementation for Prototyping

In the future design ow, the code written for emulation caredtly be compiled for the hardware

platform even for standards with short data sets. We hawarshihat this approach is currently

too time consuming for this kind of standards as the programgraf the DSP engines at runtime

is still too time consuming. Therefore, code optimizatignHand was unavoidable. The identi-
eed design bottlenecks and the provided solutions to imeitne receiver performance are further
detailed in Section 6.4.

Besides, the performance has further been improved bygaddivantage of the CSS command
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preparation and by implementing a simple scheduler beirg etecute different DSP engines
in parallel. Throughout different performance evaluagiam Modelsim and on the real hardware
platform we observed, that the IEEE 802.11p receiver canrbeepsed in real-time for BPSK,
QPSK and 16-QAM. For a slightly higher target frequency @& Whole baseband engine (e.g.
ASIC target), this is also the case the 64-QAM. Apart front thia recognized that a further re-
duction of the communication overhead can only be achieyeal distributed control ow based
on the local CSS UCs or by a microprocessor or sequencer draieband side.

Limitations:

Executing the hardware version of libembb on the Express®iMatform results in a sig-

niecant performance drop, due to the huge communicatiorrteesd that occurs when pro-
gramming the DSP engines. Currently a manual code optirizét still unavoidable when

executing standards operating on short data sets.

Possible future enhancements:

A possible enhancement could be the implementation of atiexft API for standards with
short data sets which already includes the design optimizédentieed in Section 6.4.

Currently, scheduling the different DSP engines is basea Round Robin policy. It could
be interesting to experiment with different schedulingigeb to analyze the resulting per-
formance changes.

Another improvement would be the realization of a distiglicontrol ow on the platform
and the comparison to the presented design. This could ter eé&alized by the local UC
inside the standardized DSP shells or by a sequencer or pni@@ssor on the baseband
side. In case of the FEP, more complex algorithms like chiagstamation or data detection
could be delegated to this DSP while the main schedulingillsrsthe responsibility of
LEONS3.

Furthermore, performance sgures based on the power cortsumipave to be obtained for
the whole receiver chain.

6.3 Multimodal Standard Execution

The execution of IEEE 802.11p and ETSI DAB was still an opexeaech topic at the beginning
of this thesis. Therefore we were interested in obtainirgt grerformance sgures to design an
efecient scheduler for the ExpressMIMO platform. Due to orajlifferences between these two
standards this task became very challenging. |IEEE 8024 ¥ppacket based standard whose
packet interarrival time is not known in advance. Operatinghort vectors, this standard further
requires a very fast baseband engine. DAB, instead, is aeftsased standard whose future exe-
cution is known once the beginning of a frame is detectedofirast to IEEE 802.11p it operates
on larger vectors so that the communication overhead cauked programming the DSPs can
almost be neglected.

To get erst key egures for the scheduler design, a detailettime performance analysis based on
the emulation prototypes of both receivers has been castiedrhroughout this analysis it turned
out, that most of the tasks were running on the FEP. AlthohgH-EP is not the computationally
most intensive DSP engine, it has to execute most of the,tamiading the latency critical ones.
Based on these results, scheduling guidelines have bemedi@nd a simple erst scheduler has
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been presented.

Limitations:

Throughout the runtime performance analysis, the FEP tuoo to be a bottleneck of the
design. A possible solution to overcome this drawback ialted in Section 6.4.

Possible future enhancements:

The scheduling algorithm has to be enalized and tested onkEtkgressMIMO platform
together with the IEEE 802.11p and the DAB receiver.

Improvement of the DAB code by applying the same hardwaranigeations than for the
IEEE 802.11p receiver code.

6.4 Identi cation of Design Bottlenecks

6.4.1 Receiver Optimizations

When testing the receiver code on the real hardware platfming FPGAs, different design bot-
tlenecks have been identieed and solved. First the C codaimgnon the main CPU has been
optimized to decrease the overhead due to function cals aftmpilation. Modiecations com-
prised a higher number of inline functions and macros as ag# limited number of parameters
to be set dynamically at runtime. Apart from that we obsertieat the interrupt handler provided
by MutekH still decreases the IEEE 802.11p receiver peréma signiecantly so that we had to
poll the status registers instead. Another identieed oftation in the design ow was grouping
the OFDM symbols included in the IEEE 802.11p DATA «eld. Wevbahown, that the commu-
nication overhead can be decreased as this approach ettaESP to operate on larger vectors.
Besides, programming the DSP engines at runtime turnecbdug very time consuming and re-
sulted in a huge performance drop. To overcome this drawhaekhave proposed an efecient
alternative by preparing the commands in advance and te gt@m in a local memory before
starting the receiver.

Limitations:

Although the interrupt handler provided by MutekH is verycefnt when compared to
others, the introduced communication overhead resultshage performance drop when
executing the IEEE 802.11p standard.

Programming the DSP engines at runtime may be very time oconguand may result
in a lower performance. Command preparation as an alteenaionly suitable in case
the commands are almost static and require only few mod@natin case of dynamic
parameter changes at runtime.

Possible future enhancements:

One possible enhancement could be the implementation ater fimterrupt handler or the
provision of libembb functions based on the polling of thetss$ registers.

The way how the DSP engines are currently programmed lowerpdrformance for stan-
dards operating on short data sets. It is therefore straeglynmended to reimplement the
invoked libembb interface to make it suitable for all kindstandards.
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6.4.2 ASIP Design for Front-End Processing

When executing operations on short vectors on the FEP ssimétk for the FPGA target, the
programming communication overhead is huge when compardidet pure processing time of
this DSP. To overcome this limitation, the FEP vector pretes unit has been replaced by an
ASIP solution, called A-FEP. For development, the LISA laage that has gained commercial
acceptance over the past years has been chosen. In conti@sprogrammable FEP DSP engine
(C-FEP), the A-FEP version embeds general purpose ingtnscand comes with reduced internal
latencies. We have shown, that this makes the A-FEP the jppai® solution when processing
standards with short data sets while the performance is ordess equal for standards like DAB.
We therefore recommended to include the A-FEP solution aslditional block in the baseband
engine. The main advantage would be that the A-FEP couldutxdatency critical tasks while
DFT / IDFT and latency non-critical tasks can be processetheiC-FEP in parallel.

Apart from that, the execution time of the A-FEP has furtheerdbcompared to two different so-
lutions from academia. For a packet detection algorithm githieved performance was similar to
an ASPE ASIP presented by ETH Zirich but was still worse thgpegialized ASIP solution for
synchronization and acquisition.

Limitations:

For the packet detection algorithm the performance of tHeE&R was worse than the one
of a specialized ASIP solution. Although this phenomenowitely known, it would be
interesting to analyze if the A-FEP performance can stilifbperoved.

Possible future enhancements:

Up to now, the A-FEP has only been validated in Modelsim anthkeySynopsis develop-
ment tools. Still missing is the integration and validatamthe ExpressMIMO platform.

Furthermore, performance sgures based on the power cortsumipave to be obtained for
the A-FEP.

6.5 Implementation of a Preprocessor Prototype

This tasks comprised the ¢nalization of the IEEE 802.11peiegr chain by the implementation
of the Preprocessor. The Preprocessor connects the dxééand D/A converters with the
remaining baseband processing engine and embeds amongantteRC, an NCO and an I/Q im-
balance module. We mainly focused on the implementatioh@&RC, which is most critical in
terms of performance and space consumption. The presessgaghds a exible high performance
olter based on the bandlimited interpolation algorithm gaging a fractional ratio between the
sampling rates. Up to four channels in both directions, R¥ @K, are supported and channel
switches happen instantaneously. For the proof of conaapt@enalize the IEEE 802.11p re-
ceiver chain, a erst Preprocessor prototype has been imgiézal.

