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INTRODUCTION

“You give but little when you give of your possessions.
It is when you give of yourself that you truly give.”
Gibran Khalil Gibran, The Prophet.

On January 17" 2008, British Airways flight 38, a Boeing 777 heading from Beijing
to London Heathrow airport crash landed on the grass, 330 meters short from the
runway on which it was supposed to land. Luckily, no casualties were reported, only
one passenger suffered from serious injuries.

Pilots” accounts and primary investigations showed that the engines did not re-
spond to an increase in throttle requested first by the autopilot and then by the co-pilot
who was in the commands at the time of the crash. This resulted in an unwanted
decrease in the airplane’s speed at a very critical phase, right before landing. A quick
and intelligent reaction from the aircrew allowed the plane to glide to a point where it
could land with the safest outcome possible, saving the lives of many passengers and
people living in the perimeter of the airport.

Investigations [AAIB 10] by the Air Accidents Investigation Branch (AAIB) into the
reasons of this engine failure lasted for about two years. It went over many possibilities
which all proved not to cause such a dysfunctionality. The report concluded that,
during the course of the flight, the airplane went across very cold environments when
flying through the air spaces of both Russia and Sweden; amounts of water, naturally
present in the fuel, transformed into ice. When a big demand in fuel was formulated
during the landing, some of the remaining ice was moved around the fuel system and
clogged the Fuel Oil Heat Exchanger (FOHE) as one can see in figure 1. This diminished
the fuel flow through the system causing the throttle to be below the commanded
level. A report [Rosenker 09] from the American National Transportation Safety Board
required a redesign of the FOHE to render it more tolerant to ice accumulation.
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Figure 1 — Ice on the inlet face of a fuel-oil heat exchanger similar to that of BA38 Boeing 777.

Such an accident and terrifying situation could have been avoided if this ice-
accumulation scenario had been studied during the design phase of this metal product.



2 Introduction

The design of such a piece that intervenes in a sensitive part of an airplane’s function-
ing needs careful and thorough study of the operational possibilities in diverse envi-
ronments. The FOHE is required for example to have a perfect throughput whatever
the fuel flow is and in whatever temperature conditions. Therefore, early studies of a
piece’s design should include simulation of the interaction between the fuel and solid
in all possible what-if scenarios.

The numerical modelling and investigation of this physical situation can be classi-
fied as a fluid-structure interaction (FSI) problem. Furthermore, in order to predict the
behavior of the workpieces for different weather conditions and during the real time
context, long time and large scale simulations shall be conducted. Today, even with
the most powerful computational resources, a full simulation is very challenging and
highly demanding in terms of computational time. Accurate numerical predictions are
unaffordable if no space and time adaptive techniques are used.

FSI problems belong to the variety of multi-physical phenomena. Typical exam-
ples can be encountered in a wide range of applications including: aerodynamics like

an airflow analysis around aircrafts or racing cars [ , ], biome-
chanics like blood flow inside arterial membranes [ ], turbo-machinery like
the study of turbine cooling performance [ ], heat treatment inside industrial
furnaces [ ], etc.

They involve highly coupled systems where fluid and solid parts possessing dif-
ferent material and thermo-dynamic properties interact and influence the mechanical
behavior of one-another. These phenomena are intrinsically dynamic and may exhibit
heterogeneous scales undertaking a ‘cascade’ of energy dissipation from the largest to
the smallest scale.

The understanding and modelling of these problems have considerably attracted
researchers over the last few decades especially with the increasing growth in computer
powers and the continuous development of numerical tools. Several mathematical
models and numerical methods have been developed in the literature to describe and
simulate the underlying phenomena. The accuracy and efficiency of these simulations
highly depend on the complexity, the scale and the duration of the considered problem.

Two main immersing techniques can be adopted to ensure the geometric compati-
bility and the continuity of conditions across the solid /fluid interfaces: the partitioned
coupling approach, and the monolithic approach. In the partitioned technique, each
of the fluid and solid subdomains is solved separately, then the governing equations
are integrated interactively in time and the interface conditions are imposed asyn-
chronously as boundary conditions for the subproblems. The difficulty arises when
communicating the data at the interface level. The coupling between the subdomains
is ensured using either weakly or strongly coupled methods [ ]. In the for-
mer case, as its name suggests, the coupling between the subdomains’ solutions is
very weak and hence the boundary conditions need not to necessarily coincide. At
each time increment, a single solution is computed on either sides of the interface
[ , ]. However, using this scheme, numerical instabilities might arise
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depending on the density ratio and the complexity of the geometry hence deteriorat-
ing the accuracy of the global solution [ , , ]. The strong
coupling approach, consists in iteratively resolving the subproblems in a fully cou-
pled manner until the solution stabilizes and hence the interface conditions are well
respected [ , , ]. Clearly, this scheme necessitates an
important computational cost.

In the context of thermal fluid structure interaction problems using a partitioned
method, a heat transfer coefficient between the subdomains should be known and pre-
scribed as boundary condition to ensure an appropriate energy transfer across the
interface. Several experimental tests need to be conducted in order to determine this
coefficient in terms of the problem’s geometry and thermo-mechanical properties. Con-
sequently, for every change in the geometry and/or the physical properties, the exper-
imental tests shall be repeated. This parametric investigation is time consuming and
expensive and can thus rapidly become unfeasible. A common industrial practice is
to study simplified model problems then to extrapolate the results and draw conjec-
tures on the large scale behavior. However, these procedures can hardly yield optimal
configurations and may still be very costly.

On the other hand, monolithic approaches for fluid structure interaction problems
involve solving simultaneously a single set of equations for both the fluid and solid
parts of the computational domain. The mutual influence of the subdomains will then
be naturally accounted for without resorting to coupling models nor experimental data
at the interface level, thus enhancing the stability of the computations. The interface
tracking method [ ] is a monolithic approach where the multi-physical do-
mains’ interfaces are tracked by levelsets, which are signed distance functions. The
immersed volume method (IVM) [ , , , ,

] was defined in that sense and can be applied on a wide range of multi-
material applications. The key feature of this approach is to retain the advantages of a
monolithic formulation and couple it with an anisotropic mesh well adapted along the
fluid /solid interfaces to provide a high resolution at that level. In the monolithic frame-
work, a levelset is used to delimit the different sub-domains. The latter are treated as a
single fluid with different material properties, and hence the solution is being evolved
with a single set of equations on the global domain. The use of a well adapted mesh
along the interfaces ensures an accurate distribution of the thermo-mechanical param-
eters over the computational domain. This mesh is constructed prior to the simulation
and is maintained fixed all over the computational time. It is anisotropic and well
adapted along the fluid/solid interfaces and isotropic with a relatively small back-
ground mesh size in the rest of the domain. Figure 2 presents an example of the
anisotropic mesh used by the immersed volume method that is well adapted to the
levelset function of a support grid positioned inside the computational domain. In
order to provide a well respected shape in terms of curvatures, sharp angles and thin
layers, an anisotropic refinement is generated in the vicinity of the interface and an
isotropic mesh size inside the rest of the enclosure, the generated mesh is made up
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from 155,015 nodes and 896, 539 tetrahedral elements. When dealing with large com-
putational domains and long time simulations, the mesh resolution would be more
complex inducing a considerable computational cost.

\\ ‘\/ /,

NV

Figure 2 — Zero-isovalue of the support grid’s levelset function and plane cuts on the generated adapted
mesh, adopted from [Hachen o9].

INDUSTRIAL CONTEXT AND NUMERICAL TOOLS

This thesis is part of the REALisTIC (laRgE scAle investigation and Long TIme
Computation) research project founded by an industrial consortium in the view of
studying and optimizing the heat treatment processes inside industrial furnaces and
quenching chambers. As its name suggests, the REALisTIC project aims at provid-
ing numerical simulations that mimic the realistic industrial applications. A second
interpretation of this acronym can be inferred by decomposing it into “real is tic” by
means that real physical phenomena can be reproduced in one click and in a reduced
computational time.

The heat treatment cycle is a manufacturing process involving a series of controlled
heating, quenching and tempering operations whereby the physical and metallurgical
properties of a workpiece material are changed. A good quality production is the re-
sult of a well controlled calibration of the heating sequences in accordance with the
thermo-physical properties of the metallic component and the heat transfer inside the
enclosures. Therefore, from an industrial viewpoint, in order to optimize the indus-
trial compartment throughput and workpieces’” microstructure, it is highly desirable to
devise a thermally and energy efficient heating schedule. The research development
will also permit the investigation of possible insights to lower the energy consumption
and reduce the pollutant emissions and thus improve the environmental health. The
study can be carried out using experimental or numerical procedures. Given the ther-
mal history of a metallic ingot and temperature evolution inside the domain, the final
characteristics and properties of the product can be determined. However, performing
experimental analysis and testing “what-if” scenarios necessitates a lot of raw materials
and the privatization of machinery for a long time. Therefore, such a procedure can
rapidly become unfeasible. On the other hand, given the important growth in com-
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puter resources and the important progress of numerical developments, the modelling
of long time heat transfer and fluid flows inside large scale complex domains is now
possible.

The numerical simulation consists in solving the turbulent flows within the com-
putational domain, combustion and heat transfer at the burner’s level and the conduc-
tion, convection and thermal radiation at the load’s level. The sought method should
be capable of providing accurate and efficient computations. Despite the considerable
advances in computational fluid dynamics (CFD) and the increasing computer power,
different challenges still need to be addressed for providing accurate and efficient sim-
ulations. The problem can be cast as a thermal fluid-structure interaction one involving
the simultaneous resolution of turbulent flows and conjugate heat transfers between the
solid and the fluid subdomains. Due to the deficiency of analytical solution to this cou-
pled system of equations, all hope for resolution culminates in the numerical analysis.
To model this multi-material problem, we resort in this thesis work to the immersed
volume method whereby the fluid and solid subdomains will be considered as a single
fluid with variable material properties and thus one set of equations is considered for
the global computational domain. Stabilized finite element approaches will be adopted
for the numerical treatment of the physical problems.

PROBLEMATIC

In the context of the immersed volume method, a fixed mesh anisotropically adapted
at the fluid-structure’s interfaces and isotropic with a fixed relatively small mesh size
is maintained all over the simulation time. When applied on large-scale phenomena
like heat treatment inside industrial furnaces, such a generation process leads to a high
mesh resolution and requires an important computational cost. Indeed, it was pointed
out in [ ] that using the IVM to simulate 7 minutes of heat transfers and
fluid flow inside an industrial furnace (see figure 4), with an anisotropically adapted
mesh along the interface of a skid made up from 155,015 nodes and a time-step size
0.001s, required 5 days on 32 2.4 Ghz Opteron cores in parallel (linked by an Infiniband
network) although a turbulence model was used to account for the turbulence effect on
the general flow and hence to accelerate the computations.

Therefore, accurate and fast algorithms are necessary for the simulation within a
reasonable time of the full heating sequence, which is in the order of hours.

AMBITION OF THIS WORK AND STATE OF THE ART ON EXISTING METH-
ODS IN THE LITERATURE
The accurate and efficient prediction of conjugate heat transfer and fluid flow phenom-

ena of long duration and inside complex large scale domains is certainly a challenging
task. Several possible routes can be adopted for achieving this goal: parallel comput-
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Figure 3 — Heat treatment inside an industrial furnace.
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ing, reduced order methods, mesh adaptation, and time adaptation. In this work, a
new approach for space and time adaptation will be developed. The method will be
suitable for a wide range of problems involving scale heterogeneity and will be sub-
jected to a constraint accounting for the available computer resources. The mesh will
be dynamically and automatically adapted to provide an accurate representation of the
solution’s variations within the least computational cost. The core of this work primar-
ily consists in deriving the methodological aspect and providing a good mathematical
ground for the adaptive approaches. The actual application of the algorithms will in
turn validate their performance, accuracy and efficiency.

The idea of mesh adaptation was first suggested in the 1970s [ ] in the
view of improving the quality and yielding faster computations of numerical solu-
tions. This subject has obtained more attention in the following years [ , ,

, ] and error estimators found their way inside this enlightened path
in order to generate isotropically adapted meshes [ , , ,
]. Nevertheless, in the absence of the control on the mesh resolution, isotropic
mesh adaptation tends to drastically increase the number of elements in the mesh in
order to well capture anisotropic features, that is physical phenomena whose varia-
tions in one direction are more significant than in the other directions. In these sit-
uations, anisotropic meshes are the best candidate as they respond well to the direc-
tional aspect of a solution’s variations. These types of meshes were first introduced in
the late 1980s [ ; , , ] in the context of the
moving front technique. By that time, the applications to 3D were not very success-
ful and showed limited stretching capabilities. The idea of metric based anisotropic
adaptation targeting the generation of elements with high aspect ratio started in the
1990s [ , , ]. An improvement on this method
to avoid the generation of obtuse elements was to associate it with local re-meshing
strategies [ , , , , , ,
]. Four major error estimation classes can be distinguished in the literature:
the hessian based relying on the solution’s hessian information to evaluate the lin-
ear interpolation error [ , , , , , 1,
the a posteriori estimates approximating the discretization error using a theoretical
analysis [ , p , y / /
], the a priori error estimates [ , ] and the goal oriented
estimates that provide mathematical framework for assessing the quality of some func-
tionals [ , , , , ].

The first step in the derivation of an anisotropically adapted mesh involves error
estimations which serve as indicators of the zones of the solution’s high gradients.
From this analysis, a metric tensor is constructed holding information about the opti-
mal mesh sizes and the directions of their prescriptions. In the third step, this tensor is
provided to a remesher that will in turn generate the appropriate well adapted mesh.
This method for mesh adaptation has proven to be efficient and accurate in responding
to the solution’s behavior.
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On the other hand, since for most physical phenomena it is hard to determine

a priori the appropriate time-step size that would respect a good level of efficiency
and provide accurate computations, dynamic time adaptation algorithms are highly
recommended. The first class of time-stepping techniques involves local time-stepping
control whereby different buffer zones evolve at different time-step sizes dictated by
local stability conditions. Usually these methods are employed on structured meshes
[ , , ]. Another possibility consists in limiting the global
induced temporal error by a user prescribed tolerance [ , , p
]. Heuristic time-stepping algorithms relate the modification of the time-

step sizes to the number of iterations needed to solve the nonlinear system at the

previous time increment [ , , ]. The selection of time-
step sizes in accordance with adjoint weighted residual method [ , |
or based on fictive residual methods [ ] were also proposed in the literature.

However, due to the computational cost associated with the resolution of the an adjoint
problem or the resolution of the problem using a Crank-Nicholson and an implicit
time discretization, these approaches will not be adopted in this work. Moreover, a
fixed point adaptive staggering method was proposed in [ ] where the time-
steps are automatically adapted using the spectral radius of the considered system of
equations to control the convergence of the numerical solutions within a predefined
number of iterations. The idea of fixed point iterative time-stepping selection seems
very interesting from an accuracy standpoint and will be a source of inspiration in this
work for the derivation of a space-time full adaptation method.

Space and time adaptive techniques have also been the subject of research investi-
gations. A space and time residual based approach was developed in [ |
where the error analysis is conducted on space-time slabs and according to the gen-
erated temporal error, the time-step size is updated. Furthermore, a space-time
method for metric tensor construction is proposed in [ ] whereby the gener-
ated anisotropic spatial mesh will provide a dual control on the spatial error and the
temporal one. Yet the time-step size is controlled by a CFL condition which in turn is
related to the minimum mesh size hence decelerating the computations.

PRESENT APPROACH

In this thesis, we are interested in providing numerical tools for the resolution of long
time conjugate heat transfer and turbulent fluid flows inside large scale computational
domains. In order to fulfill this challenge, we pursue the following strategy: we start
by exploiting the stabilized finite elements methods that will be used for the resolution
process. The application of these numerical tools on fixed meshes with fixed time-step
sizes highlights the need for adaptive algorithms to enhance the accuracy and efficiency
of the computations. The aim next is to control through anisotropic mesh adaptation
and time adaptive algorithms the global space and time interpolation errors.

Starting with the space adaptation, the objective can be cast as an optimization
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problem whereby one seeks the metric tensor, a symmetric positive definite tensor, that
minimizes the global L7 norm of the interpolation error of a selected scalar or vector
or a combination of several fields of interest. The multi-component metric construction
will take into account the multiscale features of the numerical solutions. When pro-
vided to a remesher, this tensor enables the optimization of the elements’ mesh sizes
and their orientations in response to the anisotropy of the physical phenomena. More-
over, edge-based error estimations will be used as indicators of the domain regions
where the variables of interest exhibit sharp variations. The construction procedure
takes into account a prescribed fixed number of nodes and generates the optimal mesh
with this resolution.

When dealing with unsteady Computational Fluid Dynamics (CFD) applications,
the time-dimension is an additional backbone component for adaptation. For that
reason, the theory will be extended into a space-time formulation. The error equi-
distribution principle [ ], stating that minimizing the error over the global
domain is equivalent to equidistributing it over the edges of the mesh, permits the
splitting of the space-time optimization problem into two folds: on the one hand, an
anisotropic mesh adaptation controlling the spatial error will be solved and on the
other hand, a time adaptive procedure is followed to control the temporal error. The
coupling between them is enforced through the use of a homogenous equidistributed
error. This adaptation process will be referred to as the classical adaptation.

The appropriate tuning of the stabilized finite elements methods will also be ad-
dressed. It intends to modify the definition of the element’s characteristic length in
order to handle highly stretched elements.

In the FSI framework, the proposed anisotropic mesh adaptation will not only pro-
vide an accurate representation of the fluid/solid interfaces but also dynamically and
automatically follow the development of the flow and the heat transfer over time, thus
optimizing the repartition of the available nodes over the domain. Indeed, the gen-
erated mesh will not be maintained the same over the simulation time, for a given
number of nodes, the elements’ repartition, direction and stretching will be optimized.
As a result of this adaptation, the elements will be concentrated in zones where the
solution exhibits a sharp gradient and they will be highly stretched and very coarse in
regions of low variations.

Moving toward the ultimate goal of this thesis, we will extend the theory on the
classical space-time adaptation to handle slabs of time in a full adaptation approach.
The method will be called ‘paradoxical meshing’, as it will generate meshes that are
well predicted for slabs of time to contain and well capture the advancing unknown
solution. The method couples the concept of space and time fixed point adaptation
[ , ] with the proposed edge-based error estimation and nodal met-
ric construction developed in this work. In order to optimally redistribute the temporal
nodes in accordance with the predicted optimal time-slab sizes, a new 1D temporal
mesher will be developed. This novel approach for full adaptivity can be considered as
a breakthrough in the resolution of physical problems with moving geometries. When
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applied in this context, the method will enhance further the accuracy and efficiency of
the numerical solution. Indeed, the constructed mesh will account for the time-evolving
geometry and the developing flow characteristics.

WORKING ENVIRONMENT

This thesis work was developed at the Center for Material Forming, “CEntre de Mise
En Forme des matériaux” (CEMEEF) created in 1974 and located in the Sophia Antipolis
technology park, in the south of France.

CEMEF develops global approaches in material forming and computational mechanics
(finite element methods, meshing and remeshing, fluid-structure interaction, CFD ap-
plications,...). It fosters high synergy between the different fields of study within it. The
scientific advancement brought forth by this thesis work was implemented in the CIM-
LIB finite element library developed at CEMEF. More precisely, CIMLIB is an abbrevi-
ation for “CIM” the advanced Computing in Material forming and “LIB” the scientific
library developed by the research team of T. Coupez [ , ]. This
finite element library is developed in C++, an object oriented programming language,
and gathers the developments of the team (Ph.D. students, research assistants and pro-
fessors). This implementation framework has been highly parellelized [ ]
and fully automated, thus facilitating the integration of new developments.

LAYOUT OF THIS THESIS

We intend at the end of this introduction to provide a brief overview that would procure
an idea on the different components addressed in the respective chapters of this work.

In chapter 1, we introduce the governing equations for the conjugate heat transfer
and fluid flows phenomena. We start by considering the convection-diffusion-reaction
problem, then point out the numerical instabilities arising when applying the stan-
dard Galerkin numerical formulation in convection dominated regimes and define the
adopted time discretization schemes. To deal with the numerical oscillations, appear-
ing in convection dominated problems and at the level of sharp solution’s gradient, the
Streamline Upwind Petrov-Galerkin (SUPG) and the Shock Capturing Petrov-Galerkin
(SCPG) stabilizations are used. Heat transfers by conduction will also be discussed
and stabilized using the time interpolated enriched (EM-I) method. To model the fluid
flows inside computational domains, the incompressible Navier-Stokes equation will
be considered, highlighting the incompatibility restriction on the spaces of the finite
elements used for the velocity and pressure fields. To cope with this problem, the Vari-
ational Multiscale approach will be adopted. Then the turbulence models that can be
employed at high Reynolds numbers to provide a mean flow representation will be ad-
dressed. In order to take into account the effects of heat transfer by thermal radiation,
the radiative heat transfer equation is solved. Numerical validations and motivational



Introduction 11

examples will be provided next highlighting the need for adaptation techniques to
enhance the accuracy and efficiency of computations.

Chapter 2 presents the core derivation of the anisotropic mesh adaptation tech-
nique. Starting with a descriptive outline on the mesh generation procedure developed
in our laboratory, we pinpoint its capacity to receive as input a metric tensor and gen-
erate the corresponding mesh. Then the proposed error estimators along the edges of
the mesh will be discussed and the control on the L” norm of the interpolation error
will be verified. This is followed by the derivation of optimal metric construction and
anisotropic mesh adaptation. The chapter concludes with numerical validations on the
accuracy and efficiency of the developed method on analytical scalar functions.

An a priori error analysis on the flow equation and the convection-diffusion-
reaction problem will be provided in chapter 3 to show that the control on the interpola-
tion error yields a control on the approximation error. Then the tuning of the stabilized
finite element methods discussed in chapter 1 to take into account highly stretched
elements will be emphasized. We assess afterward the anisotropic mesh adaptation
technique on CFD problems.

The theory of adaptation is extended in chapter 4 to include a time-adaptive tech-
nique. The coupling between the two adaptations will be acquired through the use of
an equi-distributed error. The approach is then validated on several numerical exam-
ples, reflecting the convergence, accuracy and efficiency of the method. The developed
space and time adaptive approaches will be combined under the name of classical
adaptation.

Chapter 5 will present an overview on the Immersed Volume Method whereby a
single fluid and solid domains will be considered as a single fluid with variable ma-
terial properties. This immersing is done using the levelset function and the materials
are distributed using mixing laws. These two components of the IVM will then be cou-
pled with the newly developed anisotropic adaptation technique to provide dynamic
and automatic mesh updates. The multi-component feature of the developed metric
construction approach will then be presented. Numerical results on turbulent fluid
flows and conjugate heat transfer problems will be considered to reflect the potential
of the IVM and the classical adaptation technique to handle fluid-structure interaction
problems with good levels of accuracy and efficiency. In the last example, we apply this
combination to simulate moving geometries and point out the decelerating aspect of
the classical adaptation approach when applied to this kind of problems. Consequently,
we highlight the need for an adaptation that deals with slabs of time.

The classical approach will be extended, in chapter 6, to ensure full adaptation
whereby optimal meshes will be constructed for optimal slabs of time. The algorithm
for paradoxical meshing will be presented and a 1D temporal mesher will be devel-
oped. Detailed information about the implementation of this mesher will be provided.
This chapter concludes with numerical validations on analytical functions, a 2D CFD
application, a fluid-structure interaction problem involving moving geometries, and a
heat treatment problem inside an industrial furnace.
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Chapter 7 gathers numerical results obtained for some industrial applications.
Comparisons with experimental data and results obtained using fixed meshes and
time-step sizes will be provided to reflect the advantages of the proposed adaptation
tools.

Finally, in the conclusion, we summarize the achievements of this work and present
some possible short and long term extensions to it.
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RESUME FRANCAIS

Contexte général

Les problemes d’interaction fluide-structure (IFS) sont observés dans plusieurs
phénomenes physiques et constituent un sujet d’étude de premiere importance aussi
bien dans le domaine de recherche en mécanique numérique que dans le domaine
industriel. Ces problemes impliquent la résolution de systemes fortement couplés
dans lesquelles les parties fluides et solides, possédant des propriétés physiques et
thermo-dynamiques différentes, interagissent et influent le comportement mécanique
de l'un l'autre. De plus, les phénomenes physiques concernés sont intrinsequement
dynamiques et peuvent présenter des échelles de variations trés hétérogenes.

La compréhension et la modélisation de ces problemes ont considérablement at-
tiré les chercheurs au cours des dernieres décennies surtout avec la croissance des
puissances de calcul informatique et le développement continu des outils numériques.
Plusieurs modeles mathématiques et méthodes numériques ont été développés dans
la littérature pour décrire et simuler les phénomenes sous-jacents. La précision et
I'efficacité de ces simulations dépendent fortement de la complexité, 'ampleur et la
durée du probleme considéré.
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Contexte du projet REALisTIC

Cette these se présente dans le cadre du projet REALIsTIC, un projet de recherche
ANR avec la collaboration de plusieurs partenaires: académique (CEMEF), indus-
triels (Areva, Arcelor-Mittal, Industeel, Aubert & Duval, Snecma-Safran, Transvalor)
et développement de logiciels (Scconsutants). L'objectif général du projet est
I'optimisation et la simulation numérique de procédés industriels tels que les traite-
ments thermiques de pieces métalliques (chauffage, trempe, refroidissement a 1air
libre, - --). Malgré I'amélioration continue des méthodes numériques d’une part et
des puissances de calcul informatique d’autre part, des difficultés persistent quant
a la simulation de procédés réels dues a la grandeur des installations (dizaines de
metres), la complexité des phénomenes physiques traités et la longue durée du proces-
sus (douzaine d’heure).

En effet, un compromis était toujours nécéssaire entre précision et efficacité des
calculs. Le défi était alors de développer des outils numériques capables d’optimiser
les temps de calcul tout en générant des modélisations précises.

Objectif de la these

Le but de cette these est de développer des outils numériques qui permettent la sim-
ulation de phénomenes physiques complexes avec un bon niveau de précision et un
temps de calcul raisonnable.

Dans ce travail, on adopte une méthode d’immersion de volume pour simuler
numériquement des problémes d’interaction fluide-structure. Cette méthode était
premierement couplée avec des maillages fixes bien adaptés aux interfaces flu-
ides/structures. Elle a montré un bon potentiel a simuler avec précision des probemes
multiphysiques complexes. Cependant, le maillage et les pas de temps nécéssaires
pour de telles précisions engendraient des temps de calculs importants limitant ainsi
I'application de la méthode dans un cadre d’applications réelles complexes et indus-
trielles.

Le principal enjeu de cette these est de développer des méthodes d’adaptations
anisotropes en espace et en temps qui visent a améliorer les précisions de calcul d'une
part et a réduire le temps de calcul d"une autre part. L’objectif final étant de simuler des
applications 3D réelles et complexes dans de grands espaces et pour de longues durées
telles que les procédés industriels de traitement thermiques, on revisite dans le chapitre
1 les solveurs éléments stabilisés qui vont étre utilisés dans les simulations numériques.
Ensuite, on introduit dans le chapitre 2 la méthode d’adaptation anisotrope du mail-
lage développée. Dans le but d’appliquer cette méthode sur des problemes CFD, les
solveurs éléments finis stabilisés adoptés seront modifiés dans le chapitre 3 pour pren-
dre en compte des maillages fortement anisotropes. Une extension de l'adaptation
anisotrope vers une adaptation temporelle sera proposée et sa capacité a réduire le
temps de calcul sera mise a I'épreuve dans le chapitre 4. Le couplage de la méthode
d’immersion de volume avec ’adaptation anisotrope multi-composantes sera présenté
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dans le chapitre 5. Ensuite une nouvelle méthode d’adaptation en espace-temps sera
proposée dans le chapitre 6. Elle vise a générer des maillages et des pas de temps qui
durent des slabs de temps améliorant ainsi la précision des calculs et réduisant le cotit
des calculs surtout pour des applications impliquant des objets mobiles. Finallement,
la performance, la précision et l’efficacité des outils numériques développés seront mis
a I'épreuve dans le chapitre 7 dans le contexte de simulations de procédés industriels
et des comparaisons avec des données expérimentales. On cloture la these avec de
nouvelles propositions d’investigations numériques.
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THIS chapter aims at introducing the numerical tools used for the modelling and
resolution of the conjugate heat transfer and fluid flow problems. It will provide
an overview on the adopted stabilized finite element methods involved in order to
yield accurate and oscillation free numerical solution. Turbulence models will also be
considered to treat the chaotic and fluctuating behavior of the flow at high Reynolds
number. Finally numerical validations will assess the performance of the stabilization
tools on two and three dimensional problems.
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INTRODUCTION

Accurate predictions of conjugate heat transfer and fluid flow phenomena have been
the subject of intensive studies from numerical and industrial perspectives in a wide
variety of applications including but not limited to: design of heat exchangers, energy
conservation and nuclear studies, weather forecast, and automotive and machinery
for manufacturing industries. A great effort was employed at both experimental and
numerical levels to understand and simulate conjugate heat transfer and turbulent
flows for multi-component systems. A common industrial practice, for experimental
investigations, is to study simplified model problems then to extrapolate the results
and draw conjectures. However, these procedures can hardly yield an optimized setup
and may still be very costly. Hence resorting to numerical simulations is expected to
provide a better modelling and save both time and economical resources.

The present chapter focuses on the modelling and resolution of the heat transfer
and fluid flows applications. The computations consist in simultaneously solving
the Navier-Stokes and energy equations. Moreover, in order to take into account the
radiation effects, the radiative transfer equation has to be solved. Turbulence models
may be used at high Reynolds numbers to provide a mean flow representation. The
equations will be discretized using stabilized finite element methods. We note that the
implementation and validation of finite element solvers were subject to previous works
in the CIMLIB finite element library developed at the CEMEF laboratory [ I
For that purpose, we omit the detailed derivation of the stabilization techniques and
refer to [ ] for a complete study.

After briefly reviewing the set of equations and stabilization methods involved in
our study, we present some numerical validations and motivational examples showing
the need for adaptation techniques to accelerate the computations while maintaining
a good level of accuracy. We will show in the following chapters that, combined with
anisotropic meshing and time-adaptation, the stabilized finite element methods can be
perceived as powerful tools for approximating the solution of heat transfer and fluid

flows in complex geometries.

CONVECTION-DIFFUSION-REACTION PROBLEM

The solution of the transient convection-diffusion-reaction (CDR) problem is a corner-
stone for the numerical modelling of a wide range of fluid mechanics applications in
particular the heat transfer equation and turbulence models. Over the last two decades,
there has been a continuous growth in the development of numerical methods for the
resolution of this type of equations. Usually the Galerkin Finite Element method is
the first mentioned among the various numerical techniques available to solve these
problems.

Unfortunately, the numerical solution of the unsteady convection-diffusion-reaction
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equation using the Galerkin formulation normally exhibits global spurious oscilla-
tions in convection-dominated regimes, especially in the vicinity of sharp gradients;
hence causing a loss of accuracy and stability. Indeed, the standard Galerkin finite
element method is equivalent to a central finite difference discretization in which
the approximation of the convective term pollutes the solution in convection domi-
nated cases. A variety of stabilization approaches have been proposed to enhance
the stability and accuracy of this formulation. Initially, these methods inherited from
the upwind finite difference approaches. A stabilization derived using asymmetric
test functions in a weighted residual finite element formulation was first proposed in
[ , ]. These methods remove the spurious oscillations but a poor
convergence is achieved due to the excessive additional diffusion hence degrading the
quality of the numerical solution. Moreover these methods are not consistent with the
problem by means that the solution of the variational form is no longer the solution of
the convection-diffusion-reaction problem. Significant improvement resulted from the
development of the streamline upwind Petrov-Galerkin (SUPG) method proposed by
Brooks and Hughes [ , ] and reconsidered in [ ]. This
method substantially eliminates the instabilities of the standard Galerkin formulation
and does not add crosswind diffusion. The convergence and accuracy rates associated
to it are higher than the upwind methods. The SUPG approach maintains consistency
by adding weighted residual terms to the weak formulation of the problem. They have
grown in popularity, especially in fluid dynamics applications, heat transfer and fluid-
structure interactions. On the other hand, alternative approaches were proposed in the
literature, we recall the Galerkin/Least-Squares (GLS) method in [ , 1,
the gradient Galerkin/least-squares (GGLS) method in [ ] relying on the min-
imization of the squared residual of the equation, the unusual stabilized method (US-
FEM) in [ , ] with the idea of swapping the sign of the Laplacian in
the test function, the enriched method with time interpolation in [ ], the
subgrid scale method in [ ] and many others; each one of these schemes was
used to optimize the performance of the finite element formulation of the unsteady
advection-diffusion equation with or without production.

In this work, we focus on the SUPG method as it is the most popular approach
for stabilizing the CDR problem. Although SUPG produces accurate and oscillation-
free results in regions where the solution does not undertake sharp gradients, spurious
oscillations (overshoots and undershoots) might appear in regions where the solution
exhibits abrupt changes. This behavior is somehow expected as the method is neither
monotone nor monotonicity preserving. An extension of the SUPG method consists in
introducing additional, often nonlinear, artificial diffusion in the crosswind direction,
so that monotonicity is recovered. The extension is referred to as the discontinuity
or shock capturing Petrov Galerkin (SCPG). Despite the progress of the SUPG and
the SCPG methods, the amount of added artificial diffusion is tuned by a stabilizing
parameter whose choice is still an open problem nowadays. A possible remedy to
this issue is the use of variational multiscale methods [ ] or equivalently the
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Residual Free Bubble approach [ , , , ] in which
the stabilization parameters are naturally driven by the resolution of a boundary value
problem at the elements’ level. On the other hand, when diffusion dominates, these
methods are no longer active and another treatment shall be considered. The enriched
space scheme [ , , ] was proposed in the literature, it con-
sists in enriching the space of solution with a space of bubble functions defined at the
elements’ level. The small scale variations of the solution will be accounted for through
an appropriate addition of stabilization terms. An extension of this method to obtain
real time solutions was derived in [ ] and will be used in this work.

The objective of this section is to recall the convection-diffusion-reaction equation
and summarize the stabilized finite element methods that we considered in here for
the resolution in case of convection dominated regimes. It is not our intention to
provide a thorough analysis of the different possible stabilization techniques as their
development is not the contribution of the current work.

This section is organized in the following way: we start with the description of
the governing equations for the modelling of convection-diffusion-reaction problem.
Then we introduce the standard Galerkin finite element formulation and point out the
need for stabilized finite element methods. The third subsection is devoted to the for-
mulation of the Streamline Upwind Petrov-Galerkin (SUPG) technique on unsteady
convection dominated problems. It is followed by theoretical study on the existence,
uniqueness and convergence order of its solution. The extension of the SUPG to ac-
count for abrupt solution changes will be discussed afterward. We move on next to
explore how the analysis is carried to model conduction heat transfer problems. The
enriched space approach is applied for the stabilization of the latter problems. Finally
an extension to an enriched method involving time interpolation is addressed.

Governing equation

We consider the following equation that models the transport of a quantity u through
convection, diffusion and reaction:

ou—V - («kVu)+v-Vu+ou=f, in Q,
u(.,0) =up in Q, (1.1)
u=g, onT,

where QO C RY is a bounded polyhedral domain with boundary T, x € L®(Q) is
the constant diffusion factor, v(x) € [Wl"”(ﬂ)}z is the divergence-free velocity field,
o(x) € L2(Q) is a reaction term, f(x) € L?(Q)) is a given source term, uo is the initial
data and g is a given boundary condition. For this problem, we distinguish four types
of possible boundary layers [ ]:

e Regular boundary layers: appear at the outflow boundary defined by

IT={xeTl:v-n>0}
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where the velocity field v is not parallel to the boundary. Their width is of O(x).
This order results from the difference between the solution of the convection-
diffusion-reaction problem (1.1) and the diffusion-only one (when x = 0, ¢ = 0).

e Parabolic boundary layers: appear at the characteristic boundary defined by
M={xcl:v-n=0}

where the velocity field v is parallel to the boundary. Their width is thicker than
that of the regular boundary layers and is of O(y/x).

e Corner boundary layers: appear at the neighborhood of the domain’s corners i.e.
at the intersection of boundaries.

e Interior layers: appear at the inflow boundary
["={xel:v-n<0}

due to the discontinuities in the data that propagate inside the domain according
to the velocity field v. Their width is of the same order as that of the parabolic
boundary layers i.e. O(y/x).

In this work, we use the streamline upwind Petrov-Galerkin technique to stabilize
the solution and enhance its stability. The method consists in adding artificial diffusion
which acts only in the direction of the flow. The SUPG method is globally stable
and has good order of accuracy in regions where the solution is smooth. However
in practice, if the solution possesses steep layers, it is impossible to achieve optimal
orders of convergence i.e. second order for the L? norm and first order for the H! norm
[ 1l

The SUPG scheme was initially developed for the resolution of the steady CDR
problem in order to overcome the instabilities encountered by the standard Galerkin
approach when the diffusion term is small. The extension to the transient problem that
we present here consists in: first discretizing the equation in time then applying the
stabilized finite element method on the resulting spatially-continuous problem.

Standard Galerkin formulation

Let us consider the Sobolev space of functions having square integrable first order
derivatives Hi(Q) in which we are searching for the solution in accordance with its
regularity:

H! = {wEHl(Q)]wstxel“}

with
HY(Q) = {w € L2(Q), ||Vw|| € L2(Q)} ,
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and L? being the Hilbert vector space given by:

/ |w|*dx < oo}
0

We also define the subspace Hj(Q)) C H(Q) as the set of functions vanishing on the
boundary.

L*(Q) = {w(x)

The Galerkin variational formulation is obtained by multiplying equation (1.1) by an
appropriate test function w € H}(Q) and integrating over the computational domain.
Without loss of generality, and for simplicity of illustration, we assume a zero Dirichlet
boundary condition. The discrete problem becomes:

Find u € H'(Q) such that u = 0 on T and

(le> + (Vi Vo) + (v- Vi, w) + (oun,w) = (fw)  Yw e H(Q), | (12)
B(u,w) -7?(;‘]—)

where (u,w) = [, uwdQ.

For the spatial discretization, we consider a finite element partition H;, of () into
simplex elements K. Using these representations, the above-defined functional spaces
H}(Q) and H}(Q) are approached by discrete spaces H!*(Q) and HY*(Q). Let %, C
H"'(Q) be the space of piecewise linear functions defined on the elements of #,,. Thus,
the Galerkin finite element formulation reads as:
find uy, € ¥, such that: u, = 0onT and

0
(;:w) + B(up, wy) = Fp(wyp) — Vwy € ¥,0(Q) (1.3)

Finally, the problem defined by equation (1.3) yields the system of first order differential

equations:

ou
where U is the vector of nodal unknown solution values, C the mass matrix, K the
stiffness matrix corresponding to the convection, diffusion and reaction terms and F

the vector of internal source term.

Time integration scheme

The system of ordinary differential equations (1.4) has to be integrated in time. Using
the 6-time discretization schemes, the derivative of the solution with respect to time
can be approximated at time t" by:

u" — Unfl ; a1\
CTJrIC(GU +(1-0)U >_]-" (1.5)
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where At is the time-step, n = 1,..., N, and 0 < 6 < 1. We recall that this family
includes the backward Euler scheme (# = 1), the Crank-Nicholson scheme (6 = 0.5)
and the forward Euler scheme (0 = 0).

Stability of the standard Galerkin formulation

Since w € 7,9 C Hé(Q), we get, under the assumption ¢ — %V -V > ¢o > 0 on Q for
some cg > 0:

B(uh, Mh) = (KVuh, Vuh) + (Vh -Vuy, Mh) + (O'Llh, uh)
1
e (o~ o )
> lunlt +ClluIg (1.6)
=:Cllunl} «
where C is a constant, | - |; denotes the H'(Q) semi-norm and || - ||o the L?(Q)) norm.
Compared to the standard H(Q) norm || - ||1, || - ||1« is said to be a weak norm i.e. for

the same velocity field, the stability induced by the coercivity inequality (1.6) for x < 1
is much weaker than the stability enjoyed by the case x = 1.

Challenge arises when convection dominates diffusion i.e. when x << ||v||. Note that
this is in accordance with a Peclet number, Pe = W with h being global characteristic
element’s length, greater than one. In this case, the standard Galerkin finite element
discretization, if the mesh is not well refined, gives rise to node-to-node oscillations in
the solution. One way to eliminate these oscillations is to use upwind techniques such

as the Streamline Upwind Petrov-Galerkin stabilized finite element method.

Streamline Upwind Petrov-Galerkin (SUPG) method

The SUPG approximation of (1.2) is formulated on the finite-dimensional subspaces by
introducing an additional weight 7v - Vwj, to the standard Galerkin weighting func-
tions wy, in the upwind direction for all terms in the equation. This modification is
interpreted as allowing more weight to the nodes in the upstream direction and re-
ducing the weight of the nodes in the downstream direction. Hence, the modified test
function is defined by:

wy, = wy, + v - Vwy.
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Figure 1.1 — Galerkin vs SUPG weighting function on linear elements adopted from [ I

As a result of this upwinding, the variational formulation becomes:
Find uy, € ¥}, such that u, = 0on I and

duy, Jou

KeH,,

—|—B(uh,wh) + Z Tk (Ruh,v-th)K
KeH,,

(1.7)

B (up,wy,)

= F(wy) + Y w(f, v Vwy)g Ywy, € H}(Q)),
Kek

fr(wh)

where T is a stabilization parameter that tunes the amplitude of the added weight and
Ruy = =V -xNVu, +v-Vu, 4+ ouy, .

Comparing equations (1.2) and (1.7) we notice that the SUPG formulation is equiv-
alent to introducing a local diffusion O(1) along the convection streamline direction
weighted by a stabilization parameter. As the additional stabilizing terms vanish for
the exact solution of the problem, the SUPG discretization is consistent.

Finally, the problem defined by equation (1.7) can be reformulated into a system of
tirst order differential equations as in equation (1.4), and the temporal discretization is
performed in a way analogous to the standard Galerkin formulation (1.5).

Existence, uniqueness, stability and order of convergence

We are now interested in studying the stability of the solution computed using

the SUPG formulation. We note that the coercivity analysis follows the lines of

[ ]. Let ox = max lo(x)|,VK € H;. Without loss of generality, we assume
xe

that the mesh is uniform with local inverse inequality:
||Auh\|0,K < ghlzl|u]1,1< VK € Hy,, (18)

where Ky is the characteristic length of element K, { is a constant, || - ||ox is the L?(K)
norm, and | - |1 ¢ is the H!(K) semi-norm.
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We assume that 7 satisfies:

0<m <1min C—O& VK e H (1.9)
_K_2 0_12</K€2 h- 9

Then for every u & " we have:

BT(Mh,wh) = B(uh,uh)+ Z TK(—KAuh+v-Vuh+(7u,v-Vuh)K

KeH,,
> x|uyld + Cllup| 3 + Z T (—xDuy + ouy, v - Vuy) g + Z T (V- Vuy, v-Vuy) g
KeH,, KeHy,
> xlupi+ Cllunllf+ Y wllv:- Vullgx+ Y. w (—xAuy, + oup, v - Vi) (1.10)
KeH,, KeH,,

Using the local inverse inequality together with assumption (1.9) yields:

Y T (—xAuy 4 ouy, v Vup) | <Y &2 [Aulffk (1.11)
KeH,, KeH,,
1
+ ) ‘712<TKH”H%,K+§ Y v Vuy5x
KeH,, KeH,,
K., C 2 1 2
< §|”’1+§H”H0+§ Y wllv e Vig|[§x (1.12)
KeHy,

Consequently, the energy streamline upwind norm is defined as:

2
[l lsure := <K|w|%+ )3 TK!|V'VW||3,K+C||W||3> ,
KeH,,

then the discrete bilinear form is coercive with respect to this norm:

1
Br(uh/ Mh) < *|H”h|||SUPG- (1.13)

The existence and uniqueness of the solution obtained with the SUPG method can
be studied using the Lax-Milgram theorem. We recall that in convection dominated
problems, the standard Galerkin formulation fails to satisfy the coercivity condition
leading to instabilities in the solution. For the energy norm, the linear functional F(.)
is continuous and the bilinear form B(.,.) satisfies:

B(uy, up)

Y

1
Sllnlllis  Vu € Hy(Q)

and  Be(wy,wi) < llalllsore - (11v11772 o] oo onll)

A

Thus the bilinear form is coercive and continuous with respect to the energy norm.
Now that we have discussed existence and uniqueness and derived a stability bound
for the SUPG method, we move on to consider the convergence of the method. For
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that purpose, we refer to [ , ] for the proofs on the error estimates
summarized in the following theorems.

