
HAL Id: tel-01146245
https://pastel.hal.science/tel-01146245

Submitted on 28 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Space-Time accurate anisotropic adaptation and
stabilized finite element methods for the resolution of

unsteady CFD problems
Ghina El Jannoun

To cite this version:
Ghina El Jannoun. Space-Time accurate anisotropic adaptation and stabilized finite element methods
for the resolution of unsteady CFD problems. Fluid mechanics [physics.class-ph]. Ecole Nationale
Supérieure des Mines de Paris, 2014. English. �NNT : 2014ENMP0077�. �tel-01146245�

https://pastel.hal.science/tel-01146245
https://hal.archives-ouvertes.fr


T

H

È

S

E

École doctorale 364 : Sciences Fondamentales et Appliquées

Doctorat ParisTech

THÈSE

pour obtenir le grade de docteur délivré par

l’école Nationale Supérieure des Mines de Paris
Spécialité doctorale “Mécanique Numérique”

présentée et soutenue publiquement par

Ghina JANNOUN
le 22 Septembre 2014

Space-Time accurate anisotropic adaptation and stabilized finite
element methods for the resolution of unsteady CFD problems

~~~~~~~~
Adaptation anisotrope précise en espace-temps et méthodes

d’éléments finis stabilisées pour la résolution de problèmes de
mécanique des fluides instationnaires

Directeurs de thèse : Elie Hachem, Thierry Coupez

Jury
M. David Darmofal, Professeur, Massachusetts Institute of Technology Rapporteur
M. Tarek Zohdi, Professeur, University of California at Berkeley Rapporteur
M. Johan Hoffman, Professeur, KTH Royal Institute of Technology Examinateur
Ms. Simona Perotto, Professeur Associé, Politecnico di Milano Examinateur
M. Nabil Nassif, Professeur, American University of Beirut Examinateur
M. Elie Hachem, Professeur Associé, Mines ParisTech Examinateur
M. Thierry Coupez, Professeur, École Centrale de Nantes Examinateur
M. Christian Dumont, Docteur, Aubert & Duval Invité

MINES ParisTech
Centre de Mise Forme des Matériaux (CEMEF)

UMR CNRS 7635, F-06904 Sophia Antipolis, France





It is but the beginning ...





Acknowledgements

. . .
�

HðQ�
J. Ë ÐC� ú


æ
.
Ê
�
¯ 	áÓ

�
HðQ�
J. Ë

When all is done, it is a joy to look back over the path and remember all the friends and
family who helped me cross my way through this long and fruitful journey. First of all, I thank
all the amazing people who enormously helped me and who I forgot to mention here, as you
know I have a fish memory :(

I would like to express my heartfelt gratitude to my advisors, Thierry Coupez and Elie
Hachem. Thierry, I gratefully acknowledge your help and support. Your keen scientific in-
sights, bright ideas and constructive remarks insipired and enriched my growth as a scientist.
I learned a great deal from you. You keep on telling me you’re the devil, well if that was true
then peace and prosperity will be on earth. My gratitude goes as well to Elie who believed in
me and encouraged me from the very early stages of this work. I will always remember the
midnight phone calls, the valuable suggestions, your enthusiasm and positive mindset. Thank
you for helping me be an independent thinker, to look beyond the ordinary, and develop as a
researcher. That was a true privilege.
I would also like to thank my thesis committee members: Prs. Darmofal, Zohdi, Hoffman, and
Perotto, who provided thoughtful directions and constructive feedback. I hope you enjoyed
reading my manuscript and that it was as “heavy" as it weighted. Special regards go to Pr.
Nabil Nassif who established the backbones of my development from an early age as a stu-
dent, starting from the basic undergraduate courses all the way through the most challenging
graduate tasks. My regards go as well to Pr. Touma who nourished my intellectual maturity.
I was luckily surrounded by wonderful lab leaders and mates: Elisabeth, Patrick, Françoise,
Marie-Françoise, Geneviève, Florence, Louisa, Hugues, Marc, Nathalie and P-O, you have
provided a rich and fertile environment and a warm and inviting place to work. I also ac-
knowledge the Agence Nationale de Recherche (ANR), and the members of the REALisTIC
project, I see their fingerprints all over the best parts of my work.

I have truly been blessed with friends all over this long journey. I would especially like
to thank Jeremy Veysset for the great times and memories we have built together, for sharing
various thoughts and giving me valuable opinions. You were always next to me not just as a
colleague but as a brother. Jeremz, I hope our friendship will last forever.
Sauci, I was fortunate to have you by my side no matter the distance that separates us. Loulou,
my dearest friend, thank you for the moral support, for the joy you planted in me during the
few moments we spent together these years.
Stephy and Kiko, 3absoun, thank you for making my journey a funny one. I will always re-
member the lunch meetings, the barbecues, the shopping times, and the weekly walks around
Antibes’ shore. Joe, the godfather, thank you for all the advice, the ones I apply and the ones
I fail to. Ali & Noura, you have been like a surrogate family for me, bearing the brunt of
frustrations, and sharing the joy of success. Noura, I have a spoiler for you, ‘Brody is NOT
alive’. My fellow Londoners, Carine, my jogging mate, and Simon, the Marathon man and my
biking tutor, it is time you come back to Antibes. Gottis, I sincerely thank you for keeping the
sense of humour when I lost mine.
Bilal, Dania, Faf, Khouloud, Noura, Roro, and Suz thank you for being next to me in the ups
and downs regardless of how far we were, I really appreciate it.
To Nancy I would like to express my sincere gratitude for providing me with words of comfort
all through this long journey. We have struggled together during these years but we did it!!!
Maher & Anaïs, les mariés, thank you for being next to me when I most needed it. Batta will
always love you.
Laure & Bastien, it was a pleasure to hang around with you guys. A big thanks for the instruc-

v



tive lessons in ski. Laure, merci pour ton amitié, merci pour les fous-rire, merci de m’avoir
soutenu quand je me plaignais. Fred, thank you for the delicious brownies and cookies, they
were worth the kilos I gained during the last year. Achraf, no words can value how kind you
were to me. Thanks! Alex and Romain, thanks for sharing with me lots of funny and pleasant
moments. Jean-François, I am truely indebted to you for guiding me through my first steps in
CIMLIB.
Rebecca and Fadi, thanks for the pleasant times, the coffee breaks and the roaring laughters,
your presence perpetually refreshed my days. I would also like to acknowledge the king of
ski, Charbel; it was fun and inspiring to be around with you man. Pampa, as I always say,
‘btefhamle raseh’.
To my dear comrades, Abbas, Apples, Anne, Antoine, Benjamin, Carole, Cynthia, Danai,
Dimitri, Dorian, Elias, Francesco, Gabriel, Geoffrey, Jacob, Jose, Koffi, Luis, Massiel, Mehdi,
Mohamad Ibrahim, Modesar, Myriam, Pam, Paul, Paula, Quentin, Romain, Sabrina, Stephanie,
Xavier, Ziad, Zhao and ‘ta2 7anak nation’ thanks for the fun and support. I will certainly miss
hanging out with you.
Masris, thanks for the humor, the motivation and moral support.

Words fail me to express my appreciation to Moze whose support, dedication and persis-
tent confidence in me, has taken the load off my shoulder. ThankS for the proof-readingS, with
big S. Thanks for believing in me, for giving me the force to go on and for bearing with my
mood swings after long days of hard work. Thanks for always being there, no matter what, and
for always reminding me that being hopeless is never an option. Peanut, I would have never
done it without you. I wish you and Quinta da Regaleira a joyful life and successful children.

GrandMa I don’t have words to thank you for your prayers; I love you so much. Auntie
Rafa, I missed you so much. I am sorry I couldn’t be there to say goodbye. I will always
remember the old memories, the moments of joy and laughter. Peace be upon your soul.
Family, tantes et oncles, cousins et cousines, 3amo Samir et tante Hana, grand merci pour le
support et les prières... bises...

Parents, if I am to be anything in this world, it is thanks to you. My brother, Sa33oud,
you have been a protective shelter and a driving force through the best and worst of times. If I
were to choose a brother in life, I would have chosen you. I am grateful for the moral support
and encouragement. I am grateful for the lovely moments we spent together. Thank you for
being next to me at the very end of my thesis writing, you have been the fuel that kept me
going on. Don’t sell my bed, I will be back one day.
My Father, Barhoum, the person who showed me the joy of intellectual pursuit ever since I
was a child; I am greatly indebted to you for everything you have done for me. I know it
was too hard for you to let me leave home and be self-dependent; how wouldn’t it be hard
and you were always next to me looking for my own good and holding my hand through the
difficulties. Dad, thank you for trusting and believing in your daughter. You have always said
“Ghannouj batal” well this is absolutely thanks to you. I will always be your little girl, I love
you and I will never disappoint you.
My Mother, Ghadghoud, the one who sincerely raised me with her caring and gentle love,
thanks for your unwavering faith, trust and mostly patience. Thanks for being my closest
friend, my guide through the hard times. Thanks for the tears you’ve shed on me; thanks for
being my mom.

. . . ú


×


@ ©ÓX 	áÓ Ém.

	
k


@ ,

��
IÓ @

	
X@


ú



	
G

B ø



QÔ«

�
�

�
�«


@ð . . .

. . . I. K
AJ. m
Ì'@

�
I� AK
 . . .

vi



Contents

List of Figures xi

Introduction 1

1 Unsteady computational fluid dynamics 17
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Convection-diffusion-reaction problem . . . . . . . . . . . . . . . . . 19

1.2.1 Governing equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.2 Standard Galerkin formulation . . . . . . . . . . . . . . . . . . . . . . 22

1.2.3 Time integration scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.4 Streamline Upwind Petrov-Galerkin (SUPG) method . . . . . . . . . . 24

1.2.5 Existence, uniqueness, stability and order of convergence . . . . . . . . 25

1.2.6 Choice of the stabilizing parameter . . . . . . . . . . . . . . . . . . . . 27

1.2.7 Element characteristic length . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.8 Shock Capturing Petrov-Galerkin . . . . . . . . . . . . . . . . . . . . . 28

1.2.9 Transient heat transfer by conduction . . . . . . . . . . . . . . . . . . . 30

1.2.10 Enriched space approach . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2.11 Time interpolated enriched (EM-I) method . . . . . . . . . . . . . . . . 35

1.3 The incompressible Navier-Stokes equations . . . . . . . . . . . . . . . 35

1.3.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.3.2 Standard Galerkin formulation . . . . . . . . . . . . . . . . . . . . . . 38

1.3.3 Variational Multiscale (VMS) stabilization method . . . . . . . . . . . . 40

1.3.4 Choice of the stabilizing parameter . . . . . . . . . . . . . . . . . . . . 45

1.4 Turbulence modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.4.1 Direct Numerical Simulation (DNS) . . . . . . . . . . . . . . . . . . . . 46

1.4.2 Reynolds Averaged Navier-Stokes (RANS) . . . . . . . . . . . . . . . . 47

1.5 Conjugate heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.6 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.6.1 Turbulent flow behind a prismatic cylinder (2D) . . . . . . . . . . . . . 55

1.6.2 Natural convection (2D) . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.6.3 Heat treatment of workpieces inside an industrial furnace . . . . . . . . 62

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1.8 Résumé français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vii



2 Anisotropic mesh adaptation 71
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2.1 The three classical mesh generation algorithms . . . . . . . . . . . . . . 74

2.2.2 The topological optimization mesh generation algorithm . . . . . . . . 75

2.3 AMR: Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . 80

2.3.1 Techniques of mesh adaptation . . . . . . . . . . . . . . . . . . . . . . 82

2.4 Metric-based anisotropic mesh adaptation . . . . . . . . . . . . . . . 83

2.4.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.4.2 Preliminary definitions and theoretical framework . . . . . . . . . . . . 83

2.4.3 Metric based mesh adaptation . . . . . . . . . . . . . . . . . . . . . . . 85

2.4.4 Metric construction at the nodes’ level . . . . . . . . . . . . . . . . . . 87

2.5 Error estimation for anisotropic mesh adaptation . . . . . . . . . . 95

2.5.1 Overview on error estimation techniques . . . . . . . . . . . . . . . . . 95

2.5.2 Global optimization problem . . . . . . . . . . . . . . . . . . . . . . . 96

2.5.3 Gradient and strong continuity along the edges . . . . . . . . . . . . . 97

2.5.4 Least square gradient recovery . . . . . . . . . . . . . . . . . . . . . . 102

2.5.5 A posteriori error analysis . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.5.6 Edge-based error estimation . . . . . . . . . . . . . . . . . . . . . . . 106

2.5.7 Optimal control on the Lp norm of the interpolation error . . . . . . . 109

2.5.8 Optimal metric construction . . . . . . . . . . . . . . . . . . . . . . . . 114

2.5.9 Privileged length distribution tensor . . . . . . . . . . . . . . . . . . . 122

2.6 Anisotropic mesh adaptation through local topological opti-
mization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

2.7 Fields’ interpolation between meshes . . . . . . . . . . . . . . . . . . . 125

2.8 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

2.8.1 Convergence tests on a quadratic function . . . . . . . . . . . . . . . . 128

2.8.2 Numerical validations on functions with steep gradients . . . . . . . . 130

2.8.3 Numerical validations on functions with multiscale variations . . . . . 138

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

2.10 Résumé français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3 Coupling the anisotropic mesh adaptation with CFD problems 143
3.1 A priori Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.1.1 convection-diffusion-reaction equation . . . . . . . . . . . . . . . . . . 145

3.1.2 Incompressible Navier-Stokes equations . . . . . . . . . . . . . . . . . 147

3.2 Tuning with stabilized finite element methods . . . . . . . . . . . . . 148

3.2.1 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.2.2 Validation of the characteristic lengths choice . . . . . . . . . . . . . . 152

3.2.3 Navier-Stokes equations with dominant viscous terms . . . . . . . . . . 152

3.2.4 Convection-Diffusion-Reaction equation with dominant viscous terms . 158

3.3 Applications to convection-diffusion problems . . . . . . . . . . . . . 160

viii



3.3.1 Numerical experiments on the steady convection-diffusion problem . . 161

3.4 Applications to incompressible flow problems . . . . . . . . . . . . . 169

3.4.1 Driven flow cavity problem (2D) . . . . . . . . . . . . . . . . . . . . . 170

3.4.2 Driven flow cavity problem (3D) . . . . . . . . . . . . . . . . . . . . . 176

3.4.3 Application to a 3D coupled heat transfer and fluid flows problem . . . 180

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

3.6 Résumé français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4 Time accurate anisotropic adaptation for unsteady simulations 185
4.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.1.1 Stability constraints on explicit advancing . . . . . . . . . . . . . . . . 187

4.1.2 Local time-stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.1.3 Overview on existing time-stepping algorithms . . . . . . . . . . . . . 189

4.1.4 Generating anisotropic space-time meshes . . . . . . . . . . . . . . . . 191

4.2 Time adaptation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 194

4.2.1 Edge-based temporal error estimation . . . . . . . . . . . . . . . . . . 195

4.2.2 General space-time adaptive algorithm . . . . . . . . . . . . . . . . . . 198

4.3 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

4.3.1 Convergence analysis on an analytical test case . . . . . . . . . . . . . . 199

4.3.2 A two-dimensional analytical test case with sinusoidal evolution in time 203

4.3.3 Applications on 2D fluid flow problems . . . . . . . . . . . . . . . . . 203

4.3.4 Flow around a circular cylinder (2-D) . . . . . . . . . . . . . . . . . . 211

4.3.5 Application to the unsteady convection-diffusion problem . . . . . . . . 213

4.3.6 Convection-diffusion in a plane shear flow . . . . . . . . . . . . . . . . 214

4.3.7 Internal and boundary layers . . . . . . . . . . . . . . . . . . . . . . . 215

4.3.8 Application to coupled heat transfer and fluid flows . . . . . . . . . . . 217

4.3.9 Application to 3D heat transfer and turbulent flow inside an industrial

furnace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

4.5 Résumé français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

5 Immersed volume method and multi-domain adaptation 229
5.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

5.2 Immersed Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.2.1 First component: the levelset function . . . . . . . . . . . . . . . . . . . 234

5.2.2 Second component: anisotropic mesh adaptation . . . . . . . . . . . . . 238

5.2.3 Third component: mixing laws . . . . . . . . . . . . . . . . . . . . . . 243

5.3 Mesh adaptation based on several fields . . . . . . . . . . . . . . . . . 246

5.3.1 Metric intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

5.3.2 Multi-components metric construction . . . . . . . . . . . . . . . . . . 247

5.4 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

5.4.1 Flow behind a circular cylinder . . . . . . . . . . . . . . . . . . . . . . 251

ix



5.4.2 Turbulent flow behind a F1 racing car at 300km/h . . . . . . . . . . . . 254

5.4.3 Forced turbulent convection . . . . . . . . . . . . . . . . . . . . . . . . 256

5.4.4 Simulation of a rotating helicopter propeller . . . . . . . . . . . . . . . 260

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

5.6 Résumé français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

6 Space-Time slab adaptive meshing 265
6.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

6.2 Single time-step space-time adaptive remeshing . . . . . . . . . . . . . 269

6.3 Paradoxical meshing: Full adaptivity algorithm . . . . . . . . . . . . 270

6.3.1 Validity of the generated mesh and frequency of remeshing . . . . . . . 271

6.3.2 A predictor-corrector approach . . . . . . . . . . . . . . . . . . . . . . 272

6.3.3 Generating time-slabs for adaptation . . . . . . . . . . . . . . . . . . . 273

6.3.4 Solution sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

6.3.5 Edge-based error estimation . . . . . . . . . . . . . . . . . . . . . . . . 275

6.3.6 Metric construction for a slab of time . . . . . . . . . . . . . . . . . . . 275

6.3.7 Temporal stretching factors . . . . . . . . . . . . . . . . . . . . . . . . 276

6.3.8 Space and time remeshing . . . . . . . . . . . . . . . . . . . . . . . . . 277

6.3.9 Convergence of the space-time adaptive algorithm . . . . . . . . . . . . 278

6.4 Paradoxical meshing algorithm . . . . . . . . . . . . . . . . . . . . . . . 279

6.5 1D Temporal mesher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

6.5.1 Application of the Time mesher . . . . . . . . . . . . . . . . . . . . . . 290

6.6 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

6.6.1 A two-dimensional rotating Circle . . . . . . . . . . . . . . . . . . . . 291

6.6.2 A two-dimensional analytical test case . . . . . . . . . . . . . . . . . . 294

6.6.3 A two-dimensional analytical test case with sinusoidal evolution in time 295

6.6.4 Fluid flow for different Reynolds numbers . . . . . . . . . . . . . . . . 297

6.6.5 Flow past a wind turbine . . . . . . . . . . . . . . . . . . . . . . . . . 298

6.6.6 Conjugate heat transfer inside an industrial furnace . . . . . . . . . . . 308

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

6.8 Résumé français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

7 Industrial applications 319
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

7.2 2D quenching of a heated ingot by forced convection . . . . . . . . 323

7.3 Air cooling of a hat shaped ingot by natural convection . . . . . . 329

7.4 3D heating of an industrial furnace . . . . . . . . . . . . . . . . . . . 335

7.5 3D cooling inside a quenching chamber . . . . . . . . . . . . . . . . . 346

7.6 Résumé français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Conclusion and Outlook 357

Bibliography 363

x



List of Figures

1 Ice on the inlet face of a fuel-oil heat exchanger similar to that of BA38

Boeing 777. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Zero-isovalue of the support grid’s levelset function and plane cuts on
the generated adapted mesh, adopted from [Hachem 09]. . . . . . . . . . 4

3 Heat treatment inside an industrial furnace. . . . . . . . . . . . . . . . . . 6

4 Thermal distribution inside an industrial furnace at 7mins of the simu-
lation time, adopted from [Hachem 09]. . . . . . . . . . . . . . . . . . . . . 6

1.1 Galerkin vs SUPG weighting function on linear elements adopted from
[Brooks 82]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 The auxiliary vector vc: projection of the advection direction onto the
solution’s gradient ∇u adopted from [Hachem 09]. . . . . . . . . . . . . . 29

1.3 P1+/P1 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 VMS approach solution decomposition adopted from [Hughes 98] . . . . 40

1.5 Schematic of turbulent flow scales (left) and the three modelling ap-
proaches (right), adopted from [Ferziger 96, Hachem 09] . . . . . . . . . . 46

1.6 Flow past a prismatic cylinder: sketch of the geometrical domain (left)
and the corresponding gradual mesh construction (right). . . . . . . . . . 55

1.7 Flow past a prismatic cylinder: profile of the turbulent eddy viscosity ν̃

(left) and velocity streamlines (right). . . . . . . . . . . . . . . . . . . . . . 57

1.8 Flow past a prismatic cylinder: drag (solid) and lift (dotted) coefficients
time evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.9 Natural convection 2D: sketch of the computational domain. . . . . . . . 59

1.10 Natural convection 2D: velocity streamlines at time t = 20s for Ra=106,
107 and 108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.11 Natural convection 2D: temperature isotherms at time t = 20s for
Ra=106, 107 and 108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.12 Computational domain after anisotropic mesh adaptation. . . . . . . . . . 62

1.13 A top view of the furnace (left) and the immersion of an ingot (right) . . 63

1.14 Different angle views of the furnace. . . . . . . . . . . . . . . . . . . . . . . 63

1.15 Isotherms inside the furnace at two different simulation times. . . . . . . 64

1.16 Velocity field and streamlines distribution inside the furnace and around
the ingots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.17 Velocity vectors on different horizontal cut-planes inside the furnace. . . 66

xi



1.18 Velocity vectors on different vertical cut-planes inside the furnace. . . . . 67

1.19 Temperature profile evolution over time captured at the center of the
immersed ingots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1.20 Temperature profile evolution over time captured at the surface of the
immersed ingots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.1 Virtual elements connected to a virtual node outside the domain. . . . . . 77

2.2 Example on the local optimization process by the ‘starring’ operator,
adopted from [Coupez 00]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3 Unit ball and linear mapping between the metric space and the canonical
space in two and three dimensional spaces. . . . . . . . . . . . . . . . . . . 85

2.4 Length Xij of the edge joining nodes Xi and X j. . . . . . . . . . . . . . . . 98

2.5 Stretching or shrinking of a spatial edge Xij as a result of a scaling sij . . . 108

2.6 Arbitrary point P inside an element connected to the node Xi. . . . . . . 111

2.7 Angle between the solution’s gradient and the edge Xij. . . . . . . . . . . 123

2.8 P1 interpolation from an old mesh to a new one, adopted from
[Boussetta 06]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

2.9 Quadratic function: validation of the gradient reconstruction and the
edge-based error estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

2.10 Quadratic function: Mesh convergence for the L1, L2 and L3 norms of
the interpolation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

2.11 Mountains and valleys: Iterative anisotropic refinement obtained within
4 consecutive iteration of the proposed mesh adaptation algorithm. . . . 132

2.12 Mountains and valleys: Iterative anisotropic refinement obtained within
8 consecutive iterations in the reference [Borouchaki 01]. . . . . . . . . . 133

2.13 Mountains and valleys: first iteration (left) and last one (right) in the
mesh adaptation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2.14 Anisotropic mesh adaptation around the logo of the Ecole des Mines and
zoomed snapshots near sharp angles. . . . . . . . . . . . . . . . . . . . . . 133

2.15 Surface plot (left), and isovalues (right) of the steep radial function de-
scribed by equation (2.124) on a mesh made up of 7, 000 nodes. . . . . . 134

2.16 Steep radial function: anisotropic meshes (HI , HIP, HE, and HEP re-
spectively from top to bottom) obtained with around 7, 000(left) and
20, 000(right) nodes after 7 successive adaptations. . . . . . . . . . . . . . 135

2.17 Steep radial function: convergence analysis on the L1 and L2 norms of
the interpolation error of the analytical function defined by (2.124). . . . 137

2.18 Multiscale function: surface plot (top-left), function isovalues (top-right)
and a cross section along the x = y axis (bottom). . . . . . . . . . . . . . . 139

2.19 Multiscale function: Convergence analysis on the L1 norm of the inter-
polation error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xii



2.20 Multiscale function: meshes obtained with 9, 000 nodes using the aver-
aged (left) and the privileged (right) length distribution tensor for metric
construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.1 Characteristic length for isotropic and anisotropic elements based on
classical formulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

3.2 Element’s characteristic length in the streamline direction. . . . . . . . . . 151

3.3 Anisotropic mesh obtained for the Poiseuille problem. . . . . . . . . . . . 151

3.4 Velocity profiles obtained with the classical characteristic length (top-left)
and the modified one (bottom-left) and 1D vertical cut along the outlet
boundary (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3.5 Numerical solution for κ = {10−1, 10−3, 10−6} (from left to right). . . . . . 163

3.6 Anisotropic meshes for κ = {10−1, 10−3, 10−6} (top to bottom) and zooms
on the boundary layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3.7 L∞, L2 and H1 norms of the error versus the number of elements in the
mesh for κ = {10−1, 10−3, 10−6} (top-left, top-right, and bottom). . . . . . . 165

3.8 Numerical solution (left) and convergence history in the L∞, L2 and H1

(right) for κ = 0.005 and a zoom on the interior layer. . . . . . . . . . . . 165

3.9 Anisotropic mesh obtained for κ = 0.005. . . . . . . . . . . . . . . . . . . 166

3.10 Numerical solution for κ = 10−6 with its corresponding anisotropically
adapted mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

3.11 Numerical solution for κ = 10−6, its corresponding anisotropically
adapted mesh with different zooming levels near the left boundary. . . . 167

3.12 Numerical solution for κ = 10−3 (right), its corresponding anisotrop-
ically adapted mesh with close-ups at the lower boundary to the
left(middle-top) and right(middle-bottom) of the line x = 1

2 . . . . . . . . . . 168

3.13 Numerical solution for κ = 10−3 and its corresponding anisotropically
adapted mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

3.14 Numerical solution for κ = 10−3 and its corresponding anisotropically
adapted mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

3.15 Driven cavity problem: 2D computational domain and the different cross
sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

3.16 Driven cavity problem: anisotropic meshes at Reynolds 1000, 5000 and
10, 000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

3.17 Driven cavity problem: zooms on the mesh near the right wall. . . . . . . 172

3.18 Driven cavity problem: comparison of the first component of the velocity
field Vx in the mid-plane x = 0.5 for Re = 1, 000 (left), for Re = 5, 000
(middle) and for Re = 10, 000 (right). . . . . . . . . . . . . . . . . . . . . . 173

3.19 Driven cavity problem: comparison of velocity profiles for Re = 1, 000
(top), for Re = 5, 000 (middle) and for Re = 10, 000 (bottom). Left:
Velocity profiles for Vx along x = 0.1. Right: Velocity profiles for Vx

along x = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

xiii



3.20 Driven cavity problem: snapshots of the anisotropic meshes for Reynolds
20, 00 and 100, 000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

3.21 Streamlines snapshots at Reynolds 1000, 3200 and 5000 . . . . . . . . . . . 176

3.22 Comparison of the velocity field’s first component in the mid-plane x =

0.5 for Re = 1, 000 (left) and for Re = 3, 200 (right). . . . . . . . . . . . . . 177

3.23 Zooms on the mesh details inside the 3D cavity . . . . . . . . . . . . . . . 177

3.24 Geometry for the flow behind a NACA body test case. . . . . . . . . . . 178

3.25 Mesh around the NACA body with a detail of the anisotropy. . . . . . . 178

3.26 Adaptation driven by the velocity field (left) and a combination of veloc-
ity and turbulent viscosity (right). . . . . . . . . . . . . . . . . . . . . . . . 179

3.27 Plots of initial and stationary state meshes. . . . . . . . . . . . . . . . . . 179

3.28 Plots for Test # 4 at the final time. . . . . . . . . . . . . . . . . . . . . . . . 180

3.29 Streamlines and isotherms inside the furnaces at different time instances. 182

4.1 Sketch of the edges connected to node Xi in a 4D mesh. . . . . . . . . . . 192

4.2 Temporal discretization at the spatial node Xi. . . . . . . . . . . . . . . . . 195

4.3 Anisotropic mesh obtained at different time instances (top) and closeups
around the radial steep gradient region (bottom). . . . . . . . . . . . . . . 201

4.4 Temporal convergence of the interpolation error with respect to the mesh
complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

4.5 Variations of the number of time-steps with respect to the imposed num-
ber of nodes in the mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

4.6 Time-step evolution corresponding to adapting the mesh on the L1, L2

and L∞ norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

4.7 History of the time-steps (s) obtained with the developed algorithm on
problem (4.24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

4.8 Anisotropic meshes at Reynolds 1, 000, 5, 000, 10, 000 and 20, 000 . . . . . 205

4.9 Comparison of velocity profiles in the mid-planes for Re = 1, 000 (top)
and Re = 5, 000 (bottom). Left: Velocity profiles for Ux along x = 0.5 .
Right: Velocity profiles for Uy along y = 0.5. . . . . . . . . . . . . . . . . . 206

4.10 Comparison of time-averaged velocity profiles in the mid-planes for
Re = 10, 000 (top) and Re = 20, 000 (bottom). Left: Velocity profiles
for Ux along x = 0.5 . Right: Velocity profiles for Uy along y = 0.5. . . . . 207

4.11 Comparison of the time-step sizes’ variations (s) for Re = 1, 000, Re =

5, 000, Re = 10, 000 and Re = 20, 000. . . . . . . . . . . . . . . . . . . . . . . 209

4.12 Comparison of velocity profiles in the mid-planes for Re = 1, 000 com-
puted using different number of nodes. . . . . . . . . . . . . . . . . . . . . 210

4.13 Time-steps evolution (s) after introducing an outlet to the cavity at time
t = 4, 000 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

4.14 Geometry of the problem adopted from [Schäfer 96]. . . . . . . . . . . . . 212

4.15 Flow past a cylinder test case: evolution of the velocity magnitude (top)
and of the mesh (bottom) at different time instances. . . . . . . . . . . . . 212

xiv



4.16 Flow behind a circular cylinder: time-steps (s) history. . . . . . . . . . . . 213

4.17 Flow around a circular cylinder (2D): pressure difference Pdiff =

P(0.15, 0.2)− P(0.25, 0.2) (left) and drag coefficient (right). . . . . . . . . . 214

4.18 The obtained isovalues and the adapted meshes at two different time-step.215

4.19 Total number of time-steps with respect to the tolerance. . . . . . . . . . . 216

4.20 Numerical solutions at different time-steps with their corresponding
anisotropically adapted meshes. . . . . . . . . . . . . . . . . . . . . . . . . 217

4.21 Evolution of the time-step size over time. . . . . . . . . . . . . . . . . . . . 218

4.22 Total number of time-steps with respect to the tolerance. . . . . . . . . . . 218

4.23 Natural convection 2D: temperature isotherms at time t = 20s for Ra=106

and the corresponding adapted mesh. . . . . . . . . . . . . . . . . . . . . . 219

4.24 Temperature fields and velocity streamlines with the corresponding
adapted mesh for µ = 0.01 (top) and µ = 0.0005 (bottom). . . . . . . . . . . 221

4.25 Time-step evolution (s) for the different possible combinations for adap-
tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

4.26 Isotherms inside the furnace (Top) and corresponding adapted meshes
(bottom) at three different time-steps. . . . . . . . . . . . . . . . . . . . . . 223

4.27 Time-step evolution (s) for the simulation of an hour of the heating pro-
cess inside an industrial furnace. . . . . . . . . . . . . . . . . . . . . . . . . 225

4.28 Time-step evolution (s) for the simulation of an hour of the heating pro-
cess inside an industrial furnace using the k − ε turbulence model. An
hour of fluid flow (left) and zoom on the first 100s (right) are depicted. . 225

4.29 Velocity magnitude on a horizontal plane cut along the z-axis at the
burner’s level obtained at time t = 50s when adapting the mesh every 5
time-increments (left) and every 20 time-increments (right). . . . . . . . . 226

5.1 Schematic for immersing objects inside computational domains. . . . . . 235

5.2 Schematic representation of the levelset function for multi-domain prob-
lems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

5.3 Schematic representation of a node Xi’s projection onto an element on
the surface mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

5.4 Zero-isovalues of the levelset function of a missile object in the fitted
domain (left) and the computational domain (right). . . . . . . . . . . . . 237

5.5 Anisotropic meshes adapted on the immersed hat shaped solid obtained
using the layer based approach (left) and the edge-based metric construc-
tion developed in this work (right). . . . . . . . . . . . . . . . . . . . . . . 240

5.6 Levelset (left) and filtered levelset (right) functions corresponding to an
immersed missile object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

5.7 Immersed missile object with its corresponding anisotropic mesh. . . . . 242

5.8 Immersed F1 car with its corresponding anisotropic mesh. . . . . . . . . . 242

xv



5.9 Density distribution in a multi-domain simulation on adapted meshes of
4, 000 nodes based on a gradual refinement (left) and on an anisotropic
refinement (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

5.10 Anisotropic mesh adaptation around different shapes obtained after
10 adaptive iterations using the metric intersection (left), the multi-
components metric construction based on the L2 norm of the edge error
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

5.11 Normalized velocity field (left) the velocity vector (right). . . . . . . . . . 249

5.12 Anisotropic mesh obtained when adapting on the velocity norm (left)
and on its norm and direction (right). . . . . . . . . . . . . . . . . . . . . . 249

5.13 Flow behind a circular cylinder: comparison of the velocity profiles (top)
obtained using the body fitted and the IVM and their corresponding
meshes (bottom) at time t = 6s. . . . . . . . . . . . . . . . . . . . . . . . . . 252

5.14 Flow behind a circular cylinder: time history of the drag (top) and lift
(bottom) coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

5.15 Flow behind a F1 racing car: Velocity streamlines, pressure field and
their corresponding dynamically adapted meshes at different time in-
stances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

5.16 Frontal view on the flow behind the F1 racing car at different time in-
stances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

5.17 Anisotropic meshes describing the characteristics of the flow behind the
F1 racing car. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

5.18 Forced convection: sketch of the geometry and initial conditions. . . . . . 257

5.19 Forced convection: temperature distribution, velocity profiles and the
corresponding meshes over time. . . . . . . . . . . . . . . . . . . . . . . . . 258

5.20 Forced convection: thermal heating of immersed ingots. . . . . . . . . . . 259

5.21 Forced convection: time-steps evolution over time (left) and a zoom on
the first 200s (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

5.22 2D mesh of the horizontal cut along the blade and the zero-isovalue of
the blade’s levelset (in solid red line). . . . . . . . . . . . . . . . . . . . . . 261

5.23 Three time-steps after remeshing: mesh and zero-isovalue of the blade’s
levelset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

5.24 Different snapshots on the mesh capture of the blade’s trajectory over
time and a zoom on the blade’s mesh. . . . . . . . . . . . . . . . . . . . . . 261

5.25 History of the time-step sizes for the first 0.05s of the propeller’s rotation. 261

6.1 Time slabs [Tk−1, Tk] and their corresponding initial meshes. . . . . . . . 274

6.2 Updated time slabs [Tk−1, Tk] and their corresponding optimal meshes. . 278

6.3 Example on the failure of the trivial time advancing. . . . . . . . . . . . . 282

6.4 Scenario 1: the optimal time-slab size is smaller than the initial one.
Consequently, new slabs will be generated in the mesh. . . . . . . . . . . 283

6.5 Scenario 2: the optimal time-slab size is equal to the initial one. . . . . . . 283

xvi



6.6 Scenario 3: The time-slab [Tk−1, Tk] will be stretched. . . . . . . . . . . . . 284

6.7 Scenario 3 (a): The time-slab [Tk−1, Tk] will be stretched with Tk+1 and
the new endpoint of the predicted optimal slab [Tk, Tk + δ̃tk] lying out-
side [Tp−1, Tp−1 + δ̃tk−1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

6.8 Scenario 3 (b): The time-slab [Tk−1, Tk] will be stretched with Tk and
the new endpoint of the predicted optimal slab [Tk, Tk + δ̃tk] lying inside
[Tp−1, Tp−1 + δ̃tk−1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

6.9 Scenario 3 (c): The time-slab [Tk−1, Tk] will be stretched with Tk, Tk+1,
Tk+2 lying inside [Tp−1, Tp−1 + δ̃tk−1]. . . . . . . . . . . . . . . . . . . . . . 286

6.10 Scenario 3 (d): The time-slab [Tk−1, Tk] will be stretched with Tk, Tk+1,
Tk+2 and Tk+2 + δ̃tk+2 lying inside [Tp−1, Tp−1 + δ̃tk−1]. . . . . . . . . . . . 286

6.11 Scenario 4: the generated optimal mesh H̃k−1 up to the end of the simu-
lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

6.12 Example of application of the time mesher. . . . . . . . . . . . . . . . . . . 290

6.13 Paradoxical meshing algorithm applied to a rotating circle for the inter-
val [tn, tn+1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

6.14 Time-steps generated by the single time-step adaptation (left) and the
paradoxical (right) meshing algorithms. . . . . . . . . . . . . . . . . . . . . 292

6.15 Instabilities appearing when adapting the mesh using the single time-
step meshing algorithm applied to a rotating circle with a fixed time-step
∆t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

6.16 Time sub-intervals satisfying the requirement for second order conver-
gence in the anisotropic case. . . . . . . . . . . . . . . . . . . . . . . . . . . 294

6.17 Different snapshots reflecting the rotating sphere at the beginning, the
middle and the end of the predicted slabs of time. . . . . . . . . . . . . . . 301

6.18 Anisotropic mesh adapted over a slab of time to contain the analytical
function defined by (6.20). . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

6.19 History of the time-steps corresponding to the single time-step and the
paradoxical meshing techniques applied to (6.20). . . . . . . . . . . . . . 302

6.20 History of the time-steps corresponding to the single time-step and the
paradoxical meshing techniques applied to (6.21) . . . . . . . . . . . . . . 302

6.21 Plot of the mesh and a zoom on the main velocity vortex over the time
slab [1.93 , 2.75] corresponding to 20 time-increments. . . . . . . . . . . . 303

6.22 Plot of the mesh and the main velocity vortex over the time slab
[6.8027 , 7.11646] corresponding to 20 time-increments. . . . . . . . . . . 303

6.23 Final mesh corresponding to the stable flow inside the cavity (left).
Zooms on the mesh close to the right wall (right). . . . . . . . . . . . . . 304

6.24 Velocity magnitude over a slab of time with the optimal anisotropic mesh
obtained at Re=100, 000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

6.25 Comparison of velocity profiles in the mid-planes for Re = 1, 000 (top),
Re = 5, 000 (middle) and for Re = 10, 000 (bottom). Left: Velocity pro-
files for Ux along x = 0.5 . Right: Velocity profiles for Uy along y = 0.5. . 305

xvii



6.26 Variation of the time-slab sizes generated by the single time-step (solid
line) and the paradoxical (dashed line) meshing techniques for the driven
cavity problem at Reynolds numbers 5, 000 and 20, 000. . . . . . . . . . . . 305

6.27 Q-criterion contours for the value 0.5 at different time instances. . . . . . 306

6.28 Pressure field and velocity streamlines at three successive times. . . . . . 306

6.29 Velocity magnitude on the blades and the generated anisotropically
adapted meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

6.30 Initial configuration and mesh for the heat treatment inside an industrial
furnace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

6.31 Thermal distribution inside the volume and on the surface of the im-
mersed solids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

6.32 Thermal distribution inside the volume and in the core of the immersed
solids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

6.33 Velocity streamlines at different time instances. . . . . . . . . . . . . . . . 315

6.34 Velocity field at the beginning and during the course of the simulation. . 315

6.35 Anisotropic mesh generated for the time-slab [26.05, 29.65]. . . . . . . . . 316

6.36 Temperature distribution at selected nodes inside the volume (top) and
at the heart of the central thick workpiece (bottom). . . . . . . . . . . . . . 316

6.37 History of the time-step sizes generated by the paradoxical meshing ap-
proach for a conjugate heat transfer application. . . . . . . . . . . . . . . . 317

7.1 Heat treatment of a large hollow steel shell. . . . . . . . . . . . . . . . . . 321

7.2 Heat losses during a furnace heating process taken from [Was 14]. . . . . 322

7.3 General diagram for heat treatment simulation. . . . . . . . . . . . . . . . 324

7.4 Computational domain, initial mesh and temperature (left) and thermo-
couples’ positions (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

7.5 Temperature profiles and corresponding meshes at times t =

53s, 175s, 323s, 600s (from top to bottom and left to right). . . . . . . . . . 327

7.6 History of temperature at different sensors inside the workpiece. . . . . . 328

7.7 Velocity field (top) and position of the horizontal cuts (bottom). . . . . . . 328

7.8 History of time-step evolution for the forced convection quenching of a
heated workpiece. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

7.9 Comparisons of the velocity field’s component vy along the different
horizontal cuts at the final time 600s. . . . . . . . . . . . . . . . . . . . . . 330

7.10 Computational domain, initial mesh and the iso-zero value of the im-
mersed solid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

7.11 Thermal evolution inside the enclosure at different time instances with
the corresponding anisotropic meshes. . . . . . . . . . . . . . . . . . . . . 333

7.12 Temperature distribution inside the hat shaped ingot at times t = 40s,
t = 600s and t = 1600s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

7.13 Thermocouples’ positioning inside the hat shaped ingot. . . . . . . . . . . 334

7.14 Temeprature evolution at different locations inside the hat shaped ingot. 334

xviii



7.15 Temperature evolution at different locations inside the hat shaped work-
piece, with and without thermal radiation effects. . . . . . . . . . . . . . . 335

7.16 Generated time-steps for the cooling of a hat shaped solid. . . . . . . . . . 336

7.17 Geometry and initial mesh of the 3D furnace. . . . . . . . . . . . . . . . . 336

7.18 Temperature distribution inside the furnace volume at different time in-
stances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

7.19 Velocity streamlines inside the furnace volume at different time instances. 339

7.20 Anisotropic meshes generated at different time instances. . . . . . . . . . 340

7.21 Sensors’ positions inside the cylindrical workpiece. . . . . . . . . . . . . . 341

7.22 Temperature distribution in the core of the workpiece. . . . . . . . . . . . 342

7.23 Temperature distribution at the surface of the workpiece. . . . . . . . . . 343

7.24 Temperature distribution in the furnace volume. . . . . . . . . . . . . . . . 343

7.25 Thermal evolution on the surface and at the heart of the workpiece. . . . 345

7.26 Evolution of the time-step sizes. . . . . . . . . . . . . . . . . . . . . . . . . 345

7.27 Initial configuration and mesh of the quenching chamber for the pre-
cooling phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

7.28 Velocity streamlines during the pre-cooling phase inside the quenching
chamber at different time instances. . . . . . . . . . . . . . . . . . . . . . . 347

7.29 A top view on the velocity field inside the quenching chamber during
the pre-cooling phase at two different time instances. . . . . . . . . . . . . 348

7.30 Snapshot on the anisotropic mesh associated with the quenching cham-
ber at time 1100s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

7.31 Velocity streamlines during the cooling phase inside the quenching
chamber at different time instances. . . . . . . . . . . . . . . . . . . . . . . 349

7.32 Velocity field inside the quenching chamber during the cooling phase at
two different time instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

7.33 Temperature distribution inside the quenching chamber during the cool-
ing phase at two different time instances. . . . . . . . . . . . . . . . . . . . 351

7.34 Snapshot on the anisotropic mesh associated with the quenching cham-
ber after immersing the hollow solid. . . . . . . . . . . . . . . . . . . . . . 351

7.35 Temperature variation at thermocouples C1 and C3 implanted on the
surface of the workpiece. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

7.36 Temperature variation at thermocouples C2, C4 and C5 implanted at the
heart of the workpiece. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

7.37 Comparison of the thermal distribution at the different thermocouples
implanted inside the workpiece. . . . . . . . . . . . . . . . . . . . . . . . . 354

xix





Introduction

“You give but little when you give of your possessions.
It is when you give of yourself that you truly give.”

Gibran Khalil Gibran, The Prophet.

On January 17th
2008, British Airways flight 38, a Boeing 777 heading from Beijing

to London Heathrow airport crash landed on the grass, 330 meters short from the
runway on which it was supposed to land. Luckily, no casualties were reported, only
one passenger suffered from serious injuries.

Pilots’ accounts and primary investigations showed that the engines did not re-
spond to an increase in throttle requested first by the autopilot and then by the co-pilot
who was in the commands at the time of the crash. This resulted in an unwanted