Limitations:

Due to the exed number of elter coefecients, the performangees down for high upsam-
pling ratios where a lot of samples have to be obtained vealiinterpolation.

The presented Preprocessor design is a erst version andaogst fully exhibit the whole
required functionality.
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Possible future enhancements:

To obtain a high performance even for high upsampling raties SRC could be combined
with CIC elters. While the latter could perform resampling b high integer factor, the
fractional upsampling can still be performed by the presgé@RC solution.

The presented Preprocessor architecture has to be opdimimbthe missing functionality
has to be included before the ¢nal version of this DSP can begiated and validated on
the ExpressMIMO platform.

6.6 Guidelines for a Future Standard Deployment

To sum up, we can state, that the implementation of standgrelsating on large vectors can be
already performed in a very efecient way on the ExpressMIM@tiorm when FPGASs are con-
sidered as target technology. When executing a vector tperaver a size of 4096 samples, for
instance, the required processing time would be about2@hile the programming time of the
DSP stays at a maximum of 360 ns. The resulting communicatierhead can thus be neglected.
When processing standards with short data sets insteadotlfeehas currently to be manually
optimized by command preparation, symbol grouping, pgliimstead of interrupts, etc. The re-
sulting receiver design is thus more complicated but follgathese recommendations, a high
performance can be achieved even for this type of standard.

Remains the question about possible future projects. ktiarsecret that LTE stands for the new
generation of wireless communications standards. CordpgarelSPA and HSPA+, LTE comes
with an improved performance in terms of throughput andiageas well as with lower costs. This
makes this standard the preferable solution for futurelessebroadband internet systems. Evenin
the automotive industry there are already projects thatfon a possible multimodal execution of
IEEE 802.11p and LTE. So the question is if LTE can be execotetthe ExpressMIMO platform
and if yes, may the work presented in this thesis help for g@ayment of this standard. To
answer this question, let us have a look at the different D®fhes required for the LTE receiver
design:

Preprocessor:
Currently the Preprocessor only supports TDD, but will sappDD in the future version.
The required resampling can already be performed by thepted SRC solution.

FEP:

Air-interfaces of interest are OFDMA and SC-FDMA that aretbsupported by the FEP.

Related air-interface operations are among others prisyarghronization to detect the be-
ginning of the frame, secondary synchronization to deteenthe frame type or channel
estimation where the component-wise product is only peréat at the pilot positions while

all missing values are computed via linear interpolatione Tesulting set of FEP operations
include radix 2/4 DFT / IDFT (between 128 and 2048) and d#iférvector operations that
are all provided by the current version of the FEP.

Deinterleaver:
The required deinterleaving operations can be performdtdipeinterleaver integrated on
the platform.
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Channel Decoder:
LTE requires a 3GPP LTE Turbo decoder with rate 1/3 and a Miecoder with rate 1/3
and with a tail-biting option. Both will be included in thextesersion of this DSP engine.

So the answer to the question whether the LTE receiver campleiented on the ExpressMIMO
platform is: currently it cannot but soon it can, once the lglexpressMIMO design is ¢nalized.
Remains the question if the work presented in this thesisimefyfor the deployment of this stan-
dard. The answer in this case is yes again. As the IEEE 802ekhiver was the erst prototype
developed for the ExpressMIMO platform it paved the way fbfuaure standard deployment by
(2) providing a simple scheduler to execute the DSP engmpariallel.

(2) providing a complex libembb example.

(3) identifying possible design optimizations.

(4) providing performance evaluation frameworks.

(5) proving that the ExpressMIMO platform is functional acepable to meet the real-time con-
straints of latency critical designs.
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Appendix A

Résume Francais

A.1 Introduction

Aujourd’hui, les applications de communication sans el sdavenus une partie importante de
notre vie. Presque tous les jours nous vérisons nos cosarselt sur les smartphones ou les ordi-
nateurs personnels via le réseau local sans ¢l (WirelessllAea Network - WLAN). En outre,
nous communiquons via nos téléphones mobiles ou nous tonsules systémes de navigation
ou des cartes en ligne en cas nous nous sommes trompés d& ckenpiarticulier pour la jeune
génération, il est impossible d'imaginer vivre dans un nead ils ne peuvent pas étre connectés
a leurs amis en tout lieu et a tout moment. Des entrepriseplds®n plus ont reconnues cette
tendance et cherchent a introduire des nouveaux produite snarché. Ces produits integrent
plusieurs d’applications dans un seul appareil, qui est pétit et plus Iéger, qui colte moins cher
et qui a un rendement plus élevé que les autres produits ¢guove dans les magasins.

Un autre marché intéressant pour les appareils de comntianiczans ¢l peut étre trouvé dans
l'industrie automobile. C’est un fait bien connu que I'éwidbn démographique conduit a un pour-
centage croissant de personnes agées, en particulier gpeElans des pays comme I'Allemagne,
ou il n'existe pas de limite d’age pour la conduite autommhily a un grand besoin de nouvelles
applications de sécurité comme les mesures de vitesseyeltissements quand il y a des obsta-
cles sur la route ou la mesure de la distance entre des \&itDux termes clés qui sont utilisés
souvent dans ce contexte sont Car-to-Car communicatio@ € ar-to-Infrastructure communi-
cation (C2l) qui comportent également la mise a dispostiies applications non-sécurité comme
des péages, des informations touristiques ou internetlendtdormes d’intérét sont IEEE 802.11p
et DAB (Digital Audio Broadcasting). La premiére est une &arétion de la norme IEEE 802.11a
qui est utilisée pour les connexions wis. Pour combiner cesxdnormes, deux approches sont
envisageables. Soit ils sont mis en ceuvre individuelleraemtennent avec leurs propres récep-
teurs et émetteurs qui doivent étre intégrés dans la voiturdes deux sont combinées en un
seul dispositif. Comme c’est le cas pour le marché de lahéiéje mobile, il est important que
les appareils sont petites, pas chéres et de haute perfocem&m plus elles doivent étre facile-
ment adaptable a des futures normes. Surtout I'intégraliome nouvelle norme dans une voiture
prend beaucoup de temps et colite beaucoup d'argent (papkexEimégration du LTE - Long
Term Evolution). Par conséquent, une architecture uniaquesst capable de traiter n'importe
guelle norme de communication sans ¢l est la solution pedfiér.

Faire face a ces exigences croissantes pour les archiésataradio reconegurables est une tache
trés difecile. Une solution peut étre trouvée dans le cadeeSdftware Desned Radio (SDR).
Un objectif majeur du SDR est de fournir des solutions deteglarmes exibles qui support-
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ent un large éventail de différentes normes de communita@ms ¢l de maniére multimodale.
Cette approche ne vient pas seulement avec I'avantage éwslappement plus rapide et d’'un
déploiement plus rapide des nouvelles normes, mais aussiladoption automatique dans les
environs.