Theorem: If linear approximation is used on a finite element triangulation, then
there exists a constant ¢, asymptotically proportional to the mesh Peclet number with:

IV (= w)|| < ™[ |ull ) -

Theorem: 1f piecewise linear approximation is used on a uniform finite element
triangulation with 11 > 2x, then there exists a bounded constant ¢, independent of the
diffusion coefficient with:

3/2
=ty llsore <€ (1F)> ||| 2y

From this result using the energy norm, follows an O(h%) convergence in the L? norm.
Additional error analysis is presented in [ I

Nevertheless, the error bounds in the L2 norm show a loss in the convergence rate
by half-an-order for the SUPG method which reflects that in the presence of steep layers
and convection dominated regimes it is difficult to achieve optimal convergence rates.
Accuracy and convergence improvements can be obtained by resorting to anisotropic
mesh adaptations (see chapter 2).

Choice of the stabilizing parameter

The stabilizing parameter 7 will govern the amplitude of the added artificial diffu-
sion in the direction of the streamline as it determines and calibrates the amount of
upwinding weights locally in each element.

An important drawback of SUPG stabilized methods is that an optimal choice of
stabilization parameters is still problematic. The SUPG method was the center of ex-
cessive research work over the last two decades, much of which was devoted to the
choice of the stabilization parameter [ , , , ,

, ]. Theoretical analysis has lead to some bounds on 7 for which
the SUPG method is stable and yields a (quasi-)optimal convergence of the discrete
solution.

An analysis of convection-diffusion problems, in one space dimension and on a
uniform mesh, has shown in | , ] that the SUPG solution is
nodally exact for continuous piecewise linear finite elements if

hx 1
Tx = m <COth(PEK) — PeK> ,

h
where Pex = H‘;‘||;§| LS

v or f are not constant, this choice of stabilization parameter does not generally lead

is the mesh Peclet number and hg is the element size. However if

to a nodally exact discrete solution. Another possible suggestion for the stabilizing
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parameter taken from |[ ] is:

Experimental studies have shown that in a convection dominated regime for large
Peclet numbers this choice of the stabilizing parameters gives more stable numerical
results. Note that 7y is positive for both convection and diffusion dominated problems
with:

h2

c1hx for Pegx > 3,
Tw =
* c2-X  for Pex <3

c1 and ¢, being positive constants.

For negative reaction terms, Codina suggested in [ ] a formula emanating
from a Fourier analysis and the maximum principle. A similar idea taking into account
any sign of the reaction term was provided in [ ]. From these two works, we
infer the following parameter:

-1/2
2V, (2vik)’ 4\*
T = ((At) —|—< T > +9(h%<> +0o . (1.14)

During the course of this thesis, we adopt this formula for the stabilization parameter of

the Streamline Upwind Petrov-Galerkin method. For an extended overview on possible
choices for the stabilization factor we refer the reader to [ ].

Element characteristic length

The element characteristic length significantly influences the amount of added diffusion
in the SUPG method. A common choice would be to simply define this measure as the
diameter of the element. In chapter 2, when using the stabilized finite element method
on anisotropic meshes we will affect the choice of the element characteristic length to
well respond to the nature of the mesh and result in conservation and accuracy features.

Shock Capturing Petrov-Galerkin

When approximating smooth functions, i.e. when the solution does not exhibit abrupt
changes, the numerical solution to a convection dominated problem using the SUPG
method is accurate and oscillation free. However this method still presents spurious
oscillations (overshoots and undershoots) in the regions along steep layers. This in-
dicates that it is not enough to stabilize only in the streamline direction. Although
the amplitude of these nonphysical oscillations are smaller than those produced by the
standard Galerkin formulation, they should be treated. The unsatisfactory behavior
is related to the fact that the SUPG is neither monotone nor monotonicity preserving.
In other words, these over/undershoots stem from the fact that the added artificial
diffusion is in the streamline direction whereas at the level of boundary layers the arti-
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ficial diffusion should be added along the solution’s gradient. To remedy this problem,
one resorts to methods that introduce additional crosswind diffusion. These schemes
are often referred to as discontinuity/shock capturing methods. The key idea of these
methods is to add a non-linear term to the SUPG formulation, resulting in a higher
regularity of the function’s derivative in the crosswind direction. Several approaches
for deriving stabilization methods along boundary and interior layers were proposed
in the literature. The most popular ones are the Consistent Approximate Upwind

(CAU) methods [ , ] and the Spurious Oscillations at Layers Dimin-
ishing (SOLD) or equivalently the Shock Capturing Petrov-Galerkin (SCPG) methods
[ , , ]. Nevertheless, very few are the attempts in the

context of transient heat transfer problems.

The Shock capturing Petrov-Galerkin (SCPG) scheme, an extension of the SUPG
method, introduces an extra term known as discontinuity-capturing operator v, -
Vwy,. The extra term affects, and provides extra control, on the numerical solution in
the crosswind direction i.e. in the direction of the solution’s gradient Vuj,. The new
weighting function taking into account this added term is given by:

Wy, = wy, + wv - Vwy, + teve - Vg,

v

Figure 1.2 — The auxiliary vector v.: projection of the advection direction onto the solution’s gradient
Vu adopted from [ 1.

where,

v-Vuh .
V. = { HV“hH% vuh if Vuh ?é 0 (1.15)

0 otherwise

One can clearly identify the nonlinearity of the newly defined term. Applying the
Galerkin procedure to equation (1.1) taking into account the new weighting function,
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yields:

_ 0 0
(Ruy, wy,) = (;;h,wh> + Z T« <81:,V'th> + B (uy, wy)
KeH,, K

ou
+ Z Tk <at/ Ve vwh) + Z (Ruh/ TIEVC : vwh)K (1.16)
KeHy, K KeH,,

SSCPG (1), wy, ): discontinuity-capturing term

= (f,wn) .

There are many possible choices for the stabilization parameter 7. In most cases, the
latter is closely related to the SUPG stabilization factor. One possibility is to set 7 using
the same formula as 7 and replace the velocity field v by v.. However an important
drawback arises in the case when v = v, as a double artificial diffusivity is induced.
A remedy to this disadvantage was proposed by Tezduyar and Park in [ 1

where the parameter is defined by:

c __
T]( - 2|Vc|17 <2|V| 7 (1.17)

with #(B) = 2B(1 —p), B € [0,1]. In the current work, we adopt this stabilizing
parameter for the shock capturing Petrov Galerkin method.

However, sometimes excessive diffusion due to the SCPG stabilization might affect
the solution’s accuracy. Therefore a tuning needs to be employed so as to deactivate the
added diffusion in regions where the solution is smooth. One possibility, taken from
[ ] and | ], that we adopt in this work, is to control the stabilizing
parameter using a feedback function defined by:

_V-Vuh

114
h Ruh

The consequent modified factors will have the following form:

Tg = Tg Max {0, ||||::|||’ - @’} , with { = max(1, a)
Cc

The previously mentioned methods will serve for the resolution of convection domi-
nated regimes. We move on now to tackle another form of the heat transfer equation.

Transient heat transfer by conduction

In this subsection, we are interested in modelling and resolving heat transfer by con-
duction, or unsteady diffusion problems. These problems are encountered in many
industrial applications including solid quenching processes, solidification, metal form-
ing and casting, and polymer injection and molding. The use of the standard Galerkin
formulation yields unphysical instabilities when solving unsteady diffusion problems,
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when ¥ < h2At~1, ie. the diffusion factor x is small, or a small time-stepping is
applied, with h being the element mesh size[ ]. In order to remedy these in-
stabilities, the idea is to enrich the finite element space of solutions with a space of
bubbles followed by a linear interpolation in time allowing a time synchronization.
The oscillation-free solution stems from adding a stabilization term calibrated by a lo-
cal time-step. We adopt in this thesis the Enriched Method with Interpolation (EM-I)
proposed in [ I

For a thermal conductivity A, a mass density p and a specific heat capacity Cp, the
transient heat transfer by conduction is modelled as follows: Starting with an initial
domain temperature Ty, find the temperature field T € R such that:

pCpaa—]; —V-(AVT)=f onQx(0,tf) (1.18a)
T =T, on Iy (1.18b)

AVT -n =gy onT, (1.18¢)

AVT -n=—h(T —Tout) onT, (1.18d)

with f being an energy source term, Ts an imposed temperature on a portion of the
boundary denoted by I's and g, an imposed heat flux at boundary I';. Moreover, using
a heat transfer coefficient /1. and the temperature outside the domain T, a convective
heat transfer condition —h.(T — Tout) is imposed on T.

We start the formulation by considering the same functional spaces defined above
for the Galerkin method, with H! the solution space. We also derive the variational
form by multiplying by an appropriate test function and integrating over the domain.
Then we discretize the computational domain using a finite element mesh ;. Eventu-
ally, the obtained Galerkin finite element formulation of problem (1.18a) reads as:

find Ty, € 3, such that:

oT,
(Pcpath,wh> + (AVTy, Vwy)q + (heTh, wi)r,
QO

(1.19)

= (fh/wh)Q + (QZU/ wh)rq + (thout/ wh)rc vwh € 7/;10

This problem reduces into a system of first order differential equations:
Ca(.;f +KT=F (1.20)

In here, the nodal temperature field is represented by the vector T, C is the capacitance
matrix with entries C;; = (0Cp;, (pj)Q, K the conductivity matrix with components
Kij = (AV;, Vo), + (hei, q)]-)rc and F is a vector taking into account the internal
source term and the external flux with entries F; = (fi, ¢:)q + (9w, 9i)r + (FTout, @i)r.-
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The system is then discretized in time using the 6-scheme in an analogous way to
(1.5).

Enriched space approach

As we have mentioned earlier, in the case of heat transfer by conduction, the standard
Galerkin formulation yields a poor numerical solution if At < h?z, where k¥ = ﬁ is
the diffusivity coefficient. For that reason, we resort to the use of the enriched space
approach to stabilize the problem [ , , ]. However, using
this method, the solution is shifted backwards with respect to the real time; for that
purpose, we provide next an extension following the lines of [ ] to achieve

a time-synchronous solution.

A

Figure 1.3 — P17/ P1 elements.

The key idea of this method is to locally enrich the finite element space ¥}, spanned
by continuous piecewise linear polynomials, with a space of bubbles ¥}, whose support
lies inside the mesh elements. We consider an element K € ;. The bubble function
associated with K is such that:

P(x) >0 VxeK
P(x) =0 Vxe€odK (1.21)
P(x) =1 at the centroid of K

One now seeks the solution in the space ¥ = ¥, ® ¥. In the same manner, the space of
test functions will be decomposed into a macro-scale and a micro-scale W = W0 D W,
For the sake of simplicity of illustration, we assume a zero Dirichlet boundary condition
onl.

Therefore the problem’s variational formulation will be given by:

FindT,=T,+ ¥ Ty W in ¥ such that:
KeH),

oT), . ~ o
(pcpath; ZU> + (/\VTh, VZU)Q = (fh/ w)Q Y W (1.22)
QO
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From the fine-scale expansion proposed in [ ], we write:
T, = Z Ty and wy = Z Wy, P (1.23)
KeH;, KeH,,

At the element’s level the two problems can be decoupled and one can then resolve a
large-scale and a small-scale ones. The fine-scale problem reads, for all wy,:

T, oT,
<pcpath; ZUbKlP> + (Pcp;:lp, ZUbKlIJ> + ()LVT;Z, vwalI))K
K K

+ (AVTy 9, vwalIJ)K = (fu wal/J)K

(1.24)

Since the large-scale solution is defined linearly on the elements, the term
(AVTy,, Vwyp) vanishes. On the other hand, as the equation is satisfied for any
choice of wy, then it is in particular valid for:

1 on the elements’ center,
Wh, = (1.25)

0 elsewhere

Without loss of generality, we apply a backward Euler scheme in time. The generaliza-
tion to other time discretization is straightforward.

At this stage, we can solve for the bubble coefficients; the latter are determined

by:

1 T" — Tnfl _ Tnfl
Tpe = +¢ (f—PCp ( h___h b ) (1.26)
© SIG K+ AV At K

where T;'~! denotes the solution field on the bubble functions at the previous time

increment.

The following step of the enriched space approach is the static condensation that
consists in modelling the effects of the small scales on the large scales. For that purpose,
we consider the coarse scale equation:

oT, _
Q

and use Vwy, € #,?, the integration by parts on (V (T 9), Vwy):
(V(Toep), V) = — (Top), Dwy) + (V (T ) -, wp ) VK € Hy, (1.28)

As we are considering linear weighting functions, the first term on the equation’s right
hand side vanishes. The second term also vanishes by virtue of the bubble functions’
definition. Therefore, using an implicit discretization in time, Vw;, € 7/;10 equation (1.27)
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reduces to:

I Ty Lt i
<PCPAht,wh) + ) (PCPbAthwh> +(AVT, Vwp)q = (frwn)q+ (hAtb’wh
Q  KeH, K

(1.29)

Combining (1.26) and (1.29), implies on each element K:

1 Th — Tnfl _ Tnfl pc
(T (o)
SENPIGx +AMVYlG« K K

At
(1.30)

Moreover, following the lines of the work on steady CDR problems in [

, ], we consider cubic bubble functions. One gets under these as-
sumptions:

/1<de = C1h2 P and H1~/]||0,K = Czh%(

Replacing in (1.30), yields:

PCp Chi Th—Ty ' =T '\ eCy
T = - :
bx < At /wh>K pftph% N )\E f PCP At s At Wy, . (1 31)

TK

where we take C = 1 and C = 6 constants as in [ ].

Finally, substituting back into the large scale problem, we obtain for all w;, € %%

TIZI T/? 0Cp n
<pCpAt,wh>Q — Keij{h T (pCp (B) , th%( + (/\VTh, th)Q

Tni1 + Tnil Tn—1, n-1 c
= (fnwn)q + (hAtb’wh - L & <f+PCp (W’) /pAtpwh>K-
@)

KeH,,

(1.32)

In this formulation, two aspects of stabilization can be identified, the first is at the level
of the transient term, and the second is on the right hand side of the equation taking

into account the previous information on the solution.

This stabilization is equivalent to modifying the test function of the standard Galerkin

N C
i (102, .

formulation into:

Hence, the modified problem can be interpreted as a modified Galerkin with lager
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time-step size and can be written equivalently as:

T C 0o
(pCpAt,wh (1 - TKPAtp>>Q + (AVTy, Vwy) o

_ - (1.34)
_ O+ PCy

Time interpolated enriched (EM-I) method

It was pointed out in [ ] that if zero source term is assumed then the solu-
tion to problem (1.34) may not converge to the solution of problem (1.18a). A remedy
to this situation was proposed in [ ], it consists in interpolating the solution
to real time. To do so, we define a new time-step At* such that:

At PG\ 1
At*_<1 TKAt>_§ ¢>0. (1.35)

The corresponding real-time interpolation will read as:

T =¢T+(1-O)T) . (1.36)

Now substituting back into (1.34) and rearranging the terms yields:

(PCP (CT,’: +(1- Q’)T}’Z*1> ,@) + (C)LV (T;lz +(1-¢) T;;fl) ,Vﬁ)ﬁ)

At*
B c T;Zflfl + T;lfl = (137)
=1p p At rWhl s

. . _ At*
and equivalently since At = 5,

n _ gn—1 _ n—1
(pCP T, -1, ¢T, ,wh> + (EAVT), Vuwy,) = ((g_ 1)AV (T;Z*I,th)) _

At
(1.38)
This modification can be interpreted as a time-dependent stabilization involving mod-
ified thermal conduction ¢A defined at the elements’ interior and controlled by a
stabilization parameter .

More details on the derivation of this stabilization technique for diffusion dominated
problems and numerical validations are provided in [ ].

THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

The motion of fluids is known to be embodied by the nonlinear Navier-Stokes equa-
tions. Although these equations were introduced in the 19th century and have a very
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wide range of applications including aerodynamics, microfluids, circulatory and respi-
ratory systems, household appliances, geophysical and astrophysical phenomena etc.,
the understanding, and theoretical validation of these equations is still at a primitive
level. Their resolution consists in finding a velocity/pressure pair (v,p) satisfying
the problem setup. There are a few analytical solutions in the literature but these
were computed on the basis of introducing model simplifications which are generally
non-physical. Several attempts to solve these equations numerically were addressed in
the literature. Accurate solutions with different scale heterogeneity are still a challenge
and induce very stiff systems. Considerable advancements need to be achieved includ-
ing spatial accuracy, temporal accuracy, error control and mesh adaptation.

Two non-dimensional numbers characterize a flow: the Mach number and the

Reynolds number. The former, named after Ernst Mach (1836-1916), measures the

ratio of a characteristic velocity v of the flow to the velocity of sound c in the fluid:
[[v]

Ma = T . (139)

On the other hand, the latter parameter describes the flow behavior by quantifying the
ratio between inertial and viscous forces for a given flow:

Re = AL , (1.40)

H

with L being a characteristic length scale, p the fluid density, V its mean velocity and
u its dynamic viscosity. Osborne Reynolds (1842-1912), the eponym of this dimension-
less number, observed that the flow is said to be laminar when the Reynolds number
is small and turbulent otherwise. In that case, the flow is characterized by chaotic fluc-
tuations and develops eddies with different sizes. In the following section we aim at
addressing ubiquitous turbulent behavior of flows and use a multiscale approach to
capture it and turbulence models to represent it.

This section presents the mathematical formulation of the governing equations of
fluid flows; in particular, we are interested in modelling incompressible flows (i.e. ig-
noring density changes). We set the problem in a finite element framework. However
there are two cases where the standard Galerkin finite element scheme fails and the
numerical solution is corrupted by nonphysical oscillations. The first is due to the non-
linearity of the convective term in convection dominated regimes and the second stems
from the incompatibility of the finite element functional spaces of the velocity and
pressure fields [ , , , ]. This space com-
patibility condition is known as the inf-sup condition, also called the Ladyzhenskaya-
Brezzi-Babuska condition. To deal with the instabilities arising from the space incom-
patibility, two possible remedies can be adopted: either we circumvent the condition
by adding stabilization terms to the Galerkin formulation, or we enrich the functional
space in order to satisfy it, i.e. we derive a stable formulation. The finite element
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functional space combinations satisfying the Ladyzhenskaya-Brezzi-Babuska condition
have been studied on the Stokes problem. A popular mixed finite element formulation,
known as the Mini element method [ ], consists in using equal order spaces
for both fields while enriching the velocity space with bubble functions. The latter van-
ishes at the elements’ boundaries and hence can be eliminated and statically condensed
yielding a stabilized formulation. The choice of optimal shape for the bubble functions
affects the stabilization of the problem. It was pointed out in [ ] that, unlike
diffusion dominated regimes where the numerical solution is satisfactory, in convection
dominated problems the method’s performance is reduced. To solve this issue, Franca
and Nesliturk [ ], used the residual-free bubble (RFB) method with a natural
way of choosing stabilization terms. Several works on the derivation of stabilization
methods for the resolution of the Stokes and the Navier-Stokes problems can be found
in the literature. First, the Unusual Stabilized finite element method was introduced
by Franca and Farhat in [ ]. Next, the residual based stabilization methods are
well described by Brezzi et al. [ ], Donea and Huerta | ] and Codina
et al. | , , , , ]. Finally, multiscale
approaches were proposed by Hughes et al. [ , , ] and
Gravemeier [ ] and the SUPG/PSPG methods by Tezduyar [ I

A finite element solver for the Stokes problem based on the Mini element method
has been developed, implemented and validated in the CIMLIB library by Coupez,
Perchat and Digonnet [ , , ]. An extension of these
works to transient Navier-Stokes equations at low Reynolds number is credited to Bas-
set [ ]. The Variational Mutiscale method was brought forth for high Reynolds
numbers, implemented and validated in CIMLIB by Hachem [ ]. The current
work is a continuation upon these references and intends to couple the stabilized finite
element solvers with anisotropic mesh adaptation and time adaptive algorithm in the
view of optimizing the numerical solutions. A slight modification will be considered
in chapter 3 to account for the synergy with adaptation tools.

In this chapter, we are interested in retaining the advantages, in terms of accuracy
and computational costs, of using linear (P1) finite element approximations for both
velocity and pressure fields. The Variational Mutiscale approach will be used to sta-
bilize the problem. It involves an orthogonal decomposition of the solution (velocity
and pressure) spaces, circumvents the inf-sup condition and provides stabilization in
the case of convection dominated regimes.

Governing equations

Let O C RY, d € {2,3} be a bounded domain and (0, T) be a time interval. The mod-
elling of incompressible flows inside () is embodied by the transient incompressible
Navier-Stokes equations. It consists in finding the pair velocity/pressure v(x,t) and
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p(x, t) such that:

p(0v+v-Vv)—=V.9y = f inQx(0,T)
Vv = 0 inQx(0,T) (1.41)

where 7 is the stress tensor, p the fluid density and f a given vector of external forces
acting on the flow. The first equation models the conservation of mass whereas the
second, known as the continuity equation, reflects the incompressibility of the flow.
Let I be the identity tensor. The stress tensor 7 associated with a Newtonian fluid
i.e,, for a fluid dynamic viscosity p, is defined by the fundamental constitutive law:

v = 2pue(v) — pl (1.42)
where ¢(v) is the strain rate tensor, defining the symmetric part of the velocity gradient:

e(v) = 5 [Vv+ (V)] (1.43)

Substituting (1.42) and (1.43) in (1.41), the following momentum equation results:

pOv+v-Vv)—2uV-e(v)+Vp=f inQx(0,T) (1.42)
1.
V.v=0 inQx(0,T) 44
We close the system with appropriate initial and boundary conditions:
v(x,0) = vo(x) in O (1.45a)
v(-,t)=vp onTy;x (0,T) (1.45b)
v-n=hy onTy, x (0,T) (1.45¢0)

where 0Q) =T =T;UI, and I'; NI, = @. We note that when prescribing Dirich-
let boundary conditions on the domain boundary d(), a condition on the pressure
Jo p(x) = 0 shall be added.

Standard Galerkin formulation

To derive the variational formulation of problem (1.44-1.45), we use the following sub-
spaces of the usual Lebesgue function space of square integrable functions, and Hilbert
space defined on (2:

d
Y = {V,ve(Hl(Q)> ’V:Vdonrp},
d
Yo = {v,ve(Hl(Q)> |v:00nFD},and

Q = {g,9el*(Q)}.
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We multiply the first and second equation of (1.44) by test functions (w,q) € (V°, Q).
Then we integrate by parts the viscous and pressure terms of the first equation. An
additional term emerges and involves an integral over the boundary I'y. Therefore the
weak form of equations (1.44) consists in finding (v, p) € (V, Q) such that:

{ (02 w) + (ov - Tv,w) + (2pev) :e(w)) — (5, W) = (£, ) + (b, Wl Vow € VP
(V-v,g) =0 Vg e Q
(1.46)

For spatial discretization, we consider the finite element partition H; of () into
simplex elements K. The above-defined functional spaces ) and V' are approached on
this partition by discrete spaces spanned by piecewise linear functions:

Vi = {Vh € (CO(Q))d/ vilk € PY(K)%,VK € ’Hh} ,
Vio = {wn €V, wylr =0}, and
A = {qh € C°(Q), gy, € P'(K),VK € H}

The Galerkin discrete problem associated with the finite element approximation in-
volves solving the following mixed problem:
Find the pair (vi, pp) € Vn, Q) and (wy, qn) € Vo, Qi) such that:

(Paa‘;h,wh) + (ovy, - Vv, wy) + (2ue(vy) = e(wy)) — (p, V- wy)

(f, wi) + (hn, Wi)ry YWy € Vo (1.47)
0 Van € Qi

(V “Vi, qh)

To obtain stable finite element solutions of the Navier-Stokes problem, the velocity and
pressure fields must satisfy the inf-sup condition given by:

V-vy,
inf sup (V- vi an)g >8>0 (1.48)
%€y, e, |Dnlolvil

where B is a constant independent of the mesh size h.

To illustrate on this point, we consider the Stokes problem that can be obtained
by omitting the inertial forces and dropping the time variation. The weak formulation
of this problem reads as:

(frwy) YWy € Vo

(1.49)
0 Vg € Qnp- #

{ (2ue(vy) s e(wy)) — (p, V - W)
(Vv qn)
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Let (vy, prn) € (Vi, Qi) be a solution couple to the discrete Stokes problem. If condition
(1.48) is not satisfied, then the pressure solution is not unique i.e. we can construct
gy € Qy with fQ gndx = 0 such that (V - vy, §,) = 0, Vv, € V) and consequently, the
pair (v, pr +4n) € (Vi, Qp) is also a solution of problem (1.49). This example is known
as a ‘spurious pressure mode’.

The Mini element method was proposed as a remedy to this failure [ I
The idea behind it is to enrich the velocity piecewise linear functional space with a
space of bubble functions defined at the elements’ centroids and vanishing on element
boundaries. A static condensation is then performed resulting in a stable solution
couple. We omit the development of this procedure in this work for brevity and direct
the interested reader to [ , ].

A three-level model is proposed in [ ] whereby both large and fine scales
are stabilized. A nested scale resolution requiring successive VMS steps is favored.

In this thesis, we adopt the Variational Multiscale stabilization for curing numerical
instabilities arising in convection dominated regimes and solution functional spaces

incompatibility.

Variational Multiscale (VMS) stabilization method

Following the lines of Hughes et al. [ , , ], we apply an
orthogonal decomposition of the functional spaces V and Q into:

V=y,aV

and Q= 9, @ Q' (150

By taking v = v, + v/ € Vand p = p, + p' € Q, we decompose respectively the velocity
and pressure fields into resolvable coarse and unresolvable fine scales. In particular the
fine-scales will provide additional stabilization at locations of steep velocity gradient.
The same decomposition applies to the test functions w = wy, + w’ and § = g, + ¢'.

v=v, +v

Figure 1.4 — VMS approach solution decomposition adopted from [ |

We assume that the fine-scale velocity and pressure are represented by piecewise

polynomials continuous in space but discontinuous/piecewise constant in time.
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Bearing these sum decompositions in mind, the mixed finite element formulation
of problem (1.44) becomes:
Find (¥,p) € (V, Q) such that:

(v, + V')
(p ot

+ (2ue(vi+ ') (Wi + W) = ((pu+9), V- (wi + W)
= (f,wn+w') + (hn, wy + w/)rN Yw, +wW €V 0® V) (151)

,wh—i—w’) + (o (v + V') -V (vip + V'), Wy, + W)

(V-(vii +V),qn+q) =0 Vg, +4q € Quo® Q)

To maintain the consistency of the approach, the function spaces of the fine-scales
and large-scales should be linearly independent [ ]. Although the variational
formulation (1.51) is nonlinear in the convection term, it is linear with respect to the test
functions. Hence the problem can be uncoupled at the element level and the fine-scales
vanish on the element boundaries. Subsequently, the weighting functions” splitting
yields the following two subproblems:

e The coarse-scale problem:

<p8(vh +v')

o ,wh> + (o (v + V") -V (vip +V'),wy) + (2ue(vy, + V') - e(wy))

—((pn 1),V -wi) = (f,wi) + (hn, Wi, Ywy, € Vigo

(V-(vip+V'),q0) =0 Vg, € Qup

(1.52)
e The fine-scale problem:
a /
(p(vhaj"),w’> + (o (v + V') -V (v +V'), W) + (2ue(vy, + V') : e(w'))
= ((pn+p),V-W)=(fw)+ (hN'w/)rN v eV (1.53)

(V- (v +v),q)=0 V7€

As an orthogonal decomposition was used, the crossed viscous terms (& (v') : € (wy))
in equation (1.52) and (& (vy) : € (W')) in equation (1.53) vanish.

At this stage, we consider the small-scale problem at the elements” level. A static
condensation will then be applied whereby the fine-scale solution will be embedded
back onto the large-scale problem yielding a local time dependent stabilization term
that models the effects of the small-scales on the large-scales without explicitly re-
solving them. Thereby the accuracy and stability of the mixed formulation will be

improved.
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We assume zero Dirichlet boundary condition for ease of elucidation, the extension
to other types of boundary conditions is straightforward. As the bubble functions are
locally defined at the elements” interiors, the small-scale problem can be re-written as:

,

(00v', w') + (o (v + V') - YV, W)+ (2ue(v') - e(W'))  + (VP W)k
————
time dependent subscale non-linear convection term

= (f —porvy, —p(vi, + V') - Vv, = Vpy, W) YW €V, VK € H

= (Rm,w/)K VW/ € Vé

(Vv ==V =(Req)x V9 € Q, VKeH,
(1.54)
where (R, w') and (R.,q') are respectively the residuals of the momentum and

continuity large-scale equations projected onto the fine-scale spaces.

We recall that our objective is to approximate the fine-scale solutions. To do so,
we introduce simplifying assumptions on the time-dependency and the non-linear
terms in equations (1.54):

i) Tracking the time evolution of the small-scales necessitates considerable memory
resources and induces an important computational cost. Therefore to maintain
practical and affordable numerical simulations, especially when modelling com-
plex 3D problems, we drop the contribution of terms involving past fine-scale
solutions (see [ ] for a justification of this choice). However, it is worth
mentioning that the effects of the time history are still modelled via the residu-
als of the coarse-scales that account for their time derivatives. Interested reader
about accounting for small-scale dynamics can consult [ I

ii) As the large-scale gradients are dominant with respect to small-scales, the con-
vective velocity can be limited to its large-scale part as the latter is important for
turbulence modelling [ , ]:

(vip+ V') - V(v + V) & v, - V(v + V).

Note that these terms are useful for evaluating turbulent fluctuations. In the
following section, we will resort to turbulence models (such as the LES, k — ¢, and
Spalart Allmaras models) to deal with turbulent flows.

Respecting these assumptions, equations (1.54) become:
(ovi - VvV, W) 4+ (2ue(v') re(W')) + (VP , W) = (R, W), YW €V, VK € H,,

(V-v,q) = (Reqd)e V9 €Qp, VKeH,
(1.55)
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Taking into account the small-scale pressure ensures the continuity of the small-
scales and leads to additional stabilization for high Reynolds flows as discussed in
[ , ]. Nevertheless, it is hard to solve for both small-scale velocity
and pressure. As proposed in [ ], we replace the small-scale continuity equa-
tion by a modified (consistent) Pressure Poisson equation. The effects of small-scales
pressure Poisson’s equation will be accounted for in the coarse-scale problem by the
addition of the following estimated stabilization term that we adopt from][ ]:

B\ (el
P~ 1R, where T = () + <> (1.56)
0 c1 hk

and c; and ¢, being two constants independent from the characteristic element length
hk.

We focus our attention now on the fine-scale momentum equation. It was demon-
strated in [ ] that setting p’ = 0 in the small-scale momentum equation is
a reasonable choice to verify the inf-sup condition as it yields a larger function space
for the velocity field. This assumption stems from the fact that the fine-scale velocity
is driven by the residual of the large-scale momentum equation and not that of the

continuity equation as pointed out in [ I
We use the fine-scale expansion proposed by Masud and Khurram [ I
vV =) vibxk and W =) wibg, (1.57)
KeH, KeH,

where bk are bubble shape functions, v denotes the fine-scale velocity on element K
and w/ the corresponding weighting function.

Substituting v/ and w’ by their expansions and taking into account that bubble

functions are zero on the boundaries of the elements we obtain:

(pVh . VbKV}(, bKW}()K + (Zﬂﬁ(bKV%) . 8(bKW}<))K = (Rm, bKW}()K VK € 'Hh (158)
As this equation is verified for any choice of w}, then it is in particular valid for wj =1,
consequently, the fine-scales velocity coefficients can be deduced:

;o 1
YK (ovi - Vb, bi) g + (2pie(bx) < (bx))

K

(R, bx)g VK € H,, (1.59)

However, the convective term in the formula of the stabilization parameter 7, cancels
out when using the same bubble functions for the velocity and test functions. To
promote the influence of the convective term, we use a combination of standard and
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upwind bubbles for the weighting functions and standard bubbles for the velocity
solution as suggested in [ , I

w'|xk = wibg = wi (bk + b)) (1.60)

The resulting stabilization parameter reads as:

o by [y bidO VK € H;, (1.61)
(pllh . VbK, va<)K + (Zyﬁ(bK) : £(bK))K

In here, the upwind bubble functions vanish in the viscous term as we are using linear
elements. Clearly different bubble functions yield different stabilization parameters.

We are now ready for a static condensation whereby the small-scale effects are
to be integrated onto the coarse-scale equations. Taking into account the quasi-static
assumption on the fine-scales and applying integration by parts to the nonlinear term in
the large-scale momentum equation and to the second term of the continuity equation
(1.52) imply:

(00tvi, Wi ) + (0Vi - VVi, Wi = ), (TKRm, Vi - VW) + (2p€(vi) - €(wi)) g
KeH,,
— (ph,V . Wh)Q + Z (TCRC, \V4 'Wh)[( = (f,Wh)Q th S Vh,g
KeH,
(Vvinan)a— Y, (R, Van)x =0 Vgu € Qo
KeH,

(1.62)
Substituting the residuals by their explicit formulas onto the large-scale problem we
get:

(09evi + Vi - Vvi, Wi ) + (2ue(vi) < €(Wi)) o — (P, V- Wi ) + (V- Vi, qi ) — (£, Wi )

Galerkin terms

+ Y w (p@evy + Vi - Vvy) + Vi — £, 0v) - Vwy ) g
KeH,,

Upwind stabilization terms

+ Z TK (P(atvh +v,-Vvy) + Vpn — f,VQh)K
KeH,,

Pressure stabilization terms

+ Z (TCV~Vh,V 'Wh)[( =0 VYwye€ Vio Yaq, € Qp
KeH;,

grad-div stabilization term

This formulation can be dissected into 4 main parts: the first is the standard Galerkin
formulation, the second and third are fine-scale velocity ingredients and the last part
models the effects of small-scale pressure. All the added terms provide additional
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stabilization in convection dominated regimes and permit to circumvent the inf-sup
condition. Being derived from residual components, the method is established in a

consistent way.

Choice of the stabilizing parameter

Several definitions are given in the literature for the stabilization parameters. In CIM-
LIB, the following formula proposed in [ , , ] is im-
plemented:

20\* , (20lvI) w \ hi|lv ]l
ViK KIVIIK .
i km) + () +<mh>] o= S min (1, Rex)  (163)

where v is the kinematic viscosity and Rex denotes the local Reynolds number given

by Rex = P||VZHVK/11<

and mg is a constant independent from hg [ ]. In these
definitions hg refers to the characteristic length of the element, usually it is set to the
element’s diameter. However, as it will be shown in chapter 2, this choice is not the

optimal one when using anisotropic mesh adaptation.

TURBULENCE MODELLING

The understanding of turbulence is nowadays considered as the main intriguing and
frustrating difficulty in fluid dynamics. It was recognized by da Vinci (~ 1500) as
a distinguished physical behavior, “turbolenza”, a phenomenon in which “the smallest
eddies are almost numberless, and large things are rotated only by large eddies and not by small
ones, and small things are turned by small and large eddies”. Reynolds (~ 1880), through
conducting an experimental study on a flow past a pipe with smooth transparent walls,
observed the transition from laminar to turbulent flows. He introduced the adimen-
sional number characterizing the flow’s behavior. Researchers have been investigating
a proper definition for this phenomenon. Richardson in 1922 described turbulence
using these words: “Big whorls have little whorls, which feed on their velocity; And little
whorls have lesser whorls, And so on to viscosity”. He referred to the energy cascade
exhibiting the breaking down of eddies into smaller ones accompanied with a kinetic
energy transfer. A turbulent flow is characterized by restless chaotic fluctuations of
velocity and pressure that occur at high Reynolds number. As the Reynolds number
increases, bifurcations arise and the flow develops, more frequently, an irregular tur-
bulent behavior in both space and time.

Analytical solutions to turbulent flows are to this day deficient, all the existing ef-
forts culminate in the numerical investigations. A straightforward option would be to
solve the Navier-Stokes equations with appropriate initial and boundary conditions.
This way is known as the Direct Numerical Simulation (DNS). However the broad
range of space and time scales to be resolved using the NS equations is very large
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and beyond the realms of present computational powers. Hence, DNS method is
still limited to a moderate Reynolds number. As sketched in figure 1.5, two potential
redeemers are the so-called Large Eddy Simulation (LES) and Reynolds Averaged
Navier-Stokes (RANS). The former of these approaches consists in filtering the flow
scales, fully resolving the large-scale structure while only modelling the effect of the
small-scales. However this method does not provide the ultimate cure, its computa-
tional cost is still considerable. RANS on the other hand, averages the equations in
space and time completely removing the fluctuations and yielding computationally
less expensive set of equations. However as the RANS method does not solve the small
scales, closure models are required to account for turbulence effect. Of these models,
we are interested in considering the k — ¢ and the Spalart Allmaras ones.

LES DNS u

/ - / — AWMMMMM%W. .Mf
Toe @ gl "

@@@
DNS RANS

(o) @“)@ @ ------- LES

Figure 1.5 — Schematic of turbulent flow scales (left) and the three modelling approaches (right), adopted
from [ , 1

t

Direct Numerical Simulation (DNS)

The direct numerical simulation method relies exclusively on the standard Galerkin
formulation of the Navier-Stokes problem. For a fine enough mesh (the mesh size
h — 0) the DNS method is capable of resolving all the solution’s scales. However a
very wide range of space and time scales emerges in turbulent flows. According to the
Kolmogorov theory [ 1, a measure of the needed computational power
is quantified using the ratio of the largest (L) to the smallest (s) dissipative scale. So
if we consider a computational domain with dimensions equal to the largest eddy, the
number of mesh nodes required for capturing a 3D turbulent flow is of the order

For a time-step size having the same order as the characteristic element length, a total
number Re® degrees of freedom in space and time is needed. Consequently, the current
available computational power, even with the existing supercomputers, are not capable
of simulating high Reynolds number flows [ I
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Reynolds Averaged Navier-Stokes (RANS)

When analyzing a turbulent flow, there are two main variables of interest: the velocity
and the pressure. These variables present fluctuations in both space and time. Denote
by ¢ = ¢(x,t) the generic variable of interest. In order to separate the time average @
from the small scale fluctuations ¢’, we apply the following decomposition [ I

p(xt) =9(xt) +¢'(x 1), (1.64)

where the time average is computed as:

N —
P(x) = Th—E}oﬁ p(x,t)dt and ¢’ =0. (1.65)

St~

A discrete version of this entity is known as the “ensemble average” and is defined by:

_ 1Y
o) = lim =) ¢"(xt)dt, (1.66)

where ¢"(x, t) denotes the variable at the #n'" time instant. In addition, we have the two
important ingredients of the averaging (filtering) operator:

PTT=7+7 ad §7=7-7

From this property we infer that the large (resolvable) scale and the small (unresolvable)
scale do not interact:

¢ 9=@+9) (P+y)=9-v+9¢"-y". (1.67)
When the two quantities are uncorrelated, the last term in equation (1.67) vanishes.

Now that we have defined the filtering operator, we plug in the averaged velocity
and pressure into the Navier-Stokes problem and obtain:

p@V+V-VV) =V - (uVv+VV)+Vp+V-(pvV@V)=f inQx(0,T

"®v
(1.68)
V-v=0 inQx (0T

We can detect the presence of a new tensor that takes into account turbulent motion and
represents the influence of the small scale fluctuations on the mean flow. This tensor
is called Reynolds stresses or turbulent stresses tensor and is usually denoted by Z%.
Several models were proposed in the literature to approximate this term. At this level,
a turbulence model is needed to close the set of equations; we resort to the Boussinesq
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hypothesis that relates a turbulent or eddy viscosity to the mean shear stress:

# = ur (VV+ VV') — %pk][ (1.69)

under the condition of isotropic and small scale eddies. Inhere, yr denotes the eddy
viscosity, k = v/ ® v’ the averaged turbulent kinetic energy and I the identity tensor.
For more details, interested reader is referred to [ ]. Note that the eddy
viscosity can be interpreted as the product of the fluid density and squared velocity of
fluctuations. Under the Boussinesq approximation, we obtain the following Reynolds
averaged Navier-Stokes momentum equation:

p(0v+V-VV)+V (p+ ;pk) + V- ((p+mw) (Vv+VV)) = f (1.70)

The solution of the RANS equations is now waved to finding the appropriate eval-
uation of the eddy viscosity and the turbulent kinetic energy. Various models in the
literature are devoted to the definition of the eddy viscosity, and are classified accord-
ing to the number of additional transport equations to be solved together with the
RANS equation. Among these models we cite:

e Zero-equation models (e.g. the Prandlt mixing length model or the Baldwin-

Lomax),

e One-equation models (e.g. the Spalart-Allmaras and Prandtl and Kolmogorov vk
models),

e Two-equation models (e.g the k — € and the k — w models).

It is beyond the scope of this thesis to provide a detailed analysis on the different
models present in the literature. We focus our attention on: the k — ¢ and the Spalart-
Allmaras models.

k — ¢ turbulence model

First proposed in 1972 [ ], the k — e model has gained popularity in designing
CFD libraries for industrial numerical simulations. The robustness and reliability of
the model were demonstrated by Rodi in [ ]. It was the first model describing at
the same time, the creation, the transport and the dissipation of the turbulent energy as
well as the length scale. This scale is equivalent to the size of a small eddy. The model
can be split into two parts that together present a dynamic system: an equation on the
turbulent energy contained in the eddies, accounting for a running balance of energy
generation and dissipation. The second equation represents the energy dissipation. The
turbulent viscosity reflects the effect of fluctuating unresolved velocity and is computed

by:
k2

e =pCu (1.71)
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where C, denotes an empirical constant usually equal to 0.09. To evaluate y;, k and e,
we solve a system of two transport equations [ ] given by:

p(0tk+v-Vk) -V - (<V+Ifl;k> Vk) =y (P + Pp) —pe  inQa.72)

p(0oe+v-Ve) -V <<y + 1‘3;) V£> = %(Clng + C1e(1 — C3¢) Py — Coepe)  in Qa.73)

€

Inhere, P, stands for the production of turbulent kinetic energy due to the mean
velocity gradients, P, represents the production due to the buoyancy effects, Pry and
Pr. denote respectively the turbulent Prandtl number for k and e. They are given by:

_ M

Pe = 2ui(e(v) e(v) and P, = —14 gV (174)
pPry
with Pry being the turbulent Prandtl number that we set to 0.85. In addition, Ci, Ca,
and Cs, are model constants that we take, as suggested in [ I
Cie=144, Cp.=192,and Cs. =0.88. (1.75)

Finally, we determine the real pressure field from the effective pressure and the
turbulent kinetic energy according to:
p=7—zpk. (1.76)

To facilitate the numerical resolution of the model, enhance its convergence, stability
and robustness we apply the following modifications (suggested in [ D:

(i) We use a Newton Raphson linearization.