decrease in the airplane’s speed at a very critical phase, right before landing. A quick
and intelligent reaction from the aircrew allowed the plane to glide to a point where it
could land with the safest outcome possible, saving the lives of many passengers and
people living in the perimeter of the airport.

Investigations [AAIB 10] by the Air Accidents Investigation Branch (AAIB) into the
reasons of this engine failure lasted for about two years. It went over many possibilities
which all proved not to cause such a dysfunctionality. The report concluded that,
during the course of the flight, the airplane went across very cold environments when
flying through the air spaces of both Russia and Sweden; amounts of water, naturally
present in the fuel, transformed into ice. When a big demand in fuel was formulated
during the landing, some of the remaining ice was moved around the fuel system and
clogged the Fuel Oil Heat Exchanger (FOHE) as one can see in figure 1. This diminished
the fuel flow through the system causing the throttle to be below the commanded
level. A report [Rosenker 09] from the American National Transportation Safety Board
required a redesign of the FOHE to render it more tolerant to ice accumulation.

Figure 1 – Ice on the inlet face of a fuel-oil heat exchanger similar to that of BA38 Boeing 777.

Such an accident and terrifying situation could have been avoided if this ice-
accumulation scenario had been studied during the design phase of this metal product.
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The design of such a piece that intervenes in a sensitive part of an airplane’s function-
ing needs careful and thorough study of the operational possibilities in diverse envi-
ronments. The FOHE is required for example to have a perfect throughput whatever
the fuel flow is and in whatever temperature conditions. Therefore, early studies of a
piece’s design should include simulation of the interaction between the fuel and solid
in all possible what-if scenarios.

The numerical modelling and investigation of this physical situation can be classi-
fied as a fluid-structure interaction (FSI) problem. Furthermore, in order to predict the
behavior of the workpieces for different weather conditions and during the real time
context, long time and large scale simulations shall be conducted. Today, even with
the most powerful computational resources, a full simulation is very challenging and
highly demanding in terms of computational time. Accurate numerical predictions are
unaffordable if no space and time adaptive techniques are used.

FSI problems belong to the variety of multi-physical phenomena. Typical exam-
ples can be encountered in a wide range of applications including: aerodynamics like
an airflow analysis around aircrafts or racing cars [Hoffman 09, Hoffman 14], biome-
chanics like blood flow inside arterial membranes [Takizawa 12], turbo-machinery like
the study of turbine cooling performance [Sidwell 05], heat treatment inside industrial
furnaces [Hachem 10b], etc.

They involve highly coupled systems where fluid and solid parts possessing dif-
ferent material and thermo-dynamic properties interact and influence the mechanical
behavior of one-another. These phenomena are intrinsically dynamic and may exhibit
heterogeneous scales undertaking a ‘cascade’ of energy dissipation from the largest to
the smallest scale.

The understanding and modelling of these problems have considerably attracted
researchers over the last few decades especially with the increasing growth in computer
powers and the continuous development of numerical tools. Several mathematical
models and numerical methods have been developed in the literature to describe and
simulate the underlying phenomena. The accuracy and efficiency of these simulations
highly depend on the complexity, the scale and the duration of the considered problem.

Two main immersing techniques can be adopted to ensure the geometric compati-
bility and the continuity of conditions across the solid/fluid interfaces: the partitioned
coupling approach, and the monolithic approach. In the partitioned technique, each
of the fluid and solid subdomains is solved separately, then the governing equations
are integrated interactively in time and the interface conditions are imposed asyn-
chronously as boundary conditions for the subproblems. The difficulty arises when
communicating the data at the interface level. The coupling between the subdomains
is ensured using either weakly or strongly coupled methods [Ferziger 02]. In the for-
mer case, as its name suggests, the coupling between the subdomains’ solutions is
very weak and hence the boundary conditions need not to necessarily coincide. At
each time increment, a single solution is computed on either sides of the interface
[Park 83, Farhat 06]. However, using this scheme, numerical instabilities might arise
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depending on the density ratio and the complexity of the geometry hence deteriorat-
ing the accuracy of the global solution [Nobile 01, Le Tallec 01, Causin 05]. The strong
coupling approach, consists in iteratively resolving the subproblems in a fully cou-
pled manner until the solution stabilizes and hence the interface conditions are well
respected [Gerbeau 03, Bathe 04, Fernández 05]. Clearly, this scheme necessitates an
important computational cost.

In the context of thermal fluid structure interaction problems using a partitioned
method, a heat transfer coefficient between the subdomains should be known and pre-
scribed as boundary condition to ensure an appropriate energy transfer across the
interface. Several experimental tests need to be conducted in order to determine this
coefficient in terms of the problem’s geometry and thermo-mechanical properties. Con-
sequently, for every change in the geometry and/or the physical properties, the exper-
imental tests shall be repeated. This parametric investigation is time consuming and
expensive and can thus rapidly become unfeasible. A common industrial practice is
to study simplified model problems then to extrapolate the results and draw conjec-
tures on the large scale behavior. However, these procedures can hardly yield optimal
configurations and may still be very costly.

On the other hand, monolithic approaches for fluid structure interaction problems
involve solving simultaneously a single set of equations for both the fluid and solid
parts of the computational domain. The mutual influence of the subdomains will then
be naturally accounted for without resorting to coupling models nor experimental data
at the interface level, thus enhancing the stability of the computations. The interface
tracking method [Lakehal 02] is a monolithic approach where the multi-physical do-
mains’ interfaces are tracked by levelsets, which are signed distance functions. The
immersed volume method (IVM) [Bernacki 08, Valette 09, Bruchon 09, Hachem 10a,
Hachem 13] was defined in that sense and can be applied on a wide range of multi-
material applications. The key feature of this approach is to retain the advantages of a
monolithic formulation and couple it with an anisotropic mesh well adapted along the
fluid/solid interfaces to provide a high resolution at that level. In the monolithic frame-
work, a levelset is used to delimit the different sub-domains. The latter are treated as a
single fluid with different material properties, and hence the solution is being evolved
with a single set of equations on the global domain. The use of a well adapted mesh
along the interfaces ensures an accurate distribution of the thermo-mechanical param-
eters over the computational domain. This mesh is constructed prior to the simulation
and is maintained fixed all over the computational time. It is anisotropic and well
adapted along the fluid/solid interfaces and isotropic with a relatively small back-
ground mesh size in the rest of the domain. Figure 2 presents an example of the
anisotropic mesh used by the immersed volume method that is well adapted to the
levelset function of a support grid positioned inside the computational domain. In
order to provide a well respected shape in terms of curvatures, sharp angles and thin
layers, an anisotropic refinement is generated in the vicinity of the interface and an
isotropic mesh size inside the rest of the enclosure, the generated mesh is made up
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from 155, 015 nodes and 896, 539 tetrahedral elements. When dealing with large com-
putational domains and long time simulations, the mesh resolution would be more
complex inducing a considerable computational cost.

Figure 2 – Zero-isovalue of the support grid’s levelset function and plane cuts on the generated adapted
mesh, adopted from [Hachem 09].

Industrial context and numerical tools

This thesis is part of the REALisTIC (laRgE scAle investigation and Long TIme
Computation) research project founded by an industrial consortium in the view of
studying and optimizing the heat treatment processes inside industrial furnaces and
quenching chambers. As its name suggests, the REALisTIC project aims at provid-
ing numerical simulations that mimic the realistic industrial applications. A second
interpretation of this acronym can be inferred by decomposing it into “real is tic” by
means that real physical phenomena can be reproduced in one click and in a reduced
computational time.

The heat treatment cycle is a manufacturing process involving a series of controlled
heating, quenching and tempering operations whereby the physical and metallurgical
properties of a workpiece material are changed. A good quality production is the re-
sult of a well controlled calibration of the heating sequences in accordance with the
thermo-physical properties of the metallic component and the heat transfer inside the
enclosures. Therefore, from an industrial viewpoint, in order to optimize the indus-
trial compartment throughput and workpieces’ microstructure, it is highly desirable to
devise a thermally and energy efficient heating schedule. The research development
will also permit the investigation of possible insights to lower the energy consumption
and reduce the pollutant emissions and thus improve the environmental health. The
study can be carried out using experimental or numerical procedures. Given the ther-
mal history of a metallic ingot and temperature evolution inside the domain, the final
characteristics and properties of the product can be determined. However, performing
experimental analysis and testing “what-if ” scenarios necessitates a lot of raw materials
and the privatization of machinery for a long time. Therefore, such a procedure can
rapidly become unfeasible. On the other hand, given the important growth in com-
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puter resources and the important progress of numerical developments, the modelling
of long time heat transfer and fluid flows inside large scale complex domains is now
possible.

The numerical simulation consists in solving the turbulent flows within the com-
putational domain, combustion and heat transfer at the burner’s level and the conduc-
tion, convection and thermal radiation at the load’s level. The sought method should
be capable of providing accurate and efficient computations. Despite the considerable
advances in computational fluid dynamics (CFD) and the increasing computer power,
different challenges still need to be addressed for providing accurate and efficient sim-
ulations. The problem can be cast as a thermal fluid-structure interaction one involving
the simultaneous resolution of turbulent flows and conjugate heat transfers between the
solid and the fluid subdomains. Due to the deficiency of analytical solution to this cou-
pled system of equations, all hope for resolution culminates in the numerical analysis.
To model this multi-material problem, we resort in this thesis work to the immersed
volume method whereby the fluid and solid subdomains will be considered as a single
fluid with variable material properties and thus one set of equations is considered for
the global computational domain. Stabilized finite element approaches will be adopted
for the numerical treatment of the physical problems.

Problematic

In the context of the immersed volume method, a fixed mesh anisotropically adapted
at the fluid-structure’s interfaces and isotropic with a fixed relatively small mesh size
is maintained all over the simulation time. When applied on large-scale phenomena
like heat treatment inside industrial furnaces, such a generation process leads to a high
mesh resolution and requires an important computational cost. Indeed, it was pointed
out in [Hachem 09] that using the IVM to simulate 7 minutes of heat transfers and
fluid flow inside an industrial furnace (see figure 4), with an anisotropically adapted
mesh along the interface of a skid made up from 155, 015 nodes and a time-step size
0.001s, required 5 days on 32 2.4 Ghz Opteron cores in parallel (linked by an Infiniband
network) although a turbulence model was used to account for the turbulence effect on
the general flow and hence to accelerate the computations.

Therefore, accurate and fast algorithms are necessary for the simulation within a
reasonable time of the full heating sequence, which is in the order of hours.

Ambition of this work and state of the art on existing meth-
ods in the literature

The accurate and efficient prediction of conjugate heat transfer and fluid flow phenom-
ena of long duration and inside complex large scale domains is certainly a challenging
task. Several possible routes can be adopted for achieving this goal: parallel comput-
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Figure 3 – Heat treatment inside an industrial furnace.

Figure 4 – Thermal distribution inside an industrial furnace at 7mins of the simulation time, adopted
from [Hachem 09].
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ing, reduced order methods, mesh adaptation, and time adaptation. In this work, a
new approach for space and time adaptation will be developed. The method will be
suitable for a wide range of problems involving scale heterogeneity and will be sub-
jected to a constraint accounting for the available computer resources. The mesh will
be dynamically and automatically adapted to provide an accurate representation of the
solution’s variations within the least computational cost. The core of this work primar-
ily consists in deriving the methodological aspect and providing a good mathematical
ground for the adaptive approaches. The actual application of the algorithms will in
turn validate their performance, accuracy and efficiency.

The idea of mesh adaptation was first suggested in the 1970s [Allgower 78] in the
view of improving the quality and yielding faster computations of numerical solu-
tions. This subject has obtained more attention in the following years [Lo 90, Craig 87,
Adjerid 86, Berger 84] and error estimators found their way inside this enlightened path
in order to generate isotropically adapted meshes [Arney 90, Berger 84, Bieterman 86,
Chew 89]. Nevertheless, in the absence of the control on the mesh resolution, isotropic
mesh adaptation tends to drastically increase the number of elements in the mesh in
order to well capture anisotropic features, that is physical phenomena whose varia-
tions in one direction are more significant than in the other directions. In these sit-
uations, anisotropic meshes are the best candidate as they respond well to the direc-
tional aspect of a solution’s variations. These types of meshes were first introduced in
the late 1980s [Peraire 87, Selmin 92, Löhner 89, Zienkiewicz 94] in the context of the
moving front technique. By that time, the applications to 3D were not very success-
ful and showed limited stretching capabilities. The idea of metric based anisotropic
adaptation targeting the generation of elements with high aspect ratio started in the
1990s [Mavriplis 90, George 91, Castro-Díaz 97]. An improvement on this method
to avoid the generation of obtuse elements was to associate it with local re-meshing
strategies [Coupez 91, Castaños 96, Laemmer 97, Gruau 05, Dobrzynski 07, Tremel 07,
Loseille 12]. Four major error estimation classes can be distinguished in the literature:
the hessian based relying on the solution’s hessian information to evaluate the lin-
ear interpolation error [Tam 00, Pain 01, Bottasso 04, Gruau 05, Frey 05, Boussetta 06],
the a posteriori estimates approximating the discretization error using a theoretical
analysis [Kunert 00, Formaggia 03, Picasso 03, Formaggia 04, Micheletti 06, Picasso 06,
Hecht 14], the a priori error estimates [Formaggia 01, Huang 05] and the goal oriented
estimates that provide mathematical framework for assessing the quality of some func-
tionals [Venditti 03, Micheletti 08a, Alauzet 10b, Peter 12, Yano 12].

The first step in the derivation of an anisotropically adapted mesh involves error
estimations which serve as indicators of the zones of the solution’s high gradients.
From this analysis, a metric tensor is constructed holding information about the opti-
mal mesh sizes and the directions of their prescriptions. In the third step, this tensor is
provided to a remesher that will in turn generate the appropriate well adapted mesh.
This method for mesh adaptation has proven to be efficient and accurate in responding
to the solution’s behavior.
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On the other hand, since for most physical phenomena it is hard to determine
a priori the appropriate time-step size that would respect a good level of efficiency
and provide accurate computations, dynamic time adaptation algorithms are highly
recommended. The first class of time-stepping techniques involves local time-stepping
control whereby different buffer zones evolve at different time-step sizes dictated by
local stability conditions. Usually these methods are employed on structured meshes
[Tam 03, Lörcher 07, Lörcher 08]. Another possibility consists in limiting the global
induced temporal error by a user prescribed tolerance [Sloan 99, Kavetski 02, Chen 04b,
Berrone 09]. Heuristic time-stepping algorithms relate the modification of the time-
step sizes to the number of iterations needed to solve the nonlinear system at the
previous time increment [Celia 92, Rathfelder 94, Paniconi 91]. The selection of time-
step sizes in accordance with adjoint weighted residual method [Fidkowski 11, Kast 13]
or based on fictive residual methods [Georgiev 09] were also proposed in the literature.
However, due to the computational cost associated with the resolution of the an adjoint
problem or the resolution of the problem using a Crank-Nicholson and an implicit
time discretization, these approaches will not be adopted in this work. Moreover, a
fixed point adaptive staggering method was proposed in [Zohdi 07] where the time-
steps are automatically adapted using the spectral radius of the considered system of
equations to control the convergence of the numerical solutions within a predefined
number of iterations. The idea of fixed point iterative time-stepping selection seems
very interesting from an accuracy standpoint and will be a source of inspiration in this
work for the derivation of a space-time full adaptation method.

Space and time adaptive techniques have also been the subject of research investi-
gations. A space and time residual based approach was developed in [Micheletti 08c]
where the error analysis is conducted on space-time slabs and according to the gen-
erated temporal error, the time-step size is updated. Furthermore, a space-time
method for metric tensor construction is proposed in [Belme 11] whereby the gener-
ated anisotropic spatial mesh will provide a dual control on the spatial error and the
temporal one. Yet the time-step size is controlled by a CFL condition which in turn is
related to the minimum mesh size hence decelerating the computations.

Present approach

In this thesis, we are interested in providing numerical tools for the resolution of long
time conjugate heat transfer and turbulent fluid flows inside large scale computational
domains. In order to fulfill this challenge, we pursue the following strategy: we start
by exploiting the stabilized finite elements methods that will be used for the resolution
process. The application of these numerical tools on fixed meshes with fixed time-step
sizes highlights the need for adaptive algorithms to enhance the accuracy and efficiency
of the computations. The aim next is to control through anisotropic mesh adaptation
and time adaptive algorithms the global space and time interpolation errors.

Starting with the space adaptation, the objective can be cast as an optimization
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problem whereby one seeks the metric tensor, a symmetric positive definite tensor, that
minimizes the global Lp norm of the interpolation error of a selected scalar or vector
or a combination of several fields of interest. The multi-component metric construction
will take into account the multiscale features of the numerical solutions. When pro-
vided to a remesher, this tensor enables the optimization of the elements’ mesh sizes
and their orientations in response to the anisotropy of the physical phenomena. More-
over, edge-based error estimations will be used as indicators of the domain regions
where the variables of interest exhibit sharp variations. The construction procedure
takes into account a prescribed fixed number of nodes and generates the optimal mesh
with this resolution.

When dealing with unsteady Computational Fluid Dynamics (CFD) applications,
the time-dimension is an additional backbone component for adaptation. For that
reason, the theory will be extended into a space-time formulation. The error equi-
distribution principle [Babus̆ka 78], stating that minimizing the error over the global
domain is equivalent to equidistributing it over the edges of the mesh, permits the
splitting of the space-time optimization problem into two folds: on the one hand, an
anisotropic mesh adaptation controlling the spatial error will be solved and on the
other hand, a time adaptive procedure is followed to control the temporal error. The
coupling between them is enforced through the use of a homogenous equidistributed
error. This adaptation process will be referred to as the classical adaptation.

The appropriate tuning of the stabilized finite elements methods will also be ad-
dressed. It intends to modify the definition of the element’s characteristic length in
order to handle highly stretched elements.

In the FSI framework, the proposed anisotropic mesh adaptation will not only pro-
vide an accurate representation of the fluid/solid interfaces but also dynamically and
automatically follow the development of the flow and the heat transfer over time, thus
optimizing the repartition of the available nodes over the domain. Indeed, the gen-
erated mesh will not be maintained the same over the simulation time, for a given
number of nodes, the elements’ repartition, direction and stretching will be optimized.
As a result of this adaptation, the elements will be concentrated in zones where the
solution exhibits a sharp gradient and they will be highly stretched and very coarse in
regions of low variations.

Moving toward the ultimate goal of this thesis, we will extend the theory on the
classical space-time adaptation to handle slabs of time in a full adaptation approach.
The method will be called ‘paradoxical meshing’, as it will generate meshes that are
well predicted for slabs of time to contain and well capture the advancing unknown
solution. The method couples the concept of space and time fixed point adaptation
[Zohdi 07, Alauzet 10b] with the proposed edge-based error estimation and nodal met-
ric construction developed in this work. In order to optimally redistribute the temporal
nodes in accordance with the predicted optimal time-slab sizes, a new 1D temporal
mesher will be developed. This novel approach for full adaptivity can be considered as
a breakthrough in the resolution of physical problems with moving geometries. When
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applied in this context, the method will enhance further the accuracy and efficiency of
the numerical solution. Indeed, the constructed mesh will account for the time-evolving
geometry and the developing flow characteristics.

Working environment

This thesis work was developed at the Center for Material Forming, “CEntre de Mise
En Forme des matériaux” (CEMEF) created in 1974 and located in the Sophia Antipolis
technology park, in the south of France.
CEMEF develops global approaches in material forming and computational mechanics
(finite element methods, meshing and remeshing, fluid-structure interaction, CFD ap-
plications,...). It fosters high synergy between the different fields of study within it. The
scientific advancement brought forth by this thesis work was implemented in the CIM-
LIB finite element library developed at CEMEF. More precisely, CIMLIB is an abbrevi-
ation for “CIM” the advanced Computing in Material forming and “LIB” the scientific
library developed by the research team of T. Coupez [Coupez 91, Digonnet 03]. This
finite element library is developed in C++, an object oriented programming language,
and gathers the developments of the team (Ph.D. students, research assistants and pro-
fessors). This implementation framework has been highly parellelized [Digonnet 03]
and fully automated, thus facilitating the integration of new developments.

Layout of this thesis

We intend at the end of this introduction to provide a brief overview that would procure
an idea on the different components addressed in the respective chapters of this work.

In chapter 1, we introduce the governing equations for the conjugate heat transfer
and fluid flows phenomena. We start by considering the convection-diffusion-reaction
problem, then point out the numerical instabilities arising when applying the stan-
dard Galerkin numerical formulation in convection dominated regimes and define the
adopted time discretization schemes. To deal with the numerical oscillations, appear-
ing in convection dominated problems and at the level of sharp solution’s gradient, the
Streamline Upwind Petrov-Galerkin (SUPG) and the Shock Capturing Petrov-Galerkin
(SCPG) stabilizations are used. Heat transfers by conduction will also be discussed
and stabilized using the time interpolated enriched (EM-I) method. To model the fluid
flows inside computational domains, the incompressible Navier-Stokes equation will
be considered, highlighting the incompatibility restriction on the spaces of the finite
elements used for the velocity and pressure fields. To cope with this problem, the Vari-
ational Multiscale approach will be adopted. Then the turbulence models that can be
employed at high Reynolds numbers to provide a mean flow representation will be ad-
dressed. In order to take into account the effects of heat transfer by thermal radiation,
the radiative heat transfer equation is solved. Numerical validations and motivational
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examples will be provided next highlighting the need for adaptation techniques to
enhance the accuracy and efficiency of computations.

Chapter 2 presents the core derivation of the anisotropic mesh adaptation tech-
nique. Starting with a descriptive outline on the mesh generation procedure developed
in our laboratory, we pinpoint its capacity to receive as input a metric tensor and gen-
erate the corresponding mesh. Then the proposed error estimators along the edges of
the mesh will be discussed and the control on the Lp norm of the interpolation error
will be verified. This is followed by the derivation of optimal metric construction and
anisotropic mesh adaptation. The chapter concludes with numerical validations on the
accuracy and efficiency of the developed method on analytical scalar functions.

An a priori error analysis on the flow equation and the convection-diffusion-
reaction problem will be provided in chapter 3 to show that the control on the interpola-
tion error yields a control on the approximation error. Then the tuning of the stabilized
finite element methods discussed in chapter 1 to take into account highly stretched
elements will be emphasized. We assess afterward the anisotropic mesh adaptation
technique on CFD problems.

The theory of adaptation is extended in chapter 4 to include a time-adaptive tech-
nique. The coupling between the two adaptations will be acquired through the use of
an equi-distributed error. The approach is then validated on several numerical exam-
ples, reflecting the convergence, accuracy and efficiency of the method. The developed
space and time adaptive approaches will be combined under the name of classical
adaptation.

Chapter 5 will present an overview on the Immersed Volume Method whereby a
single fluid and solid domains will be considered as a single fluid with variable ma-
terial properties. This immersing is done using the levelset function and the materials
are distributed using mixing laws. These two components of the IVM will then be cou-
pled with the newly developed anisotropic adaptation technique to provide dynamic
and automatic mesh updates. The multi-component feature of the developed metric
construction approach will then be presented. Numerical results on turbulent fluid
flows and conjugate heat transfer problems will be considered to reflect the potential
of the IVM and the classical adaptation technique to handle fluid-structure interaction
problems with good levels of accuracy and efficiency. In the last example, we apply this
combination to simulate moving geometries and point out the decelerating aspect of
the classical adaptation approach when applied to this kind of problems. Consequently,
we highlight the need for an adaptation that deals with slabs of time.

The classical approach will be extended, in chapter 6, to ensure full adaptation
whereby optimal meshes will be constructed for optimal slabs of time. The algorithm
for paradoxical meshing will be presented and a 1D temporal mesher will be devel-
oped. Detailed information about the implementation of this mesher will be provided.
This chapter concludes with numerical validations on analytical functions, a 2D CFD
application, a fluid-structure interaction problem involving moving geometries, and a
heat treatment problem inside an industrial furnace.
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Chapter 7 gathers numerical results obtained for some industrial applications.
Comparisons with experimental data and results obtained using fixed meshes and
time-step sizes will be provided to reflect the advantages of the proposed adaptation
tools.

Finally, in the conclusion, we summarize the achievements of this work and present
some possible short and long term extensions to it.
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Résumé français

Contexte général

Les problèmes d’interaction fluide-structure (IFS) sont observés dans plusieurs
phénomènes physiques et constituent un sujet d’étude de première importance aussi
bien dans le domaine de recherche en mécanique numérique que dans le domaine
industriel. Ces problèmes impliquent la résolution de systèmes fortement couplés
dans lesquelles les parties fluides et solides, possédant des propriétés physiques et
thermo-dynamiques différentes, interagissent et influent le comportement mécanique
de l’un l’autre. De plus, les phénomènes physiques concernés sont intrinsèquement
dynamiques et peuvent présenter des échelles de variations très hétérogènes.

La compréhension et la modélisation de ces problèmes ont considérablement at-
tiré les chercheurs au cours des dernières décennies surtout avec la croissance des
puissances de calcul informatique et le développement continu des outils numériques.
Plusieurs modèles mathématiques et méthodes numériques ont été développés dans
la littérature pour décrire et simuler les phénomènes sous-jacents. La précision et
l’efficacité de ces simulations dépendent fortement de la complexité, l’ampleur et la
durée du problème considéré.
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Contexte du projet REALisTIC

Cette thèse se présente dans le cadre du projet REALisTIC, un projet de recherche
ANR avec la collaboration de plusieurs partenaires: académique (CEMEF), indus-
triels (Areva, Arcelor-Mittal, Industeel, Aubert & Duval, Snecma-Safran, Transvalor)
et développement de logiciels (Scconsutants). L’objectif général du projet est
l’optimisation et la simulation numérique de procédés industriels tels que les traite-
ments thermiques de pièces métalliques (chauffage, trempe, refroidissement à l’air
libre, · · · ). Malgré l’amélioration continue des méthodes numériques d’une part et
des puissances de calcul informatique d’autre part, des difficultés persistent quant
à la simulation de procédés réels dues à la grandeur des installations (dizaines de
mètres), la complexité des phénomènes physiques traités et la longue durée du proces-
sus (douzaine d’heure).

En effet, un compromis était toujours nécéssaire entre précision et efficacité des
calculs. Le défi était alors de développer des outils numériques capables d’optimiser
les temps de calcul tout en générant des modélisations précises.

Objectif de la thèse

Le but de cette thèse est de développer des outils numériques qui permettent la sim-
ulation de phénomènes physiques complexes avec un bon niveau de précision et un
temps de calcul raisonnable.

Dans ce travail, on adopte une méthode d’immersion de volume pour simuler
numériquement des problèmes d’interaction fluide-structure. Cette méthode était
premièrement couplée avec des maillages fixes bien adaptés aux interfaces flu-
ides/structures. Elle a montré un bon potentiel à simuler avec précision des probèmes
multiphysiques complexes. Cependant, le maillage et les pas de temps nécéssaires
pour de telles précisions engendraient des temps de calculs importants limitant ainsi
l’application de la méthode dans un cadre d’applications réelles complexes et indus-
trielles.

Le principal enjeu de cette thèse est de développer des méthodes d’adaptations
anisotropes en espace et en temps qui visent à améliorer les précisions de calcul d’une
part et à réduire le temps de calcul d’une autre part. L’objectif final étant de simuler des
applications 3D réelles et complexes dans de grands espaces et pour de longues durées
telles que les procédés industriels de traitement thermiques, on revisite dans le chapitre
1 les solveurs éléments stabilisés qui vont être utilisés dans les simulations numériques.
Ensuite, on introduit dans le chapitre 2 la méthode d’adaptation anisotrope du mail-
lage développée. Dans le but d’appliquer cette méthode sur des problèmes CFD, les
solveurs éléments finis stabilisés adoptés seront modifiés dans le chapitre 3 pour pren-
dre en compte des maillages fortement anisotropes. Une extension de l’adaptation
anisotrope vers une adaptation temporelle sera proposée et sa capacité à réduire le
temps de calcul sera mise à l’épreuve dans le chapitre 4. Le couplage de la méthode
d’immersion de volume avec l’adaptation anisotrope multi-composantes sera présenté
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dans le chapitre 5. Ensuite une nouvelle méthode d’adaptation en espace-temps sera
proposée dans le chapitre 6. Elle vise à générer des maillages et des pas de temps qui
durent des slabs de temps améliorant ainsi la précision des calculs et réduisant le coût
des calculs surtout pour des applications impliquant des objets mobiles. Finallement,
la performance, la précision et l’efficacité des outils numériques développés seront mis
à l’épreuve dans le chapitre 7 dans le contexte de simulations de procédés industriels
et des comparaisons avec des données expérimentales. On clôture la thèse avec de
nouvelles propositions d’investigations numériques.





1Unsteady computational fluid

dynamics

"We cannot solve our problems with
the same level of thinking that created them."

Albert Einstein.
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This chapter aims at introducing the numerical tools used for the modelling and
resolution of the conjugate heat transfer and fluid flow problems. It will provide

an overview on the adopted stabilized finite element methods involved in order to
yield accurate and oscillation free numerical solution. Turbulence models will also be
considered to treat the chaotic and fluctuating behavior of the flow at high Reynolds
number. Finally numerical validations will assess the performance of the stabilization
tools on two and three dimensional problems.
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1.1 Introduction

Accurate predictions of conjugate heat transfer and fluid flow phenomena have been
the subject of intensive studies from numerical and industrial perspectives in a wide
variety of applications including but not limited to: design of heat exchangers, energy
conservation and nuclear studies, weather forecast, and automotive and machinery
for manufacturing industries. A great effort was employed at both experimental and
numerical levels to understand and simulate conjugate heat transfer and turbulent
flows for multi-component systems. A common industrial practice, for experimental
investigations, is to study simplified model problems then to extrapolate the results
and draw conjectures. However, these procedures can hardly yield an optimized setup
and may still be very costly. Hence resorting to numerical simulations is expected to
provide a better modelling and save both time and economical resources.

The present chapter focuses on the modelling and resolution of the heat transfer
and fluid flows applications. The computations consist in simultaneously solving
the Navier-Stokes and energy equations. Moreover, in order to take into account the
radiation effects, the radiative transfer equation has to be solved. Turbulence models
may be used at high Reynolds numbers to provide a mean flow representation. The
equations will be discretized using stabilized finite element methods. We note that the
implementation and validation of finite element solvers were subject to previous works
in the CIMLIB finite element library developed at the CEMEF laboratory [Digonnet 03].
For that purpose, we omit the detailed derivation of the stabilization techniques and
refer to [Hachem 09] for a complete study.

After briefly reviewing the set of equations and stabilization methods involved in
our study, we present some numerical validations and motivational examples showing
the need for adaptation techniques to accelerate the computations while maintaining
a good level of accuracy. We will show in the following chapters that, combined with
anisotropic meshing and time-adaptation, the stabilized finite element methods can be
perceived as powerful tools for approximating the solution of heat transfer and fluid
flows in complex geometries.

1.2 Convection-diffusion-reaction problem

The solution of the transient convection-diffusion-reaction (CDR) problem is a corner-
stone for the numerical modelling of a wide range of fluid mechanics applications in
particular the heat transfer equation and turbulence models. Over the last two decades,
there has been a continuous growth in the development of numerical methods for the
resolution of this type of equations. Usually the Galerkin Finite Element method is
the first mentioned among the various numerical techniques available to solve these
problems.

Unfortunately, the numerical solution of the unsteady convection-diffusion-reaction



20 Chapter 1. Unsteady computational fluid dynamics

equation using the Galerkin formulation normally exhibits global spurious oscilla-
tions in convection-dominated regimes, especially in the vicinity of sharp gradients;
hence causing a loss of accuracy and stability. Indeed, the standard Galerkin finite
element method is equivalent to a central finite difference discretization in which
the approximation of the convective term pollutes the solution in convection domi-
nated cases. A variety of stabilization approaches have been proposed to enhance
the stability and accuracy of this formulation. Initially, these methods inherited from
the upwind finite difference approaches. A stabilization derived using asymmetric
test functions in a weighted residual finite element formulation was first proposed in
[Christie 76, Heinrich 77]. These methods remove the spurious oscillations but a poor
convergence is achieved due to the excessive additional diffusion hence degrading the
quality of the numerical solution. Moreover these methods are not consistent with the
problem by means that the solution of the variational form is no longer the solution of
the convection-diffusion-reaction problem. Significant improvement resulted from the
development of the streamline upwind Petrov-Galerkin (SUPG) method proposed by
Brooks and Hughes [Brooks 82, Hughes 86b] and reconsidered in [Scovazzi 07]. This
method substantially eliminates the instabilities of the standard Galerkin formulation
and does not add crosswind diffusion. The convergence and accuracy rates associated
to it are higher than the upwind methods. The SUPG approach maintains consistency
by adding weighted residual terms to the weak formulation of the problem. They have
grown in popularity, especially in fluid dynamics applications, heat transfer and fluid-
structure interactions. On the other hand, alternative approaches were proposed in the
literature, we recall the Galerkin/Least-Squares (GLS) method in [Harari 94, Harari 92],
the gradient Galerkin/least-squares (GGLS) method in [Hughes 89] relying on the min-
imization of the squared residual of the equation, the unusual stabilized method (US-
FEM) in [Franca 95, Franca 97] with the idea of swapping the sign of the Laplacian in
the test function, the enriched method with time interpolation in [Hachem 10a], the
subgrid scale method in [Codina 00a] and many others; each one of these schemes was
used to optimize the performance of the finite element formulation of the unsteady
advection-diffusion equation with or without production.

In this work, we focus on the SUPG method as it is the most popular approach
for stabilizing the CDR problem. Although SUPG produces accurate and oscillation-
free results in regions where the solution does not undertake sharp gradients, spurious
oscillations (overshoots and undershoots) might appear in regions where the solution
exhibits abrupt changes. This behavior is somehow expected as the method is neither
monotone nor monotonicity preserving. An extension of the SUPG method consists in
introducing additional, often nonlinear, artificial diffusion in the crosswind direction,
so that monotonicity is recovered. The extension is referred to as the discontinuity
or shock capturing Petrov Galerkin (SCPG). Despite the progress of the SUPG and
the SCPG methods, the amount of added artificial diffusion is tuned by a stabilizing
parameter whose choice is still an open problem nowadays. A possible remedy to
this issue is the use of variational multiscale methods [Hughes 95] or equivalently the
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Residual Free Bubble approach [Franca 98, Franca 97, Brezzi 94, Franca 96] in which
the stabilization parameters are naturally driven by the resolution of a boundary value
problem at the elements’ level. On the other hand, when diffusion dominates, these
methods are no longer active and another treatment shall be considered. The enriched
space scheme [Baiocchi 93, Brezzi 92, Franca 95] was proposed in the literature, it con-
sists in enriching the space of solution with a space of bubble functions defined at the
elements’ level. The small scale variations of the solution will be accounted for through
an appropriate addition of stabilization terms. An extension of this method to obtain
real time solutions was derived in [Hachem 10c] and will be used in this work.

The objective of this section is to recall the convection-diffusion-reaction equation
and summarize the stabilized finite element methods that we considered in here for
the resolution in case of convection dominated regimes. It is not our intention to
provide a thorough analysis of the different possible stabilization techniques as their
development is not the contribution of the current work.

This section is organized in the following way: we start with the description of
the governing equations for the modelling of convection-diffusion-reaction problem.
Then we introduce the standard Galerkin finite element formulation and point out the
need for stabilized finite element methods. The third subsection is devoted to the for-
mulation of the Streamline Upwind Petrov-Galerkin (SUPG) technique on unsteady
convection dominated problems. It is followed by theoretical study on the existence,
uniqueness and convergence order of its solution. The extension of the SUPG to ac-
count for abrupt solution changes will be discussed afterward. We move on next to
explore how the analysis is carried to model conduction heat transfer problems. The
enriched space approach is applied for the stabilization of the latter problems. Finally
an extension to an enriched method involving time interpolation is addressed.

1.2.1 Governing equation

We consider the following equation that models the transport of a quantity u through
convection, diffusion and reaction:

∂tu−∇ · (κ∇u) + v · ∇u + σu = f , in Ω ,
u(., 0) = u0 in Ω ,
u = g , on Γ ,

(1.1)

where Ω ⊂ Rd is a bounded polyhedral domain with boundary Γ, κ ∈ L∞(Ω) is
the constant diffusion factor, v(x) ∈

[
W1,∞(Ω)

]2 is the divergence-free velocity field,
σ(x) ∈ L2(Ω) is a reaction term, f (x) ∈ L2(Ω) is a given source term, u0 is the initial
data and g is a given boundary condition. For this problem, we distinguish four types
of possible boundary layers [Nguyen 09]:

• Regular boundary layers: appear at the outflow boundary defined by

Γ− = {x ∈ Γ : v · n > 0}
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where the velocity field v is not parallel to the boundary. Their width is of O(κ).
This order results from the difference between the solution of the convection-
diffusion-reaction problem (1.1) and the diffusion-only one (when κ = 0, σ = 0).

• Parabolic boundary layers: appear at the characteristic boundary defined by

Γ0 = {x ∈ Γ : v · n = 0}

where the velocity field v is parallel to the boundary. Their width is thicker than
that of the regular boundary layers and is of O(

√
κ).

• Corner boundary layers: appear at the neighborhood of the domain’s corners i.e.
at the intersection of boundaries.

• Interior layers: appear at the inflow boundary

Γ+ = {x ∈ Γ : v · n < 0}

due to the discontinuities in the data that propagate inside the domain according
to the velocity field v. Their width is of the same order as that of the parabolic
boundary layers i.e. O(

√
κ).

In this work, we use the streamline upwind Petrov-Galerkin technique to stabilize
the solution and enhance its stability. The method consists in adding artificial diffusion
which acts only in the direction of the flow. The SUPG method is globally stable
and has good order of accuracy in regions where the solution is smooth. However
in practice, if the solution possesses steep layers, it is impossible to achieve optimal
orders of convergence i.e. second order for the L2 norm and first order for the H1 norm
[Nguyen 09].

The SUPG scheme was initially developed for the resolution of the steady CDR
problem in order to overcome the instabilities encountered by the standard Galerkin
approach when the diffusion term is small. The extension to the transient problem that
we present here consists in: first discretizing the equation in time then applying the
stabilized finite element method on the resulting spatially-continuous problem.

1.2.2 Standard Galerkin formulation

Let us consider the Sobolev space of functions having square integrable first order
derivatives H1

S(Ω) in which we are searching for the solution in accordance with its
regularity:

H1
s =

{
w ∈ H1(Ω) |w = s ∀x ∈ Γ

}
with

H1(Ω) =
{

w ∈ L2(Ω), ||∇w|| ∈ L2(Ω)
}

,



1.2. Convection-diffusion-reaction problem 23

and L2 being the Hilbert vector space given by:

L2(Ω) =

{
w(x)

∣∣∣∣∫Ω
|w|2 dx < ∞

}
We also define the subspace H1

0(Ω) ⊂ H1(Ω) as the set of functions vanishing on the
boundary.

The Galerkin variational formulation is obtained by multiplying equation (1.1) by an
appropriate test function w ∈ H1

0(Ω) and integrating over the computational domain.