Notre intérét particulier est I'analyse des normes de taritiques sur la plate-forme Express-
MIMO au moyen de la norme IEEE 802.11p. En plus nous avons&éda combinaison d'un
récepteur IEEE 802.11p avec un récepteur DAB. Comme la<gadicin du premier a été publié
en Juillet 2010, des implémentations efecaces des réceppmur la couche physique sont encore
un sujet de recherche ouvert. Et a notre connaissance, arcpgo d'efforts ont été consacrés a
la description d'une plate-forme SDR qui peut traiter casxdsormes d’intérét en paralléle.
Comme cible nous avons choisi la plate-forme OpenAirlamfExpressMIMO qui est dévelop-
pée par Eurecom et Télécom ParisTech. Contrairement aukelssplates-formes SDR, les fonc-
tions de traitement en bande de base sont réparties sweynisifdigital Signal Processors (DSPSs)
comme le décodeur canal, l'interleaver ou le Front-End &ssar (FEP) qui peuvent étre exé-
cutées en paralléle. Cela permet non seulement une meilfmrformance de tout le systéme,
mais permet aussi de remplacer facilement un DSP en cag$uiises a jour deviennent néces-
saires. La plate-forme est capable de traiter jusqu’a lamaox différents en méme temps (quatre
canaux en transmission, quatre en réception) en réutilisarressources programmables sur la
plate-forme. Dée de conception principale est la synchsafion de ces ressources en fournissant
un maximum de précision et en répondant a toutes les exigarceemps réel. La plate-forme
peut en outre étre émulé avec la library for ExpressMIMO basd appeléibembh qui permet
une validation et une vériecation du récepteur dans un enviement purement logicielle.

Au tout début de cette thése, le travail sur cette plate-€oétait toujours en cours. Pour ¢a, le
récepteur présenté est la toute premiéere création compiet été élaborée et évaluée sur cette
plate-forme cible et qui a été émulé a 'aide de libembb. Elonc été servie comme une pre-
miére preuve de concept de la conception tout entiére. Nodiexécution qui opérent sur des
vecteur de petite taille, comme IEEE 802.11p, besoin d’aiteiment trés rapide. Donc, choisir
cette norme comme un premier cas d'utilisation nous a pedté@isluer la conception actuelle de
la plate-forme pour trouver les goulots d’étranglementoeirgrouver des solutions possibles pour
les surmonter.

Finalement nous proposons un prototype d’'un Préprocess€alui-ci relie le convertisseurs
A/D et D/A avec la plate-forme compléte et intégre entre esitin convertisseur de fréquence
d’échantillonnage (Sample Rate Converter - SRC).

Pour atteindre tous ces contributions, les objectifs d&dsront été regroupés en cing taches
différentes:

Emulation du récepteur I'lEEE 802.11p avec l'aide de libbmb

L'implémentation du récepteur IEEE 802.11p et I'évaluatite la performance sur la plate-
forme ExpressMIMO

L'analyse d’'une exécution multimodal des récepteurs DABE&E 802.11p sur la plate-
forme ExpressMIMO

Identiecation des goulots d’étranglement et la concepties solutions possibles

L'implémentation d'un prototype Préprocessor
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A.2 Intégration du Systeme

A.2.1 La Plate-Forme OpenAirinterface ExpressMIMO

La plate-forme OpenAirinterface ExpressMIMO ([30], [3&pt développée par Eurecom et Télé-
com ParisTech. Elle potentiellement prend en charge um l&vgntail des normes différentes
comme GSM, UMTS, WLAN, DAB ou LTE ainsi que leur traitementltimodal. La plate-forme
est capable de traiter jusqu’a huit canaux différents en et@émps (quatre en réception, quatre en
transmission) en réutilisant les mémes ressources nmisri€omme chaque canal peut prendre
en charge d'un standard de communication sans ¢l diffédentiés principal de conception est
la synchronisation de ces ressources en fournissant ummaxide précision et en répondant a
toutes les exigences en temps réel. ExpressMIMO est senlartikisée pour des analyses ex-
périmentales. Pour ¢a, la technologie cible qui a été ahaisnt des FPGAs. Des avantages
contiennent un temps de conception réduit, exibilité pamd’exécution, une utilisation simpli-
*ée et des colts réduits pour les petites quantités par rappa autres solutions. Néanmoins
ASICs sont pris en compte dans une future version une foisfagption de bande de base a été
validée.

Contrairement aux solutions présentées précédemmeranteption actuelle de la plate-forme
ExpressMIMO est répartie sur deux FPGAs de Xilinx difféesnt(1) un Virtex 5 LX330 pour le
traitement de bande de base et (2) un Virtex 5 LX110T pouteifacage et le contréle (Fig. A.1).

**************************************************************************************

Baseband!FPGA

Interface!&!Control!FPGA

Prelprocessor Front'end Channel

Radio . 3 processor decoder
Frontlen

LEON3
VClinterface VClinterface VClinterface processor

i ;

|
I
|
| £
! S
GPIO ! 25 AHB
T Interconnect"(AVCI"Crossbar) oz
I ?.D
! < I
! . | PCI"Expres:
' Peripherals EE———
VClinterface VClinterface VClinterface VClinterface i Interface
|
I
Interleaver"/ Mapper Detector Channel !
deinterleaver PP encoder $ - @, .
|
DDR, ! Ethernet,
Flash UART!
| JTAG"

Figure A.1: L'Architecture de la Bande de Base de la PlatavfeoExpressMIMO

La conception de bande de base est répartie sur plusieurs iD&pendants qui sont contrdlées
par un processeur SPARC LEONS3 de Gaisler Aero ex. La cororegst établie via une Advanced
Virtual Component Interface (AVCI) crossbare. L'architee des DSPs est basé sur une design
standardisée qui est montrée dans Fig. A.2. Cette aralnieese compose d'un Control Sub-
System (CSS), d’'une unité de traitement (Processing Unlif)-e® d’un sous-systéeme mémoire
(Memory Sub-System - MSS). L'architecture des deux desriépendes de I'utilisation du DSP.
Le CSS est commun a tous les blocks et est spécialisée pangiaea. Il contient entre autres
un microcontr6leur 8 bits (UC), un DMA, un ensemble de regstde contrble et d'état ainsi
gue plusieurs arbitres et FIFOs. En outre, il agit comme wssgrelle avec le systéeme hote
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en utilisant deux interfaces de 64 bits qui sont conformesx é& norme AVCI. En outre, des
interruption sont utilisées pour la signalisation et lagyonisation avec le systeme héte. Pour
le moment, I'UC n’a pas encore été intégrée dans le CSS. Lsiovenctuelle du récepteur est
ainsi orchestrée par un ux de contrdle centralisé ou le Enogne du récepteur entier est exécuté
sur le processeur principal. Pour obtenir un premier apgucle comportement fonctionnel d’'un
émetteur-récepteur sur la plate-forme, une bibliothégte &t fournie qui permet d’émuler toutes
les fonctions de traitement de base dans un environnement SW
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Figure A.2: OpenAirinterface Standardized DSP Shell

A.2.1.1 Méthodologie de Développement

La méthodologie de conception pour chague design dévelomupéa plate-forme ExpressMIMO
peut étre divisée en plusieurs étapes. La premiére étapélalsoration d’'un modéle purement
fonctionnelle qui est le point de départ commun pour tous les modeéles dtéostrécepteurs. Les
buts de cette étape sont d’analyser la partie algorithmitpuéémetteur, identiser les ressources
nécessaires aussi que le ux et les dépendances de donnéssk.il&est déja possible d’identieer
les goulots d’étranglement quand plusieurs émetteurseptéurs sont exécutées dans une maniére
multimodale sur la plate-forme. Les modéles considérésgnréralement séquentielle et n’exploite
pas encore le parallélisme de la plate-forme. Pour la caioceg ExpressMIMO, libembb est util-

isé pour la conception du modele fonctionnel. La deuxierapesest ldHW / SW co-simulation

qui est cycle précis. Cette étape permet d’exploiter pteam le parallélisme sur la plate-forme.
Une approche commune est le HW / SW co-simulation avec l'dédesimulateurs comme par ex-
emple Modelsim. Le parallélisme de la plate-forme compientdaitement simultané des DSPs,
les transferts de données a I'aide des DMA ainsi que la paéparde commandes pour activer les
DSPs. Les résultats de cette étape sont les chiffres préetemant la performances de la con-
ception. La derniére étape estMalidation émetteur-récepteur sur la plate-forme matéridle

ou la conception a été testée et validée sur ExpressMIM@néaie.
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A.3 |EEE 802.11p Récepteur pour la plate-forme ExpressMIMO