(i) We transform the destruction term into a reaction term in the turbulent kinetic

energy equation to improve the stability:

i

€
pe = Pﬁk (1.77)

(iii) We transform the destruction term in the dissipation equation as follows:

i (81’)2

S &
ngp% = 2ngpﬁs — Coep T

(1.78)

where ki and &' denote the turbulent kinetic energy and dissipation at iteration i.

We apply the Streamline Upwind Petrov Galerkin method to solve the k — & model
which has the form of a transient convection diffusion reaction equation. The varia-
tional multiscale approach is in turn used to solve the RANS problem.
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Wall treatment

The k — ¢ model is active only in regions far from walls, thus special treatment needs
to be done in the boundary layer. Experimental studies have shown that near wall
flows exhibit a multilayered structure. Close to the wall, a “viscous sublayer” can
be identified where the flow behaves in a laminar manner. Far from the wall, a “fully
turbulent sublayer” is created where the flow is actively turbulent. In between, we have
a “buffer sublayer” characterized by equal importance of the viscous and turbulent
properties of the flow.

Two possible treatments can be adopted. The first one consists in employing wall
functions in the buffer and viscous sublayers. The second approach involves modify-
ing the turbulence model to enable their resolution up to the wall. In this regard, we
follow the work of Grotjans and Menter (1998) [ ] and use logarithmic wall
functions so that to impose Neumann boundary conditions for the turbulent kinetic en-
ergy. This method has been well studied, implemented and validated in [ I
Inhere for brevity of exposure, we retain only its main features.

We define a bridging value between the viscous and inertial sub-layers as the solu-
tion of the nonlinear equation [ ]:

1
vl = —In (Ey™), (1.79)

where ¥ = 0.41 is the Von Karman constant, and E = 9.81 is an empirical constant.
Hence the solution of this nonlinear equation is given by y = 11.06. For this value of
yd, we can compute the friction velocity and the wall shear stress using:

_

= and Tw = —pvrvkl onTy, (1.80)
Ye

i [v|

with I'; being the zone of the computational domain located at a distance  from the

1
walls and v = Cj Vk is the bulk velocity. Note that the distance ¢ is prescribed by the
user. The velocity profile is then defined by:

A fory™ <yl (1.81)
1In(Ey*) foryt >yt

A Neumann boundary condition is associated with the turbulent kinetic energy vari-

able:
ok

p

where n is the normal to the wall. Finally, to complete the asymptotic behavior of all

0, (1.82)

the variables, we set the dissipation rate in the near wall region to

e
€ = s only. (1.83)
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Spalart Allmaras turbulence model

The Spalart Allmaras (SA) model, first introduced in 1992, by P. Spalart and S. Allmaras
[ ], has rapidly gained widespread popularity especially in aerodynamics. It
showed good stability and performance at high pressure gradients. The turbulence
model involves the resolution of a nonlinear advection-diffusion-reaction equation for
a modified eddy viscosity 7 = %, i being the dynamic viscosity and p the density of
the fluid, such that [ ]:

ov s x c N\’ e o 1 U
5 +v-Vi—cp(1— fr)ST+ [cwlfw - %ftz} (d> - %VV-VV - EV- [(v+7)VP] =0
(1.84)
The eddy viscosity is computed by yy = f,17 where:
fa= e x=l fa=1op R fo= e
vl—)(3+cgll X_l/, v2 — 1+sz;1 2 — 3 .
=l +eal ) I
=9 |——1 , =71+ cu(r° —71), r=—=—r,
vee g0+ $ w2 S22
with B _
S+ g fo2, for 7 fuo > —c2S
S = (@ o re) (1.86)
S(c5S+c3 =7 fo _
S+ 2 RE) for fofiy < —C2S,

(Cv3726v2)57 szdz va /

In these formulas, S represents the vorticity magnitude and it is evaluated by:

o - 1 /dv; al)]
S=1/25;8;  Sy=5 (axj + axi) . (1.87)

inhere we denote by d the shortest distance to the wall, and by x = 0.41 the Von Kdrmén
constant. We set the remaining model coefficients to:

oy = 01355, ¢ =0622, 0=2/3, cn=71  cp=07  co3=009,

c 1+¢
Col = % T B2 =03 cws=2  cn=12  cy=D05.

(o
(1.88)

To improve the accuracy and convergence of the model, and to avoid negative viscos-
ity values, some modifications shall be performed. We find in the literature several
variations of this model, the interested reader is advised to consult NASA’s excellent
turbulence modeling resource webpage [ ]. In this work we will use the Nega-
tive Spalart Allmaras Model because of its robustness in avoiding the creation of negative
turbulent viscosity [ ] when the closure function f,; is negative, i.e. for
1 < x < 18.4. In fact, the exact solution of the model is indeed non-negative, whereas

the discrete solution does not share the same property and hence can adversely im-
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pact its convergence. Two modifications are encountered, the first consists in setting
the turbulent viscosity u; to zero when ¥ takes negative values. The second involves
replacing (1.84) when 7 is negative by:

v
ot

<

2
+(v="2V7) - V7 — e (1 - cr)S7 — cn (d> - %v (v + fu7) V] =0, (1.89)

Cul + X°
e
dissipate the energy of the turbulent model (g)z.

with f, = cy1 = 16. That way, when 7 < 0, the added terms act in a way to

An additional enhancement of the model to ensure the reduction of the energy of the
turbulence model’s working variable over time was proposed in [ ]. We omit
the details for brevity and direct the interested reader to consult [ ].

We then solve equations (1.84) and (1.89) using the Streamline Upwind Petrov-Galerkin
(SUPG) method described earlier in this chapter. The stabilization is preceded by a tem-
poral discretization of equation (1.84). Without loss of generality we use a backward
Euler scheme, and a Newton Raphson linearization. Rearranging the terms, equa-

tion (1.84) can be cast in a convection-diffusion-reaction form:

17i+1 _ 17i

—— (vf - %wf) AVl %v : [(1/ + ﬂi)wi*l}

convection diffusion
~ Cbl 171 ~it1
- [Cbl(l — fr)S'+ (Cwlfw - ﬁfﬂ) dz] 7t =0,

reaction

(1.90)

with i being the iteration number. The advantage of the Spalart Allmaras over the k — €
model resides in its ease of application. The user does not have to worry about near
wall regions because the method automatically detects and resolves boundary layers.

CON]UGATE HEAT TRANSFER

Driven by the increasing industrial needs for the understanding and modelling of the
critical heating processes involved in workpiece treatment inside furnaces, we attempt
at investigating, in the last part of this chapter, transient conjugate heat transfer and
turbulent fluid flow problems. These applications constitute a serious subject for re-
searchers and engineers in the field of material sciences especially with the increasing
concerns about reducing energy consumption and pollutant emissions, and lowering
economic expenses [ , ]. In the aim of attaining optimal temperature
and metallurgical properties of treated pieces, several factors get into the game: low-
ering thermal gradients and ensuring a uniform temperature distribution within the
load, avoiding surface defects (e.g. skid marks), optimizing the furnace functioning in
terms of time scheduling and control strategies [ I

In view of these demands, the design of a computational fluid dynamics (CFD) tool
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is mandatory for offline usage to investigate what-if scenarios concerning the complex
three-dimensional furnace simulations, such as sensitivity analysis related to the posi-
tioning of the treated workpieces, the location and orientation of the burners, and the
intensity and speed of hot gas injections.

To conduct these kinds of simulations, we intend to employ the Immersed Volume
method for multi-domain computations [ , , |; this ap-
proach will be detailed in chapter 5. In a nutshell, the method consists in using a single
global mesh to handle the solid and fluid sub-domains and consequently solve only
one set of equations with different thermo-mechanical properties, instead of consider-
ing one set of equations for each sub-domain. By following this approach, we avoid the
challenging task of determining heat transfer coefficients at the level of the fluid-solid
interface. The conjugate heat transfer and flow dynamics inside the enclosure require
the simultaneous resolution of the Navier-Stokes and the heat transfer equations. In
convection dominated regimes, the equations are stabilized using the previously men-
tioned SUPG and VMS approaches (in sec. 1.2.4 and 1.3.3 respectively). The EM-I
(discussed in sec. 1.2.11) is used to numerically deal with thermal shocks that occur as
a result of a solid’s sudden heating. Finally, the radiative heat transfers are accounted
for by solving the radiative transfer equation (RTE) coupled with the P-1 radiation
model [ ]. The resolution of the P-1 model generates a volume term, Vg,
that is added as a source term to the heat transfer equation and rendered by the sharp
discontinuities of the temperature field and material properties.

The fluid dynamics and heat transfers are modelled by the Reynolds-Average
Navier-Stokes, the energy equations and the k- model. The Boussinesq approximation
is used to accommodate the buoyancy forces on the fluid motion within the domain.

Accordingly, one has to solve the following coupled non-linear system [ I
V.-v=0 inQ (1.91a)
PV +v-Vv) =V (2u e(v) = pe Ia) = pop(T —To) g inQ (1.91b)
pCp(otT+v-VT) -V -(AVT)=f -V .-q inQ) (1.91¢)

where v denotes the velocity field, p. the effective pressure, T the temperature, &(v)
the deformation-rate tensor, p and p the density and dynamic viscosity, po and Ty
are reference density and temperature, B the thermal expansion coefficient and g the
gravitational acceleration.

Eventually, equation (1.91c) denotes the energy conservation and it involves the
constant pressure specific heat capacity C,, the effective thermal conductivity A,, a
volume source term f and the heat radiative flux q,. We highlight the presence of the
effective viscosity y. and effective thermal conductivity A, terms which are computed
by:

Cppt

pe=p+pu and A, =A+ Pr, ’

(1.92)
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with Pr; = 0.85 being the turbulent Prandtl number. The turbulent viscosity y in equa-
tion (1.92) is a function of the turbulent kinetic energy k and the turbulent dissipation
e computed through the resolution of the k — ¢ model introduced in section 1.4.2.1 of
this chapter. It is important to mention that we omitted the over-lined notation used
previously for denoting the averaging of the problem variables (v, p. and T) for sake
of simplicity; however, when using the RANS method, all the variables stand for their
averaged counterpart.

The radiation’s contribution to heat transfers will be accounted for by solving the
radiative transfer equation (RTE) coupled with the P-1 radiation model. This model
enables the approximation of radiation intensity using a series of spherical harmonics.
For additional details, the reader is directed to [ , ]. It also allows the
simplification of the RTE into an elliptical partial differential equation in terms of the
incident radiation G as follows:

V. <311c VG) —%,G = 4x,0T* in Q
a
(1.93)
G, 3K, 4 .
on  22—c) (40T; — G,) in 9Q)

with x, denoting the mean absorption coefficient, and ¢ the Stefan-Boltzmann constant.
In equation (1.93) subscript w stands for the wall quantities, n the normal to the wall
and €, the wall emissivity.

Finally, the radiative source term in equation (1.91c) can be determined from the
local temperature and the incident radiation according to the following equation:

-V qr=x, (G - 4Ka(TT4) (1.94)

All throughout this thesis, a gray-medium assumption is considered whereby x, is
determined from the emissivity € according to Bouguer’s law:

1
ki =—7-In(1—¢), (1.95)

m

where L, represents the mean beam length and is computed as follows:

AV

(1.96)

with AV = AxAyAz and AS = 2(AxAy + AyAz 4+ AzAy) being respectively the volume
and surface of each element in the mesh | ].

An M, radiation model is under development in the thesis work of Schmid
[ ] and intends to increase the precision in modelling the radiative effects
onto the heat transfer equation.
System Resolution

All the previously described finite elements solvers were implemented in CIMLIB li-

brary. The resulting algebraic problems were assembled and solved using a General-



1.6

1.6.1

1.6. Numerical validation 55

ized Minimal Residual Method (GMRES) associated with an Incomplete LU, ILU(0),
preconditioner provided by the Portable Extensive Toolkit for Scientific Computation
(PETSc) library [ . The latter is well designed and robustly supported to ac-
count for massively parallel resolutions of linear systems of equations. The compu-
tations were performed in a master-slave parallel framework [ ] made up
of 2.4 Ghz Opteron cores in parallel (linked by an Infiniband network) and involv-
ing SPMD (Single Program, Multiple Data) modules and the MPI (Message Passing
Interface) library standard.

NUMERICAL VALIDATION

In this section, we will present a series of numerical experiments to assess the va-
lidity, accuracy and efficiency of the proposed framework of stabilization techniques
and turbulence modelling. The numerical simulations were carried out using the C++
CIMLIB finite element library. We employ an Euler implicit discretization in time and
a Newton-Raphson linearization approach to treat the nonlinear convective terms.

Turbulent flow behind a prismatic cylinder (2D)

In the first example, we intend to evaluate the performance of the VMS stabilization
together with the Spalart-Allmaras model in simulating convection dominated flows
past an obstacle with sharp corners. For comparison purposes, the geometry and setup
of the problem (fig. 1.6) are taken the same as in [ ]. The problem involves a free
stream flow past a prismatic obstacle with possibility of varying its aspect ratio.

HIID TH2 21H1
i oy

€1

33H1
Figure 1.6 — Flow past a prismatic cylinder: sketch of the geometrical domain (left) and the
corresponding gradual mesh construction (right).

The intention in this example is to demonstrate the capability of the implemented
method to well reproduce an oscillation free solution for complex flows in the presence
of sharp angles. For that purpose we will limit the study to an aspect ratio * = 1.
The numerical investigation for different shape aspect ratio obstacles were performed

and reported (with and without anisotropic mesh adaptation) in a recent publication
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by Cremonesi et al. [ ]. In here we retrace the results of | ]
obtained with % =1.

We prescribe the inflow velocity (Vin, 0) and the flow viscosity u to yield a Reynolds
number Re= 2.2 x 10*. The turbulent eddy viscosity is set to 7 = 3y as suggested
in [ ]. No slip boundary conditions v = 0,7 = 0 are assigned at the level of
the solid body whereas slip conditions are imposed on the horizontal walls v-n =
0,(Vver) -n =0,V7-n = 0. The solution is advanced in time with a time-step equal
to 0.002s. For this numerical test case, we have pre-adapted the mesh by forecasting
the solution’s behavior assuming that the size of eddies grows as we move away from
the solid body. We also noted that upwind to the object, the flow is laminar. Based on
these assumptions on the characteristic nature of the expected flow, we have generated
a sublayered mesh, depicted in figure 1.6(right), where the elements’ sizes decrease as
one approaches the prismatic solid. Further attention is given to the construction of
the first layer of elements by imposing the elements mesh sizes to 1 = 3.8 x 10~*Hj in
accordance with [ ]. This choice of mesh size implies an optimal y* value, equal
to 1, according to Schlichting’s formula [ ]. We note that the y* value (sec.
1.4.2.1) is often considered as a mesh refinement indicator in aerodynamic applications.

Two aerodynamic quantities are of interest in this simulation: the drag and lift
coefficients. We will briefly outline the procedure to compute these quantities and
refer the reader to [ ] for a detailed derivation. The drag and lift coefficients
are obtained from the drag and lift forces given by:

. th _ %
F; = /s <yanny pnx> dS and F = /5 (y 5 ny + pny> ds, (1.97)

where S represents the fluid-solid interface with normal n = (ny, ny), v; the tangential
velocity and t = (1, —n,) the tangential vector. The drag C; and lift C; coefficients are

then defined as:
2F, 2F,

= p‘—/izD an C] = m (198)

d

where V is the mean velocity of the fluid, p its density and D is the characteristic length
of the prismatic cylinder. According to [ ] these coefficients are determined
using the vector of aerodynamic forces f = (F;, F;) given by:

f:/s(y(VV-n)-t)t—pn dsz/szy((e(v)-n)-t)t—pn ds

(1.99)
— /S (on)dS

obtained using the properties Vv-t = 0 and (e(v)-n)-n = 0. We set: w; €
[HgQ\S(Q)]d so that w,|; = ey in the sense of traces. Multiplying the Navier-Stokes
momentum equation by w, and integrating by parts (while taking the inward pointing
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normal to the boundary) implies:

/ 8tv-wd—|—/ o:Vw,+ (on) -wy+ | (v-V)v-wy;=0. (1.100)
O O a0y Oy

Rearranging the terms and based on the fact that wy[, 5 = 0, a new formulation for
the drag force results:

F,=— atv-wd—/ (T:de—/ (v-V)v-wy. (1.101)
0 o} lof

Once we have determined the drag force, we substitute it in definition (1.98) to obtain

the drag coefficient. We compute the lift coefficient in an analogous way:

F=- atv-w,—/ U:le—/ (v-V)v-wy. (1.102)
O o} O

Figure 1.7(left) shows the turbulent eddy viscosity 7 once a periodic steady vortex
shedding profile is reached. We can identify that the turbulence model has been acti-
vated in specific zones and thus the effect of the averaging and damping functions are
well reflected. The obtained velocity streamlines, figure 1.7(right), are quite stable and
present localized recirculation close to the solid body. This velocity profile is in accor-
dance with the one described in the reference [Bao 11] hence confirming the validity of
coupling the VMS solver to the Spalart Allmaras model.

NuTilde
0.2

0.550417

Fiqure 1.7 — Flow past a prismatic cylinder: profile of the turbulent eddy viscosity 7 (left) and velocity
streamlines (vight).

In Figure 1.8 we present the evolution of drag and lift coefficients once a steady vor-
tex shedding behavior is obtained. A comparative study, on the mean drag coefficient
and root mean squared lift coefficient obtained in this work together with experimen-
tal and numerical results from the literature, is reported in table 1.1. We identify that
the results are in good agreement with the references though few differences can be
detected. These differences might be due to the fact that the computational mesh is not
the same and more importantly to the first order discretization in time, as highlighted
in [Volker o4al].
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Figure 1.8 — Flow past a prismatic cylinder: drag (solid) and lift (dotted) coefficients time evolution.

mean Cp rm.s. Cp

Bearman and Obasaju | ] 2.10 1.20
Sohankar et al. [ 1 2.25 1.50
Shimada and Ishihara [ | 2.05 1.43
Baoetal. [ ] 2.04 1.24
Present work 2.08 1.57

Table 1.1 — Flow past a prismatic cylinder: drag and lift coefficients’ comparison with the references.

1.6.2 Natural convection (2D)

In the second numerical test case, we aim at evaluating the accuracy of the stabilization
methods that we use for solving coupled problems. We compare the performance of
the methods to results found in the literature on the natural convection benchmark.
The problem consists in solving a classical flow in a cavity with differentially heated
vertical walls. The fluid motion inside the cavity is driven by the thermal gradient and
the Boussinesq forces. In fact, Boussinesq [ ] stated that in a natural con-
vection flow, the density exhibits small fluctuations while maintaining the incompress-
ibility condition. The density field can thus be decomposed into a constant uniform

value pp and small scale variations p’(x, t):

p(x,t) = po+p'(x,t). (1.103)

According to Boussinesq, the density variations are computed with respect to the tem-
perature reference value Ty as follows:

T/ T—T,
/ _
p'(x,t) = —po Ty Po—p (1.104)

On the other hand, the thermal expansion coefficient is defined by: B[K™!] =

1 (3—@) = 2. Hence the small scale density fluctuations are computed by:
T, 0

©o0

p' = —pop (T —To) - (1.105)
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Consequently, an additional force term is introduced into the momentum equation to
account for these variations in the density field.

The problem was first investigated for small temperature field differences. It has
recently been studied for large temperature differences and low Mach number and
benchmarking solutions were established. For comparison purposes, we study the test
case described in [ , ]. The computational domain, depicted in
figure 1.9 is a square cavity of length L (inhere we set L = 1).

Adiabatic
upward movement
hot fluid
g
T, Th

downward movement
cold fluid

Adiabatic

L

Figure 1.9 — Natural convection 2D: sketch of the computational domain.

We assume constant fluid properties and negligible radiation effects. The left wall
is kept at a high temperature Tj, whereas the right wall is maintained at a cold temper-
ature T.. The horizontal walls are set to adiabatic temperature. We recall that the state
equation for air follows the perfect gas law (R = 287Jkg~'K~1). The Rayleigh num-
ber is an adimensional number characterizing coupled heat transfer and fluid flows.
It quantifies the ratio between buoyant forces and the product of viscous drag by the
thermal conductivity. It is defined by:

_ pogB(Ty, — T.)L3C,
_ ”

Ra , (1.106)

where p[Pas] is the dynamic viscosity, A[Wm 'K~!] the thermal conductivity,

Cp[JK kg ] the specific heat transfer and g[ms~?] the gravitational acceleration.
Another important dimensionless characteristic number is the Prandtl number, it

measures the ratio between viscous diffusion rate and thermal diffusion rate:

_ MG

Pr r (1.107)

We define the problem parameters in such a way to get a Prandtl number equal to 0.71,
Rayleigh numbers 10, 107 and 108, a relative temperature difference e = T"T;OTC =12
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and an isentropic exponent 7y = 1.4 so that the specific heat capacity evaluates to:

R
Cp =~ = 10045.
We set the initial temperature field to:
T+ T
T&ﬂ):ﬂpzld;£:6mK (1.108)

2

and the initial pressure to Py = 101325Pa. We can now determine the constant den-
sity of the fluid from p = R%' The fluid is initially at rest inside the cavity, and no
slip boundary condition is prescribed on the boundaries of the domain. The tem-
perature values at the hot and cold walls are computed from T, = Ty (1+ %) and
Te=To(1-%)

The computations were performed on a mesh made up of around 50,000 nodes
and evolved in time using a constant time-step At = 0.05s. We show in figure 1.10
the velocity streamlines at time t = 20s obtained for Rayleigh numbers 10°, 107 and
10%. We can clearly identify that for a fixed Prandtl number, with the increase of the
Rayleigh number, the gravitational forces become more dominant and consequently the
flow starts developing turbulent motion with the emergence of different sizes vortices.
The symmetric profile obtained about the centerlines reflects well the incompressibility

property of the flow.

Figure 1.10 — Natural convection 2D: velocity streamlines at time t = 20s for Ra=10°, 107 and 10%.

Figure 1.11 depicts the temperature isotherms at time ¢+ = 20s for the different
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Rayleigh numbers. We can identify how the temperature responds to expectations.
Indeed, the fluid initially at rest inside the cavity gets in contact with the hot boundary;
it gets warmer and its density decreases. Consequently the heated fluid rises. On the
other hand, near the cold boundary, the fluid gets colder, its density increases and
consequently falls. This process is at the origin of the motion inside the cavity.

Temperature
9260
ESOO
7600
400

240

Figure 1.11 — Natural convection 2D: temperature isotherms at time t = 20s for Ra=10°, 107 and 108.

Quantitatively, we are interested in evaluating the accuracy of the implemented
stabilized finite element methods by comparing the Nusselt number to existing bench-
mark values present in the literature [Paillere 05]. We recall that the Nusselt number
measures the ratio of the convective to conductive heat transfer across the solid inter-
face. In this example the interface is considered at the vertical walls of the domain and
the Nusselt number is calculated by:

_ 1
_Th_Tc

oT

N il
v ox

L
and m:%/ Nu(x,y) dy (1.109)
0

We present in table 1.2 statistics on the Nusselt number obtained in the present work
and in the literature [Paillere 05] for Ra = 10%. We can clearly identify a good agree-
ment with the references. In addition, we approach better the benchmark values as
we increase the number of degrees of freedom in the mesh. The small discrepancies
in the results with respect to the references can be attributed to the difference in the
discretization schemes. It is important to mention that in the references, quadratic fi-
nite element method and semi-implicit time discretization have been applied whereas



62 Chapter 1. Unsteady computational fluid dynamics

our results were obtained using a linear finite element method and an implicit time

discretization on unstructured meshes.

Vierendeels Dabbene Beccantini Kloczko Heuveline Present work Present work

Nu(0,y) 8.85978 8.86380 8.85990 8.86200  8.859778 8.73608 8.79891
Nu(1,y) 8.85978 8.86200 8.86007 8.86380 8.85978 8.73056 8.81761
Nu(0,0.5) 7.81938 7.82170 7.81978 7.82010 N.A. 7.65966 7.7664
Nu(1,0.5) 8.79636 8.81710 8.79646 8.79750 N.A. 8.61058 8.76575
maxNu(0,y) 19.59642 19.62600 19.59538 19.61070 19.59633 19.19471 19.4634
minNu(0,y) 1.07345 1.07690 1.07356 1.07380 1.07345 1.05583 1.06888
maxNu(1,y) 16.36225 16.35200 16.36333 16.37510 16.36226 15.9499 16.2189
minNu(1,y) 0.85512 0.86102 0.85542 0.85620 0.85513 0.86811 0.85007
Mesh density 4.2 x 10° 102400 87616 57600 200000 50000 175000

Table 1.2 — Natural convection: statistics on the Nusselt number for Ra = 10° for mesh densities
50,000 and 175,000. Reference values are taken from [ I

Heat treatment of workpieces inside an industrial furnace

Now that we have validated the numerical solvers, we intend in this section to simu-
late 12 hours of heating inside an industrial furnace provided by our industrial partner
Industeel Arcelor Mittal. The furnace is modelled as a hexagonal section duct of 2.7
x 8.1 x 5.3 m forming one heat transfer zone. The hot gas is pumped into the fur-
nace through a cylindrical burner, with diameter 660mm located on the vertical wall
at a speed of 38m/s and a temperature of 1350°C. We can clearly identify the burner
positioning in figure 1.13 and how the workpieces are inserted into the load from the
opened top hatch. For more details about the geometry, we present in figure 1.14 differ-
ent angle views. All computations were conducted by initially considering a gas at rest
and having a constant temperature of 700°C. At all other boundaries, a constant flux
of 400W /m? is applied for the sake of simplicity. The air is vented out of the furnace
through two outlets, with diameters 700mm, positioned at the bottom of the vertical
wall. We use an adaptive time-step that starts at 0.001s and increases as the solution
stabilizes. The volumetric mesh used in the numerical simulation consists of 157,347
nodes and 884,941 tetrahedral elements.

Figure 1.12 — Computational domain after anisotropic mesh adaptation.
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Figure 1.12 shows six ingots taken initially at 400°C and positioned at different
locations inside the furnace. We can identify (from figures 1.12 and 1.13) two types
of ingots; the thick ones are placed on the left wall (1, 2 and 3) and the thin ones are
placed on the right wall (4, 5 and 6).

Figure 1.13 — A top view of the furnace (left) and the immersion of an ingot (right)

i

Figure 1.14 — Different angle views of the furnace.

Once the mesh has been well adapted along the ingots” interfaces, we define the dis-
tribution of the thermo-physical properties between the physical domains by means of
the level set function. Consequently, the same set of conjugate heat transfer equations
with turbulence modelling given by system (1.91) (including the momentum equa-
tion, energy equation, the turbulent kinetic and dissipation energy equations, and the
radiative transport equation) are simultaneously solved over the entire domain. We
highlight the key feature of the immersed volume method allowing a resolution on a
single mesh for the whole domain including both fluid and solid regions with variable
material properties (see table 1.3). Details are given in chapter 5.

Recall that the use of a high value for the relative kinematic viscosity in the solid
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Figure 1.15 — Isotherms inside the furnace at two different simulation times.

region makes the velocity components negligible and satisfies the no-slip condition
at the refined interfaces. Therefore, as it is the case for the energy equation, all the
convective terms as well as the source (i.e. destruction) terms in the two-equations of
the k — e model drop out.

Consequently, the turbulent quantities are computed naturally at the interface. This
idea was also emphasized by the authors of [ ]. They showed that by allow-
ing k to be "naturally" computed at the boundary, a better prediction of the turbulent
quantities in the near wall regions and correct solution’s behavior were obtained.

Properties Gaz  Steel 40CDVL3
density p [kg/m3] 1.25 7,800
heat capacity Cp [J/ (kg K)] 1000 600
viscosity u [kg/(m s)] 1.9e-5 -
conductivity A [W/(m K)]  0.0262 37
emissivity € - 0.87

Table 1.3 — Material properties.

In the numerical simulation, the heat capacity C,, the conductivity A and the emis-
sivity € of the smoke and the steel are thermo-dependent. The emissivity of the smoke
was computed from the proportions of the H,O and CO, issued from the combus-
tion, the thickness of the smoke and the temperature as in the model studied in
[ 1

All the given parameters used for the numerical simulations do not reflect the true
measurements from the experimental tests, due to the complexity of the wall proper-
ties, the gas composition and other technical issues. However, we made sure that the
chosen parameters have at least the real physical representations and are appropriate
to simulate and give predictions on the real problem.

The 3D computations have been obtained in two steps using 16 and 40 2.4Ghz
Opteron cores in parallel (linked by an Infiniband network) respectively. The first one
involves an iterative process of mesh adaptation around the fixed solids. This step
is a preparation phase and its cost is separated and relatively small compared to the
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Figure 1.16 — Velocity field and streamlines distribution inside the furnace and around the ingots.

full numerical simulation. The process consists in repetitively adapting and refining
the mesh in the zone around the solid/fluid interface until a well respected shape in
terms of curvature, and angles is obtained. The construction took around 3 hours of
computational time to render a high resolution and a good geometry capture around
the fixed ingots. Once the mesh is ready, it can be used in the next step to model
the heat transfer and the turbulent flows inside the furnace. This second step has cost
around 9 days of computational time. The slow aspect of the simulation highlights
the need to devise algorithms that will accelerate the calculations while maintaining a
good level of accuracy. This is exactly the objective of this thesis. It intends to develop
unsteady anisotropic mesh adaptation and adaptive time stepping capable to handle
this kind of full heating sequences within reasonable time.

Figure 1.15 shows the temperature distribution on four mutual planes in the furnace
at two different times (t= 5.5h and 6h).

The temperature distribution clearly reflects the expected flow pattern. At the in-
gots” level, we observe that the injected air from the top burner is slowed down and
slightly influences the main air circulation in this part of the domain. This behavior
explains the difference in the flow pattern between the top and bottom parts of the
furnace. When the hot fluid spreads inside the volume of the furnace, it induces a
turbulent and swirling motion within the geometry. The fast expansion of the velocity
streams from the burner throat yields sharp gradients and emergence of small eddies
in the zones of stationary fluid inside the furnace. This phenomenon can be interpreted
as a toroidal forced convection.

The air flow pattern around the workpieces is quite complex and interesting; i.e.
it allows the study of the influence of different configurations and ingots’ positions
to optimize the heat treatment. A number of air recirculation between the objects
and their surrounding can be observed due to the turbulence dissipation and mixing
between the hot and cold air. All these observations are highlighted by the streamlines
in figures 1.16 and the velocity components in figures 1.17 and 1.18.
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Moreover, we can clearly see on these vertical plane cross sections along the ingots
that the solid region respects the zero velocity and, hence, the no-slip condition on
the extremely refined interface is also verified. The obstacles (6 ingots) slow down
the air circulation in the lower zone of the furnace and slightly influence the main air
circulation along the walls.

lzn

|WD
In

Figure 1.17 — Velocity vectors on different horizontal cut-planes inside the furnace.

To get a clear idea on the time history of the temperature, we plot in figures 1.19 and
1.20 the evolution captured at the center and at the surface of the ingots respectively.
As expected, we notice that the thin ingots (4, 5 and 6) are in general heated faster than
the thick ones (1, 2 and 3). At the same time, the temperature of the ingots positioned
in the center and facing the flame jet continuously, increases faster than the others. This
is due to the fact that the flames hit the walls and deviate towards the center yielding
a slight counter clockwise rotating flow. Near the center of the furnace and under
the flame jet, a full rotating gas flow is always present, and it ends near the impeller
bottom-surface and exits through the two outlets.

One can also observe in figure 1.19 the presence of a certain austenitizing phase
change in the material properties around 800°C. All the temperature results converge
to the desired value of 1150°C. The favorable and reasonable nature of these results
validate the good potential of the developed formulations. However, comparisons with
experimental data having real workpiece geometries and positioning will be investi-
gated when the proper setup of the problem is determined (combustion effects at the
burner’s level, gaz composition, material properties of the furnace walls, exact orienta-
tion of the burner, and several other factors that might affect the solution).

We point out that the temperature profiles are not polluted with spurious oscilla-
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Figure 1.18 — Velocity vectors on different vertical cut-planes inside the furnace.

tions (undershoots or overshoots) that are frequently observed in the presence of high
temperature gradients at the interface or in convection dominated problems. This can
be attributed to the stabilized finite element discretization applied on the system of
equations (1.91). Summing up, the combination of local mesh adaptation and stabi-
lized iterative solvers with the smoothed distribution of the thermo-physical properties
across the interface enables the simulation to overcome the numerical instabilities and
lead to good numerical behavior.

Morever, the numerical results validate that the proposed coupled approach (IVM)
is suitable for parallel numerical simulations of conjugate heat transfer with different
loads. These calculations allow the prediction of parametric properties and problem
configurations as well as the understanding of the flow characteristics for heat treat-

ment furnaces.

CONCLUSION

In this chapter, we have evoked different approaches for the numerical resolution of
fluid flows and conjugate heat transfer problems. We adopted a finite element dis-
cretization of the computational domain for its accuracy and efficiency in solving 3D
problems with complex geometries. However the standard Galerkin formulation fails
to produce an oscillation free solution in convection or diffusion dominated problems
especially in the vicinity of sharp gradients. Different stabilization techniques were
discussed and analyzed to enhance the stability and accuracy of the standard Galerkin
formulation. The Streamline Upwind Petrov-Galerkin (SUPG) method was first intro-
duced to deal with convection dominated convection-diffusion-reaction problems. This
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Figure 1.19 — Temperature profile evolution over time captured at the center of the immersed ingots.
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Figure 1.20 — Temperature profile evolution over time captured at the surface of the immersed ingots.

method eliminates the instabilities in the solution by adding artificial diffusion terms in
the convection direction. Nevertheless, the SUPG scheme, which is neither monotone
nor monotonicity preserving, does not undertake thermal shocks. For that reason, an
extension to treat over/undershoots in the case of thermal shocks, known as the Shock
Capturing Petrov-Galerkin (SCPG) approach, was emphasized. It provides additional
stability and control in the crosswind direction. On the other hand, we have proposed
to use the enriched method with time interpolation (EM-I) for its good performance in
simulating conduction heat transfer problems.

We moved on next to study fluid flow problems. The variational multiscale sta-
bilization method was employed to solve the transient incompressible Navier-Stokes
equations. This method demonstrated to be a powerful tool for treating convection
dominated flows and circumventing the inf-sup stability condition. In the case of high
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Reynolds number flows, turbulence models were proposed in the aim of modelling
the turbulent effect of small scale velocity fluctuations without solving them. These
methods, by calming down the chaotic behavior of the velocity field and by avoiding
the full scale resolution permit an acceleration of the computations while providing a
good representation of the averaged flow profile.

Then, we presented a fully coupled system of fluid flows and heat transfer. The
effects of radiation were accounted for by solving the P-1 radiation model. In the
presence of solid and fluid subdomains, the thermal coupling was enhanced by using
an immersed volume method (IVM). This approach will be discussed further in chapter
5. The advantage of this method resides in its simplicity and efficiency in distributing
the thermo-physical properties of different materials. No heat transfer coefficient is
needed and a single mesh is used for the different sub-domains.

Finally, the accuracy of the methods was studied on two and three dimensional
problems. The results obtained with the proposed stabilization tools were in very
good agreement with the ones found in the literature. The models also proved their
capability in simulating complex three dimensional heat transfer and turbulent flow
problems in the presence of conductive solids.

However, preserving a good level of accuracy necessitates a very fine mesh and
small time-steps hence yields a considerable computational time and requires an im-
portant computer power. This drawback makes the resolution of complex 3D real
simulations and industrial applications quasi-impossible. The objective of this thesis is
to overcome these difficulties and improve the computations while maintaining accu-
rate solutions. The work consists in devising space and time adaptive algorithms well

suited for the simulation of real phenomena.

RESUME FRANCAIS

Dans ce chapitre, nous avons évoqué différentes approches numériques pour la résolu-
tion des problemes d’écoulements de fluides et de transferts thermiques. Nous avons
adopté une discrétisation du domaine de calcul par éléments finis pour sa précision
et son efficacité dans la résolution de problemes 3D avec des géométries complexes.
Cependant, la formulation Galerkin standard présente des oscillations numériques
dans le cas de problemes a convection ou diffusion dominantes en particulier dans
les voisinages de forts gradients. Différentes techniques de stabilisation ont été dis-
cutées et analysées pour améliorer la stabilité et la précision de la formulation Galerkin
standard. Une approche Streamline Upwind Petrov Galerkin a été introduite pour
traiter les problemes a convection dominante. Cette approche sera discutée plus en dé-
tail dans le chapitre 5. Enfin, la précision des méthodes adoptées a été étudiée sur des
problemes a deux et trois dimensions. Les résultats obtenus avec les outils de stabilisa-
tion étaient en trés bon accord avec la littérature et ont démontré leur applicabilité dans
le cadre de problemes de traitement thermiques en présence de métaux conductibles.

Cependant, maintenir un bon niveau de précision nécessite un maillage tres fin et de
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petits pas de temps et induit alors un cott de calcul important. Cet inconvénient rend
la résolution des applications 3D réelles et industrielles quasi-impossible. L'objectif de
cette these est de surmonter ces difficultés et d’améliorer les cofits de calculs tout en
gardant une bonne précision des résultats. L'idée consiste a développer des méthodes
d’adaptation espace et temps et sera élaborée dans les chapitres suivants. Ensuite, on a
décrit la méthode “Variational MultiScale” (VMS) pour la stabilisation et la résolution
des problemes d’écoulement de fluide. Cette méthode a démontré étre un outil puis-
sant pour contourner la condition inf-sup de stabilité. Des modeles de turbulence ont
été proposés pour traiter les cas de flux a haut nombre de Reynolds. La résolution des
problemes couplés des écoulements de fluide et de transfert thermique a été élaborée
par la suite et un modeéle P1 de rayonnement a été introduit pour modéliser les effets
de rayonnement. La méthode Immersed Volume Method (IVM) était adoptée pour
prendre en compte les interactions fluide/structure et la distribution des propriétés
thermo-mécaniques. Cette méthode élimine les instabilités dans la solution en ajoutant
des termes de stabilisation dans la direction de convection dominante. Néanmoins,
I'approche SUPG ne traite pas les chocs thermiques dans les cas de réchauffement ou
de refroidissement de pieces métalliques. Pour cette raison, une extension Shock Cap-
turing Petrov-Galerkin a été introduite, la méthode implique un contrdle des chocs
thermiques dus a la diffusion transitoire. D’autre part, nous avons proposé d’utiliser
la méthode “Enriched Method with Time interpolation” (EM-I) dans le cadre de la
simulation de problemes de transfert de chaleur par conduction.
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IN this chapter, we are interested in devising a new approach for dynamic mesh adap-

tation, the method relies on an edge-based error estimation and intends to construct
a metric tensor that would prescribe the mesh sizes and the orientation of the elements.
The mesh adaptation problem is formulated as an optimization approach whereby one
seeks the optimal metric that yields the best control on the solution’s interpolation er-
ror. The method that we derive is independent from the problem at hand, does not
require an a priori knowledge about the solution’s behavior over time and takes into
account a prescribed fixed number of nodes which is an essential feature for practical
and efficient computations.
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INTRODUCTION

Nowadays, with the increase in computational power, numerical modeling has become
an intrinsic tool for predicting physical phenomena and developing engineering de-
signs. Over the last few decades, the development of computational fluid dynamics
simulations and thermal analysis have considerably attracted researchers especially
with the continuous needs for explanations of the naturally occurring physical flow
phenomena, including pipe flow, aerospace flow, climate predictions, respiratory sys-
tem and blood circulation, convective heat transfer inside combustion chambers and
industrial furnaces, and many other applications. The modeling of these phenomena
poses scientific complexities whose resolution requires considerable computational re-
sources and long lasting calculations. The development of mesh adaptation techniques
was motivated by the desire to devise realistic configurations and to limit the shortcom-
ings of the traditional non-adaptive resolutions in terms of lack of solution’s accuracy
and computational efficiency.

Indeed, the resolution of unsteady problems with multi-scale features on a pre-
scribed uniform mesh with a limited number of degrees of freedom often fails to
capture the fine scale physical features, have excessive computational cost and might
produce incorrect results. These difficulties brought forth investigations towards gen-
erating meshes with local refinements where higher resolution was needed. Mesh
adaptation can thus be regarded as an essential ingredient in this recipe. We intend in
this chapter to derive a new approach for dynamic mesh adaptation based on an error
estimator computed on the edges of the mesh.

The chapter is structured as follows: we start, in section 2, with an overview about
mesh generation techniques, then we focus on the ‘topological optimization” method
that we adopt throughout this thesis. In section 3, we outline the different techniques
of mesh adaptation and state the one that we use in this work. Section 4 presents some
preliminary definitions and exploits the theoretical framework of the metric construc-
tion at the mesh nodes. The edge-based error estimation, the derivation of the metric
tensor and the theoretical validation on the control of the L? norm of the interpola-
tion error will be detailed in section 5. The link between the constructed metric and
the generation of the mesh is pointed out in section 6. Then in section 7, we provide
the interpolation method used in the numerical simulations. We present in section 8
some numerical examples validating the convergence of the developed approach, its
accuracy and efficiency.

MESH GENERATION

Finite element methods are considered as powerful techniques for computing approxi-
mate solutions of partial differential equations. These methods replace the continuous
problem with a discrete one and approximate the solution on the nodes of the discrete
domain. Mesh generation is a keystone step for the numerical resolution of physical
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problems by the finite element method; hence hindering the efficiency of the latter if
generated manually as it can be time consuming and error prone. The construction
becomes more challenging when simulating industrial problems with arbitrary and
complex geometries and internal or curved boundaries. To deal with these difficulties,
a number of algorithms were developed to automate the mesh generation process by
dividing the physical domain into small pieces called elements. We are interested in
using unstructured simplex meshes made up of triangular and tetrahedral elements
that are easier to generate than quadrilateral and hexahedral ones and better at captur-
ing complicated geometries. Note that the resolution of the mesh strongly affects the
accuracy of the numerical solution. We aim in the first part of this chapter at providing
a state of the art on the existing finite element mesh generation techniques and specify
the advantages of the method that we use to discretize our domains. We move on next
to depict the different adaptation methods. The third part details the newly developed
mesh optimization technique that would generate anisotropic elements which respond
to the anisotropy of the physical problems.

In this section we are interested in answering the following problematic: given the
mesh of the boundary of a domain (2, how do we generate a mesh of (2? The history
of mesh generation techniques goes back to the period around 1990 that brought forth
the most popular classical mesh generation techniques used nowadays: the advancing
front methods, the octree methods, the Delaunay methods and the mesh local opti-
mization methods. We will briefly explain the first three techniques; for more details,
the reader is referred to [ ], and [ ]. We then introduce the MTC topo-
logical mesh generator, a local optimization algorithm, that is developed at CEMEF by
Coupez [ ] and Gruau [ ] and show its advantages over the classical
methods.