Without loss of generality, and for simplicity of illustration, we assume a zero Dirichlet
boundary condition. The discrete problem becomes:
Find u ∈ H1(Ω) such that u = 0 on Γ and

(
∂u
∂t

, w
)
+ (κ∇u,∇w) + (v · ∇u, w) + (σu, w)︸ ︷︷ ︸

B(u,w)

= ( f , w)︸ ︷︷ ︸
F (w)

∀w ∈ H1
0(Ω) , (1.2)

where (u, w) =
∫

Ω uw dΩ.
For the spatial discretization, we consider a finite element partition Hh of Ω into

simplex elements K. Using these representations, the above-defined functional spaces
H1

s (Ω) and H1
0(Ω) are approached by discrete spaces H1h

s (Ω) and H1h
0 (Ω). Let Vh ⊂

H1h(Ω) be the space of piecewise linear functions defined on the elements of Hh. Thus,
the Galerkin finite element formulation reads as:
find uh ∈ Vh such that: uh = 0 on Γ and

(
∂uh

∂t
, wh

)
+ B(uh, wh) = Fh(wh) ∀wh ∈ Vh,0(Ω) (1.3)

Finally, the problem defined by equation (1.3) yields the system of first order differential
equations:

C
∂U
∂t

+KU = F (1.4)

where U is the vector of nodal unknown solution values, C the mass matrix, K the
stiffness matrix corresponding to the convection, diffusion and reaction terms and F
the vector of internal source term.

1.2.3 Time integration scheme

The system of ordinary differential equations (1.4) has to be integrated in time. Using
the θ-time discretization schemes, the derivative of the solution with respect to time
can be approximated at time tn by:

C
Un −Un−1

∆t
+K

(
θUn + (1− θ)Un−1

)
= F (1.5)
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where ∆t is the time-step, n = 1, ..., N, and 0 ≤ θ ≤ 1. We recall that this family
includes the backward Euler scheme (θ = 1), the Crank-Nicholson scheme (θ = 0.5)
and the forward Euler scheme (θ = 0).

1.2.3.1 Stability of the standard Galerkin formulation

Since w ∈ Vh,0 ⊂ H1
0(Ω), we get, under the assumption σ− 1

2∇ · vh ≥ c0 > 0 on Ω for
some c0 > 0:

B(uh, uh) = (κ∇uh,∇uh) + (vh · ∇uh, uh) + (σuh, uh)

= κ|uh|21 +
(

σ− 1
2
∇ · vh, u2

h

)
≥ κ|uh|21 + C||uh||20︸ ︷︷ ︸

=:C||uh||21,κ

(1.6)

where C is a constant, | · |1 denotes the H1(Ω) semi-norm and || · ||0 the L2(Ω) norm.
Compared to the standard H1(Ω) norm || · ||1, || · ||1,κ is said to be a weak norm i.e. for
the same velocity field, the stability induced by the coercivity inequality (1.6) for κ < 1
is much weaker than the stability enjoyed by the case κ = 1.

Challenge arises when convection dominates diffusion i.e. when κ << ||v||. Note that
this is in accordance with a Peclet number, Pe = ||v||h

2κ with h being global characteristic
element’s length, greater than one. In this case, the standard Galerkin finite element
discretization, if the mesh is not well refined, gives rise to node-to-node oscillations in
the solution. One way to eliminate these oscillations is to use upwind techniques such
as the Streamline Upwind Petrov-Galerkin stabilized finite element method.

1.2.4 Streamline Upwind Petrov-Galerkin (SUPG) method

The SUPG approximation of (1.2) is formulated on the finite-dimensional subspaces by
introducing an additional weight τKv · ∇wh to the standard Galerkin weighting func-
tions wh in the upwind direction for all terms in the equation. This modification is
interpreted as allowing more weight to the nodes in the upstream direction and re-
ducing the weight of the nodes in the downstream direction. Hence, the modified test
function is defined by:

w̃h = wh + τKv · ∇wh .
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Figure 1.1 – Galerkin vs SUPG weighting function on linear elements adopted from [Brooks 82].

As a result of this upwinding, the variational formulation becomes:
Find uh ∈ Vh such that uh = 0 on Γ and(

∂uh

∂t
, wh

)
+ ∑

K∈Hh

τK

(
∂u
∂t

, v · ∇wh

)
K

+ B(uh, wh) + ∑
K∈Hh

τK (Ruh, v · ∇wh)K︸ ︷︷ ︸
Bτ(uh,wh)

= F (wh) + ∑
K∈K

τK ( f , v · ∇wh)K︸ ︷︷ ︸
Fτ(wh)

∀wh ∈ H1
0(Ω) ,

(1.7)

where τK is a stabilization parameter that tunes the amplitude of the added weight and

Ruh = −∇ · κ∇uh + v · ∇uh + σuh .

Comparing equations (1.2) and (1.7) we notice that the SUPG formulation is equiv-
alent to introducing a local diffusion O(τK) along the convection streamline direction
weighted by a stabilization parameter. As the additional stabilizing terms vanish for
the exact solution of the problem, the SUPG discretization is consistent.

Finally, the problem defined by equation (1.7) can be reformulated into a system of
first order differential equations as in equation (1.4), and the temporal discretization is
performed in a way analogous to the standard Galerkin formulation (1.5).

1.2.5 Existence, uniqueness, stability and order of convergence

We are now interested in studying the stability of the solution computed using
the SUPG formulation. We note that the coercivity analysis follows the lines of
[Kopteva 05]. Let σK = max

x∈K
|σ(x)| , ∀K ∈ Hh. Without loss of generality, we assume

that the mesh is uniform with local inverse inequality:

||∆uh||0,K ≤ ζh−1
K |u|1,K ∀K ∈ Hh , (1.8)

where hK is the characteristic length of element K, ζ is a constant, || · ||0,K is the L2(K)
norm, and | · |1,K is the H1(K) semi-norm.
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We assume that τK satisfies:

0 ≤ τK ≤
1
2

min
(

c0

σ2
K

,
h2

K
κζ2

)
∀K ∈ Hh . (1.9)

Then for every u ∈ V h, we have:

Bτ(uh, wh) = B(uh, uh) + ∑
K∈Hh

τK (−κ∆uh + v · ∇uh + σu, v · ∇uh)K

≥ κ|uh|21 + C||uh||20 + ∑
K∈Hh

τK (−κ∆uh + σuh, v · ∇uh)K + ∑
K∈Hh

τK (v · ∇uh, v · ∇uh)K

≥ κ|uh|21 + C||uh||20 + ∑
K∈Hh

τK||v · ∇uh||20,K + ∑
K∈Hh

τK (−κ∆uh + σuh, v · ∇uh)K .(1.10)

Using the local inverse inequality together with assumption (1.9) yields:∣∣∣∣∣ ∑
K∈Hh

τK (−κ∆uh + σuh, v · ∇uh)K

∣∣∣∣∣ ≤ ∑
K∈Hh

κ2τK||∆u||20,K (1.11)

+ ∑
K∈Hh

σ2
KτK||u||20,K +

1
2 ∑

K∈Hh

τK||v · ∇uh||20,K

≤ κ

2
|u|21 +

c
2
||u||20 +

1
2 ∑

K∈Hh

τK||v · ∇uh||20,K .(1.12)

Consequently, the energy streamline upwind norm is defined as:

|||w|||SUPG :=

(
κ|w|21 + ∑

K∈Hh

τK||v · ∇w||20,K + C||w||20

) 1
2

,

then the discrete bilinear form is coercive with respect to this norm:

Bτ(uh, uh) ≤
1
2
|||uh|||SUPG . (1.13)

The existence and uniqueness of the solution obtained with the SUPG method can
be studied using the Lax-Milgram theorem. We recall that in convection dominated
problems, the standard Galerkin formulation fails to satisfy the coercivity condition
leading to instabilities in the solution. For the energy norm, the linear functional Fτ(.)
is continuous and the bilinear form Bτ(., .) satisfies:

B(uh, uh) ≥
1
2
|||uh|||2SUPG ∀u ∈ H1

0(Ω)

and Bτ(uh, wh) ≤ |||uh|||SUPG ·
(
||v||−1/2||uh||∞||wh||

)
.

Thus the bilinear form is coercive and continuous with respect to the energy norm.
Now that we have discussed existence and uniqueness and derived a stability bound

for the SUPG method, we move on to consider the convergence of the method. For
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that purpose, we refer to [Nguyen 09, Zhou 97] for the proofs on the error estimates
summarized in the following theorems.

Theorem: If linear approximation is used on a finite element triangulation, then
there exists a constant C , asymptotically proportional to the mesh Peclet number with:

||∇(u− uh)|| ≤ C hmax
K ||u||H2(Ω) .

Theorem: If piecewise linear approximation is used on a uniform finite element
triangulation with h > 2κ, then there exists a bounded constant C , independent of the
diffusion coefficient with:

|||u− uh|||SUPG ≤ C (hmax
K )3/2 ||u||H2(Ω) .

From this result using the energy norm, follows an O(h
3
2 ) convergence in the L2 norm.

Additional error analysis is presented in [Zhou 97].
Nevertheless, the error bounds in the L2 norm show a loss in the convergence rate

by half-an-order for the SUPG method which reflects that in the presence of steep layers
and convection dominated regimes it is difficult to achieve optimal convergence rates.
Accuracy and convergence improvements can be obtained by resorting to anisotropic
mesh adaptations (see chapter 2).

1.2.6 Choice of the stabilizing parameter

The stabilizing parameter τK will govern the amplitude of the added artificial diffu-
sion in the direction of the streamline as it determines and calibrates the amount of
upwinding weights locally in each element.

An important drawback of SUPG stabilized methods is that an optimal choice of
stabilization parameters is still problematic. The SUPG method was the center of ex-
cessive research work over the last two decades, much of which was devoted to the
choice of the stabilization parameter [Brooks 82, Hughes 86b, Franca 92a, Codina 98,
Codina 00a, Franca 00]. Theoretical analysis has lead to some bounds on τK for which
the SUPG method is stable and yields a (quasi-)optimal convergence of the discrete
solution.

An analysis of convection-diffusion problems, in one space dimension and on a
uniform mesh, has shown in [Formaggia 04, Mitchell 78] that the SUPG solution is
nodally exact for continuous piecewise linear finite elements if

τK =
hK

2||v||2

(
coth(PeK)−

1
PeK

)
,

where PeK = ||v||2hK
2|κ| is the mesh Peclet number and hK is the element size. However if

v or f are not constant, this choice of stabilization parameter does not generally lead
to a nodally exact discrete solution. Another possible suggestion for the stabilizing
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parameter taken from [Brooks 82] is:

τK =
hK

2||v||2
max

{
0, 1− 1

PeK

}
.

Experimental studies have shown that in a convection dominated regime for large
Peclet numbers this choice of the stabilizing parameters gives more stable numerical
results. Note that τK is positive for both convection and diffusion dominated problems
with:

τK =

{
c1hK for PeK > 3,

c2
h2

K
κ for PeK ≤ 3

,

c1 and c2 being positive constants.
For negative reaction terms, Codina suggested in [Codina 00a] a formula emanating

from a Fourier analysis and the maximum principle. A similar idea taking into account
any sign of the reaction term was provided in [Shakib 91]. From these two works, we
infer the following parameter:

τK =

((
2

∆t

)2

+

(
2‖v‖K

hK

)2

+ 9
(

4κ

h2
K

)2

+ σ2

)−1/2

. (1.14)

During the course of this thesis, we adopt this formula for the stabilization parameter of
the Streamline Upwind Petrov-Galerkin method. For an extended overview on possible
choices for the stabilization factor we refer the reader to [Hachem 09].

1.2.7 Element characteristic length

The element characteristic length significantly influences the amount of added diffusion
in the SUPG method. A common choice would be to simply define this measure as the
diameter of the element. In chapter 2, when using the stabilized finite element method
on anisotropic meshes we will affect the choice of the element characteristic length to
well respond to the nature of the mesh and result in conservation and accuracy features.

1.2.8 Shock Capturing Petrov-Galerkin

When approximating smooth functions, i.e. when the solution does not exhibit abrupt
changes, the numerical solution to a convection dominated problem using the SUPG
method is accurate and oscillation free. However this method still presents spurious
oscillations (overshoots and undershoots) in the regions along steep layers. This in-
dicates that it is not enough to stabilize only in the streamline direction. Although
the amplitude of these nonphysical oscillations are smaller than those produced by the
standard Galerkin formulation, they should be treated. The unsatisfactory behavior
is related to the fact that the SUPG is neither monotone nor monotonicity preserving.
In other words, these over/undershoots stem from the fact that the added artificial
diffusion is in the streamline direction whereas at the level of boundary layers the arti-
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ficial diffusion should be added along the solution’s gradient. To remedy this problem,
one resorts to methods that introduce additional crosswind diffusion. These schemes
are often referred to as discontinuity/shock capturing methods. The key idea of these
methods is to add a non-linear term to the SUPG formulation, resulting in a higher
regularity of the function’s derivative in the crosswind direction. Several approaches
for deriving stabilization methods along boundary and interior layers were proposed
in the literature. The most popular ones are the Consistent Approximate Upwind
(CAU) methods [Galeão 88, Galeão 04] and the Spurious Oscillations at Layers Dimin-
ishing (SOLD) or equivalently the Shock Capturing Petrov-Galerkin (SCPG) methods
[Tezduyar 86, Hughes 86a, Volker 07]. Nevertheless, very few are the attempts in the
context of transient heat transfer problems.

The Shock capturing Petrov-Galerkin (SCPG) scheme, an extension of the SUPG
method, introduces an extra term known as discontinuity-capturing operator τc

Kvc ·
∇wh. The extra term affects, and provides extra control, on the numerical solution in
the crosswind direction i.e. in the direction of the solution’s gradient ∇uh. The new
weighting function taking into account this added term is given by:

w̃h = wh + τKv · ∇wh + τc
Kvc · ∇wh ,

Figure 1.2 – The auxiliary vector vc: projection of the advection direction onto the solution’s gradient
∇u adopted from [Hachem 09].

where,

vc =

{ v·∇uh
||∇uh||22

∇uh if ∇uh 6= 0

0 otherwise
(1.15)

One can clearly identify the nonlinearity of the newly defined term. Applying the
Galerkin procedure to equation (1.1) taking into account the new weighting function,
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yields:

(Ruh, w̃h) =

(
∂uh

∂t
, wh

)
+ ∑

K∈Hh

τK

(
∂u
∂t

, v · ∇wh

)
K
+ Bτ(uh, wh)

+ ∑
K∈Hh

τK

(
∂u
∂t

, vc · ∇wh

)
K
+ ∑

K∈Hh

(Ruh, τc
Kvc · ∇wh)K︸ ︷︷ ︸

SSCPG(uh,wh): discontinuity-capturing term

= ( f , w̃h) .

(1.16)

There are many possible choices for the stabilization parameter τc
K. In most cases, the

latter is closely related to the SUPG stabilization factor. One possibility is to set τc
K using

the same formula as τK and replace the velocity field v by vc. However an important
drawback arises in the case when v ∼= vc as a double artificial diffusivity is induced.
A remedy to this disadvantage was proposed by Tezduyar and Park in [Tezduyar 86]
where the parameter is defined by:

τc
K =

hK

2|vc|
η

(
|vc|
2|v|

)
, (1.17)

with η(β) = 2β(1 − β) , β ∈ [0, 1]. In the current work, we adopt this stabilizing
parameter for the shock capturing Petrov Galerkin method.

However, sometimes excessive diffusion due to the SCPG stabilization might affect
the solution’s accuracy. Therefore a tuning needs to be employed so as to deactivate the
added diffusion in regions where the solution is smooth. One possibility, taken from
[Galeão 04] and [Galeão 88], that we adopt in this work, is to control the stabilizing
parameter using a feedback function defined by:

αh =
v · ∇uh

Ruh
.

The consequent modified factors will have the following form:

τc
K = τc

K max
{

0,
||v||
||vc||

− ζ

}
, with ζ = max(1, αh)

The previously mentioned methods will serve for the resolution of convection domi-
nated regimes. We move on now to tackle another form of the heat transfer equation.

1.2.9 Transient heat transfer by conduction

In this subsection, we are interested in modelling and resolving heat transfer by con-
duction, or unsteady diffusion problems. These problems are encountered in many
industrial applications including solid quenching processes, solidification, metal form-
ing and casting, and polymer injection and molding. The use of the standard Galerkin
formulation yields unphysical instabilities when solving unsteady diffusion problems,
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when κ ≤ h2∆t−1, i.e. the diffusion factor κ is small, or a small time-stepping is
applied, with h being the element mesh size[Badia 09]. In order to remedy these in-
stabilities, the idea is to enrich the finite element space of solutions with a space of
bubbles followed by a linear interpolation in time allowing a time synchronization.
The oscillation-free solution stems from adding a stabilization term calibrated by a lo-
cal time-step. We adopt in this thesis the Enriched Method with Interpolation (EM-I)
proposed in [Hachem 10c].

For a thermal conductivity λ, a mass density ρ and a specific heat capacity Cp, the
transient heat transfer by conduction is modelled as follows: Starting with an initial
domain temperature T0, find the temperature field T ∈ R such that:

ρCp
∂T
∂t
−∇ · (λ∇T) = f on Ω× (0, t f )

T = Ts on Γs

λ∇T · n = qw on Γq

λ∇T · n = −hc(T − Tout) on Γc

(1.18a)

(1.18b)

(1.18c)

(1.18d)

with f being an energy source term, Ts an imposed temperature on a portion of the
boundary denoted by Γs and qw an imposed heat flux at boundary Γq. Moreover, using
a heat transfer coefficient hc and the temperature outside the domain Tout, a convective
heat transfer condition −hc(T − Tout) is imposed on Γc.

We start the formulation by considering the same functional spaces defined above
for the Galerkin method, with H1

s the solution space. We also derive the variational
form by multiplying by an appropriate test function and integrating over the domain.
Then we discretize the computational domain using a finite element mesh Hh. Eventu-
ally, the obtained Galerkin finite element formulation of problem (1.18a) reads as:
find Th ∈ Vh such that:

(
ρCp

∂Th

∂t
, wh

)
Ω
+ (λ∇Th,∇wh)Ω + (hcTh, wh)Γc

= ( fh, wh)Ω + (qw, wh)Γq
+ (hcTout, wh)Γc

∀wh ∈ V 0
h

(1.19)

This problem reduces into a system of first order differential equations:

C
∂T
∂t

+KT = F (1.20)

In here, the nodal temperature field is represented by the vector T, C is the capacitance
matrix with entries Cij =

(
ρCp ϕi, ϕj

)
Ω, K the conductivity matrix with components

Kij =
(
λ∇ϕi,∇ϕj

)
Ω +

(
hϕi, ϕj

)
Γc

and F is a vector taking into account the internal
source term and the external flux with entries Fi = ( fh, ϕi)Ω + (qw, ϕi)Γ + (hTout, ϕi)Γc

.
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The system is then discretized in time using the θ-scheme in an analogous way to
(1.5).

1.2.10 Enriched space approach

As we have mentioned earlier, in the case of heat transfer by conduction, the standard
Galerkin formulation yields a poor numerical solution if ∆t ≤ h2

κ , where κ = λ
ρCp

is
the diffusivity coefficient. For that reason, we resort to the use of the enriched space
approach to stabilize the problem [Baiocchi 93, Brezzi 92, Franca 95]. However, using
this method, the solution is shifted backwards with respect to the real time; for that
purpose, we provide next an extension following the lines of [Hachem 10c] to achieve
a time-synchronous solution.

Figure 1.3 – P1+/P1 elements.

The key idea of this method is to locally enrich the finite element space Vh, spanned
by continuous piecewise linear polynomials, with a space of bubbles Vb whose support
lies inside the mesh elements. We consider an element K ∈ Hh. The bubble function
associated with K is such that:

ψ(x) > 0 ∀x ∈ K
ψ(x) = 0 ∀x ∈ ∂K
ψ(x) = 1 at the centroid of K

(1.21)

One now seeks the solution in the space Ṽ = Vh⊕Vb. In the same manner, the space of
test functions will be decomposed into a macro-scale and a micro-scale W̃ = W 0

h ⊕Wb.
For the sake of simplicity of illustration, we assume a zero Dirichlet boundary condition
on Γ.
Therefore the problem’s variational formulation will be given by:
Find T̃h = Th + ∑

K∈Hh

TbK ψ in Ṽ such that:

(
ρCp

∂T̃h

∂t
, w̃

)
Ω

+
(

λ∇T̃h,∇w̃
)

Ω
= ( fh, w̃)Ω ∀w̃ ∈ W̃ (1.22)
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From the fine-scale expansion proposed in [Masud 04], we write:

Tb = ∑
K∈Hh

TbK ψ and wb = ∑
K∈Hh

wbK ψ (1.23)

At the element’s level the two problems can be decoupled and one can then resolve a
large-scale and a small-scale ones. The fine-scale problem reads, for all wbK :(

ρCp
∂Th

∂t
, wbK ψ

)
K
+

(
ρCp

∂TbK ψ

∂t
, wbK ψ

)
K
+ (λ∇Th,∇wbK ψ)K

+ (λ∇TbK ψ,∇wbK ψ)K = ( fh, wbK ψ)K

(1.24)

Since the large-scale solution is defined linearly on the elements, the term
(λ∇Th,∇wbψ)K vanishes. On the other hand, as the equation is satisfied for any
choice of wbK then it is in particular valid for:

wbK =

{
1 on the elements’ center,
0 elsewhere

(1.25)

Without loss of generality, we apply a backward Euler scheme in time. The generaliza-
tion to other time discretization is straightforward.

At this stage, we can solve for the bubble coefficients; the latter are determined
by:

Tn
bK

=
1

ρCp
∆t ||ψ||20,K + λ||∇ψ||20,K

(
f − ρCp

(
Tn

h − Tn−1
h − Tn−1

b
∆t

)
, ψ

)
K

(1.26)

where Tn−1
b denotes the solution field on the bubble functions at the previous time

increment.
The following step of the enriched space approach is the static condensation that

consists in modelling the effects of the small scales on the large scales. For that purpose,
we consider the coarse scale equation:(

ρCp
∂T̃h

∂t
, wh

)
Ω

+
(

λ∇T̃h,∇wh

)
Ω
= ( fh, wh)Ω ∀wh ∈ W 0

h (1.27)

and use ∀wh ∈ W 0
h , the integration by parts on (∇(TbK ψ),∇wh):

(∇(TbK ψ),∇wh) = − ((TbK ψ), ∆wh) + (∇(TbK ψ) · n, wh)∂K ∀K ∈ Hh (1.28)

As we are considering linear weighting functions, the first term on the equation’s right
hand side vanishes. The second term also vanishes by virtue of the bubble functions’
definition. Therefore, using an implicit discretization in time, ∀wh ∈ W 0

h equation (1.27)
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reduces to:(
ρCp

Tn
h

∆t
, wh

)
Ω
+ ∑

K∈Hh

(
ρCp

Tn
bK

ψ

∆t
, wh

)
K
+(λ∇Tn

h ,∇wh)Ω = ( fh, wh)Ω +

(
Tn−1

h + Tn−1
b

∆t
, wh

)
(1.29)

Combining (1.26) and (1.29), implies on each element K:

TbK

(
ρCp

∆t
ψ, wh

)
K
=

1
ρCp
∆t ||ψ||20,K + λ||∇ψ||20,K

(
f − ρCp

(
Tn

h − Tn−1
h − Tn−1

b
∆t

)
, ψ

)
K

(
ρCp

∆t
ψ, wh

)
K

(1.30)

Moreover, following the lines of the work on steady CDR problems in [Baiocchi 93,
Brezzi 92, Franca 95], we consider cubic bubble functions. One gets under these as-
sumptions: ∫

K
ψ dK = C1h2

K , and ||ψ||0,K = C2h2
K

Replacing in (1.30), yields:

TbK

(
ρCp

∆t
ψ, wh

)
K
=

Ch2
K

ρCp
∆t h2

K + λC︸ ︷︷ ︸
τK

(
f − ρCp

(
Tn

h − Tn−1
h − Tn−1

b
∆t

)
,

ρCp

∆t
wh

)
K

(1.31)

where we take C = 1 and C = 6 constants as in [Hachem 10b].

Finally, substituting back into the large scale problem, we obtain for all wh ∈ V 0
h :(

ρCp
Tn

h
∆t

, wh

)
Ω
− ∑

K∈Hh

τK

(
ρCp

(
Tn

h
∆t

)
, ρCp

∆t wh

)
K
+ (λ∇Tn

h ,∇wh)Ω

= ( fh, wh)Ω +

(
Tn−1

h + Tn−1
b

∆t
, wh

)
Ω

− ∑
K∈Hh

τK

(
f + ρCp

(
Tn−1

h +Tn−1
b

∆t

)
, ρCp

∆t wh

)
K

.

(1.32)

In this formulation, two aspects of stabilization can be identified, the first is at the level
of the transient term, and the second is on the right hand side of the equation taking
into account the previous information on the solution.

This stabilization is equivalent to modifying the test function of the standard Galerkin
formulation into:

w̃h = wh

(
1− τK

ρCp

∆t

)
. (1.33)

Hence, the modified problem can be interpreted as a modified Galerkin with lager
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time-step size and can be written equivalently as:

(
ρCp

Tn
h

∆t
, w̃h

(
1− τK

ρCp

∆t

))
Ω
+ (λ∇Tn

h ,∇w̃h)Ω

=

(
f + ρCp

(
Tn−1

h + Tn−1
b

∆t

)
, w̃h

(
1− τK

ρCp

∆t

))
Ω

.
(1.34)

1.2.11 Time interpolated enriched (EM-I) method

It was pointed out in [Hachem 10b] that if zero source term is assumed then the solu-
tion to problem (1.34) may not converge to the solution of problem (1.18a). A remedy
to this situation was proposed in [Hachem 10b], it consists in interpolating the solution
to real time. To do so, we define a new time-step ∆t∗ such that:

∆t
∆t∗

=

(
1− τK

ρCp

∆t

)
=

1
ξ

ξ > 0 . (1.35)

The corresponding real-time interpolation will read as:

T∗ = ξTn
h + (1− ξ)Tn−1

h . (1.36)

Now substituting back into (1.34) and rearranging the terms yields:(
ρCp

∆t∗
(

ξTn
h + (1− ξ)Tn−1

h

)
, w̃h

)
+
(

ξλ∇
(

Tn
h + (1− ξ) Tn−1

h

)
,∇w̃h

)
=

(
ρCp

Tn−1
h + Tn−1

b
∆t∗

, w̃h

)
,

(1.37)

and equivalently since ∆t = ∆t∗
ξ ,(

ρCp
Tn

h − Tn−1
h − ξTn−1

b
∆t

, wh

)
+ (ξλ∇Tn

h ,∇wh) =
(
(ξ − 1) λ∇

(
Tn−1

h ,∇wh

))
.

(1.38)
This modification can be interpreted as a time-dependent stabilization involving mod-
ified thermal conduction ξλ defined at the elements’ interior and controlled by a
stabilization parameter τK.

More details on the derivation of this stabilization technique for diffusion dominated
problems and numerical validations are provided in [Hachem 10b].

1.3 The incompressible Navier-Stokes equations

The motion of fluids is known to be embodied by the nonlinear Navier-Stokes equa-
tions. Although these equations were introduced in the 19th century and have a very
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wide range of applications including aerodynamics, microfluids, circulatory and respi-
ratory systems, household appliances, geophysical and astrophysical phenomena etc.,
the understanding, and theoretical validation of these equations is still at a primitive
level. Their resolution consists in finding a velocity/pressure pair (v, p) satisfying
the problem setup. There are a few analytical solutions in the literature but these
were computed on the basis of introducing model simplifications which are generally
non-physical. Several attempts to solve these equations numerically were addressed in
the literature. Accurate solutions with different scale heterogeneity are still a challenge
and induce very stiff systems. Considerable advancements need to be achieved includ-
ing spatial accuracy, temporal accuracy, error control and mesh adaptation.

Two non-dimensional numbers characterize a flow: the Mach number and the
Reynolds number. The former, named after Ernst Mach (1836-1916), measures the
ratio of a characteristic velocity v of the flow to the velocity of sound c in the fluid:

Ma =
||v||

c
. (1.39)

On the other hand, the latter parameter describes the flow behavior by quantifying the
ratio between inertial and viscous forces for a given flow:

Re =
ρVL

µ
, (1.40)

with L being a characteristic length scale, ρ the fluid density, V its mean velocity and
µ its dynamic viscosity. Osborne Reynolds (1842-1912), the eponym of this dimension-
less number, observed that the flow is said to be laminar when the Reynolds number
is small and turbulent otherwise. In that case, the flow is characterized by chaotic fluc-
tuations and develops eddies with different sizes. In the following section we aim at
addressing ubiquitous turbulent behavior of flows and use a multiscale approach to
capture it and turbulence models to represent it.

This section presents the mathematical formulation of the governing equations of
fluid flows; in particular, we are interested in modelling incompressible flows (i.e. ig-
noring density changes). We set the problem in a finite element framework. However
there are two cases where the standard Galerkin finite element scheme fails and the
numerical solution is corrupted by nonphysical oscillations. The first is due to the non-
linearity of the convective term in convection dominated regimes and the second stems
from the incompatibility of the finite element functional spaces of the velocity and
pressure fields [Ladyzhenskaya 63, Temam 77, Arnold 84, Franca 01]. This space com-
patibility condition is known as the inf-sup condition, also called the Ladyzhenskaya-
Brezzi-Babus̆ka condition. To deal with the instabilities arising from the space incom-
patibility, two possible remedies can be adopted: either we circumvent the condition
by adding stabilization terms to the Galerkin formulation, or we enrich the functional
space in order to satisfy it, i.e. we derive a stable formulation. The finite element
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functional space combinations satisfying the Ladyzhenskaya-Brezzi-Babus̆ka condition
have been studied on the Stokes problem. A popular mixed finite element formulation,
known as the Mini element method [Arnold 84], consists in using equal order spaces
for both fields while enriching the velocity space with bubble functions. The latter van-
ishes at the elements’ boundaries and hence can be eliminated and statically condensed
yielding a stabilized formulation. The choice of optimal shape for the bubble functions
affects the stabilization of the problem. It was pointed out in [Franca 01] that, unlike
diffusion dominated regimes where the numerical solution is satisfactory, in convection
dominated problems the method’s performance is reduced. To solve this issue, Franca
and Nesliturk [Franca 01], used the residual-free bubble (RFB) method with a natural
way of choosing stabilization terms. Several works on the derivation of stabilization
methods for the resolution of the Stokes and the Navier-Stokes problems can be found
in the literature. First, the Unusual Stabilized finite element method was introduced
by Franca and Farhat in [Franca 95]. Next, the residual based stabilization methods are
well described by Brezzi et al. [Brezzi 96], Donea and Huerta [Donea 03] and Codina
et al. [Codina 00a, Codina 00b, Codina 01, Codina 07, Badia 09]. Finally, multiscale
approaches were proposed by Hughes et al. [Hughes 95, Hughes 98, Hughes 01] and
Gravemeier [Gravemeier 06] and the SUPG/PSPG methods by Tezduyar [Tezduyar 92].

A finite element solver for the Stokes problem based on the Mini element method
has been developed, implemented and validated in the CIMLIB library by Coupez,
Perchat and Digonnet [Coupez 96, Perchat 00, Digonnet 03]. An extension of these
works to transient Navier-Stokes equations at low Reynolds number is credited to Bas-
set [Basset 06]. The Variational Mutiscale method was brought forth for high Reynolds
numbers, implemented and validated in CIMLIB by Hachem [Hachem 09]. The current
work is a continuation upon these references and intends to couple the stabilized finite
element solvers with anisotropic mesh adaptation and time adaptive algorithm in the
view of optimizing the numerical solutions. A slight modification will be considered
in chapter 3 to account for the synergy with adaptation tools.

In this chapter, we are interested in retaining the advantages, in terms of accuracy
and computational costs, of using linear (P1) finite element approximations for both
velocity and pressure fields. The Variational Mutiscale approach will be used to sta-
bilize the problem. It involves an orthogonal decomposition of the solution (velocity
and pressure) spaces, circumvents the inf-sup condition and provides stabilization in
the case of convection dominated regimes.

1.3.1 Governing equations

Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded domain and (0, T) be a time interval. The mod-
elling of incompressible flows inside Ω is embodied by the transient incompressible
Navier-Stokes equations. It consists in finding the pair velocity/pressure v(x, t) and
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p(x, t) such that:

ρ (∂tv + v · ∇v)−∇ ·γγγ = f in Ω× (0, T)

∇ · v = 0 in Ω× (0, T) (1.41)

where γγγ is the stress tensor, ρ the fluid density and f a given vector of external forces
acting on the flow. The first equation models the conservation of mass whereas the
second, known as the continuity equation, reflects the incompressibility of the flow.

Let I be the identity tensor. The stress tensor γγγ associated with a Newtonian fluid
i.e., for a fluid dynamic viscosity µ, is defined by the fundamental constitutive law:

γγγ = 2µεεε(v)− pI (1.42)

where ε(v) is the strain rate tensor, defining the symmetric part of the velocity gradient:

ε(v) =
1
2

[
∇v + (∇v)t

]
(1.43)

Substituting (1.42) and (1.43) in (1.41), the following momentum equation results:

ρ (∂tv + v · ∇v)− 2µ∇ · εεε(v) +∇p = f in Ω× (0, T)

∇ · v = 0 in Ω× (0, T)
(1.44)

We close the system with appropriate initial and boundary conditions:

v(x, 0) = v0(x) in Ω

v(·, t) = vD on Γd × (0, T)

v · n = hN on Γh × (0, T)

(1.45a)

(1.45b)

(1.45c)

where ∂Ω = Γ = Γd ∪ Γh and Γd ∩ Γh = ∅. We note that when prescribing Dirich-
let boundary conditions on the domain boundary ∂Ω, a condition on the pressure∫

Ω p(x) = 0 shall be added.

1.3.2 Standard Galerkin formulation

To derive the variational formulation of problem (1.44-1.45), we use the following sub-
spaces of the usual Lebesgue function space of square integrable functions, and Hilbert
space defined on Ω:

V =

{
v, v ∈

(
H1(Ω)

)d
|v = vd on ΓD

}
,

V0 =

{
v, v ∈

(
H1(Ω)

)d
|v = 0 on ΓD

}
, and

Q =
{

q, q ∈ L2(Ω)
}

.
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We multiply the first and second equation of (1.44) by test functions (w, q) ∈ (V0,Q).
Then we integrate by parts the viscous and pressure terms of the first equation. An
additional term emerges and involves an integral over the boundary ΓN . Therefore the
weak form of equations (1.44) consists in finding (v, p) ∈ (V ,Q) such that:{ (

ρ ∂v
∂t , w

)
+ (ρv · ∇v, w) + (2µεεε(v) : εεε(w))− (p,∇ ·w) = ( f , w) + (hN , w)ΓN ∀w ∈ V0

(∇ · v, q) = 0 ∀q ∈ Q
(1.46)

For spatial discretization, we consider the finite element partition Hh of Ω into
simplex elements K. The above-defined functional spaces V and V0 are approached on
this partition by discrete spaces spanned by piecewise linear functions:

Vh =
{

vh ∈
(
C0(Ω)

)d
, vh|K ∈ P1(K)d, ∀K ∈ Hh

}
,

Vh,0 = {wh ∈ Vh, wh|Γ = 0} , and

Qh =
{

qh ∈ C0(Ω), qh|K ∈ P1(K), ∀K ∈ H
}

The Galerkin discrete problem associated with the finite element approximation in-
volves solving the following mixed problem:
Find the pair (vh, ph) ∈ (Vh,Qh) and (wh, qh) ∈ (Vh,0,Qh) such that:

(
ρ

∂vh

∂t
, wh

)
+ (ρvh · ∇vh, wh) + (2µεεε(vh) : εεε(wh))− (p,∇ ·wh)

= ( f , wh) + (hN , wh)ΓN ∀wh ∈ Vh,0

(∇ · vh, qh) = 0 ∀qh ∈ Qh

(1.47)

To obtain stable finite element solutions of the Navier-Stokes problem, the velocity and
pressure fields must satisfy the inf-sup condition given by:

inf
qh∈Qh

sup
vh∈Vh,0

(∇ · vh, qh)Ω
|qh|0|vh|1

≥ β > 0 (1.48)

where β is a constant independent of the mesh size h.

To illustrate on this point, we consider the Stokes problem that can be obtained
by omitting the inertial forces and dropping the time variation. The weak formulation
of this problem reads as:{

(2µεεε(vh) : εεε(wh))− (p,∇ ·wh) = ( f , wh) ∀wh ∈ Vh,0

(∇ · vh, qh) = 0 ∀qh ∈ Qh,0 .
(1.49)
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Let (vh, ph) ∈ (Vh,Qh) be a solution couple to the discrete Stokes problem. If condition
(1.48) is not satisfied, then the pressure solution is not unique i.e. we can construct
q̃h ∈ Qh with

∫
Ω q̃h dx = 0 such that (∇ · vh, q̃h) = 0, ∀vh ∈ Vh and consequently, the

pair (vh, ph + q̃h) ∈ (Vh,Qh) is also a solution of problem (1.49). This example is known
as a ‘spurious pressure mode’.

The Mini element method was proposed as a remedy to this failure [Arnold 84].
The idea behind it is to enrich the velocity piecewise linear functional space with a
space of bubble functions defined at the elements’ centroids and vanishing on element
boundaries. A static condensation is then performed resulting in a stable solution
couple. We omit the development of this procedure in this work for brevity and direct
the interested reader to [Basset 06, Hachem 09].

A three-level model is proposed in [Calderer 13] whereby both large and fine scales
are stabilized. A nested scale resolution requiring successive VMS steps is favored.

In this thesis, we adopt the Variational Multiscale stabilization for curing numerical
instabilities arising in convection dominated regimes and solution functional spaces
incompatibility.

1.3.3 Variational Multiscale (VMS) stabilization method

Following the lines of Hughes et al. [Hughes 95, Hughes 98, Hughes 01], we apply an
orthogonal decomposition of the functional spaces Ṽ and Q̃ into:

Ṽ = Vh ⊕ V ′

and Q̃ = Qh ⊕Q′
(1.50)

By taking ṽ = vh + v′ ∈ Ṽ and p̃ = ph + p′ ∈ Q̃, we decompose respectively the velocity
and pressure fields into resolvable coarse and unresolvable fine scales. In particular the
fine-scales will provide additional stabilization at locations of steep velocity gradient.
The same decomposition applies to the test functions w̃ = wh + w′ and q̃ = qh + q′.

Figure 1.4 – VMS approach solution decomposition adopted from [Hughes 98]

We assume that the fine-scale velocity and pressure are represented by piecewise
polynomials continuous in space but discontinuous/piecewise constant in time.



1.3. The incompressible Navier-Stokes equations 41

Bearing these sum decompositions in mind, the mixed finite element formulation
of problem (1.44) becomes:
Find (ṽ, p̃) ∈ (Ṽ , Q̃) such that:

(
ρ

∂(vh + v′)
∂t

, wh + w′
)
+
(
ρ
(
vh + v′

)
· ∇
(
vh + v′

)
, wh + w′

)
+
(
2µεεε(vh + v′) : εεε(wh + w′)

)
−
((

ph + p′
)

,∇ · (wh + w′)
)

=
(

f , wh + w′
)
+
(
hN , wh + w′

)
ΓN

∀wh + w′ ∈ Vh,0 ⊕ V ′0

(
∇ · (vh + v′), qh + q′

)
= 0 ∀qh + q′ ∈ Qh,0 ⊕Q′0

(1.51)

To maintain the consistency of the approach, the function spaces of the fine-scales
and large-scales should be linearly independent [Masud 04]. Although the variational
formulation (1.51) is nonlinear in the convection term, it is linear with respect to the test
functions. Hence the problem can be uncoupled at the element level and the fine-scales
vanish on the element boundaries. Subsequently, the weighting functions’ splitting
yields the following two subproblems:

• The coarse-scale problem:(
ρ

∂(vh + v′)
∂t

, wh

)
+
(
ρ
(
vh + v′

)
· ∇
(
vh + v′

)
, wh

)
+
(
2µεεε(vh + v′) : εεε(wh)

)
−
((

ph + p′
)

,∇ ·wh
)
= ( f , wh) + (hN , wh)ΓN

∀wh ∈ Vh,0

(
∇ · (vh + v′), qh

)
= 0 ∀qh ∈ Qh,0

(1.52)

• The fine-scale problem:(
ρ

∂(vh + v′)
∂t

, w′
)
+
(
ρ
(
vh + v′

)
· ∇
(
vh + v′

)
, w′
)
+
(
2µεεε(vh + v′) : εεε(w′)

)
−
((

ph + p′
)

,∇ ·w′
)
=
(

f , w′
)
+
(
hN , w′

)
ΓN

∀v′ ∈ V ′0

(
∇ · (vh + v′), q′

)
= 0 ∀q′ ∈ Q′0

(1.53)

As an orthogonal decomposition was used, the crossed viscous terms (εεε (v′) : εεε (wh))

in equation (1.52) and (εεε (vh) : εεε (w′)) in equation (1.53) vanish.
At this stage, we consider the small-scale problem at the elements’ level. A static

condensation will then be applied whereby the fine-scale solution will be embedded
back onto the large-scale problem yielding a local time dependent stabilization term
that models the effects of the small-scales on the large-scales without explicitly re-
solving them. Thereby the accuracy and stability of the mixed formulation will be
improved.
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We assume zero Dirichlet boundary condition for ease of elucidation, the extension
to other types of boundary conditions is straightforward. As the bubble functions are
locally defined at the elements’ interiors, the small-scale problem can be re-written as:



(
ρ∂tv′, w′

)
K︸ ︷︷ ︸

time dependent subscale

+
(
ρ
(
vh + v′

)
· ∇v′, w′

)
K︸ ︷︷ ︸

non-linear convection term

+ (2µεεε(v′) : εεε(w′))K + (∇p′, w′)K

= ( f − ρ∂tvh − ρ(vh + v′) · ∇vh −∇ph, w′)K ∀w′ ∈ V ′0 , ∀K ∈ Hh

= (Rm, w′)K ∀w′ ∈ V ′0

(∇ · v′, q′)K = (−∇ · vh, q′)K = (Rc, q′)K ∀q′ ∈ Q′0 , ∀K ∈ Hh
(1.54)

where (Rm, w′) and (Rc, q′) are respectively the residuals of the momentum and
continuity large-scale equations projected onto the fine-scale spaces.

We recall that our objective is to approximate the fine-scale solutions. To do so,
we introduce simplifying assumptions on the time-dependency and the non-linear
terms in equations (1.54):

i) Tracking the time evolution of the small-scales necessitates considerable memory
resources and induces an important computational cost. Therefore to maintain
practical and affordable numerical simulations, especially when modelling com-
plex 3D problems, we drop the contribution of terms involving past fine-scale
solutions (see [Dubois 99] for a justification of this choice). However, it is worth
mentioning that the effects of the time history are still modelled via the residu-
als of the coarse-scales that account for their time derivatives. Interested reader
about accounting for small-scale dynamics can consult [Codina 07].

ii) As the large-scale gradients are dominant with respect to small-scales, the con-
vective velocity can be limited to its large-scale part as the latter is important for
turbulence modelling [Bazilevs 07, Calderer 13]:

(vh + v′) · ∇(vh + v′) ≈ vh · ∇(vh + v′).

Note that these terms are useful for evaluating turbulent fluctuations. In the
following section, we will resort to turbulence models (such as the LES, k− ε, and
Spalart Allmaras models) to deal with turbulent flows.

Respecting these assumptions, equations (1.54) become:
(
ρvh · ∇v′, w′

)
K +

(
2µεεε(v′) : εεε(w′)

)
K +

(
∇p′, w′

)
K =

(
Rm, w′

)
K ∀w′ ∈ V ′0 , ∀K ∈ Hh(

∇ · v′, q′
)

K =
(
Rc, q′

)
K ∀q′ ∈ Q′0 , ∀K ∈ Hh

(1.55)
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Taking into account the small-scale pressure ensures the continuity of the small-
scales and leads to additional stabilization for high Reynolds flows as discussed in
[Wall 00, Tezduyar 00]. Nevertheless, it is hard to solve for both small-scale velocity
and pressure. As proposed in [Wall 00], we replace the small-scale continuity equa-
tion by a modified (consistent) Pressure Poisson equation. The effects of small-scales
pressure Poisson’s equation will be accounted for in the coarse-scale problem by the
addition of the following estimated stabilization term that we adopt from[Codina 00a]:

p′ ≈ τCRc , where τC =

((
µ

ρ

)2

+

(
c2

c1

‖v‖K

hK

)2
)1/2

(1.56)

and c1 and c2 being two constants independent from the characteristic element length
hK.

We focus our attention now on the fine-scale momentum equation. It was demon-
strated in [Codina 00a] that setting p′ = 0 in the small-scale momentum equation is
a reasonable choice to verify the inf-sup condition as it yields a larger function space
for the velocity field. This assumption stems from the fact that the fine-scale velocity
is driven by the residual of the large-scale momentum equation and not that of the
continuity equation as pointed out in [Wall 00].

We use the fine-scale expansion proposed by Masud and Khurram [Masud 04]:

v′ = ∑
K∈Hh

v′KbK and w′ = ∑
K∈Hh

w′KbK , (1.57)

where bK are bubble shape functions, v′K denotes the fine-scale velocity on element K
and w′K the corresponding weighting function.

Substituting v′ and w′ by their expansions and taking into account that bubble
functions are zero on the boundaries of the elements we obtain:

(
ρvh · ∇bKv′K, bKw′K

)
K +

(
2µεεε(bKv′K) : εεε(bKw′K)

)
K =

(
Rm, bKw′K

)
K ∀K ∈ Hh (1.58)

As this equation is verified for any choice of w′K, then it is in particular valid for w′K = 1,
consequently, the fine-scales velocity coefficients can be deduced:

v′K =
1

(ρvh · ∇bK, bK)K + (2µεεε(bK) : εεε(bK))K︸ ︷︷ ︸
τK

· (Rm, bK)K ∀K ∈ Hh (1.59)

However, the convective term in the formula of the stabilization parameter τK cancels
out when using the same bubble functions for the velocity and test functions. To
promote the influence of the convective term, we use a combination of standard and
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upwind bubbles for the weighting functions and standard bubbles for the velocity
solution as suggested in [Masud 04, Hachem 09]:

w′|K = w′Kb∗K = w′K (bK + bv
K) (1.60)

The resulting stabilization parameter reads as:

τK =
bk
∫

K b∗k dΩ
(ρuh · ∇bK, bv

K)K + (2µεεε(bK) : εεε(bK))K
∀K ∈ Hh (1.61)

In here, the upwind bubble functions vanish in the viscous term as we are using linear
elements. Clearly different bubble functions yield different stabilization parameters.

We are now ready for a static condensation whereby the small-scale effects are
to be integrated onto the coarse-scale equations. Taking into account the quasi-static
assumption on the fine-scales and applying integration by parts to the nonlinear term in
the large-scale momentum equation and to the second term of the continuity equation
(1.52) imply:

(ρ∂tvh, wh)Ω + (ρvh · ∇vh, wh)Ω − ∑
K∈Hh

(τKRm, ρvh · ∇wh)K + (2µεεε(vh) : εεε(wh))Ω

− (ph,∇ ·wh)Ω + ∑
K∈Hh

(τCRc,∇ ·wh)K = (f, wh)Ω ∀wh ∈ Vh,0

(∇ · vh, qh)Ω − ∑
K∈Hh

(τKRm,∇qh)K = 0 ∀qh ∈ Qh,0

(1.62)
Substituting the residuals by their explicit formulas onto the large-scale problem we
get:

(ρ∂tvh + vh · ∇vh, wh)Ω + (2µεεε(vh) : εεε(wh))Ω − (ph,∇ ·wh)Ω + (∇ · vh, qh)Ω − (f, wh)Ω︸ ︷︷ ︸
Galerkin terms

+ ∑
K∈Hh

τK (ρ(∂tvh + vh · ∇vh) +∇ph − f, ρvh · ∇wh)K︸ ︷︷ ︸
Upwind stabilization terms

+ ∑
K∈Hh

τK (ρ(∂tvh + vh · ∇vh) +∇ph − f,∇qh)K︸ ︷︷ ︸
Pressure stabilization terms

+ ∑
K∈Hh

(τC∇ · vh,∇ ·wh)K︸ ︷︷ ︸
grad-div stabilization term

= 0 ∀wh ∈ Vh,0 , ∀qh ∈ Qh

This formulation can be dissected into 4 main parts: the first is the standard Galerkin
formulation, the second and third are fine-scale velocity ingredients and the last part
models the effects of small-scale pressure. All the added terms provide additional
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stabilization in convection dominated regimes and permit to circumvent the inf-sup
condition. Being derived from residual components, the method is established in a
consistent way.

1.3.4 Choice of the stabilizing parameter

Several definitions are given in the literature for the stabilization parameters. In CIM-
LIB, the following formula proposed in [Codina 00a, Tezduyar 00, Hachem 10b] is im-
plemented:

τK =

[(
2ρ

∆t

)2

+

(
2ρ‖v‖K

hK

)2

+

(
4ν

mKh2
K

)2
]−1/2

, τC =
hK‖v‖K

2
min (1, ReK) (1.63)

where ν is the kinematic viscosity and ReK denotes the local Reynolds number given
by ReK = ρ‖v‖KhK

2µ and mK is a constant independent from hK [Codina 00a]. In these
definitions hK refers to the characteristic length of the element, usually it is set to the
element’s diameter. However, as it will be shown in chapter 2, this choice is not the
optimal one when using anisotropic mesh adaptation.

1.4 Turbulence modelling

The understanding of turbulence is nowadays considered as the main intriguing and
frustrating difficulty in fluid dynamics. It was recognized by da Vinci (∼ 1500) as
a distinguished physical behavior, “turbolenza”, a phenomenon in which “the smallest
eddies are almost numberless, and large things are rotated only by large eddies and not by small
ones, and small things are turned by small and large eddies”. Reynolds (∼ 1880), through
conducting an experimental study on a flow past a pipe with smooth transparent walls,
observed the transition from laminar to turbulent flows. He introduced the adimen-
sional number characterizing the flow’s behavior. Researchers have been investigating
a proper definition for this phenomenon. Richardson in 1922 described turbulence
using these words: “Big whorls have little whorls, which feed on their velocity; And little
whorls have lesser whorls, And so on to viscosity”. He referred to the energy cascade
exhibiting the breaking down of eddies into smaller ones accompanied with a kinetic
energy transfer. A turbulent flow is characterized by restless chaotic fluctuations of
velocity and pressure that occur at high Reynolds number. As the Reynolds number
increases, bifurcations arise and the flow develops, more frequently, an irregular tur-
bulent behavior in both space and time.

Analytical solutions to turbulent flows are to this day deficient, all the existing ef-
forts culminate in the numerical investigations. A straightforward option would be to
solve the Navier-Stokes equations with appropriate initial and boundary conditions.
This way is known as the Direct Numerical Simulation (DNS). However the broad
range of space and time scales to be resolved using the NS equations is very large
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and beyond the realms of present computational powers. Hence, DNS method is
still limited to a moderate Reynolds number. As sketched in figure 1.5, two potential
redeemers are the so-called Large Eddy Simulation (LES) and Reynolds Averaged
Navier-Stokes (RANS). The former of these approaches consists in filtering the flow
scales, fully resolving the large-scale structure while only modelling the effect of the
small-scales. However this method does not provide the ultimate cure, its computa-
tional cost is still considerable. RANS on the other hand, averages the equations in
space and time completely removing the fluctuations and yielding computationally
less expensive set of equations. However as the RANS method does not solve the small
scales, closure models are required to account for turbulence effect. Of these models,
we are interested in considering the k− ε and the Spalart Allmaras ones.

Figure 1.5 – Schematic of turbulent flow scales (left) and the three modelling approaches (right), adopted
from [Ferziger 96, Hachem 09]

1.4.1 Direct Numerical Simulation (DNS)

The direct numerical simulation method relies exclusively on the standard Galerkin
formulation of the Navier-Stokes problem. For a fine enough mesh (the mesh size
h → 0) the DNS method is capable of resolving all the solution’s scales. However a