A.3.1 Motivation

Actuellement, les experts se concentrent sur la concegdd@2C et de C2I également connu sous
le nom de Vehicle-to-Vehicle et Vehicle-to-Infrastuctw@mmunication. Le concept de base de
la communication C2C est la suivante: une fois une voitukdiendes messages a d’autres via
un canal de communication sans el, les voitures forment spwment un réseau ad hoc qui est
connu comme Vehicular Ad Hoc Network (VANET). VANETSs éteada vision du conducteur
de la route qui peut étre limitée en raison de I'obscurité es abstacles et prennent en compte
le fait que le conducteur peut avoir besoin de temps pouiiréagn événement inattendu. Des
cas d'utilisation possibles se concentrent sur la rédaalies embouteillages et des accidents, et
notamment sur la prévention des collisions, la surveitashes véhicules dangereux, les avertisse-
ments d’accidents, etc.

La communication C2X (X = Car, Infrastructure) s'inscritndale cadre des futurs systémes de
transport intelligents (Intelligent Transport Systenis$). Un excellent apercu de ITS est donné
dans [41]. Dans ce document, non seulement différents soéreont présentés, mais aussi les
différences d’attribution des fréquences entre plusigangs sont renforcées. Les applications
possibles dans ITS ne sont pas seulement les applicatiosécdaté, mais aussi d’éviter les em-
bouteillages, la perception des péages, des informatmmsstiques, Internet mobile, etc. En
général, ils peuvent étre divisés dans deux domains: ddieamms non sécurisées et des appli-
cations sécurisée. Pour faire la distinction entre legudifites applications ITS, [42] a proposé un
ensemble de critéres importants pour la communication Q#>sant la convivialité, robustesse,
co(t, I'efecacité, I'évolutivité et I'effort de développaent.

En Ao(t 2008, la Commission des Communautés Européennesdg diie le 5,875 a 5,905 GHz
bande est dédié pour les applications liées a la sécurit§43]S La division de cette bande de
fréquence est déenie par 'European Telecommunicatioas@&irds Institute (ETSI) dans [44]. |l
est divisé en plusieurs canaux d’'une largeur de 10 MHz quigrelétre combinés pour obtenir
des débits de données plus élevés. Une norme dintérétigmindans ce contexte est WLAN
IEEE 802.11p ([45], [46]) qui est une amélioration de la nerlBEE 802.11a [47]. Contraire-
ment a cette derniére la bande passante de I'lEEE 802.1¥praréenée de 20 MHz a 10 MHz.
Il en résulte des symboles OFDM qui sont plus longs dans leaifamtemporel, et donc dans
des systémes avec un délai de grande propage pour évitdni& $ymbol Interference). 1Sl
est d’'une importance majeure pour les cas d'utilisatioriodhires ol les canaux sont fortement
variant dans le temps. Ainsi, une réception «able du sigraidmis peut toujours étre garanti. La
norme |IEEE 802.11p est également connue sous le nom Wirktesss in Vehicular Environ-
ments (WAVE) qui a son origine en 1999 lorsque la Federal Canication Commission a alloué
75 MHz du spectrum de la Dedicated Short Range Communic@D&RC) exclusivement pour
la communication C2X. Un bon apercu de DSRC est fourni daBis fdJomme la norme a été sous
forme de projet jusqu’a Juillet 2010, une efscace conceptitine émetteur-récepteur est encore
un sujet de recherche ouvert. Cette tache est assez dipail@apport a d'autres normes. Des
émetteurs-récepteurs pour la norme IEEE 802.11p venir lageexigences de latence tres fortes
et nécessitent donc un moteur de bande de base trés rapide.

Un projet trés important dans le contexte de ITS est un padiginand qui s'appelle SImTD [49],
ol C2X est mis en ceuvre sur la couche physique et sur la couglaz Dlans le cadre de SImTD,
des expériences réelles sont effectuées dans la régioradeféit en Allemagne.
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A.3.2 LaNorme IEEE 802.11p

Avoir un regard sur les différentes normes de communicatims ¢l, on peut distinguer deux
types différents: (1) les normes basées sur des tramesxgapte LTE, DAB) et (2) des normes
basées sur des paquets (2) (par exemple WLAN). IEEE 802altlpeitie de la seconde catégorie.
Lors de I'élaboration d’'un émetteur-récepteur a base dagiagour un systéeme multimodal, un
inconvénient majeur est que I'heure d’arrivée du prochabet n’est pas connue a I'avance. Cela
introduit un indéterminisme qui demande d’un schedules tegible dans le cas ol des normes
multiples sont traitées simultanément.

IEEE 802.11p est une norme OFDM ce qui signiee que son sigaalahnées a débit élevé est
réparti sur plusieurs signaux indépendants avec des afbdennées plus faibles. Les symboles
OFDM sont composés de 80 sous-porteuses. Dans le reste dewreeht, une sous-porteuse peut
également étre notée comme un complexe échantillon avetailleede 32 bits (la partie réelle
et la partie imaginaire ont une taille de 16 bits chaqunej.sizabole OFDM, 16 sous-porteuses
représentent un intervalle de garde qui sépare deux symB@&B®M voisins pour éviter leur intér-
ference. Ces intervalles de garde sont construites esauttlune technique de préexe cyclique qui
signiee que l'intervalle de garde est identique a la demigartie du symbole OFDM. Les 64 autres
sous-porteuses pilotes contiennent 4 comb pilotes néoessgal’estimation et compensation de
canal, 12 transporteurs null et les informations transsnise

La structure de paquet représenté sur Fig. A.3 est simigalrene de la norme IEEE 802.11a.
Chaque paquet est constitué d'une partie constante et garie variable. Pour un channel
spacing de 10 MHz, la partie constante a une durée ds.4Blle est composée du préambule et
du SIGNAL Field:

Short Training Symbol (STS): Le STS fait partie du préambule et est formé de 10 répéti-
tions de la méme séquence avec une taille de 16 échantillaast. utilisé pour la synchro-
nisation des paquets.

Long Training Symbol (LTS): Le LTS est constitué d’un intervalle de garde de 32 échan-
tillons et deux symboles OFDM contenant des séquence&itpii sont nécessaires pour
I'estimation de canal.

SIGNAL eld: Le SIGNAL e¢eld indigue comment décoder le message transriigst
BPSK modulé avec un taux de codage de 1/2 et contient tousatesngtres nécessaires
pour la détection des champs de données suivants (DATA.«eld)

160"samples 160"samples 80"samples80"samples 80"samples
16us 16us 8us 8us 8us
B e e e A — -
STS LTS SIGNAL | DATA 1| --- | DATA_N
Synchronization Channel Estimation Decoding Message
of'DATA" Decoding
Field
Parameters

Figure A.3: IEEE 802.11p Paquet (channel spacing 10 MHz)

Contrairement a la partie constante du paqudDA€A eld se compose d’un nombre variable de
symboles OFDM. Sa taille n’est pas connue avant la procédiggcodage du SIGNAL eeld est
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terminée. Le nombre des symboles OFDM dans le DATA «eld peuiev de 1 & 1366. Tous les
parameétres obtenues du SIGNAL «eld appliquent sur le chaendahnées entiére et ne peut pas
changer avant le prochain paquet est recu. Le temps entredain paquet et la réception d’'une
suivante est au moins 16. Schémas de modulation possibles pour le DATA <eld sontiBPS
QPSK, 16-QAM et 64-QAM. Des taux de codage possibles sontiget 3/4.