2.2.1 The three classical mesh generation algorithms

o Advancing front methods: The advancing front methods were introduced in [ I

Starting from the boundary, elements are constructed one by one forming a front,
a border, between the meshed and the unmeshed parts of the domain. New points
are created and connected to the existing elements hence forming new elements
and moving the front forward. Note that the points are created in such a way that
the new elements do not intersect with already existing ones. The process repeats
iteratively advancing the front until the whole domain is meshed and the front
vanishes. These methods produce high quality elements at the domain boundary,
but the quality might deteriorate as the front advances causing convergence prob-
lems. Thus some nodes need to be removed and the process should be restarted.
Ensuring the elements’” good quality and hence the convergence of the method is
a difficult task especially for a complicated three dimensional geometries.

o Delaunay method: First introduced by Delaunay [ ], the Delaunay tri-

angulation satisfies the Delaunay property. The latter states that in the two di-
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mensional case the circumscribed disk of a triangle should not enclose any vertex.
In the three dimensional case, no vertex is enclosed by the circumscribing sphere
of a tetrahedron. The first step in generating a Delaunay triangulation consists
in generating a non-overlapping Voronoi tessellation from the set of nodes on
the discrete domain boundary. The second step corresponds to joining all the
nodes belonging to two adjacent Voronoi cells. This triangulation is unique and
the elements recover the convex hull of the set of nodes belonging to the bound-
ary. For more details the reader is referred to [ , , ].
Delaunay meshing algorithm starts with a Delaunay triangulation of the domain
using only the nodes of its boundary mesh. This mesh is then refined by inserting
new nodes inside the domain. The elements whose circumscribed disk contains
these nodes will be removed and new elements are generated with the surfaces
of the removed elements while respecting the Delaunay property hence updating
the mesh topology. Note that the new nodes are placed far from existing ones
so as to prevent the creation of short edges. Finally the elements that lie outside
the domain are removed. The main drawback of the Delaunay method is that
the Delaunay property is not a mesh quality criterion. The algorithm can create
degenerate elements with very bad qualities especially near the boundaries of the
domain. Therefore an optimization step is generally employed to improve the
elements’ quality.

e Quadtree/octree methods: Introduced in 1983, the grid meshers [ ] cover a

domain with a background Cartesian mesh (a rectangular one in 2D and a box
in 3D). The method consists first in recursively refining the cells that contain
several boundary nodes until each element contains at most one node. The re-
finement is done by adding points to the intersection of two adjacent cells and to
the intersection of the boundary with a cell. Then cells that lie outside the do-
main are removed and the other ones are triangulated. Again the triangular cells
outside the domain boundary are removed, thus obtaining the domain triangula-
tion. Although these mesh generators are robust, fast, and easy to implement and
parallelize, the generated elements tend to be aligned in a certain direction influ-
encing the solvers’ solutions and posing the difficulty of constructing anisotropic
meshes. Another disadvantage of these methods is their tendency to create poor
quality elements near the boundary.

The topological optimization mesh generation algorithm

The three above mentioned classical meshing techniques require an additional step
of optimization in order to improve the quality of the generated elements. The MTC
mesher that we use in our laboratory, was first developed by T. Coupez in [ ]
then extended to generate anisotropic meshes in [ ]. Starting from an ini-
tial random meshing of the domain, the MTC mesher proceeds by iterative local
optimization of the mesh topology based on the minimal volume criterion and the
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mesh geometric quality. In this work we retrace the steps of the method devel-
opment. For more information the reader is referred to the following publications
[ , , , , 1

Rather than building up a mesh that satisfies optimal criteria, the proposed method
is based on the improvement of an existing mesh. A surface and volume meshing are
coupled through the use of a virtual boundary elements layer.

Before we proceed into the outline of the method let us present some useful defini-
tions and notations.

Definition 2. A d-simplex is the convex hull of its d 4+ 1 vertices. For instance a triangle is
a 2-simplex and a tetrahedron is a 3-simplex.

Definition 3. Consider a domain Q0 C RY. Denote by N a finite set of nodes in Q and T a
set of d-simplexes generated from the N nodes. Let F(T') be the set of T's elements’ faces. We
say that T is a mesh topology of Q) if and only if:

(i) VFe F(T), 1 < card{T €T s.t. F€dT} < 2.
(ii) The couple (N,9T) is a mesh of the boundary oQ).

In other words, each F € F(T) is shared by at most two elements of T, with one of these
elements having a face on the boundary of Q).

A local mesh modification of a mesh topology is a cut/paste operation whereby

a subset of elements .7, is replaced by another subset .75. In such an operation 73
represents a mesh topology having the same boundary as .74.
The topological meshing algorithm consists in considering a patch at a time with a
patch being the set of elements sharing a node or an edge.The generation of new mesh
topologies preserving the boundary of the domain is done using the “starring” oper-
ator. This operator involves connecting one node S to the boundary faces that do not
contain it.

Denote by N (74) and F(.74) respectively the set of nodes and the set of faces
present in the mesh topology 74 and by B(.7,4) the centroid of the nodes on 9.74. Let
S € N(Z4) UB(Z4) be a node, the “starring” operator applied to the node S in the
mesh topology .74 generates the following mesh topology:

T*(5,074) = {TstT={{S}UF},Fe€ a7, Fe F(J4)andS ¢ F} .

In other words, the new topology is made up of the triangles formed by joining a node
S to the boundary faces that do not contain it.

Note that, as mentioned earlier, the cut/paste operation should be performed on
mesh topologies. Therefore we need to make sure that the patch created with the
“starring” operator is indeed a mesh topology. For that purpose, we introduce the
adherence of A:

Z:{TET, T C <?A}.
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Finally the cut/paste operation is given by:

QM) =T -4+ Tp
~—
T*(S,0T4)

The boundary patches are given special treatment, as sketched in figure 2.1. In order
to remove a node S from the boundary, first, a layer of virtual elements is constructed
by inserting a virtual node 0, the duplicate of S, and connecting the nodes of boundary
elements to it leading to the creation of new virtual d — simplexes, represented by the
dashed lines in figure 2.1. Hence the nodes and faces on the boundary can be moved or
deleted and new nodes can also be added. The mesh optimization algorithm consists

Figure 2.1 — Virtual elements connected to a virtual node outside the domain.

of iterative local mesh improvements:
TkJrl — Q(Tk) ]

The process repeats until no significant improvement is detected.

Now that we have presented the concept of the local mesh optimization process two
questions remain to be answered: the first one is how do we choose the nodes S and
the second is how do we define mesh topology improvement.

Selection criteria for optimal local mesh topology

There are two selection criteria for generating the optimal local mesh topology: the
minimum volume principle and the geometric quality criterion. While the former en-
sures the conformity of the elements in the mesh, the latter handles the optimization
of their shapes.

e The minimum volume principle: We consider a mesh topology 4 C 7. Ac-

cording to the minimum volume principle, the optimal mesh topology generated
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by the “starring” operator and improving the quality of .7 is given by:

Tp = argngnT% |T|, where 7 ={77(5,074),stS e N(T4)UB(T4)},
=

where |T| denotes the volume of the element T. The minimization is done over
the set of all possible mesh topologies generated by the “starring” operator for
all the nodes in .74. Note that for the patches on the boundary, the volume of the
virtual elements is not counted in the total volume of the mesh topology. This
selection criterion guarantees that the candidate mesh topology is conformal with
no overlapping between the elements. However a mesh topology satisfying the
minimum volume principle might not be unique. Thus choosing the best among
these mesh topologies requires another selection criterion.

o The geometrical quality criterion: We evaluate the quality of each element in the

candidate mesh topologies by:

7|
QT) =7
i
where d is the space dimension and it represents the mean of the edge lengths.
Then the worst elements in the candidate mesh topologies are compared. The
geometrical quality principle selects the mesh topology having the best quality
among these elements, therefore handling the optimization of elements’ shapes.

2.2.2.2 Mesh generation algorithm: local topology optimization

Now that we have well defined the mesh local optimization procedure we can explain
how to generate a mesh of a domain given its boundary mesh.

The first step consists in generating a first mesh topology 7 = T*(Sp,0T) of Q,
where Sy is a node on the boundary d(). This is done by joining, with a “starring”
operator, one node to all the faces that do not contain it. Obviously the result of
this step is not yet a mesh but it is a starting mesh topology. Recursive local mesh
improvements are then applied to optimize the mesh topology according to algorithm
1.

We note that, during the local optimization process, new nodes can be added to the
list of nodes and previous nodes can be removed from it. Figure 2.2 shows an example
of such a process.

We consider a mesh topology 74 around the node S with boundary
074 = {S1} U{S2} U{S3} U{Ss} U{S5}.

Using the “starring” operator, several candidate configurations for improving the topol-
ogy can be generated:

e mesh topology around S (eliminating node Sg).
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Algorithm 1: Local optimization of a mesh topology algorithm
Input: (NV,07) a mesh topology of Q).
Output: (Nypt, 9Topt) the optimal mesh topology.
begin
while Y. |T| > |Q) i.e. the volume of the mesh topology is not optimal, do
TeT

for each node and edge in T do
Remove the local mesh topology 74 associated with the node/edge.;
Replace it with a new local mesh topology 95 = T*(S4,0.74) that

minimizes the volume ) |T| and maximizes the elements’” qualities
TeIp

Qr = %, with S5 being a node in .74 and ht being the average length
T

| of element T’s edges.
Update 7 = U 5.
B

Figure 2.2 — Example on the local optimization process by the ‘starring” operator, adopted from

[ 1.
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e mesh topology around any of the nodes Sy, S», S3, S4 or S5 (eliminating the nodes
S and Sg).

e mesh topology around the centroid C (eliminating the nodes S and Sg).

Mesh generation responding to a mesh size map

Once a first mesh of () is generated, we move on to address another problematic: how
does the topological mesher respond to a given mesh size map during the process of meshing or
remeshing?

We consider a mesh size map defined on the nodes of the mesh. The mesh size on
an element is then deduced by averaging the imposed mesh sizes at the nodes sharing
this element.

The mesh optimization process involves the comparison and minimization between

act

the imposed and the actual mesh sizes, hi;np and hi™ respectively. For that purpose the
geometric quality factor is changed to:

(7] Ty
max{[TT, [Tym )

Qr (K3, hi™P) = Qr (Kt

with |T, imp | being the volume of the element having hiTmp edge lengths. No modification
T

is applied to the actual mesh generation algorithm; the only difference is the use of this

quality factor instead of the previously presented one.

Advantages/disadvantages of the local mesh optimization algorithm compared to the
other mesh generation techniques

Although the local mesh optimization algorithm is more expensive than the other tech-
niques as it involves a recursive looping over mesh topologies, it is easy to implement
and parallelize, works in 4D and can easily be used for mesh adaptation throughout
computations. The topological operations are robust and less susceptible to rounding
errors than the other mentioned methods. It provides a good treatment of the boundary
elements using the virtual elements technique.

AMR: ADAPTIVE MESH REFINEMENT

The concept of mesh adaptation roots back to the 1970s [ ] with the de-
sire to advance in numerical simulations and establish good qualitative results. Since
then intensive effort was employed to develop adaptive mesh refinements that would
enable on one hand accurate numerical solutions and on the other hand faster com-
putations [ , , , ]. Error estimators were proposed
as indicators for mesh refinement with respect to a global or a local degree of accu-
racy. In that regard, successful isotropic mesh adaptation methods were developed
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[ , , , ]. An isotropically adapted mesh is gener-
ated by constructing regular equilateral elements while varying the mesh size between
regions of the domain according to error estimates. However this method tends to con-
centrate too many elements at the locations of high solution gradient especially when
the solution exhibits anisotropic features i.e. its variations in one direction are more
significant than in the other directions. To overcome this computational limitation for
applications with directional features such as shock waves, shear and boundary lay-
ers in fluid dynamics, researchers developed an adaptation technique, the anisotropic
mesh adaptation, that is capable of providing a full control on the element size, shape
and orientation. The latter method employs elements with high aspect ratios, hence
allowing a better representation of solution variations.

Anisotropic mesh adaptation was first proposed in the late 1980s [ ,

, , ] with the moving front technique in the vision
of generating elements with directional features. Despite the success of this method,
its first application to 3D problems showed limited stretching capabilities. Over the
same period, the author in [ ] proposed a heuristic approach for building
Delaunay triangulations that generates high aspect ratio elements. He suggested mod-
ifying the definition of the distance on the planes of the mesh elements” circumscribed
disk/sphere.

The approach of generating highly stretched elements in a locally mapped space
using metric tensors was first introduced for viscous flows and applied on Delaunay
meshes [ , , ]. The challenges posed by such a
method involve defining the sizes and directions of stretching without generating ob-
tuse elements. To avoid such elements, the minimum-maximum principle was sug-
gested [ , ]. However one drawback of this approach is due to the
high sensitivity of the connectivity to the vertices” distributions. A proposed alternative
solution to the above difficulties was to perform local re-meshing.

Significant research effort has been devoted in the last few years to devise pow-
erful anisotropic mesh adaptation techniques with real applications. We distin-
guish four major error estimates for anisotropic adaptation: the hessian based rely-

ing on the solution’s hessian information to evaluate the linear interpolation error

[ , , , , , ], the a posteriori esti-
mates approximating the discretization error using a theoretical analysis [ ,

, , , , , ], the a
priori error estimates [ , ] and the goal oriented estimates

that provide mathematical framework for assessing the quality of some functionals
[ , , , , ]. All these methods have
been well consolidated leading to a standardization of the adaptation process. First,
an error analysis enables the localization of the solution’s high gradient. This step is
followed by the construction of a directional metric tensor that is provided to the mesh
generator. In turn, the latter produces an appropriate mesh that is optimized to match
the provided metric tensor.
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Anisotropic mesh adaptation has proved to be a powerful asset for improving the
efficiency of finite element/volume methods. It presents advantages over the isotropic
refinement techniques by reducing storage requirements and computational times. It
enables the capture of scale heterogeneities that can appear in numerous physical prob-
lems including those having boundary layers, shock waves, edge singularities and mov-
ing interfaces.

In this work, we intend to develop a metric based mesh adaptation that is capable
of well capturing the anisotropy of a physical phenomenon.

Techniques of mesh adaptation
There are three main methods for mesh adaptation:

e The h-adaptation method: involves local mesh modifications such as edge flip-

ping, local mesh refinement in the locations of high solution’s gradient and local
mesh coarsening where the solution exhibits slow variations. The method tends
to equi-distribute the numerical error over the discretized domain. It provides
the mesh generator with a mesh size map that is produced based on an error
estimation on the current mesh. In this work, we will be using this technique to
adapt the mesh.

e The r-adaptation method: relocates the nodes of a mesh without affecting its

topology nor the connectivity and the number of its nodes. The nodes are moved
to regions where the solution undergoes rapid changes. This method is well
suited for problems with moving boundaries. However it is very expensive and
has a slow convergence rate.

e The p-adaptation method: involves the enrichment of local elements’ degrees of

interpolation while conserving the topology of the mesh. The main drawback of
this method resides in the difficulty of employing it with already existing solvers
especially when it comes to solving incompressible flows. In fact, when solving
incompressible problems with a mixed formulation, the elements used must ver-
ify the Brezzi-Babuska compatibility condition. Furthermore it is hard to determine
mixed and compatible elements for each degree of interpolation.

A combination between the h-adaptation and the p-adaptation is sometimes employed.
The method is called the hp-adaptation and aims at getting a higher precision in the
most efficient way. The choice between refinement or local change in the degree of
interpolation is yet not trivial and has been the subject of many research studies.
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METRIC-BASED ANISOTROPIC MESH ADAPTATION

State of the art

As stated earlier, the objective inhere is to build a metric tensor that prescribes opti-
mal mesh sizes and elements’ orientations. The procedure involves evaluating an error
over each edge of the domain using the projection of the reconstructed gradient of the
solution on this edge. The developed algorithm strives to improve the quality of the
aforementioned error estimates by attempting to reduce and equi-distribute the error
over the edges of the mesh. The approach is based on reducing the interpolation error
of a chosen scalar or vector or a combination of several fields. Using a symmetric posi-
tive definite tensor called ‘metric’, a mapping from the Euclidean to a Riemannian space
is employed. An error equi-distribution in the latter space permits the computation of
stretching factors and elements’ orientations. Therefore leading to the generation of an
anisotropic and well adapted mesh with high aspect ratio elements in the former space.
The process is repeated until no significant change in the mesh is detected.

Before presenting the derivation of the developed adaptation technique, let us pro-
vide some preliminary definitions and the theoretical framework for the rest of the
chapter.

Preliminary definitions and theoretical framework

This subsection presents the basic definitions that are useful for the development of
our mesh adaptation process. The notions of Riemannian space, metric tensor, and
unit mesh are recalled.

Let 3 C R be a physical domain discretized using a finite element mesh (), =
Ukex K, with K being a d-simplex (segment, triangle, tetrahedron, - - -). We denote by:

X={XeR?,i=1,---,N}
the set of nodes in the mesh.

Definition 4. We call a metric M C R? a d x d symmetric positive definite matrix.

Proposition 5. A metric M can be diagonalized into:

M=% ' 74
0 Ay

where Z is a rotation matrix whose columns are the eigenvectors of M and (A;)i—1.... 4 > 0 are
the corresponding eigenvalues.

We define next the metric space framework with the associated notions of edge
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length, element volume, and unit balls. For that purpose, let us recall the definitions of
these notions in the Euclidean canonical space.

In the Euclidean space, lengths of vectors are defined by means of the canonical
Euclidean scalar product (with respect to the identity matrix Z;):

()7, : RIRY — RT

(w,9) — (wv)r, =u'Zv.

In this space, the distance between two points X’ and X/ is determined by:
. —  —\ 12 d — 2 3
Dz, (X', X)) = <X’XJIdX’X]) =) XX,
c=1

and the volume of an element K is |K|z,. We recall also the definition of a unit ball in
the Euclidean space:

Definition 6. A unit ball in the Euclidean space Bz, is the set of vectors whose lengths are
less than or equal to 1 with respect to L i.e.

Bz, = {x eRY, st x'Tyx < 1}

The scalar product of 2 vectors can also be defined in other geometrical spaces called
metric spaces whereby the scalar product induced by a symmetric positive definite
matrix is defined by:

(,I)m : RIRY — R*

(u,0) +— (u,0)p =u' Mo.
Hence the distance between two points X' and X/ is determined by:
Du(X, X)) = <XZX]MX1X]> ,
and the volume of an element K is |K|y = /det(M)|K|z,. Therefore the definition of

a unit ball in the metric space follows:

Definition 7. A unit ball in the metric space B is the set of vectors whose lengths are less
than or equal to 1 with respect to M i.e.

By = {x eR?, st xiMx < 1}

The unit ball is thus delimited by an ellipsoid with axis the eigenvectors %; and sizes
1
WA = 1ie b = %}_2 along these directions, as shown in figure 2.3. Consequently, a
linear mapping between the unit ball in the Euclidean canonical space and the metric
space can be deduced and is depicted in figure 2.3.
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Euclidean Space Metric Space

Figure 2.3 — Unit ball and linear mapping between the metric space and the canonical space in two and
three dimensional spaces.

When the metric is constant for all the nodes in the mesh, the notion of lengths will
be defined in the same way for all the edges of the mesh. We can as well define a metric
per element in the mesh. It is also possible to have for each node X’ a metric that defines
the concepts of scalar product related to that specific node taking into account all the
previously mentioned definitions. We can now define a Riemannian metric space as a
real smooth manifold where we can define metric tensors M so that to each node X'

in the discrete mesh is associated a metric with its induced inner product (-, -) Myt

vX'e X, IMy st, () m, : RIRT — RF
(XX, XX . = XEXT My XX
Xl

Now that we have introduced the Riemannian metric framework with its associated
definition of lengths, we move on to explain how can metric fields be used for mesh

adaptation.

Metric based mesh adaptation

The keystone idea of anisotropic, metric based, mesh adaptation is to generate a unit
mesh (with unit edge lengths and regular elements) in a prescribed Riemannian space
as stated in [ ]. Since it is almost impossible to achieve unity for all the edges,
we intend to construct a mesh that is optimal (very close to unity) up to a certain
tolerance.
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As we have mentioned earlier, the main feature of anisotropic mesh adaptation
techniques is their control on the orientation of the elements and their sizes. This is
exactly the information that is brought by metric tensors. The metric map will be pro-
vided to the mesh generator assigning the mesh sizes and the directions along which
the latter are prescribed. Indeed the mesh sizes are determined from the eigenvalues

1
of the metric h; = {? and the directions are their corresponding eigenvectors.

i

Remark 8. A metric with the same eigenvalues:

1
meL 0
M = ZAR = & %
0 h(i)z

is a special case of metric tensors and leads to isotropic mesh adaptation.

During the remeshing process, given a metric M that is defined on the elements of
the mesh, the mesh generator tries to create conformal elements satisfying the prop-
erties prescribed by the metric field. The resulting mesh will be anisotropic and well
adapted in the Euclidean space. Note that all the computations are now performed in
the underlying Riemannian space induced by the metric.

As discussed in the previous section, the process of mesh adaptation goes through
a series of mesh optimization along which elements are removed and being replaced.
Thus the metric field is interpolated from one mesh topology to another one leading to
a slight diffusion of the results. Therefore since the elements are much more volatile
than the mesh nodes, defining fields on a continuous basis eases their reconstruction,

interpolation or extrapolation.

Metric construction at the elements’ level

A unit metric field can be associated with any unstructured mesh. Given a non-
degenerate element K, we can define a metric Mg such that K is a unit element in
the Riemannian space associated with M. Indeed, applying an affine transforma-
tion Tk from the physical space (R?, Z%) to the unit ball of the Euclidean metric space,
mapping element K to a reference unit element K, we can determine M as follows:

This linear mapping would transform each edge in K into a unit edge in Ki.e.

Nl—=

1 = |AkXj| = (‘AxAgXij, Xij)
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Subsequently, the metric tensor on the element K can be identified as:
Mg = AgAx.

Mk is thus a constant tensor that is uniquely defined on the element K. Repeating
the same construction process for all the elements in the mesh, we obtain a piecewise

constant tensor field with element to element discontinuities.

Difficulties faced by element-wise metric construction

From a practical standpoint for mesh adaptation, it is easier to store the metric at the
nodes rather than at the elements. Theoretically speaking, a good representation of
the Riemannian space can be obtained by constructing a continuous metric field on
the entire computational domain which enables a continuous measurement of length
variations at each point and direction [ ]. Nevertheless, in order to obtain a
continuous metric, the discontinuous element tensor field must be transferred to the
mesh nodes. For that purpose, an interpolation stage should be performed on the
underlying Riemannian space. Ambiguities arise regarding the extrapolation of the
information at each element level to any point of the domain.

Indeed when the metric field is defined at the element level of the mesh, one needs
to recover the discontinuities from one element to the other by interpolating the field on
the nodes. Several interpolation schemes were proposed in the literature. Nevertheless
these techniques are usually non-commutative i.e. the resulting metric on the whole
domain highly depends on the order of interpolation when several metrics are involved

[ I.

Overcoming these difficulties

In this thesis, we adopt a different approach for metric construction. It consists in
building the metric field directly at the nodes of the mesh. It is derived from the data
available at the nodes of the mesh without direct resort to element information nor
considering any underlying interpolation. This construction is done using a statistical
concept: the length distribution tensor. Inspired from a standard idea used in com-
putation rheology to account for fiber orientation [ ], we introduced a second
order tensor that reconstructs the values at the nodes by gathering information from
the surrounding edges. Note that the length distribution tensor can be defined for any
space dimension. The proposed metric will be derived from the inverse of this tensor
that is defined on each node of the mesh from the surrounding edges’” contributions.
Another contribution is focused on how to modify the edge length in this framework.

Metric construction at the nodes’ level

As a starting point, we intend to build a natural metric field that is continuous on the
domain. As stated earlier, the construction of a unit mesh with anisotropic features
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consists in generating elements with unit edges in the prescribed Riemannian space.
The same target is adopted for building nodal metrics. Let T'(i) = {X7, X/ € X} be
the set of edges in the mesh connected to node X. The aim is to define a metric on
X' such that the length of each edge X/ connected to X' equals one with respect to the
metric field M'. An averaging process is used to construct a unique tensor at X' that
gathers all the data defined on the edges sharing this node. Hence, we are seeking a
field M’ defined on X' such that the lengths of all edges in T'(i) are one. Consider a
linear transformation changing X" into a unit length vector:

N|—

1= |A1]X1]| = (tAiin]'Xl'j, Xl]) , VJ € F(z) (2.1)

Taking M’ =" A;jA;;, we get:
(MXi, Xy) =1, Vj € T(i) (2.2)
Then summing up equation (2.2) over j we get:

Y (MXyXy) = ¥ 1=r()]. (2:3)
jer(i) jer (i)

Moreover, using the Einstein notation for tensor scalar product A : B = A;;B;;, equation

(2.3) can be equivalently written as:

MY XX | =IT3) (2.4)
JET (i)

This problem of finding the unknown natural metric M’ solution of (2.3) is in general
over-determined. In practice it is very hard to construct edges of exact unit length.

Hence, this problem can be relaxed into an optimization problem over the space of

dxd.

squared symmetric tensors ]Rsym.

, . . 2
M' = argmin Z (HXZ - X/| ’3\4, — 1) , (2.5)
MieREd \ jer(i)

where M should be a symmetric positive definite tensor. However solution M’ to
this problem may fail to be positive definite (for example when the neighbors of X' are
aligned on a hyperbola). To deal with this constraint, we resort to the construction of
orientation tensors inspired from the works done in rheology [ ]. Before we
proceed into the derivation of the metric tensor, let us explore the source of inspiration
for the construction of distribution tensors.
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Analogy with rheology

The mechanical properties of composite materials of a polymer, a metal or a ceramic
depend highly on the fiber orientation. The latter is calculated using a mathematical
model based on orientation tensors. The simulation of mold filling flow and the pre-
diction of fiber orientation were of great interest for these applications. Thanks to the
distribution tensor one can predict the composite’s stiffness and anisotropic fiber sus-
pensions due to the flow induced fiber alignment in its direction. The method has its
merits in accurately predicting the properties of fiber orientation state. The only pre-
requisite information is the properties defined on the uniaxial fiber composite which
are provided by the finite element computations. Let p; be a sample of directions. The
second and fourth order distribution tensors on a node X' read respectively as:

L wipj@pj
2 — ]GF(Z)Z — (2.6)
jex
and
L wipjQpjQpj@p
X = Jer) (2.7)

L wj '
jer ()
where Y represents the sum over possible fiber orientations around X, wj is a prob-
jer()
ability distribution function defined on the surface of the unit sphere and describing
the orientation of the fiber and ® represents the outer product operator.

Construction of the length distribution tensor

From this statistical concept, we retain the orientation features reflected by the second
order directional tensor in order to construct the length distribution tensors at the nodes
of the mesh. So for every node X' in the mesh and every edge orientation p;, we define
the length distribution function as £(X’, pj) € R" such that every point X/ connected
to X' and in the direction p; can be expressed as:

X =X+ L(X,p)p;-

Without loss of generality, we choose X/ such that |X//| = 1. Proceeding by analogy
with (2.6), we define the second order length distribution tensor at node X' as:

Y L(X,pi)pi @ pj

JEr ()
L L(X pj)
jET (@)

2xi —

(2.8)
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Since X" is in the direction of p; then equation (2.8) becomes:

Y L(XE, X)X @ X
_ et
- L L(X,XY)
jer(

in

Note that, from the definition of node X/ and the fact that the length size of the edge
X is equal to the interpolation of the length distribution function at X/, we have

L(X,X1)=1,and ©_L(X!,X) = ¥ 1= |[(i)|]. Consequently,
j JET (D)

) 1 . y
X=— ) XTI X. :
o 'X ® (2.9)
jer()

Using the same analysis, we can derive the fourth order length distribution tensor:

= Y XX X @ X, (2.10)
Tl 2,

Remark 9. 2X¢ and *X' are symmetric positive definite tensors, and thus invertible, i at least
d edges are not collinear.

Remark 10. The choice of equally distributing all the nodes connected to X' comes from the
choice of unit length distribution function values at the points X/,

This length distribution tensor will be the skeleton for the metric tensor construction.

Metric construction from the length distribution tensor

In this subsection we will introduce a natural solution to the optimization problem
and show in which sense this solution presents a good approximation of the natural
solution of equation (2.3) following the lines in [ I

Proposition 11. Let 2X’ be the second order symmetric positive definite length distribution
tensor at node X'. Then the metric

A A
M = - (Xl> (2.11)
d
is a good approximation of the natural metric transforming the edges in the mesh into unit
edges.
The proposition and its proof were provided in [ ], we retrace them here-

after. We start by showing that the tensor defined by M’ = 1 (X) ! is indeed a metric
at the node X'. We provide in the next proposition an analytical example in 2D that
proves via simple algebraic computations the validity and robustness of our metric
construction technique.
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Proposition 12. Consider u, v € IR? two non collinear vectors. Then M = (u@u+v®v) ™!
is a unit metric for u and v with (Mu,u) =1 and (Muv,v) = 1.

Proof. The length distribution tensor associated with u = (uy,u)" and v = (v1,v;)" is
given by:
X —

1 < u%+v% Uily + 0102 )

URXRUFTVRDV) = =
(@u+280) 2\ wgups + 0107 u3 + v3

N —

We aim at proving that the tensor

2 2 -1 2 -1
mM=20x)7" = %)
is a metric. So we need to show that M is symmetric positive definite and that it
satisfies the unity property.
M is symmetric positive definite

Mo L u3 + v3 —(u1uz +0102)
(ulvz — uzvl)z —(u1u2 + vlvz) u% + v%

e Since M1y = Mpy; then M is symmetric.

e Let x = (x1,x2)" be a vector in R? then

¥ Mx = 1)2(x1 x2) ( _( 3+ 03 — (12 + 012) ) ( x1 )

(1102 — upvy Uity + 010;) u +0? X2
t
B 1 x1 (43 4 03) — x2(urup + 0102) X1
(U102 — upv7)? —x1(urun + 0102) + x2(u? 4 03) X2
_ 1
(1102 — upv1)?

2

x (3 (u3 +03) — x1x2 (ugz + 0102) — x1%2 (g2 + 0102) + %3 (uf + 07))

Rearranging the terms, we get:

1

t
xMx = —m———
=T (1102 — upv7)? (

22 2.2 22 2 2
(x7u3 — 2x1x0u1 17 + x5u7) + (X705 — 2X1X20105 + X507))

1
= (o — oy 2 | 82 xo11)? + (2102 — 2207)°
102 201

>0

>0 >0

Then M is positive definite.
M is a unit metric.




92 Chapter 2. Anisotropic mesh adaptation

We will show that M (u, 1) = 1, the proof that M(v,v) = 1 is similar.

M) — 1 us +v3 — (w112 4 v102) up \
i U0y — up01)? \ —(ujus + v10;) u+ 02 ) i)

(

(4102 — up07)?
(1107 — Uupv7)?
1

Therefore M = (u ® u +v ®v) ! is a unit metric. O

The next proposition generalizes the conjecture in proposition 12 adopted from
[ ] into the d-dimensional space.

Proposition 13. Consider {v;}1<j<q to be a set of d linearly independent vectors in R,

d
Then M = (;Q ®Qj)*1 is a unit metric for v; with (Myj,yj) =1Vj € [0,d].
Proof. The proof follows using the same reasoning carried out in the proof of proposi-
tion 12. 0

Proposition 14. Let 2X and *X' be respectively the second and fourth order length distribution
tensors at a node X'. Then the metric M is a well defined solution of the optimization problem

=g 2 () )

if it is a solution of:
XM =2 X (2.13)

Proof. Denote by *Xyy,,, the (kImn) component of the fourth order length distribution
tensor: 1
4 _ i 5ot 5ol 5ot
Xklmn - W Z Xk Xl Xan
jEr (i)
Let M’ be a solution of equation (2.13). Using the above notation, we compute the
component (mn) of (*XM):

P o
jer(i

(Mixijxij)
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From equation (2.13), one gets:

(4XiMi)mn = innn
Z(M;dx;jx?)>xi,§x}j ol Y XuXi
JET ()

1
aGIpY (

. ((Z (M;;lx;jxjf)> - 1) Xixi = 0 (2.14)
jeTi)

kl

On the other hand applying the standard differentiation of (2.12) and noting that at the
minimum the derivative is zero, we get:

0= Y (Mklx;'jxjf - 1) XIXT for1 <m,n<d (2.15)
T (i)

which is verified by the metric M as shown in equation (2.14). This finishes the proof
of the proposition. O

To complete the proof of proposition 11 we still need to verify that the metric
(/\/l = % (*X) 71) also satisfies condition (2.13) and is consequently a solution of
the optimization (2.12). This is done in the next proposition.

Proposition 15. Let M’ be a metric defined by:

m = O] 251

d
then M is a solution of:
XM =X,
under the assumption that:
X ~2 X ®@%2X (2.16)

Proof. From a numerical standpoint it is hard to construct the fourth order length distri-
bution tensor. Its inversion is even more complicated as it requires the consideration of
more edges than the second order tensor. Instead, we use a closure quadratic approxi-
mation of the fourth order tensor [ ] in the view of computing the solution of
(2.13):

X ~2 X ®2X (2.17)

Substituting equation (2.17) in (2.13), we obtain:

(X ®*X) : M =2 X (2.18)
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Rewriting the left hand side of (2.18) using the Einstein operator, implies:
(X @*X) : M = (X: M)*X (2.19)

We note that for a symmetric positive definite tensor A of order d we have A : A~! = d.
Proceeding by analogy between (2.18) and (2.19) yields:

XXM =1 (2.20)

and thus we obtain the construction of a symmetric positive definite tensor

M = % (*X) ! (2.21)

Indeed the equality holds when replacing M in (2.19) and rearranging the terms:

% (3 (Zx)—l)zx ~2X

O

Applying this analysis on every node X' in the mesh and identifying 2X by the
length distribution tensor defined at this node:

ZXi - L Z XZJ®X1]1

T %,
the metric associated with X’ .
M= y (*X) ! (2.22)

will be the solution of (2.13) and in turn will be a solution to the optimization problem
(2.5). In other words, M’ defines in a least square sense a unit metric at node X

So far we have set up the Riemannian space framework and recalled the essential
notions related to them along with the dual mapping between the Riemannian and
the Euclidean spaces. A definition of unit metric was provided and the aim of metric
based mesh adaptation for constructing unit meshes was stated. In the next section
we intend to derive metric fields defined at the nodes of the mesh such that all the
edges have lengths close to unity with respect to the metrics. In this section we have
emphasized how metric fields can be derived in a natural way to prescribe mesh sizes
and orientations for adapting the mesh. The length distribution tensor was introduced
reflecting the distribution of edges’ lengths and their orientation over the mesh. The
key motivation behind the use of orientation tensor fields to describe edges’ repartition
and connections resides in the computational ease of constructing and manipulating
them. The definition of unit metric was relaxed via a least square approximation. A
sufficient condition guaranteeing that the constructed metric is a solution of the least
squares problem was provided. Finally an approximate solution metric satisfying the

sufficient condition was derived as a function of the length distribution tensor.
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In the following section we address the question of how to repartition the anisotropy
and prescribe the mesh sizes in a way to allow a better capture of a certain field of
interest (e.g. an analytical function, a problem variable, a characteristic field,- - -).

ERROR ESTIMATION FOR ANISOTROPIC MESH ADAPTATION

When working with stationary problems, the objective of mesh adaptation is to con-
struct a mesh that is optimal for computing the stationary solution with a good accu-
racy. The goal of anisotropic mesh adaptation is to ensure that the estimated discrep-
ancy between the exact and the approximate solution is minimal. For that purpose, the
mesh density shall be increased locally at the regions of high approximation error so
that to provide the fidelity necessary to accurately predict the solution.

In this section we are interested in building a metric tensor that modifies the mesh
sizes in all directions in a way to provide a good capture of a physical entity. The
work has lead to several publications [ , ]. We present all the
details and proofs of the derivation. The idea relies on devising an error estimator
that predicts the regions of high solution variations. A metric field is deduced from
this refining/coarsening indicator giving a better representation of the mesh at the

locations of interest.

Overview on error estimation techniques

Efforts have been ongoing to explore error estimation techniques in an a priori and
an a posteriori sense. The idea was first proposed in [ ]. Recent develop-
ments based on anisotropic interpolation estimates have proved to be successful for
generating meshes with high aspect ratio [ , , , ,
I

The a priori estimators require the knowledge of the exact solution and provide
qualitative information about the problem at hand. They proved to be powerful for
convergence studies of numerical methods [ , ]. On the other
hand, the a posteriori error estimators rely on the approximated solution of the prob-
lem. We distinguish four widespread branches of a posteriori error estimators: the
residual based, the hierarchical, the recovery based and the goal oriented methods.

The residual based error estimators [ , . as suggested by
their name, are related to the residual of the discrete solution. Although they are
easy to implement, they lack precision due to successive approximations in their
derivation. The hierarchical error estimators [ , ] involve consid-
ering a high order solution as a good representation of the exact solution and per-
form all computations with respect to it. Since these methods require two solu-
tions for different orders they render high computational costs. Moreover, the re-
covery based error estimators [ ; , ] intend
to bound the Hj-semi norm of the discretization error ||Vu — Vuy||;2 via substituting
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Vu with an appropriate approximation. However the gradient recovery approaches
described in | , ] induce a considerable computational
cost. The last well known method of error estimation is the goal-oriented technique
[ , , , , ]. Significant effort has been
devoted for developing goal-oriented error estimations that provide a mathematical
framework for assessing the quality of some functional with particular relevance. These
methods consist in exploiting the dual (or adjoint) problem whose source term is the
quantity of interest. It is worth mentioning that different choices of functional gener-
ate different adapted meshes and only the solution features that are relevant to this
functional will be controlled.

Global optimization problem

As stated earlier, in this section, we develop a simple gradient recovery technique allow-
ing the computation of an edge-based error estimator. Using the error equi-distribution
principle and under the constraint of a fixed number of nodes in the mesh, a set of
stretching factors associated with the edges of the domain are determined. A sim-
ple modification of the length distribution tensor to take into account these stretching
factors will result in a new metric leading to an anisotropic and well-adapted mesh.
We consider a scalar field u € C2(Q)) = V and V), a simple P! finite element ap-

proximation space:
Vi = {wh € CO(Q), wy|x € PY(K),K € /c}

where () = |J K and K is a simplex (segment, triangle, tetrahedron, ... ).
KeK
We define
x:{xeR%¢:L~,N}

as the set of nodes in the mesh. We denote also by U’ the nodal value of u at X’ and
we let ITj, be the Lagrange interpolation operator from V to V), such that:

Mu(X)=uX)=U,6vi=1,---,N.
As shown in figure 2.4, the set of nodes connected to node X' is denoted by
I'(i) = {] s.t. 3K € K, X!, X/ are nodes of K} .

In the context of mesh adaptation the aim is to prescribe mesh sizes and directions
to the nodes of the mesh in order to control the approximation error. In general the
approximated solution is not interpolating i.e. it does not necessarily coincide with
the exact solution at the mesh nodes. Consequently it is very difficult to quantify this
error as it is very dependent on the problem at hand. We recall that our objective is to
derive a mesh adaptation technique that can be automatically applied to predict any
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phenomenon without apriori knowledge of the model that is being solved. To avoid the
difficulties encountered when working with the approximation error, we resort to the
Lemma of Cea which states that the approximation error is bounded by the interpolation
error [ , ]:

[ = [ < Cllu = Tyl [g1, (2.23)

where C is a constant related to the space dimension.

The lemma was first proposed for elliptic problems. A similar inequality for the Lo
norm was derived for Euler equations [ ]. Lately an apriori analysis was
proposed by Belme ([ ] chapter 6) for the Poisson equation and the Euler prob-
lem. We intend in chapter 3 to extend this analysis to the convection-diffusion-reaction
problem and the Navier-Stokes equations.

Starting from the assumption that for metric based adaptation methods, in order to
master the global approximation error it is sufficient to control the interpolation error,
the target can be summarized into finding the mesh, made up of at most N nodes, that
minimizes the linear interpolation error in the L¥ norm.

The mesh adaptation process can thus be reformulated as a constrained optimiza-
tion problem whereby one intends to minimize the global interpolation error over the
domain of interest for a fixed number of nodes N. We seek a metric field M defined at
the nodes of the non-adapted mesh and at the origin of an optimal well adapted one

M = argmin ||u — ITju| |lr(ay) such that ) 1 =N, (2.24)
MEREE i
where i is the index number of the nodes in H(M). In this framework IT; is closely

o~ —

related to the unit mesh H (M) of the discretized domain.

Gradient and strong continuity along the edges

In what follows, we denote the interpolated solution by u;, = IT,u. For the sake of
simplicity, we introduce the following notations for a generic node X':

Xi=X —-X and U7'=U -U Vj er(i.

The gradient of u), is a piecewise constant vector field discontinuous from element to
element. However its projection onto the edges is continuous and depends only on the
nodal values of u at the extremities of the edges. This is proved by considering a Taylor
series expansion about the node X':

Uj = Ui+Vuh|K.Xif.
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Figure 2.4 — Length X' of the edge joining nodes X' and X/.

Rearranging the terms, we get:
Vuy|x - X7 = U (2.25)

Since this equality is true for all the elements sharing the edge XX/ then the gradi-
ent projection of the interpolated field along XX/ can be expressed as the difference
between the scalar field values at the extremities of the edge.

Vuy, - X7 = U, (2.26)

From the continuity property we can deduce that the interpolation error along the
edges is of second order for P; elements as will be demonstrated in the following
proposition [ p I

Proposition 16. The error in the projected gradients of the exact and interpolated solutions is
bounded by the hessian of the solution.

| V- XI V(X)) - XT| < max [H(u) (V)XY - XY, (2.27)
—~ Ye[X,X/]
Ui
where H(u)(Y) = V@ u(Y) is the associated Hessian of u evaluated at a generic point Y.
Recall that taking u € C>(Q)) we obtain Vu € CH(Q).

Proof. The projection of a smooth scalar field u along an edge X/ still shows high
regularity. Indeed since u|y;; € C2(X") then Vul|y; € C1(X"). Let x € [X!, X/]:

u(x) = u(X' +sX'X) se[0,1].
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The mean value theorem implies that:
JAY ¢ [X', X'], such that U/ = U' 4+ Vu(AT)X".

Equivalently,
JAYT € [X',X7], such that U7 = Vu(A7)XY . (2.28)

As the gradient is constant along an edge, then combining equations (2.26) and (2.28)
yields:
Vu X9 = Vu(A7)X7 .

Moreover, since A € [X?, X/], it can be written as:
AT = X' +5;X7.

A subsequent use of the mean value theorem to the C!' function Vuly; on [X/, AY]
yields:

3BY € [X', A], such that (Vu(Aij) - Vu(Xi)) X = si]-]H(u)(Bij)Xij XU, (2.29)
Then combining (2.28) and (2.29) we get:
U7 — Vu(XH)| - X7 = [s;H (u) (BY)XT - X7 . (2.30)
Now, using equation (2.26), equation (2.30) reads as:
|Vuy, — Vu(X)| - X7 = |sij]I—I(u)(Bij)Xij X (2.31)
Therefore, noting that s;; € [0, 1], the statement of the proposition follows:

| Vg, - X0 =Vu(X') - X7 < max |[H(u)(Y)X7-X1|,
—— Ye[Xi,XI]
uv

O

Most of the anisotropic metric-based mesh adaptation techniques present in the lit-
erature intend to recover the unknown hessian of the solution at the mesh vertices in
view of building the optimal metric field. The authors in [ ] derived suffi-
cient conditions for approximating the discrete hessian V%h uy. From this approximated
hessian a metric Mgz ) is constructed resulting in a mesh that is quasi-uniform with
respect to it and that will be also quasi-uniform with respect to a metric that is obtained
from the exact hessian H(u)(x). However when the initial mesh used for recovery is
far from the optimal one, the discrete hessian is not necessarily a good representation
of the continuous one. To overcome this difficulty, the process of generating the mesh
and re-building the hessian is iteratively repeated until getting a quasi-optimal mesh.