very wide range of space and time scales emerges in turbulent flows. According to the
Kolmogorov theory [Kolmogorov 91], a measure of the needed computational power
is quantified using the ratio of the largest (L) to the smallest (s) dissipative scale. So
if we consider a computational domain with dimensions equal to the largest eddy, the
number of mesh nodes required for capturing a 3D turbulent flow is of the order

N =
L
s

Re
9
4

For a time-step size having the same order as the characteristic element length, a total
number Re3 degrees of freedom in space and time is needed. Consequently, the current
available computational power, even with the existing supercomputers, are not capable
of simulating high Reynolds number flows [Moin 98].
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1.4.2 Reynolds Averaged Navier-Stokes (RANS)

When analyzing a turbulent flow, there are two main variables of interest: the velocity
and the pressure. These variables present fluctuations in both space and time. Denote
by ϕ = ϕ(x, t) the generic variable of interest. In order to separate the time average ϕ

from the small scale fluctuations ϕ′, we apply the following decomposition [Gaston 97]:

ϕ(x, t) = ϕ(x, t) + ϕ′(x, t) , (1.64)

where the time average is computed as:

ϕ(x) = lim
T→∞

1
2T

T∫
0

ϕ(x, t) dt and ϕ′ = 0 . (1.65)

A discrete version of this entity is known as the “ensemble average” and is defined by:

ϕ(x) = lim
T→∞

1
N

N

∑
n=1

ϕn(x, t) dt , (1.66)

where ϕn(x, t) denotes the variable at the nth time instant. In addition, we have the two
important ingredients of the averaging (filtering) operator:

ϕ + ψ = ϕ + ψ and ϕ · ψ = ϕ · ψ

From this property we infer that the large (resolvable) scale and the small (unresolvable)
scale do not interact:

ϕ · ψ = (ϕ + ϕ′) ·
(
ψ + ψ′

)
= ϕ · ψ + ϕ′ · ψ′ . (1.67)

When the two quantities are uncorrelated, the last term in equation (1.67) vanishes.

Now that we have defined the filtering operator, we plug in the averaged velocity
and pressure into the Navier-Stokes problem and obtain:

ρ (∂tv + v · ∇v)−∇ ·
(
µ∇v +∇vt)+∇p +∇ ·

(
ρv′ ⊗ v′

)
= f in Ω× (0, T)

∇ · v = 0 in Ω× (0, T)
(1.68)

We can detect the presence of a new tensor that takes into account turbulent motion and
represents the influence of the small scale fluctuations on the mean flow. This tensor
is called Reynolds stresses or turbulent stresses tensor and is usually denoted by R.
Several models were proposed in the literature to approximate this term. At this level,
a turbulence model is needed to close the set of equations; we resort to the Boussinesq
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hypothesis that relates a turbulent or eddy viscosity to the mean shear stress:

R = µT
(
∇v +∇vt)− 2

3
ρkI (1.69)

under the condition of isotropic and small scale eddies. Inhere, µT denotes the eddy
viscosity, k = 1

2 v′ ⊗ v′ the averaged turbulent kinetic energy and I the identity tensor.
For more details, interested reader is referred to [Schmitt 07]. Note that the eddy
viscosity can be interpreted as the product of the fluid density and squared velocity of
fluctuations. Under the Boussinesq approximation, we obtain the following Reynolds
averaged Navier-Stokes momentum equation:

ρ (∂tv + v · ∇v) +∇
(

p +
2
3

ρk
)
+∇ ·

(
(µ + µt)

(
∇v +∇vt)) = f (1.70)

The solution of the RANS equations is now waved to finding the appropriate eval-
uation of the eddy viscosity and the turbulent kinetic energy. Various models in the
literature are devoted to the definition of the eddy viscosity, and are classified accord-
ing to the number of additional transport equations to be solved together with the
RANS equation. Among these models we cite:

• Zero-equation models (e.g. the Prandlt mixing length model or the Baldwin-
Lomax),

• One-equation models (e.g. the Spalart-Allmaras and Prandtl and Kolmogorov
√

k
models),

• Two-equation models (e.g the k− ε and the k−ω models).

It is beyond the scope of this thesis to provide a detailed analysis on the different
models present in the literature. We focus our attention on: the k− ε and the Spalart-
Allmaras models.

1.4.2.1 k− ε turbulence model

First proposed in 1972 [Jones 72], the k− ε model has gained popularity in designing
CFD libraries for industrial numerical simulations. The robustness and reliability of
the model were demonstrated by Rodi in [Rodi 80]. It was the first model describing at
the same time, the creation, the transport and the dissipation of the turbulent energy as
well as the length scale. This scale is equivalent to the size of a small eddy. The model
can be split into two parts that together present a dynamic system: an equation on the
turbulent energy contained in the eddies, accounting for a running balance of energy
generation and dissipation. The second equation represents the energy dissipation. The
turbulent viscosity reflects the effect of fluctuating unresolved velocity and is computed
by:

µt = ρCµ
k2

ε
, (1.71)
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where Cµ denotes an empirical constant usually equal to 0.09. To evaluate µt, k and ε,
we solve a system of two transport equations [Van Maele 06] given by:

ρ (∂tk + v ·∇k)−∇ ·
((

µ +
µt

Prk

)
∇k
)
= µt (Pk + Pb)− ρε in Ω(1.72)

ρ (∂tε + v ·∇ε)−∇ ·
((

µ +
µt

Prε

)
∇ε

)
=

ε

k
(C1εPk + C1ε(1− C3ε)Pb − C2ερε) in Ω(1.73)

Inhere, Pk stands for the production of turbulent kinetic energy due to the mean
velocity gradients, Pb represents the production due to the buoyancy effects, Prk and
Prε denote respectively the turbulent Prandtl number for k and ε. They are given by:

Pk = 2µt(εεε(v) : εεε(v)) and Pb = −
µt

ρPrt
g∇ρ (1.74)

with Prt being the turbulent Prandtl number that we set to 0.85. In addition, C1ε, C2ε

and C3ε are model constants that we take, as suggested in [Van Maele 06]:

C1ε = 1.44 , C2ε = 1.92 , and C3ε = 0.88 . (1.75)

Finally, we determine the real pressure field from the effective pressure and the
turbulent kinetic energy according to:

p = p− 2
3

ρk . (1.76)

To facilitate the numerical resolution of the model, enhance its convergence, stability
and robustness we apply the following modifications (suggested in [Hachem 09]):

(i) We use a Newton Raphson linearization.

(ii) We transform the destruction term into a reaction term in the turbulent kinetic
energy equation to improve the stability:

ρε = ρ
εi

ki k (1.77)

(iii) We transform the destruction term in the dissipation equation as follows:

C2ερ
ε

k
= 2C2ερ

εi

ki ε− C2ερ

(
εi)2

ki (1.78)

where ki and εi denote the turbulent kinetic energy and dissipation at iteration i.

We apply the Streamline Upwind Petrov Galerkin method to solve the k − ε model
which has the form of a transient convection diffusion reaction equation. The varia-
tional multiscale approach is in turn used to solve the RANS problem.
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1.4.2.2 Wall treatment

The k− ε model is active only in regions far from walls, thus special treatment needs
to be done in the boundary layer. Experimental studies have shown that near wall
flows exhibit a multilayered structure. Close to the wall, a “viscous sublayer” can
be identified where the flow behaves in a laminar manner. Far from the wall, a “fully
turbulent sublayer” is created where the flow is actively turbulent. In between, we have
a “buffer sublayer” characterized by equal importance of the viscous and turbulent
properties of the flow.

Two possible treatments can be adopted. The first one consists in employing wall
functions in the buffer and viscous sublayers. The second approach involves modify-
ing the turbulence model to enable their resolution up to the wall. In this regard, we
follow the work of Grotjans and Menter (1998) [Grotjans 98] and use logarithmic wall
functions so that to impose Neumann boundary conditions for the turbulent kinetic en-
ergy. This method has been well studied, implemented and validated in [Hachem 09].
Inhere for brevity of exposure, we retain only its main features.

We define a bridging value between the viscous and inertial sub-layers as the solu-
tion of the nonlinear equation [Thangam 91]:

y+c =
1
κ

ln
(
Ey+

)
, (1.79)

where κ = 0.41 is the Von Kármán constant, and E = 9.81 is an empirical constant.
Hence the solution of this nonlinear equation is given by y+c = 11.06. For this value of
y+c , we can compute the friction velocity and the wall shear stress using:

vτ =
|v|
y+c

and τω = −ρvτvk
v
|v| on Γδ , (1.80)

with Γδ being the zone of the computational domain located at a distance δ from the

walls and vk = C
1
4
µ

√
k is the bulk velocity. Note that the distance δ is prescribed by the

user. The velocity profile is then defined by:

v+ =

{
y+ for y+ < y+c
1
κ ln (Ey+) for y+ > y+c

(1.81)

A Neumann boundary condition is associated with the turbulent kinetic energy vari-
able:

∂k
∂n

= 0 , (1.82)

where n is the normal to the wall. Finally, to complete the asymptotic behavior of all
the variables, we set the dissipation rate in the near wall region to

εω =
u3

k
κδ

on Γδ . (1.83)
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1.4.2.3 Spalart Allmaras turbulence model

The Spalart Allmaras (SA) model, first introduced in 1992, by P. Spalart and S. Allmaras
[Spalart 94], has rapidly gained widespread popularity especially in aerodynamics. It
showed good stability and performance at high pressure gradients. The turbulence
model involves the resolution of a nonlinear advection-diffusion-reaction equation for
a modified eddy viscosity ν̃ = µ

ρ , µ being the dynamic viscosity and ρ the density of
the fluid, such that [Oliver 09]:

∂ν̃

∂t
+v ·∇ν̃− cb1(1− ft2)S̃ν̃+

[
cw1 fw −

cb1

κ2 ft2

] ( ν̃

d

)2

− cb2

σ
∇ν̃ ·∇ν̃− 1

σ
∇· [(ν + ν̃)∇ν̃] = 0

(1.84)
The eddy viscosity is computed by µt = fv1ν̃ where:

fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
, fv2 = 1− χ

1 + χ fv1
ft2 = ct3e−ct4χ2

fw = g
[

1 + c6
w3

g6 + c6
w3

] 1
6

, g = r + cw2(r6 − r), r =
ν̃

S̃κ2d2
,

(1.85)

with

S̃ =


S + ν̃

κ2d2 fv2, for ν̃
κ2d2 fv2 ≥ −cv2S

S +
S
(

c2
v2S+cv3

ν̃
κ2d2 fv2

)
(cv3−2cv2)S− ν̃

κ2d2 fv2
, for ν̃

κ2d2 fv2 < −cv2S,

(1.86)

In these formulas, S represents the vorticity magnitude and it is evaluated by:

S =
√

2SijSij, Sij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
. (1.87)

inhere we denote by d the shortest distance to the wall, and by κ = 0.41 the Von Kármán
constant. We set the remaining model coefficients to:

cb1 = 0.1355, cb2 = 0.622, σ = 2/3, cv1 = 7.1, cv2 = 0.7, cv3 = 0.9,

cw1 =
cb1

κ2 +
1 + cb2

σ
, cw2 = 0.3, cw3 = 2, ct3 = 1.2, ct4 = 0.5.

(1.88)

To improve the accuracy and convergence of the model, and to avoid negative viscos-
ity values, some modifications shall be performed. We find in the literature several
variations of this model, the interested reader is advised to consult NASA’s excellent
turbulence modeling resource webpage [Rumsey 13]. In this work we will use the Nega-
tive Spalart Allmaras Model because of its robustness in avoiding the creation of negative
turbulent viscosity [Allmaras 12] when the closure function fv2 is negative, i.e. for
1 ≤ χ ≤ 18.4. In fact, the exact solution of the model is indeed non-negative, whereas
the discrete solution does not share the same property and hence can adversely im-
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pact its convergence. Two modifications are encountered, the first consists in setting
the turbulent viscosity µt to zero when ν̃ takes negative values. The second involves
replacing (1.84) when ν̃ is negative by:

∂ν̃

∂t
+
(

v− cb2

σ
∇ν̃
)
· ∇ν̃− cb1(1− ct3)Sν̃− cw1

(
ν̃

d

)2

− 1
σ
∇ · [(ν + fnν̃)∇ν̃] = 0, (1.89)

with fn =
cn1 + χ3

cn1 − χ3 , cn1 = 16. That way, when ν̃ < 0, the added terms act in a way to

dissipate the energy of the turbulent model
(

ν̃
d

)2.
An additional enhancement of the model to ensure the reduction of the energy of the
turbulence model’s working variable over time was proposed in [Oliver 08]. We omit
the details for brevity and direct the interested reader to consult [Oliver 08].
We then solve equations (1.84) and (1.89) using the Streamline Upwind Petrov-Galerkin
(SUPG) method described earlier in this chapter. The stabilization is preceded by a tem-
poral discretization of equation (1.84). Without loss of generality we use a backward
Euler scheme, and a Newton Raphson linearization. Rearranging the terms, equa-
tion (1.84) can be cast in a convection-diffusion-reaction form:

ν̃i+1 − ν̃i

∆t
+
(

vi − cb2

σ
∇ν̃i

)
· ∇ν̃i+1︸ ︷︷ ︸

convection

− 1
σ
∇ ·

[
(ν + ν̃i)∇ν̃i+1

]
︸ ︷︷ ︸

diffusion

−
[

cb1(1− ft2)S̃i +
(

cw1 fw −
cb1

κ2 ft2

) ν̃i

d2

]
ν̃i+1︸ ︷︷ ︸

reaction

= 0,
(1.90)

with i being the iteration number. The advantage of the Spalart Allmaras over the k− ε

model resides in its ease of application. The user does not have to worry about near
wall regions because the method automatically detects and resolves boundary layers.

1.5 Conjugate heat transfer

Driven by the increasing industrial needs for the understanding and modelling of the
critical heating processes involved in workpiece treatment inside furnaces, we attempt
at investigating, in the last part of this chapter, transient conjugate heat transfer and
turbulent fluid flow problems. These applications constitute a serious subject for re-
searchers and engineers in the field of material sciences especially with the increasing
concerns about reducing energy consumption and pollutant emissions, and lowering
economic expenses [Ishii 98, Nieckele 04]. In the aim of attaining optimal temperature
and metallurgical properties of treated pieces, several factors get into the game: low-
ering thermal gradients and ensuring a uniform temperature distribution within the
load, avoiding surface defects (e.g. skid marks), optimizing the furnace functioning in
terms of time scheduling and control strategies [Song 97].

In view of these demands, the design of a computational fluid dynamics (CFD) tool
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is mandatory for offline usage to investigate what-if scenarios concerning the complex
three-dimensional furnace simulations, such as sensitivity analysis related to the posi-
tioning of the treated workpieces, the location and orientation of the burners, and the
intensity and speed of hot gas injections.

To conduct these kinds of simulations, we intend to employ the Immersed Volume
method for multi-domain computations [Bernacki 08, Valette 09, Hachem 13]; this ap-
proach will be detailed in chapter 5. In a nutshell, the method consists in using a single
global mesh to handle the solid and fluid sub-domains and consequently solve only
one set of equations with different thermo-mechanical properties, instead of consider-
ing one set of equations for each sub-domain. By following this approach, we avoid the
challenging task of determining heat transfer coefficients at the level of the fluid-solid
interface. The conjugate heat transfer and flow dynamics inside the enclosure require
the simultaneous resolution of the Navier-Stokes and the heat transfer equations. In
convection dominated regimes, the equations are stabilized using the previously men-
tioned SUPG and VMS approaches (in sec. 1.2.4 and 1.3.3 respectively). The EM-I
(discussed in sec. 1.2.11) is used to numerically deal with thermal shocks that occur as
a result of a solid’s sudden heating. Finally, the radiative heat transfers are accounted
for by solving the radiative transfer equation (RTE) coupled with the P-1 radiation
model [Modest 93]. The resolution of the P-1 model generates a volume term, ∇qr,
that is added as a source term to the heat transfer equation and rendered by the sharp
discontinuities of the temperature field and material properties.

The fluid dynamics and heat transfers are modelled by the Reynolds-Average
Navier-Stokes, the energy equations and the k-ε model. The Boussinesq approximation
is used to accommodate the buoyancy forces on the fluid motion within the domain.
Accordingly, one has to solve the following coupled non-linear system [Jones 72]:

∇ · v = 0 in Ω

ρ(∂tv + v ·∇v)−∇ · (2µe εεε(v)− pe Id) = ρ0β(T − T0) g in Ω

ρCp(∂tT + v ·∇T)−∇ · (λe∇T) = f −∇ · qr in Ω

(1.91a)

(1.91b)

(1.91c)

where v denotes the velocity field, pe the effective pressure, T the temperature, εεε(v)
the deformation-rate tensor, ρ and µ the density and dynamic viscosity, ρ0 and T0

are reference density and temperature, β the thermal expansion coefficient and g the
gravitational acceleration.

Eventually, equation (1.91c) denotes the energy conservation and it involves the
constant pressure specific heat capacity Cp, the effective thermal conductivity λe, a
volume source term f and the heat radiative flux qr. We highlight the presence of the
effective viscosity µe and effective thermal conductivity λe terms which are computed
by:

µe = µ + µt and λe = λ +
Cpµt

Prt
, (1.92)
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with Prt = 0.85 being the turbulent Prandtl number. The turbulent viscosity µt in equa-
tion (1.92) is a function of the turbulent kinetic energy k and the turbulent dissipation
ε computed through the resolution of the k− ε model introduced in section 1.4.2.1 of
this chapter. It is important to mention that we omitted the over-lined notation used
previously for denoting the averaging of the problem variables (v, pe and T) for sake
of simplicity; however, when using the RANS method, all the variables stand for their
averaged counterpart.

The radiation’s contribution to heat transfers will be accounted for by solving the
radiative transfer equation (RTE) coupled with the P-1 radiation model. This model
enables the approximation of radiation intensity using a series of spherical harmonics.
For additional details, the reader is directed to [Modest 93, Siegel 02]. It also allows the
simplification of the RTE into an elliptical partial differential equation in terms of the
incident radiation G as follows:

∇ ·
(

1
3κa

∇G
)
− κaG = 4κaσT4 in Ω

∂Gw

∂n
=

3κaεw

2(2− εw)
(4σT4

w − Gw) in ∂Ω
(1.93)

with κa denoting the mean absorption coefficient, and σ the Stefan-Boltzmann constant.
In equation (1.93) subscript w stands for the wall quantities, n the normal to the wall
and εw the wall emissivity.

Finally, the radiative source term in equation (1.91c) can be determined from the
local temperature and the incident radiation according to the following equation:

−∇ · qr = κa

(
G− 4κaσT4

)
(1.94)

All throughout this thesis, a gray-medium assumption is considered whereby κa is
determined from the emissivity ε according to Bouguer’s law:

κa = −
1

Lm
ln(1− ε) , (1.95)

where Lm represents the mean beam length and is computed as follows:

Lm = 3.6
∆V
∆S

, (1.96)

with ∆V = ∆x∆y∆z and ∆S = 2(∆x∆y + ∆y∆z + ∆z∆y) being respectively the volume
and surface of each element in the mesh [Siegel 02].

An M1 radiation model is under development in the thesis work of Schmid
[Schmidt 16] and intends to increase the precision in modelling the radiative effects
onto the heat transfer equation.
System Resolution
All the previously described finite elements solvers were implemented in CIMLIB li-
brary. The resulting algebraic problems were assembled and solved using a General-
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ized Minimal Residual Method (GMRES) associated with an Incomplete LU, ILU(0),
preconditioner provided by the Portable Extensive Toolkit for Scientific Computation
(PETSc) library [Balay 97]. The latter is well designed and robustly supported to ac-
count for massively parallel resolutions of linear systems of equations. The compu-
tations were performed in a master-slave parallel framework [Digonnet 03] made up
of 2.4 Ghz Opteron cores in parallel (linked by an Infiniband network) and involv-
ing SPMD (Single Program, Multiple Data) modules and the MPI (Message Passing
Interface) library standard.

1.6 Numerical validation

In this section, we will present a series of numerical experiments to assess the va-
lidity, accuracy and efficiency of the proposed framework of stabilization techniques
and turbulence modelling. The numerical simulations were carried out using the C++
CIMLIB finite element library. We employ an Euler implicit discretization in time and
a Newton-Raphson linearization approach to treat the nonlinear convective terms.

1.6.1 Turbulent flow behind a prismatic cylinder (2D)

In the first example, we intend to evaluate the performance of the VMS stabilization
together with the Spalart-Allmaras model in simulating convection dominated flows
past an obstacle with sharp corners. For comparison purposes, the geometry and setup
of the problem (fig. 1.6) are taken the same as in [Bao 11]. The problem involves a free
stream flow past a prismatic obstacle with possibility of varying its aspect ratio.

Figure 1.6 – Flow past a prismatic cylinder: sketch of the geometrical domain (left) and the
corresponding gradual mesh construction (right).

The intention in this example is to demonstrate the capability of the implemented
method to well reproduce an oscillation free solution for complex flows in the presence
of sharp angles. For that purpose we will limit the study to an aspect ratio H2

H1
= 1.

The numerical investigation for different shape aspect ratio obstacles were performed
and reported (with and without anisotropic mesh adaptation) in a recent publication
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by Cremonesi et al. [Cremonesi 14]. In here we retrace the results of [Cremonesi 14]
obtained with H2

H1
= 1.

We prescribe the inflow velocity (Vin, 0) and the flow viscosity µ to yield a Reynolds
number Re= 2.2 × 104. The turbulent eddy viscosity is set to ν̃ = 3µ as suggested
in [Bao 11]. No slip boundary conditions v = 0, ν̃ = 0 are assigned at the level of
the solid body whereas slip conditions are imposed on the horizontal walls v · n =

0, (∇ve1) · n = 0,∇ν̃ · n = 0. The solution is advanced in time with a time-step equal
to 0.002s. For this numerical test case, we have pre-adapted the mesh by forecasting
the solution’s behavior assuming that the size of eddies grows as we move away from
the solid body. We also noted that upwind to the object, the flow is laminar. Based on
these assumptions on the characteristic nature of the expected flow, we have generated
a sublayered mesh, depicted in figure 1.6(right), where the elements’ sizes decrease as
one approaches the prismatic solid. Further attention is given to the construction of
the first layer of elements by imposing the elements mesh sizes to h = 3.8× 10−4H1 in
accordance with [Bao 11]. This choice of mesh size implies an optimal y+ value, equal
to 1, according to Schlichting’s formula [Schlichting 68]. We note that the y+ value (sec.
1.4.2.1) is often considered as a mesh refinement indicator in aerodynamic applications.

Two aerodynamic quantities are of interest in this simulation: the drag and lift
coefficients. We will briefly outline the procedure to compute these quantities and
refer the reader to [Volker 04a] for a detailed derivation. The drag and lift coefficients
are obtained from the drag and lift forces given by:

Fd =
∫

S

(
µ

∂vt

∂n
ny − pnx

)
dS and Fl = −

∫
S

(
µ

∂vt

∂n
nx + pny

)
dS , (1.97)

where S represents the fluid-solid interface with normal n = (nx, ny), vt the tangential
velocity and t = (ny,−nx) the tangential vector. The drag Cd and lift Cl coefficients are
then defined as:

Cd =
2Fd

ρV̄2D
and Cl =

2Fl

ρV̄2D
(1.98)

where V̄ is the mean velocity of the fluid, ρ its density and D is the characteristic length
of the prismatic cylinder. According to [Volker 04a] these coefficients are determined
using the vector of aerodynamic forces f = (Fd, Fl) given by:

f =
∫

S
(µ (∇v · n) · t) t− pn dS =

∫
S

2µ ((ε(v) · n) · t) t− pn dS

=
∫

S
(σn) dS

(1.99)

obtained using the properties ∇v · t = 0 and (ε(v) · n) · n = 0. We set: wd ∈
[H1

∂Ω\S(Ω)]d so that wd|S = ex in the sense of traces. Multiplying the Navier-Stokes
momentum equation by wd and integrating by parts (while taking the inward pointing
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normal to the boundary) implies:∫
Ωf

∂tv ·wd +
∫

Ωf

σ : ∇wd +
∫

∂Ωf

(σn) ·wd +
∫

Ωf

(v · ∇) v ·wd = 0 . (1.100)

Rearranging the terms and based on the fact that wd|∂Ω\S = 0, a new formulation for
the drag force results:

Fd = −
∫

Ωf

∂tv ·wd −
∫

Ωf

σ : ∇wd −
∫

Ωf

(v · ∇) v ·wd . (1.101)

Once we have determined the drag force, we substitute it in definition (1.98) to obtain
the drag coefficient. We compute the lift coefficient in an analogous way:

Fl = −
∫

Ωf

∂tv ·wl −
∫

Ωf

σ : ∇wl −
∫

Ωf

(v · ∇) v ·wl . (1.102)

Figure 1.7(left) shows the turbulent eddy viscosity ν̃ once a periodic steady vortex
shedding profile is reached. We can identify that the turbulence model has been acti-
vated in specific zones and thus the effect of the averaging and damping functions are
well reflected. The obtained velocity streamlines, figure 1.7(right), are quite stable and
present localized recirculation close to the solid body. This velocity profile is in accor-
dance with the one described in the reference [Bao 11] hence confirming the validity of
coupling the VMS solver to the Spalart Allmaras model.

Figure 1.7 – Flow past a prismatic cylinder: profile of the turbulent eddy viscosity ν̃ (left) and velocity
streamlines (right).

In Figure 1.8 we present the evolution of drag and lift coefficients once a steady vor-
tex shedding behavior is obtained. A comparative study, on the mean drag coefficient
and root mean squared lift coefficient obtained in this work together with experimen-
tal and numerical results from the literature, is reported in table 1.1. We identify that
the results are in good agreement with the references though few differences can be
detected. These differences might be due to the fact that the computational mesh is not
the same and more importantly to the first order discretization in time, as highlighted
in [Volker 04a].
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Figure 1.8 – Flow past a prismatic cylinder: drag (solid) and lift (dotted) coefficients time evolution.

mean CD r.m.s. CL
Bearman and Obasaju [Bearman 82] 2.10 1.20

Sohankar et al. [Sohankar 00] 2.25 1.50

Shimada and Ishihara [Shimada 02] 2.05 1.43

Bao et al. [Bao 11] 2.04 1.24

Present work 2.08 1.57

Table 1.1 – Flow past a prismatic cylinder: drag and lift coefficients’ comparison with the references.

1.6.2 Natural convection (2D)

In the second numerical test case, we aim at evaluating the accuracy of the stabilization
methods that we use for solving coupled problems. We compare the performance of
the methods to results found in the literature on the natural convection benchmark.
The problem consists in solving a classical flow in a cavity with differentially heated
vertical walls. The fluid motion inside the cavity is driven by the thermal gradient and
the Boussinesq forces. In fact, Boussinesq [Boussinesq 03] stated that in a natural con-
vection flow, the density exhibits small fluctuations while maintaining the incompress-
ibility condition. The density field can thus be decomposed into a constant uniform
value ρ0 and small scale variations ρ′(x, t):

ρ(x, t) = ρ0 + ρ′(x, t) . (1.103)

According to Boussinesq, the density variations are computed with respect to the tem-
perature reference value T0 as follows:

ρ′(x, t) = −ρ0
T′

T0
= −ρ0

T − T0

T0
(1.104)

On the other hand, the thermal expansion coefficient is defined by: β[K−1] =
1
ρ0

(
∂ρ
∂T

)
T0

= 1
T0

. Hence the small scale density fluctuations are computed by:

ρ′ = −ρ0β (T − T0) . (1.105)
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Consequently, an additional force term is introduced into the momentum equation to
account for these variations in the density field.

The problem was first investigated for small temperature field differences. It has
recently been studied for large temperature differences and low Mach number and
benchmarking solutions were established. For comparison purposes, we study the test
case described in [Le Quéré 05, Paillère 05]. The computational domain, depicted in
figure 1.9 is a square cavity of length L (inhere we set L = 1).

Figure 1.9 – Natural convection 2D: sketch of the computational domain.

We assume constant fluid properties and negligible radiation effects. The left wall
is kept at a high temperature Th whereas the right wall is maintained at a cold temper-
ature Tc. The horizontal walls are set to adiabatic temperature. We recall that the state
equation for air follows the perfect gas law (R = 287Jkg−1K−1). The Rayleigh num-
ber is an adimensional number characterizing coupled heat transfer and fluid flows.
It quantifies the ratio between buoyant forces and the product of viscous drag by the
thermal conductivity. It is defined by:

Ra =
ρ0gβ(Th − Tc)L3Cp

µλ
, (1.106)

where µ[Pas] is the dynamic viscosity, λ[Wm−1K−1] the thermal conductivity,
Cp[JK−1kg−1] the specific heat transfer and g[ms−2] the gravitational acceleration.

Another important dimensionless characteristic number is the Prandtl number, it
measures the ratio between viscous diffusion rate and thermal diffusion rate:

Pr =
µCp

k
(1.107)

We define the problem parameters in such a way to get a Prandtl number equal to 0.71,
Rayleigh numbers 106, 107 and 108, a relative temperature difference εT = Th−Tc

T0
= 1.2
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and an isentropic exponent γ = 1.4 so that the specific heat capacity evaluates to:

Cp =
γR

γ− 1
= 1004.5 .

We set the initial temperature field to:

T(x, 0) = T0 =
Th + Tc

2
= 600K (1.108)

and the initial pressure to P0 = 101325Pa. We can now determine the constant den-
sity of the fluid from ρ = P0

RT0
. The fluid is initially at rest inside the cavity, and no

slip boundary condition is prescribed on the boundaries of the domain. The tem-
perature values at the hot and cold walls are computed from Th = T0

(
1 + εT

2

)
and

Tc = T0
(
1− εT

2

)
.

The computations were performed on a mesh made up of around 50, 000 nodes
and evolved in time using a constant time-step ∆t = 0.05s. We show in figure 1.10

the velocity streamlines at time t = 20s obtained for Rayleigh numbers 106, 107 and
108. We can clearly identify that for a fixed Prandtl number, with the increase of the
Rayleigh number, the gravitational forces become more dominant and consequently the
flow starts developing turbulent motion with the emergence of different sizes vortices.
The symmetric profile obtained about the centerlines reflects well the incompressibility
property of the flow.

Figure 1.10 – Natural convection 2D: velocity streamlines at time t = 20s for Ra=106, 107 and 108.

Figure 1.11 depicts the temperature isotherms at time t = 20s for the different
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Rayleigh numbers. We can identify how the temperature responds to expectations.
Indeed, the fluid initially at rest inside the cavity gets in contact with the hot boundary;
it gets warmer and its density decreases. Consequently the heated fluid rises. On the
other hand, near the cold boundary, the fluid gets colder, its density increases and
consequently falls. This process is at the origin of the motion inside the cavity.

Figure 1.11 – Natural convection 2D: temperature isotherms at time t = 20s for Ra=106, 107 and 108.

Quantitatively, we are interested in evaluating the accuracy of the implemented
stabilized finite element methods by comparing the Nusselt number to existing bench-
mark values present in the literature [Paillère 05]. We recall that the Nusselt number
measures the ratio of the convective to conductive heat transfer across the solid inter-
face. In this example the interface is considered at the vertical walls of the domain and
the Nusselt number is calculated by:

Nu =
1

Th − Tc

∣∣∣∣∂T
∂x

∣∣∣∣ and Nu =
1
L

∫ L

0
Nu(x, y) dy (1.109)

We present in table 1.2 statistics on the Nusselt number obtained in the present work
and in the literature [Paillère 05] for Ra = 106. We can clearly identify a good agree-
ment with the references. In addition, we approach better the benchmark values as
we increase the number of degrees of freedom in the mesh. The small discrepancies
in the results with respect to the references can be attributed to the difference in the
discretization schemes. It is important to mention that in the references, quadratic fi-
nite element method and semi-implicit time discretization have been applied whereas
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our results were obtained using a linear finite element method and an implicit time
discretization on unstructured meshes.

Vierendeels Dabbene Beccantini Kloczko Heuveline Present work Present work
Nu(0, y) 8.85978 8.86380 8.85990 8.86200 8.859778 8.73698 8.79891

Nu(1, y) 8.85978 8.86200 8.86007 8.86380 8.85978 8.73056 8.81761

Nu(0, 0.5) 7.81938 7.82170 7.81978 7.82010 N.A. 7.65966 7.7664

Nu(1, 0.5) 8.79636 8.81710 8.79646 8.79750 N.A. 8.61058 8.76575

max Nu(0, y) 19.59642 19.62600 19.59538 19.61070 19.59633 19.19471 19.4634

min Nu(0, y) 1.07345 1.07690 1.07356 1.07380 1.07345 1.05583 1.06888

max Nu(1, y) 16.36225 16.35200 16.36333 16.37510 16.36226 15.9499 16.2189

min Nu(1, y) 0.85512 0.86102 0.85542 0.85620 0.85513 0.86811 0.85007

Mesh density 4.2× 106
102400 87616 57600 200000 50000 175000

Table 1.2 – Natural convection: statistics on the Nusselt number for Ra = 106 for mesh densities
50, 000 and 175, 000. Reference values are taken from [Paillère 05].

1.6.3 Heat treatment of workpieces inside an industrial furnace

Now that we have validated the numerical solvers, we intend in this section to simu-
late 12 hours of heating inside an industrial furnace provided by our industrial partner
Industeel Arcelor Mittal. The furnace is modelled as a hexagonal section duct of 2.7
x 8.1 x 5.3 m forming one heat transfer zone. The hot gas is pumped into the fur-
nace through a cylindrical burner, with diameter 660mm located on the vertical wall
at a speed of 38m/s and a temperature of 1350◦C. We can clearly identify the burner
positioning in figure 1.13 and how the workpieces are inserted into the load from the
opened top hatch. For more details about the geometry, we present in figure 1.14 differ-
ent angle views. All computations were conducted by initially considering a gas at rest
and having a constant temperature of 700◦C. At all other boundaries, a constant flux
of 400W/m2 is applied for the sake of simplicity. The air is vented out of the furnace
through two outlets, with diameters 700mm, positioned at the bottom of the vertical
wall. We use an adaptive time-step that starts at 0.001s and increases as the solution
stabilizes. The volumetric mesh used in the numerical simulation consists of 157, 347
nodes and 884, 941 tetrahedral elements.

Figure 1.12 – Computational domain after anisotropic mesh adaptation.
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Figure 1.12 shows six ingots taken initially at 400◦C and positioned at different
locations inside the furnace. We can identify (from figures 1.12 and 1.13) two types
of ingots; the thick ones are placed on the left wall (1, 2 and 3) and the thin ones are
placed on the right wall (4, 5 and 6).

Figure 1.13 – A top view of the furnace (left) and the immersion of an ingot (right)

Figure 1.14 – Different angle views of the furnace.

Once the mesh has been well adapted along the ingots’ interfaces, we define the dis-
tribution of the thermo-physical properties between the physical domains by means of
the level set function. Consequently, the same set of conjugate heat transfer equations
with turbulence modelling given by system (1.91) (including the momentum equa-
tion, energy equation, the turbulent kinetic and dissipation energy equations, and the
radiative transport equation) are simultaneously solved over the entire domain. We
highlight the key feature of the immersed volume method allowing a resolution on a
single mesh for the whole domain including both fluid and solid regions with variable
material properties (see table 1.3). Details are given in chapter 5.

Recall that the use of a high value for the relative kinematic viscosity in the solid
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Figure 1.15 – Isotherms inside the furnace at two different simulation times.

region makes the velocity components negligible and satisfies the no-slip condition
at the refined interfaces. Therefore, as it is the case for the energy equation, all the
convective terms as well as the source (i.e. destruction) terms in the two-equations of
the k− ε model drop out.

Consequently, the turbulent quantities are computed naturally at the interface. This
idea was also emphasized by the authors of [Kuzmin 07]. They showed that by allow-
ing k to be "naturally" computed at the boundary, a better prediction of the turbulent
quantities in the near wall regions and correct solution’s behavior were obtained.

Properties Gaz Steel 40CDVL3

density ρ [kg/m3] 1.25 7,800

heat capacity Cp [J/(kg K)] 1000 600

viscosity µ [kg/(m s)] 1.9e-5 –

conductivity λ [W/(m K)] 0.0262 37

emissivity ε – 0.87

Table 1.3 – Material properties.

In the numerical simulation, the heat capacity Cp, the conductivity λ and the emis-
sivity ε of the smoke and the steel are thermo-dependent. The emissivity of the smoke
was computed from the proportions of the H2O and CO2 issued from the combus-
tion, the thickness of the smoke and the temperature as in the model studied in
[Heiligenstaedt 71].

All the given parameters used for the numerical simulations do not reflect the true
measurements from the experimental tests, due to the complexity of the wall proper-
ties, the gas composition and other technical issues. However, we made sure that the
chosen parameters have at least the real physical representations and are appropriate
to simulate and give predictions on the real problem.

The 3D computations have been obtained in two steps using 16 and 40 2.4Ghz
Opteron cores in parallel (linked by an Infiniband network) respectively. The first one
involves an iterative process of mesh adaptation around the fixed solids. This step
is a preparation phase and its cost is separated and relatively small compared to the
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Figure 1.16 – Velocity field and streamlines distribution inside the furnace and around the ingots.

full numerical simulation. The process consists in repetitively adapting and refining
the mesh in the zone around the solid/fluid interface until a well respected shape in
terms of curvature, and angles is obtained. The construction took around 3 hours of
computational time to render a high resolution and a good geometry capture around
the fixed ingots. Once the mesh is ready, it can be used in the next step to model
the heat transfer and the turbulent flows inside the furnace. This second step has cost
around 9 days of computational time. The slow aspect of the simulation highlights
the need to devise algorithms that will accelerate the calculations while maintaining a
good level of accuracy. This is exactly the objective of this thesis. It intends to develop
unsteady anisotropic mesh adaptation and adaptive time stepping capable to handle
this kind of full heating sequences within reasonable time.

Figure 1.15 shows the temperature distribution on four mutual planes in the furnace
at two different times (t= 5.5h and 6h).

The temperature distribution clearly reflects the expected flow pattern. At the in-
gots’ level, we observe that the injected air from the top burner is slowed down and
slightly influences the main air circulation in this part of the domain. This behavior
explains the difference in the flow pattern between the top and bottom parts of the
furnace. When the hot fluid spreads inside the volume of the furnace, it induces a
turbulent and swirling motion within the geometry. The fast expansion of the velocity
streams from the burner throat yields sharp gradients and emergence of small eddies
in the zones of stationary fluid inside the furnace. This phenomenon can be interpreted
as a toroidal forced convection.

The air flow pattern around the workpieces is quite complex and interesting; i.e.
it allows the study of the influence of different configurations and ingots’ positions
to optimize the heat treatment. A number of air recirculation between the objects
and their surrounding can be observed due to the turbulence dissipation and mixing
between the hot and cold air. All these observations are highlighted by the streamlines
in figures 1.16 and the velocity components in figures 1.17 and 1.18.
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Moreover, we can clearly see on these vertical plane cross sections along the ingots
that the solid region respects the zero velocity and, hence, the no-slip condition on
the extremely refined interface is also verified. The obstacles (6 ingots) slow down
the air circulation in the lower zone of the furnace and slightly influence the main air
circulation along the walls.

Figure 1.17 – Velocity vectors on different horizontal cut-planes inside the furnace.

To get a clear idea on the time history of the temperature, we plot in figures 1.19 and
1.20 the evolution captured at the center and at the surface of the ingots respectively.
As expected, we notice that the thin ingots (4, 5 and 6) are in general heated faster than
the thick ones (1, 2 and 3). At the same time, the temperature of the ingots positioned
in the center and facing the flame jet continuously, increases faster than the others. This
is due to the fact that the flames hit the walls and deviate towards the center yielding
a slight counter clockwise rotating flow. Near the center of the furnace and under
the flame jet, a full rotating gas flow is always present, and it ends near the impeller
bottom-surface and exits through the two outlets.

One can also observe in figure 1.19 the presence of a certain austenitizing phase
change in the material properties around 800◦C. All the temperature results converge
to the desired value of 1150◦C. The favorable and reasonable nature of these results
validate the good potential of the developed formulations. However, comparisons with
experimental data having real workpiece geometries and positioning will be investi-
gated when the proper setup of the problem is determined (combustion effects at the
burner’s level, gaz composition, material properties of the furnace walls, exact orienta-
tion of the burner, and several other factors that might affect the solution).

We point out that the temperature profiles are not polluted with spurious oscilla-



1.7. Conclusion 67

Figure 1.18 – Velocity vectors on different vertical cut-planes inside the furnace.

tions (undershoots or overshoots) that are frequently observed in the presence of high
temperature gradients at the interface or in convection dominated problems. This can
be attributed to the stabilized finite element discretization applied on the system of
equations (1.91). Summing up, the combination of local mesh adaptation and stabi-
lized iterative solvers with the smoothed distribution of the thermo-physical properties
across the interface enables the simulation to overcome the numerical instabilities and
lead to good numerical behavior.

Morever, the numerical results validate that the proposed coupled approach (IVM)
is suitable for parallel numerical simulations of conjugate heat transfer with different
loads. These calculations allow the prediction of parametric properties and problem
configurations as well as the understanding of the flow characteristics for heat treat-
ment furnaces.

1.7 Conclusion

In this chapter, we have evoked different approaches for the numerical resolution of
fluid flows and conjugate heat transfer problems. We adopted a finite element dis-
cretization of the computational domain for its accuracy and efficiency in solving 3D
problems with complex geometries. However the standard Galerkin formulation fails
to produce an oscillation free solution in convection or diffusion dominated problems
especially in the vicinity of sharp gradients. Different stabilization techniques were
discussed and analyzed to enhance the stability and accuracy of the standard Galerkin
formulation. The Streamline Upwind Petrov-Galerkin (SUPG) method was first intro-
duced to deal with convection dominated convection-diffusion-reaction problems. This



68 Chapter 1. Unsteady computational fluid dynamics

Figure 1.19 – Temperature profile evolution over time captured at the center of the immersed ingots.

Figure 1.20 – Temperature profile evolution over time captured at the surface of the immersed ingots.

method eliminates the instabilities in the solution by adding artificial diffusion terms in
the convection direction. Nevertheless, the SUPG scheme, which is neither monotone
nor monotonicity preserving, does not undertake thermal shocks. For that reason, an
extension to treat over/undershoots in the case of thermal shocks, known as the Shock
Capturing Petrov-Galerkin (SCPG) approach, was emphasized. It provides additional
stability and control in the crosswind direction. On the other hand, we have proposed
to use the enriched method with time interpolation (EM-I) for its good performance in
simulating conduction heat transfer problems.

We moved on next to study fluid flow problems. The variational multiscale sta-
bilization method was employed to solve the transient incompressible Navier-Stokes
equations. This method demonstrated to be a powerful tool for treating convection
dominated flows and circumventing the inf-sup stability condition. In the case of high
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Reynolds number flows, turbulence models were proposed in the aim of modelling
the turbulent effect of small scale velocity fluctuations without solving them. These
methods, by calming down the chaotic behavior of the velocity field and by avoiding
the full scale resolution permit an acceleration of the computations while providing a
good representation of the averaged flow profile.

Then, we presented a fully coupled system of fluid flows and heat transfer. The
effects of radiation were accounted for by solving the P-1 radiation model. In the
presence of solid and fluid subdomains, the thermal coupling was enhanced by using
an immersed volume method (IVM). This approach will be discussed further in chapter
5. The advantage of this method resides in its simplicity and efficiency in distributing
the thermo-physical properties of different materials. No heat transfer coefficient is
needed and a single mesh is used for the different sub-domains.

Finally, the accuracy of the methods was studied on two and three dimensional
problems. The results obtained with the proposed stabilization tools were in very
good agreement with the ones found in the literature. The models also proved their
capability in simulating complex three dimensional heat transfer and turbulent flow
problems in the presence of conductive solids.

However, preserving a good level of accuracy necessitates a very fine mesh and
small time-steps hence yields a considerable computational time and requires an im-
portant computer power. This drawback makes the resolution of complex 3D real
simulations and industrial applications quasi-impossible. The objective of this thesis is
to overcome these difficulties and improve the computations while maintaining accu-
rate solutions. The work consists in devising space and time adaptive algorithms well
suited for the simulation of real phenomena.

1.8 Résumé français

Dans ce chapitre, nous avons évoqué différentes approches numériques pour la résolu-
tion des problèmes d’écoulements de fluides et de transferts thermiques. Nous avons
adopté une discrétisation du domaine de calcul par éléments finis pour sa précision
et son efficacité dans la résolution de problèmes 3D avec des géométries complexes.
Cependant, la formulation Galerkin standard présente des oscillations numériques
dans le cas de problèmes à convection ou diffusion dominantes en particulier dans
les voisinages de forts gradients. Différentes techniques de stabilisation ont été dis-
cutées et analysées pour améliorer la stabilité et la précision de la formulation Galerkin
standard. Une approche Streamline Upwind Petrov Galerkin a été introduite pour
traiter les problèmes à convection dominante. Cette approche sera discutée plus en dé-
tail dans le chapitre 5. Enfin, la précision des méthodes adoptées a été étudiée sur des
problèmes à deux et trois dimensions. Les résultats obtenus avec les outils de stabilisa-
tion étaient en très bon accord avec la littérature et ont démontré leur applicabilité dans
le cadre de problèmes de traitement thermiques en présence de métaux conductibles.