A.3.3 Développement du Récepteur

Pour I'implementation du récepteur, seulement VCI RAM, HEéinterleaver et le décodeur canal

sont utilisés pour décoder les paquets du récepteur IEEEB0PFig. A.4). Le Préprocesseur sera
inclus dans une future version. Aprés chaque interruptmi®réprocesseur va copier 640 com-
plexes échantillons dans la mémoire circulaire qui estimdans le MSS du FEP. Cela correspond
a une memcopy de huit symboles OFDM.

**************************************************************************************

Baseband!FPGA

Interface!&!Control!FPGA
_ : Pre!processor Frontlend
Radio ; processor
Frontlend 1
| VClinterface VClinterface
I
1 i i
| ] :
GPIO | \—‘ 2 AHB
T Interconnect"(AVCI"Crossbar) o2
I 25
| < |
I I
. PCI"Expres:
! ¢ ¢ ¢ Peripherals <4—>: P
VClinterface VClinterface VClinterface VClinterface 1 Interface
|
I
Interleaver"/ Maoper Detector Channel !
deinterleaver PP encoder $ L @ 77777777
DDR, ! Ethernet,
Flash UART,
1 JTAG"...

Figure A.4: Architecture de Bande de Base de la Plate-FoxpeessMIMO

A.3.3.1 Prototype Matlab du Récepteur IEEE 802.11p

Une premiére version du récepteur IEEE 802.11p a été mis enecdans Matlab pour la val-

idation algorithmique rapide. Pour générer les signauxedg un code Matlab d’'un émetteur
fournie par le Telecommunications Research Center Viendpd été utilisé. En outre, différents
snapshots réels fournis par BMW ont également été testés/plider les algorithmes qui ont été
choisies.

A.3.3.2 Emulation du Récepteur IEEE 802.11p

Le prototype d’émulation du récepteur IEEE 802.11p estdasé une exécution séquentielle.
Ainsi, il n'exploite pas complétement la simultanéité deSH3 qui est possible sur la plate-forme.
A I'heure actuelle, I'émulation du récepteur est considétémme untimed. C’est pourquoi la
concurrence n'est pas encore signiecative. Au lieu de d&mulation est important pour identi-
eer les fonctions DSP qui sont nécessaire pour la réalisadio récepteur dans un environnement
purement logicielle. Le prototype d’émulation du récepttEE 802.11p prend en charge tous
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les différents schémas de modulation et taux de codage. t# arénoté par des compteurs de
cycle et étendu par la génération de echiers de trace pouréuakiation efecace du récepteur.
En dehors de cela il génére automatiguement des echiers eurgmt étre utilisés pour tracer
les résultats dans Matlab ou Octave. Toutes ces amélinsaiermettent une validation simple
et l'identiecation des nécessaires améliorations al@ponigues dans un environnement purement
logicielle.

A.3.3.3 Prototype Matériel du Récepteur IEEE 802.11p

Dans le ot de la future conception, le code écrit pour I'éatidn peut étre directement compilé
pour la plate-forme matérielle, méme pour les normes aveweleteurs de petite taille. Actuelle-
ment, chaque fonction qui peut modieer un DSP paramétralisleur du parameétre, effectue les
modiecations dans le processeur principal et écrit la vatituregistre de retour. Comme cela se
fait pour chacun des paramétres, cette procédure prenddagade temps (d’environ 425 ns par
parameétre). Si on imagine qu’'une opération de FEP exige amsnd parameétres, il est évident
gue cette procédure n’est pas efecace dans le cas de foiigeeners de latence. Pour répondre a
ces fortes contraintes temps-réel, le code de I'émulatidona été révisé et optimisé a plusieurs
reprises avant d’'étre porté sur la plate-forme ExpressMIN€s améliorations inclus le choix
d’'un systéme d’exploitation approprié pour le processeincpal (plus précisément LEON3),
un programmateur exible pour exécuter les différents D®Ruanément, le regroupement de
symboles OFDM et la génération de mots de commande hors digaet que le récepteur est
démarré.

A.3.4 Résultats

Les résultats présentés ont été obtenus avec le prototgpeutiition du récepteur IEEE 802.11p
et par un cycle précis HW / SW co-simulation. Auparavanthiaice de réception a été validé sur
la plate-forme matérielle elle-méme pour une fréquenceétizence de 100 MHz. Les résultats
ont été récupérées en utilisant JTAG et la connexion PCHSgprPour atteindre une meilleure
performance cette frégquence sera augmentée dans un pxactie aa fréquence maximale pos-
sible est déterminée par le processeur principal qui peaiti@ité a 133 MHz.

Pour obtenir des chiffres exacts sur les performances éptéar, différents signaux de test ont été
générés pour validation. En premier, les signaux de tesirgérpar le modele de référence Mat-
lab ont été utilisés. Ces signaux sont basés sur 'exemplaifdans I'annexe de la spéciscation
standard et peuvent étre générés pour n'importe gu’ellegcwation du paquet. Deuxiemement,
le récepteur a été vérieé en testant des snapshots difféfeuntnis par notre partenaire de projet,
BMW. Celles-ci ont été générés avec le Densobox, NEC Linkéirune moto SimTD.

A.3.4.1 Résultats obtenus avec libembb

Le prototype d’émulation du récepteur IEEE 802.11p donnpremier apercu de la consomma-
tion des ressources des DSPs différents avec le but de né&pauxl questions suivantes:

1. Quelle DSP est utilisé la plupart du temps?
2. Combien de temps est nécessaire pour le traitement dderenDMA?

3. Considérant que le temps de traitement, le récepteuwilgite exécuté en temps réel sur la
plate-forme? Si non, ol sont les goulots d’étranglement?
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4. Serait-il possible d’exécuter le récepteur avec d'autraetteurs-récepteurs en paralléle? Si
non, ou sont les goulots d'étranglement

Grace a I'libembb, ces résultats peuvent déja étre obtenusséade de la conception. Ca permet
une amélioration de I'implémentation dans un environneérperement logicielle.
Fondamentalement, le temps de traitement du récepteutasancharge de communication peut
étre divisée en deux parties: (1) le temps quand les DSP®sounpés et (2) le temps quand au-
cune ressource est utilisée. Ce dernier est le moment otn anoziveau tache peut étre planieée
comme la *n du cycle d’acquisition du Préprocesseur n'estgracore atteint.

Nos résultats montrent que, considérant que le temps tenr@mt pur des DSPs, les exigences de
latence du récepteur IEEE 802.11p sont remplies. En pluss agons identié le FEP en tant que
moteur DSP critique comme la plupart des taches sont a progea sur cet accélérateur matériel.
Compte tenu d’'une exécution multimodal de IEEE 802.11p €éDAB, nous montrons que les
exigences de latence de ces deux normes sont satisfaitesssiul des deux est exéutée. En
outre, nous étudions le choix d’'un ux de contrble approgti@ontrons comment un algorithme
d’ordonnancement sophistiqué peut étre réalisé.

A.3.4.2 Analyse de la performance d’éxécution - Résultats atériel

Les résultats matériels ont été obtenus par un cycle préadls IBW co-simulation a 'aide de
Modelsim. Sauf le temps de traitement les résultats présentluent maintenant la surcharge
de communication quand un ux de contrdle centralisé estiggp. En plus ils exploitent un
traitement paralléle des différentes moteurs DSP sur ta{iteme ExpressMIMO. La surcharge
de communication peut étre observé lorsque aucun des DSfe@gié. En évaluant la relation
entre ce facteur et le temps de traitement des DSP, desatémtarclaires sur les performances du
récepteur peut étre faite.