Other methods were proposed in the literature and aim at recovering the solution’s
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hessian from the piecewise linear approximate solution defined at the vertices of the
mesh. We will recall briefly the three most commonly used ones:

A recovery based on the projection methods

The Zienkiewicz-Zhu (ZZ) projection method [ ] is used on P finite
element spaces. The gradient is constant on the elements and discontinuous from one
element to the other. In order to recover the gradient at the nodes X! of the mesh,
a patch consisting of the elements sharing the node X' is constructed. Then a linear
function is defined fitting in a least square sense the gradient values at the centers of
mass of the elements in the patch. The reconstruction is repeated twice in order to
recover the discrete hessian of the solution:

VR,luh(Xi) =Tz (V(I12Z(Vuy))), (2.32)

where I177 is the Zienkiewicz-Zhu (ZZ) projector on the P; finite element space.
The L? projection operator is derived from the Clément operator [ ,
]. The L? projection method reconstructs the gradient by means of a
volume-weighted average. It is done in two steps: first a gradient recovery step at
node X' whereby the recovered gradient is given by:

Z . ]Kj]Vuh]Kj Z _ |K]’ Z Mh(P)lelzj
Vi un(X) = 2 _ e = @33)
R Y |Kj YK ' '
K]'EB(XZ) KJGB(X’)

with P being a node of element K;, wﬁj its barycentric coordinates and B(X') is the
patch of elements sharing node X'. Then a subsequent recovery is applied to each
component of the recovered gradient in order to get a hessian reconstruction:

t

YKV, L K| ( )3 Hh(”h)(P)> (Vwﬁj)

) - KjeB(xi) KjeB(X") Pek;

V3, un(X') = - (23)
' r Kl LKl

K;eB(X7) K;eB(X)

However, both projection techniques do not remove high frequency errors intro-
duced by small non-uniformities in the mesh. Another drawback of these techniques
comes from the accumulation of diffusion through the repetitive averaging process.

A recovery based on the variational methods [ 1

The recovery based on the variational methods relies on the fact that for P; scalar
field uy, the gradient is constant by element. Hence, the recovery of the hessian is done
by using a weak formulation and the Green formula. It starts by building a higher
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order approximation of the solution u* and considering it as a good representation of
u. Each component of the reconstructed hessian is recovered by:

ouy 9Pk
a%zhuh K]-G%;(P) ( ) i Jx %%
- )

ox;
axiax]' B(P)

4

: (2.35)
where ¢p € V), is the piecewise linear P; finite element function associated with the
vertex P, and V), is the approximation space associated with the P; finite element

method.

A recovery based on a least square approach [ 1

The aim of the recovery method based on a least square approach is to determine
the recovered hessian V%zh“h at a node X'. We define B(X') as the patch of elements
sharing node X'. We consider a node X/ € B(X"). A Taylor development of V%zh“h at
XJ about X' truncated at second order yields:

EX’X]V%Qhuh(XI)XlX] = up(X) —up(X') = X' X'Vg,up(X') (2.36)

This can be rewritten as a system:
AH =B,

where H is a vector made up of the components of the hessian matrix.

The system is solved using a least square approximation. Notice that this approach
involves the resolution of a system at each node in the mesh and each remeshing step
and hence affects the computational time of the simulation.

During adaptive iterations, the number of topological optimizations of the mesh
grows and the hessian recovery becomes more and more complex. The actual com-
plexity is in fact problem dependent.

The major advantage of the anisotropic mesh adaptation technique that we pro-
pose is that it avoids the hessian reconstruction. Indeed using the bounding relation
(2.27) we can express the projected hessian of the solution (H(u)(Y)X% - X¥) in terms
of the projected gradient which is reconstructed using the solution values at the edge
extremities and the length distribution tensor.

We recall that uly; € C*(X7) then Vuly; € C'(X7). A Taylor series development of
the gradient of u leads to:

Vu(X) = Vu(X') + H(u) (X)X (2.37)
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Then, projecting onto X/, we get:
(Vu(X) = Vu(X')) - XT = H(u) (X)X - X7 (2.38)

We denote by g' = Vu(X') and g/ = Vu(X/) the gradient of u evaluated at the node
X# and X/, respectively. We denote as well by g/ = g/ — g’ the change of the gradient
along the edge X”/. Then

g - X1 = H(u) (X)X . X1 . (2-39)

For P; numerical methods, we use this projection as an evaluation of second order
interpolation errors along the edge:

eij = |u—uyly = 8" - X7]. (2.40)

However this equation cannot be evaluated exactly as it requires the knowledge of Vu
and its continuity at the nodes of the mesh.

In cases where the exact solution of the PDE u is unknown, the only information
readily available on its gradient comes from the finite element approximation. This
means that for a P; finite element method we do not have access to the point-wise
information but only to the element-wise one. For this reason we resort to a recovery
procedure.

Least square gradient recovery

The gradient of the piecewise linear function u, is well-defined at the elements” inte-
riors. A smoothing should be applied to construct nodal gradient values. A number
of gradient recovery techniques can be found in the literature. We have presented
(egs. (2.32) and (2.33)) the gradient recovery techniques that are based on projection
methods, nevertheless these methods necessitate a complex implementation to achieve
super-convergence properties.

Polynomial preserving techniques [ , ] can also be used for gradi-
ent recovery. They consist of fitting high order polynomials, in the least-squares sense,
to the known approximate solution at the nodes and subsequently differentiating them.
More precisely, for a node X' assuming that we want to construct a quadratic fitting, at
least 5 neighboring nodes need to be used. The polynomial is derived by a least squares
fitting to the values of the approximate solution at these nodes. The problem reduces to
a least squares one. If the latter is not full rank, additional nodes should be considered
and the fitting procedure is repeated. The recovery procedure might become more and
more computationally complex especially when working with anisotropic meshes.

The gradient reconstruction that we propose is based on a least squares approxi-
mation of Vuy along the edges of the mesh. Using the length distribution tensor, a
continuous gradient will be defined directly at the node of the mesh and depending
only on the solution’s interpolation values. For each node X, we seek G' € R? the
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proposed gradient reconstruction satisfying:

G' = argmin ) ’(G Vuy) - X’]‘ = argmin ) _ ‘GX” U” (2.41)
GeR? jeT(i) GeR?  jeT(i)
The minimum can be obtained by setting the derivative of (2.41) to zero i.e.
Y (6XT-u)x7 = o
jeT (i)
=G Y Xigxl = Y uixi (2.42)

jeT (i) jer(i)

We highlight the appearance of the length distribution tensor. Introducing the notation

Z Ul]xl]

| JGF i)

one gets:
, N1
G = (xt) U (2.43)
Note that the gradient recovery technique that we propose is directly computed on

the nodes of the mesh and the only requirement for its implementation is the knowl-
edge of the approximate solution at the nodes.

Remark 17. We recall that X' is a positive definite tensor if the set of edges connected to X,
T'(i), contains at least d non-collinear vectors. Therefore the reconstructed gradient G is defined
under this assumption. Note that this condition is satisfied if at least one non degenerate element
exists at the node X'.

Remark 18. G' can also be expressed in terms of the natural metric defined at node X':
G =dMiu. (2.44)
Therefore, the approximated error is evaluated by substituting g by G in (2.40):

eij = |G- X1|. (2.45)

A posteriori error analysis

We want to verify that the choice of the edge-based error estimation defined by equa-
~ (H(u)X" - X7) where G' is

the recovery gradient given by (2.43) and g' is the exact value of the gradient at node

tion (2.45) preserves the second order: ‘(Gi — gi) - X1
X'. The proof will be done in the sequel.

In the next proposition, we provide error estimates in the neighborhood of a node
Xt
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Proposition 19. Let u € C2(Q). Then for G' defined as in (2.43), we have the following
projected error bounds:

( £ |(6—va)

jEr (D)

2) <2(Z max I[—I(u)(Y)Xij-Xijz) . (2.46)
JET (i)

Ye[X!,XI]

Proof. Since G' is defined by:
. 12
G' =argmin )_ ‘(G — Vuy) -X”’
GERY  jer(i)

then
2

y (Gl’ - wh) xill* < y )(w — Vuy) - X
jeT (i) jET (i)

(2.47)

The error between the reconstructed gradient and the true gradient of the approximate

solution can be split into two components:

‘ (Gi - w) X

= ’(Gi—VthrVuh—Vu) -Xij‘

Applying this decomposition, together with inequality (2.47) yields:

j;@ ‘ (GZ - Vu) X

2

:

.e;') ’ (Gi — Vuy, + Vuy, — Vu) X1

Triangle inequality

S (CRNEY )

+ | (Vi = Tuy) - X0

jer(
, 12 12
< y 2<‘(G1—Vuh>-x”‘ +‘(Vu—Vuh)-X’]))
jer(
from (2.47) .12
<74y (V- V)X
jEr (i)
from (2.27) .. P
< Ty Y max |H(u)(Y)X7-X7|, (2.48)
jeTi) YEIXT,XI]
leading to the statement of the proposition. O

In proposition 19 we have came up with an error estimate over the edges sharing
node X'. In the following proposition we aim at providing error estimates along a
single edge XX/

Proposition 20. Let u € C>(Q). Then for G' defined on a node X' by (2.43) and every node
XJ connected to X', we have the following projected error bounds:

2
a- |(G'=Vu)-Xi|<2| ¥ max |[H(u)(Y)X*. X* | .
kel (i) YE[X', X¥]
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1

2
(G =V X[ <2 ¥ max [Hu)WX*-X¥ ) + max [F(u)(¥)X7-X7].
ket (i) Y X XH] Ye[X!, XI]

N—=

|GV - XiI| <2 Yo max |H(u)(Y)X* . X¥|
keF(z) Ye [Xz’Xk]

NI=

+1 ¥ max [Hu) WX X* | + max [H(u)(Y)X7 X7|
keT(j) Ye[X/,X*] ye[xi,XI]

Proof. Proof of a:

It follows from proposition 19. Indeed:

1
2
(G = V) - XT] < ( Y, |(G-vu) -xfk]2> < 2< Y max 1H<u><Y>xfk-xfk\2> .
kel (i) keT (i) YEIXLXH]
(2.49)
Proof of b:

The error between the reconstructed gradient and the true gradient of the approx-

imate solution can be split into two components:

‘ (Gi — Vu) - X

= ‘(Gi — Vu, + Vuy, — Vu) X

Applying this decomposition, together with inequality (2.49) yields:

. .. Triangle inequalit 3 .. ..
‘(Gl — Vu) X1 L ‘(Gl — Vuh> -X”‘ + )(Vuh —Vu)- XY
1
from (2.49) ik k12 2 i
<V 2 ¥ max [H(u)(Y)XE - xH +](vuh—W)-x1
kel"(z) YE[XI Xk}
1
from (2.27) ik k12 2
<7 2 ¥ max [Hw)(Y)X*. XH (2.50)
keT (i) YEIX'X']
+ max |[H(u)(Y)X7 - X7
Ye[Xi, X/
Proof of c:

Recall from equation (2.26) that Vuy, - X/ = U, then the above inequality can be
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rewritten as:

2
‘Gi XP—ui <2 Y max [H(u)(Y)X*-X*2 ) + max [H(u)(Y)X7-X7|.
kET(z) YE[XI,Xk} YG[X’,XJ]
) (251
Again using the splitting trick, one can rewrite |G” - X[ as:
G- X = |G/ - XT - G- Xli| = |G/ - X — U + U — G- X (2.52)
The triangle inequality on (2.52) implies:
GV X < |G- XT — U] + |UY — G- XY (2.53)
Using inequality (2.51) on |G/ - X/ — U] and |U% — G - X¥| leads to:
2
IGT-XT| < 2 Y max [H(u)(Y)X* X*?
kel"(j) YE[X],Xk]
%
w2 ¥ max [H()(¥)X* XH (259
ke (i) YEIX| X
+ max |[H(u)(Y)X7 - X7,
Ye[X!,XJ]
Finally all the estimates of the proposition follow. O

From the last inequality of proposition 20 we infer that |G”X"/| is an estimate of the
projected Hessian of the scalar field u along the edge X”/. We notice that the projected
reconstructed gradient along edge X'/ is equally affected by two contributions one from
the patch associated with node X’ and the other from the patch associated with node
X.

Edge-based error estimation

Based on the previous error analysis on the reconstruction gradient, we use
eij = |G- X| (2.55)

as an estimate of the error along the edge X,

Proposition 21. Let u be a quadratic function:

u(x) = u(X) + Vu(X)(x — X') + %(x — XY Hu)(x — X)) xe[X,X]. (256)

Then the edge based error respects the following equality:

eij = |G- X = [H(u)XT . X (2.57)
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Proof. Differentiating the quadratic function with respect to x, one gets:
Vu(x) = Vu(X") +H(u)(x — X'). (2.58)

Taking x = X/, and using the recovered gradient as a representation of the gradient at
the nodes of the mesh yields:
G =G +H(u)X" (2.59)

Rearranging the terms and projecting onto X”, we can express the edge based error as:
eij = |G- XU| = |H(u)XY - XY (2.60)
O

Note that for a regular function u we can always consider its quadratic form (from
a Taylor development) so that the proposition remains verified.

Remark 22. Future work will focus on generalizing the interpolation error estimates into ap-
proximation error ones.

We recall that the objective of the anisotropic metric based mesh adaptation is to
build up edges of unit length in the Riemannian metric space. Stretching factors will
be defined on the edges to transform them into unit lengths. The motivation in this
section is to perform an edge-based error estimation over an initial mesh #;, that will
be used to construct a metric tensor prescribing an optimal mesh Hy,. From now on,
the symbol tilde will be used to refer to quantities on the optimal mesh.

We are interested now in studying how the edge-based error changes as a result of
modifying the length of edge X" by a stretching factor s;; € R™. The stretching of an
edge in its own direction is a linear mapping defined by:

Hh — 'ir[h
X7 Xi = sinij. (2.61)
Clearly, since s;; is in R" the transformation can be a stretching or a shrinking as

depicted in figure 2.5. For simplicity we will refer to both cases as stretching the edge.

Proposition 23. Denote by s;; € R™ the stretching factor that transforms edge XY in its own

. Then this error satisfies the

direction according to mapping (2.61), and let é;; = ‘Gij - Xl
following inequality:
eij < sfjeij . (2.62)

In other words, as a result of stretching the edge by a factor s;;, the error changes quadratically

with respect to sj;.

Proof. Without loss of generality, we focus on the case of a quadratic function u.
The analysis can be extended to regular non quadratic functions by considering the
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X

Figure 2.5 — Stretching or shrinking of a spatial edge X'/ as a result of a scaling Sij -

quadratic form of u. Let x be a point on X%, then

u(x) = U +sVu(X) - X7 + %SZ]H(u)Xij X (2.63)

Evaluating at the point X/ = X' +5;X" and rearranging the terms, one gets:

Lo

But since U/ = s;jVuy, - XY, then:

Uil = s;;Vu(X') - X + S H )X - X7, (2.64)
|5ijVuy - X7 —5;Vu(X') - X| = Esfj\]H(u)X” XY (2.65)

On the other hand, for u;, the interpolation of u on the given mesh, we have:

uy (XI) = U + 5V, - X (2.66)

Combining (2.65) and (2.66) we obtain an estimate on the error along the stretched edge

X,

Therefore,

INIA

IA

u(XD) - X — uy(XJ) - X

U' +s;Vu(X') - X7 4 Esiz]-II—I(u)X” X — (U +5i;Vuy, - XT)

sijVuh - XY — sijVu(XZ) XY+ 5512] ]H(M)XZ] - XY

1 1 L

55 ]H(u)x”-x”( + 55 H(u)x”-x”j

512]- H (u) X" - X (2.67)

& = GV - 5XV| < s2ey;, (268)
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where L
G/ =G -G
O

Whence we have proved the quadratic behavior of the error estimator with respect
to the stretching factors.

Before proceeding into the construction of the metric tensor that controls the errors
along the edges, let us examine how the control on the error along the edges induces a
control of the error over the elements in the mesh.

Optimal control on the Lp norm of the interpolation error

In this section we address the question of how the edge error estimates can be brought
back to element error estimates by the use of appropriate integration rules. But before
we conduct the study of element based error estimation in terms of the edge based
estimation, let us recall some useful integration rules.

Recall: Second order exact integration rules

Let p € C2?(K) be a quadratic function defined on an element K. Let X7 be an
edge of this element. Then the following second order Gauss quadrature integration

rules are exact:

1 X+ XI _
/P(X)dK=§|K! Y P< > ) in (2D), (2.69)
K XieK i#j
and
1 o1 Xi 4 X ,
[roak =1k [~ T pxh+5 T p(F57)] meD. @
K Xiek Xii€K i

Using these estimates, we develop the following proposition on the computation of
the L; norm of the interpolation error over the elements of the mesh.

Proposition 24. Let u € C2(Q) be the quadratic form of a reqular function. The Taylor series
development of u at a point x on the edge X' reads as:

u(x) =u(X") +aVu (X)X’ + Eocle(u)X” X7, a€]0,1]. (2.71)
The Ly norm of the interpolation error over the discretized domain is then given by:

1 .
[ =Thully = 57 ), K] Y. ej, in(2D), (2.72)
KeH  XieK,i#j
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and 1
Hu_Hhqu = E 2 |K’ Z eij , in (SD) (273)
KeH XUeK ,i#j

Proof. Let uy € C'(Q)) be the linear interpolation of u over H. We have for x € X7 :
up(x) = u(X) + aVuy, (X)X, (2.74)

Since Vi, € CO(Q)), then Vi, (X) = V|2,
For the sake of notation simplicity, we will use Vuy, - X/ to denote Vuy,|yi - X7
The error at a point x of the edge X'/ is given by:

e(x(a)) = (u(x(a)) —up(x(a)))
= U +aVu(X)XT + %tleH(u)Xif X — (uf + Wuh(xi)xff)

= a (Vu(Xi)Xij - Vuh(Xi)Xij) + %aZ]I—I(u)Xif X (2.75)
Taking x = X/ leads to:
e(X)) = (u(X]) - uh(X])) = (w(quw - Vuh(XZ)X”) + SH)XT X1, (2.76)

But u(X/) = u,(X/) as uy, is the linear interpolation of u, thus:

0= (w(xi)xff — Vuh(xi)xif> + %H(u)xij XU (2.77)
It follows that: .
(Vu(xi)xif - wh(xf)xif) = —SH(u)X7 - X, (2.78)

Substituting equation (2.78) in (2.75) yields:

1 PR | o
e(x(a)) = —ocEIH(u)X” XY E[xz]l—l(u)xlf Xl
= Sl DH@XT X, (2.79)

In order to compute the L1 norm of the interpolation error over an element K, we use
the second-order quadrature rules presented in equations (2.69) and (2.70).

We highlight the fact that the interpolation error is null at the vertices of the element,
therefore the element interpolation error is given by:

/Ke(x)dK: K| ) we (Xi;X]) (2.80)

XieK i

where w = % in (2D) and w = % in (3D).
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This element-wise error can then be expressed as:

/Ke(x)dK: K Y we (x <;>> .

X €K ,i#j

From equation (2.79), it follows:

[ewak=1xl ¥ w‘i (-i)‘ F ()X X
K XieK i
Using equation (2.57) implies:
/Ke(x)dK: éw|K| y ‘fo-xff( . (2.81)

XieK i

Summing over the elements K € #, we obtain an estimation for the L1 norm of the
interpolation error:

lu—Thulh = ¥ uq/e<x>d1<: @ LK Y |6l (2.82)
KeH K KeM  XiieK,i#j
where w = } in (2D) and w = { in (3D).
Therefore the statement of the proposition follows. O

In the previous proposition, we conducted a theoretical study of the equivalence
between the L; interpolation error and the proposed edge based error estimation. We
intend to present next a generalization to the L, norm.

We want to provide a theoretical validation of the equivalence between the proposed
edge based error estimator and the interpolation error in L, norm for a quadratic
function. This is done, in the sequel, by expressing the element error analysis by an
edge based error analysis and using the appropriate integration rules.

Xi

xi

Figure 2.6 — Arbitrary point P inside an element connected to the node X'.

Proposition 25. Consider an element K € H and let P be a point in K as presented in figure
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2.6. In what follows, P will be taken as a Gauss quadrature point. Then we have for the two

dimensional case:
XP = oXX +wXXk & P=(1-v—-wX +oX +wXk,

i g Y Yoy~ yi)
Xj— Xi Ye— Vi

x —
with v="2"

being its barycentric coordinates, and for the three dimensional case:
X'P = aXiX +pXix*k +9xix!,
with w, B, 7y being its barycentric coordinates.

The interpolation error at P can be evaluated in 2D by:

u(P) — I,u(P) = ;(v —1)ej; + %(w — ey + vwGIXk,

and in 3D by:

u(P) —Tu(P) = %(zx —1)e;i+ g(ﬁ —1)ex + %(’y —1)ey + aBGTXE + aqGIX! 4 gy GRXIL,

Proof. Without loss of generality, we will provide the proof for the (2D) case in order
to avoid redundancy, the same analysis can be done for (3D).
Using a Taylor series approximation around the point X' we get:

, L 1 o .
u(P) = U+ Vu(X")X'P+ Evzu(Xl)XIP - X'P
= U+ Vu(x) (vX” + wX‘k> + 5 V(X)) (UX" + wx'k) : (vX” + wX‘k>
= U +oVu(XH)XJ + wVu(X)X* + Evzlﬂu(Xl)x‘l ¢
+§w21Hu(X1)X‘k X o Hu (X)X - Xk
The linear interpolation of u at P is given by:
ILu(P) = (1—v—w)U +oll +wlF
= (1-v-w)U +v (ui + vhu(xf)xii) +w (ui + vhu(xi)xik) .
Hence, the interpolation error can be expressed by:
u(P) —ILu(P) = v (W(xf) - vhu(xi)) X + w (w(xi) - vhu(xi)) Xk
v? N i 1 @ iVyik | yik
5 Hu(XH)XT - X 4 = Hu (X)X - X
FowHu (X)X . X1k, (2.83)
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Evaluating at the point P = X/ we have u(P) — IT,u(P) =0, v = 1 and w = 0. This
leads to:

. . .o 2 . . .
0 = (Vu(x') = Vyu(x')) X 4 T Hu(X)X7 - X0
. ) . e . ..
& (Vu(XZ) - th(XZ)) X = —ZHu(X)x . X, (2.84)

Similarly, by taking P = X, we get:

w2 . . .
— Hu(x")xik . xik, (2.85)

(vu(xi) - vhu(xi)) xik = —2

Rearranging the terms and using equations (2.84) and (2.85), equation (2.83) reduces
to:

u(P) —1Lu(P) = =(v—1)Hu(X)XJ.XJ 4+ %(w — DHu(X)XE . X* 1 pwHu (X)X - XK

g(w —1ey + vwGIXk,

(0= 1)eij + 5

NN

O]

The interpolation error at any point P of (K) can therefore be computed using the

proposed edge based error estimator.

Proposition 26. The LP norm of the interpolation error over the domain Q) is given in (2D)
by:

1

P)”

(/ |u — TTul? dQ) (Z]K|ZwK’ (v—1)ek +2( 1)e§<+vaZXik
and in (3D) by:

(w—1)ek —i—ﬁ(ﬁ—l)e{i

)iz

where ny is the number of elements in the mesh, |K | the volume of the K" element, ng the

(/ |u — Tul? dQ) (Z K| ZwK

‘|‘DCIBGZ]XIR+[X’)/G1]X11 ‘l‘lB’)’lexll

number of Gauss points for the K™ element and w$ the g™ quadrature weight for the K
element.

Proof. Without loss of generality, we will provide the proof for the (2D) case in order
to avoid redundancy, the same analysis can be done for (3D).
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1 1

= ng p
(/ |u — Tul? dQ)p = (Z/ lu — TTul? dK)
0 =k

_ (Z K'Y ol Q) — ()| dK) ,,

K=1 g=1

1
p)”

with Qg being the quadrature points of element K. O

= <Z]K|ZwK‘ v—le + = ( 1)e§{+vaZXik

In this section, we have carried out an analysis on the equivalence between the edge
based error estimator and the interpolation error in L, norm for a regular function.
Based on this result, the constructed mesh driven by the minimization of the edge
based error estimation will enable an optimal control on the interpolation error in L,
norm and hence a good capture of all solution scales.

Optimal metric construction

As stated earlier, the mesh optimization algorithm consists of three major steps: a P
gradient recovery using the length distribution tensor, followed by an edge-based a
posteriori sampling of the interpolation error that will be synthesized to derive a new
metric tensor encoding stretching feedback to drive the mesh toward optimality. In
the previous sections, we have addressed the first two steps toward anisotropic mesh
adaptation, we are now ready to build-up the metric field that generates the anisotropic
and well-adapted mesh induced by the error estimator.

We have cast the mesh optimization problem of finding an optimal mesh that mini-
mizes the L norm of the interpolation error of a certain field as a problem of seeking a
metric field M defined at the nodes of the mesh that drives the mesh toward optimality
based on the error sampling estimator.

In the framework of metric based anisotropic mesh adaptation, two possible at-
tempts for building the adapted mesh can be adopted: adapting the mesh while re-
specting a certain level of accuracy and adapting the mesh while preserving a fixed
number of degrees of freedom. When dealing with unsteady phenomena, new features
may appear in the solution, to keep up with the level of accuracy, the former approach
tends to refine the mesh by adding new degrees of freedom which if not well controlled
can cause a drastic increase in mesh complexity, thus impacting negatively the compu-
tational time of the simulation. However, from a practical point of view, in order to
simulate long-time and large-scale industrial applications it is preferable to choose a
number of nodes N based on the available computational resources and to determine
the most accurate possible solution. So the level of accuracy is not set a priori but it is
highly desirable to have the best representation of the simulated phenomena.

4
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The method that we propose produces the optimal mesh under the constraint of a
fixed number of nodes. It tends to refine the mesh in a hierarchical importance of the
solution’s gradient. In other words, if new features with high gradients appear in the
solution, the mesh will be automatically coarsened in regions with lower gradients and
will be refined near the newly emerging features. In that case, if a small number of
nodes was fixed by the user, the solution will still be well captured although not with
the same level of accuracy.

In this section, we intend to develop a metric based mesh adaptation that is capa-
ble of well capturing the anisotropy of physical phenomena by generating extremely
stretched and highly directional elements under the constraint of a fixed number of
nodes. The metric tensor would prescribe optimal mesh sizes and element orienta-
tions. The developed algorithm strives to improve the quality of the aforementioned
estimates by attempting to reduce and equi-distribute the error over the edges of the
mesh under the constraint of a fixed degree of freedom.

The novelty of the developed technique resides in the combination of an edge-based
error estimation with the equi-distribution principle to derive a set of edge stretching
factors resulting in an optimal anisotropic mesh adaptation. Unlike the Hessian-based
techniques for metric construction, the method that we propose avoids the reconstruc-
tion of this tensor and renders a reduction in the computational cost.

The method consists in stretching the edges of a mesh in a way to better capture
the anisotropy of the solution. Starting from the natural metric defined earlier and
associated with the current mesh, we intend to modify the definition of the length
distribution tensor to reflect the stretching of edges in their own direction. Without
loss of generality, we consider a node X' of the mesh and the edge X’ connected to X'.
The modified edge is defined by:

Xi = si]-Xij. (2.86)

The length distribution tensor corresponding to the modified edges reads as:

‘ 1 3 3
X =) ) siXT @sXY,
jer()

Consequently, the associated metric tensor will be given by:
M=), (2.87)

The issue that remains to be addressed is how to define the stretching factors in a way
that the interpolation error in the new resulting optimal mesh will be minimized under
the constraint of a fixed number of nodes.
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Metric construction minimizing the total induced error for a fixed number of edges

A metric construction that intends to minimize the total error induced on the edges
of a mesh was proposed in [ ]. The result is summarized in the following
theorem:

Theorem 26.1. Let A be a prescribed number of edges, e;; = |GY - X'I| be the calculated error
along the edge X' of the previous mesh, and p € [1,d] be an exponent to be defined.
Consequently, for a set of stretching coefficients

S={sjeR";i=1---,N;j=1,-- ,N;, T({)NT(j) # ¢} ,

the continuous metric field defined at the mesh nodes and that minimizes the interpolation error
for a fixed number of nodes is given by:

-1
1

1 g .
Ml = — T Xl] ® XZ] 7 (2.88)
a \ Il &,
where, ]
A 72
Sl']‘ = <E> ’ (2-89)
g
and
pt2
P
E ¥
A= % . (2.90)

Proof. By virtue of the quadratic behavior of the error with respect to the stretching
factors, the total error induced on the modified mesh is given by:

1
(P(S) = E ZS%E,‘]’ .
)

Note that the factor ; is used to avoid counting the contribution from edge X twice,
once as X7 and once as X''.

We aim at minimizing the functional ¢(s) under the constraint of a fixed number
of edges:

S = argmin ¢(s) . (2.91)
S,st Y1

i<j

We introduce 77;; = si;p as being the number of edges created as a result of reducing
the edge X" by a factor sij.- The exponent p intends to take into account the fact that the
edges are created not only in the direction of X but also implicitly from the crossing

of the newly emerged edges. Thus the constraint from the imposed number of edges
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is written as:

Zsi;p =A.
i,j

Then the optimization problem can be reformulated as a Lagrangian:
A
L(S,A) = ¢(S)+ » ((nij) — A), (2.92)

where % is the Lagrangian multiplier to account for the constraint on the number of
edges.

At minimum, we have:
oL oL
—aS—O and —aA—O.

Therefore, for every s;; we have:

oL 1 A\ P2

gij =0 = sjjeij— Asl(ijr ) =0 = Sij = (e”> (2.93)
p o\ P2
> P
oL e Tiz Zz: '6?( ) ei’?z
ij JEL(i
- —_ < = A—AN=]| ——— . .

oA 0 zZ]: < A > A A (2.94)
This proves the statement of the theorem. O

Obviously, a zero estimated error can lead to the generation of an edge with infinite
length which cannot be handled by the mesher and in practice can lead to complications
for the simulation. On the other hand, a very large error yields a mesh that is very
refined at the location of high gradient. This implies either a loss in accuracy over the
whole domain or the need to impose an excessive number of degrees of freedom. The
latter results in a drastic increase in the computational cost of the simulation. These
issues are resolved by using a regularization of the errors along the edges as follows:

ejj = max (|Gij - X, emin |X7|?
' o - (2.95)
e;j = min (IG] - XY, max | XY

These choices are justified by the following proposition:

Proposition 27. The mesh associated with the edge error
ei]- = €|Xij |2

is uniform if and only if:
X7 =h

the edge length is constant.
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Proof. Proof of =
Assume that the mesh associated with edge error estimates e;; = ¢|X"|? is uniform with
edge length £, then:
b= |XT] = s |Xi| = s; = |Xh]‘ .

The mesh is uniform when s;; = 1.
Proof of «:
Assuming that all the edges are of the same constant length |X/| = h, then

Lope2
MM G
i jer(i

A= 1

= s]Xif|2.

Hence s;; = 1.

Therefore background meshes with fixed edge lengths can be used assigning the
maximum and the minimum edge lengths. The error estimates for these meshes are
proportional to the square of the edge length. O

Remark 28. When the scaling factors for the mesh edges are one then the mesh is optimal.
Hence the process of mesh adaptation can be repeated until all the stretching factors are almost
one.

Remark 29. The exponent p intends to take into account the fact that the nodes are created not
only along the edge but also implicitly from the crossing of the newly emerged edges. In general,

we consider the number of created edges to be on average 55 .

In this work we propose a new track for metric construction. It avoids the ambigu-
ous choice of the parameter p in the previously described metric tensor. The method
that we develop minimizes the error estimates of the interpolation error by imposing
the equi-distribution principle for a fixed number of nodes. In the next chapter the
equi-distribution will be done in space and time hence providing an additional control
on the time step sizes.

The error equi-distribution principle: It is based on the idea of evenly distributing

the error over the mesh. The concept of equi-distribution roots back to the work of
[ ] on determining the best spline approximations with variable knots. The
principle demonstrated its importance for multi-dimensional adaptive mesh genera-
tion and several works were developed in that line [ , , ].
Babuska and Rheinboldt [ ] conducted an a posteriori error analysis for the
finite element methods and showed that a mesh is asymptotically optimal if all the
error indicators are equally distributed on the mesh. Other theoretical convergence
analysis were also developed in [ , , ].
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Our procedure for building the metric tensor relies on considering a target homo-
geneous error that is equi-distributed over the mesh. In order to maintain a fixed
number of degrees of freedom in the mesh, we define the target error as a function of
the imposed number of nodes.

In section 2.5.6, we have demonstrated that the interpolation error along an edge
X' changes quadratically as the edge length is stretched by a factor s;;. That is:

eij = s,zjei]- . (2.96)

For the target error to be equi-distributed in the mesh corresponding to the stretched
edges, we should have:
VXieH, & =c¢, (2.97)

where ¢ is a target error that is uniform and totally balanced over the mesh.
Substituting equation (2.97) into (2.96) we obtain:

1
e 2
Sij = <€1]> . (2.98)

Let n;; be the number of created nodes in relation with the stretching factor s;; and in
the direction of the edge X. It is given by:

AN _
njj = (el]> = sl.].1 . (2.99)

In what follows, we will use the notation 7;j(e) to highlight the dependence of #;; on e.

Nl

We are looking for a node distribution tensor N’ associated with node X' that
distributes the number of nodes along the different directions of the edges connected
to node X'.

For each node X' of the mesh, the number of created nodes along X"/ is given by:

NIXT = X7 (2.100)

This equation can be constraining so we relax it via the corresponding least squares
approximation:
i_ - ij ij|2
N'=argmin ) [NXY —n;XY| (2.101)
NieR&: jeT (i)
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Proposition 30. The node distribution tensor is defined in a least squares sense by:
N — 1 X -1 X & X
= Z ni X7 @ (2.102)
JET (i)

Proof. Using the standard differentiation of (2.101) and noting that at the minimum,
the derivative is zero, we get:

Y ONXIXT = Y nXIXY (2.103)
jeT (i) jeT (i)
and equivalently,
XN = ) nz-]-Xij ® X (2.104)

jeT (@)
Note that for a symmetric positive definite tensor A of order d we have A : A~! =4,
we thus obtain the node distribution tensor:
N =

(Xi) B Z ninij ® X' (2.105)
JET ()

[Ul -

O

The metric tensor that equi-distributes a uniform error over the mesh in the view
of minimizing the interpolation error estimates under the constraint of a fixed number
of nodes is given by the following theorem:

Theorem 30.1. Let N be a prescribed number of nodes, e;; = |G - Xl be the calculated error
along the edge X'I of the previous mesh, e the uniform equi-distributed error. Then, for a set of
stretching coefficients

the continuous metric field defined at the mesh nodes and minimizing the interpolation error for
a fixed number of nodes is given by:

-1

Z s?inj ® X , (2.106)
jET (i)

e 2
Sij = <€ij> , (2.107)

1

1
M == [
d \ |T(@)|

where,
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o\
€= (Zni(l)) . (2.108)

In here, n*(1) denotes the number of nodes created around node X' for a global homogenous

and

ervor of 1 and it is computed by:

Proof. The local mesh density i.e. the total number of created nodes per node X' in the

different directions connected to it is:

n'(e) = |det (}1 (xi)™ ( Y nXi ®Xif)>
jer (i)
= |det (511 (xi)™! (.2. (:) X ®xz‘f'>) . (2.110)
jET (i) ]

Hence, we have:

1
ni(e) = e i |det (1 (xi)™ ( ) (1> 2Xif®xij))
d . . eji
jer(i) \Cii

sni(e) = 8_%Tli(1). (2.111)

where 7/(1) is the number of created nodes for a uniform error equal to 1.

The total number of nodes in the adapted mesh is therefore:

N = Zni(s)

N = e’%Zni(l). (2.112)

i

Consequently, the global induced uniform error for a given total number of nodes N

N _
e = (Zni(l)) . (2.113)

can be determined by:

B

We will denote the uniform induced error ¢ by ¢(N) to reflect its dependence on the
prescribed degrees of freedom.
Thus, the corresponding stretching factors under the constraint of a fixed number
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of nodes N are given by:

2
1 ni(1)\ ?
o (e(N)\? ; M ~1/2
5ij = P =~ e " (2.114)

We can now deduce the metric tensor associated with stretching the edges X" of the
mesh in their own directions by factors s;;:

-1

Z sl-szif ® X' (2.115)
JjET ()

1

1
M=
d \ [T@)|

O

We use the same regularization forms (2.95) described above in order to bound the
minimum and the maximum error estimates and hence control implicitly the minimum
and maximum mesh sizes.

Privileged length distribution tensor

In the aim of building the metric tensor that reflects to the best the solution’s anisotropy,
we reconsider in this section the definition of the length distribution tensor that we
constructed based on an averaged orientation property around a node X':

io 1 i @ X
X 0] ]E;(i)x @ X7,
where we average the contribution of the different edges to determine the state of
node X'. This definition can be modified to give additional weight to the edges in the
direction of the solution’s gradient, so we associate to each of the edges surrounding
X' a certain privilege that depends on its orientation hence resulting in a better capture
of anisotropy. For that purpose we define for an edge X/ a weight wi; as follows:

a),‘j = Sin(@i]‘) (2.116)

where 0;; is the angle formed between the solution’s gradient Vu, or the recovered
gradient, and the edge X/ as shown in figure 2.7. The weights can then be computed
by:
wij = M (2.117)
[[Vu]] - [[XT]]
As for most PDE’s that we consider, the exact gradient is not known, we compute the
weights with respect to the reconstructed gradient.

Using the privileging principle, the modified definition of the length distribution



2.5. Error estimation for anisotropic mesh adaptation 123

X7
0ij
W [
e
Vd
Xi

Figure 2.7 — Angle between the solution’s gradient and the edge X'.

tensor for computing the optimal metric tensor reads as:

, 1 y y

It is important to mention that for the case of null gradient, the weights will be set to
one and a regularization on the error estimates will be applied as described above in
equation (2.95). In this case the edges will be set to the maximum in accordance with
the regularization formula. No additional privilege needs to be added. The efficiency
of the newly defined length distribution tensor will be confronted in the numerical
examples with the averaged distribution one.

Remark 31. A theoretical validation on the optimality of this construction and its extension to
ensure second order control on the error estimates will be the subject of future investigations.

In this section, we have presented an optimal metric generation technique relying
on an edge-based error estimation and on the equi-distribution principle. The full
derivations and the rationales behind the construction were provided. We started by
defining a length distribution tensor followed by a gradient recovery procedure. The
reconstructed gradient is then used to compute an edge based interpolation error es-
timator. The latter is minimized under the constraint of a fixed number of nodes by
respecting the equi-distribution principle. A set of stretching factors associated to each
edge is then generated, leading to the optimal metric tensor.

The presented method is simple, easy to implement, independent of the problem at
hand, and works under the constraint of a fixed number of nodes leading to the opti-
mal (most accurate) mesh for a given computational power. An important characteristic
of the method that we propose is that it does not require the knowledge/recovery of
the solution Hessian which might negatively affect the computational cost of the sim-
ulation. The ability to control the L, norm of the interpolation error permits a higher
resolution of the different solution’s scales, as will be demonstrated by the numerical
results.

Since the metric field is defined at the nodes of the mesh, it can be given to any mesh
generator that takes as input a metric field for whatever meshing technique (Delau-
nay, moving front method, local topological optimization, ---). Many of these mesh
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generators can be found nowadays in the literature [ , , ,

, , ]. In this work, we give the metric tensor to the MTC
mesher (described earlier) that would in turn generate an anisotropic and adaptive
mesh as will be discussed in the next section.

ANISOTROPIC MESH ADAPTATION THROUGH LOCAL TOPOLOGICAL
OPTIMIZATION

We are interested, in this section, in answering the following question: how does a
mesh generator respond to a given metric field? We will explain the general idea, the
details are provided in [ ] and will be omitted here for brevity.

We have explained previously how a mesh of a domain is generated from the mesh of
its boundary and how local topological optimization are repeated iteratively until the
minimal volume criterion is satisfied and a good geometric quality is obtained.

Starting with an initial mesh, the minimal volume should be respected and the
quality of the elements should be improved. The mesher goes through a series of topo-
logical optimization using the “starring” operator and the element quality is measured
in relation with the metric.

In the context of metric based anisotropic mesh adaptation, the quality criterion for
an element K in the mesh is defined by:

[ colK| 1
QK = min <hd/\/l(K) /hjl\/[(K) ’ ]’ld> (2.118)
M(K) M(K)

where,

d . .
e M(K) is the mean element metric: M (K) = ﬁ Y. M, with M’ being the metric
i=0

tensor provided at node X'. We note that this choice can be improved into an

affine invariant approach or a logarithmic reconstruction.

e |K|r = |K[y/M(K) is the new volume of the element |K|.

1
d . 2
® Ik = <d(dz+1) EO HX”H%\A(K)) is the average edge length.

d!
a+1
when the element is equilateral in the Riemannian space associated with the met-

ric M(K).

®Cy = 2% is a constant that is chosen so that a quality 1 would be obtained

After each topological modification, the metric tensor is interpolated from the old mesh
to the new one. More precisely, when new nodes are created (the centroids of a cer-
tain patch) the values at these nodes are computed by averaging the values on the
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surrounding nodes in the patch.
1&, i
M(C) = = Y M
i=0

When the new node is the midpoint of a segment joining two existing nodes [X', X/]
then the metric at the midpoint is defined to be the average of the metrics at the ex-

tremities. ' ‘
! ]
M(C) = M;M

This way of interpolation was demonstrated in [ ] to be fast and efficient. We

note that this choice can be improved into an affine invariant approach or a logarithmic
reconstruction.

We highlight the utility of defining the metric tensors at the nodes of the mesh
for metric interpolation throughout the remeshing process. If the metrics were defined
at the element level then an extrapolation to the nodes needs first to be performed fol-
lowed by projecting back onto the created elements through the “copy-paste” process
of the mesh topological improvement.

FIELDS’ INTERPOLATION BETWEEN MESHES

Once a new mesh is obtained, the solution fields need to be interpolated from the back-
ground mesh Hpackground to the new mesh Hpey in order to pursue the computations.
A classical interpolation method 2.8 is used to transfer data according to their type:

e DP; variables: Nodal variables computed at the level of the background mesh
vertices.

e Py variables:  Element variables defined at the level of the background mesh
elements.

Transfer of P; data:

The transfer of the discrete P; fields defined at the nodes’ level is done in two steps:

1. A localization step, whereby a method of bounding boxes [ ], is used
to identify the element K = {XlK ,i=1,---,d+ 1} in the background mesh that
contains the new node P.

2. A linear interpolation of the P; variable field from the nodes of the element K to
P using its barycentric coordinates f; with respect to K:

d+1

u(P) = Y Bi(P)un(X[) (2.119)
i

This interpolation scheme is P; exact, of second order and independent of the
mesh topology.
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Element in the new mesh

O: Node in the old mesh
@®: Node in the new mesh
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I Element in the old
mesh containing £,

Figure 2.8 — P1 interpolation from an old mesh to a new one, adopted from [ 1.