Cependant, maintenir un bon niveau de précision nécessite un maillage très fin et de
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petits pas de temps et induit alors un coût de calcul important. Cet inconvénient rend
la résolution des applications 3D réelles et industrielles quasi-impossible. L’objectif de
cette thèse est de surmonter ces difficultés et d’améliorer les coûts de calculs tout en
gardant une bonne précision des résultats. L’idée consiste à développer des méthodes
d’adaptation espace et temps et sera élaborée dans les chapitres suivants. Ensuite, on a
décrit la méthode “Variational MultiScale” (VMS) pour la stabilisation et la résolution
des problèmes d’écoulement de fluide. Cette méthode a démontré être un outil puis-
sant pour contourner la condition inf-sup de stabilité. Des modèles de turbulence ont
été proposés pour traiter les cas de flux à haut nombre de Reynolds. La résolution des
problèmes couplés des écoulements de fluide et de transfert thermique a été élaborée
par la suite et un modèle P1 de rayonnement a été introduit pour modéliser les effets
de rayonnement. La méthode Immersed Volume Method (IVM) était adoptée pour
prendre en compte les interactions fluide/structure et la distribution des propriétés
thermo-mécaniques. Cette méthode élimine les instabilités dans la solution en ajoutant
des termes de stabilisation dans la direction de convection dominante. Néanmoins,
l’approche SUPG ne traite pas les chocs thermiques dans les cas de réchauffement ou
de refroidissement de pièces métalliques. Pour cette raison, une extension Shock Cap-
turing Petrov-Galerkin a été introduite, la méthode implique un contrôle des chocs
thermiques dus à la diffusion transitoire. D’autre part, nous avons proposé d’utiliser
la méthode “Enriched Method with Time interpolation” (EM-I) dans le cadre de la
simulation de problèmes de transfert de chaleur par conduction.
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In this chapter, we are interested in devising a new approach for dynamic mesh adap-
tation, the method relies on an edge-based error estimation and intends to construct

a metric tensor that would prescribe the mesh sizes and the orientation of the elements.
The mesh adaptation problem is formulated as an optimization approach whereby one
seeks the optimal metric that yields the best control on the solution’s interpolation er-
ror. The method that we derive is independent from the problem at hand, does not
require an a priori knowledge about the solution’s behavior over time and takes into
account a prescribed fixed number of nodes which is an essential feature for practical
and efficient computations.
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2.1 Introduction

Nowadays, with the increase in computational power, numerical modeling has become
an intrinsic tool for predicting physical phenomena and developing engineering de-
signs. Over the last few decades, the development of computational fluid dynamics
simulations and thermal analysis have considerably attracted researchers especially
with the continuous needs for explanations of the naturally occurring physical flow
phenomena, including pipe flow, aerospace flow, climate predictions, respiratory sys-
tem and blood circulation, convective heat transfer inside combustion chambers and
industrial furnaces, and many other applications. The modeling of these phenomena
poses scientific complexities whose resolution requires considerable computational re-
sources and long lasting calculations. The development of mesh adaptation techniques
was motivated by the desire to devise realistic configurations and to limit the shortcom-
ings of the traditional non-adaptive resolutions in terms of lack of solution’s accuracy
and computational efficiency.

Indeed, the resolution of unsteady problems with multi-scale features on a pre-
scribed uniform mesh with a limited number of degrees of freedom often fails to
capture the fine scale physical features, have excessive computational cost and might
produce incorrect results. These difficulties brought forth investigations towards gen-
erating meshes with local refinements where higher resolution was needed. Mesh
adaptation can thus be regarded as an essential ingredient in this recipe. We intend in
this chapter to derive a new approach for dynamic mesh adaptation based on an error
estimator computed on the edges of the mesh.

The chapter is structured as follows: we start, in section 2, with an overview about
mesh generation techniques, then we focus on the ‘topological optimization’ method
that we adopt throughout this thesis. In section 3, we outline the different techniques
of mesh adaptation and state the one that we use in this work. Section 4 presents some
preliminary definitions and exploits the theoretical framework of the metric construc-
tion at the mesh nodes. The edge-based error estimation, the derivation of the metric
tensor and the theoretical validation on the control of the Lp norm of the interpola-
tion error will be detailed in section 5. The link between the constructed metric and
the generation of the mesh is pointed out in section 6. Then in section 7, we provide
the interpolation method used in the numerical simulations. We present in section 8

some numerical examples validating the convergence of the developed approach, its
accuracy and efficiency.

2.2 Mesh generation

Finite element methods are considered as powerful techniques for computing approxi-
mate solutions of partial differential equations. These methods replace the continuous
problem with a discrete one and approximate the solution on the nodes of the discrete
domain. Mesh generation is a keystone step for the numerical resolution of physical
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problems by the finite element method; hence hindering the efficiency of the latter if
generated manually as it can be time consuming and error prone. The construction
becomes more challenging when simulating industrial problems with arbitrary and
complex geometries and internal or curved boundaries. To deal with these difficulties,
a number of algorithms were developed to automate the mesh generation process by
dividing the physical domain into small pieces called elements. We are interested in
using unstructured simplex meshes made up of triangular and tetrahedral elements
that are easier to generate than quadrilateral and hexahedral ones and better at captur-
ing complicated geometries. Note that the resolution of the mesh strongly affects the
accuracy of the numerical solution. We aim in the first part of this chapter at providing
a state of the art on the existing finite element mesh generation techniques and specify
the advantages of the method that we use to discretize our domains. We move on next
to depict the different adaptation methods. The third part details the newly developed
mesh optimization technique that would generate anisotropic elements which respond
to the anisotropy of the physical problems.

In this section we are interested in answering the following problematic: given the
mesh of the boundary of a domain Ω, how do we generate a mesh of Ω? The history
of mesh generation techniques goes back to the period around 1990 that brought forth
the most popular classical mesh generation techniques used nowadays: the advancing
front methods, the octree methods, the Delaunay methods and the mesh local opti-
mization methods. We will briefly explain the first three techniques; for more details,
the reader is referred to [Frey 01], and [George 99]. We then introduce the MTC topo-
logical mesh generator, a local optimization algorithm, that is developed at CEMEF by
Coupez [Coupez 91] and Gruau [Gruau 05] and show its advantages over the classical
methods.

2.2.1 The three classical mesh generation algorithms

• Advancing front methods: The advancing front methods were introduced in [Lo 85].
Starting from the boundary, elements are constructed one by one forming a front,
a border, between the meshed and the unmeshed parts of the domain. New points
are created and connected to the existing elements hence forming new elements
and moving the front forward. Note that the points are created in such a way that
the new elements do not intersect with already existing ones. The process repeats
iteratively advancing the front until the whole domain is meshed and the front
vanishes. These methods produce high quality elements at the domain boundary,
but the quality might deteriorate as the front advances causing convergence prob-
lems. Thus some nodes need to be removed and the process should be restarted.
Ensuring the elements’ good quality and hence the convergence of the method is
a difficult task especially for a complicated three dimensional geometries.

• Delaunay method: First introduced by Delaunay [Delaunay 34], the Delaunay tri-
angulation satisfies the Delaunay property. The latter states that in the two di-



2.2. Mesh generation 75

mensional case the circumscribed disk of a triangle should not enclose any vertex.
In the three dimensional case, no vertex is enclosed by the circumscribing sphere
of a tetrahedron. The first step in generating a Delaunay triangulation consists
in generating a non-overlapping Voronoi tessellation from the set of nodes on
the discrete domain boundary. The second step corresponds to joining all the
nodes belonging to two adjacent Voronoi cells. This triangulation is unique and
the elements recover the convex hull of the set of nodes belonging to the bound-
ary. For more details the reader is referred to [Frey 01, George 99, Delaunay 34].
Delaunay meshing algorithm starts with a Delaunay triangulation of the domain
using only the nodes of its boundary mesh. This mesh is then refined by inserting
new nodes inside the domain. The elements whose circumscribed disk contains
these nodes will be removed and new elements are generated with the surfaces
of the removed elements while respecting the Delaunay property hence updating
the mesh topology. Note that the new nodes are placed far from existing ones
so as to prevent the creation of short edges. Finally the elements that lie outside
the domain are removed. The main drawback of the Delaunay method is that
the Delaunay property is not a mesh quality criterion. The algorithm can create
degenerate elements with very bad qualities especially near the boundaries of the
domain. Therefore an optimization step is generally employed to improve the
elements’ quality.

• Quadtree/octree methods: Introduced in 1983, the grid meshers [Yerry 83] cover a
domain with a background Cartesian mesh (a rectangular one in 2D and a box
in 3D). The method consists first in recursively refining the cells that contain
several boundary nodes until each element contains at most one node. The re-
finement is done by adding points to the intersection of two adjacent cells and to
the intersection of the boundary with a cell. Then cells that lie outside the do-
main are removed and the other ones are triangulated. Again the triangular cells
outside the domain boundary are removed, thus obtaining the domain triangula-
tion. Although these mesh generators are robust, fast, and easy to implement and
parallelize, the generated elements tend to be aligned in a certain direction influ-
encing the solvers’ solutions and posing the difficulty of constructing anisotropic
meshes. Another disadvantage of these methods is their tendency to create poor
quality elements near the boundary.

2.2.2 The topological optimization mesh generation algorithm

The three above mentioned classical meshing techniques require an additional step
of optimization in order to improve the quality of the generated elements. The MTC
mesher that we use in our laboratory, was first developed by T. Coupez in [Coupez 91]
then extended to generate anisotropic meshes in [Coupez 00]. Starting from an ini-
tial random meshing of the domain, the MTC mesher proceeds by iterative local
optimization of the mesh topology based on the minimal volume criterion and the
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mesh geometric quality. In this work we retrace the steps of the method devel-
opment. For more information the reader is referred to the following publications
[Coupez 91, Coupez 96, Coupez 00, Gruau 05, Boussetta 06].

Rather than building up a mesh that satisfies optimal criteria, the proposed method
is based on the improvement of an existing mesh. A surface and volume meshing are
coupled through the use of a virtual boundary elements layer.

Before we proceed into the outline of the method let us present some useful defini-
tions and notations.

Definition 2. A d-simplex is the convex hull of its d + 1 vertices. For instance a triangle is
a 2-simplex and a tetrahedron is a 3-simplex.

Definition 3. Consider a domain Ω ⊂ Rd. Denote by N a finite set of nodes in Ω and T a
set of d-simplexes generated from the N nodes. Let F (T ) be the set of T ’s elements’ faces. We
say that T is a mesh topology of Ω if and only if:

(i) ∀F ∈ F (T ), 1 ≤ card {T ∈ T s.t. F ∈ ∂T} ≤ 2 .

(ii) The couple (N , ∂T ) is a mesh of the boundary ∂Ω.

In other words, each F ∈ F (T ) is shared by at most two elements of T , with one of these
elements having a face on the boundary of Ω.

A local mesh modification of a mesh topology is a cut/paste operation whereby
a subset of elements TA is replaced by another subset TB. In such an operation TB

represents a mesh topology having the same boundary as TA.
The topological meshing algorithm consists in considering a patch at a time with a
patch being the set of elements sharing a node or an edge.The generation of new mesh
topologies preserving the boundary of the domain is done using the “starring” oper-
ator. This operator involves connecting one node S to the boundary faces that do not
contain it.

Denote by N (TA) and F (TA) respectively the set of nodes and the set of faces
present in the mesh topology TA and by B(TA) the centroid of the nodes on ∂TA. Let
S ∈ N (TA) ∪ B(TA) be a node, the “starring” operator applied to the node S in the
mesh topology TA generates the following mesh topology:

T ∗(S, ∂TA) = {T s.t T = {{S} ∪ F} , F ∈ ∂TA , F ∈ F (TA) and S /∈ F} .

In other words, the new topology is made up of the triangles formed by joining a node
S to the boundary faces that do not contain it.

Note that, as mentioned earlier, the cut/paste operation should be performed on
mesh topologies. Therefore we need to make sure that the patch created with the
“starring” operator is indeed a mesh topology. For that purpose, we introduce the
adherence of A:

A = {T ∈ T , T ⊂ TA} .
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Finally the cut/paste operation is given by:

Q(T ) = T −TA + TB︸︷︷︸
T ∗(S,∂TA)

.

The boundary patches are given special treatment, as sketched in figure 2.1. In order
to remove a node S from the boundary, first, a layer of virtual elements is constructed
by inserting a virtual node 0, the duplicate of S, and connecting the nodes of boundary
elements to it leading to the creation of new virtual d− simplexes, represented by the
dashed lines in figure 2.1. Hence the nodes and faces on the boundary can be moved or
deleted and new nodes can also be added. The mesh optimization algorithm consists

Figure 2.1 – Virtual elements connected to a virtual node outside the domain.

of iterative local mesh improvements:

T k+1 = Q(T k) .

The process repeats until no significant improvement is detected.
Now that we have presented the concept of the local mesh optimization process two

questions remain to be answered: the first one is how do we choose the nodes S and
the second is how do we define mesh topology improvement.

2.2.2.1 Selection criteria for optimal local mesh topology

There are two selection criteria for generating the optimal local mesh topology: the
minimum volume principle and the geometric quality criterion. While the former en-
sures the conformity of the elements in the mesh, the latter handles the optimization
of their shapes.

• The minimum volume principle: We consider a mesh topology TA ⊂ T . Ac-
cording to the minimum volume principle, the optimal mesh topology generated
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by the “starring” operator and improving the quality of TA is given by:

TB = arg min
T

∑
T∈T

|T| , where T = {T ∗(S, ∂TA) , s.t S ∈ N (TA)∪ B(TA)} ,

where |T| denotes the volume of the element T. The minimization is done over
the set of all possible mesh topologies generated by the “starring” operator for
all the nodes in TA. Note that for the patches on the boundary, the volume of the
virtual elements is not counted in the total volume of the mesh topology. This
selection criterion guarantees that the candidate mesh topology is conformal with
no overlapping between the elements. However a mesh topology satisfying the
minimum volume principle might not be unique. Thus choosing the best among
these mesh topologies requires another selection criterion.

• The geometrical quality criterion: We evaluate the quality of each element in the
candidate mesh topologies by:

Q(T) =
|T|
hd

T
,

where d is the space dimension and hT represents the mean of the edge lengths.
Then the worst elements in the candidate mesh topologies are compared. The
geometrical quality principle selects the mesh topology having the best quality
among these elements, therefore handling the optimization of elements’ shapes.

2.2.2.2 Mesh generation algorithm: local topology optimization

Now that we have well defined the mesh local optimization procedure we can explain
how to generate a mesh of a domain given its boundary mesh.

The first step consists in generating a first mesh topology T = T ∗(S0, ∂T ) of Ω,
where S0 is a node on the boundary ∂Ω. This is done by joining, with a “starring”
operator, one node to all the faces that do not contain it. Obviously the result of
this step is not yet a mesh but it is a starting mesh topology. Recursive local mesh
improvements are then applied to optimize the mesh topology according to algorithm
1.

We note that, during the local optimization process, new nodes can be added to the
list of nodes and previous nodes can be removed from it. Figure 2.2 shows an example
of such a process.

We consider a mesh topology TA around the node S with boundary

∂TA = {S1} ∪ {S2} ∪ {S3} ∪ {S4} ∪ {S5} .

Using the “starring” operator, several candidate configurations for improving the topol-
ogy can be generated:

• mesh topology around S (eliminating node S6).
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Algorithm 1: Local optimization of a mesh topology algorithm
Input: (N , ∂T ) a mesh topology of Ω.
Output: (Nopt, ∂Topt) the optimal mesh topology.
begin

while ∑
T∈T
|T| ≥ |Ω| i.e. the volume of the mesh topology is not optimal, do

for each node and edge in T do
Remove the local mesh topology TA associated with the node/edge.;
Replace it with a new local mesh topology TB = T ∗(SA, ∂TA) that
minimizes the volume ∑

T∈TB

|T| and maximizes the elements’ qualities

QT = |T|
hd

T
, with SA being a node in TA and hT being the average length

of element T’s edges.
Update T =

⋃
B

TB.

Figure 2.2 – Example on the local optimization process by the ‘starring’ operator, adopted from
[Coupez 00].
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• mesh topology around any of the nodes S1, S2, S3, S4 or S5 (eliminating the nodes
S and S6).

• mesh topology around the centroid C (eliminating the nodes S and S6).

2.2.2.3 Mesh generation responding to a mesh size map

Once a first mesh of Ω is generated, we move on to address another problematic: how
does the topological mesher respond to a given mesh size map during the process of meshing or
remeshing?

We consider a mesh size map defined on the nodes of the mesh. The mesh size on
an element is then deduced by averaging the imposed mesh sizes at the nodes sharing
this element.

The mesh optimization process involves the comparison and minimization between
the imposed and the actual mesh sizes, himp

T and hact
T respectively. For that purpose the

geometric quality factor is changed to:

QT(hact
T , himp

T ) = QT(hact
T )

min(|T|, |Thimp
T
|)

max(|T|, |Thimp
T
|) ,

with |Thimp
T
| being the volume of the element having himp

T edge lengths. No modification
is applied to the actual mesh generation algorithm; the only difference is the use of this
quality factor instead of the previously presented one.

2.2.2.4 Advantages/disadvantages of the local mesh optimization algorithm compared to the
other mesh generation techniques

Although the local mesh optimization algorithm is more expensive than the other tech-
niques as it involves a recursive looping over mesh topologies, it is easy to implement
and parallelize, works in 4D and can easily be used for mesh adaptation throughout
computations. The topological operations are robust and less susceptible to rounding
errors than the other mentioned methods. It provides a good treatment of the boundary
elements using the virtual elements technique.

2.3 AMR: Adaptive Mesh Refinement

The concept of mesh adaptation roots back to the 1970s [Allgower 78] with the de-
sire to advance in numerical simulations and establish good qualitative results. Since
then intensive effort was employed to develop adaptive mesh refinements that would
enable on one hand accurate numerical solutions and on the other hand faster com-
putations [Lo 90, Craig 87, Adjerid 86, Berger 84]. Error estimators were proposed
as indicators for mesh refinement with respect to a global or a local degree of accu-
racy. In that regard, successful isotropic mesh adaptation methods were developed
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[Arney 90, Berger 84, Bieterman 86, Chew 89]. An isotropically adapted mesh is gener-
ated by constructing regular equilateral elements while varying the mesh size between
regions of the domain according to error estimates. However this method tends to con-
centrate too many elements at the locations of high solution gradient especially when
the solution exhibits anisotropic features i.e. its variations in one direction are more
significant than in the other directions. To overcome this computational limitation for
applications with directional features such as shock waves, shear and boundary lay-
ers in fluid dynamics, researchers developed an adaptation technique, the anisotropic
mesh adaptation, that is capable of providing a full control on the element size, shape
and orientation. The latter method employs elements with high aspect ratios, hence
allowing a better representation of solution variations.

Anisotropic mesh adaptation was first proposed in the late 1980s [Peraire 87,
Selmin 92, Löhner 89, Zienkiewicz 94] with the moving front technique in the vision
of generating elements with directional features. Despite the success of this method,
its first application to 3D problems showed limited stretching capabilities. Over the
same period, the author in [Mavriplis 90] proposed a heuristic approach for building
Delaunay triangulations that generates high aspect ratio elements. He suggested mod-
ifying the definition of the distance on the planes of the mesh elements’ circumscribed
disk/sphere.

The approach of generating highly stretched elements in a locally mapped space
using metric tensors was first introduced for viscous flows and applied on Delaunay
meshes [Mavriplis 90, George 91, Castro-Díaz 97]. The challenges posed by such a
method involve defining the sizes and directions of stretching without generating ob-
tuse elements. To avoid such elements, the minimum-maximum principle was sug-
gested [Barth 92, Marcum 95]. However one drawback of this approach is due to the
high sensitivity of the connectivity to the vertices’ distributions. A proposed alternative
solution to the above difficulties was to perform local re-meshing.

Significant research effort has been devoted in the last few years to devise pow-
erful anisotropic mesh adaptation techniques with real applications. We distin-
guish four major error estimates for anisotropic adaptation: the hessian based rely-
ing on the solution’s hessian information to evaluate the linear interpolation error
[Tam 00, Pain 01, Bottasso 04, Gruau 05, Frey 05, Boussetta 06], the a posteriori esti-
mates approximating the discretization error using a theoretical analysis [Kunert 00,
Formaggia 03, Picasso 03, Formaggia 04, Micheletti 06, Picasso 06, Hecht 14], the a
priori error estimates [Formaggia 01, Huang 05] and the goal oriented estimates
that provide mathematical framework for assessing the quality of some functionals
[Venditti 03, Micheletti 08a, Alauzet 10b, Peter 12, Yano 12]. All these methods have
been well consolidated leading to a standardization of the adaptation process. First,
an error analysis enables the localization of the solution’s high gradient. This step is
followed by the construction of a directional metric tensor that is provided to the mesh
generator. In turn, the latter produces an appropriate mesh that is optimized to match
the provided metric tensor.
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Anisotropic mesh adaptation has proved to be a powerful asset for improving the
efficiency of finite element/volume methods. It presents advantages over the isotropic
refinement techniques by reducing storage requirements and computational times. It
enables the capture of scale heterogeneities that can appear in numerous physical prob-
lems including those having boundary layers, shock waves, edge singularities and mov-
ing interfaces.

In this work, we intend to develop a metric based mesh adaptation that is capable
of well capturing the anisotropy of a physical phenomenon.

2.3.1 Techniques of mesh adaptation

There are three main methods for mesh adaptation:

• The h-adaptation method: involves local mesh modifications such as edge flip-
ping, local mesh refinement in the locations of high solution’s gradient and local
mesh coarsening where the solution exhibits slow variations. The method tends
to equi-distribute the numerical error over the discretized domain. It provides
the mesh generator with a mesh size map that is produced based on an error
estimation on the current mesh. In this work, we will be using this technique to
adapt the mesh.

• The r-adaptation method: relocates the nodes of a mesh without affecting its
topology nor the connectivity and the number of its nodes. The nodes are moved
to regions where the solution undergoes rapid changes. This method is well
suited for problems with moving boundaries. However it is very expensive and
has a slow convergence rate.

• The p-adaptation method: involves the enrichment of local elements’ degrees of
interpolation while conserving the topology of the mesh. The main drawback of
this method resides in the difficulty of employing it with already existing solvers
especially when it comes to solving incompressible flows. In fact, when solving
incompressible problems with a mixed formulation, the elements used must ver-
ify the Brezzi-Babuska compatibility condition. Furthermore it is hard to determine
mixed and compatible elements for each degree of interpolation.

A combination between the h-adaptation and the p-adaptation is sometimes employed.
The method is called the hp-adaptation and aims at getting a higher precision in the
most efficient way. The choice between refinement or local change in the degree of
interpolation is yet not trivial and has been the subject of many research studies.
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2.4 Metric-based anisotropic mesh adaptation

2.4.1 State of the art

As stated earlier, the objective inhere is to build a metric tensor that prescribes opti-
mal mesh sizes and elements’ orientations. The procedure involves evaluating an error
over each edge of the domain using the projection of the reconstructed gradient of the
solution on this edge. The developed algorithm strives to improve the quality of the
aforementioned error estimates by attempting to reduce and equi-distribute the error
over the edges of the mesh. The approach is based on reducing the interpolation error
of a chosen scalar or vector or a combination of several fields. Using a symmetric posi-
tive definite tensor called ‘metric’, a mapping from the Euclidean to a Riemannian space
is employed. An error equi-distribution in the latter space permits the computation of
stretching factors and elements’ orientations. Therefore leading to the generation of an
anisotropic and well adapted mesh with high aspect ratio elements in the former space.
The process is repeated until no significant change in the mesh is detected.

Before presenting the derivation of the developed adaptation technique, let us pro-
vide some preliminary definitions and the theoretical framework for the rest of the
chapter.

2.4.2 Preliminary definitions and theoretical framework

This subsection presents the basic definitions that are useful for the development of
our mesh adaptation process. The notions of Riemannian space, metric tensor, and
unit mesh are recalled.

Let Ω ⊂ R be a physical domain discretized using a finite element mesh Ωh =⋃
K∈K K, with K being a d-simplex (segment, triangle, tetrahedron, · · ·). We denote by:

X = {Xi ∈ Rd , i = 1, · · ·, N}

the set of nodes in the mesh.

Definition 4. We call a metricM⊂ Rd a d× d symmetric positive definite matrix.

Proposition 5. A metricM can be diagonalized into:

M = R


λ1 0
·
·

0 λd

Rt

where R is a rotation matrix whose columns are the eigenvectors ofM and (λi)i=1,··· ,d ≥ 0 are
the corresponding eigenvalues.

We define next the metric space framework with the associated notions of edge
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length, element volume, and unit balls. For that purpose, let us recall the definitions of
these notions in the Euclidean canonical space.

In the Euclidean space, lengths of vectors are defined by means of the canonical
Euclidean scalar product (with respect to the identity matrix Id):

(·, ·)Id : RdRd 7→ R+

(u, v) 7→ (u, v)Id = utIdv .

In this space, the distance between two points Xi and X j is determined by:

DId(Xi, X j) =

(−−→
XiX jId

−−→
XiX j

) 1
2

=

(
d

∑
c=1

−−→
XiX j

c

2
) 1

2

and the volume of an element K is |K|Id . We recall also the definition of a unit ball in
the Euclidean space:

Definition 6. A unit ball in the Euclidean space BId is the set of vectors whose lengths are
less than or equal to 1 with respect to Id i.e.

BId =
{

x ∈ Rd , s.t xtIdx ≤ 1
}

The scalar product of 2 vectors can also be defined in other geometrical spaces called
metric spaces whereby the scalar product induced by a symmetric positive definite
matrix is defined by:

(·, ·)M : RdRd 7→ R+

(u, v) 7→ (u, v)M = utMv .

Hence the distance between two points Xi and X j is determined by:

DM(Xi, X j) =

(−−→
XiX jM

−−→
XiX j

) 1
2

,

and the volume of an element K is |K|M =
√

det(M)|K|Id . Therefore the definition of
a unit ball in the metric space follows:

Definition 7. A unit ball in the metric space BM is the set of vectors whose lengths are less
than or equal to 1 with respect toM i.e.

BM =
{

x ∈ Rd , s.t xtMx ≤ 1
}

The unit ball is thus delimited by an ellipsoid with axis the eigenvectors Ri and sizes

h2
i λi = 1 i.e. hi =

1
λi

1
2 along these directions, as shown in figure 2.3. Consequently, a

linear mapping between the unit ball in the Euclidean canonical space and the metric
space can be deduced and is depicted in figure 2.3.
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Figure 2.3 – Unit ball and linear mapping between the metric space and the canonical space in two and
three dimensional spaces.

When the metric is constant for all the nodes in the mesh, the notion of lengths will
be defined in the same way for all the edges of the mesh. We can as well define a metric
per element in the mesh. It is also possible to have for each node Xi a metric that defines
the concepts of scalar product related to that specific node taking into account all the
previously mentioned definitions. We can now define a Riemannian metric space as a
real smooth manifold where we can define metric tensors M so that to each node Xi

in the discrete mesh is associated a metric with its induced inner product (·, ·)MXi :

∀Xi ∈ X , ∃MXi s.t , (·, ·)MXi : RdRd 7→ R+

(
−−→
XiX j,

−−→
XiX j)MXi =

−−→
XiX jMXi

−−→
XiX j

Now that we have introduced the Riemannian metric framework with its associated
definition of lengths, we move on to explain how can metric fields be used for mesh
adaptation.

2.4.3 Metric based mesh adaptation

The keystone idea of anisotropic, metric based, mesh adaptation is to generate a unit
mesh (with unit edge lengths and regular elements) in a prescribed Riemannian space
as stated in [George 91]. Since it is almost impossible to achieve unity for all the edges,
we intend to construct a mesh that is optimal (very close to unity) up to a certain
tolerance.
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As we have mentioned earlier, the main feature of anisotropic mesh adaptation
techniques is their control on the orientation of the elements and their sizes. This is
exactly the information that is brought by metric tensors. The metric map will be pro-
vided to the mesh generator assigning the mesh sizes and the directions along which
the latter are prescribed. Indeed the mesh sizes are determined from the eigenvalues

of the metric hi =
1
λi

1
2 and the directions are their corresponding eigenvectors.

Remark 8. A metric with the same eigenvalues:

M = RΛRt = R


1

h(x)2 0

·
·

0 1
h(x)2

R

is a special case of metric tensors and leads to isotropic mesh adaptation.

During the remeshing process, given a metricM that is defined on the elements of
the mesh, the mesh generator tries to create conformal elements satisfying the prop-
erties prescribed by the metric field. The resulting mesh will be anisotropic and well
adapted in the Euclidean space. Note that all the computations are now performed in
the underlying Riemannian space induced by the metric.

As discussed in the previous section, the process of mesh adaptation goes through
a series of mesh optimization along which elements are removed and being replaced.
Thus the metric field is interpolated from one mesh topology to another one leading to
a slight diffusion of the results. Therefore since the elements are much more volatile
than the mesh nodes, defining fields on a continuous basis eases their reconstruction,
interpolation or extrapolation.

2.4.3.1 Metric construction at the elements’ level

A unit metric field can be associated with any unstructured mesh. Given a non-
degenerate element K, we can define a metric MK such that K is a unit element in
the Riemannian space associated with MK. Indeed, applying an affine transforma-
tion TK from the physical space (Rd, Id) to the unit ball of the Euclidean metric space,
mapping element K to a reference unit element K̂, we can determineM as follows:

K
TK7−→ K̂

X
TK7−→ X̂ + AK(X− X̂) .

This linear mapping would transform each edge in K into a unit edge in K̂ i.e.

1 = |AKXij| = (tAKAKXij, Xij)
1
2 .
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Subsequently, the metric tensor on the element K can be identified as:

MK =t AKAK .

MK is thus a constant tensor that is uniquely defined on the element K. Repeating
the same construction process for all the elements in the mesh, we obtain a piecewise
constant tensor field with element to element discontinuities.

2.4.3.2 Difficulties faced by element-wise metric construction

From a practical standpoint for mesh adaptation, it is easier to store the metric at the
nodes rather than at the elements. Theoretically speaking, a good representation of
the Riemannian space can be obtained by constructing a continuous metric field on
the entire computational domain which enables a continuous measurement of length
variations at each point and direction [Coupez 09]. Nevertheless, in order to obtain a
continuous metric, the discontinuous element tensor field must be transferred to the
mesh nodes. For that purpose, an interpolation stage should be performed on the
underlying Riemannian space. Ambiguities arise regarding the extrapolation of the
information at each element level to any point of the domain.

Indeed when the metric field is defined at the element level of the mesh, one needs
to recover the discontinuities from one element to the other by interpolating the field on
the nodes. Several interpolation schemes were proposed in the literature. Nevertheless
these techniques are usually non-commutative i.e. the resulting metric on the whole
domain highly depends on the order of interpolation when several metrics are involved
[Loseille 09].

2.4.3.3 Overcoming these difficulties

In this thesis, we adopt a different approach for metric construction. It consists in
building the metric field directly at the nodes of the mesh. It is derived from the data
available at the nodes of the mesh without direct resort to element information nor
considering any underlying interpolation. This construction is done using a statistical
concept: the length distribution tensor. Inspired from a standard idea used in com-
putation rheology to account for fiber orientation [Advani 87], we introduced a second
order tensor that reconstructs the values at the nodes by gathering information from
the surrounding edges. Note that the length distribution tensor can be defined for any
space dimension. The proposed metric will be derived from the inverse of this tensor
that is defined on each node of the mesh from the surrounding edges’ contributions.
Another contribution is focused on how to modify the edge length in this framework.

2.4.4 Metric construction at the nodes’ level

As a starting point, we intend to build a natural metric field that is continuous on the
domain. As stated earlier, the construction of a unit mesh with anisotropic features
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consists in generating elements with unit edges in the prescribed Riemannian space.
The same target is adopted for building nodal metrics. Let Γ(i) = {Xij , X j ∈ X} be
the set of edges in the mesh connected to node Xi. The aim is to define a metric on
Xi such that the length of each edge Xij connected to Xi equals one with respect to the
metric field Mi. An averaging process is used to construct a unique tensor at Xi that
gathers all the data defined on the edges sharing this node. Hence, we are seeking a
field Mi defined on Xi such that the lengths of all edges in Γ(i) are one. Consider a
linear transformation changing Xij into a unit length vector:

1 = |AijXij| = (tAijAijXij, Xij)
1
2 , ∀j ∈ Γ(i) (2.1)

TakingMi =t AijAij, we get:

(MiXij, Xij) = 1 , ∀j ∈ Γ(i) (2.2)

Then summing up equation (2.2) over j we get:

∑
j∈Γ(i)

(
MiXij, Xij

)
= ∑

j∈Γ(i)
1 = |Γ(i)| . (2.3)

Moreover, using the Einstein notation for tensor scalar product A : B = AijBij, equation
(2.3) can be equivalently written as:

Mi :

 ∑
j∈Γ(i)

Xij ⊗ Xij

 = |Γ(i)| (2.4)

This problem of finding the unknown natural metricMi solution of (2.3) is in general
over-determined. In practice it is very hard to construct edges of exact unit length.
Hence, this problem can be relaxed into an optimization problem over the space of
squared symmetric tensors Rd×d

sym:

Mi = argmin
Mi∈Rd×d

sym

 ∑
j∈Γ(i)

(
||Xi − X j||2Mi − 1

)2

 , (2.5)

where Mi should be a symmetric positive definite tensor. However solution Mi to
this problem may fail to be positive definite (for example when the neighbors of Xi are
aligned on a hyperbola). To deal with this constraint, we resort to the construction of
orientation tensors inspired from the works done in rheology [Advani 87]. Before we
proceed into the derivation of the metric tensor, let us explore the source of inspiration
for the construction of distribution tensors.
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2.4.4.1 Analogy with rheology

The mechanical properties of composite materials of a polymer, a metal or a ceramic
depend highly on the fiber orientation. The latter is calculated using a mathematical
model based on orientation tensors. The simulation of mold filling flow and the pre-
diction of fiber orientation were of great interest for these applications. Thanks to the
distribution tensor one can predict the composite’s stiffness and anisotropic fiber sus-
pensions due to the flow induced fiber alignment in its direction. The method has its
merits in accurately predicting the properties of fiber orientation state. The only pre-
requisite information is the properties defined on the uniaxial fiber composite which
are provided by the finite element computations. Let pj be a sample of directions. The
second and fourth order distribution tensors on a node Xi read respectively as:

2Xi =

∑
j∈Γ(i)

ωj pj ⊗ pj

∑
j∈Γ(i)

ωj
, (2.6)

and

4Xi =

∑
j∈Γ(i)

ωj pj ⊗ pj ⊗ pj ⊗ pj

∑
j∈Γ(i)

ωj
, (2.7)

where ∑
j∈Γ(i)

represents the sum over possible fiber orientations around Xi, ωj is a prob-

ability distribution function defined on the surface of the unit sphere and describing
the orientation of the fiber and ⊗ represents the outer product operator.

2.4.4.2 Construction of the length distribution tensor

From this statistical concept, we retain the orientation features reflected by the second
order directional tensor in order to construct the length distribution tensors at the nodes
of the mesh. So for every node Xi in the mesh and every edge orientation pj, we define
the length distribution function as L(Xi, pj) ∈ R+ such that every point X j connected
to Xi and in the direction pj can be expressed as:

X j = Xi + L(Xi, pj)pj .

Without loss of generality, we choose X j such that |Xij| = 1. Proceeding by analogy
with (2.6), we define the second order length distribution tensor at node Xi as:

2Xi =

∑
j∈Γ(i)

L(Xi, pj)pj ⊗ pj

∑
j∈Γ(i)

L(Xi, pj)
. (2.8)
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Since Xij is in the direction of pj then equation (2.8) becomes:

2Xi =

∑
j∈Γ(i)

L(Xi, Xij)Xij ⊗ Xij

∑
j∈Γ(i)

L(Xi, Xij)
.

Note that, from the definition of node X j and the fact that the length size of the edge
Xij is equal to the interpolation of the length distribution function at X j, we have
L(Xi, Xij) = 1, and ∑

j
L(Xi, Xij) = ∑

j∈Γ(i)
1 = |Γ(i)|. Consequently,

2Xi =
1
|Γ(i)| ∑

j∈Γ(i)
Xij ⊗ Xij . (2.9)

Using the same analysis, we can derive the fourth order length distribution tensor:

4Xi =
1
|Γ(i)| ∑

j∈Γ(i)
Xij ⊗ Xij ⊗ Xij ⊗ Xij . (2.10)

Remark 9. 2Xi and 4Xi are symmetric positive definite tensors, and thus invertible, if at least
d edges are not collinear.

Remark 10. The choice of equally distributing all the nodes connected to Xi comes from the
choice of unit length distribution function values at the points X j.

This length distribution tensor will be the skeleton for the metric tensor construction.

2.4.4.3 Metric construction from the length distribution tensor

In this subsection we will introduce a natural solution to the optimization problem
and show in which sense this solution presents a good approximation of the natural
solution of equation (2.3) following the lines in [Coupez 11].

Proposition 11. Let 2Xi be the second order symmetric positive definite length distribution
tensor at node Xi. Then the metric

Mi =
1
d

(
Xi
)−1

(2.11)

is a good approximation of the natural metric transforming the edges in the mesh into unit
edges.

The proposition and its proof were provided in [Coupez 11], we retrace them here-
after. We start by showing that the tensor defined by Mi = 1

d

(
Xi)−1 is indeed a metric

at the node Xi. We provide in the next proposition an analytical example in 2D that
proves via simple algebraic computations the validity and robustness of our metric
construction technique.
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Proposition 12. Consider u, v ∈ R2 two non collinear vectors. ThenM = (u⊗ u+ v⊗ v)−1

is a unit metric for u and v with (Mu, u) = 1 and (Mv, v) = 1.

Proof. The length distribution tensor associated with u = (u1, u2)t and v = (v1, v2)t is
given by:

X =
1
2
(u⊗ u + v⊗ v) =

1
2

(
u2

1 + v2
1 u1u2 + v1v2

u1u2 + v1v2 u2
2 + v2

2

)

We aim at proving that the tensor

M =
2
2
(2X

)−1
=
(2X

)−1

is a metric. So we need to show that M is symmetric positive definite and that it
satisfies the unity property.
M is symmetric positive definite

M =
1

(u1v2 − u2v1)2

(
u2

2 + v2
2 −(u1u2 + v1v2)

−(u1u2 + v1v2) u2
1 + v2

1

)

• SinceM12 =M21 thenM is symmetric.

• Let x = (x1, x2)t be a vector in R2 then

xtMx =
1

(u1v2 − u2v1)2 (x1 x2)

(
u2

2 + v2
2 −(u1u2 + v1v2)

−(u1u2 + v1v2) u2
1 + v2

1

)(
x1

x2

)

=
1

(u1v2 − u2v1)2

( x1(u2
2 + v2

2)− x2(u1u2 + v1v2)

−x1(u1u2 + v1v2) + x2(u2
1 + v2

1)

)t(
x1

x2

)
=

1
(u1v2 − u2v1)2

×
(

x2
1(u

2
2 + v2

2)− x1x2(u1u2 + v1v2)− x1x2(u1u2 + v1v2) + x2
2(u

2
1 + v2

1)
)

Rearranging the terms, we get:

xtMx =
1

(u1v2 − u2v1)2

((
x2

1u2
2 − 2x1x2u1u2 + x2

2u2
1
)
+
(
x2

1v2
2 − 2x1x2v1v2 + x2

2v2
1
))

=
1

(u1v2 − u2v1)2︸ ︷︷ ︸
≥0

(x1u2 − x2u1)
2︸ ︷︷ ︸

≥0

+ (x1v2 − x2v1)
2︸ ︷︷ ︸

≥0


ThenM is positive definite.
M is a unit metric.
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We will show thatM(u, u) = 1, the proof thatM(v, v) = 1 is similar.

M(u, u) =
1

(u1v2 − u2v1)2

(
u2

2 + v2
2 −(u1u2 + v1v2)

−(u1u2 + v1v2) u2
1 + v2

1

)(
u1

u2

)
·
(

u1

u2

)

=
(u1v2 − u2v1)

2

(u1v2 − u2v1)2

= 1

ThereforeM = (u⊗ u + v⊗ v)−1 is a unit metric.

The next proposition generalizes the conjecture in proposition 12 adopted from
[Coupez 11] into the d-dimensional space.

Proposition 13. Consider {vj}1≤j≤d to be a set of d linearly independent vectors in Rd.

ThenM = (
d
∑
j

vj ⊗ vj)
−1 is a unit metric for vj with (Mvj, vj) = 1 ∀j ∈ [0, d].

Proof. The proof follows using the same reasoning carried out in the proof of proposi-
tion 12.

Proposition 14. Let 2Xi and 4Xi be respectively the second and fourth order length distribution
tensors at a node Xi. Then the metricMi is a well defined solution of the optimization problem

Mi = argmin
Mi∈Rd×d

sym

 ∑
j∈Γ(i)

((
MXij, Xij

)
− 1
)2

 (2.12)

if it is a solution of:
4XM =2 X . (2.13)

Proof. Denote by 4Xklmn the (klmn) component of the fourth order length distribution
tensor:

4Xklmn =
1
|Γ(i)| ∑

j∈Γ(i)
Xij

k Xij
l Xij

mXij
n

Let Mi be a solution of equation (2.13). Using the above notation, we compute the
component (mn) of (4XM):

(4XiMi)mn =
1
|Γ(i)| ∑

j∈Γ(i)

∑
kl
Mi

klX
ij
k Xij

l︸ ︷︷ ︸
(MiXijXij)

Xij
mXij

n
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From equation (2.13), one gets:

(4XiMi)mn = 2Xi
mn

⇔ 1
|Γ(i)| ∑

j∈Γ(i)

(
∑
kl

(
Mi

klX
ij
k Xij

l

))
Xij

mXij
n =

1
|Γ(i)| ∑

j∈Γ(i)
Xij

mXij
n

⇔ 1
|Γ(i)| ∑

j∈Γ(i)

((
∑
kl

(
Mi

klX
ij
k Xij

l

))
Xij

mXij
n − Xij

mXij
n

)
= 0

⇔ ∑
j∈Γ(i)

((
∑
kl

(
Mi

klX
ij
k Xij

l

))
− 1

)
Xij

mXij
n = 0 (2.14)

On the other hand applying the standard differentiation of (2.12) and noting that at the
minimum the derivative is zero, we get:

0 = ∑
j∈Γ(i)

(
MklX

ij
k Xij

l − 1
)

Xij
mXij

n for 1 ≤ m, n ≤ d (2.15)

which is verified by the metricMi as shown in equation (2.14). This finishes the proof
of the proposition.

To complete the proof of proposition 11 we still need to verify that the metric(
M = |Γ(i)|

d

(2X
)−1
)

also satisfies condition (2.13) and is consequently a solution of
the optimization (2.12). This is done in the next proposition.

Proposition 15. LetMi be a metric defined by:

M =
|Γ(i)|

d
(2X

)−1

thenMi is a solution of:
4X :M =2 X ,

under the assumption that:
4X ∼2 X⊗2 X (2.16)

Proof. From a numerical standpoint it is hard to construct the fourth order length distri-
bution tensor. Its inversion is even more complicated as it requires the consideration of
more edges than the second order tensor. Instead, we use a closure quadratic approxi-
mation of the fourth order tensor [Advani 90] in the view of computing the solution of
(2.13):

4X ∼2 X⊗2 X (2.17)

Substituting equation (2.17) in (2.13), we obtain:

(2X⊗2 X
)

:M =2 X (2.18)
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Rewriting the left hand side of (2.18) using the Einstein operator, implies:

(2X⊗2 X
)

:M = (X :M)2
X (2.19)

We note that for a symmetric positive definite tensor A of order d we have A : A−1 = d.
Proceeding by analogy between (2.18) and (2.19) yields:

2X :M = 1 (2.20)

and thus we obtain the construction of a symmetric positive definite tensor

M =
1
d
(2X

)−1
(2.21)

Indeed the equality holds when replacingM in (2.19) and rearranging the terms:

1
d

(
2X : (2X)−1

)2
X =2 X

Applying this analysis on every node Xi in the mesh and identifying 2X by the
length distribution tensor defined at this node:

2Xi =
1
|Γ(i)| ∑

j∈Γ(i)
Xij ⊗ Xij ,