Sur la base des résultats obtenus, nous pouvons afermer

que le récepteur IEEE 802.11p peut étre exécuté en temppaéeBPSK, QPSK et 16-
QAM. En supposant une fréquence plus élevée comme il esnatitpuement le cas lorsque
ASICs sont considérées, 64-QAM peut exécuter en tempsuési.a

gu’une réduction supplémentaire de la surcharge de conuatiom ne peut pas étre atteint
par un ux de contrdle distribué en utilisant les microcdidurs locaux ou par un micro-
processeur ou un séquenceur sur la coté bande de base.

gue polling est la solution préférable pour déterminer lalertraitement du DSP

gque les commandes doivent étre préparées en avance poworiessnde latence critiques.
Pour les normes comme DAB ou LTE, le comportement en tempgséujours garantie,
méme si cette recommandation n’est pas pris en compte. udraitement d'une opération
de vecteur sur une taille de 4096 échantillons, par exerigaiemps de traitement nécessaire
serait de I'ordre de 20s tandis que le temps de programmation du DSP reste a un nraximu
de 360 ns.
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A.4 Conception ASIP pour le FEP

Dans le contexte des travaux sur le récepteur IEEE 802.@ FEP a été concu comme un front-
end générique pour OFDM / A (Orthogonal Frequency Divisionlthlexing / Multiple Access),
SC-FDMA (Single Carrier FDMA), W-CDMA (Wideband Code Dias Multiple Access) et
SDMA (Space Division Multiple Access). Pour I'évaluatioe th norme IEEE 802.11p, nous
avons considéré une solution qui est basée sur une DSP prnogitale C-FEP). Cette version
du FEP est composée d’'une unité de traitement vectorielsjuicanbinée avec une unité DFT /
IDFT. Dans le chapitre précédent, nous avons identieé leinedun FEP secondaire ou d’un sup-
plément de DFT / IDFT pour augmenter la performance en pdigiclorsque les normes basées
sur des vecteurs de petite taille sont considerées. Unveo@mt principal de cette conception
était la surcharge de communication qui a résulté dans ussebsigniecative de la performance.
Il est intéressant de noter que ces limites sont liées seueaux FPGAs et n'est pas aux ASICs.
Pour le nouveau design du FEP nous avons pris la chance dbaat avec I'Université RWTH
Aachen (Allemagne) pour évaluer la méthodologie de commepies ASIPs pour la conception
de la plate-forme ExpressMIMO. Un autre but de notre collation était de surmonter les incon-
vénients du C-FEP en enlevant I'unité DFT / IDFT du DSP et emplacant I'unité de traitement
vectoriel par une solution ASIP qui est appelée A- FEP. Sedtie approche, I'A-FEP peut facile-
ment étre intégré dans le moteur de traitement de bande dalbda plate-forme ExpressMIMO.
Comme ¢a, les taches du FEP peut étre facilement diviséeesurEEP simultanément, par ex-
emple. Pour I'évaluation de la conception, 'A-FEP n’est paulement comparée au C-FEP mais
aussi a des solutions ASIP du milieu universitaire en tereghitectures et en terme du temps
de traitement.

Mais ou est I'avantage principal d’ASIP par rapport a d’asttechnologies? Parmi les facteurs
importants a prendre en compte pour la conception des fdatees SDR sont la consommation

d’espace et de puissance ainsi que les colits de productibject® majeur est de réduire la

surface et de minimiser la puissance autant que possiblea@mtenant la performance. Dans
[75], un apercu détaillé des implémentations différentes 8ystem on Chip (SoC) est prévue.
Technologies d'intérét sont

General Purpose Processorgui peuvent étre divisés en deux catégories: GPP proper ap-
propriés pour les applications générales et microcontrélpour applications industrielles.

Digital Signal Processorqui sont une sous-catégorie d’Application Specisc Prooess
(ASP). lIs sont par exemple utilisés pour les microproaessprogrammables qui sont spé-
cialisées pour le domaine de traitement de signal numérique

Application Speci ¢ Integrated Circuits qui sont aussi une sous-catégorie des ASPs. lls
sont mis en ceuvre dans le matériel, le plus souvent en utiliga Hardware Description
Language (HDL) comme VHDL ou Verilog.

Application Speci ¢ Instruction-set Processorsqui sont une sous-catégorie des ASPs,
aussi. lls peuvent étre vus comme une classe de micropearesavec une Instruction-Set
Architecture (ISA) spécialisée.

Les auteurs concluent que ASIPs ont une tendance a étre deaondidats car ils sont destinés a
combler une lacune entre GPPs et ASICs. Etant adapté a uleasipp spécieque, ASIPs offrent
une plus grande souplesse que les ASICs en présentant ils@oation énergétique plus faible
gue GPPs ou DSPs en méme temps. Comme ca, ASIPs permettemg®mis la performance
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des ASICs contre la exibilité du GPPs. Le prototypage esilifée en utilisant des outils de
haut niveau alors que la conception générée n’est pas egenme temps du matériel et ne peut
pas s’adapter a la ressource dédiée (par exemple FPGA)altesl'c6té, VHDL permet une util-
isation efecace des ressources du FPGA, bien que la mise greamécessite beaucoup de temps
et beaucoup de ressources. Cetinconvénient est surmardégpautils comme System Generator
de Synopsis qui accélérent le processus de conception VHDUme conception de haut niveau
et par le soutien des modiscations rapides.

Tous les résultats ont été obtenus en collaboration avenvésité RWTH Aachen (Allemagne).
Pour la conception LISA, nous avons utilisé le Processoigbes de Synopsis (ex Coware). Tout
au long de la collaboration, deux versions différentes A8IP ont été développées:

1. La premiere version de I'A-FEP, appelé A-FEP-V1, a étécuoen collaboration avec un
collegue et était basé sur la spéciecation du FEP qu'iltiaai cours de sa thése de doctorat.
Nous noterons cette premiere conception C-FEP-V1. Peundpstaprés les résultats de
nos travaux ont été présentés dans son rapport de thésda[3pEciecation du FEP a été
retravaillé pour améliorer la performance. En plus, cegsifonctionnalités du A-FEP-V1
ont été intégrées dans la conception actuelle du C-FEPdeterraison et aussi pour pallier
les inconvénients de la premiére conception (principalenagaible fréquence), nous avons
opté pour une seconde version du ASIP - bien que la premiés®uestait déja trés exible.

2. La deuxiéme contribution est une conception nouvelle 8lPAbasée sur la nouvelle spé-
ciecation du FEP. Contrairement a la premiere version, FEP comporte également des
instructions d’'usage général. L'UC est maintenu dans le p&P le traitement des trans-
ferts DMA mais pas pour le traitement algorithmique. Paprapa la premiéere version
de I'A-FEP la deuxiéme version est livré avec un jeu d'instiens élargi et obtient une
fréquence plus élevée.

A.4.1 Exigences du Moteur de Traitement

Les exigences de traitement front-end pour le soutien dED® / A, SC-FDMA, CDMA et
W-SDMA a déja été détaillés dans [23], entre autres. Ce deatiimdique que les opérations
a exécuter par le processeur comprennent entre autrembgisin de canal et synchronisation.
Cettes opérations peuvent étre construite en utilisanbpésations vectorielles et une unité DFT
/ IDFT. Celui-ci est négligée pour I'A-FEP et conservée caerum moteur de traitement distinct
dans la conception de bande de base de la plate-forme EkpiEs

L'ensemble des opérations vectorielles étre pris en chpagd'A-FEP est répertoriée dans le
tableau Tab. A.1. Par ailleurs, les opérations shift, maxvehargmax / argmin sont inclus qui
peuvent fonctionner de maniére indépendante sur les paé@les et imaginaires des éléments
des vecteurs traitées. En outre, les valeurs peuvent éledroavant et aprés I'opération vec-
torielle, comprenant valeur absolue, la négation, miser@, z8ise a I'échelle et de saturations.
Les éléments du vecteur d’entrée et du vecteur du sortiegpé@re de quatre types de données
différentes: 8 ou 16 bits entiers signés et les nombres @mplayant une taille de 16 ou 32
bits. Les conversions de type entre eux sont spécieées pgsdemmeétres faisant partie du mot
d’instruction.