Transfer of P, data:

There are two possible ways of transferring Py fields from the background to the new
mesh. One possibility is to extrapolate the fields from element level onto the nodes
then apply a P; transfer to the Gauss points of Hpew elements. The other possibility is
to apply a direct transfer whereby the Gauss points of the new elements are localized
inside the elements of the background mesh and take their values. The latter technique
showed that it makes rough choices especially for coarse elements whereas the former
one induces diffusion due to the extrapolation step. However the projection technique
suits better the MTC mesher since the latter proceeds by local modification of topolo-
gies, i.e. if a certain region of the mesh is not changed, the data will not be transferred,

hence avoiding numerical diffusion.

Before we move on to the numerical validation of the proposed metric-based mesh
adaptation method, let us recall its key features:

e The adaptation yields a control on the L, norm of the interpolation error through
a procedure relying on a posteriori estimates without any a priori assumptions
on the solution behavior.

e The method does not require the recovery of the solution’s Hessian which is
a costly step in most metric-based mesh adaptation techniques present in the
literature.

e The method produces the optimal mesh for a fixed degree of freedom.
e By construction, it preserves the second order convergence.

e It is automatic, the only parameter that needs to be controlled is the number of
degrees of freedom.

e The method tends to refine the mesh in the hierarchical importance of the so-
lution’s gradient. In other words, if new features (with high gradients) appear
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in the solution, the mesh will be automatically coarsened in regions with lower
gradient and will be refined near the newly emerging features. In this case, for a
small number of nodes fixed by the user, the solution will still be well captured
although not with the same degree of accuracy.

We summarize in algorithm 2 the steps for mesh adaptation based on given function

values.

Algorithm 2: Mesh adaptation algorithm on a given function u.

Input: Input mesh H, a target number of nodes N and a function’s nodal values
u'.
Output: An optimal anisotropic mesh H well adapted to accurately capture the
variation of u'.
begin
while (not converged) do
e for each node X' in H, do

- Compute the recovery gradient G'.
- Determine the error estimates e;; on the edges X'/ connected to X'.
- Compute the stretching factors s;; on the edges X1:

* Method 1: using the formula for the total error minimization.
* Method 2: using the error equi-distribution principle.

— Construct the metric tensor ./\/l".

e Generate the optimal mesh H.
e Interpolate u from H to H.

o Test the stopping criterion.

In practice, a unit mesh cannot be achieved. What we aim at getting is quasi-unit

edges [ ] where:
1

— < X < V2

\/E = | |./\/l =

At the limit, we have |X7|, = v/2. Together with the regularization form (2.95), we
can determine an upper bound for the error estimates below which we can consider
that we have reached a unit mesh. Choosing a threshold value emax, we get a unit mesh

when: )
Vi, emalXilag < (V2) e

This stopping criterion is applied when using the method based on the minimization
of the total error over the mesh. On the other hand, when the method based on the
error equi-distribution principle is applied, we assume that the mesh has converged
to the optimal configuration when the computed homogenous error presents a relative
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error between two consecutive remeshings less than the threshold value:

e(N)* —e(N)*!
e(N)¢

< €TO0L , (2.120)

where ( is the number of repeated remeshing and eroy, is a certain tolerance.
We will show in chapter 5 how the method can be easily extended to account for

several fields in a single metric.

NUMERICAL EXPERIMENTS

In this section we illustrate on the performance of the developed edge-based error
estimators and anisotropic mesh adaptation technique on two and three dimensional
analytical test cases. We also verify the second order convergence of the method and
compare it to other results present in the literature. To stay in the context of numerical
examples where the analytical solution is unknown, we do not use the actual gradient
of the known function for the computation of the error estimates.

Convergence tests on a quadratic function

In order to perform convergence tests, we construct unit meshes with growing com-
plexities:

Hn , Hon , Han , Hsn , Hien

\l/l\L/\l/"L"L
N , 2N , 4N , 8N , 16N

In the numerical examples we take N = 1,000. Then we compute the actual interpola-

tion error on each of these meshes using a Gauss interpolation formula:

1

1K % ng Mg P
= o] |1 = (2 [ 1w —Hhuw) - (Z Y wiu(G) —nh<gi>|”) (2121)
k=1"K K=1i=1
with ng being the number of elements in the mesh and 7, is the number of Gauss

points in element K.

In this example we address two aspects of the developed anisotropic mesh adaptation
algorithms. First we are interested in studying and comparing the three proposed
methods:

e Mesh adaptation based on the total interpolation error minimization. We denote
the mesh obtained with this method as #'.

e Mesh adaptation based on the privileged interpolation error minimization. We
denote the mesh obtained with this method as H'F.
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Figure 2.9 — Quadratic function: validation of the gradient reconstruction and the edge-based error
estimator.

e Mesh adaptation based on the error equi-distribution. We denote the mesh ob-
tained with this method as HE.

e Mesh adaptation based on the privileged error equi-distribution. We denote the
mesh obtained with this method as HE".

The methods are validated in terms of order of convergence, i.e. how accurate is the
algorithm, and of efficiency, i.e. how fast does the method reach a unit mesh.

In this test case we first validate the developed gradient reconstruction approach
then we evaluate the performance of the derived error estimator and mesh adapta-
tion technique to control the interpolation error in the L, norm. For that purpose we
consider a quadratic function u# € R defined on the domain Q) = [—1.5,1.5] by:

u(x,y) = 0.3(x* +y?) (2.122)

As the exact gradient of the function is known, we can determine how accurate is the
developed gradient recovery technique. To evaluate the accuracy of the proposed re-
construction, we compute the L; norm of the error between the exact and the recovered
gradients on meshes with increasing complexities.

Figure 2.9(a) presents the variation of the interpolation error’s L; norm induced
by the reconstruction technique on different meshes. We can clearly see how the er-
ror changes quadratically as the number of nodes is doubled. We can infer that the
proposed recovery technique results in a second order reconstruction of the function’s
gradient.

We move on now to assess the reliability of the proposed error estimator. To do
so, we compare the L, , (p = 1,2,3) norm of the interpolation error to the estimated
Ly, (p = 1,2,3) norm as discussed in section 2.5.7. Figure 2.9(b) shows a good match-
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Figure 2.10 — Quadratic function: Mesh convergence for the L1, Ly and L3 norms of the interpolation
error

ing between the computed interpolation error and the corresponding error estimate.
Therefore by limiting the estimated error, we are capable of controlling the L, norm of
the interpolation error.

Using the developed mesh adaptation algorithms relying on the edge based error
estimates, we adapt the mesh and analyze the control of the interpolation error for the
Li, Ly and L3 norms. We start the computations on a coarse mesh made up of 100
nodes and then refine it according to the proposed adaptive techniques.

Concerning the mesh convergence, for a regular and smooth function as shown in
figure 2.10, the theoretical second order is reached whatever the selected norm L, , p €
[1, 00].

Numerical validations on functions with steep gradients

Anisotropic mesh adaptation is devised to reproduce the anisotropic features of phys-
ical phenomena. However the construction becomes more challenging when sharp
angles are present in the adaptation field as the algorithm tends to create elements
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with extremely high aspect ratios. In such cases the mesh generator does not produce
the optimal unit mesh in one shot, several attempts need to be executed in order to
drive the mesh/solution couple toward optimality. So for each number of degrees of
freedom the algorithm of adaptation is repeated several times until a unit mesh is ob-
tained, i.e. until the measured interpolation error shows no additional improvement.
Note that the number of iterations to reach a unit mesh depends highly on the quality
of the initial mesh. The efficiency analysis will be applied on three different functions
that vary in stiffness, regularity and scales of variations. In practice, we will consider
that we have reached a unit mesh when the relative difference in the interpolation error
between two successive meshes is less than 1%.

Mountains and valleys

Before we proceed into the convergence and efficiency analysis on functions with steep
gradients and high anisotropic features, let us give an example showing the sharp
anisotropic features of the proposed algorithms. We consider the mountains and val-
leys function taken from [ ]. A circular domain of radius 3 centered at
the origin of the space is considered. We intend to adapt the mesh on the analytical
solution defined by:

((x+0.3)2+(y+0.2)) ((x=0.3)2+(y—0.4)?)

floy) =exp™® —exp ™’

1 (2.123)
+5 tanh (10sin(x? — y?) cos(x* + %))

This test case is a complicated one as the computational domain’s boundary is curved.
The initial mesh is isotropic and made up of 1,000 nodes. We iteratively adapt the
mesh using the algorithm based on the error equi-distribution. As this example is just
for illustrative purposes we do not intend to compare the performance of the different
proposed mesh adaptation algorithms. This will be done in the following examples.
We present in figure 2.11 four consecutive stages of anisotropic refinement and a zoom
on the last stage. It is important to note that all the represented meshes contain roughly
the same number of elements set to 7,000 at the beginning of the computations. The
zoom shows exactly how anisotropic the mesh can be around obstacles/sharp gra-
dients thanks to this method. We can see how the nodes in the mesh are automat-
ically removed from regions of low function’s variations and others are added near
the steep gradients. The good orientation of the generated elements allows a good
representation of the curvatures. Note that due to the error equi-distribution over the
edges, the anisotropic meshes tend to preserve the function’s symmetric profile by
equally partitionning the nodes over the regions of steep features. Figure 2.12 shows
the anisotropic mesh obtained in the reference in eight consecutive mesh adaptations.
We showed the mesh at the first, second, and last phase of modification as presented
in [ ]. These meshes are made up respectively of 37,070, 67,533, 107,469,
and 47,419 nodes whereas the meshes generated by our adaptive algorithm are varying
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Figure 2.11 — Mountains and valleys: Iterative anisotropic refinement obtained within 4 consecutive
iteration of the proposed mesh adaptation algorithm.

around the same degree of freedom ( 7,000). The advantages of iteratively adapting
the mesh is clear as the sharpness of the representation is evident in the last iterations,
where the anisotropy is more pronounced, whereas the first iteration fails. As shown in
figure 2.13, the function computed on an isotropic non-adapted mesh presents an “or-
ange skin”, its surface is not smooth and reflects a poor quality representation whereas
the one computed on the generated anisotropic mesh has a high quality, it presents a
smooth surface and the mountains’ sharp descents are accurately captured.

MINES logo

In the view of reflecting how steep can the mesh become, we take the logo of the
Ecole des Mines and apply the anisotropic mesh adaptation algorithm for 5 consecutive
iterations. The example was performed in 3D with around 30,000 nodes. We present
in figure 2.14 the 3D logo together with a cross section along the y = 0 plane showing
the capability of the proposed technique to capture and reproduce very sharp angles
with a high resolution. One can notice how the elements are extremely stretched and
well oriented near the sharp edges.

Steep hyperbolic tangent function

The objective of this numerical example is to illustrate how the developed metric con-
struction techniques are well defined to permit a good capture of a function’s steep
layers. The analytical function that we consider is taken from [Coupez 11]. It is defined
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Figure 2.12 — Mountains and valleys: Iterative anisotropic refinement obtained within 8 consecutive
iterations in the reference [Borouchaki o1].

Figure 2.13 — Mountains and valleys: first iteration (left) and last one (right) in the mesh adaptation
process.

MINES
ParisTech

Lk 7 = / AN

Figure 2.14 — Anisotropic mesh adaptation around the logo of the Ecole des Mines and zoomed
snapshots near sharp angles.
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on the domain [0, 1% by:

a(x) = tanh(Esin(S%HXH))

b(x) = tanh (Esin (5§|\x - cu))

1
C —
1
u(x) = aoa(x)+bob(x) (2.124)

The parameter E varies from 1 to 32; the larger E is, the sharper the function’s gra-
dient is, favoring anisotropic meshing. The edge-based error estimation based on
the control of the interpolation error is evaluated for the L;, L, and L. norms. For
sake of comparisons on a steep function, we set E = 16 and start the computations
on an isotropic mesh made up of 100 nodes. We depict in figure 2.15 the analytical
function obtained on an anisotropically adapted mesh (of around 7,000 nodes) with
the privileged error equi-distribution technique. Despite the simplicity of this function,

Figure 2.15 — Surface plot (left), and isovalues (right) of the steep radial function described by equation
(2.124) on a mesh made up of 7,000 nodes.

it develops complex features that manifest in the interference between two radial
gradients forcing isotropic meshing at the intersecting regions. Figure 2.16 shows the
adapted meshes (HI, H'P, HE and HEP) after 7 iteration of the adaptation algorithm
for mesh complexities of 7,000(left) and 20, 000(right) nodes. We can identify from
the mesh plots that the adaptations based on the privileged orientation scheme are
capable of converging faster toward the optimal mesh whereas the algorithms based
on the averaged length distribution tensor are still driving the mesh toward optimality
and did not reach a good representation yet. We highlight that the method based on
the error equi-distribution converges even faster than the one derived from the total
error minimization algorithm. However for a higher number of degrees of freedom, 7
iterations were enough to converge to optimality using any of the developed methods.
We can detect, on the converged meshes, how the elements are well oriented and
stretched along the tangential direction to allow a steep capture of the function’s circu-
lar gradient. The nodes are being automatically redistributed with a higher density in
the vicinity of sharp gradients.
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Figure 2.16 — Steep radial function: anisotropic meshes (H!, HI¥, HE, and HEP respectively from top
to bottom) obtained with around 7,000(left) and 20,000(right) nodes after 7 successive adaptations.
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Adaptation ||u — muullr  ||u — mul|2

H! 1.15¢3 8.26¢ 3
HIP 3.97¢ 4 1.26¢73
HE 8.72¢ 4 1.92¢3
HEP 2.38¢ 4 5.11e 4

Table 2.1 — Steep radial function: statistics on the interpolation errors for the different meshes generated
with 7,000 nodes after 7 successive adaptations.

#Nodes HI HTT HE HEP

1000 21 15 22 17
2000 17 8 16 8
4000 16 8 15 7
8,000 14 7 13 7
16,000 6 6 7 4
32,000 5 5 5 4
64,000 5 5 5 4

Table 2.2 — Steep radial function: statistics on the number of mesh adaptations needed to drive the mesh
toward unity.

We summarize in table 2.1 the history of the L; and L, norms of the interpolation
error on the anisotropically adapted meshes using 7,000 nodes and after 7 iterations
of the adaptation algorithm. We can notice that the privileged adaptation minimizes
better the interpolation error. This result is in correlation with the mesh plots in figure
2.16 as it renders a faster convergence toward the optimal mesh. In order to evaluate
the mesh convergence rates of the proposed algorithms in presence of sharp gradients,
we have conducted convergence studies for the L; and L, norms of the interpolation
error. For that purpose, starting with the same initial mesh of 100 nodes, we have
applied each of the edge-based anisotropic mesh adaption algorithms iteratively until
the convergence of the couple solution/mesh. Figure 2.17 summarizes the convergence
order estimates. We can observe that a poor convergence is obtained on isotropically
refined meshes. On the contrary, as expected from the theoretical analysis, the different
proposed techniques of anisotropic mesh adaptation allow an asymptotic recovery of
the second order convergence. While 8,000 nodes were needed for the mesh to con-
verge in the L, norm, a faster capture was established in the L1 norm with only 4, 000
nodes. This finding is in accordance with the fact that the L; norm requires less regu-
larity than the other norms. We provide in table 2.2 a synthesis on the number of mesh
adaptations needed to drive the mesh toward unity. We highlight the fewer number of
meshing iterations as the imposed number of nodes is increased; in other words, for
a sufficient number of degrees of freedom, a fast convergence is achieved. In this test
case, we have validated the accuracy and efficiency of the developed anisotropic mesh
adaptation algorithms. The proposed a posteriori edge-based error estimation proved
to be a robust indicator of a solution’s anisotropy.
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Figure 2.17 — Steep radial function: convergence analysis on the Ly and Ly norms of the interpolation

error of the analytical function defined by (2.124).
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We have pointed out the good results generated by both techniques of metric con-
struction: the one based on the total error minimization and the one involving an error
equi-distribution. The two methods achieved an asymptotic second order convergence
and provided good efficiency in driving the mesh toward unity when a sufficient
number of nodes is employed. We note also that faster and better minimization were
obtained by the metric based on the equi-distribution principle.

To avoid result redundancy, from this point on, we will assess only this algorithm
as it will be the one used for generating anisotropic meshes throughout the rest of this
thesis.

Numerical validations on functions with multiscale variations

We intend in this example to demonstrate the capability of the developed anisotropic
mesh adaptation algorithm to capture the different scales present in a field of interest.
For that purpose, we consider a (2D) function taken from [ ] that exhibits vari-
ations at small and large scales with respective amplitudes 0.01 and 1. The analytical
function is defined on the domain [—1,1] x [—1,1] by:

: o b
u(x,y) = { sin(50xy) if 55 < xy <24 (2.125)

0.01sin(50xy) otherwise.

A plot of isovalues, a surface profile and a cross section along the x = y axis obtained
with the privileged anisotropic mesh adaptation with 7,000 nodes are shown in figure
2.18. We can clearly identify the good capture of the small wiggles as well as the
large-scale sinusoidal wave. Unlike the metric construction based on the error equi-
distribution and the average length distribution tensor where the nodes are localized
around the steep gradient, higher weights were associated to the small scales when
using the privileged length distribution tensor. A second order convergence is reached
using an averaged or a privileged length distribution tensor. However, in accordance
with the reference, around 10,000 nodes were needed to capture that order. We sum-
marize the convergence history in figure 2.19. We can distinguish 3 parts in the graph.
A phase of second order convergence, delimited by a mesh complexity of around 2,000
nodes, where the steep gradients are well captured whereas the small scale sinusoidal
oscillations are not detected. A phase of slower convergence rate comes after where
the mesh detects the fine-scales but the number of degrees of freedom, between 2,000
and 10,000, is not sufficient to represent them and hence a significant error is high-
lighted on the mesh. Finally, for a higher number of nodes, a good capture of the
solution’s fluctuations is established hence regaining the second order convergence.
We depict in figure 2.20 the meshes generated by the metric construction based on the
equi-distribution principle and made up of around 9,000 nodes. It shows the good
orientation and distribution of the mesh elements that present stretched edges parallel
to the sinusoidal gradient and small mesh sizes in its orthogonal direction. Note the
high concentration of the elements in the localized zones around the steep layer when
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using the averaged length distribution tensor.

While a slight difference can be presumed from the previous examples between
the two versions of the proposed mesh adaptation, a correlation between the sen-
sitivity to small fluctuations and the weighted length distribution tensor is evident
from this numerical test case. The choice between the two algorithms depends on
the desired sensitivity to small-scales. So if strong gradients are to be privileged with
respect to small ones, the averaged length distribution tensor works very well. On
the other hand, if one is interested in capturing all scales of a phenomena then the
privileged metric construction is encouraged. Note that both methods have almost

the same performance when the number of nodes in the mesh is sufficiently high. It

Fiqure 2.20 — Multiscale function: meshes obtained with 9,000 nodes using the averaged (left) and the
privileged (right) length distribution tensor for metric construction.

is important to mention that the computational cost associated with the computation
of the scaling factors for the privileged length distribution tensor is negligible high-
lighting once again its potential in improving the accuracy/efficiency aspect of the
computations.

CONCLUSION

In this chapter, we have pursued the work in [ ] to develop a new route for
building anisotropic meshes. Starting with the fundamental equivalence between op-
timal and unit meshes, we aimed at building unit meshes. However, doing so on the
canonical Euclidean space yields an isotropic mesh that is fine everywhere in the do-
main and thus implies a considerable computational cost. The idea therefore was to
build this unit mesh in the Riemannian metric space. The resulting mesh would be
anisotropic and well adapted in the canonical space. We have constructed the metric
tensor that defines the Riemannian metric space at each node X' so that to prescribe
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along each edge direction connected to X' a scaling factor. This stretching factor was
determined in terms of the error induced along the edges. A new error estimator was
developed and it was expressed as the projected function’s gradient along the edges.
Nevertheless, since the method was constructed to be applied to any field of interest,
in particular to the solution of PDEs, and since for most physical problems, the exact
solution is not known a priori nor does its gradient, we have derived a second order
recovery approach for this field. Moreover, we have proposed two possible approaches
for computing the stretching factors: the first one intends to minimize the total error
over the edges of the computational domain and the second equi-distributes the error
over these edges. An extension to provide control on the L? norm of the interpolation
error was established. Furthermore, we have enriched the anisotropy of the mesh by
introducing more weights to the edges in the direction of the variable’s gradient. The
theoretical investigation of this idea will be the subject of future contributions. A key
feature of the proposed adaptation method is its ability to enhance the accuracy while
preserving a fixed number of nodes which is a great advantage for industrial applica-
tions. We have validated the accuracy and efficiency of the developed error estimator
and anisotropic mesh adaptation technique on several analytical functions presenting
smooth variations, sharp discontinuities, and multiscale features. The objective in the
upcoming chapter is to apply the developed adaptation tool in the context of compu-
tational fluid dynamic simulations.

RESUME FRANCAIS

Dans ce chapitre, nous avons poursuivi le travail commencé dans [ ] dans le
but de développer une nouvelle méthode pour la construction de maillages anisotropes.
Partant du paradigme qu’un maillage anisotrope est équivalent a un maillage uni-
forme unité avec différentes définitions de distance, nous avons cherché a construire
des maillages unités dans des espaces métriques Riemanniens. Le maillage résultant
serait anisotrope et bien adapté dans l'espace canonique. Nous avons alors construit
le tenseur métrique associé a I'espace métrique sur chaque nceud du maillage de sorte
a ce qu’a chaque issue de ce nceud, un facteur d’étirement soit imposé. Ce facteur a
été déterminé en fonction de l'erreur induite le long des arrétes connectées au nceud.
Un nouvel estimateur d’erreur a été proposé et a été exprimé en fonction du gradient
du parametre de remaillage projeté sur les arrétes. Néanmoins, étant donné que la
méthode a été construite de maniere a s’appliquer sur tous les domaines et pour tout
phénomeéne physique, et comme pour la plupart des problemes physiques, la solution
exacte, et donc son gradient, n’est pas connue, une méthode de reconstruction du sec-
ond ordre du gradient a été proposée. De plus, nous avons proposé deux approches
pour le calcul des facteurs d’étirement. La premiere consiste & minimiser l'erreur to-
tale induite sur les arrétes du maillage et la deuxieme vise a équi-distribuer l'erreur
sur ces arrétes. Une extension pour contrdler la norme Lp de l'erreur d’interpolation
a été proposée et démontrée. Nous avons aussi proposé d’introduire des poids sur
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les arrétes favorisant 1’étirement de ces derniers dans le sens orthogonal au fort gradi-
ent du champ étudié. Une caractéristique essentielle de la méthode développée est sa
capacité d’optimiser le maillage tout en conservant un nombre fixe de nceuds ce qui
constitue un grand avantage pour les applications industrielles. Dans la derniére partie
de ce chapitre, nous avons validé la précision et l'efficacité de ’estimateur d’erreur pro-
posé et 'adaptation de maillage anisotrope développée sur plusieurs fonctions analy-
tiques présentant de faibles et fortes variations ainsi que des évolutions multi-échelles.
L'objectif dans le chapitre suivant est d’appliquer I'outil d’adaptation dans le cadre de
simulations CFD diverses.
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ESPITE the growing computational power, anisotropic mesh adaptation seems
mandatory to reduce the complexity of numerical simulations especially when

complex 3D industrial applications are involved. Indeed, it is highly desirable to ob-

tain the most accurate solution with the least computational time and cost. In the

previous chapter, we have developed a metric based anisotropic mesh adaptation tech-

nique. Its accuracy, efficiency and robustness were validated on analytical test cases.

The method relies on an a posteriori edge-based error estimator without any a priori

assumptions on the solution’s behavior or the problem at hand. Therefore it can be
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directly applied, without modification, to any field of interest. In this chapter, we are
interested in applying and assessing the proposed algorithm in the context of compu-
tational fluid dynamics and heat transfer simulations. In chapter 5, we illustrate on
how the algorithm can be generalized to naturally account for several fields and drive
the mesh toward optimality, hence robustly capturing anisotropic features developed
by the fields of interest. In the metric based anisotropic mesh adaptation framework
introduced previously, the idea was to construct a mesh that minimizes the interpola-
tion error of a given function. The objective now is to replace the given function by the
solution of a PDE. From the discrete solution of the problem and the length distribution
tensor, we reconstruct the gradient of this field then we evaluate the estimated error
along the edges of the current mesh. Based on the equi-distribution principle a met-
ric tensor is constructed and given to the mesh generator leading to the optimal mesh
minimizing the interpolation error of the solution. Once the new mesh is obtained,
the problem variables will be interpolated on the new mesh to proceed with compu-
tations. This process is repeated until the convergence of the mesh-solution couple.
On the other hand, the existing stabilized finite element methods can be leveraged and
require only minor modifications to accommodate with the anisotropy of the mesh. In
this chapter, we reconsider in section 1 the Navier-Stokes and the convection-diffusion-
reaction problems and perform an error analysis pointing out the relation between the
approximation and the interpolation errors. We move on next to illustrate on the tun-
ing of the stabilization methods in order to account for highly stretched elements. In
the following section, we provide numerical examples reflecting the performance, ac-
curacy and efficiency of the developed anisotropic mesh adaptation in simulating heat
transfer and fluid flow problems.
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A PRIORI ERROR ANALYSIS

We aim in this section at providing an a priori finite element analysis on the
convection-diffusion-reaction problem and the Navier-Stokes equations. We follow
the lines in [ , ] to derive the error estimates. In the reference
[ , ], the analysis was limited to the Poisson’s equation.

convection-diffusion-reaction equation

We start by considering the convection-diffusion-reaction equation with a velocity field

v, a diffusion factor ¥ and a reaction term o

ou+v-Vu—-V . («Vu)+ou=f, in Q,
u(.,0)=0 in Q, (3.1)
u=20, onl,

whose weak formulation writes as:

(?ﬁw> + (v Viyw) = (V- (kVu),w) + (ou,w) = (f,w) Vo€ H(Q) (.2)

The approximation error can be decomposed into two parts:

up—u=u,—ILjiu+ Ilhu—u (3-3)
———— ——
Implicit error  Interpolation error
The implicit error belongs to the discrete approximation space ¥, = H} € H'(Q) of
piecewise linear functions defined on the elements of the mesh H,,.
Define ITj, to be a projection operator from ¥ onto %,. As suggested in [ 1,
since u € ¥ is not necessarily smooth, one can choose the Clément interpolation oper-
ator. Taking w € 7, its projection will be IT,w € ¥,. Therefore, the weak formulation

reads as:
(aauth,th> + (v - Vuy, Iyw) — (V- («Vuy)  Iw) + (oup, w) )
= (f,Thw)  Yw e Hy(Q)
The adjoint of the projection operator implies:
(75 (5 ) ) + (05 (v 9) 3, 0) = (T3 (9 - (7)) )
+(IT, () uy, w) = (IT, () f, w) Vw € Hy(Q2)
(3:5)

where, I denotes the identity tensor. Considering the dual space of ¥, ¥/, equation 3.5
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yields:

—x a —x% = T T
I, <8t> up + 10, (v V) uy, =11, (V- (6V)) wy + 1T (0L) uy, = IL,((I) f - €77
(3.6)
and equivalently:

15, (5 ) =103 (57 ) Tt = T3 (9 - (%)), + T (- (69)) Ty + T, (v D)

—1T, (v- V) Tlyu + T, (o) uy, — I, (o) TT,u

= (IT,,((1) f — I, (a) yu + 11, (V- («V) Tu =TI, (v - V) Thu — IO, (D) Thu ~ in ¥’

ot
(37)
Rearranging the terms, equation (3.7) reads in ¥ as:
—— —
I, (5 = V- (V)4 (v Vot o)) u — Tl
(3:8)

=TI, <aat -V (V)4 (v V—l—al[)) (u —TTyu)
with TI, (% -V -(&kV)+(v-V+ 0'][)) invertible on adhoc spaces according to
[ ’ ]. Consequently, we obtain:

(10— Thyu) = : oA B (3.9)
. <_v.(KV)+(v-V+fﬂI)> (= Thyu)

1T, (a v-(KV)+(v-V+all)>ln;§

ot

and in variational form:

(a(”ha_fh“),nhw> — (V- (kY (u — ), Thyw) + (v - V (, — Ty , Thyw)

o (u—TIu) —

+(o (up — ), Myw) = ( 5 ,th> — (V- (xV (u —ILu)) , ITw)

+(v-V (u—1Tu) , yw) + (0 (u — )  Iw) Ywe ¥
(3.10)

When 1 and w are smooth, it can be shown using a density argument that the projection
operator can be taken to be the classical interpolation operator [ , I
This concludes the a priori analysis on the relation between the implicit and thus the
approximation error and the interpolation error.
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Incompressible Navier-Stokes equations

We reconsider now the incompressible Navier-Stokes equations and follow the same
analysis to relate the implicit error to the interpolation one. Without loss of generality,
we assume zero-Dirichlet boundary condition.

p@v+v-Vv)—2V.-ue(v)+Vp = f inQx(0,T)
Vv = 0 inQx(0,T) (3.11)

where v and p are the desired velocity and pressure fields. Inhere p is the dynamic
viscosity, (v) the strain rate tensor, p the fluid density and f a given vector of external
forces acting on the flow. As presented in chapter 1, the weak form of (3.11) consists in
finding (v, p) € (V, Q) such that:

(f,w) VYweW
0 Vgeo

{ (0% w) + (ov- Vv, w) + (2pe(v) - e(w)) — (p, V- W)
(V-v,q)

(3.12)
An implicit time stepping scheme is first applied resulting in a non-linear system

of equations each time-step. The nonlinear term is then linearized using a Newton-
Raphson linearization and keeping terms only to first order at the i iteration:

(v- Vv,w)i ~ <Vi . Vvi_l,w> + <Vi_1 . Vvi,w> - <Vi_1 . Vvi_l,w) . (3.13)

For any v € V), the projection operator IT,, associates IT,w € V and for any p € Q, the
projection operator IT,, associates TT,q € Q. Hence, the variational formulation using a
finite element discretization reads as:

Vg € Q and Vw € Vo,

{ (pi)igf, ﬁ;jw) + (ov - Vv, TTow) + (2ue(vy) : e(TTow)) — (pp, V- Thow) =

(f, TT,w)
(V- vo, ) :

0

(3.14)
Using the adjoint of the projection operator and performing the Newton-Raphson lin-

earization on the nonlinear term imply:
Vg € Qand Vw € W,

( 0V, %

(ﬁZ’* (p%) v, w)  +(IT," (oI - Vvl vi, w) + (ﬁz* (pv;l’l]l . V) vi,w)
(T V) (T (20 () () - (T (D, T w)
= (I, (1) f, w)

(I, (V)vhq) =0
(3-15)
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Proceeding in the same way as for the convection-diffusion-reaction problem, one gets
in the dual spaces V? and Q:

/D ‘ . _ s _
Iy <pat +pI- Vv oy V 2#6) (v = Th,v) =I5, (1) (py — Ty p)

=11," (paat +pl- Vv v LV + 2y£> (v—TIv) — I (1) (p — TTp)  3-10)
(I, (V)vi,q) = (I, (V+)v, q)

This yields the desired relation between the implicit error and the interpolation error.
The a priori analysis was focused on the weak formulation of the flow problem. A
Newton-Raphson linearization was performed and a backward Euler discretization was
applied in time. These assumptions were also considered in the numerical simulation.
The control of the error provided by the anisotropic mesh adaptation is driven by
the interpolation error and consequently will result in the control of the discretization

error.

TUNING WITH STABILIZED FINITE ELEMENT METHODS

When coupling stabilized finite element methods with anisotropic meshing, a better
choice of the element’s characteristic length hx can be made. It will be shown that the
VMS approach for flow problems and the SUPG method for heat transfer phenom-
ena are among the best methods to couple with anisotropic finite element methods.
However, a tuning of the stabilization coefficients is needed in both the convective and
diffusive terms to take into account highly stretched elements with an anisotropic ratio
of order O(1 : 1000). Indeed, as it will be demonstrated in the numerical experiments,
the direction of the velocity provides the element size needed in the convection terms
while a bubble condensation technique gives rise to a proper coefficient for the diffu-
sion term.

In this work we adopted the following definitions for the stabilizing parameters 7

and 7 for the resolution of fluid flows as proposed in [ , ] and in
[ ] respectively:
-1/2 1/2
o (Y L (2l (4N o (1YL (lvill®
K At h]( h%( re Y ClhK
(3.17)

where v and p are respectively the kinematic viscosity and density of the fluid, and c;
and c; are two constants independent from hg [ ] and Kk is the characteristic
length of element K.

We also use the parameters proposed in [ , ] for the stabilization
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of convection-diffusion-reaction problems:

2N\2 2wl \2 (42 2
o 4 Vi|lK aK 2
T = ((At) +< e > +9<h%<> —|—0’> (3.18)

Note that the calculation of kg is the main subject of this chapter. This parameter is

involved in the stabilization terms for each element K as shown by equations (3.17) and
(3.18). It has been shown in the literature that good results can be obtained when using
the minimum edge length of K [ ], or the element’s diameter [ 1.

Figure 3.1 — Characteristic length for isotropic and anisotropic elements based on classical formulas.

Nevertheless, when strongly anisotropic meshes with highly stretched elements are
involved, the definition of hy is still a problem with critical interest as it plays an
important role in the setting of stabilizing parameters [ , ]. Indeed,
when a classical characteristic length is used, an undesired behavior can be observed
where one edge of the element K remains unchanged while the others are refined. This
idea is reflected in figure 3.1. Clearly the two triangles are different, one is anisotropic
while the other is isotropic, but the same characteristic length is associated to them.

One possible choice, proposed in [ ] is to determine this factor from
a relation between the direction of the convective field and the orientation of the
anisotropic element K given by the eigenvalues and eigenvectors of the Riemannian
metric tensor. In [ ] the authors examined deeply the effect of different el-
ement length definitions on distorted meshes. In [ ] anisotropic error esti-
mates for the residual free bubble (RFB) method were developed to derive a new choice
of the stabilizing parameters suitable for anisotropic partitions.

In this work, we modify the definition of the stabilizing parameters (3.17) to account
for a modified characteristic length and improve the numerical solution’s quality:

2\ —1/2 1/2
_ 2\, (2villx ) 4v (N, (elvillk)?
e (At) +< i )* ()2 e (p) *( il )

(3.19)
As stated in chapter 1, the stabilization parameter switches the tuning between a
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diffusion dominated regime where the term ( (;V)z> affects the most the stabilization
K
and a convection dominated regime where the term <%) plays the most significant

role in stabilizing the numerical solution.

On the other hand, for the convection-diffusion-reaction equation we define:

2 2wl AR
. 3 2 VillK 4x 2
T = <<At> + e ) +9<(h?<)> + 0 (3.20)

The stabilization parameter controls in a diffusion dominated regime where the term

( (:f:()2> affects the most the stabilization and a convection dominated regime where
the term <2”Z%) plays the most significant role in stabilizing the numerical solution.

The questiKon that arises at this stage is: how do we choose the characteristic lengths
to allow on one hand a good stabilization and on the other hand preserve the conser-
vation properties.

When dealing with convection dominated problems, we adopt the method pro-
posed in [ ] for computing the element’s characteristic size h. This ap-
proach takes into account the information on the projected flow along the gradient of
the basis functions relative to the element. It consists in computing h% as the diameter
of K in the direction of the velocity v as follows (see Figure 3.2):

(3-21)

where Nk is the number of vertices of element K and ¢; is the shape function that
is non-zero on the element K. We note the dependence of this definition on the flow
direction as shown in figure 3.2.

On the other hand, in the diffusion dominated regimes, the characteristic length hf<
for the stabilization of the Navier-Stokes equations will be defined such that:

(hZ)Z = i +21//K£(b1<) : e(bg) dK, (3.22)
K

and for the stabilization of the convection-diffusion-reaction equation,

o 1 +/ Kby - Vb dK , (3.23)
At K

a2
()
where bx denotes the bubble shape function on element K. The proof of these choices
is based on a comparison between the considered stabilization parameter and its anal-
ogous one provided by a Mini element formulation. When anisotropic meshing is ap-
plied, the Mini element method [ ] that involves a static condensation of bubble
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functions at the element level is advised as it overcomes the difficulty of choosing ap-
propriate characteristic lengths for anisotropic elements. The derivation will be given
in the following section.

Vi

\

y/ 2

Figure 3.2 — Element’s characteristic length in the streamline direction.

Illustrative example

To illustrate on the need to modify the definition of characteristic length, let us consider
the following example. The numerical simulation consists of having a simple Poiseuille
flow evolve inside a rectangular channel (0,4) x (0,2). The dynamic viscosity of the
fluid is set to # = 1072Pa.s and the density to p = 1kg/m?>. Parabolic Poiseuille flow
inlet velocity is assigned on the vertical walls with a maximum of 1.5m/s. No slip
boundary conditions are imposed on the horizontal walls. For this example we have
applied the anisotropic mesh adaptation on the velocity field. The adapted mesh is
presented in figure 3.3. We note how highly stretched and directional the elements are,
hence allowing a good capture of the emerging boundary layers. The velocity profiles
and 1D vertical cuts at the inlet and outlet boundaries are shown in figure 3.4. We dis-
tinguish the velocity magnitude distribution obtained with the classical characteristic
element length on the left and the one obtained with the modified element length on
the right of the figure. We observe that the velocity is zero at one wall, increases at the
center to a maximum then decreases back to zero at the opposite wall. Comparing the
profile of the velocity distribution at the inlet with the one at the outlet boundary we
can clearly identify a discharge in the case where the classical characteristic length is
used yielding a violation of the mass conservation property of the flow. The latter prop-
erty is conserved when the modified mesh size is used. This validates the importance
of the proposed stabilization parameters.

= Z

= ——

Figure 3.3 — Anisotropic mesh obtained for the Poiseuille problem.
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Figure 3.4 — Velocity profiles obtained with the classical characteristic length (top-left) and the modified
one (bottom-left) and 1D vertical cut along the outlet boundary (right).

Validation of the characteristic lengths choice
Navier-Stokes equations with dominant viscous terms

When Mini element/bubble condensation formulation is used, the mass conservation prop-
erty is satisfied on both isotropic and anisotropic meshes [Micheletti 02] whereas as
shown in the Poiseuille flow numerical example, a velocity discharge occurs when the
classical stabilization parameters are employed. To remedy this problem, we resort to
identifying a new representation of the characteristic length through an analogy anal-
ysis with the mini element/bubble condensation (a P1+/P1) method.

The method consists in enriching the finite element space with a space of bubble
functions whose support remains inside the mesh elements. The problem will then be
uncoupled into two-scales: the coarse and the fine scale. While the former is defined
on the whole computational domain, the latter is defined on the elements’” interior with
zero Dirichlet boundary conditions.

Following the lines of [[Hachem o09] for the derivation of the stable mini element method
on the Stokes problem, we are interested, in this section, in extending this technique to
a mixed discrete formulation for the transient incompressible Navier-Stokes equations
given by: find the velocity u(x,t) and the pressure p(x, t) such that:

(p0rv+v-Vv)—2V - ue(v)+Vp =
V-v =

f inQx(0,T)

0 inQx(0,T) (3-24)

where ¢ is the stress tensor, p the density of the fluid, f a given source term and yu the
dynamic viscosity.

Classical mixed formulation: We proceed as described in chapter 1 to derive the
weak formulation of this problem. We discretize the domain ) using a finite element
mesh H; and we define the discrete functional spaces for the velocity V), weighting
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functions Vo and pressure field Q) by:

d
Vi = {wh € (C'w))" [y x € PY(K)", VK € Hh} , (3.25)
Vio = {wn € Vi, Qpr = 0} (3.26)
and
Q) = {1 € C°(w)lqux € P'(K), VK € Hy | (3:27)

Without loss of generality we assume a zero Dirichlet boundary condition. Note
that the generalization of the formulation to any other type of boundary condition
is straightforward.

We recall that the mini element method consists in enriching the velocity functional
space by a discrete space corresponding to the bubble functions:

v, = {f'h/‘?mm— € PY(K;) N HL(K;), VK € Hy, i = 1,...,D} (3.28)

This formulation ensures stability for equal order interpolation of the velocity and
the pressure fields and satisfies the inf-sup condition (Brezzi-Babuska). The mixed
variational formulation for the Navier-Stokes problem reads as:

find vi, € Vy, i, € Vy and py, € Qy such that:

p (W,wh +G’h) +o ((vi+¥) - V (v, + %), wy + @)
+ (Zys(vh + ‘7;,) : e(wh —f—(bh)) — (ph,V ~wh) = (f,wh —|—(I)h)
Vwy +@, € Vo @ T)h,o

(V- (vp+¥1),q,) =0 Vg, € 9y,

\

Since the fine-scale problem at the element level is independent from the coarse-scale
one and vanishes on the element’s boundary, equation (3.29) can be decoupled into two
sub-problems:

e The coarse-scale problem:

p (255 a0,) 0 (v +91) -V (i 90, )
+ (2pe(vy) s e(wy)) — (pn, V- wp) = (Fwp)  Vw, € Vi (3.29)

(V-(vii+V),qn) =0 Vg, € Qy

e The fine-scale problem:

Y (a(‘,ha—;vh),d)h> +p ((Vh + \7;[) -V (Vh + Vh) ,d)h)

+ (2‘1/[8(Vh + Vh) : 8((:)]1)) — (ph,V . d)h) = (f,(])h) Y, € T}h,()
(3.30)
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Remark 32. As the fine-scale space is assumed orthogonal to the finite element one, the crossed
viscous terms vanish [ 1.

The fine-scale part is usually modeled via residual based terms that are derived
consistently on the elements” interior. The modeling of the fine-scale velocity is fol-
lowed by a static condensation that consists in substituting the effect of the fine-scale
solution into the large-scale problem (3.29), thereby eliminating the explicit appearance
of the fine-scale while still modeling their contribution to the coarse scale solution.
Consequently, additional stabilized terms, tuned by a local time-dependent stabilizing
parameter, will enhance the stability and accuracy of the standard Galerkin formula-
tion for the transient nonlinear Navier-Stokes equations.

At this stage the objective is to determine the small scale velocity and retain its
effects on the large scale problem.
Rearranging the terms, equation (3.30) is equivalent to:

(o (Ghe) et Tne) + ) e@)

— non-linear convection term
time dependent subscale

= (f — p%" —p(vyp+7) - Vv, — Vph,cb) V@ € Vyp
= (R, @) Y@ € Vyp

(3.31)
One can clearly notice the high nonlinearity and the time-dependence of these equa-
tions. Inspired by the work of [ ] to deal with the nonlinear convective term,
we resort to applying a Newton Raphson linearization. Although this method requires
the solution of the Newton equation to be computed at every iteration, thus increasing
the computational cost, it is favorable as it features rapid convergence and good initial
guess.

Again we follow the lines of [ ] for treating the nonlinear terms:

e We approximate the nonlinear convective term in the large-scale problem at the
ith Newton Raphson iteration up to first order as in equation (3.13).

e We approximate the nonlinear convective term in the fine-scale problem by its
large-scale part:

(vip+¥) - V(v +V) = v, Vv, +7-V¥ (3-32)

Without loss of generality, we use an implicit time marching scheme, the generalization
to other time discretizations is straightforward.

Taking into account the above assumption on the nonlinear term (eq. (3.32)), the
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fine-scale momentum equation (3.31) becomes:

p (@) +p (Vz_l : VV/‘:’) + (2ue(9y) 1 e(@y)) = (R, @) Y@ € V4o (3.33)
Note that the term ¥ from the implicit time discretization goes into the formula of
the residual R, on the right hand side of the equation. Inhere we mean by (v7) the
solution at the previous time step of the problem resolution.