the metric associated with Xi

Mi =
1
d
(2X

)−1
(2.22)

will be the solution of (2.13) and in turn will be a solution to the optimization problem
(2.5). In other words,Mi defines in a least square sense a unit metric at node Xi.

So far we have set up the Riemannian space framework and recalled the essential
notions related to them along with the dual mapping between the Riemannian and
the Euclidean spaces. A definition of unit metric was provided and the aim of metric
based mesh adaptation for constructing unit meshes was stated. In the next section
we intend to derive metric fields defined at the nodes of the mesh such that all the
edges have lengths close to unity with respect to the metrics. In this section we have
emphasized how metric fields can be derived in a natural way to prescribe mesh sizes
and orientations for adapting the mesh. The length distribution tensor was introduced
reflecting the distribution of edges’ lengths and their orientation over the mesh. The
key motivation behind the use of orientation tensor fields to describe edges’ repartition
and connections resides in the computational ease of constructing and manipulating
them. The definition of unit metric was relaxed via a least square approximation. A
sufficient condition guaranteeing that the constructed metric is a solution of the least
squares problem was provided. Finally an approximate solution metric satisfying the
sufficient condition was derived as a function of the length distribution tensor.
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In the following section we address the question of how to repartition the anisotropy
and prescribe the mesh sizes in a way to allow a better capture of a certain field of
interest (e.g. an analytical function, a problem variable, a characteristic field,· · · ).

2.5 Error estimation for anisotropic mesh adaptation

When working with stationary problems, the objective of mesh adaptation is to con-
struct a mesh that is optimal for computing the stationary solution with a good accu-
racy. The goal of anisotropic mesh adaptation is to ensure that the estimated discrep-
ancy between the exact and the approximate solution is minimal. For that purpose, the
mesh density shall be increased locally at the regions of high approximation error so
that to provide the fidelity necessary to accurately predict the solution.

In this section we are interested in building a metric tensor that modifies the mesh
sizes in all directions in a way to provide a good capture of a physical entity. The
work has lead to several publications [Coupez 11, Coupez 13b]. We present all the
details and proofs of the derivation. The idea relies on devising an error estimator
that predicts the regions of high solution variations. A metric field is deduced from
this refining/coarsening indicator giving a better representation of the mesh at the
locations of interest.

2.5.1 Overview on error estimation techniques

Efforts have been ongoing to explore error estimation techniques in an a priori and
an a posteriori sense. The idea was first proposed in [Babus̆ka 78]. Recent develop-
ments based on anisotropic interpolation estimates have proved to be successful for
generating meshes with high aspect ratio [Zienkiewicz 92, Frey 05, Gruau 05, Dedé 08,
Bourgault 09].

The a priori estimators require the knowledge of the exact solution and provide
qualitative information about the problem at hand. They proved to be powerful for
convergence studies of numerical methods [Formaggia 01, Loseille 09]. On the other
hand, the a posteriori error estimators rely on the approximated solution of the prob-
lem. We distinguish four widespread branches of a posteriori error estimators: the
residual based, the hierarchical, the recovery based and the goal oriented methods.

The residual based error estimators [Demkowicz 84, Bank 85], as suggested by
their name, are related to the residual of the discrete solution. Although they are
easy to implement, they lack precision due to successive approximations in their
derivation. The hierarchical error estimators [Bank 93, Eijkhout 91] involve consid-
ering a high order solution as a good representation of the exact solution and per-
form all computations with respect to it. Since these methods require two solu-
tions for different orders they render high computational costs. Moreover, the re-
covery based error estimators [Zienkiewicz 87, Zienkiewicz 92, Micheletti 06] intend
to bound the H1-semi norm of the discretization error ||∇u−∇uh||L2 via substituting
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∇u with an appropriate approximation. However the gradient recovery approaches
described in [Zienkiewicz 87, Zienkiewicz 92] induce a considerable computational
cost. The last well known method of error estimation is the goal-oriented technique
[Becker 96, Oden 99, Formaggia 03, Venditti 03, Alauzet 12]. Significant effort has been
devoted for developing goal-oriented error estimations that provide a mathematical
framework for assessing the quality of some functional with particular relevance. These
methods consist in exploiting the dual (or adjoint) problem whose source term is the
quantity of interest. It is worth mentioning that different choices of functional gener-
ate different adapted meshes and only the solution features that are relevant to this
functional will be controlled.

2.5.2 Global optimization problem

As stated earlier, in this section, we develop a simple gradient recovery technique allow-
ing the computation of an edge-based error estimator. Using the error equi-distribution
principle and under the constraint of a fixed number of nodes in the mesh, a set of
stretching factors associated with the edges of the domain are determined. A sim-
ple modification of the length distribution tensor to take into account these stretching
factors will result in a new metric leading to an anisotropic and well-adapted mesh.

We consider a scalar field u ∈ C2(Ω) = V and Vh a simple P1 finite element ap-
proximation space:

Vh =
{

wh ∈ C0(Ω), wh|K ∈ P1(K), K ∈ K
}

where Ω =
⋃

K∈K
K and K is a simplex (segment, triangle, tetrahedron, ... ).

We define
X =

{
Xi ∈ Rd, i = 1, · · · , N

}
as the set of nodes in the mesh. We denote also by Ui the nodal value of u at Xi and
we let Πh be the Lagrange interpolation operator from V to Vh such that:

Πhu(Xi) = u(Xi) = Ui , ∀i = 1, · · · , N .

As shown in figure 2.4, the set of nodes connected to node Xi is denoted by

Γ(i) =
{

j s.t. ∃K ∈ K , Xi, Xj are nodes of K
}

.

In the context of mesh adaptation the aim is to prescribe mesh sizes and directions
to the nodes of the mesh in order to control the approximation error. In general the
approximated solution is not interpolating i.e. it does not necessarily coincide with
the exact solution at the mesh nodes. Consequently it is very difficult to quantify this
error as it is very dependent on the problem at hand. We recall that our objective is to
derive a mesh adaptation technique that can be automatically applied to predict any
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phenomenon without apriori knowledge of the model that is being solved. To avoid the
difficulties encountered when working with the approximation error, we resort to the
Lemma of Cea which states that the approximation error is bounded by the interpolation
error [Cea 64, Ciarlet 91]:

||u− uh||H1 ≤ C||u−Πhu||H1 , (2.23)

where C is a constant related to the space dimension.
The lemma was first proposed for elliptic problems. A similar inequality for the L∞

norm was derived for Euler equations [Koobus 05]. Lately an apriori analysis was
proposed by Belme ([Belme 11] chapter 6) for the Poisson equation and the Euler prob-
lem. We intend in chapter 3 to extend this analysis to the convection-diffusion-reaction
problem and the Navier-Stokes equations.

Starting from the assumption that for metric based adaptation methods, in order to
master the global approximation error it is sufficient to control the interpolation error,
the target can be summarized into finding the mesh, made up of at most N nodes, that
minimizes the linear interpolation error in the Lp norm.

The mesh adaptation process can thus be reformulated as a constrained optimiza-
tion problem whereby one intends to minimize the global interpolation error over the
domain of interest for a fixed number of nodes N. We seek a metric field M̃ defined at
the nodes of the non-adapted mesh and at the origin of an optimal well adapted one
H(M̃):

M̃ = argmin
M∈Rd×d

sym

||u−Πhu||Lp(Ωh) such that ∑
i

1 = N , (2.24)

where i is the index number of the nodes in H̃(M). In this framework Πh is closely

related to the unit mesh H̃(M) of the discretized domain.

2.5.3 Gradient and strong continuity along the edges

In what follows, we denote the interpolated solution by uh = Πhu. For the sake of
simplicity, we introduce the following notations for a generic node Xi:

Xij = X j − Xi and Uij = U j −Ui ∀ j ∈ Γ(i) .

The gradient of uh is a piecewise constant vector field discontinuous from element to
element. However its projection onto the edges is continuous and depends only on the
nodal values of u at the extremities of the edges. This is proved by considering a Taylor
series expansion about the node Xi:

U j = Ui +∇uh|K · Xij .
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Figure 2.4 – Length Xij of the edge joining nodes Xi and X j.

Rearranging the terms, we get:

∇uh|K · Xij = Uij . (2.25)

Since this equality is true for all the elements sharing the edge XiX j then the gradi-
ent projection of the interpolated field along XiX j can be expressed as the difference
between the scalar field values at the extremities of the edge.

∇uh · Xij = Uij . (2.26)

From the continuity property we can deduce that the interpolation error along the
edges is of second order for P1 elements as will be demonstrated in the following
proposition [Coupez 11, Coupez 13b].

Proposition 16. The error in the projected gradients of the exact and interpolated solutions is
bounded by the hessian of the solution.

| ∇uh · Xij︸ ︷︷ ︸
Uij

−∇u(Xi) · Xij| ≤ max
Y∈[Xi ,X j]

|H(u)(Y)Xij · Xij| , (2.27)

where H(u)(Y) = ∇(2)u(Y) is the associated Hessian of u evaluated at a generic point Y.
Recall that taking u ∈ C2(Ω) we obtain ∇u ∈ C1(Ω).

Proof. The projection of a smooth scalar field u along an edge Xij still shows high
regularity. Indeed since u|Xij ∈ C2(Xij) then ∇u|Xij ∈ C1(Xij). Let x ∈ [Xi, X j]:

u(x) = u(Xi + sXiX j) s ∈ [0, 1] .
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The mean value theorem implies that:

∃Aij ∈ [Xi, X j] , such that U j = Ui +∇u(Aij)Xij .

Equivalently,
∃Aij ∈ [Xi, X j] , such that Uij = ∇u(Aij)Xij . (2.28)

As the gradient is constant along an edge, then combining equations (2.26) and (2.28)
yields:

∇uhXij = ∇u(Aij)Xij .

Moreover, since Aij ∈ [Xi, X j], it can be written as:

Aij = Xi + sijXij .

A subsequent use of the mean value theorem to the C1 function ∇u|Xij on [Xi, Aij]

yields:

∃Bij ∈ [Xi, Aij] , such that
(
∇u(Aij)−∇u(Xi)

)
· Xij = sijH(u)(Bij)Xij · Xij . (2.29)

Then combining (2.28) and (2.29) we get:

|Uij −∇u(Xi)| · Xij = |sijH(u)(Bij)Xij · Xij| . (2.30)

Now, using equation (2.26), equation (2.30) reads as:

|∇uh −∇u(Xi)| · Xij = |sijH(u)(Bij)Xij · Xij| . (2.31)

Therefore, noting that sij ∈ [0, 1], the statement of the proposition follows:

| ∇uh · Xij︸ ︷︷ ︸
Uij

−∇u(Xi) · Xij| ≤ max
Y∈[Xi ,X j]

|H(u)(Y)Xij · Xij| ,

Most of the anisotropic metric-based mesh adaptation techniques present in the lit-
erature intend to recover the unknown hessian of the solution at the mesh vertices in
view of building the optimal metric field. The authors in [Agouzal 99] derived suffi-
cient conditions for approximating the discrete hessian∇2

Rh
uh. From this approximated

hessian a metric M∇2
Rh

is constructed resulting in a mesh that is quasi-uniform with
respect to it and that will be also quasi-uniform with respect to a metric that is obtained
from the exact hessian H(u)(x). However when the initial mesh used for recovery is
far from the optimal one, the discrete hessian is not necessarily a good representation
of the continuous one. To overcome this difficulty, the process of generating the mesh
and re-building the hessian is iteratively repeated until getting a quasi-optimal mesh.

Other methods were proposed in the literature and aim at recovering the solution’s
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hessian from the piecewise linear approximate solution defined at the vertices of the
mesh. We will recall briefly the three most commonly used ones:

A recovery based on the projection methods

The Zienkiewicz-Zhu (ZZ) projection method [Zienkiewicz 92] is used on P1 finite
element spaces. The gradient is constant on the elements and discontinuous from one
element to the other. In order to recover the gradient at the nodes Xi of the mesh,
a patch consisting of the elements sharing the node Xi is constructed. Then a linear
function is defined fitting in a least square sense the gradient values at the centers of
mass of the elements in the patch. The reconstruction is repeated twice in order to
recover the discrete hessian of the solution:

∇Rh uh(Xi) = ΠZZ(∇(ΠZZ(∇uh))) , (2.32)

where ΠZZ is the Zienkiewicz-Zhu (ZZ) projector on the P1 finite element space.
The L2 projection operator is derived from the Clément operator [Claisse 11,

Alauzet 10c]. The L2 projection method reconstructs the gradient by means of a
volume-weighted average. It is done in two steps: first a gradient recovery step at
node Xi whereby the recovered gradient is given by:

∇Rh uh(Xi) =

∑
Kj∈B(Xi)

|Kj|∇uh|Kj

∑
Kj∈B(Xi)

|Kj|
=

∑
Kj∈B(Xi)

|Kj| ∑
P∈Kj

uh(P)∇wP
Kj

∑
Kj∈B(Xi)

|Kj|
, (2.33)

with P being a node of element Kj, wP
Kj

its barycentric coordinates and B(Xi) is the
patch of elements sharing node Xi. Then a subsequent recovery is applied to each
component of the recovered gradient in order to get a hessian reconstruction:

∇2
Rh

uh(Xi) =

∑
Kj∈B(Xi)

|Kj|∇2uh|Kj

∑
Kj∈B(Xi)

|Kj|
=

∑
Kj∈B(Xi)

|Kj|
(

∑
P∈Kj

Πh(uh)(P)

)(
∇wP

Kj

)t

∑
Kj∈B(Xi)

|Kj|
. (2.34)

However, both projection techniques do not remove high frequency errors intro-
duced by small non-uniformities in the mesh. Another drawback of these techniques
comes from the accumulation of diffusion through the repetitive averaging process.

A recovery based on the variational methods [Alauzet 10c]

The recovery based on the variational methods relies on the fact that for P1 scalar
field uh, the gradient is constant by element. Hence, the recovery of the hessian is done
by using a weak formulation and the Green formula. It starts by building a higher
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order approximation of the solution u∗ and considering it as a good representation of
u. Each component of the reconstructed hessian is recovered by:

∂2
Rh

uh

∂xi∂xj
(P) =

∑
Kj∈B(P)

(
∂uh
∂xj

)
|K
∫

K
∂φK
∂xj

B(P)
4

, (2.35)

where φP ∈ Vh is the piecewise linear P1 finite element function associated with the
vertex P, and Vh is the approximation space associated with the P1 finite element
method.

A recovery based on a least square approach [Picasso 11]

The aim of the recovery method based on a least square approach is to determine
the recovered hessian ∇2

Rh
uh at a node Xi. We define B(Xi) as the patch of elements

sharing node Xi. We consider a node X j ∈ B(Xi). A Taylor development of ∇2
Rh

uh at
X j about Xi truncated at second order yields:

1
2

XiX j∇2
Rh

uh(Xi)XiX j = uh(X j)− uh(Xi)− XiX j∇Rh uh(Xi) (2.36)

This can be rewritten as a system:
AH = B ,

where H is a vector made up of the components of the hessian matrix.
The system is solved using a least square approximation. Notice that this approach

involves the resolution of a system at each node in the mesh and each remeshing step
and hence affects the computational time of the simulation.

During adaptive iterations, the number of topological optimizations of the mesh
grows and the hessian recovery becomes more and more complex. The actual com-
plexity is in fact problem dependent.

The major advantage of the anisotropic mesh adaptation technique that we pro-
pose is that it avoids the hessian reconstruction. Indeed using the bounding relation
(2.27) we can express the projected hessian of the solution (H(u)(Y)Xij · Xij) in terms
of the projected gradient which is reconstructed using the solution values at the edge
extremities and the length distribution tensor.

We recall that u|Xij ∈ C2(Xij) then ∇u|Xij ∈ C1(Xij). A Taylor series development of
the gradient of u leads to:

∇u(X j) = ∇u(Xi) + H(u)(Xi)Xij . (2.37)
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Then, projecting onto Xij, we get:(
∇u(X j)−∇u(Xi)

)
· Xij = H(u)(Xi)Xij · Xij (2.38)

We denote by gi = ∇u(Xi) and gj = ∇u(X j) the gradient of u evaluated at the node
Xi and X j, respectively. We denote as well by gij = gj − gi the change of the gradient
along the edge Xij. Then

gij · Xij = H(u)(Xi)Xij · Xij . (2.39)

For P1 numerical methods, we use this projection as an evaluation of second order
interpolation errors along the edge:

eij = |u− uh|
ij
X = |gij · Xij|. (2.40)

However this equation cannot be evaluated exactly as it requires the knowledge of ∇u
and its continuity at the nodes of the mesh.

In cases where the exact solution of the PDE u is unknown, the only information
readily available on its gradient comes from the finite element approximation. This
means that for a P1 finite element method we do not have access to the point-wise
information but only to the element-wise one. For this reason we resort to a recovery
procedure.

2.5.4 Least square gradient recovery

The gradient of the piecewise linear function uh is well-defined at the elements’ inte-
riors. A smoothing should be applied to construct nodal gradient values. A number
of gradient recovery techniques can be found in the literature. We have presented
(eqs. (2.32) and (2.33)) the gradient recovery techniques that are based on projection
methods, nevertheless these methods necessitate a complex implementation to achieve
super-convergence properties.

Polynomial preserving techniques [Zhang 05, Zhang 04] can also be used for gradi-
ent recovery. They consist of fitting high order polynomials, in the least-squares sense,
to the known approximate solution at the nodes and subsequently differentiating them.
More precisely, for a node Xi assuming that we want to construct a quadratic fitting, at
least 5 neighboring nodes need to be used. The polynomial is derived by a least squares
fitting to the values of the approximate solution at these nodes. The problem reduces to
a least squares one. If the latter is not full rank, additional nodes should be considered
and the fitting procedure is repeated. The recovery procedure might become more and
more computationally complex especially when working with anisotropic meshes.

The gradient reconstruction that we propose is based on a least squares approxi-
mation of ∇uh along the edges of the mesh. Using the length distribution tensor, a
continuous gradient will be defined directly at the node of the mesh and depending
only on the solution’s interpolation values. For each node Xi, we seek Gi ∈ Rd the
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proposed gradient reconstruction satisfying:

Gi = argmin
G∈Rd

∑
j∈Γ(i)

∣∣∣(G−∇uh) · Xij
∣∣∣2 = argmin

G∈Rd
∑

j∈Γ(i)

∣∣∣GXij −Uij
∣∣∣2 . (2.41)

The minimum can be obtained by setting the derivative of (2.41) to zero i.e.

∑
j∈Γ(i)

(
GiXij −Uij

)
Xij = 0

⇐⇒ Gi ∑
j∈Γ(i)

Xij ⊗ Xij = ∑
j∈Γ(i)

UijXij (2.42)

We highlight the appearance of the length distribution tensor. Introducing the notation

Ui =
1
|Γ(i)| ∑

j∈Γ(i)
UijXij ,

one gets:

Gi =
(

Xi
)−1

Ui . (2.43)

Note that the gradient recovery technique that we propose is directly computed on
the nodes of the mesh and the only requirement for its implementation is the knowl-
edge of the approximate solution at the nodes.

Remark 17. We recall that Xi is a positive definite tensor if the set of edges connected to Xi,
Γ(i), contains at least d non-collinear vectors. Therefore the reconstructed gradient Gi is defined
under this assumption. Note that this condition is satisfied if at least one non degenerate element
exists at the node Xi.

Remark 18. Gi can also be expressed in terms of the natural metric defined at node Xi:

Gi = dMiUi . (2.44)

Therefore, the approximated error is evaluated by substituting g by G in (2.40):

eij = |Gij · Xij|. (2.45)

2.5.5 A posteriori error analysis

We want to verify that the choice of the edge-based error estimation defined by equa-
tion (2.45) preserves the second order:

∣∣∣(Gi − gi
)
· Xij

∣∣∣ ∼ (H(u)Xij · Xij) where Gi is

the recovery gradient given by (2.43) and gi is the exact value of the gradient at node
Xi. The proof will be done in the sequel.

In the next proposition, we provide error estimates in the neighborhood of a node
Xi.
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Proposition 19. Let u ∈ C2(Ω). Then for Gi defined as in (2.43), we have the following
projected error bounds:

 ∑
j∈Γ(i)

∣∣∣(Gi −∇u
)
· Xij

∣∣∣2
 1

2

≤ 2

 ∑
j∈Γ(i)

max
Y∈[Xi ,X j]

|H(u)(Y)Xij · Xij|2
 1

2

. (2.46)

Proof. Since Gi is defined by:

Gi = argmin
G∈Rd

∑
j∈Γ(i)

∣∣∣(G−∇uh) · Xij
∣∣∣2 ,

then

∑
j∈Γ(i)

∣∣∣(Gi −∇uh

)
· Xij

∣∣∣2 ≤ ∑
j∈Γ(i)

∣∣∣(∇u−∇uh) · Xij
∣∣∣2 . (2.47)

The error between the reconstructed gradient and the true gradient of the approximate
solution can be split into two components:∣∣∣(Gi −∇u

)
· Xij

∣∣∣ = ∣∣∣(Gi −∇uh +∇uh −∇u
)
· Xij

∣∣∣
Applying this decomposition, together with inequality (2.47) yields:

∑
j∈Γ(i)

∣∣∣(Gi −∇u
)
· Xij

∣∣∣2 = ∑
j∈Γ(i)

∣∣∣(Gi −∇uh +∇uh −∇u
)
· Xij

∣∣∣2
Triangle inequality

≤ ∑
j∈Γ(i)

(∣∣∣(Gi −∇uh

)
· Xij

∣∣∣+ ∣∣∣(∇u−∇uh) · Xij
∣∣∣)2

≤ ∑
j∈Γ(i)

2
(∣∣∣(Gi −∇uh

)
· Xij

∣∣∣2 + ∣∣∣(∇u−∇uh) · Xij
∣∣∣2)

from (2.47)

≤ 4 ∑
j∈Γ(i)

∣∣∣(∇u−∇uh) · Xij
∣∣∣2

from (2.27)

≤ 4 ∑
j∈Γ(i)

max
Y∈[Xi ,X j]

|H(u)(Y)Xij · Xij| , (2.48)

leading to the statement of the proposition.

In proposition 19 we have came up with an error estimate over the edges sharing
node Xi. In the following proposition we aim at providing error estimates along a
single edge XiX j.

Proposition 20. Let u ∈ C2(Ω). Then for Gi defined on a node Xi by (2.43) and every node
X j connected to Xi, we have the following projected error bounds:

a - |(Gi −∇u) · Xij| ≤ 2

(
∑

k∈Γ(i)
max

Y∈[Xi ,Xk ]
|H(u)(Y)Xik · Xik|

) 1
2

.
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b -

|(Gi−∇uh) ·Xij| ≤ 2

(
∑

k∈Γ(i)
max

Y∈[Xi ,Xk ]
|H(u)(Y)Xik · Xik|

) 1
2

+ max
Y∈[Xi ,X j]

|H(u)(Y)Xij ·Xij| .

c -

|Gij · Xij| ≤2

( ∑
k∈Γ(i)

max
Y∈[Xi ,Xk ]

|H(u)(Y)Xik · Xik|
) 1

2

+

 ∑
k∈Γ(j)

max
Y∈[X j,Xk ]

|H(u)(Y)Xjk · Xjk|

 1
2

+ max
Y∈[Xi ,X j]

|H(u)(Y)Xij · Xij|

 .

Proof. Proof of a:

It follows from proposition 19. Indeed:

|(Gi−∇u) ·Xij| ≤
(

∑
k∈Γ(i)

∣∣∣(G−∇u) · Xik
∣∣∣2) ≤ 2

(
∑

k∈Γ(i)
max

Y∈[Xi ,Xk ]
|H(u)(Y)Xik · Xik|2

) 1
2

.

(2.49)
Proof of b:

The error between the reconstructed gradient and the true gradient of the approx-
imate solution can be split into two components:∣∣∣(Gi −∇u

)
· Xij

∣∣∣ = ∣∣∣(Gi −∇uh +∇uh −∇u
)
· Xij

∣∣∣ .

Applying this decomposition, together with inequality (2.49) yields:∣∣∣(Gi −∇u
)
· Xij

∣∣∣ Triangle inequality

≤
∣∣∣(Gi −∇uh

)
· Xij

∣∣∣+ ∣∣∣(∇uh −∇u) · Xij
∣∣∣

from (2.49)

≤ 2

(
∑

k∈Γ(i)
max

Y∈[Xi ,Xk ]
|H(u)(Y)Xik · Xik|2

) 1
2

+
∣∣∣(∇uh −∇u) · Xij

∣∣∣
from (2.27)

≤ 2

(
∑

k∈Γ(i)
max

Y∈[Xi ,Xk ]
|H(u)(Y)Xik · Xik|2

) 1
2

(2.50)

+ max
Y∈[Xi ,X j]

|H(u)(Y)Xij · Xij|

Proof of c:

Recall from equation (2.26) that ∇uh · Xij = Uij, then the above inequality can be
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rewritten as:

∣∣∣Gi · Xij −Uij
∣∣∣ ≤ 2

(
∑

k∈Γ(i)
max

Y∈[Xi ,Xk ]
|H(u)(Y)Xik · Xik|2

) 1
2

+ max
Y∈[Xi ,X j]

|H(u)(Y)Xij · Xij| .

(2.51)
Again using the splitting trick, one can rewrite |Gij · Xij| as:

|Gij · Xij| = |Gj · Xij −Gi · Xij| = |Gj · Xij −Uij + Uij −Gi · Xij| . (2.52)

The triangle inequality on (2.52) implies:

|Gij · Xij| ≤ |Gj · Xij −Uij|+ |Uij −Gi · Xij| (2.53)

Using inequality (2.51) on |Gj · Xij −Uij| and |Uij −Gi · Xij| leads to:

|Gij · Xij| ≤ 2

 ∑
k∈Γ(j)

max
Y∈[X j,Xk ]

|H(u)(Y)Xjk · Xjk|2
 1

2

+2

(
∑

k∈Γ(i)
max

Y∈[Xi ,Xk ]
|H(u)(Y)Xik · Xik|2

) 1
2

(2.54)

+ max
Y∈[Xi ,X j]

|H(u)(Y)Xij · Xij .

Finally all the estimates of the proposition follow.

From the last inequality of proposition 20 we infer that |GijXij| is an estimate of the
projected Hessian of the scalar field u along the edge Xij. We notice that the projected
reconstructed gradient along edge Xij is equally affected by two contributions one from
the patch associated with node Xi and the other from the patch associated with node
X j.

2.5.6 Edge-based error estimation

Based on the previous error analysis on the reconstruction gradient, we use

eij = |Gij · Xij| (2.55)

as an estimate of the error along the edge Xij.

Proposition 21. Let u be a quadratic function:

u(x) = u(Xi) +∇u(Xi)(x− Xi) +
1
2
(x− Xi)tH(u)(x− Xi) x ∈ [Xi, X j] . (2.56)

Then the edge based error respects the following equality:

eij = |Gij · Xij| = |H(u)Xij · Xij| . (2.57)
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Proof. Differentiating the quadratic function with respect to x, one gets:

∇u(x) = ∇u(Xi) + H(u)(x− Xi) . (2.58)

Taking x = X j, and using the recovered gradient as a representation of the gradient at
the nodes of the mesh yields:

Gj = Gi + H(u)Xij (2.59)

Rearranging the terms and projecting onto Xij, we can express the edge based error as:

eij = |Gij · Xij| = |H(u)Xij · Xij| (2.60)

Note that for a regular function u we can always consider its quadratic form (from
a Taylor development) so that the proposition remains verified.

Remark 22. Future work will focus on generalizing the interpolation error estimates into ap-
proximation error ones.

We recall that the objective of the anisotropic metric based mesh adaptation is to
build up edges of unit length in the Riemannian metric space. Stretching factors will
be defined on the edges to transform them into unit lengths. The motivation in this
section is to perform an edge-based error estimation over an initial mesh Hh that will
be used to construct a metric tensor prescribing an optimal mesh H̃h. From now on,
the symbol tilde will be used to refer to quantities on the optimal mesh.

We are interested now in studying how the edge-based error changes as a result of
modifying the length of edge Xij by a stretching factor sij ∈ R+. The stretching of an
edge in its own direction is a linear mapping defined by:

Hh 7→ H̃h

Xij 7→ X̃ij = sijXij . (2.61)

Clearly, since sij is in R+ the transformation can be a stretching or a shrinking as
depicted in figure 2.5. For simplicity we will refer to both cases as stretching the edge.

Proposition 23. Denote by sij ∈ R+ the stretching factor that transforms edge Xij in its own

direction according to mapping (2.61), and let ẽij =
∣∣∣G̃ij · X̃ij

∣∣∣. Then this error satisfies the
following inequality:

ẽij ≤ s2
ije

ij . (2.62)

In other words, as a result of stretching the edge by a factor sij, the error changes quadratically
with respect to sij.

Proof. Without loss of generality, we focus on the case of a quadratic function u.
The analysis can be extended to regular non quadratic functions by considering the
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Figure 2.5 – Stretching or shrinking of a spatial edge Xij as a result of a scaling sij .

quadratic form of u. Let x be a point on Xij, then

u(x) = Ui + s∇u(Xi) · Xij +
1
2

s2H(u)Xij · Xij . (2.63)

Evaluating at the point X̃ j = Xi + sijXij and rearranging the terms, one gets:

Ũij = sij∇u(Xi) · Xij +
1
2

s2
ijH(u)Xij · Xij . (2.64)

But since Ũij = sij∇uh · Xij, then:

|sij∇uh · Xij − sij∇u(Xi) · Xij| = 1
2

s2
ij|H(u)Xij · Xij| . (2.65)

On the other hand, for uh, the interpolation of u on the given mesh, we have:

uh(X̃ j) = Ui + sij∇uh · Xij (2.66)

Combining (2.65) and (2.66) we obtain an estimate on the error along the stretched edge
X̃ij,

ẽij =
∣∣∣u(X̃ j) · X̃ij − uh(X̃ j) · X̃ij

∣∣∣
=

∣∣∣∣Ui + sij∇u(Xi) · Xij +
1
2

s2
ijH(u)Xij · Xij − (Ui + sij∇uh · Xij)

∣∣∣∣
≤

∣∣∣sij∇uh · Xij − sij∇u(Xi) · Xij
∣∣∣+ 1

2
s2

ij

∣∣∣H(u)Xij · Xij
∣∣∣

≤ 1
2

s2
ij

∣∣∣H(u)Xij · Xij
∣∣∣+ 1

2
s2

ij

∣∣∣H(u)Xij · Xij
∣∣∣

≤ s2
ij

∣∣∣H(u)Xij · Xij
∣∣∣ (2.67)

Therefore,
ẽij = |G̃ij · sijXij| ≤ s2

ijeij , (2.68)
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where
G̃ij = G̃j −Gi .

Whence we have proved the quadratic behavior of the error estimator with respect
to the stretching factors.

Before proceeding into the construction of the metric tensor that controls the errors
along the edges, let us examine how the control on the error along the edges induces a
control of the error over the elements in the mesh.

2.5.7 Optimal control on the Lp norm of the interpolation error

In this section we address the question of how the edge error estimates can be brought
back to element error estimates by the use of appropriate integration rules. But before
we conduct the study of element based error estimation in terms of the edge based
estimation, let us recall some useful integration rules.

Recall: Second order exact integration rules

Let p ∈ C2(K) be a quadratic function defined on an element K. Let Xij be an
edge of this element. Then the following second order Gauss quadrature integration
rules are exact: ∫

K
p(x)dK =

1
3
|K| ∑

Xij∈K ,i 6=j

p
(

Xi + X j

2

)
, in (2D) , (2.69)

and

∫
K

p(x)dK = |K|

− 1
20 ∑

Xi∈K

p(Xi) +
1
5 ∑

Xij∈K ,i 6=j

p
(

Xi + X j

2

) , in (3D) . (2.70)

Using these estimates, we develop the following proposition on the computation of
the L1 norm of the interpolation error over the elements of the mesh.

Proposition 24. Let u ∈ C2(Ω) be the quadratic form of a regular function. The Taylor series
development of u at a point x on the edge Xij reads as:

u(x) = u(Xi) + α∇u(Xi)Xij +
1
2

α2H(u)Xij · Xij , α ∈ [0, 1] . (2.71)

The L1 norm of the interpolation error over the discretized domain is then given by:

||u−Πhu||1 =
1
24 ∑

K∈H
|K| ∑

Xij∈K ,i 6=j

eij , in (2D) , (2.72)
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and
||u−Πhu||1 =

1
40 ∑

K∈H
|K| ∑

Xij∈K ,i 6=j

eij , in (3D) . (2.73)

Proof. Let uh ∈ C1(Ω) be the linear interpolation of u over H. We have for x ∈ Xij :

uh(x) = u(Xi) + α∇uh(Xi)Xij . (2.74)

Since ∇uh ∈ C0(Ω), then ∇uh(Xi) = ∇uh|
ij
X.

For the sake of notation simplicity, we will use ∇uh · Xij to denote ∇uh|Xij · Xij.
The error at a point x of the edge Xij is given by:

e(x(α)) = (u(x(α))− uh(x(α)))

= Ui + α∇u(Xi)Xij +
1
2

α2H(u)Xij · Xij −
(

Ui + α∇uh(Xi)Xij
)

= α
(
∇u(Xi)Xij −∇uh(Xi)Xij

)
+

1
2

α2H(u)Xij · Xij . (2.75)

Taking x = X j leads to:

e(X j) =
(

u(X j)− uh(X j)
)
=
(
∇u(Xi)Xij −∇uh(Xi)Xij

)
+

1
2

H(u)Xij · Xij . (2.76)

But u(X j) = uh(X j) as uh is the linear interpolation of u, thus:

0 =
(
∇u(Xi)Xij −∇uh(Xi)Xij

)
+

1
2

H(u)Xij · Xij . (2.77)

It follows that: (
∇u(Xi)Xij −∇uh(Xi)Xij

)
= −1

2
H(u)Xij · Xij . (2.78)

Substituting equation (2.78) in (2.75) yields:

e(x(α)) = −α
1
2

H(u)Xij · Xij +
1
2

α2H(u)Xij · Xij

=
α

2
(α− 1)H(u)Xij · Xij . (2.79)

In order to compute the L1 norm of the interpolation error over an element K, we use
the second-order quadrature rules presented in equations (2.69) and (2.70).

We highlight the fact that the interpolation error is null at the vertices of the element,
therefore the element interpolation error is given by:

∫
K

e(x)dK = |K| ∑
Xij∈K ,i 6=j

ωe
(

Xi + X j

2

)
(2.80)

where ω = 1
3 in (2D) and ω = 1

5 in (3D).
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This element-wise error can then be expressed as:

∫
K

e(x)dK = |K| ∑
Xij∈K ,i 6=j

ωe
(

x
(

1
2

))
.

From equation (2.79), it follows:

∫
K

e(x)dK = |K| ∑
Xij∈K ,i 6=j

ω

∣∣∣∣14
(
−1

2

)∣∣∣∣ ∣∣∣H(u)Xij · Xij
∣∣∣ .

Using equation (2.57) implies:

∫
K

e(x)dK =
1
8

ω|K| ∑
Xij∈K ,i 6=j

∣∣∣Gij · Xij
∣∣∣ . (2.81)

Summing over the elements K ∈ H, we obtain an estimation for the L1 norm of the
interpolation error:

||u−Πhu||1 = ∑
K∈H
|K|

∫
K

e(x)dK =
1
8

ω ∑
K∈H
|K| ∑

Xij∈K ,i 6=j

∣∣∣Gij · Xij
∣∣∣ , (2.82)

where ω = 1
3 in (2D) and ω = 1

5 in (3D).
Therefore the statement of the proposition follows.

In the previous proposition, we conducted a theoretical study of the equivalence
between the L1 interpolation error and the proposed edge based error estimation. We
intend to present next a generalization to the Lp norm.

We want to provide a theoretical validation of the equivalence between the proposed
edge based error estimator and the interpolation error in Lp norm for a quadratic
function. This is done, in the sequel, by expressing the element error analysis by an
edge based error analysis and using the appropriate integration rules.

Figure 2.6 – Arbitrary point P inside an element connected to the node Xi.

Proposition 25. Consider an element K ∈ H and let P be a point in K as presented in figure
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2.6. In what follows, P will be taken as a Gauss quadrature point. Then we have for the two
dimensional case:

XiP = vXiXj + wXiXk ⇔ P = (1− v− w)Xi + vX j + wXk ,

with v =
xp − xi

xj − xi
and w =

yp − yi − v(yj − yi)

yk − yi

being its barycentric coordinates, and for the three dimensional case:

XiP = αXiXj + βXiXk + γXiXl ,

with α, β, γ being its barycentric coordinates.

The interpolation error at P can be evaluated in 2D by:

u(P)−Πhu(P) =
v
2
(v− 1)eij +

w
2
(w− 1)eik + vwGijXik ,

and in 3D by:

u(P)−Πhu(P) =
α

2
(α− 1)eij +

β

2
(β− 1)eik +

γ

2
(γ− 1)eil + αβGijXik + αγGijXil + βγGikXil.

Proof. Without loss of generality, we will provide the proof for the (2D) case in order
to avoid redundancy, the same analysis can be done for (3D).

Using a Taylor series approximation around the point Xi we get:

u(P) = Ui +∇u(Xi)XiP +
1
2
∇2u(Xi)XiP · XiP

= Ui +∇u(Xi)
(

vXij + wXik
)
+

1
2
∇2u(Xi)

(
vXij + wXik

)
·
(

vXij + wXik
)

= Ui + v∇u(Xi)Xij + w∇u(Xi)Xik +
1
2

v2Hu(Xi)Xij · Xij

+
1
2

w2Hu(Xi)Xik · Xik + vwHu(Xi)Xij · Xik .

The linear interpolation of u at P is given by:

Πhu(P) = (1− v− w)Ui + vU j + wUk

= (1− v− w)Ui + v
(

Ui +∇hu(Xi)Xij
)
+ w

(
Ui +∇hu(Xi)Xik

)
.

Hence, the interpolation error can be expressed by:

u(P)−Πhu(P) = v
(
∇u(Xi)−∇hu(Xi)

)
Xij + w

(
∇u(Xi)−∇hu(Xi)

)
Xik

+
v2

2
Hu(Xi)Xij · Xij +

w2

2
Hu(Xi)Xik · Xik

+vwHu(Xi)Xij · Xik . (2.83)
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Evaluating at the point P = X j we have u(P)−Πhu(P) = 0, v = 1 and w = 0. This
leads to:

0 =
(
∇u(Xi)−∇hu(Xi)

)
Xij +

v2

2
Hu(Xi)Xij · Xij

⇔
(
∇u(Xi)−∇hu(Xi)

)
Xij = −v2

2
Hu(Xi)Xij · Xij . (2.84)

Similarly, by taking P = Xk, we get:

(
∇u(Xi)−∇hu(Xi)

)
Xik = −w2

2
Hu(Xi)Xik · Xik . (2.85)

Rearranging the terms and using equations (2.84) and (2.85), equation (2.83) reduces
to:

u(P)−Πhu(P) =
v
2
(v− 1)Hu(Xi)Xij · Xij +

w
2
(w− 1)Hu(Xi)Xik · Xik + vwHu(Xi)Xij · Xik

=
v
2
(v− 1)eij +

w
2
(w− 1)eik + vwGijXik .

The interpolation error at any point P of (K) can therefore be computed using the
proposed edge based error estimator.

Proposition 26. The Lp norm of the interpolation error over the domain Ω is given in (2D)

by:

(∫
Ω
|u−Πhu|p dΩ

) 1
p

=

(
nK

∑
K=1
|K|

nG

∑
g=1

ω
g
K

∣∣∣v
2
(v− 1)eK

ij +
w
2
(w− 1)eK

ik + vwGij
KXik

∣∣∣p) 1
p

,

and in (3D) by:

(∫
Ω
|u−Πhu|p dΩ

) 1
p

=

(
nK

∑
K=1
|K|

nG

∑
g=1

ω
g
K

∣∣∣∣α2 (α− 1)eK
ij +

β

2
(β− 1)eK

ik

+αβGij
KXik + αγGij

KXil + βγGik
K Xil

∣∣∣p) 1
p

,

where nK is the number of elements in the mesh, |K| the volume of the Kth element, nG the
number of Gauss points for the Kth element and ω

g
K the gth quadrature weight for the Kth

element.

Proof. Without loss of generality, we will provide the proof for the (2D) case in order
to avoid redundancy, the same analysis can be done for (3D).
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(∫
Ω
|u−Πhu|p dΩ

) 1
p

=

(
nK

∑
K=1

∫
K
|u−Πhu|p dK

) 1
p

=

(
nK

∑
K=1
|K|

nG

∑
g=1

ω
g
K|
∣∣∣u(QK

g )−Πhu(QK
g )
∣∣∣p dK

) 1
p

=

(
nK

∑
K=1
|K|

nG

∑
g=1

ω
g
K

∣∣∣v
2
(v− 1)eK

ij +
w
2
(w− 1)eK

ik + vwGij
KXik

∣∣∣p) 1
p

,

with QK
g being the quadrature points of element K.

In this section, we have carried out an analysis on the equivalence between the edge
based error estimator and the interpolation error in Lp norm for a regular function.
Based on this result, the constructed mesh driven by the minimization of the edge
based error estimation will enable an optimal control on the interpolation error in Lp

norm and hence a good capture of all solution scales.

2.5.8 Optimal metric construction

As stated earlier, the mesh optimization algorithm consists of three major steps: a P1

gradient recovery using the length distribution tensor, followed by an edge-based a
posteriori sampling of the interpolation error that will be synthesized to derive a new
metric tensor encoding stretching feedback to drive the mesh toward optimality. In
the previous sections, we have addressed the first two steps toward anisotropic mesh
adaptation, we are now ready to build-up the metric field that generates the anisotropic
and well-adapted mesh induced by the error estimator.

We have cast the mesh optimization problem of finding an optimal mesh that mini-
mizes the Lp norm of the interpolation error of a certain field as a problem of seeking a
metric fieldM defined at the nodes of the mesh that drives the mesh toward optimality
based on the error sampling estimator.

In the framework of metric based anisotropic mesh adaptation, two possible at-
tempts for building the adapted mesh can be adopted: adapting the mesh while re-
specting a certain level of accuracy and adapting the mesh while preserving a fixed
number of degrees of freedom. When dealing with unsteady phenomena, new features
may appear in the solution, to keep up with the level of accuracy, the former approach
tends to refine the mesh by adding new degrees of freedom which if not well controlled
can cause a drastic increase in mesh complexity, thus impacting negatively the compu-
tational time of the simulation. However, from a practical point of view, in order to
simulate long-time and large-scale industrial applications it is preferable to choose a
number of nodes N based on the available computational resources and to determine
the most accurate possible solution. So the level of accuracy is not set a priori but it is
highly desirable to have the best representation of the simulated phenomena.



2.5. Error estimation for anisotropic mesh adaptation 115

The method that we propose produces the optimal mesh under the constraint of a
fixed number of nodes. It tends to refine the mesh in a hierarchical importance of the
solution’s gradient. In other words, if new features with high gradients appear in the
solution, the mesh will be automatically coarsened in regions with lower gradients and
will be refined near the newly emerging features. In that case, if a small number of
nodes was fixed by the user, the solution will still be well captured although not with
the same level of accuracy.

In this section, we intend to develop a metric based mesh adaptation that is capa-
ble of well capturing the anisotropy of physical phenomena by generating extremely
stretched and highly directional elements under the constraint of a fixed number of
nodes. The metric tensor would prescribe optimal mesh sizes and element orienta-
tions. The developed algorithm strives to improve the quality of the aforementioned
estimates by attempting to reduce and equi-distribute the error over the edges of the
mesh under the constraint of a fixed degree of freedom.

The novelty of the developed technique resides in the combination of an edge-based
error estimation with the equi-distribution principle to derive a set of edge stretching
factors resulting in an optimal anisotropic mesh adaptation. Unlike the Hessian-based
techniques for metric construction, the method that we propose avoids the reconstruc-
tion of this tensor and renders a reduction in the computational cost.

The method consists in stretching the edges of a mesh in a way to better capture
the anisotropy of the solution. Starting from the natural metric defined earlier and
associated with the current mesh, we intend to modify the definition of the length
distribution tensor to reflect the stretching of edges in their own direction. Without
loss of generality, we consider a node Xi of the mesh and the edge Xij connected to Xi.
The modified edge is defined by:

X̃ij = sijXij . (2.86)

The length distribution tensor corresponding to the modified edges reads as:

Xi =
1
|Γ(i)| ∑

j∈Γ(i)
sijXij ⊗ sijXij ,

Consequently, the associated metric tensor will be given by:

Mi =
1
d
(X)−1 . (2.87)

The issue that remains to be addressed is how to define the stretching factors in a way
that the interpolation error in the new resulting optimal mesh will be minimized under
the constraint of a fixed number of nodes.
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2.5.8.1 Metric construction minimizing the total induced error for a fixed number of edges

A metric construction that intends to minimize the total error induced on the edges
of a mesh was proposed in [Coupez 11]. The result is summarized in the following
theorem:

Theorem 26.1. Let A be a prescribed number of edges, eij = |Gij · Xij| be the calculated error
along the edge Xij of the previous mesh, and p ∈ [1, d] be an exponent to be defined.

Consequently, for a set of stretching coefficients

S =
{

sij ∈ R+ ; i = 1, · · · , N ; j = 1, · · · , N ; , Γ(i) ∩ Γ(j) 6= φ
}

,

the continuous metric field defined at the mesh nodes and that minimizes the interpolation error
for a fixed number of nodes is given by:

Mi =
1
d

 1
|Γ(i)| ∑

j∈Γ(i)
Xij ⊗ Xij

−1

, (2.88)

where,

sij =

(
λ

eij

) 1
p+2

, (2.89)

and

λ =


∑
i

∑
j∈Γ(i)

e
p

p+2
ij

A


p+2

p

. (2.90)

Proof. By virtue of the quadratic behavior of the error with respect to the stretching
factors, the total error induced on the modified mesh is given by:

ϕ(S) =
1
2 ∑

i,j
s2

ijeij .

Note that the factor 1
2 is used to avoid counting the contribution from edge Xij twice,

once as Xij and once as Xji.

We aim at minimizing the functional ϕ(s) under the constraint of a fixed number
of edges:

S = argmin
S, s.t ∑

i<j
1

ϕ(s) . (2.91)

We introduce ηij = s−p
ij as being the number of edges created as a result of reducing

the edge Xij by a factor sij. The exponent p intends to take into account the fact that the
edges are created not only in the direction of Xij but also implicitly from the crossing
of the newly emerged edges. Thus the constraint from the imposed number of edges
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is written as:

∑
i,j

s−p
ij = A .

Then the optimization problem can be reformulated as a Lagrangian:

L(S, λ) = ϕ(S) +
λ

p
((

ηij
)
− A

)
, (2.92)

where λ
p is the Lagrangian multiplier to account for the constraint on the number of

edges.

At minimum, we have:
∂L
∂S

= 0 and
∂L
∂λ

= 0 .

Therefore, for every sij we have:

∂L
∂sij

= 0 =⇒ sijeij − λs(p+1)
ij = 0 =⇒ sij =

(
λ

eij

) 1
p+2

(2.93)

∂L
∂λ

= 0 =⇒ ∑
i,j

(
eij

λ

) p
p+2

= A =⇒ λ =


∑
i

∑
j∈Γ(i)

e
p

p+2
ij

A


p+2

p

. (2.94)

This proves the statement of the theorem.

Obviously, a zero estimated error can lead to the generation of an edge with infinite
length which cannot be handled by the mesher and in practice can lead to complications
for the simulation. On the other hand, a very large error yields a mesh that is very
refined at the location of high gradient. This implies either a loss in accuracy over the
whole domain or the need to impose an excessive number of degrees of freedom. The
latter results in a drastic increase in the computational cost of the simulation. These
issues are resolved by using a regularization of the errors along the edges as follows: eij = max

(
|Gij · Xij|, εmin|Xij|2

)
,

eij = min
(
|Gij · Xij|, εmax|Xij|2

)
.

(2.95)

These choices are justified by the following proposition:

Proposition 27. The mesh associated with the edge error

eij = ε|Xij|2

is uniform if and only if:
|Xij| = h

the edge length is constant.
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Proof. Proof of⇒:
Assume that the mesh associated with edge error estimates eij = ε|Xij|2 is uniform with
edge length h, then:

h = |X̃ij| = sij|Xij| =⇒ sij =
h
|Xij|

.

The mesh is uniform when sij = 1.
Proof of⇐:
Assuming that all the edges are of the same constant length |Xij| = h, then

λ =

∑
i

∑
j∈Γ(i)

ε|Xij|2

A


p+2

p

= ε|Xij|2 .

Hence sij = 1.

Therefore background meshes with fixed edge lengths can be used assigning the
maximum and the minimum edge lengths. The error estimates for these meshes are
proportional to the square of the edge length.

Remark 28. When the scaling factors for the mesh edges are one then the mesh is optimal.
Hence the process of mesh adaptation can be repeated until all the stretching factors are almost
one.

Remark 29. The exponent p intends to take into account the fact that the nodes are created not
only along the edge but also implicitly from the crossing of the newly emerged edges. In general,
we consider the number of created edges to be on average s−d

ij .

In this work we propose a new track for metric construction. It avoids the ambigu-
ous choice of the parameter p in the previously described metric tensor. The method
that we develop minimizes the error estimates of the interpolation error by imposing
the equi-distribution principle for a fixed number of nodes. In the next chapter the
equi-distribution will be done in space and time hence providing an additional control
on the time step sizes.

The error equi-distribution principle: It is based on the idea of evenly distributing
the error over the mesh. The concept of equi-distribution roots back to the work of
[Burchard 74] on determining the best spline approximations with variable knots. The
principle demonstrated its importance for multi-dimensional adaptive mesh genera-
tion and several works were developed in that line [Dvinsky 91, Cao 02, Chen 04a].
Babus̆ka and Rheinboldt [Babus̆ka 78] conducted an a posteriori error analysis for the
finite element methods and showed that a mesh is asymptotically optimal if all the
error indicators are equally distributed on the mesh. Other theoretical convergence
analysis were also developed in [Kopteva 05, Cao 02, Chen 08].
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Our procedure for building the metric tensor relies on considering a target homo-
geneous error that is equi-distributed over the mesh. In order to maintain a fixed
number of degrees of freedom in the mesh, we define the target error as a function of
the imposed number of nodes.

In section 2.5.6, we have demonstrated that the interpolation error along an edge
Xij changes quadratically as the edge length is stretched by a factor sij. That is:

ẽij = s2
ijeij . (2.96)

For the target error to be equi-distributed in the mesh corresponding to the stretched
edges, we should have:

∀X̃ij ∈ H̃ , ẽij = ε , (2.97)

where ε is a target error that is uniform and totally balanced over the mesh.

Substituting equation (2.97) into (2.96) we obtain:

sij =

(
ε

eij

) 1
2

. (2.98)

Let nij be the number of created nodes in relation with the stretching factor sij and in
the direction of the edge Xij. It is given by:

nij =

(
ε

eij

)− 1
2

= s−1
ij . (2.99)

In what follows, we will use the notation nij(ε) to highlight the dependence of nij on ε.

We are looking for a node distribution tensor N i associated with node Xi that
distributes the number of nodes along the different directions of the edges connected
to node Xi.

For each node Xi of the mesh, the number of created nodes along Xij is given by:

N iXij = nijXij . (2.100)

This equation can be constraining so we relax it via the corresponding least squares
approximation:

N i = argmin
N i∈Rd×d

sym

∑
j∈Γ(i)

|NXij − nijXij|2 (2.101)
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Proposition 30. The node distribution tensor is defined in a least squares sense by:

N i =
1
d

(
Xi
)−1

 ∑
j∈Γ(i)

nijXij ⊗ Xij

 (2.102)

Proof. Using the standard differentiation of (2.101) and noting that at the minimum,
the derivative is zero, we get:

∑
j∈Γ(i)

NXijXij = ∑
j∈Γ(i)

nijXijXij (2.103)

and equivalently,

Xi : N i =

 ∑
j∈Γ(i)

nijXij ⊗ Xij

 (2.104)

Note that for a symmetric positive definite tensor A of order d we have A : A−1 = d,
we thus obtain the node distribution tensor:

N i =
1
d

(
Xi
)−1

 ∑
j∈Γ(i)

nijXij ⊗ Xij

 (2.105)

The metric tensor that equi-distributes a uniform error over the mesh in the view