Un dées majeur quand un large éventail de normes différensés@pportée est de s’assurer que
chacun d’entre eux répond aux contraintes de temps réetoRaéquent, I'A-FEP est livré avec
une unité de génération d'adresses programmable (AGU)eauaigt de construire des vecteurs
d’entrée a partir d’'ensembles de données non contiguesl@diSS connecté. Symétriguement,
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I’AGU peut également étre utilisée pour stocker des vestdarrésultat en adresses non contigus,
ce qui permet la répétition des valeurs par exemple. De paugp-programmables mécanismes
permettent de transformer sections du MSS en zones de gockaulaires (Fig. A.5).

wrap"="3 wrap"="2 wrap"="1 wrap"="0

0 0
2047
4095

8191

16383

1/4 1/8

8"bit

Figure A.5: Zones de Stockage Circulaires FEP MBB( )

Le MSS contient le Program Memory avec une taille de 4 kB spiee d’entrée-sortie de données
qui a été congu pour le support des normes qui opérent suodeats vectoriels volumineux tels
que LTE ou DAB. Il est divisé en quatre blocs de mémoire diffés, chacun avec une taille de
4096 entrées de 32 bit. La longueur du vecteur maximal qui @ee traitée dépends du type de
données. Pour les éléments de vecteur avec une taille des3a lkbngueur maximale est 4096
lorsqu’il est 16384 pour une taille de 8 bits.

Component-Wise Addition Z[i]= X[i]+ Y][i]
Component-Wise Product Z[i]= X[i] Y]]
Component-Wise Square AbsoluteZ [i] = jX [i]j2
Move Z[i1 = X[i]
Component-Wise Division Z[i] P XT[i=Y[i]
Vector Sum Z= X

Table A.1: A-FEP - Opérations Vectorielles

A.4.2 Architecture HW et Instruction-Set

Le jeu d'instructions de I'A-FEP comprend trois types dtmstions différentes:

1. AGU con guration instructions: Ces instructions portent les parameétres nécessaires a
la programmation de 'AGU. Six instructions différentest @é mises en ceuvre dont la
guantité dans le code du programme peut varier en fonctida geantité de paramétres a
modieer pour l'instruction de traitement arithmétique t@aelle qui suivre.

2. Arithmetic Vector Processing (AVO) instructions: Pour répondre aux exigences des mo-
teurs de traitement, I'A-FEP prend en charge neuf instoustidifférentes: multiplication,
addition, square, square modulus, sum, shift, move, divist max, min. Longueur maxi-
male du vecteur supporté est de 16384 entrées pour un vectegosé des éléments vec-
toriels de 8 bits.
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3. General Purpose (GP) instructions:Ces instructions sont basées sur une architecture load-
store et prennent en charge les instructions comme comipraach ou IRQ qui est utilisé
pour signaler le processeur principal la en d’'une tache ipéan Cettes taches peuvent
représenter une seule instruction ou des algorithmes phaglexes comme la synchronisa-
tion des paquets.

La structure de la pipeline est illustrée dans Fig. A.6. BEl€eompose de onze étapes et traite deux
éléments vectoriels par cycle. Habituellement, une iotitsa par cycle est extraité de la mémoire
de programme. Une exception sont les instructions AVO qui/pet travailler avec des vecteurs
de longueur variable.

Quand I'A-FEP est synthétisé pour la cible FPGA, il obtiene dréquence de 105 MHz en ex-
igeant 3122 function generators, 3281 CLB slices, 6433 DEFsblock RAMs et 8 DSP48E
slices. Pour la cible ASIC, seul le moteur de traitement asgitéhétisé comme la nouvelle con-
ception du MSS fait partie de notre travail en cours. La fedgpe maximale pouvant étre atteinte
est d’environ 550 MHz, la surface est de 0,18 fom

A.4.3 Comparaison des Performances d’Exécution

La performance d’exécution dépend de deux facteurs: le geteptraitement nécessaire pour
la communication entre le processeur principal et les nistda bande de base et le temps de
traitement des données pures des DSP. Pour une norme geisypdes vecteurs de petite taille
comme IEEE 802.11p, le premier facteur est d'une importanagure alors qu'il est plus ou
moins négligeable pour les normes comme LTE qui operentsgrands vecteurs. Le tableau
Tab A.4.3 liste les temps d’exécution du A-FEP pour les diffiés algorithmes de traitement
front-end d’un récepteur IEEE 802.11p pour une fréquenc@eViHz. Structure de paquet et la
procédure de la décodage ont été présenté dans [3].

Pour la démonstration et pour comparer les performancedifiéentes solutions présentées le
A-FEP et comparée avec le C-FEP et deux autres solutionsldturaniversitaire ([77], [76]).

algorithm cycles | execution time
energy detection 302 3.06 s
channel estimation 45 0.45 s
data detection (16-QAM, init) 172 1.72 s
data detection (16-QAM) 114 1.14 s
data detection (64-QAM, init) 219 219 s
data detection (64-QAM) 342 342 s

Table A.2: A-FEP Performances d’Exécution
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A.5 Conception #exible d’'un Sample Rate Converter

A.5.1 Motivation

Le Préprocesseur établit la connexion entre les conveutis#\/D et D/A (ADA) a travers l'interface
de I'ADA et le moteur de bande de base restant. Cette tachesest difscile car la fréquence
d’horloge sur le coté convertisseur est 32,768 MHz alorsagle dépend de la norme de com-
munication sans ¢l exécuté sur le coté bande de base. Pour, PABexemple, la fréquence
d’échantillonnage en bande de base est 2,048 MHz, tandipajwrd EEE 802.11p il est exé a 10
MHz (Fig. A.7). Il en résulte un facteur de ré-échantillogeale 15 pour DAB et de 3,2768 pour
|IEEE 802.11p.

La relation entre ces différents taux d'échantillonnagegéséralement assurée par des SRC qui
sont des architectures bien connus et qui sont non seulespgliuées dans les systemes de
communication sans ¢l, mais aussi dans les processus ddrpagexemple. Pour les systéemes de
SDR, ils sont I'un des éléments les plus critiques et les @kigeants [104].

Les déss lors de la conception d’une solution SRC appropoiér fia plate-forme ExpressMIMO
sont les suivants:

ADA"Interface

(s
TX i ?
- | IS —
DIA =T interface[ | i i
i : Baseband
A/D"9862 i Preprocessor : Processing
! |
] RX _ |
AD interface i >
: j
downsampling
clk"="32.768"MS/s = 30.72""MS/s"'LTE
e 10 MS/s™|EEE"802.11p
upsampling 20 MS/s"|IEEE"802.11a

"2.048"MS/s"'DAB

Figure A.7: Le Préprocesseur relie les Convertisseurs Aléc de Moteur de Bande de Base
restant

Une analyse détaillée des normes de communication sansnbsi¢ours a montré que le
SRC doit prendre en charge une gamme de frequenc8svitéz  fsamp 61,44 MHz
avec une résolution de 1 Hz.