The last equation shows that the fine-scale velocity field is closely related to the
solution on the large-scale.

Using the fine-scale fields expansion proposed by [ ], we have:
V= ), vibx and @, = ) wibx (3-34)
KeH, KeHy,

with bg being the bubble shape functions, v the coefficients for the fine-scale velocity
field and w) the coefficient for the fine-scale weighting function at the level of the
element K’s bubble.

Replacing ¥;, and @), by their expressions in equation (3.33) implies:

bKV/ i—
p <AtK, bKW}() +p <Vh 1. VbKl/l}(, wa}()K

(3-35)
+ (2ue(bgvy) : e(bxkwk)) g = (R, bxwy) VK € Hp, Ywi

Remark 33. The integrals over the inter-element boundaries will be neglected as the bubble
functions vanish on the elements” boundaries. Consequently the equation can be decoupled at
the elements’ level.

Equation (3.33) is valid for any choice of w} in particular for wj = 1 at the center
of element K and w} = 0 on its boundary.

On the other hand, we apply the following approximation adopted from [ I
brvi ry _ P
P (At'waK = Ar (3.36)

Therefore the fine-scale velocity derived from equation (3.35) reads as:

1
Vi = (Rm,bx)  VKEH, (3.37)

&0 (Vi Vi bi) -+ (2ue(bi) < e(bi))

viscous term

convective term

The stabilizing parameter 7 naturally appeared from the solution of the small-scale

problem. Assuming constant large scale residual R, on linear elements, it follows
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that:

T = VK € Hy, (3.38)

o (Vi Vb bic) -+ (2ue(bi)  e(be))

viscous term

convective term

Remark 34. The stabilizing parameter depends on the choice of the bubble function. However
as stated in [ I, when the same bubble functions are used for both the velocity and
the weighting function, the convection term cancels out from the formula. Indeed under the
assumption that v}fl is piecewise constant over the bubble, the choice of the Mini element
yields:

(v;1 Vb, bK)K =0 VKeH, (3.39)

Consequently, we have that:

q_ 1 y
E [ £+ (2ue(b) : €(bk)) k] KeHy (3-40)

At this stage instead of solving for the small-scale velocity field at the element

level, we apply a static condensation whereby one substitutes the fine scale solution,
expressed in terms of large-scale momentum residual, into the large-scale problem.
Upon this step, additional terms arise in the discrete problem and are tuned by a local
time-dependent stabilizing parameter. These terms enhance the stability and accuracy
of the standard Galerkin formulation for the transient non-linear Navier-Stokes equa-

tions.

Going back to the coarse-scale problem and taking into account the assumptions
made on the nonlinear term, we obtain:

(pa"’g{’h,wa + (ovy - Vv, wy) + (pvi;l - Vvh,wh) + (2ue(vy,) : e(wy))

—(pn, V-wy) = (f,wy) Vwy, € Vo (3.41)
(Vviqn) + (V- Vi,q:) =0 Vg € Qy

Integrating by parts the third term of the first equation and the second term of the

second equation then:

(Pavhaﬁhf“’h> + (ovi - Vv, wp) — Yxen, (Tng,PV;‘fl . th) + (2ue(vy) : e(wy))
—(pn, V-wy) = (f,wy,) Ywy € Vig

(V-vi,qn) — ¥ (t?Rwm, V) =0 Vg, € Qy
KeH,,

(3-42)

Remark 35. Note that the term (0;V,w) vanishes as we consider static subscales.
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Substituting the fine scale velocity by its expression yields:

(Paaith/wh) + (ovi - Vv, wy) — Yken, (Tf <aaLth +povy Vv, + Vp, — p% - f) ,ovi L th)
+ (2ue(vy) s e(wy)) — (pn, V- wy,) = (fwy)  Vwy, € Vg

(Vovign) — T (rg(ag;'+pvh-vvh+vph—p%—f),w;h):o Yan € Oy

L KeH,,

(3-43)
This completes the mixed finite element formulation analysis. We can obviously detect

the additional stabilizing terms involving integrals over the elements’ interiors. Conse-
quently a stable solution is obtained in the sense that it satisfies the inf-sup condition.

Recall that the main objective of this analysis is to compute the appropriate ele-
ments’ characteristic lengths in case of diffusion dominated regimes and anisotropic
mesh adaptation.

An equivalence between the residual free bubble approach and the Mini-element
method was highlighted in the literature [ , ]. Indeed the latter pro-
vides a natural way of determining the stabilizing terms. We note that the choice of the
bubble function used influences directly the stabilizing parameter.

It was pointed out in [ , , ] that when the viscous term
is large with respect to the convection term, the stabilizing parameter derived by a
residual free bubble method is given by:

i JebpdK
Tq = K] (3-44)

where by is the bubble function solution of the boundary value problem:

—ulAbg =1 inK (3.45)
by =0 onodK 345
The authors of | , , ] also demonstrated that the stabiliza-
tion term in the diffusion dominated regime can be approximated by:
hi)2
| ;) (3-46)

where (h4) is the characteristic length of the element K.
Proceeding by analogy between the two forms of stabilization parameters defined by
equations (3.40) and (3.46), we infer that:

(h%)? _ 1
wo [+ (2ue(b) s ebi))i] (347)
and equivalently,
(hill)z = % + (2ye(b1<) 28(bK))K (3.48)
K
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This completes the proof of the choice of the characteristic length in case of the Navier-
Stokes equations with high viscous terms.

Convection-Diffusion-Reaction equation with dominant viscous terms

We consider the convection-diffusion-reaction equation defined on the domain ) x
(0, T) by:
find a function u(x, t) such that:
Ju

§+V~Vu—v-(KVu)+0u:f (3-49)

where v is a given divergence-free velocity field, x > 0 is the diffusion coefficient,
o > 0 the reaction coefficient, and f a source term function. For the sake of simplicity
we assume a zero boundary condition on d(). The generalization to other types of
boundary conditions is straightforward. We discretize the domain with a mesh H;, and
define the functional space U/ in which we are seeking the solution of the problem:

U= HYQ) = {veHl(Q)\u:oweaQ}. (3.50)

Standard formulation: We enrich the solution’s functional space by a discrete space

corresponding to the bubble functions:
U, = {ﬁh, iy, € PL(K;) N HY(K;), VK € Hy, i = 1,...,D} (3.51)

We apply the same analysis and the same arguments as above to derive the stabilization

parameters:

o As the small scale functional space is independent from the coarse scale one, the
problem can be decoupled into two sub-problems.

e Using an Euler implicit discretization in time.

e Rearranging the terms in the fine-scale equation to express the small scale terms
as a residual of the large scale problem.

The fine-scale problem becomes:

il . oy ou (TR
(At —H)Vu,?,b) + (xVi, Vi) = (f Fria v-Vu+ V- (xVu) At,l[))
= (Rcor, )
(3-52)
We employ the fine-scale field expansion proposed by [ I
i, = Y ugbx and @ = Y pkbx (3:53)

KeHy, KeH,,
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with bk being the bubble shape functions, uj the coefficients for the fine-scale solution
field and ¢} the coefficient for the fine-scale weighting function at the level of the
element K’s bubble.

Substituting i, and §, by their expressions in equation (3.52) and using the prop-
erty that the bubble functions vanish at the elements’ boundaries, we can split the
equation into sub-equations defined at the elements’ level:

ulb
( KK | oVillby, ¢}<b1<> + (kVugbk, Vipgbx) = (Reor, Pibk) (3-54)

At
Then we apply the following approximation adopted from [ ]:
u}(bK ’ o 1
( A Ykbe ) = (3.55)

Hence the fine-scale problem becomes:

"
Aili —+ (Vvu}(b[(, IP}(bK)K + (Kvu}(b[(, VT,[J;(bK)K = (RCDR/ l/J}(bK)K VK € H, (3.56)

As the equation is satisfied for any choice of 1} in particular for:

, 1 on the element’s center,
Pk = (3.57)
0 elsewhere.
It follows that the small-scale solution will be given by:
, 1
Uy = (Rcor, bx) g (3-58)

L+ (VVbk, bi) g + (kVbg, Vbg)

Remark 36. Using the same bubble function for the solution and the weighting function leads
to the cancellation of the convection term.

The stabilizing parameter 7¢ naturally appeared from the solution of the small-scale
problem. Assuming constant large scale residual Rcpr on linear elements, it follows
that:

T8 = ! (3.59)
AL + (KVbK, VbK)K
At the diffusion limit, it was demonstrated in [ , , ] that the
stabilization parameter derived using a residual free bubble approach can be approxi-
mated by:
Tg R C(h%)2 (3.60)

K

where C is a constant and (h) is the characteristic length of the element K.
Consequently, proceeding by analogy between equations (3.60) and (3.59), we can infer
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that: .
K
C(h}i()z = E + (KVI?K, VbK)K . (361)

This concludes the derivation of the characteristic length choice in the case of diffusion

dominated regime for the convection-diffusion-reaction problem.

Remark 37. At the convection dominated limit, it was stated in [ | that using the
stabilization parameters derived from the Residual free bubble method can lead to a loss of
stability. To avoid this, we treat the convection dominated regime with a different choice of
characteristic length:

2]v|
L v Vel

There is no need for additional modifications to be performed in order to couple the

hx =

stabilized finite element with an anisotropic mesh adaptation. As the latter is designed
to fit in the general context, it does not depend on the treated problem nor on the
chosen field of adaptation. We will show in chapter 5 how the metric construction will
be extended to account for several fields in one shot. For the time being, we intend
to apply the method on one field of interest which is considered as the motor of the
simulation.

APPLICATIONS TO CONVECTION-DIFFUSION PROBLEMS

The numerical solution of the unsteady convection-diffusion equation using the
Galerkin formulation normally exhibits global spurious oscillations in convection-
dominated problems, especially in the vicinity of sharp gradients, and steep boundary
and interior layers. Over the last two decades, investigations on the development
of numerical methods dealing with such problems were very active. In the opening
of his book, Morton [ | stated that: ‘Accurate modelling of the interaction be-
tween convective and diffusive processes is the most ubiquitous and challenging task in the
numerical approximation of partial differential equations’. However, in the presence of
steep boundary or interior layers, if an isotropic mesh is to be used, then a very small
mesh size shall be considered everywhere in the domain in order to achieve a good
level of precision. Hence, a high computational cost is expected. Mesh adaptation
is a key tool for lowering the computational cost while maintaining a good level of
accuracy. The idea is to concentrate the elements of the mesh in the domain region
where the solution exhibits fast variations. Note that for boundary and interior layers,
the solution varies faster in one direction than it does in the others, therefore a mesh
mimicking this behavior by employing small mesh sizes in the direction orthogonal to
the gradient and larger ones in the parallel direction is highly desirable. Consequently,
anisotropic meshes are efficient tools as they render a higher accuracy for the same
mesh complexity when compared to isotropic refinement.

On the other hand, as discussed in chapter 1 when a stabilized numerical scheme
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is used, on an isotropic mesh, the computed layer might be smeared and the conver-
gence rate is lowered. The choice of stabilizing parameters is still a puzzling question
since different choices introduce different amounts of diffusion. It was pointed out in
the literature that optimal convergence can be recovered using adapted meshes while
reducing the excessive smearing. From this standpoint, anisotropic mesh adaptation
can be considered as a keystone for recovering the optimal rate of convergence.

Historical overview

Research on the development of adaptive meshes together with numerical methods
for the resolution of convection-diffusion problems date back to the year 1969 with the
work of Bakhvalov [ ] who proposed the use of layer-adapted graded meshes.
The latter are fine in the vicinity of boundary layers and coarse outside of it. Instead of
using graded meshes, Shishkin [ , ] proposed to employ a piece-
wise uniform mesh in the 1990s. This idea lead to fruitful contributions during that
period [ , , , , ]. The Shishkin meshes
are set a priori with fine resolution near the layers and coarse otherwise. They permit
a good level of accuracy and the generation of a less diffusive solution. However, a
major drawback of Shishkin meshes is that they should be set a priori that is, one must
know the location and the nature of the layer in the pre-simulation phase to ensure
its good performance. When simulating unsteady convection-diffusion problems, the
solution gradients’ locations and the direction in which they will evolve are not known
a priori. This drawback highlights the need for a method that automatically follows
and captures the emerging solution gradient. Anisotropic mesh adaptation is the
best candidate for such applications. Very few research has been done on anisotropic
mesh adaptation algorithm applied in the context of convection-diffusion problems
[ , , 1

The method that we propose is capable of automatically detecting emerging layers in
the solution. It is robust and efficient in resolving them. As it will be shown in the
numerical validation, the method allows an improvement of the computed solution’s
accuracy in particular in the wake of boundary and internal layers. It is designed to
work without modification on any kind of applications. It does not need an a priori
knowledge on the layers form, position or evolution. It works under the constraint
of a fixed number of nodes to produce an optimal mesh. From a practical point of
view, this is an important advantage especially when dealing with industrial appli-
cations. Indeed, in order to perform long-time and large-scale industrial applications
it is preferable to choose a number of nodes N based on the available computational
resources and determine the optimal mesh yielding the most accurate solution.

Numerical experiments on the steady convection-diffusion problem

In this section, we assess the performance of the newly developed adaptive algorithm
on several steady convection diffusion problems exhibiting boundary layers. We start
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with an evaluation of the order of convergence of the numerical method. Then we show
the ability of the stabilization method associated with the anisotropic mesh adaptation
technique to automatically detect and resolve the emerging layers without the appear-
ance of non-physical oscillations. The obtained solutions are compared to a set of
references presented in [ , , , ]. The results that
we present hereafter were recently published in [ I

As it will be shown in the numerical results, the developed algorithm based on the
stabilized finite element method is capable of producing accurate results within a very
reasonable execution time and a low computational cost.

Example 1: Regular boundary layers
We consider a first test case with a continuous solution and regular boundary layers.
This test has been studied by several authors [ , ].

The computation domain is set to Q = (0,1)?, the velocity field to v(x,y) = (1,1)T
and the diffusion coefficient is varied x = {1071,1073,107°}. The exact solution of the
problem is given by:

1-y

u(x,y) = xy (1 — exp_l%) (1 — exp_T> . (3.62)

It develops boundary layers at x = 1 and y = 1. The boundary conditions and the
source term are determined from the exact solution. When the diffusion coefficient
tends to 0, the flow becomes convection dominated and thus the standard Galerkin
approach is polluted by spurious oscillations. The latter are avoided and a smooth so-
lution is obtained when applying the SUPG stabilization with anisotropic mesh adap-
tation. Recall that the amount of added artificial diffusion is related to the mesh size
inside the layer region. This is computed as the largest edge of the element in the di-
rection parallel to the velocity field. We can observe in figure 3.5 that as the diffusion
coefficient x tends to zero, the numerical solution becomes steeper without the appear-
ance of any numerical oscillation. Figure 3.6 shows the anisotropic meshes made up
of 5,000 nodes obtained for the different values of the diffusion coefficient. We note
the concentration of the nodes along the boundary layers. This reflects how, for a con-
trolled number of nodes, the mesh is naturally and automatically coarsened in smooth
regions while extremely refined near the boundary. The zoom on the right side of the
cavity illustrates the sharp capture of the boundary layers and the right orientation and
deformation of the mesh elements (longest edges parallel to the boundary). The limited
resolution and optimal distribution of the elements yield a good level of accuracy with
a reduced computational cost. This example aims at emphasizing the spatial order of
convergence when using the proposed mesh adaptation technique. As noted in chapter
1, around half an order of convergence is lost when a stabilized finite element method
is used on an isotropic mesh.

The global convergence order is computed in the L!, L2 and H! norms. In each case,
the error has been computed with respect to the reference solution. As can be seen in
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u u
0.5 0.5 ‘
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! |

Figure 3.5 — Numerical solution for x = {1071,1072,107°} (from left to right).

tigure 3.7, the anisotropic mesh adaptation proves to be very efficient in recovering the
method’s order of convergence.

Comparing with the results obtained in [Nguyen o9], the anisotropic mesh adap-
tation technique asymptotically recovers the same order of convergence with lower
interpolation error evaluated in the Li, L, and H; norms. The generated elements
present in the convection dominated case, higher aspect ratios in the vicinity of the
boundary layers. The elements are well oriented and elongated to efficiently provide a
good level of accuracy.

Example 2: Interior layer with variable convective field
The second numerical experiment is taken from [Nguyen o9, Huang o5]. The aim be-
hind this example is to test the ability of the developed numerical scheme together
with the mesh adaptation algorithm to capture interior layers. We solve the steady
convection-diffusion equation with the diffusion coefficient x = 0.005 on Q) = (0,1)2.
We choose the exact solution to be continuous all over the domain but to develop an
interior layer along the line y = —x 4 0.85:

u(x,y) - <1 +expx+y2;o.ss>fl

The boundary conditions and the source term are determined from the exact solution.
We consider a variable velocity field v = (u(x,y),u(x,y))T. Figure 3.8 (left) presents
the numerical solution obtained on a mesh made up of around 2,000 nodes. The
anisotropic mesh that is automatically generated by our developed adaptive algorithm
is shown in figure 3.9. One can notice the high concentration of elements along the
line y = —x + 0.85 in order to accurately capture the produced inner layer. Taking a
closer look at the mesh in the zoomed version near the left boundary we can detect
the good orientation of the elements with the stretching in the direction of the sharp
layer. This demonstrates the ability of the algorithm to work under the constraint of
a fixed number of nodes and to effectively control the element sizes, orientations and
locations.

Again the convergence is of first order in the H! norm and second order in the L,
and L, norms recovering the theoretical predictions as can be seen in figure 3.8 (right).
The very small errors in the L; and L, norms reflect the advantage of the adapted mesh
as it is well aligned with the solution’s strong anisotropic features.
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Figure 3.8 — Numerical solution (left) and convergence history in the L, L? and H' (right) for
x = 0.005 and a zoom on the interior layer.
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Figure 3.9 — Anisotropic mesh obtained for x = 0.005.

So far we have considered two test cases where the exact solution is known and
we have computed the order of convergence of the developed SUPG formulation
combined with the anisotropic mesh adaptation technique. We present in what follows

more complex situations inspired from [ , I

Example 3: Regular boundary layers with smooth data

We consider the constant convective field v(x,y) = —(2,1)T and the diffusion co-
efficient xk = 107% over the domain QO = (0,1)> . We define the source term as
f(x,y) = —x%(1 — x)>y%(1 — y)? and impose a zero boundary condition on dQ). The
solution of this problem develops regular boundary layers at the outflow bound-
aries x = 0 and y = 0. Figure 3.10 shows the numerical solution obtained on an
anisotropically adapted mesh of around 3,000 nodes. It can be clearly seen from

g
/

Figure 3.10 — Numerical solution for x = 10~° with its corresponding anisotropically adapted mesh.

o C

§-2e-5

-de-5
-5.04e-5

the numerical results that the numerical scheme is capable of producing a smooth
solution i.e. treating the spurious oscillations that appear when using the standard
Galerkin formulation. Again the mesh responds very well to the solution with high
resolution at the boundary layer and less dense elements in the rest of the domain. The
elements are stretched in the direction of the boundary layer allowing its sharp capture.
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Example 4: Regular and corner boundary layers with non-smooth data

In this numerical example, we consider a non constant convection field
v(xy) = —(2+x%y, 1+ xy)"

with a small diffusion coefficient x = 10~® on the domain Q = (0,1)2. We define the

source term as f(x,y) = —(x% +y> + cos(x + 2y)) and impose the following boundary

condition:
u(x,0) = u(0,y) = 0.
_ 1 _ 1
u(x,1) = dx(1—x) x<3 ' u(l,y) = 8y(1—-2y) y<g '
1 otherwise 1 otherwise

We expect the solution of this problem to develop regular and corner boundary layers
at the outflow boundaries x = 1 and y = 0. In figure 3.11, we present the numerical

u
1

;
0.75
105

0.25
i

0

Figure 3.11 — Numerical solution for k = 107°, its corresponding anisotropically adapted mesh with
different zooming levels near the left boundary.

solution on a 3,000 nodes mesh obtained using the SUPG method and the mesh adap-
tation tool. We can observe the sharp stretching of the elements and the fine resolution
at the regular and corner boundary layers and the location of the solution’s steep gradi-
ent. We can also detect the gradual change of mesh element sizes in the zoom near the
lower bound of the domain. It can be identified that the mesh has a better refinement
in the orthogonal direction along the steep boundary layers. These observations reflect
the ability of the anisotropic mesh adaptation algorithm to automatically adjust the
shape and orientation of the elements while optimizing their numbers.

Example 5: Parabolic layers
We consider the domain Q = (0,1)?, the diffusion coefficient x = 1073, a zero source
term and the following boundary condition:

(6\/§x(1 —x)(2x — 1))3 ony =0

0 otherwise on 9()

u(x,y) =
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The velocity field is set to v.= —(1,0). Given the setting of the problem and the
boundary conditions, we expect parabolic layers at y = 0 with positive values for
x > 1 and negative values for x < 3. The solution obtained on an anisotropic mesh
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Figure 3.12 — Numerical solution for k = 102 (right), its corresponding anisotropically adapted mesh

with close-ups at the lower boundary to the left(middle-top) and right(middle-bottom) of the line x = %

made of around 5,000 nodes is shown in figure 3.12. One can obviously notice the
symmetric orientation and distribution of the elements in the mesh in response to the
symmetric and parabolic profile of the solution. We also highlight the good quality of
the automatically generated elements.

Example 6: Regular, Parabolic and Corner layers
We consider the same domain and constant velocity field as in the previous example,
a zero source term and a diffusion coefficient x = 0.05. The boundary condition is
defined by:
(1-x)> ony=0
u(x,y) =3 y? onx =0
0 otherwise on d()

The solution as shown in figure 3.13 exhibits a parabolic boundary layer along y = 0
and a regular one along x = 0. Corner boundary layers are detected at (0,0) and (0,1).
We can observe in the plot of the contour lines that the regular boundary layer has a
steeper gradient than the parabolic one. One can easily see the high condensation of
the elements near the corner layers and the gradual coarsening as we move away from
them.

Example 7: Parabolic boundary layers with recirculating convective field

We consider the domain 3 = (—1,1)> and a non-constant flow with a dif-
fusion coefficient x = 0.05 and a recirculating convective field defined by
v = (2y(1 — x?), —2x(1 — y?)) exhibiting discontinuities at some parts of the bound-
aries leading to boundary layers. This test case is known as the double glazing problem
[Elman o5] and models the spread of heat in a box with a heated wall. For this problem
with complex physics, it is challenging to capture the structure of the parabolic layers.
The results show the importance of the anisotropic mesh adaptation in capturing the
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Figure 3.13 — Numerical solution for x = 10~2 and its corresponding anisotropically adapted mesh.

details of the solution for such a challenging problem. Figure 3.14 presents the contour
lines of the obtained numerical solution on an anisotropic mesh made up of around
3,000 nodes.

Figure 3.14 — Numerical solution for x = 10~ and its corresponding anisotropically adapted mesh.

APPLICATIONS TO INCOMPRESSIBLE FLOW PROBLEMS

In this section, we are interested in validating the developed anisotropic mesh adapta-
tion tool on flow problems. A variational Multiscale method will be used for stabiliza-
tion.

As we are interested in well capturing the large-scales of the solution, while mod-
elling the effects of the fine-scales, we employ the method based on the averaged length
distribution tensor for gradient recovery, the edge-based error estimates and the equi-
distribution principle. This method proved to provide a good level of accuracy while
maintaining a reduced computational cost. It focuses on automatically capturing evolv-
ing gradients of the solution under the constraint of a fixed number of nodes.

It is important to mention that the method tends to refine the mesh in the hierar-
chical importance of the solution’s gradient. In other words, if new features (with high
gradients) appear in the solution, the mesh will be automatically coarsened in regions
with lower gradient and will be refined near the newly emerging features. In this case,
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even with small number of nodes, the solution will still be well captured although not
with the same degree of accuracy.

The performance of the proposed anisotropic mesh adaptation will be assessed
on the benchmark driven cavity problem at low and high Reynolds numbers. In the
following simulations we show that boundary layers as well as eddies can be well
captured by the mesh. Results are compared with very accurate reference solutions
taken from the literature and show that the flow solvers based on stabilized finite
element method produce very accurate solutions on anisotropic meshes with highly
stretched elements. Furthermore, new measurements positioned near boundary layers
(see fig. 3.15) are presented in this section. The edge-based error estimation is applied
on the velocity field; more precisely on its direction and its norm. We will discuss in
chapter 5 how the metric construction is modified to take into account several fields for
error estimation.

We present herein the most relevant results for the validation of the accuracy
and efficiency of the coupling between the VMS approach and the anisotropic mesh
adaptation technique.

Further analysis was conducted on this problem in order to provide benchmark
results on the time dependent two and three dimensional incompressible Navier-
Stokes equations with anisotropic mesh adaptation. It demonstrated the capability of
the anisotropic mesh adaptation tools to capture the boundary layers developed by the
numerical solution. The interested reader can refer to [ ]. Such a new set of

data can serve as a useful benchmark for comparison.

Driven flow cavity problem (2D)

We begin our validation of the adaptive technique by considering the classical 2D lid-
driven flow problem with a zero source term. This test has been widely studied by a
number of authors [ , ] using finite difference and finite volume meth-
ods, and | , , , ] using stabilized finite
element methods. It serves as a benchmark for numerical methods. The computational
domain is a unit square [0, 1]?. We impose homogeneous Dirichlet boundary conditions
for the velocity equal to one on the top boundary of the computational domain, i.e. at
y = 1, and zero elsewhere. We set the density to 1kg/m> and adjust the viscosity in
order to obtain Reynolds number 1,000, 5,000, 10,000, 20,000, and 100, 000. We evolve
the solution in time with a fixed time-step equal to 0.05s. We recall a key feature of
the proposed mesh adaptation technique which is its capability to work with a fixed
degree of freedom. Usually this number is set in accordance with the available com-
putational ressources. This feature is a main advantage as it avoids a drastic increase
in mesh complexity and hence in the computational cost, consequently constituting a
powerful tool for industrial applications. We fix the number of nodes to 10,000 in the
following test cases for Reynolds number 1000, 5000 and 10, 000. Starting with a uni-
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form mesh presented in figure 3.15, we apply the mesh adaptation process every five
time-steps. Note that a frequency of adaptation is applied in the view of reducing the
computation time due to adapting the mesh. It is considered as an acceptable tradeoff

between efficiency and accuracy.

x=0.1 x=0.5 x=0.9

Figure 3.15 — Driven cavity problem: 2D computational domain and the different cross sections.

Figure 3.16 presents the three resulting converged meshes (containing exactly 9, 854
nodes). We highlight the high resolution not only along all the boundary layers but
also at the detachment regions. This reflects the anisotropy of the solution caused by
the discontinuity of the boundary conditions and the nature of the flow. The elements
at the central bulk of the cavity region around the primary vortex are mostly isotropic
and increase in size as the Reynolds number increases. Again, this reflects and ex-
plains how, for a controlled number of nodes, the mesh is naturally and automatically

coarsened in that region with the goal of reducing the mesh size around the secondary

vortices in the bottom corners.
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Figure 3.16 — Driven cavity problem: anisotropic meshes at Reynolds 1000, 5000 and 10, 000.

As the Reynolds number increases, secondary eddies emerge in the domain. The
mesh adaptive algorithm responds to this phenomena by refining at the level of these
eddies and coarsening the domain regions exhibiting lower velocity gradient. We can
clearly notice by comparing the meshes obtained for increasing Reynolds number, i.e.

with emerging secondary vortices, how the elements are automatically and anisotropi-
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cally adjusted to allow a good capture of these vortices. This is mainly due to the choice
of the unit vector combining the velocity components and its norm. The proposed ap-
proach shows that, with around 10,000 nodes, it is capable of capturing all the vortices
at the different scales. Indeed, the small eddies are not strong enough to be captured
accurately by classical adaptive strategies.

The close-up on the right side of the cavity in Figure 3.17 highlights how sharp
the layers” capture is. It shows the correct orientation and deformation of the mesh
elements (longest edges parallel to the boundary). This yields a great reduction in the
number of needed degrees of freedom to provide a good level of accuracy. These results
give confidence that the extension of the approach to take into account all velocity
components seems to work very well and plays an important role for transient flows.
Note that the details on how the metric construction is extended to take into account

several fields are covered in chapter 5.
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Figure 3.17 — Driven cavity problem: zooms on the mesh near the right wall.
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At this point, the next objective of these simulations is to compare the obtained
results to very accurate reference solutions. Therefore, we first plot the velocity profiles
for Vy along x = 0.5 at Reynolds 1000, 5000 and 10, 000. Figure 3.18 shows respectively
that all the results are in very good agreement with a reference solution computed on
a 600x600 = 360000 points fixed mesh [ I

For further comparison, we provide in Table 3.1 values of the vertical and horizon-
tal components of the velocity along the line x = 0.5 . We report the results obtained
with simulations on a fine isotropic mesh (600x600) and second from the converged
anisotropic meshes (~ 10,000 nodes). We compare these results to very precise com-
putations found in [ ]land [ ] performed on a uniform grid com-
posed of 5000x5000 nodes. The presented solution on an isotropic (600x600) unstruc-
tured mesh highly correlates with the references. Values agree, along with the profile,
up to the fourth digit. On the other hand, results on anisotropic meshes compare
well and agree up to the second digit with the highly accurate solutions computed on
5000x5000 = 25,000, 000 points [ ]. Again, results obtained with the VMS
flow solver using either isotropic or anisotropic meshes coincide very well with the
results in the literature.

It is worth mentioning that there is a lack, in the literature, of reference data at high
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Figure 3.18 — Driven cavity problem: comparison of the first component of the velocity field Vy in the

mid-plane x = 0.5 for Re = 1,000 (left), for Re = 5,000 (middle) and for Re = 10,000 (right).

y Ref [ ] Ref] ] Isotropic  Anisotropic
1.0000 1.0000000 1.0000000 1.0000000 1.0000000
0.9766 0.6644227 0.6644194 0.6644520 0.6627950
0.9688 0.5808359 0.5808318 0.5808070 0.5798160
0.9609 0.5169277 0.5169214 0.5168170 0.5126750
0.9531 0.4723329 0.4723260 0.4721800 0.4709190
0.8516 0.3372212 0.3372128 0.3370270 0.3359990
0.7344 0.1886747 0.1886680 0.1885570 0.1883090
0.6172 0.0570178 0.0570151 0.0569487 0.0572112
0.5000 —0.0620561 —0.0620535 —0.0620790 —0.0616432
0.4531 —0.1081999 —0.1081955 —0.1082040 —0.1078430
0.2813 —0.2803696 —0.2803632 —0.2803280 —0.2808320
0.1719 —0.3885691 —0.3885624 —0.3883390 —0.3863410
0.1016 —0.3004561 —0.3004504 —0.3001060 —0.3009820
0.0703 —0.2228955 —0.2228928 —0.2225900 —0.2243200
0.0625 —0.2023300 —0.2023277 —0.2020430 —0.2041190
0.0547 —0.1812881 —0.1812863 —0.1810220 —0.1828680
0.0000 0.0000000 0.0000000 0.0000000 0.0000000

Table 3.1 — Driven cavity problem: velocity profiles on the median plane x = 0.5 at Re = 1000.
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Reynolds number. In particular, measurements near the walls cannot be found in the
literature. Thus, it makes the comparison and validation of the results on anisotropic
meshes at high Reynolds number difficult. Therefore, we will use in what follows our
results carried out on the isotropic meshes (600x600) as references.

We perform cross sections close to the walls; these are crucial for validating the
efficiency and accuracy in capturing the boundary layers. We present the new plots
taken near the corners in figure 3.19.

We show in these figures the velocity profiles for Vy along x = 0.1 and x = 0.9
at Reynolds 1000, 5000 and 10,000. All the results are in very good agreement with
the proposed reference having 600x600 elements. It is clear that in regions of strong
vortices and very close to the walls, the use of anisotropic meshes plays a critical role.
All the boundary layers are sharply captured and automatically identified. We can
clearly see from these plots that the creation of extremely stretched elements near the
walls provides accurate results. The reference computed on a very fine isotropic mesh
(600x600) agrees with the anisotropic results obtained using only 10,000 nodes.

Finally, in order to assess the capability of the VMS method to simulate high
Reynolds number flows on anisotropic meshes, we repeated the simulation for
Reynolds numbers 20,000 and 100,000. Note that details on obtaining the steady so-
lution for different Reynolds numbers is analyzed by the authors in [ ] and
will not be repeated here.

We increased the number of nodes to 20,000 in order to capture more accurately
the characteristic of the unsteady solution. We present in figure 3.20 snapshots of the
meshes at a certain time instance. As expected, all the main directional features charac-
terizing the velocity inside the lid-driven cavity are detected and well captured by the
anisotropic error estimator. The mesh elements are highly stretched along the direction
of the layers, at the detachments regions and around the developing secondary vortices.
Once again, the developed incompressible Navier-Stokes VMS solver proves to be very
efficient and robust at high Reynolds numbers using highly stretched elements. Again,
for a given constraint on the number of elements we can find the mesh that maximizes
the accuracy of the numerical solution.

To have a clear idea on the efficiency of the developed anisotropic mesh adaptation
in simulating high Reynolds flows, we summarize in table 3.2 the history of CPU time
needed to achieve 20 seconds of simulation with and without mesh adaptation. The
fixed mesh used for comparison is the one that yields the same level of accuracy as
in computing the solution with the anisotropic mesh adaptation. We also report the
percentage of simulation time spent by the adaptation algorithm. We notice that on
average the anisotropic mesh adaptation allows 5 times faster computations, and it
uses almost 20% of the simulation CPU time.
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Figure 3.19 — Driven cavity problem: comparison of velocity profiles for Re = 1,000 (top), for
Re = 5,000 (middle) and for Re = 10,000 (bottom). Left: Velocity profiles for Vy along x = 0.1. Right:
Velocity profiles for Vy along x = 0.9.
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Figure 3.20 — Driven cavity problem: snapshots of the anisotropic meshes for Reynolds 20,00 and
100,000
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Reynolds CPU time (fixed) CPU time (adaptive) % on anisotropic mesh Speedup

1000 7655.1 1822.8 21 4.2

5000 8158.6 2022.27 21.4 4
10000 8563.46 2320.3 20.1 3.7
20000 7978.2 3008.3 17.85 2.6
100000 7427.8 4956.7 20.7 1.5

Table 3.2 — History of CPU time needed to achieve 20s of simulation.

3.4.2 Driven flow cavity problem (3D)

We continue our investigation on the classical lid-driven flow problem and consider the
three dimensional case on the cubic domain [0,1]>. A zero source term is employed.
Dirichlet boundary conditions are imposed on the velocity field: v = 1 on the upper
wall at z = 1 v = 0 elsewhere. The solution is evolved with a fixed time-step equal to
0.05s. The viscosity is adjusted in order to obtain Reynolds number of 1000, 3200 and
5000.

Figure 3.21 — Streamlines snapshots at Reynolds 1000, 3200 and 5000

All numerical experiments are done using a fixed number of nodes (~ 150, 000).
Again, in 3D where the flow characteristics are much more complicated, all the bound-
ary layers as well as the vortices are sharply captured and identified.

Figure 3.21 highlights the stretching of the elements near the walls, in the corners
and even at the bifurcations of the eddies for Reynolds number equal to 1000, 3200 and
5000 respectively. One observes that the higher the Reynolds number, the denser the
mesh around these regions. The velocity profiles for Vy along x = 0.5 at Reynolds 1000
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and 3200 are presented in Figure 3.22. All the results are in good agreement with the

reference having a twice finer mesh of 96x96x96 grid points [Albensoeder os].
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Figure 3.22 — Comparison of the velocity field’s first component in the mid-plane x = 0.5 for

3,200 (right).

In figure 3.23 we present different close-ups on the mesh, corresponding to Re =

3200, to show how the elements can be highly stretched along the direction of the layers.

This reflects well the accuracy and details of the resolution caused by the discontinuity

of the boundary conditions and the nature of the flow.

The anisotropic adaptive procedure modifies the mesh so that the local mesh res-

olutions become adequate in all directions. Recall again that these plots reflect for

the given fixed number of nodes (~ 150,000) the mesh that optimizes the accuracy of

the numerical solution. The presented test cases were considered here in the objective
of demonstrating the capability of the VMS method with the modified characteristic
length to simulate 2D and 3D high Reynolds number flows on anisotropic meshes.

Figure 3.23 — Zooms on the mesh details inside the 3D cavity
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Flow past a Naca oo12 airfoil

In this test case we intend to evaluate the capability of the stabilized finite element
method together with the Spalart-Allmaras turbulence model to handle turbulent flows
in the presence of our developed anisotropically adapted meshes. The steady flow
around a NACA oo12 airfoil is a fundamental benchmark in aerodynamic simulations
for its simplicity and ability to reflect many features that may appear in aircraft appli-
cations. The results that we provide in what follows are presented in [ I

The anisotropic mesh adaptation coupled with the VMS approach and the Spalart-
Allmaras model is assessed on a fully turbulent high Reynolds number flow reproduced
from [ ]. We immerse a NACA body in a sufficiently large domain to avoid
the influence of the farfield boundary conditions on the nature of the flow near the
airfoil.

Thus we set the domain to 8 x 20 chords as shown in figure 3.24. Respecting the
incompressibility of the flow, we prescribe periodic boundary conditions at the inlet
and outlet. We choose the inlet boundary condition to yield a Reynolds number of
Re = 6 x 10° and a Mach number Ma = 0.2. No slip conditions are imposed on the
horizontal boundaries v-n = 0, on = 0 and a null farfield pressure value is imposed.

At the level of the NACA body, no slip conditions are imposed on the velocity field
coupled together with homogeneous Dirichlet conditions for the SA working variable.
The time-step size is fixed to At = 10~*s to ensure stability.

[/ A\r/

slip conditions

inlet — outlet | (8¢

ey

20¢

Figure 3.24 — Geometry for the flow behind a
NACA body test case. Figure 3.25 — Mesh around the NACA body
with a detail of the anisotropy.

In this aerodynamic application, for comparison purposes, we are interested in the
drag force on the airfoil. We set the mesh size in the fixed mesh to 2.2 x 10~° resulting
in a y* value around 5 based on Schlichting’s formula [ ]. We investi-
gated two aspects of mesh adaptation: the number of nodes, and the variables driving
the adaptation. Note that, a poor mesh yields an unresolved boundary layer and may
cause failure of the simulation’s predictive abilities. First of all, exploiting the multi
criteria formulation, that will be discussed in chapter 5, we tested different variable
combinations (see fig. 3.26): pure velocity, velocity and pressure, velocity and turbulent
viscosity. Figure 3.27 shows the obtained meshes at the stationary state: we infer that
the pressure field is too localized to reflect the flow features. Nevertheless, when the
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adaptation is performed on the velocity and turbulent viscosity, one can detect steep

anisotropic characteristics as a response to the sharp gradients of the latter two fields.

AN
;XAVAV

ev
A

IAVAN

g
VAV

e

>

S
v

.A.>ﬁb<)
IR

initial mesh
ANV,
TAIIIARES

as we move away. On the other hand, when adapting on the viscosity together with the

Notice the high density of the nodes in the wake and its gradual anisotropic decrease

Figure 3.27 — Plots of initial and stationary state meshes.

velocity field, qualitatively better features can be explored. We adopt this combination

for the rest of our analysis.

The test case configuration and level of anisotropy are reported in table 3.3. The results

Test #2 Test#3 Test#4 Test#5 Test#6

Test #1

1.0

1.5
v & v

1.0
v & v

0.5
v & v

1.5
no

0.5

no

No. elements x10°

Adaptation

Summary of test cases.

Table 3.3

]. The

effect of the mesh size is clearly visible from tests 3,4 and 5. The adaptation procedure

[

appear quite promising when confronted with the ones presented in

in test 3 does not have enough degrees of freedom to well capture the interface, and a
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Reference  Test#1 Test#2 Test#3 Test#4 Test#5 Test#6
Cp x 1073 8.155 £ 0.35 8.12 8.16 7.90 8.12 8.16 8.10
Relative error 0.3% 0.1% 3% 0.3% 0.1% 0.6%

Table 3.4 — Computed drag coefficients for different meshes.

significant error in the drag computation is committed (note that this effect was artifi-
cially taken into account in test 1, at the expense of a very long and consuming mesh
construction procedure rendering an important computational cost). It is important
to mention that in test 1, the mesh is designed before starting computations, hence it
required an apriori knowledge about the nature of the flow, so if new features were
to be produced in some other location, away from the interface, the mesh will not be
accounting for it and hence yields an important error. On the other hand, using the pro-
posed anisotropic mesh adaptation algorithm, the mesh will be automatically adapted
and updated during runtime without apriori knowledge about the problem at hand.
Test 6 reveals that driving the mesh from the velocity and turbulent viscosity reduces
the induced numerical error. As may be seen from table 3.4 all the tests except test 3
are in a 1% range of error thus confirming the predictive performance and reliability of
this method. The final result plots for test 4 are shown in fig. 3.28 and appear in good
agreement with similar tests in the literature.

Turbulent viscosity

Velocity

Velocity (m/s)

Figure 3.28 — Plots for Test # 4 at the final time.

3.4.3 Application to a 3D coupled heat transfer and fluid flows problem

So far, we have tested the anisotropic mesh adaptation algorithm separately on the
convection-diffusion and the Navier-Stokes problems. In this test case we apply the
developed anisotropic mesh adaptation to simulate the coupled heat transfer and fluid
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flows inside an industrial furnace with complex geometry presented in [ I
The objective of this numerical example is to show the applicability, efficiency and
potential of the developed algorithm in simulating long time heating inside large
scale complex three-dimensional enclosure. Stabilized finite element method is used
to numerically solve time-dependent, three-dimensional conjugate heat transfer and
turbulent fluid flows. More precisely, two additional stabilization terms have been in-
troduced for the stabilization of the transient convection-diffusion-reaction equations:
the first controls the oscillations in the streamline direction (SUPG) and the second
controls the derivatives in the direction of the solution’s gradient (SCPG). Moreover,
the variational multiscale approach is applied for stabilizing the Navier-Stokes equa-
tions. Starting with a gas at rest and a constant temperature of 333K, the heated air
is pumped into the furnace from 10 different inlets, with circular shape having 6m
diameter and positioned at 1.7m from the ground. For confidentiality purposes, we
omit the details on the geometry of the furnace. The velocity and temperature of
injection are set to 10m/s and 1073K respectively. Adiabatic and no slip conditions
are assumed on all the other boundaries for sake of simplicity. The air is vented out
the furnace through an outlet located at the center of the top wall (at z = 2.42m). The
solution is evolved in time with a time-step size equal to 0.01s. The computations have
been conducted using 16 2.4 Ghz Opteron cores in parallel (linked by an Infiniband
network) [ ].

We have anisotropically adapted the mesh every 10 time-steps with a fixed imposed
mesh size of around 60,000 nodes. In fact, in such a simulation we are interested in
accurately modeling the thermal evolution inside the enclosure. A combination of the
temperature field, the velocity direction and the velocity norm is considered as the
motor in driving the mesh toward optimality. The latter multi-criteria adaptation shall
be discussed in chapter 5.