of minimizing the interpolation error estimates under the constraint of a fixed number
of nodes is given by the following theorem:

Theorem 30.1. Let N be a prescribed number of nodes, eij = |Gij · Xij| be the calculated error
along the edge Xij of the previous mesh, ε the uniform equi-distributed error. Then, for a set of
stretching coefficients

S =
{

sij ∈ R+ ; i = 1, · · · , N ; j = 1, · · · , N ; Γ(i) ∩ Γ(j) 6= φ
}

,

the continuous metric field defined at the mesh nodes and minimizing the interpolation error for
a fixed number of nodes is given by:

Mi =
1
d

 1
|Γ(i)| ∑

j∈Γ(i)
s2

ijX
ij ⊗ Xij

−1

, (2.106)

where,

sij =

(
ε

eij

) 1
2

, (2.107)
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and

ε =

 N
∑
i

ni(1)

− 4
d

. (2.108)

In here, ni(1) denotes the number of nodes created around node Xi for a global homogenous
error of 1 and it is computed by:

ni(1) =

√√√√√det

1
d
(Xi)

−1

 ∑
j∈Γ(i)

(
1
eij

)− 1
2

Xij ⊗ Xij

 (2.109)

Proof. The local mesh density i.e. the total number of created nodes per node Xi in the
different directions connected to it is:

ni(ε) =

√√√√√det

1
d
(Xi)

−1

 ∑
j∈Γ(i)

nijXij ⊗ Xij



=

√√√√√det

1
d
(Xi)

−1

 ∑
j∈Γ(i)

(
ε

eij

)− 1
2

Xij ⊗ Xij

 . (2.110)

Hence, we have:

ni(ε) = ε−
d
4

√√√√√det

1
d
(Xi)

−1

 ∑
j∈Γ(i)

(
1
eij

)− 1
2

Xij ⊗ Xij


⇔ ni(ε) = ε−

d
4 ni(1) . (2.111)

where ni(1) is the number of created nodes for a uniform error equal to 1.

The total number of nodes in the adapted mesh is therefore:

N = ∑
i

ni(ε)

N = ε−
d
4 ∑

i
ni(1) . (2.112)

Consequently, the global induced uniform error for a given total number of nodes N
can be determined by:

ε =

 N
∑
i

ni(1)

− 4
d

. (2.113)

We will denote the uniform induced error ε by ε(N) to reflect its dependence on the
prescribed degrees of freedom.

Thus, the corresponding stretching factors under the constraint of a fixed number
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of nodes N are given by:

sij =

(
ε(N)

eij

) 1
2

=

∑
i

ni(1)

N


2
d

e−1/2
ij . (2.114)

We can now deduce the metric tensor associated with stretching the edges Xij of the
mesh in their own directions by factors sij:

Mi =
1
d

 1
|Γ(i)| ∑

j∈Γ(i)
s2

ijX
ij ⊗ Xij

−1

(2.115)

We use the same regularization forms (2.95) described above in order to bound the
minimum and the maximum error estimates and hence control implicitly the minimum
and maximum mesh sizes.

2.5.9 Privileged length distribution tensor

In the aim of building the metric tensor that reflects to the best the solution’s anisotropy,
we reconsider in this section the definition of the length distribution tensor that we
constructed based on an averaged orientation property around a node Xi:

Xi =
1
|Γ(i)| ∑

j∈Γ(i)
Xij ⊗ Xij ,

where we average the contribution of the different edges to determine the state of
node Xi. This definition can be modified to give additional weight to the edges in the
direction of the solution’s gradient, so we associate to each of the edges surrounding
Xi a certain privilege that depends on its orientation hence resulting in a better capture
of anisotropy. For that purpose we define for an edge Xij a weight ωij as follows:

ωij = sin(θij) (2.116)

where θij is the angle formed between the solution’s gradient ∇u, or the recovered
gradient, and the edge Xij as shown in figure 2.7. The weights can then be computed
by:

ωij =
||∇u ∧ Xij||
||∇u|| · ||Xij||

(2.117)

As for most PDE’s that we consider, the exact gradient is not known, we compute the
weights with respect to the reconstructed gradient.

Using the privileging principle, the modified definition of the length distribution
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Figure 2.7 – Angle between the solution’s gradient and the edge Xij.

tensor for computing the optimal metric tensor reads as:

Xi =
1
|Γ(i)| ∑

j∈Γ(i)
s2

ijωijXij ⊗ Xij ,

It is important to mention that for the case of null gradient, the weights will be set to
one and a regularization on the error estimates will be applied as described above in
equation (2.95). In this case the edges will be set to the maximum in accordance with
the regularization formula. No additional privilege needs to be added. The efficiency
of the newly defined length distribution tensor will be confronted in the numerical
examples with the averaged distribution one.

Remark 31. A theoretical validation on the optimality of this construction and its extension to
ensure second order control on the error estimates will be the subject of future investigations.

In this section, we have presented an optimal metric generation technique relying
on an edge-based error estimation and on the equi-distribution principle. The full
derivations and the rationales behind the construction were provided. We started by
defining a length distribution tensor followed by a gradient recovery procedure. The
reconstructed gradient is then used to compute an edge based interpolation error es-
timator. The latter is minimized under the constraint of a fixed number of nodes by
respecting the equi-distribution principle. A set of stretching factors associated to each
edge is then generated, leading to the optimal metric tensor.
The presented method is simple, easy to implement, independent of the problem at
hand, and works under the constraint of a fixed number of nodes leading to the opti-
mal (most accurate) mesh for a given computational power. An important characteristic
of the method that we propose is that it does not require the knowledge/recovery of
the solution Hessian which might negatively affect the computational cost of the sim-
ulation. The ability to control the Lp norm of the interpolation error permits a higher
resolution of the different solution’s scales, as will be demonstrated by the numerical
results.
Since the metric field is defined at the nodes of the mesh, it can be given to any mesh
generator that takes as input a metric field for whatever meshing technique (Delau-
nay, moving front method, local topological optimization, · · · ). Many of these mesh
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generators can be found nowadays in the literature [Coupez 91, George 99, Frey 01,
Bottasso 04, Geuzaine 09, Li 05]. In this work, we give the metric tensor to the MTC
mesher (described earlier) that would in turn generate an anisotropic and adaptive
mesh as will be discussed in the next section.

2.6 Anisotropic mesh adaptation through local topological

optimization

We are interested, in this section, in answering the following question: how does a
mesh generator respond to a given metric field? We will explain the general idea, the
details are provided in [Gruau 05] and will be omitted here for brevity.

We have explained previously how a mesh of a domain is generated from the mesh of
its boundary and how local topological optimization are repeated iteratively until the
minimal volume criterion is satisfied and a good geometric quality is obtained.

Starting with an initial mesh, the minimal volume should be respected and the
quality of the elements should be improved. The mesher goes through a series of topo-
logical optimization using the “starring” operator and the element quality is measured
in relation with the metric.

In the context of metric based anisotropic mesh adaptation, the quality criterion for
an element K in the mesh is defined by:

QK = min

(
c0|K|M(K)

hd
M(K)

, hd
M(K) ,

1
hd
M(K)

)
(2.118)

where,

• M(K) is the mean element metric: M(K) = 1
d+1

d
∑

i=0
Mi, withMi being the metric

tensor provided at node Xi. We note that this choice can be improved into an
affine invariant approach or a logarithmic reconstruction.

• |K|M = |K|
√
M(K) is the new volume of the element |K|.

• hM(K) =

(
2

d(d+1)

d
∑

i=0
||Xij||2M(K)

) 1
2

is the average edge length.

• c0 = d!√
d+1

2
d
2 is a constant that is chosen so that a quality 1 would be obtained

when the element is equilateral in the Riemannian space associated with the met-
ricM(K).

After each topological modification, the metric tensor is interpolated from the old mesh
to the new one. More precisely, when new nodes are created (the centroids of a cer-
tain patch) the values at these nodes are computed by averaging the values on the
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surrounding nodes in the patch.

M(C) =
1
n

n

∑
i=0
Mi

When the new node is the midpoint of a segment joining two existing nodes [Xi, X j]

then the metric at the midpoint is defined to be the average of the metrics at the ex-
tremities.

M(C) =
Mi +Mj

2
This way of interpolation was demonstrated in [Gruau 05] to be fast and efficient. We
note that this choice can be improved into an affine invariant approach or a logarithmic
reconstruction.

We highlight the utility of defining the metric tensors at the nodes of the mesh
for metric interpolation throughout the remeshing process. If the metrics were defined
at the element level then an extrapolation to the nodes needs first to be performed fol-
lowed by projecting back onto the created elements through the “copy-paste” process
of the mesh topological improvement.

2.7 Fields’ interpolation between meshes

Once a new mesh is obtained, the solution fields need to be interpolated from the back-
ground mesh HBackground to the new mesh Hnew in order to pursue the computations.
A classical interpolation method 2.8 is used to transfer data according to their type:

• P1 variables: Nodal variables computed at the level of the background mesh
vertices.

• P0 variables: Element variables defined at the level of the background mesh
elements.

Transfer of P1 data:
The transfer of the discrete P1 fields defined at the nodes’ level is done in two steps:

1. A localization step, whereby a method of bounding boxes [Digonnet 01], is used
to identify the element K = {XK

i , i = 1, · · · , d + 1} in the background mesh that
contains the new node P.

2. A linear interpolation of the P1 variable field from the nodes of the element K to
P using its barycentric coordinates βi with respect to K:

Πhu(P) =
d+1

∑
i=1

βi(P)uh(XK
i ) (2.119)

This interpolation scheme is P1 exact, of second order and independent of the
mesh topology.
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Figure 2.8 – P1 interpolation from an old mesh to a new one, adopted from [Boussetta 06].

Transfer of P0 data:
There are two possible ways of transferring P0 fields from the background to the new
mesh. One possibility is to extrapolate the fields from element level onto the nodes
then apply a P1 transfer to the Gauss points of Hnew elements. The other possibility is
to apply a direct transfer whereby the Gauss points of the new elements are localized
inside the elements of the background mesh and take their values. The latter technique
showed that it makes rough choices especially for coarse elements whereas the former
one induces diffusion due to the extrapolation step. However the projection technique
suits better the MTC mesher since the latter proceeds by local modification of topolo-
gies, i.e. if a certain region of the mesh is not changed, the data will not be transferred,
hence avoiding numerical diffusion.

Before we move on to the numerical validation of the proposed metric-based mesh
adaptation method, let us recall its key features:

• The adaptation yields a control on the Lp norm of the interpolation error through
a procedure relying on a posteriori estimates without any a priori assumptions
on the solution behavior.

• The method does not require the recovery of the solution’s Hessian which is
a costly step in most metric-based mesh adaptation techniques present in the
literature.

• The method produces the optimal mesh for a fixed degree of freedom.

• By construction, it preserves the second order convergence.

• It is automatic, the only parameter that needs to be controlled is the number of
degrees of freedom.

• The method tends to refine the mesh in the hierarchical importance of the so-
lution’s gradient. In other words, if new features (with high gradients) appear
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in the solution, the mesh will be automatically coarsened in regions with lower
gradient and will be refined near the newly emerging features. In this case, for a
small number of nodes fixed by the user, the solution will still be well captured
although not with the same degree of accuracy.

We summarize in algorithm 2 the steps for mesh adaptation based on given function
values.

Algorithm 2: Mesh adaptation algorithm on a given function u.
Input: Input mesh H, a target number of nodes N and a function’s nodal values

ui.
Output: An optimal anisotropic mesh H̃ well adapted to accurately capture the

variation of ui.
begin

while (not converged) do
• for each node Xi in H, do

– Compute the recovery gradient Gi.

– Determine the error estimates eij on the edges Xij connected to Xi.

– Compute the stretching factors sij on the edges Xij:

∗ Method 1: using the formula for the total error minimization.
∗ Method 2: using the error equi-distribution principle.

– Construct the metric tensorMi.

• Generate the optimal mesh H̃.

• Interpolate u from H to H̃.

• Test the stopping criterion.

In practice, a unit mesh cannot be achieved. What we aim at getting is quasi-unit
edges [Frey 01] where:

1√
2
≤ |Xij|Mi ≤

√
2

At the limit, we have |Xij|Mi =
√

2. Together with the regularization form (2.95), we
can determine an upper bound for the error estimates below which we can consider
that we have reached a unit mesh. Choosing a threshold value εmax, we get a unit mesh
when:

∀i, j , εmax|Xij|Mi ≤
(√

2
)2

εmax

This stopping criterion is applied when using the method based on the minimization
of the total error over the mesh. On the other hand, when the method based on the
error equi-distribution principle is applied, we assume that the mesh has converged
to the optimal configuration when the computed homogenous error presents a relative
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error between two consecutive remeshings less than the threshold value:

ε(N)ζ − ε(N)ζ−1

ε(N)ζ
≤ εTOL , (2.120)

where ζ is the number of repeated remeshing and εTOL is a certain tolerance.
We will show in chapter 5 how the method can be easily extended to account for

several fields in a single metric.

2.8 Numerical experiments

In this section we illustrate on the performance of the developed edge-based error
estimators and anisotropic mesh adaptation technique on two and three dimensional
analytical test cases. We also verify the second order convergence of the method and
compare it to other results present in the literature. To stay in the context of numerical
examples where the analytical solution is unknown, we do not use the actual gradient
of the known function for the computation of the error estimates.

2.8.1 Convergence tests on a quadratic function

In order to perform convergence tests, we construct unit meshes with growing com-
plexities:

HN , H2N , H4N , H8N , H16N

↓ , ↓ , ↓ , ↓ , ↓
N , 2N , 4N , 8N , 16N

In the numerical examples we take N = 1, 000. Then we compute the actual interpola-
tion error on each of these meshes using a Gauss interpolation formula:

||u− πhu||Lp =

(
nK

∑
K=1

∫
K
|u−Πhu|p

) 1
p

=

(
nK

∑
K=1

ng

∑
i=1

ωi |u(Gi)−Πh(Gi)|p
) 1

p

(2.121)

with nK being the number of elements in the mesh and ng is the number of Gauss
points in element K.

In this example we address two aspects of the developed anisotropic mesh adaptation
algorithms. First we are interested in studying and comparing the three proposed
methods:

• Mesh adaptation based on the total interpolation error minimization. We denote
the mesh obtained with this method as HI .

• Mesh adaptation based on the privileged interpolation error minimization. We
denote the mesh obtained with this method as HIP.
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(a) Error in the gradient reconstruction (b) L1, L2 and L3 norms of the interpolation error
and the corresponding edge-based error estimator

Figure 2.9 – Quadratic function: validation of the gradient reconstruction and the edge-based error
estimator.

• Mesh adaptation based on the error equi-distribution. We denote the mesh ob-
tained with this method as HE.

• Mesh adaptation based on the privileged error equi-distribution. We denote the
mesh obtained with this method as HEP.

The methods are validated in terms of order of convergence, i.e. how accurate is the
algorithm, and of efficiency, i.e. how fast does the method reach a unit mesh.

In this test case we first validate the developed gradient reconstruction approach
then we evaluate the performance of the derived error estimator and mesh adapta-
tion technique to control the interpolation error in the Lp norm. For that purpose we
consider a quadratic function u ∈ R defined on the domain Ω = [−1.5, 1.5] by:

u(x, y) = 0.3(x2 + y2) (2.122)

As the exact gradient of the function is known, we can determine how accurate is the
developed gradient recovery technique. To evaluate the accuracy of the proposed re-
construction, we compute the L1 norm of the error between the exact and the recovered
gradients on meshes with increasing complexities.

Figure 2.9(a) presents the variation of the interpolation error’s L1 norm induced
by the reconstruction technique on different meshes. We can clearly see how the er-
ror changes quadratically as the number of nodes is doubled. We can infer that the
proposed recovery technique results in a second order reconstruction of the function’s
gradient.

We move on now to assess the reliability of the proposed error estimator. To do
so, we compare the Lp , (p = 1, 2, 3) norm of the interpolation error to the estimated
Lp , (p = 1, 2, 3) norm as discussed in section 2.5.7. Figure 2.9(b) shows a good match-
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Figure 2.10 – Quadratic function: Mesh convergence for the L1, L2 and L3 norms of the interpolation
error

ing between the computed interpolation error and the corresponding error estimate.
Therefore by limiting the estimated error, we are capable of controlling the Lp norm of
the interpolation error.

Using the developed mesh adaptation algorithms relying on the edge based error
estimates, we adapt the mesh and analyze the control of the interpolation error for the
L1, L2 and L3 norms. We start the computations on a coarse mesh made up of 100
nodes and then refine it according to the proposed adaptive techniques.

Concerning the mesh convergence, for a regular and smooth function as shown in
figure 2.10, the theoretical second order is reached whatever the selected norm Lp , p ∈
[1, ∞[.

2.8.2 Numerical validations on functions with steep gradients

Anisotropic mesh adaptation is devised to reproduce the anisotropic features of phys-
ical phenomena. However the construction becomes more challenging when sharp
angles are present in the adaptation field as the algorithm tends to create elements
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with extremely high aspect ratios. In such cases the mesh generator does not produce
the optimal unit mesh in one shot, several attempts need to be executed in order to
drive the mesh/solution couple toward optimality. So for each number of degrees of
freedom the algorithm of adaptation is repeated several times until a unit mesh is ob-
tained, i.e. until the measured interpolation error shows no additional improvement.
Note that the number of iterations to reach a unit mesh depends highly on the quality
of the initial mesh. The efficiency analysis will be applied on three different functions
that vary in stiffness, regularity and scales of variations. In practice, we will consider
that we have reached a unit mesh when the relative difference in the interpolation error
between two successive meshes is less than 1%.

2.8.2.1 Mountains and valleys

Before we proceed into the convergence and efficiency analysis on functions with steep
gradients and high anisotropic features, let us give an example showing the sharp
anisotropic features of the proposed algorithms. We consider the mountains and val-
leys function taken from [Borouchaki 01]. A circular domain of radius 3 centered at
the origin of the space is considered. We intend to adapt the mesh on the analytical
solution defined by:

f (x, y) = exp−3((x+0.3)2+(y+0.2)2)− exp−3((x−0.3)2+(y−0.4)2)

+
1
2

tanh
(
10 sin(x2 − y2) cos(x2 + y2)

) (2.123)

This test case is a complicated one as the computational domain’s boundary is curved.
The initial mesh is isotropic and made up of 1, 000 nodes. We iteratively adapt the
mesh using the algorithm based on the error equi-distribution. As this example is just
for illustrative purposes we do not intend to compare the performance of the different
proposed mesh adaptation algorithms. This will be done in the following examples.
We present in figure 2.11 four consecutive stages of anisotropic refinement and a zoom
on the last stage. It is important to note that all the represented meshes contain roughly
the same number of elements set to 7, 000 at the beginning of the computations. The
zoom shows exactly how anisotropic the mesh can be around obstacles/sharp gra-
dients thanks to this method. We can see how the nodes in the mesh are automat-
ically removed from regions of low function’s variations and others are added near
the steep gradients. The good orientation of the generated elements allows a good
representation of the curvatures. Note that due to the error equi-distribution over the
edges, the anisotropic meshes tend to preserve the function’s symmetric profile by
equally partitionning the nodes over the regions of steep features. Figure 2.12 shows
the anisotropic mesh obtained in the reference in eight consecutive mesh adaptations.
We showed the mesh at the first, second, and last phase of modification as presented
in [Borouchaki 01]. These meshes are made up respectively of 37, 070, 67, 533, 107, 469,
and 47, 419 nodes whereas the meshes generated by our adaptive algorithm are varying
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Figure 2.11 – Mountains and valleys: Iterative anisotropic refinement obtained within 4 consecutive
iteration of the proposed mesh adaptation algorithm.

around the same degree of freedom ( 7, 000). The advantages of iteratively adapting
the mesh is clear as the sharpness of the representation is evident in the last iterations,
where the anisotropy is more pronounced, whereas the first iteration fails. As shown in
figure 2.13, the function computed on an isotropic non-adapted mesh presents an “or-
ange skin”, its surface is not smooth and reflects a poor quality representation whereas
the one computed on the generated anisotropic mesh has a high quality, it presents a
smooth surface and the mountains’ sharp descents are accurately captured.

2.8.2.2 MINES logo

In the view of reflecting how steep can the mesh become, we take the logo of the
Ecole des Mines and apply the anisotropic mesh adaptation algorithm for 5 consecutive
iterations. The example was performed in 3D with around 30, 000 nodes. We present
in figure 2.14 the 3D logo together with a cross section along the y = 0 plane showing
the capability of the proposed technique to capture and reproduce very sharp angles
with a high resolution. One can notice how the elements are extremely stretched and
well oriented near the sharp edges.

2.8.2.3 Steep hyperbolic tangent function

The objective of this numerical example is to illustrate how the developed metric con-
struction techniques are well defined to permit a good capture of a function’s steep
layers. The analytical function that we consider is taken from [Coupez 11]. It is defined
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Figure 2.12 – Mountains and valleys: Iterative anisotropic refinement obtained within 8 consecutive
iterations in the reference [Borouchaki 01].

Figure 2.13 – Mountains and valleys: first iteration (left) and last one (right) in the mesh adaptation
process.

Figure 2.14 – Anisotropic mesh adaptation around the logo of the Ecole des Mines and zoomed
snapshots near sharp angles.
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on the domain [0, 1]d by:

a(x) = tanh
(

E sin
(

5
π

2
||X||

))
b(x) = tanh

(
E sin

(
5

π

2
||X−C||

))
C =

 1
·
1


u(x) = a o a(x) + b o b(x) (2.124)

The parameter E varies from 1 to 32; the larger E is, the sharper the function’s gra-
dient is, favoring anisotropic meshing. The edge-based error estimation based on
the control of the interpolation error is evaluated for the L1, L2 and L∞ norms. For
sake of comparisons on a steep function, we set E = 16 and start the computations
on an isotropic mesh made up of 100 nodes. We depict in figure 2.15 the analytical
function obtained on an anisotropically adapted mesh (of around 7, 000 nodes) with
the privileged error equi-distribution technique. Despite the simplicity of this function,

Figure 2.15 – Surface plot (left), and isovalues (right) of the steep radial function described by equation
(2.124) on a mesh made up of 7, 000 nodes.

it develops complex features that manifest in the interference between two radial
gradients forcing isotropic meshing at the intersecting regions. Figure 2.16 shows the
adapted meshes (HI , HIP, HE and HEP) after 7 iteration of the adaptation algorithm
for mesh complexities of 7, 000(left) and 20, 000(right) nodes. We can identify from
the mesh plots that the adaptations based on the privileged orientation scheme are
capable of converging faster toward the optimal mesh whereas the algorithms based
on the averaged length distribution tensor are still driving the mesh toward optimality
and did not reach a good representation yet. We highlight that the method based on
the error equi-distribution converges even faster than the one derived from the total
error minimization algorithm. However for a higher number of degrees of freedom, 7
iterations were enough to converge to optimality using any of the developed methods.
We can detect, on the converged meshes, how the elements are well oriented and
stretched along the tangential direction to allow a steep capture of the function’s circu-
lar gradient. The nodes are being automatically redistributed with a higher density in
the vicinity of sharp gradients.
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Figure 2.16 – Steep radial function: anisotropic meshes (HI , HIP, HE, and HEP respectively from top
to bottom) obtained with around 7, 000(left) and 20, 000(right) nodes after 7 successive adaptations.



136 Chapter 2. Anisotropic mesh adaptation

Adaptation ||u− πhu||1 ||u− πhu||2
HI 1.15e−3 8.26e−3

HIP 3.97e−4 1.26e−3

HE 8.72e−4 1.92e−3

HEP 2.38e−4 5.11e−4

Table 2.1 – Steep radial function: statistics on the interpolation errors for the different meshes generated
with 7, 000 nodes after 7 successive adaptations.

# Nodes HI HIP HE HEP

1000 21 15 22 17

2000 17 8 16 8

4000 16 8 15 7

8,000 14 7 13 7

16,000 6 6 7 4

32,000 5 5 5 4

64,000 5 5 5 4

Table 2.2 – Steep radial function: statistics on the number of mesh adaptations needed to drive the mesh
toward unity.

We summarize in table 2.1 the history of the L1 and L2 norms of the interpolation
error on the anisotropically adapted meshes using 7, 000 nodes and after 7 iterations
of the adaptation algorithm. We can notice that the privileged adaptation minimizes
better the interpolation error. This result is in correlation with the mesh plots in figure
2.16 as it renders a faster convergence toward the optimal mesh. In order to evaluate
the mesh convergence rates of the proposed algorithms in presence of sharp gradients,
we have conducted convergence studies for the L1 and L2 norms of the interpolation
error. For that purpose, starting with the same initial mesh of 100 nodes, we have
applied each of the edge-based anisotropic mesh adaption algorithms iteratively until
the convergence of the couple solution/mesh. Figure 2.17 summarizes the convergence
order estimates. We can observe that a poor convergence is obtained on isotropically
refined meshes. On the contrary, as expected from the theoretical analysis, the different
proposed techniques of anisotropic mesh adaptation allow an asymptotic recovery of
the second order convergence. While 8, 000 nodes were needed for the mesh to con-
verge in the L2 norm, a faster capture was established in the L1 norm with only 4, 000
nodes. This finding is in accordance with the fact that the L1 norm requires less regu-
larity than the other norms. We provide in table 2.2 a synthesis on the number of mesh
adaptations needed to drive the mesh toward unity. We highlight the fewer number of
meshing iterations as the imposed number of nodes is increased; in other words, for
a sufficient number of degrees of freedom, a fast convergence is achieved. In this test
case, we have validated the accuracy and efficiency of the developed anisotropic mesh
adaptation algorithms. The proposed a posteriori edge-based error estimation proved
to be a robust indicator of a solution’s anisotropy.
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Figure 2.17 – Steep radial function: convergence analysis on the L1 and L2 norms of the interpolation
error of the analytical function defined by (2.124).
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We have pointed out the good results generated by both techniques of metric con-
struction: the one based on the total error minimization and the one involving an error
equi-distribution. The two methods achieved an asymptotic second order convergence
and provided good efficiency in driving the mesh toward unity when a sufficient
number of nodes is employed. We note also that faster and better minimization were
obtained by the metric based on the equi-distribution principle.

To avoid result redundancy, from this point on, we will assess only this algorithm
as it will be the one used for generating anisotropic meshes throughout the rest of this
thesis.

2.8.3 Numerical validations on functions with multiscale variations

We intend in this example to demonstrate the capability of the developed anisotropic
mesh adaptation algorithm to capture the different scales present in a field of interest.
For that purpose, we consider a (2D) function taken from [Loseille 09] that exhibits vari-
ations at small and large scales with respective amplitudes 0.01 and 1. The analytical
function is defined on the domain [−1, 1]× [−1, 1] by:

u(x, y) =

{
sin(50xy) if π

50 ≤ xy < 2 π
50

0.01 sin(50xy) otherwise.
(2.125)

A plot of isovalues, a surface profile and a cross section along the x = y axis obtained
with the privileged anisotropic mesh adaptation with 7, 000 nodes are shown in figure
2.18. We can clearly identify the good capture of the small wiggles as well as the
large-scale sinusoidal wave. Unlike the metric construction based on the error equi-
distribution and the average length distribution tensor where the nodes are localized
around the steep gradient, higher weights were associated to the small scales when
using the privileged length distribution tensor. A second order convergence is reached
using an averaged or a privileged length distribution tensor. However, in accordance
with the reference, around 10, 000 nodes were needed to capture that order. We sum-
marize the convergence history in figure 2.19. We can distinguish 3 parts in the graph.
A phase of second order convergence, delimited by a mesh complexity of around 2, 000
nodes, where the steep gradients are well captured whereas the small scale sinusoidal
oscillations are not detected. A phase of slower convergence rate comes after where
the mesh detects the fine-scales but the number of degrees of freedom, between 2, 000
and 10, 000, is not sufficient to represent them and hence a significant error is high-
lighted on the mesh. Finally, for a higher number of nodes, a good capture of the
solution’s fluctuations is established hence regaining the second order convergence.
We depict in figure 2.20 the meshes generated by the metric construction based on the
equi-distribution principle and made up of around 9, 000 nodes. It shows the good
orientation and distribution of the mesh elements that present stretched edges parallel
to the sinusoidal gradient and small mesh sizes in its orthogonal direction. Note the
high concentration of the elements in the localized zones around the steep layer when
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Figure 2.18 – Multiscale function: surface plot (top-left), function isovalues (top-right) and a cross
section along the x = y axis (bottom).

Figure 2.19 – Multiscale function: Convergence analysis on the L1 norm of the interpolation error.
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using the averaged length distribution tensor.

While a slight difference can be presumed from the previous examples between
the two versions of the proposed mesh adaptation, a correlation between the sen-
sitivity to small fluctuations and the weighted length distribution tensor is evident
from this numerical test case. The choice between the two algorithms depends on
the desired sensitivity to small-scales. So if strong gradients are to be privileged with
respect to small ones, the averaged length distribution tensor works very well. On
the other hand, if one is interested in capturing all scales of a phenomena then the
privileged metric construction is encouraged. Note that both methods have almost
the same performance when the number of nodes in the mesh is sufficiently high. It

Figure 2.20 – Multiscale function: meshes obtained with 9, 000 nodes using the averaged (left) and the
privileged (right) length distribution tensor for metric construction.

is important to mention that the computational cost associated with the computation
of the scaling factors for the privileged length distribution tensor is negligible high-
lighting once again its potential in improving the accuracy/efficiency aspect of the
computations.

2.9 Conclusion

In this chapter, we have pursued the work in [Coupez 11] to develop a new route for
building anisotropic meshes. Starting with the fundamental equivalence between op-
timal and unit meshes, we aimed at building unit meshes. However, doing so on the
canonical Euclidean space yields an isotropic mesh that is fine everywhere in the do-
main and thus implies a considerable computational cost. The idea therefore was to
build this unit mesh in the Riemannian metric space. The resulting mesh would be
anisotropic and well adapted in the canonical space. We have constructed the metric
tensor that defines the Riemannian metric space at each node Xi so that to prescribe
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along each edge direction connected to Xi a scaling factor. This stretching factor was
determined in terms of the error induced along the edges. A new error estimator was
developed and it was expressed as the projected function’s gradient along the edges.
Nevertheless, since the method was constructed to be applied to any field of interest,
in particular to the solution of PDEs, and since for most physical problems, the exact
solution is not known a priori nor does its gradient, we have derived a second order
recovery approach for this field. Moreover, we have proposed two possible approaches
for computing the stretching factors: the first one intends to minimize the total error
over the edges of the computational domain and the second equi-distributes the error
over these edges. An extension to provide control on the Lp norm of the interpolation
error was established. Furthermore, we have enriched the anisotropy of the mesh by
introducing more weights to the edges in the direction of the variable’s gradient. The
theoretical investigation of this idea will be the subject of future contributions. A key
feature of the proposed adaptation method is its ability to enhance the accuracy while
preserving a fixed number of nodes which is a great advantage for industrial applica-
tions. We have validated the accuracy and efficiency of the developed error estimator
and anisotropic mesh adaptation technique on several analytical functions presenting
smooth variations, sharp discontinuities, and multiscale features. The objective in the
upcoming chapter is to apply the developed adaptation tool in the context of compu-
tational fluid dynamic simulations.

2.10 Résumé français

Dans ce chapitre, nous avons poursuivi le travail commencé dans [Coupez 11] dans le
but de développer une nouvelle méthode pour la construction de maillages anisotropes.
Partant du paradigme qu’un maillage anisotrope est équivalent à un maillage uni-
forme unité avec différentes définitions de distance, nous avons cherché à construire
des maillages unités dans des espaces métriques Riemanniens. Le maillage résultant
serait anisotrope et bien adapté dans l’espace canonique. Nous avons alors construit
le tenseur métrique associé à l’espace métrique sur chaque nœud du maillage de sorte
à ce qu’à chaque issue de ce nœud, un facteur d’étirement soit imposé. Ce facteur a
été déterminé en fonction de l’erreur induite le long des arrêtes connectées au nœud.
Un nouvel estimateur d’erreur a été proposé et a été exprimé en fonction du gradient
du paramètre de remaillage projeté sur les arrêtes. Néanmoins, étant donné que la
méthode a été construite de manière à s’appliquer sur tous les domaines et pour tout
phénomène physique, et comme pour la plupart des problèmes physiques, la solution
exacte, et donc son gradient, n’est pas connue, une méthode de reconstruction du sec-
ond ordre du gradient a été proposée. De plus, nous avons proposé deux approches
pour le calcul des facteurs d’étirement. La première consiste à minimiser l’erreur to-
tale induite sur les arrêtes du maillage et la deuxième vise à équi-distribuer l’erreur
sur ces arrêtes. Une extension pour contrôler la norme Lp de l’erreur d’interpolation
a été proposée et démontrée. Nous avons aussi proposé d’introduire des poids sur
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les arrêtes favorisant l’étirement de ces derniers dans le sens orthogonal au fort gradi-
ent du champ étudié. Une caractéristique essentielle de la méthode développée est sa
capacité d’optimiser le maillage tout en conservant un nombre fixe de nœuds ce qui
constitue un grand avantage pour les applications industrielles. Dans la dernière partie
de ce chapitre, nous avons validé la précision et l’efficacité de l’estimateur d’erreur pro-
posé et l’adaptation de maillage anisotrope développée sur plusieurs fonctions analy-
tiques présentant de faibles et fortes variations ainsi que des évolutions multi-échelles.
L’objectif dans le chapitre suivant est d’appliquer l’outil d’adaptation dans le cadre de
simulations CFD diverses.
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Despite the growing computational power, anisotropic mesh adaptation seems
mandatory to reduce the complexity of numerical simulations especially when

complex 3D industrial applications are involved. Indeed, it is highly desirable to ob-
tain the most accurate solution with the least computational time and cost. In the
previous chapter, we have developed a metric based anisotropic mesh adaptation tech-
nique. Its accuracy, efficiency and robustness were validated on analytical test cases.
The method relies on an a posteriori edge-based error estimator without any a priori
assumptions on the solution’s behavior or the problem at hand. Therefore it can be
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directly applied, without modification, to any field of interest. In this chapter, we are
interested in applying and assessing the proposed algorithm in the context of compu-
tational fluid dynamics and heat transfer simulations. In chapter 5, we illustrate on
how the algorithm can be generalized to naturally account for several fields and drive
the mesh toward optimality, hence robustly capturing anisotropic features developed
by the fields of interest. In the metric based anisotropic mesh adaptation framework
introduced previously, the idea was to construct a mesh that minimizes the interpola-
tion error of a given function. The objective now is to replace the given function by the
solution of a PDE. From the discrete solution of the problem and the length distribution
tensor, we reconstruct the gradient of this field then we evaluate the estimated error
along the edges of the current mesh. Based on the equi-distribution principle a met-
ric tensor is constructed and given to the mesh generator leading to the optimal mesh
minimizing the interpolation error of the solution. Once the new mesh is obtained,
the problem variables will be interpolated on the new mesh to proceed with compu-
tations. This process is repeated until the convergence of the mesh-solution couple.
On the other hand, the existing stabilized finite element methods can be leveraged and
require only minor modifications to accommodate with the anisotropy of the mesh. In
this chapter, we reconsider in section 1 the Navier-Stokes and the convection-diffusion-
reaction problems and perform an error analysis pointing out the relation between the
approximation and the interpolation errors. We move on next to illustrate on the tun-
ing of the stabilization methods in order to account for highly stretched elements. In
the following section, we provide numerical examples reflecting the performance, ac-
curacy and efficiency of the developed anisotropic mesh adaptation in simulating heat
transfer and fluid flow problems.
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3.1 A priori Error Analysis

We aim in this section at providing an a priori finite element analysis on the
convection-diffusion-reaction problem and the Navier-Stokes equations. We follow
the lines in [Belme 11, Courty 06] to derive the error estimates. In the reference
[Belme 11, Courty 06], the analysis was limited to the Poisson’s equation.

3.1.1 convection-diffusion-reaction equation

We start by considering the convection-diffusion-reaction equation with a velocity field
v, a diffusion factor κ and a reaction term σ:

∂tu + v · ∇u−∇ · (κ∇u) + σu = f , in Ω ,
u(., 0) = 0 in Ω ,
u = 0 , on Γ ,

(3.1)

whose weak formulation writes as:(
∂u
∂t

, w
)
+ (v · ∇u, w)− (∇ · (κ∇u) , w) + (σu, w) = ( f , w) ∀w ∈ H1

0(Ω) (3.2)

The approximation error can be decomposed into two parts:

uh − u = uh −Πhu︸ ︷︷ ︸
Implicit error

+ Πhu− u︸ ︷︷ ︸
Interpolation error

(3.3)

The implicit error belongs to the discrete approximation space Vh = H1
0 ⊂ H1(Ω) of

piecewise linear functions defined on the elements of the mesh Hh.
Define Πh to be a projection operator from V onto Vh. As suggested in [Belme 11],

since u ∈ V is not necessarily smooth, one can choose the Clément interpolation oper-
ator. Taking w ∈ V , its projection will be Πhw ∈ Vh. Therefore, the weak formulation
reads as: (

∂uh

∂t
, Πhw

)
+ (v · ∇uh, Πhw)−

(
∇ · (κ∇uh) , Πhw

)
+ (σuh, Πhw)

= ( f , Πhw) ∀w ∈ H1
0(Ω)

(3.4)

The adjoint of the projection operator implies:(
Π∗h

(
∂

∂t

)
uh, w

)
+ (Π∗h (v · ∇) uh, w)− (Π∗h (∇ · (κ∇)) uh, w)

+(Π∗h (σI) uh, w) = (Π∗h((I) f , w) ∀w ∈ H1
0(Ω)

(3.5)

where, I denotes the identity tensor. Considering the dual space of V , V ′, equation 3.5
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yields:

Π∗h

(
∂

∂t

)
uh + Π∗h (v · ∇) uh −Π∗h (∇ · (κ∇)) uh + Π∗h (σI) uh = Π∗h((I) f ∈ V ′

(3.6)
and equivalently:

Π∗h

(
∂

∂t

)
uh −Π∗h

(
∂

∂t

)
Πhu−Π∗h (∇ · (κ∇)) uh + Π∗h (∇ · (κ∇))Πhu + Π∗h (v · ∇) uh

−Π∗h (v · ∇)Πhu + Π∗h (σI) uh −Π∗h (σI)Πhu

= (Π∗h((I) f −Π∗h

(
∂

∂t

)
Πhu + Π∗h (∇ · (κ∇))Πhu−Π∗h (v · ∇)Πhu−Π∗h (σI)Πhu in V ′

(3.7)

Rearranging the terms, equation (3.7) reads in V ′ as:

Π∗h

(
∂

∂t
−∇ · (κ∇) + (v · ∇+ σI)

) (
uh −Πhu

)
= Π∗h

(
∂

∂t
−∇ · (κ∇) + (v · ∇+ σI)

) (
u−Πhu

) (3.8)

with Π∗h
(

∂
∂t −∇ · (κ∇) + (v · ∇+ σI)

)
invertible on adhoc spaces according to

[Courty 05, Bikchentaev 12]. Consequently, we obtain:

(
uh −Πhu

)
=


Π∗h

(
∂

∂t
−∇ · (κ∇) + (v · ∇+ σI)

)−1

Π∗h

·
(

∂

∂t
−∇ · (κ∇) + (v · ∇+ σI)

) (
u−Πhu

)
 (3.9)

and in variational form:(
∂
(
uh −Πhu

)
∂t

, Πhw

)
−
(
∇ ·

(
κ∇

(
uh −Πhu

))
, Πhw

)
+ (v · ∇

(
uh −Πhu

)
, Πhw)

+(σ
(
uh −Πhu

)
, Πhw) =

(
∂
(
u−Πhu

)
∂t

, Πhw

)
−
(
∇ ·

(
κ∇

(
u−Πhu

))
, Πhw

)
+(v · ∇

(
u−Πhu

)
, Πhw) + (σ

(
u−Πhu

)
, Πhw) ∀w ∈ V

(3.10)

When u and w are smooth, it can be shown using a density argument that the projection
operator can be taken to be the classical interpolation operator [Courty 05, Courty 06].
This concludes the a priori analysis on the relation between the implicit and thus the
approximation error and the interpolation error.
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3.1.2 Incompressible Navier-Stokes equations

We reconsider now the incompressible Navier-Stokes equations and follow the same
analysis to relate the implicit error to the interpolation one. Without loss of generality,
we assume zero-Dirichlet boundary condition.

ρ (∂tv + v · ∇v)− 2∇ · µεεε(v) +∇p = f in Ω× (0, T)

∇ · v = 0 in Ω× (0, T) (3.11)

where v and p are the desired velocity and pressure fields. Inhere µ is the dynamic
viscosity, ε(v) the strain rate tensor, ρ the fluid density and f a given vector of external
forces acting on the flow. As presented in chapter 1, the weak form of (3.11) consists in
finding (v, p) ∈ (V ,Q) such that:{ (

ρ ∂v
∂t , w

)
+ (ρv · ∇v, w) + (2µεεε(v) : εεε(w))− (p,∇ ·w) = ( f , w) ∀w ∈ V0

(∇ · v, q) = 0 ∀q ∈ Q
(3.12)

An implicit time stepping scheme is first applied resulting in a non-linear system
of equations each time-step. The nonlinear term is then linearized using a Newton-
Raphson linearization and keeping terms only to first order at the ith iteration:

(v · ∇v, w)i ≈
(

vi · ∇vi−1, w
)
+
(

vi−1 · ∇vi, w
)
−
(

vi−1 · ∇vi−1, w
)

. (3.13)

For any v ∈ V , the projection operator Πv
h associates Πv

hw ∈ V and for any p ∈ Q, the
projection operator Πp

h associates Πp
hq ∈ Q. Hence, the variational formulation using a

finite element discretization reads as:
∀q ∈ Q and ∀w ∈ V0 ,{ (

ρ ∂vh
∂t , Πv

hw
)
+ (ρv · ∇vh, Πv

hw) + (2µεεε(vh) : εεε(Πv
hw))− (ph,∇ ·Πv

hw) = ( f , Πv
hw)

(∇ · v0, Πp
hq) = 0 .

(3.14)
Using the adjoint of the projection operator and performing the Newton-Raphson lin-
earization on the nonlinear term imply:
∀q ∈ Q and ∀w ∈ V0 ,

(
Πv,∗

h

(
ρ ∂

∂t

)
vh, w

)
+(Πv,∗

h
(
ρI · ∇vi−1) vi

h, w) + (Πv,∗
h

(
ρvi−1

h I · ∇
)

vi
h, w)

−
(

Πv,∗
h (Ivi−1

h · ∇vi−1
h , w

)
+(Πv,∗

h (2µεεε) (vh) : εεε(w))− (Πv,∗
h (I)ph,∇ ·w)

= (Πv,∗
h (I) f , w)

(Πv,∗
h (∇·)vh, q) = 0

(3.15)
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Proceeding in the same way as for the convection-diffusion-reaction problem, one gets
in the dual spaces V0′ and Q′:

Πv,∗
h

(
ρ

∂

∂t
+ ρI · ∇vi−1ρvi−1I · ∇+ 2µεεε

)
(vh −Πv

hv)−Πv,∗
h (I)(ph −Πv

h p)

= Πv,∗
h

(
ρ

∂

∂t
+ ρI · ∇vi−1ρvi−1I · ∇+ 2µεεε

)
(v−Πv

hv)−Πv,∗
h (I)(p−Πv

h p)

(Πv,∗
h (∇·)vh, q) = (Πv,∗

h (∇·)v, q)

(3.16)

This yields the desired relation between the implicit error and the interpolation error.
The a priori analysis was focused on the weak formulation of the flow problem. A

Newton-Raphson linearization was performed and a backward Euler discretization was
applied in time. These assumptions were also considered in the numerical simulation.
The control of the error provided by the anisotropic mesh adaptation is driven by
the interpolation error and consequently will result in the control of the discretization
error.

3.2 Tuning with stabilized finite element methods

When coupling stabilized finite element methods with anisotropic meshing, a better
choice of the element’s characteristic length hK can be made. It will be shown that the
VMS approach for flow problems and the SUPG method for heat transfer phenom-
ena are among the best methods to couple with anisotropic finite element methods.
However, a tuning of the stabilization coefficients is needed in both the convective and
diffusive terms to take into account highly stretched elements with an anisotropic ratio
of order O(1 : 1000). Indeed, as it will be demonstrated in the numerical experiments,
the direction of the velocity provides the element size needed in the convection terms
while a bubble condensation technique gives rise to a proper coefficient for the diffu-
sion term.

In this work we adopted the following definitions for the stabilizing parameters τK

and τC for the resolution of fluid flows as proposed in [Tezduyar 00, Shakib 91] and in
[Codina 00a] respectively:

τK =

((
2

∆t

)2

+

(
2‖vh‖K

hK

)2

+

(
4ν

h2
K

)2
)−1/2

, τC =

((
µ

ρ

)2

+

(
c2‖vh‖K

c1hK

)2
)1/2

(3.17)
where ν and ρ are respectively the kinematic viscosity and density of the fluid, and c1