Dans le passé, généralement un SRC a été utilisé par norme.c&te large gamme de
fréquences, cette approche n’est pas applicable car lesuregs nécessaires sont bien au-
dela ce qui est disponible sur la cible FPGA. Le SRC doit dappsrter tous les rapports
possibles de fréquence d’échantillonnage (les entierssefractionnaires) avec une seule
architecture.

En dehors de cela la plate-forme ExpressMIMO peut traitgyla quatre canaux différents
en RX et jusqu’a quatre canaux différents en TX. Chaque aastaliéenie par son propre
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ensemble de paramétres. Ainsi, lors de la commutation &grdeux canaux, le systéme
peut changer son comportement dynamiquement a I'exécution

Ces dées de conception conduisent a des exigences de temtedifférentes qui peuvent étre
regroupées dans exigences fonctionnels et exigencesonatiehnels. Du point de vue de la
plate-forme, il est trés important que la quantité des D&Esli8es est réduite autant que possible.
Cette tache n’est pas si simple que en raison de la grandautadg bande du signal provenant du
convertisseur A/ D, le débit de données est tres élevé. ©@alduit & une plus grande complexité
du matériel et une plus grande consommation d’énergie efaptune augmentation du nombre
de DSP48E slices et donc une application trés colteux. Ea,datconception du Préprocesseur
doit suivre la démarche de conception comme tous les auB&sdDr la plate-forme.

En outre, les exigences fonctionnelles comprennent

la préférence d’'une conception générique qui peut effetdisir- et le sous-échantillonnage
fractionnel en utilisant la méme architecture. Sur-édlanbage (upsampling) / Sous-
échantillonnage (downsampling) correspond a augmeniirider le taux d’échantillonnage.
Pour émetteurs-récepteurs lorsque le débit de donnéeseaurdu cété convertisseur ADA
est plus élevée que celle du moteur de la bande de base hantifonnage est effectué en
TX, tandis gque le sous-échantillonnage est effectué en RX.

I'appui de trois modes différents: (1) seulement récepti@hseulement transmission et (3)
réception et transmission simultanément. A partir de |spsstive de la plate-forme, les
canaux de RX et TX sont exécutés en paralléle. lls sont tpaitde SRC en facon Round
Robin. Par conséquent, le commutateur de canal doit sedaire un cycle (Fig. A.8).

processed"channel >—< CH2 >< CH3 >< CH4 ><

CH4

stored"channel

loaded"channel CH2 CH3

Figure A.8: Channel Scheduling

d’éviter I'aliasing pendant la ré-échantillonnage. Daegontexte, il est important de trou-
ver une bonne longueur du eltre et donc le nombre de muliéiars

le calcul des valeurs intermédiaires d’'un signal tempsréisie telle sorte qu’une certaine
bande de fréquence du signal ne soit pas faussée [105].

ce qu'une performance élevée doit étre garantie pour répangk exigences de débit et de
temps de latence des différentes normes de la communicimel.

que le SRC prend soin de la différence entre les fréquenéehantillonnage. Cette ap-

proche permet de exer I'horloge maitre des convertisseul Aour diminuer le phase
noise [105]

La contribution principale présentée dans cette thésa estiception d'un SRC fractionnaire pour
la plate-forme ExpressMIMO qui est basée sur I'algorithriieterpolation a bande limitée. Son
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architecture peut traiter jusqu’a quatre canaux différem RX (sous-échantillonnage) et jusqu’a
guatre canaux différents en TX (sur-échantillonnage).sTes canaux sont exécutés sur la méme
architecture matérielle qui est paramétrable. Aen de g@ram traitement continu du eltre, les
changements de contexte entre des canaux différent seiggatinstantanément pendant un seul
cycle.

Les modéles qui sont fournis comprennent des modéles eniGgsomesures de quantiscation et
I'analyse des caractéristiques du eltre, ainsi que un pygp VHDL.

Le SRC est intégré dans le Préprocesseur. Pour ¢naliseriaeldu récepteur IEEE 802.11p un
premier prototype du Préprocesseur a été décrit en VHDLaués en utilisant Modelsim.

A.5.2 Design du Préprocessor et du SRC

Comme déja dit, le Préprocesseur relie le module RF exteree la moteur de traitement en
bande de base numérique. Pour établir cette connexion, realDéé Iégérement modieé par une
interface dédiée pour un acces direct entre I'unité deemrant et 'interface ADA (Fig. A.9).

Le dernier gére le (de)multiplexage des échantillons cergd provenant de et allant vers les
convertisseurs A/ D et D/ A. Dans RX / TX, le signal fourni pas kconvertisseur A/D,D/Aa
une résolution de 12 bits / 14 bits. Sign extension et bit rehdevient nécessaire parce que le
Préprocesseur opeére sur des échantillons dans un formes.(es taches sont aussi assurées par
I'interface ADA.

ADA"Interface

interrupts < . Processing"Unit

| o =
BRE-F DA
| £/ css :
i - =|  Mmss
| uc |,

<——IRQ

% VClInterface
i <t
|

Figure A.9: DSP Modiscations

Les taches principales du Préprocessor sont: Interfacd@veonvertisseurs ADA, 1/Q imbalance
correction, NCO pour le carrier frequency adjustment effdestions de base de traitement du
signal telles que la conversion de fréquence d’échantiige

Aen de garantir une performance élevée de ces taches, ilsrépartis sur différents modules
internes qui sont 1/Q imbalance (I/Q), une unité de préedssbn dans TX (PD), NCO et SRC.
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Chacun des deux modes différents supporte quatre candéredif qui peuvent posséder un en-
semble de différent parameétres. Tous les modules sontibésvear une unité de commande glob-
ale du Préprocesseur comme illustré dans Fig. A.10. Lessdmtincipales de cette machine d’état
sont (1) programmer les canaux conegurés / actif dans umfé&mund Robin, (2) déclencher les
transferts de données en lecture / écriture a traversrfate ADA et MSS, (3) mettre a jour les

parameétres nécessaires pour programmer les différentslespd4) générer des interruptions a la
°n d’'un cycle d’acquisition et (5) superviser la commutatientre les canaux.

Preprocessor'Processing"Unit

ADA"Interface

/ ™ =
DiA interface
MSS
-~ RX
AID
DMA
CSS CSS

Figure A.10: Architecture du Préprocesseur

Les différents modules internes communiquent via un podé¢ode handshaking. Ce protocole
garantit des transferts de données valides et arréte laechigi traitement en cas d’absence de
données. Quand un module fournit de nouvelles donnéegralgie demande de donnéREQ
est réglé en méme temps. Le transfert de données a réussisite $ignal d’acquittemerACK
est recu.

Le MSS et I'espace de mémoire qui sont inclus dans l'interiaantiennent des FIFOs différents
pour le stockage des échantillons de sortie et d'entréeF{E&3s sont des composants autonomes
qui gérent leur propre espace mémoire. Pour éviter la p&tbdantillons, ils informent le Prépro-
cesseur dans le cas ou ils sont presque pleine ou presque vide

Sur la base de cette spéciecation fonctionnelle, les isimas suivantes pour la conception du
SRC peuvent étre faites:

(1) Les mises a jour de parameétres sont gérés par l'unitérdenemde du Préprocesseur et ne sont
donc pas du ressort du SRC.

(2) Le moment dans le temps ou un commutateur de canal doitosklipe est déterminée par
I'unité de commande du Préprocesseur. Le SRC doit garamdifagcommutation se passe instan-
tanément une fois qu'il est informé de cet événement.

(3) La communication entre le SRC et le NCO doit suivre 'aidjone du handshaking.

(4) Le mode de suspension est assurée par I'unité de comrdaridleéprocesseur. Le SRC fonc-
tionne comme d’habitude. La seule différence est qu'auchardillon est passé.








