Figure 3.29 presents a median plane cut in the z — direction showing the evolu-
tion of the isothermal distribution and the velocity streamlines at different time-steps.
Starting with a uniform isotropic mesh, the mesh adaptation technique automatically
detects the gas pumping inside the furnace. As a response, an anisotropic refinement
at the level of the burners is generated allowing a better representation and capture
of the flow. When the hot fluid spreads along the volume of the furnace, it induces
a turbulent and recirculating motion within the geometry. This forced convection is
caused by the interaction of the moving stream and the stationary fluid inside the fur-
nace. The streamlines and the temperature distribution clearly reflect the expected flow
pattern. Again, the mesh elements are automatically redistributed and well oriented to
give a better capture of the multi-scale flow characteristics and represent the emerging
gradients.

The highly stretched elements and significant density at the level of the temperature
gradient permit a better capture of the flow characteristics and the temperature field.
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Temperature K
1273.

1035.

798.

560.5

323.

Figure 3.29 — Streamlines and isotherms inside the furnaces at different time instances.

One can observe a number of vortexes inside different buffer zones. They are due to
the turbulence dissipation and mixing between the hot and cold air.

The objective of this simulation is to assess the applicability of the anisotropic mesh
adaptation in simulating coupled heat transfer and fluid flows inside a complicated ge-
ometry. The problem can be perceived as a first step toward a complex real application.
Comparative analysis in real contexts will be provided in chapter 7. The present re-
sults, describe only the first five minutes of the heating process, which required around
10 hours of computations. This limitation in the computational time is due to the small
chosen time-step size. To provide the same level of accuracy, a fixed mesh should be
fine everywhere in the domain in order to capture the spread of the velocity and tem-
perature fields all over the furnace. Hence, a speedup of computations is highlighted
using an anisotropic mesh adaptation.

However, it is still necessary to supply fast calculation in order to calculate full
heating sequences inside industrial furnaces, with different ingots, in a reasonable
computational time. These calculations would allow to predict different parameters
and to understand the flow characteristics for heat treatment furnaces. We recall that
one of the main industrial objectives of this work is to model and simulate conjugate
heat transfer for multi-components systems which is considered very essential for in-
dustrial applications especially in the case of the heat treatment of high-alloy steel by a
continuously heating process inside industrial furnaces.
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CONCLUSION

In this chapter, we have modified the definition of the characteristic length used in the
stabilization parameters to account for highly stretched elements. The performance of
the developed anisotropic mesh adaptation algorithm and the modified solvers have
been validated on several physical phenomena. We demonstrated the efficiency of the
method in accelerating the computations for the same level of accuracy with respect
to a fixed mesh. We assessed the adaptation on convection-diffusion problems at high
Peclet number. It showed to be favorable for capturing steep interior and boundary
layers. We have also validated the order of convergence and showed that using the
anisotropic mesh adaptation together with stabilized finite element methods, we are
capable of recovering the convergence orders. When applied to high Reynolds flows,
with or without turbulence models, the method reflected good accuracy in automati-
cally producing boundary layer meshes inside the 2D and 3D lid-driven cavities. The
numerical results demonstrated that the flow solvers based on stabilized finite element
method is able to exhibit good stability and accuracy properties in the presence of
anisotropic meshes. All the main directional features characterizing the velocity in-
side the cavities are detected and well captured by the anisotropic error estimator. The
mesh elements are highly stretched along the direction of the layers, at the detachments
regions and around all vortices.

We have also investigated the feasibility of the developed anisotropic mesh adap-
tation algorithm in simulating coupled heat transfer and fluid flows inside complex
three-dimensional geometries. The results demonstrated the potential of the method in
well capturing the characteristics of the simulation. This method has lead to a consider-
able improvement in the computational time required for the same level of accuracy on
a fixed mesh. However, the use of a constant time-step all over calculations might yield
a significant temporal slow-down. One way to resolve this issue can be by adopting
varying time-step sizes according to the nature and features of the simulated physical
phenomena. In other words, reducing the computational time can be obtained by de-
creasing the time-steps when the solution exhibits radical changes and increasing them
as the solution stabilizes, i.e. when the simulation error decreases for a given mesh:
this process is known as temporal adaptation. It will be the subject of the following
chapter.

RESUME FRANCAIS

Dans ce chapitre, nous avons modifié la définition de longueur caractéristique util-
isée dans les parametres de stabilisation pour tenir compte des éléments trés étirés.
La performance de l'algorithme d’adaptation de maillage anisotrope développé et
des solveurs modifiés a été validée a travers la simulation de plusieurs phénoménes
physiques. Nous avons démontré 1’efficacité de la méthode vis-a-vis d'un maillage
fixe.
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La méthode d’adaptation a été validée sur des problemes de convection-diffusion
a grand nombre de Péclet. L'approche a montré sa capacité de capturer les couches
internes et limites. Dans le cadre de méthodes de stabilisation, un demi ordre de
convergence est perdu par l'approche éléments finis P1, ceci est di aux termes de
diffusion ajoutés aux endroits de convection dominante. Couplés avec la méthode
d’adaptation anisotrope du maillage, le second ordre de convergence a été récupéré.
Cette propriété a été validée sur plusieurs cas de convection-diffusion.

Ensuite, le couplage adaptation anisotrope de maillage et solveurs stabilisés a été
mis a I"épreuve sur des simulations d’écoulements a de nombres de Reynolds élevés,
avec ou sans modéles de turbulence. La méthode a reflété une bonne capacité a re-
produire automatiquement les couches limites de maniere précise. Toutes les prin-
cipales caractéristiques directionnelles caractérisant la vitesse a l'intérieur des cavités
sont bien détectées et capturées par 1'estimateur d’erreur anisotrope. Les éléments du
maillage sont fortement étirés le long de la direction orthogonale aux forts gradients, au
niveau des régions de détachements et autour des tourbillons qui se développent. Nous
avons également étudié la performance de l'algorithme d’adaptation et la robustesse
des solveurs dans le cadre de simulations 3D d’écoulements de fluide et de transferts
thermiques a l'intérieur de géométries complexes telles que les fours industriels. Cette
méthode a conduit a une amélioration considérable du temps de calcul obtenue pour
le méme degré de précision sur un maillage fixe. Plus de validations numériques et
des confrontations avec des résultats expérimentaux seront évoqués dans le chapitre 7.

Cependant, l'utilisation d'un pas de temps constant durant toute la simulation
pourrait induire un ralentissement temporel significatif. Une fagon de résoudre ce
probléme peut étre en adoptant des pas de temps qui varient en fonction de la nature
et des caractéristiques des phénomenes physiques simulés. En d’autres termes, la ré-
duction du temps de calcul peut étre obtenue en diminuant les pas de temps lorsque la
solution présente des variations rapides et en augmentant les pas de temps lorsque la
solution se stabilise ou reflete des variations lentes. Ce procédé est nommé l'adaptation
de pas de temps et sera 1'objet du chapitre suivant.
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PHYSICAL problems and industrial applications are intrinsically dynamic. Their res-
olution requires a great challenge as it involves following their unsteadiness with
a good accuracy while respecting an affordable CPU time and memory storage. In the
previous chapter, we have discussed the advantages of employing anisotropic mesh
adaptation for the resolution of physical phenomena (heat transfer and fluid flows).
The method permits an automatic and good capture of the physical phenomena’s
anisotropy. We have emphasized the substantial gain in computational cost compared
with using an isotropically adapted mesh or even with a uniform mesh. When com-
bined with stabilized P; finite element method, a recovery of second order convergence
of the numerical scheme is obtained. However, using a time-step that is generally set to
a constant value or adaptively modified to satisfy stability conditions induces consid-
erable CPU time usage. Indeed, the choice of the time-step sizes is highly dependent
on the nature and characteristics of the problem being solved. We recall that one of the
objectives of the present work is to enhance the efficiency of computations. For that
purpose, we intend to resort to a time adaptive algorithm that accelerates computations
while maintaining a good level of accuracy.

This chapter is devoted to the derivation and implementation of an appropriate
time control algorithm. It emphasizes the importance of time adaptation in increas-
ing the efficiency of the simulations. We start by briefly presenting an overview on
existing time-adaptive schemes. Then we present the algorithm that is developed in
this thesis. The analysis departs from the existing methodology of adaptation based on
an explicit treatment of time advancing and their corresponding stability conditions.
The problematic related to this choice of time incrementation are then addressed point-
ing out the necessity for a different strategy of evolution. To deal with this issue, we
move on next to discuss several possible choices of time adaptation. We elaborate on
their advantages and disadvantages. We then derive the algorithm that we adopt in
the anisotropic adaptation framework and clarify its features in simulating complex
phenomena.
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STATE OF THE ART

A large variety of physical phenomena are characterized by their multiscale features as
they involve the interaction of several processes evolving simultaneously at different
temporal and spatial scales. The simulation of industrial and engineering problems
usually deals with large-scale domains and should be run over a long period of time.
Nevertheless, mimicking the behavior of physical phenomena through numerical simu-
lations raises some challenges regarding the computational cost required to account for
the various physical parameters and scales of the problem. Note that the study should
be performed with a certain level of accuracy. The use of very small time-steps will
certainly permit a better capture of the physical patterns disclosed by real and complex
phenomena. However, such a choice of time-steps necessitates important computa-
tional costs and execution times. Therefore in practice, if no adaptation is applied, a
compromise between computational efficiency and accuracy should be sought.

Temporal discretization can be done using different approaches of which we recall
the explicit (e.g. explicit Euler or Runge Kutta), and the implicit (e.g. Euler backward,
Crank Nicolson and fractional time-steps) schemes. The resolution methods relying on
an explicit time integration scheme require a CFL condition that determines the range
of the time-steps. This condition guarantees the solution’s stability if the time-step is
smaller than the time required for a compression wave to traverse the smallest finite
element. The advantage of these methods resides in the fact that the resolution of the
equation is immediate, i.e. the solution at time #"*! is directly obtained from the given
one at time t" which is not the case for implicit schemes. On the other hand, the implicit
resolution methods are unconditionally stable but they are not straightforward: they
require the resolution of a system at each time-step. Note that although these schemes
are unconditionally stable, a very large time-step can yield an inaccurate solution.

Stability constraints on explicit advancing

When employing an explicit time discretization of the fluid flows and heat transfer
equations, stability constraints on the choice of time-step sizes are to be respected

[ ]. The restrictions imposed by viscous terms stability conditions are de-
fined by:
1 hmin 4
EHEIE 41

where i refers to the kinematic viscosity of the fluid involved in the simulation, /min
represents the smallest edge in the mesh and d the space dimension. Moreover, in order
to allow a good capture of the different characteristics of the flow, the choice of time-
steps should not exceed a Courant-Friedrichs-Levy (CFL) type limit for controlling the
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convection terms. This bounding on the time-steps for incompressible flows reads as:

d

1/d
hmin . 2
At, < ——  with = max E ' , 2

c > ||VHoo ||V||Loo e i:]vz (4 )

where v stands for the velocity field and v; corresponds to its i component. Enforcing
the two stability constraints for the convective and viscous terms, the time-step size is
selected such that:

At < zerﬂl%} (min (At;,Até)) , (4-3)

where N denotes the number of nodes in the finite element mesh Hy,. It is important
to mention that selecting /ipin as the smallest edge in the mesh which is not an optimal
choice when this distance is taken in a different direction than the convective field.
When anisotropic mesh adaptation is applied, the parameter i, can be determined
from the metric tensors M?, taking into account the flow direction, as follows:

. 1
hmin =  min (44)

ie{1,N} (L ii)l/z

V(=" vl
Nevertheless, in the context of anisotropic mesh adaptation, the mesher tends to gen-
erate highly stretched elements in the orthogonal directions to the solutions” gradients.
Consequently, himin takes very small values and in turn, the time-step size will be signif-
icantly reduced yielding a considerable CPU cost. Therefore the use of a stability driven

time-step selection scheme constitutes a serious bottleneck for numerical simulations.

Local time-stepping

A first attempt to reduce the computational cost due to time-stepping would be to
consider local time-steps dictated by local stability conditions. In these methods, the
computational domain is decomposed into several regions, called buffer zones, and the
solution is evolved accordingly with different time-step sizes. Usually these methods
are employed on structured meshes [ , , ]. The extension
to unstructured or anisotropically adapted meshes requires great attention. A good
tuning between the solutions on different buffer zones must be performed. This can be
done by deriving transfer coefficients between submeshes, that can be viewed as local
boundary conditions. Moreover, a non heuristic parameter to delimit the buffer zones
shall be defined. A third issue that needs to be carefully studied is the parallelization
of this procedure. The method seems quite interesting however it is out of the scope
of the current work as it is not possible to apply it with the current CIMLIB parallel
library that we use.

In this work, an implicit time marching scheme is adopted. This type of temporal
discretization allows to circumvent the restrictive stability criteria and to take more re-
laxed choices of time-step sizes. Yet if a good temporal accuracy is desired, prescribing
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time-steps that respect condition (4.3) would be preferable. Nevertheless, this choice
can drastically affect the computational time of the simulation. Therefore a compro-
mise between accuracy and efficiency shall be considered. We present next an overview
on the methods that we can find in the literature for adaptively evolving the solution
in time. A brief summary about the algorithms will be provided next, more details
are given in [ ]. We note that we omit the time-marching schemes that are
problem dependent as we are looking for an automatic algorithm that can be applied
without modification on any problem at hand.

Overview on existing time-stepping algorithms
Time-stepping based on local truncation error analysis

In 1999, Sloan et al. [ , ] proposed an automatic consolidation algo-
rithm that attempts to take a step-size in such a way that the error lies close to a certain
predefined tolerance. After a first resolution of the system of equations at times t" and
#"*1, a local truncation error is determined and the solution is linearly reconstructed
along the time interval [t",t"*1]. A relative error with respect to the reconstructed so-
lution is computed and compared to a user prescribed tolerance. Then the time-step
size is affected by a certain factor and the process is repeated until the relative error be-
comes smaller than the predefined tolerance. Although this time-adjustment algorithm
is conceptually simple, it requires recomputing the problem’s solution at each failure
of the time-step size which is computationally expensive when simulating complex 3D
phenomena.

In turn, Chen and Feng [ ] proposed in 2004 a time adaptation algorithm
based on an a posteriori error analysis applied on the diffusion equation. The basic
idea is to equally partition a tolerance value over time sub-intervals [¢",t""!]. They
start by computing the solution at time #"*! then measure the temporal error induced
on [t",#"1] and compare it to the equally distributed tolerance. They defined error
ranges and divided the time-step size by a constant factor related to the error range.

The method of Berrone and Marro [ ] is added in 2009 to the above men-
tioned works on time-adaptivity derived from an a posteriori error indicators. The
key point of their algorithm is to reduce the time-step size when the solution has a
fast evolution and to enlarge it when the solution exhibits slow changes. The initial
step of their method consists in tuning the time-step sizes so that the temporal error is
bounded by an interval around a specific tolerance.

As there are no specific study on the optimal choices of the prescribed parameters
(choice of the tolerance, factors for modifying the time-step sizes, - - -), it is hard to
employ this method in a general framework.
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Heuristic time-stepping schemes

In the heuristic time stepping methods [ , , ] the time-
stepping adaptation for the (n + 1) time-step is based on the number of iterations
Nj; performed to obtain the solution of the nonlinear system at the previous time-step.
Although this method is easy to implement and requires a low computational cost, it
cannot be applied in a general framework for several reasons. First, the user-specified
parameters depend on the problem at hand and require a priori knowledge of the
solution’s behavior. In practice, when the user does not know much about the profile
of the solution the choice of the parameters will negatively affect the accuracy and
efficiency of the solution.

Moreover, this method relates the time-stepping size to the number of iterations needed
to solve the nonlinear system; in other words, the time-stepping choice is not directly
dependent on the actual induced temporal error. On the other hand, this scheme is
dependent on both the solver and the problem at hand so if any of the two is changed
then one has to re-estimate the parameters all over again.

The Residual-based time-stepping methods

Fidkowski and Luo proposed in 2011 an adjoint-weighted residual method for the
computation of the adaptive time-steps [ , ]. Their work relies on
the study of primal and adjoint systems of equations. Through the use of an adjoint
system they aim to account for the effects of error propagation. From a theoretical
point of view this method has its pros as it provides a good level of accuracy however
it requires considerable implementation challenges and computational expenses since
it necessitates for each chosen time-step the solution of both the primal and the adjoint
problems.

Fictive residual methods

Fictive residual methods were introduced in 2009 by Georgiev et al. [ I
The time-step adaptive procedure is based on an error indicator computed as the dif-
ference between the approximated solution obtained using the Crank-Nicholson and
the backward Euler temporal discretizations. This error is then compared with a user
defined threshold and decisions on reducing or increasing the time-step sizes are de-
duced accordingly. Nevertheless, as the procedure computes the solution twice at every
time increment, once using the Crank-Nicholson time discretization and once using the
backward Euler discretization, it becomes computationally expensive.

Fixed point adaptive staggering method

An adaptive staggering method was proposed by Zohdi in [ ] whereby a clas-
sical staggering approach is used to solve each field equation at a time in a decoupled
mode while activating only the primary field variable. After solving the equation, the
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field is updated and the process is applied to the next field equation. Once the analysis
is carried out for all the field equations, the time-step size is incremented. The orig-
inality proposed in [ ] resides in the fixed point iterative staggering process
in which the computations are repeated recursively until the system converges with
respect to a tolerance value within a predefined number of iterations. The modification
of the time-step size is controlled as a function of the spectral radius of the considered
coupled system.

Space and time residual based methods

Micheletti and Perotto proposed space and time residual-based error estimators
[ , ]. Starting with initial guesses of the domain mesh and
the time-step size, the solution is approximated on the corresponding space-time slab
and a temporal error indicator is deduced. Depending on whether the estimated tem-
poral error is below or above a certain threshold value, the algorithm either reduces
the time-step size and repeats the computations or advances to the following time in-
crement. In this work, an adhoc procedure for the recovery of the numerical solution’s
time derivative is employed followed by the calculation of the temporal residual as the
jump in the solution over the space-time slab. The error estimation relies on residual
mathematical analysis of the primal and dual problems. The approach has been de-
rived separately on the convection-diffusion-reaction and the Navier-Stokes equations.
The derivation of a formulation for the coupled heat transfer and fluid flow problems
is a difficult task.

In this chapter, we adopt a different route for time-marching that we build in such
a way to complement the anisotropic mesh adaptation described in chapter 2. The
method that we develop is simple, easy to implement, automatic, independent of the
problem at hand and does not require a user-defined tolerance. It consists in equi-
distributing the error in both space and time hence yielding the same level of accuracy.

The first idea that comes to mind is to extend the metric construction to take into
account the time dimension. Hence, an optimal space-time mesh is built. This idea will
be explored in the following section.

Generating anisotropic space-time meshes

We consider a finite element discretization H; of the computational domain Q) x
[t",#"71] made up of pentatope elements (4-simplex elements). We want to determine
the optimal spatio-temporal mesh 7/-[711 For the clarity of illustration, we denote by X/,
the spatial node X' at time t". The problem of building the space-time mesh is cast
as a four-dimensional constrained optimization problem of finding the metric tensor
that minimizes the total interpolation error in space and time under the constraint of
a fixed number of nodes. The existing method of metric construction can be lever-
aged and needs only minor modifications to accommodate for the additional direction.
Looking toward that end, the length distribution tensor X' at each node X’, will account
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for an additional edge X" *1 connected to Xi:

X = lel] X/ 2 X1n+1 X1n+1 )
|F(i)| 1 ]'e;(i) Sz] ® + Sin+1 ® (4 5)

where I'(i) represents the number of nodes connected to X' and s;j the stretching factor
of edge X7 in its own direction. Figure 4.1 shows a schematic interpretation of the 4D
mesh. It is important to mention that in this case, the coordinate vector X,l1 contains an

additional component referring to the time-dimension.

Figure 4.1 — Sketch of the edges connected to node X' in a 4D mesh.

The stretching factors are determined based on an edge-based error estimation and
the equi-distribution process. The associated metric tensor will be deduced as in chap-

ter 2:

M= dll (xi)_l (4.6)

with d being the space dimension. The constructed metric will then be given to the
MTC mesher which in turn will generate the corresponding optimal mesh. We recall
that the MTC mesher’s capability to generate 4D meshes has been validated [ I
Therefore, this method seems quite promising, however it will not be pursued further
and validated in this thesis for several reasons. First of all, adopting this adaptation
technique requires the development of a tool that transforms the results computed
on the 4D mesh into a set of data that can be visualized and physically interpreted.
Second, it necessitates the development and implementation, in the CimLib library, of
space-time stabilized finite element methods. Moreover, this type of meshes and solvers
are not bearable by the available parallel toolbox. Consequently, using this adaptation
scheme, the numerical simulations that we will be able to consider will be limited in
complexity which is a major drawback of this method. However, preparing the ground
for this technique and its validation constitutes a subject for perspective development.

Therefore in this work, the analysis is limited to considering that the time dimension
is orthogonal to the space dimension. At this level, two possibilities for treating the
space-time mesh optimization problem arise. The first one involves constructing a

space-time metric while imposing the orthogonality assumption and adopting space-
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time finite element schemes [ ] carried out for one space-time “slab” at a
time. In this approach, the mesh is made up of right prisms whose basis are triangles
in 2D and tetrahedra in 3D. The length distribution tensor at a spatial node X/, will be

defined by:
: X 0
Xt= " 4-7)
( 0 (Sin+1Atn)2 )

where X} stands for the length distribution tensor whose components contain informa-
tion from the spatial edges only. Since the temporal edge is orthogonal to the spatial
ones, the latter do not undertake any change in time hence the zero component below
X!. Moreover, the temporal edge do not present any variation with respect to space
hence the zero component to the right of X!. Based on the equi-distribution principle,
the optimal metric would be the one that equi-distributes the error over the spatial and
temporal edges in the mesh.

We recall that a metric tensor can be diagonalized into M = ZA%' where Z is a
rotation matrix whose columns are eigenvectors of M and A is a diagonal matrix with

diagonal elements A, the eigenvalues of M. In an anisotropic mesh adaptation frame-
1

work, the mesh sizes are determined from the eigenvalues of the metric h; = (%) 2
Applying the same principle in the space-time context, an additional eigenvector and its
corresponding eigenvalue shall be accounted for. They reflect the direction correspond-
ing to the temporal edge and its associated time-step size. To accommodate for the
orthogonality assumption, the eigenvector will be set to a d + 1 vector r; = (0,---,0,1)

where d is the space dimension. Consequently, the metric tensor will be defined by:

; Mi 0
= [ 8
M ( 0 (S At") 2 ) 9

where M is the spatial metric tensor at node X/, defined in the previous chapter.

The metric tensor can then be provided to the MTC mesher in order to generate
the optimal space-time mesh. It is important to point out that since we are accounting
for each node twice, one at time #" and its duplicate at time #"*! then the prescribed
number of nodes in the mesh should be increased. However, as the space and time
dimensions are only connected through the equi-distributed error and in order to
maintain a good level of accuracy, the temporal error should not exceed the spatial
one. We recall that a second order finite element method is employed for evolving
the solution in space whereas an implicit first order time-marching scheme is adopted.
Therefore to enhance the accuracy of the space-time adaptation, the error control shall
be driven from an analysis based on the spatial error to compute an equi-distributed
error on the edges of the spatial mesh respecting the imposed fixed number of nodes in
the mesh. Then the error in time is limited to respect the equi-distributed error bound.
At this level, either a 4D remeshing is performed by giving the metric tensor to the
mesh generator, or a splitting of space and time dimensions is employed while respect-
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ing the error equi-distribution property. This is the second approach for developing a
space-time adaptation procedure. As it is well suited for capturing anisotropic features
of physical problems, it will definitely improve the accuracy of unsteady simulations
while preserving an affordable computational cost.

In [ ], a space-time metric is constructed where the aim is to generate a
spatial mesh that minimizes the space and time errors over a slab of time under the
constraint of a fixed space-time complexity. This approach yields good accuracy con-
trol over an interval of time. However, an explicit time-marching scheme is adopted
with a fixed time-step size or dynamically evolving time-steps subject to a Courant
condition. The authors pointed out the limitation of the latter time evolution criterion.
This is due to the fact that under a Courant condition, the time-step length depends on
the smallest mesh size thus the applications using this adaptive process are restricted
to ones having smooth solution fields.

The second approach, as discussed previously, consists in decoupling the space-
time optimization problems, solve for the optimal metric in space and thus generate
the well-adapted anisotropic spatial mesh. The construction relies on the edge-based
error estimation and the equi-distribution principle. Once the spatial mesh has been
obtained, we control the time-step size by applying the same principles for adaptation
as in space and imposing the error equi-distribution property.

TIME ADAPTATION PROCEDURE

The basic idea of the time-adaptive algorithm that we develop in this chapter is to
extend the spatial error analysis introduced in the previous chapter to the time dimen-
sion. The main objective is to produce a time-step which preserves the accuracy of the
mesh adapted solution while accelerating the computations. Following the lines of the
mesh adaptation technique, the time-step will be controlled by the interpolation error.
Here we consider the time dimension as being analogous to a 1D spatial problem and
apply the whole theory exploited in chapter 2 in 1D. Now that we have shown how
to construct a metric field at each node X' of the discretized domain that would lead
to an adapted anisotropic mesh in R?, we move on to use the information from this
construction in order to build an adaptive time marching technique. The latter should
at the same time provide accurate estimations and not require a large computational
cost.

Based on the information given by the derived error estimator in space and the
history of the solutions, the algorithm should automatically calculate an appropriate
time-step for the following computations regardless of the properties of the problem at
hand. The time adaptation study is very similar to that of the anisotropic mesh adapta-
tion except that the analysis is performed in a one dimensional context where the only
studied variable being the time.
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We consider a scalar field u € C°(QQ) = V and V), a simple P, finite element approxi-
mation space:
Vi = {wy, € C°(Q), wy|x € P1(K), K€ K} (4.9)

where K is a simplex (segment, triangle, tetrahedron, - - -) in the mesh H;,. We define
X={xXeRrR,i=1-- N}
as the set of spatial nodes and
T = {0, .. =L el

as the set of temporal nodes in the time interval [0, T]. We let t"F = |t" — t¥|;n, k € T
be a temporal edge with length At" = t""*1 ag shown in figure 4.2. It is important
to mention that the number of temporal nodes, and hence time edges, is not known a
priori as it depends on the behavior of the solution along [0, T].

The space-time adaptive method can be split into two sub-optimization problems
whereby one intends to minimize the global interpolation error in both space and time
under the constraint of a fixed number of nodes. In the first sub-problem, we seek
a metric field defined at the nodes of the mesh and yields an optimal well-adapted
spatial mesh. The second sub-problem aims at finding the global time-step size that
minimizes the temporal interpolation error under the constraint of maintaining the
temporal error bounded by the spatial equi-distributed error. In the previous chap-
ter, we have emphasized how to derive the metric tensor that results in the optimal
anisotropic mesh adaptation. In this section, we intend to explain how to derive the
optimal time-step sizes.

Assume that the solution u is already computed on the whole domain up to time
t". The aim is to determine an appropriate time-step At".
Edge-based temporal error estimation

Without loss of generality, the analysis will be carried on an arbitrary spatial node X'.
Note that at a spatial node X', we only have one time edge to be determined (#"t"'1).

0 1 k-1 k n n+1
U; U; U; U; u; €nni U;
to s, LLLLLLLLIIIIII I * P e—— s s s ssssEEsEEEEE Pe—— {1111
At° Atkt A"

Figure 4.2 — Temporal discretization at the spatial node X',

Define {7, ,+1} to be the temporal edge scaling (stretching) factor such that:

5 _ 2
Cntln = Tr1,nCn+1n

n+1ln gn+1n

; (4.10)

= Tutln ‘
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where e,,11, is an approximation of the interpolation error known as the edge based
error (more details are defined later), & and |f| are respectively the target error at the

temporal edge #"t"™! and its associated edge length.

Let u?’l, u} and u?“ be the solutions at node X' and times n — 1, n, and n + 1,
respectively. We introduce the time-step distribution function .#/* at the spatial node
X! and time ", which is equivalent to the length distribution tensor in space. As we are
evolving the solution with a fixed time-step, the length distribution function reduces

to a scalar value that is the same over all spatial nodes.
1 2 _1\?
n__ - n n—1
2" =3 <(At )2 4+ (At ) ) . (4.11)
Then applying the second order recovery gradient in 1D, we get:
i = (Mt uy, (4.12)

where,
1
ur = 5 (u?’"“At” + u?'"_lAt”_1> . (4.13)

Substituting equations (4.11) and (4.13) in (4.12), yields the recovered derivative:

u;1,n+1Atn + u?,n—lAtn—l ( )
= . 4.14
(AF7)? + (Atn—1)?

L-ln

Hence the change in the derivative along the temporal edge [t"~!,#"] is determined by:

an—1 _ . n—1
" = — (4.15)
and edge-based error estimation is given by:
=1 _ nn—14m-1
e = TART (4.16)

As discussed in the previous chapter, the error estimates change quadratically as a
response to changing or stretching the edge by a factor 7/~ *. Therefore:

~nn—1 __ n—lz-n,n—l n—1
e; =T U AT, (4.17)

1 1'171

where 1} :

=ul —1u

At this level, the analysis will deviate from the one adopted in the derivation of the
anisotropic mesh adaptation. The direct extension would have been to fix a total num-
ber of time-steps and to determine the respective time-step sizes over the simulation
based on an error equi-distribution on the subintervals. However as the solution behav-
ior is not known apriori for the full time interval, the error estimates on the temporal
edges cannot be predicted. Therefore the time-adaptive approach cannot be completed

in this way. We will instead continue the analysis in a space-time framework, that is
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we equi-distribute the error in space and time. To do so, we modify the time-step size
in a way to prevent the temporal error from exceeding the equi-distributed error in
space at time t" computed according to equation 2.113. Hence, based on the space-time
equi-distribution error argument, we write

gl = e(N,t"), (4.18)

1

where ¢(N, t") is the equi-distributed error in space for a total number N of nodes.
Consequently, the stretching factor of the time-step size, driven by the assumption of
the quadratic change in the error as a result of scaling the temporal edge, is given by:

1
S [eN) Y
Tz-n = (n,n—] ’ (4.19)

€

and the optimal time-step is determined by:

At = min Tz-”_lAt" . (4.20)

1
However, if we consider this formula closely we find out that it requires the solution
at time #"*! which is not yet computed. Therefore instead of computing the optimal

—~—

time-step A" we calculate A#"=2 and we let

—~——

At, = A2, (4.21)

It is important to note that when a frequency f of spatial adaptation is used, the
temporal stretching factors will be modified to account for a new equi-distribution. The
new stretching factor is then defined by:

1 (e(z\i,;"a/f ) | 422

€

In other words, the equi-distributed error e(N, ") estimated at time " to generate
the anisotropically adapted mesh that will last f time increments will be spread over
the time subinterval [",t"*f]. So that the total temporal error over [t",t"*f] would
not exceed e(N, t"). The time-step adaptation is employed at every time increment to
maintain a good level of accuracy. This is possible and computationally inexpensive
as the algorithm for time-adaptation consists of simple arithmetic operations that are
affordable and yield a high level of accuracy. We note that throughout this thesis work
an implicit time marching scheme is employed. Nevertheless, adapting the mesh every
f time-steps using the developed space and time adaptive algorithms is not an optimal
choice when a second order time discretization scheme is used. We present in chapter
6 a new method that proceeds by slabs of time conserving second order temporal
accuracy.
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General space-time adaptive algorithm

The steps for the space and time adaptation are summarized in algorithm 3. The de-
coupled space-time mesh optimization problem starts by evaluating the edge-based
spatial error estimates. To do that, a length distribution tensor is computed and a
gradient reconstruction at the mesh nodes is performed. After determining the error
estimates on the edges in the mesh, an equi-distributed error is predicted. If the mesh
adaptation process is activated, the stretching factors for the edges and thus the length
distribution tensors and optimal metrics are deduced. Consequently, these metrics are
provided to the MTC mesher that generates the anisotropically adapted mesh. The
solution fields are interpolated into the new mesh. Afterward, derivative reconstruc-
tion on mesh nodes and error estimates on the edges are determined yielding a new
definition of the optimal time-step size for the following time increment. The process
is repeated iteratively until the end of the simulation.

Algorithm 3: Space and time adaptive algorithm

Input: The initial mesh ), problem’s parameters 19, and time-step size

At = Aty.
Output: The numerical solution at time ", the optimal mesh and time-step size.
begin
n=1t=0 // Initialization
while "1 < T do // Time loop

Prescribe the number of nodes in the mesh N

P

Increment the time " := "1 4 A1

Compute u! on mesh H
for each node X' do

Compute X! // The length distribution tensor
B Compute G’ // Recovery gradient operator
for each edge X1 do
Compute GY // Change of the gradient over the edge
p 9 9 g
Compute eij // Edge based error
Compute e(N, tn) // The equidistributed error
for each node X' do
Compute u?’l’”’z using eqs.(4.2.1) and (4.15) // Temporal derivative
Compute &/~ "2 following eq.(4.16) // Temporal error
Compute "2 using eq.(4.22 // Temporal stretching factor
1
A
Compute At"~2 using eq.(4.20) // The optimal A#"~2
—_
Set At = Atn—2 // Set the following time-step

When the target field u for time adaptation is a vector, the procedure is applied to
every component of this vector field and then the minimum prescribed time-step size
is selected for the following time-increment. More details about multi-field adaptation

will be provided in chapter 5.
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It is important to mention that the desired mesh density can be interactively up-
dated during the simulation time through an implemented user-interface. Moreover, an
anisotropic adaptation based on a desired tolerance instead of a fixed number of nodes
can be generated following exactly the same algorithm while replacing the equidis-
tributed error by the threshold value. Clearly, this will be at the cost of losing the
control on the mesh density. A combination between a control based on a tolerance
value and a maximum mesh density can be obtained by taking the maximum between
the prescribed error and the homogenous error determined with respect to the number
of nodes N.

NUMERICAL VALIDATION

The main objective of this work is to provide a space and time adaptive method that can
be used to simulate diverse industrial applications. For practical reasons, it is highly
desirable to find the most accurate solution using the available computational resources
within a reasonable time. In this section, we assess the performance of the newly de-
veloped space and time adaptive algorithms on several time dependent problems. We
first assess the order of convergence of the couple mesh/time-step size on an analytical
function. Then we move on to analyze the dynamic properties of the space-time adap-
tive procedure. We start by investigating the impact of anisotropic mesh adaptation
and time-stepping control on the accuracy and efficiency of computations. We move
on next to test the capability of the method to well capture fluid flow problems at high
Reynolds numbers. Finally we evaluate the performance of the developed algorithms
on coupled fluid flows and heat transfer problems.

Convergence analysis on an analytical test case

The objective of this numerical example is to illustrate how the anisotropic mesh adap-
tation and time-step control enable an accurate capture of the displacement of a func-
tion’s anisotropic features over a time interval. The analytical function that we consider
was first presented in [ ] and was taken to be constant in time. In the previ-
ous chapter, we have investigated the developed metric construction technique on this
function and it showed good performance in accurately capturing the sharp solution
gradient over the domain. In this chapter, we let the analytical function vary both in
space and time yielding a good test for the developed error estimators, meshing tech-
niques and time adaptivity. It is defined on the domain |0, 1]d and is being evolved
over the time interval [0, 1] as follows:
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a(x) = tanh(Esm( —HXH>>
b(x,t) = tanh

/N

Esm 7,|X tCH))

u(x,t) = aoa(x)+bob(xt) (4-23)

The parameter E varies from 1 to 32; the larger E is, the sharper the function’s gradient,
favoring anisotropic meshing. Despite the simplicity of this function, it is characterized
by the displacement of the high gradients over time. The complexity of this example
resides in the expansion and interference of the evolving circular gradients forcing
isotropic meshing at the intersection zones.

We start our analysis by validating the proposed anisotropic mesh and time adapta-
tion algorithms. In figure 4.3 the analytical function is depicted at three different times,
with E = 16, on the anisotropically adapted meshes that correspond to an equivalent
number of nodes (around 20,000 nodes) obtained at different time instances. The mesh
has been adapted on the L; norm of the interpolation error every 5 time increments. We
can detect how the elements in the mesh are well oriented and stretched along the tan-
gential direction to allow a good capture of the function’s circular gradient. The nodes
are being automatically distributed with a higher density in the regions surrounding
high gradients. The reported zooms on the mesh reflect how well the elements are elon-
gated to provide a better capture of the solution’s sharp gradient. At the intersection
of two sharp layers (radial gradients), the mesh is isotropic giving equal importance
to the different directions and yielding equal capturing of the two sharp layers. This
observation is a direct result of the error equi-distribution principle.

We vary the number of nodes in the mesh between 4,000 and 80,000 and study
the interpolation error’s temporal order of convergence. Figure 4.4 reports the tem-
poral convergence history. The first order convergence in the range [4,000 — 16,000]
reflects that the number of nodes is not high enough to allow a correct capture of the
function’s characteristic steep variations. As of 16,000 nodes, we can obviously detect
nearly second order accuracy in time which is in accordance with the construction of
the time-adaptive algorithm. In figure 4.5 we can identify that the number of time-
steps generated by the adaptive algorithm varies linearly with respect to the imposed
number of nodes in the mesh. Therefore by controlling the temporal error under the
constraint of a fixed number of nodes in the mesh, a second order temporal conver-
gence is implied.

Figure 4.6 gathers the time-step evolutions corresponding to three configurations of
mesh adaptation: adapting on the L1, L, and L. norms of the interpolation error. The
computations were performed on a mesh of nearly 20,000 nodes that is being anisotrop-
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Figure 4.3 — Anisotropic mesh obtained at different time instances (top) and closeups around the radial
steep gradient region (bottom).

—€— Temporal error

10° . | . |

10° 10° 10

Figure 4.4 — Temporal convergence of the interpolation error with respect to the mesh complexity.
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Figure 4.5 — Variations of the number of time-steps with respect to the imposed number of nodes in the
mesh.

ically adapted every 5 time increments. We notice that adapting the mesh on the Lo
norm of the error leads to smaller time-steps which goes in parallel with expectations
as the temporal error is not allowed to grow faster than the spatial one. The history of
the time-steps is characterized by a short period of abrupt increase, probably biased by
the choice of the initial time-step that is taken to be 5 x 107>, allowing the emergence of
the ring shaped gradient of the function into the domain. As the function evolves lin-
early with time for the different norms, all the profiles of time-stepping reach a phase
of steady oscillation around a critical value that guarantees the equi-distribution of the
error in space and time. Since the L, norm is more restrictive than the other norms,

the time-step will oscillate around a smaller value than the other norms.

0.010
s e e
o008 4 Adapting on the L1 nom
. 0007 . .
& 0006 :' | : . .é ;i
A 4005 | ll-l.' I il !| " | 1 it A4
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Figure 4.6 — Time-step evolution corresponding to adapting the mesh on the L1, Ly and Lo norms.

We compare in figure 4.6 and table 4.1 the time-step evolution and the CPU time
obtained using the developed mesh adaptation algorithm and time-stepping technique.
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The results are compared to the CPU time needed to evolve the function on anisotropic
meshes with a fixed time-step size set to be equal to two times the smallest mesh
size. This result validates the efficiency of the newly developed method in terms of
computational time.

Number of nodes . _ ¢ 150 N =16,000 N =32,000 N = 64,000
Method

Fixed At 37 54 65 92
spatio-temporal adaptation 22 29 38 53

Table 4.1 — Needed CPU times (mins) for a fixed time-stepping and an adaptive control of time-step
sizes by the proposed algorithm for different mesh complexities.

A two-dimensional analytical test case with sinusoidal evolution in time

The objective of this test case is to illustrate the behavior of the time-step algorithm
relative to sinusoidal evolution of the function in time. We consider the same analytical
function with a sharpness parameter equal to 16 and we let it vary sinusoidally in time
as follows:

u(x,t) =aoa(x)+bob (x, sin (t§)> (4-24)

The rings emerging inside the domain move periodically back and forth over time.
Figure 4.7 shows the time-step history obtained using the time-adaptive algorithm.
The mesh made of around 20,000 nodes is being adapted every 5 time increments.
We notice that the profile of time-stepping presents a periodic evolution over time. A
phase of slow steady time-steps reflects the expansion of the rings inside the domain.
A deceleration of the function follows and is accompanied by a quick increase of the
time-step sizes. An abrupt decrease of the latter is observed once the function changes
its direction of evolution. This succession of time-step behavior is periodically repeated
in accordance with the sinusoidal displacement of the function in time.

Applications on 2D fluid flow problems

We move on now to assess the developed spatio-temporal adaptation on fluid flow
problems with varying Reynolds numbers. These results were reported in a recent
publication on the subject [ I

Driven flow cavity problem (2-D)

In this example, we assess the performance of the newly developed space and time
adaptive algorithms on the classical 2-D lid-driven flow problem at low and high
Reynolds numbers with a zero source term. This test has been addressed in the previ-
ous chapter to validate the anisotropic mesh adaptation method. Now, we re-consider
the problem to evaluate the accuracy and efficiency of the time-adaptive technique. We
consider a fluid with density p = 1kg/m3. We vary the kinematic fluid viscosity in
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Figure 4.7 — History of the time-steps (s) obtained with the developed algorithm on problem (4.24) .

order to generate and compare the solutions for Reynolds numbers of 1,000, 5,000,
10,000 and 20, 000; we fix the number of nodes N to 15,000. Note that the initial mesh
used before any adaptation is an unstructured isotropic mesh made up of 20,000 nodes.
We start all the numerical simulations using a time-step equal to 0.01s. We apply the
space-time adaptive algorithm every 5 time-increments while adapting on the norm
and direction of the velocity field. We assume that the steady state is reached when
the normalized velocity deviations within one step are lower than a chosen tolerance of
107°. The results on the converged meshes (~ 15,000 nodes) for the different Reynolds
numbers are shown in Figure 4.8. Note the concentration of the resolution not only
along all the boundary layers but also at the detachment regions. This reflects well the
anisotropy of the solution caused by the discontinuity of the boundary conditions and
the nature of the flow. The elements at the central bulk of the cavity region around
the primary vortex are mostly isotropic and increase in size as the Reynolds number
increases. Again, this explains how, for a controlled number of nodes, the mesh is nat-
urally and automatically coarsened in that region with the goal of reducing the mesh
size around the secondary vortices in the bottom corners. This observation reflects that
the space-time adaptive method tends to refine the mesh in the hierarchical importance
of the solution’s gradient. That is when new features (with high gradients) appear in
the solution, the mesh is automatically coarsened in regions with lower gradient and
refined near the newly emerging features yielding an optimal capture of the solution
with the available degrees of freedom.

The velocity profiles for u, and u, along the lines x=0.5 and y=0.5 respectively
are depicted in figures 4.9 and 4.10. We note that a time-averaged velocity profile is
represented for Re = 10, 000.

The main objective of these simulations is to compare the newly obtained results to
very accurate reference solutions. For that purpose, we first plot the velocity profiles
for Vy along x = 0.5 and for V;, along y = 0.5 at Reynolds 1000 and 5000. Figure
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Figure 4.8 — Anisotropic meshes at Reynolds 1,000, 5,000, 10,000 and 20, 000

4.9 shows respectively that all the results are in very good agreement with a reference
solution computed on a 600x600 = 360,000 points fixed mesh [ I

We present in table 4.2 the execution time and number of time-steps taken by each of
the test cases using an adaptive method and a non-adaptive one. For the non-adaptive
case, the computations were performed on a mesh having 100,000 nodes. Note that we
needed 5,000 time-steps At = 0.1 to reach the final time 1,000s. An extreme improve-
ment in th