and c2 are two constants independent from hK [Codina 00a] and hK is the characteristic
length of element K.

We also use the parameters proposed in [Shakib 91, Codina 00a] for the stabilization



3.2. Tuning with stabilized finite element methods 149

of convection-diffusion-reaction problems:

τK =

((
2

∆t

)2

+

(
2‖vh‖K

hK

)2

+ 9
(

4κ

h2
K

)2

+ σ2

)−1/2

(3.18)

Note that the calculation of hK is the main subject of this chapter. This parameter is
involved in the stabilization terms for each element K as shown by equations (3.17) and
(3.18). It has been shown in the literature that good results can be obtained when using
the minimum edge length of K [Mittal 00], or the element’s diameter [Micheletti 04].

Figure 3.1 – Characteristic length for isotropic and anisotropic elements based on classical formulas.

Nevertheless, when strongly anisotropic meshes with highly stretched elements are
involved, the definition of hK is still a problem with critical interest as it plays an
important role in the setting of stabilizing parameters [Harari 92, Codina 00a]. Indeed,
when a classical characteristic length is used, an undesired behavior can be observed
where one edge of the element K remains unchanged while the others are refined. This
idea is reflected in figure 3.1. Clearly the two triangles are different, one is anisotropic
while the other is isotropic, but the same characteristic length is associated to them.

One possible choice, proposed in [Micheletti 02] is to determine this factor from
a relation between the direction of the convective field and the orientation of the
anisotropic element K given by the eigenvalues and eigenvectors of the Riemannian
metric tensor. In [Förster 09] the authors examined deeply the effect of different el-
ement length definitions on distorted meshes. In [Cangiani 05] anisotropic error esti-
mates for the residual free bubble (RFB) method were developed to derive a new choice
of the stabilizing parameters suitable for anisotropic partitions.

In this work, we modify the definition of the stabilizing parameters (3.17) to account
for a modified characteristic length and improve the numerical solution’s quality:

τK =

( 2
∆t

)2

+

(
2‖vh‖K

hc
K

)2

+

(
4ν

(hd
K)

2

)2
−1/2

, τC =

((
µ

ρ

)2

+

(
c2‖vh‖K

c1hc
K

)2
)1/2

(3.19)
As stated in chapter 1, the stabilization parameter switches the tuning between a
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diffusion dominated regime where the term
(

4ν

(hd
K)

2

)
affects the most the stabilization

and a convection dominated regime where the term
(

2‖vh‖K
hc

K

)
plays the most significant

role in stabilizing the numerical solution.

On the other hand, for the convection-diffusion-reaction equation we define:

τK =

(( 2
∆t

)2

+
2‖vh‖K

hc
K

)2

+ 9

(
4κ

(hd
K)

)2

+ σ2

−1/2

(3.20)

The stabilization parameter controls in a diffusion dominated regime where the term(
4κ

(hd
K)

2

)
affects the most the stabilization and a convection dominated regime where

the term
(

2‖vh‖K
hc

K

)
plays the most significant role in stabilizing the numerical solution.

The question that arises at this stage is: how do we choose the characteristic lengths
to allow on one hand a good stabilization and on the other hand preserve the conser-
vation properties.

When dealing with convection dominated problems, we adopt the method pro-
posed in [Tezduyar 00] for computing the element’s characteristic size hc

K. This ap-
proach takes into account the information on the projected flow along the gradient of
the basis functions relative to the element. It consists in computing hc

K as the diameter
of K in the direction of the velocity v as follows (see Figure 3.2):

hc
K =

2|v|
∑NK

i=1 |v · ∇ϕi|
(3.21)

where NK is the number of vertices of element K and ϕi is the shape function that
is non-zero on the element K. We note the dependence of this definition on the flow
direction as shown in figure 3.2.

On the other hand, in the diffusion dominated regimes, the characteristic length hd
K

for the stabilization of the Navier-Stokes equations will be defined such that:

ν(
hd

K
)2 =

1
∆t

+ 2ν
∫

K
εεε(bK) : εεε(bK) dK , (3.22)

and for the stabilization of the convection-diffusion-reaction equation,

κ(
hd

K
)2 =

1
∆t

+
∫

K
κ∇bK · ∇bK dK , (3.23)

where bK denotes the bubble shape function on element K. The proof of these choices
is based on a comparison between the considered stabilization parameter and its anal-
ogous one provided by a Mini element formulation. When anisotropic meshing is ap-
plied, the Mini element method [Arnold 84] that involves a static condensation of bubble
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functions at the element level is advised as it overcomes the difficulty of choosing ap-
propriate characteristic lengths for anisotropic elements. The derivation will be given
in the following section.

Figure 3.2 – Element’s characteristic length in the streamline direction.

3.2.1 Illustrative example

To illustrate on the need to modify the definition of characteristic length, let us consider
the following example. The numerical simulation consists of having a simple Poiseuille
flow evolve inside a rectangular channel (0, 4) × (0, 2). The dynamic viscosity of the
fluid is set to µ = 10−2Pa.s and the density to ρ = 1kg/m3. Parabolic Poiseuille flow
inlet velocity is assigned on the vertical walls with a maximum of 1.5m/s. No slip
boundary conditions are imposed on the horizontal walls. For this example we have
applied the anisotropic mesh adaptation on the velocity field. The adapted mesh is
presented in figure 3.3. We note how highly stretched and directional the elements are,
hence allowing a good capture of the emerging boundary layers. The velocity profiles
and 1D vertical cuts at the inlet and outlet boundaries are shown in figure 3.4. We dis-
tinguish the velocity magnitude distribution obtained with the classical characteristic
element length on the left and the one obtained with the modified element length on
the right of the figure. We observe that the velocity is zero at one wall, increases at the
center to a maximum then decreases back to zero at the opposite wall. Comparing the
profile of the velocity distribution at the inlet with the one at the outlet boundary we
can clearly identify a discharge in the case where the classical characteristic length is
used yielding a violation of the mass conservation property of the flow. The latter prop-
erty is conserved when the modified mesh size is used. This validates the importance
of the proposed stabilization parameters.

Figure 3.3 – Anisotropic mesh obtained for the Poiseuille problem.
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Figure 3.4 – Velocity profiles obtained with the classical characteristic length (top-left) and the modified
one (bottom-left) and 1D vertical cut along the outlet boundary (right).

3.2.2 Validation of the characteristic lengths choice

3.2.3 Navier-Stokes equations with dominant viscous terms

When Mini element/bubble condensation formulation is used, the mass conservation prop-
erty is satisfied on both isotropic and anisotropic meshes [Micheletti 02] whereas as
shown in the Poiseuille flow numerical example, a velocity discharge occurs when the
classical stabilization parameters are employed. To remedy this problem, we resort to
identifying a new representation of the characteristic length through an analogy anal-
ysis with the mini element/bubble condensation (a P1+/P1) method.

The method consists in enriching the finite element space with a space of bubble
functions whose support remains inside the mesh elements. The problem will then be
uncoupled into two-scales: the coarse and the fine scale. While the former is defined
on the whole computational domain, the latter is defined on the elements’ interior with
zero Dirichlet boundary conditions.

Following the lines of [Hachem 09] for the derivation of the stable mini element method
on the Stokes problem, we are interested, in this section, in extending this technique to
a mixed discrete formulation for the transient incompressible Navier-Stokes equations
given by: find the velocity u(x, t) and the pressure p(x, t) such that:

(ρ∂tv + v · ∇v)− 2∇ · µεεε(v) +∇p = f in ΩΩΩ× (0, T)

∇ · v = 0 in ΩΩΩ× (0, T) (3.24)

where σ is the stress tensor, ρ the density of the fluid, f a given source term and µ the
dynamic viscosity.

Classical mixed formulation: We proceed as described in chapter 1 to derive the
weak formulation of this problem. We discretize the domain ΩΩΩ using a finite element
mesh Hh and we define the discrete functional spaces for the velocity Vh, weighting
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functions Vh,0 and pressure field Qh by:

Vh =
{

ωωωh ∈
(
C0(ωωω)

)d |ΩΩΩh|K ∈ P1(K)d, ∀K ∈ Hh

}
, (3.25)

Vh,0 =
{

ωωωh ∈ Vh, ΩΩΩh|Γ = 0
}

(3.26)

and
Qh =

{
qh ∈ C0(ωωω)|qh|K ∈ P1(K), ∀K ∈ Hh

}
(3.27)

Without loss of generality we assume a zero Dirichlet boundary condition. Note
that the generalization of the formulation to any other type of boundary condition
is straightforward.

We recall that the mini element method consists in enriching the velocity functional
space by a discrete space corresponding to the bubble functions:

Ṽh =
{

ṽh, ṽh|Ki
∈ P1(Ki) ∩ H1

0(Ki), ∀K ∈ Hh, i = 1, ..., D
}

(3.28)

This formulation ensures stability for equal order interpolation of the velocity and
the pressure fields and satisfies the inf-sup condition (Brezzi-Babuška). The mixed
variational formulation for the Navier-Stokes problem reads as:

find vh ∈ Vh, ṽh ∈ Ṽh and ph ∈ Qh such that:

ρ
(

∂(vh+ṽh)
∂t , ωωωh + ω̃ωωh

)
+ ρ ((vh + ṽh) · ∇ (vh + ṽh) , ωωωh + ω̃ωωh)

+ (2µεεε(vh + ṽh) : εεε(ωωωh + ω̃ωωh))− (ph,∇ ·ωωωh) = (f, ωωωh + ω̃ωωh)

∀ωωωh + ω̃ωωh ∈ Vh,0 ⊕ Ṽh,0

(∇ · (vh + ṽh), qh) = 0 ∀qh ∈ Qh

Since the fine-scale problem at the element level is independent from the coarse-scale
one and vanishes on the element’s boundary, equation (3.29) can be decoupled into two
sub-problems:

• The coarse-scale problem:
ρ
(

∂(vh+ṽh)
∂t , ωωωh

)
+ ρ ((vh + ṽh) · ∇ (vh + ṽh) , ωωωh)

+ (2µεεε(vh) : εεε(ωωωh))− (ph,∇ ·ωωωh) = (f, ωωωh) ∀ωωωh ∈ Vh,0

(∇ · (vh + ṽh), qh) = 0 ∀qh ∈ Qh

(3.29)

• The fine-scale problem:

ρ

(
∂(vh + ṽh)

∂t
, ω̃ωωh

)
+ ρ ((vh + ṽh) · ∇ (vh + ṽh) , ω̃ωωh)

+ (2µεεε(vh + ṽh) : εεε(ω̃ωωh))− (ph,∇ · ω̃ωωh) = (f, ω̃ωωh) ∀ω̃ωωh ∈ Ṽh,0

(3.30)
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Remark 32. As the fine-scale space is assumed orthogonal to the finite element one, the crossed
viscous terms vanish [Coupez 96].

The fine-scale part is usually modeled via residual based terms that are derived
consistently on the elements’ interior. The modeling of the fine-scale velocity is fol-
lowed by a static condensation that consists in substituting the effect of the fine-scale
solution into the large-scale problem (3.29), thereby eliminating the explicit appearance
of the fine-scale while still modeling their contribution to the coarse scale solution.
Consequently, additional stabilized terms, tuned by a local time-dependent stabilizing
parameter, will enhance the stability and accuracy of the standard Galerkin formula-
tion for the transient nonlinear Navier-Stokes equations.

At this stage the objective is to determine the small scale velocity and retain its
effects on the large scale problem.
Rearranging the terms, equation (3.30) is equivalent to:

ρ

(
∂ṽh

∂t
, ω̃ωω

)
︸ ︷︷ ︸

time dependent subscale

+ ρ ((vh + ṽh) · ∇ṽh, ω̃ωω)︸ ︷︷ ︸
non-linear convection term

+ (2µεεε(ṽh) : εεε(ω̃ωω))

=
(

f− ρ ∂vh
∂t − ρ(vh + ṽ) · ∇vh −∇ph, ω̃ωω

)
∀ω̃ωω ∈ Ṽh,0

= (Rm, ω̃ωω) ∀ω̃ωω ∈ Ṽh,0
(3.31)

One can clearly notice the high nonlinearity and the time-dependence of these equa-
tions. Inspired by the work of [Codina 00a] to deal with the nonlinear convective term,
we resort to applying a Newton Raphson linearization. Although this method requires
the solution of the Newton equation to be computed at every iteration, thus increasing
the computational cost, it is favorable as it features rapid convergence and good initial
guess.

Again we follow the lines of [Hachem 09] for treating the nonlinear terms:

• We approximate the nonlinear convective term in the large-scale problem at the
ith Newton Raphson iteration up to first order as in equation (3.13).

• We approximate the nonlinear convective term in the fine-scale problem by its
large-scale part:

(vh + ṽ) · ∇ (vh + ṽ) ≈ vh · ∇vh + ṽ · ∇ṽ (3.32)

Without loss of generality, we use an implicit time marching scheme, the generalization
to other time discretizations is straightforward.

Taking into account the above assumption on the nonlinear term (eq. (3.32)), the
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fine-scale momentum equation (3.31) becomes:

ρ
( ṽ

∆t , ω̃ωω
)
+ ρ

(
vi−1

h · ∇ṽ, ω̃ωω
)
+ (2µεεε(ṽh) : εεε(ω̃ωωh)) = (Rm, ω̃ωω) ∀ω̃ωω ∈ Ṽh,0 (3.33)

Note that the term ṽ−
∆t from the implicit time discretization goes into the formula of

the residual Rm on the right hand side of the equation. Inhere we mean by (ṽ−) the
solution at the previous time step of the problem resolution.

The last equation shows that the fine-scale velocity field is closely related to the
solution on the large-scale.

Using the fine-scale fields expansion proposed by [Masud 04], we have:

ṽh = ∑
K∈Hh

v′KbK and ω̃ωωh = ∑
K∈Hh

ωωω′KbK (3.34)

with bK being the bubble shape functions, v′K the coefficients for the fine-scale velocity
field and ωωω′K the coefficient for the fine-scale weighting function at the level of the
element K’s bubble.

Replacing ṽh and ω̃ωωh by their expressions in equation (3.33) implies:

ρ

(
bKv′K

∆t
, bKωωω′K

)
+ ρ

(
vi−1

h · ∇bKu′K, bKωωω′K

)
K

+
(
2µεεε(bKv′K) : εεε(bKωωω′K)

)
K =

(
Rm, bKωωω′K

)
∀K ∈ Hh, ∀ωωω′K

(3.35)

Remark 33. The integrals over the inter-element boundaries will be neglected as the bubble
functions vanish on the elements’ boundaries. Consequently the equation can be decoupled at
the elements’ level.

Equation (3.33) is valid for any choice of ωωω′K in particular for ωωω′K = 1 at the center
of element K and ωωω′K = 0 on its boundary.

On the other hand, we apply the following approximation adopted from [Basset 06]:

ρ

(
bKv′K

∆t
, bKωωω′K

)
=

ρ

∆t
(3.36)

Therefore the fine-scale velocity derived from equation (3.35) reads as:

v′K =
1 ρ

∆t + ρ
(

vi−1
h · ∇bK, bK

)
K︸ ︷︷ ︸

convective term

+ (2µεεε(bK) : εεε(bK))K︸ ︷︷ ︸
viscous term


(Rm, bK) ∀K ∈ Hh (3.37)

The stabilizing parameter τd
K naturally appeared from the solution of the small-scale

problem. Assuming constant large scale residual Rm on linear elements, it follows
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that:

τd
K =

1 ρ
∆t + ρ

(
vi−1

h · ∇bK, bK

)
K︸ ︷︷ ︸

convective term

+ (2µεεε(bK) : εεε(bK))K︸ ︷︷ ︸
viscous term


∀K ∈ Hh (3.38)

Remark 34. The stabilizing parameter depends on the choice of the bubble function. However
as stated in [Hachem 09], when the same bubble functions are used for both the velocity and
the weighting function, the convection term cancels out from the formula. Indeed under the
assumption that vi−1

h is piecewise constant over the bubble, the choice of the Mini element
yields: (

vi−1
h · ∇bK, bK

)
K
= 0 ∀K ∈ Hh (3.39)

Consequently, we have that:

τd
K =

1[ ρ
∆t + (2µεεε(bK) : εεε(bK))K

] ∀K ∈ Hh (3.40)

At this stage instead of solving for the small-scale velocity field at the element
level, we apply a static condensation whereby one substitutes the fine scale solution,
expressed in terms of large-scale momentum residual, into the large-scale problem.
Upon this step, additional terms arise in the discrete problem and are tuned by a local
time-dependent stabilizing parameter. These terms enhance the stability and accuracy
of the standard Galerkin formulation for the transient non-linear Navier-Stokes equa-
tions.

Going back to the coarse-scale problem and taking into account the assumptions
made on the nonlinear term, we obtain:

(
ρ ∂vh+ṽh

∂t , ωωωh

)
+ (ρvh · ∇vh, ωωωh) +

(
ρvi−1

h · ∇ṽh, ωωωh

)
+ (2µεεε(vh) : εεε(ωωωh))

−(ph,∇ ·ωωωh) = (f, ωωωh) ∀ωωωh ∈ Vh,0

(∇ · vh, qh) + (∇ · ṽh, qh) = 0 ∀qh ∈ Qh

(3.41)

Integrating by parts the third term of the first equation and the second term of the
second equation then:

(
ρ ∂vh+ṽh

∂t , ωωωh

)
+ (ρvh · ∇vh, ωωωh)−∑K∈Hh

(
τd

KRm, ρvi−1
h · ∇ωωωh

)
+ (2µεεε(vh) : εεε(ωωωh))

−(ph,∇ ·ωωωh) = (f, ωωωh) ∀ωωωh ∈ Vh,0

(∇ · vh, qh)− ∑
K∈Hh

(τd
KRm,∇qh) = 0 ∀qh ∈ Qh

(3.42)

Remark 35. Note that the term (∂tṽ, ωωω) vanishes as we consider static subscales.
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Substituting the fine scale velocity by its expression yields:

(
ρ ∂vh

∂t , ωωωh

)
+ (ρvh · ∇vh, ωωωh)−∑K∈Hh

(
τd

K

(
∂vh
∂t + ρvh · ∇vh +∇ph − ρ

ṽ−h
∆t − f

)
, ρvi−1

h · ∇ωωωh

)
+ (2µεεε(vh) : εεε(ωωωh))− (ph,∇ ·ωωωh) = (f, ωωωh) ∀ωωωh ∈ Vh,0

(∇ · vh, qh)− ∑
K∈Hh

(τd
K

(
∂vh
∂t + ρvh · ∇vh +∇ph − ρ

v−h
∆t − f

)
,∇qh) = 0 ∀qh ∈ Qh

(3.43)
This completes the mixed finite element formulation analysis. We can obviously detect
the additional stabilizing terms involving integrals over the elements’ interiors. Conse-
quently a stable solution is obtained in the sense that it satisfies the inf-sup condition.

Recall that the main objective of this analysis is to compute the appropriate ele-
ments’ characteristic lengths in case of diffusion dominated regimes and anisotropic
mesh adaptation.

An equivalence between the residual free bubble approach and the Mini-element
method was highlighted in the literature [Canuto 96, Russo 96]. Indeed the latter pro-
vides a natural way of determining the stabilizing terms. We note that the choice of the
bubble function used influences directly the stabilizing parameter.

It was pointed out in [Russo 96, Canuto 96, Franca 02] that when the viscous term
is large with respect to the convection term, the stabilizing parameter derived by a
residual free bubble method is given by:

τd
K =

∫
K bb dK
|K| (3.44)

where bK is the bubble function solution of the boundary value problem:{
−µ∆bK = 1 in K

bk = 0 on ∂K
(3.45)

The authors of [Russo 96, Canuto 96, Franca 02] also demonstrated that the stabiliza-
tion term in the diffusion dominated regime can be approximated by:

τd
K ≈

(hd
K)

2

µ
(3.46)

where (hd
K) is the characteristic length of the element K.

Proceeding by analogy between the two forms of stabilization parameters defined by
equations (3.40) and (3.46), we infer that:

(hd
K)

2

µ
=

1[ ρ
∆t + (2µεεε(bK) : εεε(bK))K

] (3.47)

and equivalently,
µ

(hd
K)

2
=

ρ

∆t
+ (2µεεε(bK) : εεε(bK))K (3.48)
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This completes the proof of the choice of the characteristic length in case of the Navier-
Stokes equations with high viscous terms.

3.2.4 Convection-Diffusion-Reaction equation with dominant viscous terms

We consider the convection-diffusion-reaction equation defined on the domain Ω ×
(0, T) by:

find a function u(x, t) such that:

∂u
∂t

+ v · ∇u−∇ · (κ∇u) + σu = f (3.49)

where v is a given divergence-free velocity field, κ > 0 is the diffusion coefficient,
σ ≥ 0 the reaction coefficient, and f a source term function. For the sake of simplicity
we assume a zero boundary condition on ∂Ω. The generalization to other types of
boundary conditions is straightforward. We discretize the domain with a mesh Hh and
define the functional space U in which we are seeking the solution of the problem:

U := H1
0(Ω) =

{
ν ∈ H1(Ω) | ν = 0 ∀x ∈ ∂Ω

}
. (3.50)

Standard formulation: We enrich the solution’s functional space by a discrete space
corresponding to the bubble functions:

Ũh =
{

ũh, ũh|Ki
∈ P1(Ki) ∩ H1

0(Ki), ∀K ∈ Hh, i = 1, ..., D
}

(3.51)

We apply the same analysis and the same arguments as above to derive the stabilization
parameters:

• As the small scale functional space is independent from the coarse scale one, the
problem can be decoupled into two sub-problems.

• Using an Euler implicit discretization in time.

• Rearranging the terms in the fine-scale equation to express the small scale terms
as a residual of the large scale problem.

The fine-scale problem becomes:
(

ũ
∆t

+ v∇ũ, ψ̃

)
+ (κ∇ũ,∇ψ̃) =

(
f − ∂u

∂t
− σu− v · ∇u +∇ · (κ∇u)− ũ−

∆t
, ψ̃

)
= (RCDR, ψ̃)

(3.52)
We employ the fine-scale field expansion proposed by [Masud 04]:

ũh = ∑
K∈Hh

u′KbK and ψ̃h = ∑
K∈Hh

ψ′KbK (3.53)
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with bK being the bubble shape functions, u′K the coefficients for the fine-scale solution
field and ψ′K the coefficient for the fine-scale weighting function at the level of the
element K’s bubble.

Substituting ũh and ψ̃h by their expressions in equation (3.52) and using the prop-
erty that the bubble functions vanish at the elements’ boundaries, we can split the
equation into sub-equations defined at the elements’ level:(

u′KbK

∆t
+ v∇u′KbK, ψ′KbK

)
+
(
κ∇u′KbK,∇ψ′KbK

)
=
(
RCDR, ψ′KbK

)
(3.54)

Then we apply the following approximation adopted from [Basset 06]:(
u′KbK

∆t
, ψ′KbK

)
=

1
∆t

(3.55)

Hence the fine-scale problem becomes:

u′K
∆t

+
(
v∇u′KbK, ψ′KbK

)
K +

(
κ∇u′KbK,∇ψ′KbK

)
K =

(
RCDR, ψ′KbK

)
K ∀K ∈ Hh (3.56)

As the equation is satisfied for any choice of ψ′K in particular for:

ψ′K =

{
1 on the element’s center,
0 elsewhere.

(3.57)

It follows that the small-scale solution will be given by:

u′K =
1

1
∆t + (v∇bK, bK)K + (κ∇bK,∇bK)K

(RCDR, bK)K (3.58)

Remark 36. Using the same bubble function for the solution and the weighting function leads
to the cancellation of the convection term.

The stabilizing parameter τd
K naturally appeared from the solution of the small-scale

problem. Assuming constant large scale residual RCDR on linear elements, it follows
that:

τd
K =

1
1

∆t + (κ∇bK,∇bK)K
(3.59)

At the diffusion limit, it was demonstrated in [Russo 96, Franca 98, Franca 92a] that the
stabilization parameter derived using a residual free bubble approach can be approxi-
mated by:

τd
K ≈ C

(hd
K)

2

κ
(3.60)

where C is a constant and (hd
K) is the characteristic length of the element K.

Consequently, proceeding by analogy between equations (3.60) and (3.59), we can infer
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that:
κ

C(hd
K)

2
=

1
∆t

+ (κ∇bK,∇bK)K . (3.61)

This concludes the derivation of the characteristic length choice in the case of diffusion
dominated regime for the convection-diffusion-reaction problem.

Remark 37. At the convection dominated limit, it was stated in [Franca 02] that using the
stabilization parameters derived from the Residual free bubble method can lead to a loss of
stability. To avoid this, we treat the convection dominated regime with a different choice of
characteristic length:

hK =
2|v|

∑NK
i=1 |v · ∇ϕi|

.

There is no need for additional modifications to be performed in order to couple the
stabilized finite element with an anisotropic mesh adaptation. As the latter is designed
to fit in the general context, it does not depend on the treated problem nor on the
chosen field of adaptation. We will show in chapter 5 how the metric construction will
be extended to account for several fields in one shot. For the time being, we intend
to apply the method on one field of interest which is considered as the motor of the
simulation.

3.3 Applications to convection-diffusion problems

The numerical solution of the unsteady convection-diffusion equation using the
Galerkin formulation normally exhibits global spurious oscillations in convection-
dominated problems, especially in the vicinity of sharp gradients, and steep boundary
and interior layers. Over the last two decades, investigations on the development
of numerical methods dealing with such problems were very active. In the opening
of his book, Morton [Morton 96] stated that: ‘Accurate modelling of the interaction be-
tween convective and diffusive processes is the most ubiquitous and challenging task in the
numerical approximation of partial differential equations’. However, in the presence of
steep boundary or interior layers, if an isotropic mesh is to be used, then a very small
mesh size shall be considered everywhere in the domain in order to achieve a good
level of precision. Hence, a high computational cost is expected. Mesh adaptation
is a key tool for lowering the computational cost while maintaining a good level of
accuracy. The idea is to concentrate the elements of the mesh in the domain region
where the solution exhibits fast variations. Note that for boundary and interior layers,
the solution varies faster in one direction than it does in the others, therefore a mesh
mimicking this behavior by employing small mesh sizes in the direction orthogonal to
the gradient and larger ones in the parallel direction is highly desirable. Consequently,
anisotropic meshes are efficient tools as they render a higher accuracy for the same
mesh complexity when compared to isotropic refinement.

On the other hand, as discussed in chapter 1 when a stabilized numerical scheme
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is used, on an isotropic mesh, the computed layer might be smeared and the conver-
gence rate is lowered. The choice of stabilizing parameters is still a puzzling question
since different choices introduce different amounts of diffusion. It was pointed out in
the literature that optimal convergence can be recovered using adapted meshes while
reducing the excessive smearing. From this standpoint, anisotropic mesh adaptation
can be considered as a keystone for recovering the optimal rate of convergence.

Historical overview
Research on the development of adaptive meshes together with numerical methods
for the resolution of convection-diffusion problems date back to the year 1969 with the
work of Bakhvalov [Linβ 85] who proposed the use of layer-adapted graded meshes.
The latter are fine in the vicinity of boundary layers and coarse outside of it. Instead of
using graded meshes, Shishkin [Shishkin 92, Shishkin 04] proposed to employ a piece-
wise uniform mesh in the 1990s. This idea lead to fruitful contributions during that
period [Linβ 99, Farrell 00, Xenophontos 03, Farrell 04, Reilly 05]. The Shishkin meshes
are set a priori with fine resolution near the layers and coarse otherwise. They permit
a good level of accuracy and the generation of a less diffusive solution. However, a
major drawback of Shishkin meshes is that they should be set a priori that is, one must
know the location and the nature of the layer in the pre-simulation phase to ensure
its good performance. When simulating unsteady convection-diffusion problems, the
solution gradients’ locations and the direction in which they will evolve are not known
a priori. This drawback highlights the need for a method that automatically follows
and captures the emerging solution gradient. Anisotropic mesh adaptation is the
best candidate for such applications. Very few research has been done on anisotropic
mesh adaptation algorithm applied in the context of convection-diffusion problems
[Nguyen 09, Micheletti 04, Picasso 09].
The method that we propose is capable of automatically detecting emerging layers in
the solution. It is robust and efficient in resolving them. As it will be shown in the
numerical validation, the method allows an improvement of the computed solution’s
accuracy in particular in the wake of boundary and internal layers. It is designed to
work without modification on any kind of applications. It does not need an a priori
knowledge on the layers form, position or evolution. It works under the constraint
of a fixed number of nodes to produce an optimal mesh. From a practical point of
view, this is an important advantage especially when dealing with industrial appli-
cations. Indeed, in order to perform long-time and large-scale industrial applications
it is preferable to choose a number of nodes N based on the available computational
resources and determine the optimal mesh yielding the most accurate solution.

3.3.1 Numerical experiments on the steady convection-diffusion problem

In this section, we assess the performance of the newly developed adaptive algorithm
on several steady convection diffusion problems exhibiting boundary layers. We start
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with an evaluation of the order of convergence of the numerical method. Then we show
the ability of the stabilization method associated with the anisotropic mesh adaptation
technique to automatically detect and resolve the emerging layers without the appear-
ance of non-physical oscillations. The obtained solutions are compared to a set of
references presented in [Nguyen 09, Zhang 03, Huang 05, Farrell 00]. The results that
we present hereafter were recently published in [Hachem 14].

As it will be shown in the numerical results, the developed algorithm based on the
stabilized finite element method is capable of producing accurate results within a very
reasonable execution time and a low computational cost.

Example 1: Regular boundary layers
We consider a first test case with a continuous solution and regular boundary layers.
This test has been studied by several authors [Nguyen 09, Zhang 03].

The computation domain is set to Ω = (0, 1)2, the velocity field to v(x, y) = (1, 1)T

and the diffusion coefficient is varied κ = {10−1, 10−3, 10−6}. The exact solution of the
problem is given by:

u(x, y) = xy
(

1− exp−
1−x

κ

) (
1− exp−

1−y
κ

)
. (3.62)

It develops boundary layers at x = 1 and y = 1. The boundary conditions and the
source term are determined from the exact solution. When the diffusion coefficient
tends to 0, the flow becomes convection dominated and thus the standard Galerkin
approach is polluted by spurious oscillations. The latter are avoided and a smooth so-
lution is obtained when applying the SUPG stabilization with anisotropic mesh adap-
tation. Recall that the amount of added artificial diffusion is related to the mesh size
inside the layer region. This is computed as the largest edge of the element in the di-
rection parallel to the velocity field. We can observe in figure 3.5 that as the diffusion
coefficient κ tends to zero, the numerical solution becomes steeper without the appear-
ance of any numerical oscillation. Figure 3.6 shows the anisotropic meshes made up
of 5, 000 nodes obtained for the different values of the diffusion coefficient. We note
the concentration of the nodes along the boundary layers. This reflects how, for a con-
trolled number of nodes, the mesh is naturally and automatically coarsened in smooth
regions while extremely refined near the boundary. The zoom on the right side of the
cavity illustrates the sharp capture of the boundary layers and the right orientation and
deformation of the mesh elements (longest edges parallel to the boundary). The limited
resolution and optimal distribution of the elements yield a good level of accuracy with
a reduced computational cost. This example aims at emphasizing the spatial order of
convergence when using the proposed mesh adaptation technique. As noted in chapter
1, around half an order of convergence is lost when a stabilized finite element method
is used on an isotropic mesh.

The global convergence order is computed in the L1, L2 and H1 norms. In each case,
the error has been computed with respect to the reference solution. As can be seen in
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Figure 3.5 – Numerical solution for κ = {10−1, 10−3, 10−6} (from left to right).

figure 3.7, the anisotropic mesh adaptation proves to be very efficient in recovering the
method’s order of convergence.

Comparing with the results obtained in [Nguyen 09], the anisotropic mesh adap-
tation technique asymptotically recovers the same order of convergence with lower
interpolation error evaluated in the L1, L2 and H1 norms. The generated elements
present in the convection dominated case, higher aspect ratios in the vicinity of the
boundary layers. The elements are well oriented and elongated to efficiently provide a
good level of accuracy.

Example 2: Interior layer with variable convective field
The second numerical experiment is taken from [Nguyen 09, Huang 05]. The aim be-
hind this example is to test the ability of the developed numerical scheme together
with the mesh adaptation algorithm to capture interior layers. We solve the steady
convection-diffusion equation with the diffusion coefficient κ = 0.005 on Ω = (0, 1)2.
We choose the exact solution to be continuous all over the domain but to develop an
interior layer along the line y = −x + 0.85:

u(x, y) =
(

1 + exp
x+y−0.85

2κ

)−1

The boundary conditions and the source term are determined from the exact solution.
We consider a variable velocity field v = (u(x, y), u(x, y))T. Figure 3.8 (left) presents
the numerical solution obtained on a mesh made up of around 2, 000 nodes. The
anisotropic mesh that is automatically generated by our developed adaptive algorithm
is shown in figure 3.9. One can notice the high concentration of elements along the
line y = −x + 0.85 in order to accurately capture the produced inner layer. Taking a
closer look at the mesh in the zoomed version near the left boundary we can detect
the good orientation of the elements with the stretching in the direction of the sharp
layer. This demonstrates the ability of the algorithm to work under the constraint of
a fixed number of nodes and to effectively control the element sizes, orientations and
locations.

Again the convergence is of first order in the H1 norm and second order in the L1

and L2 norms recovering the theoretical predictions as can be seen in figure 3.8 (right).
The very small errors in the L1 and L2 norms reflect the advantage of the adapted mesh
as it is well aligned with the solution’s strong anisotropic features.
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Figure 3.6 – Anisotropic meshes for κ = {10−1, 10−3, 10−6} (top to bottom) and zooms on the
boundary layer.
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Figure 3.7 – L∞, L2 and H1 norms of the error versus the number of elements in the mesh for
κ = {10−1, 10−3, 10−6} (top-left, top-right, and bottom).

Figure 3.8 – Numerical solution (left) and convergence history in the L∞, L2 and H1 (right) for
κ = 0.005 and a zoom on the interior layer.
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Figure 3.9 – Anisotropic mesh obtained for κ = 0.005.

So far we have considered two test cases where the exact solution is known and
we have computed the order of convergence of the developed SUPG formulation
combined with the anisotropic mesh adaptation technique. We present in what follows
more complex situations inspired from [Nguyen 09, Farrell 00].

Example 3: Regular boundary layers with smooth data
We consider the constant convective field v(x, y) = −(2, 1)T and the diffusion co-
efficient κ = 10−6 over the domain Ω = (0, 1)2 . We define the source term as
f (x, y) = −x2(1− x)2y2(1− y)2 and impose a zero boundary condition on ∂Ω. The
solution of this problem develops regular boundary layers at the outflow bound-
aries x = 0 and y = 0. Figure 3.10 shows the numerical solution obtained on an
anisotropically adapted mesh of around 3, 000 nodes. It can be clearly seen from

Figure 3.10 – Numerical solution for κ = 10−6 with its corresponding anisotropically adapted mesh.

the numerical results that the numerical scheme is capable of producing a smooth
solution i.e. treating the spurious oscillations that appear when using the standard
Galerkin formulation. Again the mesh responds very well to the solution with high
resolution at the boundary layer and less dense elements in the rest of the domain. The
elements are stretched in the direction of the boundary layer allowing its sharp capture.
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Example 4: Regular and corner boundary layers with non-smooth data
In this numerical example, we consider a non constant convection field

v(x, y) = −(2 + x2y, 1 + xy)T

with a small diffusion coefficient κ = 10−6 on the domain Ω = (0, 1)2. We define the
source term as f (x, y) = −(x2 + y3 + cos(x + 2y)) and impose the following boundary
condition:

u(x, 0) = u(0, y) = 0.

u(x, 1) =

{
4x(1− x) x < 1

2

1 otherwise
u(1, y) =

{
8y(1− 2y) y < 1

4

1 otherwise

We expect the solution of this problem to develop regular and corner boundary layers
at the outflow boundaries x = 1 and y = 0. In figure 3.11, we present the numerical

Figure 3.11 – Numerical solution for κ = 10−6, its corresponding anisotropically adapted mesh with
different zooming levels near the left boundary.

solution on a 3, 000 nodes mesh obtained using the SUPG method and the mesh adap-
tation tool. We can observe the sharp stretching of the elements and the fine resolution
at the regular and corner boundary layers and the location of the solution’s steep gradi-
ent. We can also detect the gradual change of mesh element sizes in the zoom near the
lower bound of the domain. It can be identified that the mesh has a better refinement
in the orthogonal direction along the steep boundary layers. These observations reflect
the ability of the anisotropic mesh adaptation algorithm to automatically adjust the
shape and orientation of the elements while optimizing their numbers.

Example 5: Parabolic layers
We consider the domain Ω = (0, 1)2, the diffusion coefficient κ = 10−3, a zero source
term and the following boundary condition:

u(x, y) =


(

6
√

3x(1− x)(2x− 1)
)3

on y = 0

0 otherwise on ∂Ω
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The velocity field is set to v = −(1, 0). Given the setting of the problem and the
boundary conditions, we expect parabolic layers at y = 0 with positive values for
x > 1

2 and negative values for x < 1
2 . The solution obtained on an anisotropic mesh

Figure 3.12 – Numerical solution for κ = 10−3 (right), its corresponding anisotropically adapted mesh
with close-ups at the lower boundary to the left(middle-top) and right(middle-bottom) of the line x = 1

2 .

made of around 5, 000 nodes is shown in figure 3.12. One can obviously notice the
symmetric orientation and distribution of the elements in the mesh in response to the
symmetric and parabolic profile of the solution. We also highlight the good quality of
the automatically generated elements.

Example 6: Regular, Parabolic and Corner layers
We consider the same domain and constant velocity field as in the previous example,
a zero source term and a diffusion coefficient κ = 0.05. The boundary condition is
defined by:

u(x, y) =


(1− x)2 on y = 0
y2 on x = 0
0 otherwise on ∂Ω

The solution as shown in figure 3.13 exhibits a parabolic boundary layer along y = 0
and a regular one along x = 0. Corner boundary layers are detected at (0, 0) and (0, 1).
We can observe in the plot of the contour lines that the regular boundary layer has a
steeper gradient than the parabolic one. One can easily see the high condensation of
the elements near the corner layers and the gradual coarsening as we move away from
them.

Example 7: Parabolic boundary layers with recirculating convective field
We consider the domain Ω = (−1, 1)2 and a non-constant flow with a dif-
fusion coefficient κ = 0.05 and a recirculating convective field defined by
v = (2y(1− x2),−2x(1− y2)) exhibiting discontinuities at some parts of the bound-
aries leading to boundary layers. This test case is known as the double glazing problem
[Elman 05] and models the spread of heat in a box with a heated wall. For this problem
with complex physics, it is challenging to capture the structure of the parabolic layers.
The results show the importance of the anisotropic mesh adaptation in capturing the
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Figure 3.13 – Numerical solution for κ = 10−3 and its corresponding anisotropically adapted mesh.

details of the solution for such a challenging problem. Figure 3.14 presents the contour
lines of the obtained numerical solution on an anisotropic mesh made up of around
3, 000 nodes.

Figure 3.14 – Numerical solution for κ = 10−3 and its corresponding anisotropically adapted mesh.

3.4 Applications to incompressible flow problems

In this section, we are interested in validating the developed anisotropic mesh adapta-
tion tool on flow problems. A variational Multiscale method will be used for stabiliza-
tion.

As we are interested in well capturing the large-scales of the solution, while mod-
elling the effects of the fine-scales, we employ the method based on the averaged length
distribution tensor for gradient recovery, the edge-based error estimates and the equi-
distribution principle. This method proved to provide a good level of accuracy while
maintaining a reduced computational cost. It focuses on automatically capturing evolv-
ing gradients of the solution under the constraint of a fixed number of nodes.

It is important to mention that the method tends to refine the mesh in the hierar-
chical importance of the solution’s gradient. In other words, if new features (with high
gradients) appear in the solution, the mesh will be automatically coarsened in regions
with lower gradient and will be refined near the newly emerging features. In this case,
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even with small number of nodes, the solution will still be well captured although not
with the same degree of accuracy.

The performance of the proposed anisotropic mesh adaptation will be assessed
on the benchmark driven cavity problem at low and high Reynolds numbers. In the
following simulations we show that boundary layers as well as eddies can be well
captured by the mesh. Results are compared with very accurate reference solutions
taken from the literature and show that the flow solvers based on stabilized finite
element method produce very accurate solutions on anisotropic meshes with highly
stretched elements. Furthermore, new measurements positioned near boundary layers
(see fig. 3.15) are presented in this section. The edge-based error estimation is applied
on the velocity field; more precisely on its direction and its norm. We will discuss in
chapter 5 how the metric construction is modified to take into account several fields for
error estimation.

We present herein the most relevant results for the validation of the accuracy
and efficiency of the coupling between the VMS approach and the anisotropic mesh
adaptation technique.

Further analysis was conducted on this problem in order to provide benchmark
results on the time dependent two and three dimensional incompressible Navier-
Stokes equations with anisotropic mesh adaptation. It demonstrated the capability of
the anisotropic mesh adaptation tools to capture the boundary layers developed by the
numerical solution. The interested reader can refer to [Coupez 13a]. Such a new set of
data can serve as a useful benchmark for comparison.

3.4.1 Driven flow cavity problem (2D)

We begin our validation of the adaptive technique by considering the classical 2D lid-
driven flow problem with a zero source term. This test has been widely studied by a
number of authors [Ghia 82, Sahin 03] using finite difference and finite volume meth-
ods, and [Hughes 86c, Franca 92b, Hachem 10b, Coupez 13a] using stabilized finite
element methods. It serves as a benchmark for numerical methods. The computational
domain is a unit square [0, 1]2. We impose homogeneous Dirichlet boundary conditions
for the velocity equal to one on the top boundary of the computational domain, i.e. at
y = 1, and zero elsewhere. We set the density to 1kg/m3 and adjust the viscosity in
order to obtain Reynolds number 1, 000, 5, 000, 10, 000, 20, 000, and 100, 000. We evolve
the solution in time with a fixed time-step equal to 0.05s. We recall a key feature of
the proposed mesh adaptation technique which is its capability to work with a fixed
degree of freedom. Usually this number is set in accordance with the available com-
putational ressources. This feature is a main advantage as it avoids a drastic increase
in mesh complexity and hence in the computational cost, consequently constituting a
powerful tool for industrial applications. We fix the number of nodes to 10, 000 in the
following test cases for Reynolds number 1000, 5000 and 10, 000. Starting with a uni-
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form mesh presented in figure 3.15, we apply the mesh adaptation process every five
time-steps. Note that a frequency of adaptation is applied in the view of reducing the
computation time due to adapting the mesh. It is considered as an acceptable tradeoff
between efficiency and accuracy.

Figure 3.15 – Driven cavity problem: 2D computational domain and the different cross sections.

Figure 3.16 presents the three resulting converged meshes (containing exactly 9, 854
nodes). We highlight the high resolution not only along all the boundary layers but
also at the detachment regions. This reflects the anisotropy of the solution caused by
the discontinuity of the boundary conditions and the nature of the flow. The elements
at the central bulk of the cavity region around the primary vortex are mostly isotropic
and increase in size as the Reynolds number increases. Again, this reflects and ex-
plains how, for a controlled number of nodes, the mesh is naturally and automatically
coarsened in that region with the goal of reducing the mesh size around the secondary
vortices in the bottom corners.

Figure 3.16 – Driven cavity problem: anisotropic meshes at Reynolds 1000, 5000 and 10, 000.

As the Reynolds number increases, secondary eddies emerge in the domain. The
mesh adaptive algorithm responds to this phenomena by refining at the level of these
eddies and coarsening the domain regions exhibiting lower velocity gradient. We can
clearly notice by comparing the meshes obtained for increasing Reynolds number, i.e.
with emerging secondary vortices, how the elements are automatically and anisotropi-
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cally adjusted to allow a good capture of these vortices. This is mainly due to the choice
of the unit vector combining the velocity components and its norm. The proposed ap-
proach shows that, with around 10, 000 nodes, it is capable of capturing all the vortices
at the different scales. Indeed, the small eddies are not strong enough to be captured
accurately by classical adaptive strategies.

The close-up on the right side of the cavity in Figure 3.17 highlights how sharp
the layers’ capture is. It shows the correct orientation and deformation of the mesh
elements (longest edges parallel to the boundary). This yields a great reduction in the
number of needed degrees of freedom to provide a good level of accuracy. These results
give confidence that the extension of the approach to take into account all velocity
components seems to work very well and plays an important role for transient flows.
Note that the details on how the metric construction is extended to take into account
several fields are covered in chapter 5.

Figure 3.17 – Driven cavity problem: zooms on the mesh near the right wall.

At this point, the next objective of these simulations is to compare the obtained
results to very accurate reference solutions. Therefore, we first plot the velocity profiles
for Vx along x = 0.5 at Reynolds 1000, 5000 and 10, 000. Figure 3.18 shows respectively
that all the results are in very good agreement with a reference solution computed on
a 600x600 = 360000 points fixed mesh [Hachem 10b].

For further comparison, we provide in Table 3.1 values of the vertical and horizon-
tal components of the velocity along the line x = 0.5 . We report the results obtained
with simulations on a fine isotropic mesh (600x600) and second from the converged
anisotropic meshes (∼ 10, 000 nodes). We compare these results to very precise com-
putations found in [Botella 98] and [Guermond 11] performed on a uniform grid com-
posed of 5000x5000 nodes. The presented solution on an isotropic (600x600) unstruc-
tured mesh highly correlates with the references. Values agree, along with the profile,
up to the fourth digit. On the other hand, results on anisotropic meshes compare
well and agree up to the second digit with the highly accurate solutions computed on
5000x5000 = 25, 000, 000 points [Guermond 11]. Again, results obtained with the VMS
flow solver using either isotropic or anisotropic meshes coincide very well with the
results in the literature.

It is worth mentioning that there is a lack, in the literature, of reference data at high
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Figure 3.18 – Driven cavity problem: comparison of the first component of the velocity field Vx in the
mid-plane x = 0.5 for Re = 1, 000 (left), for Re = 5, 000 (middle) and for Re = 10, 000 (right).

y Ref [Botella 98] Ref [Guermond 11] Isotropic Anisotropic
1.0000 1.0000000 1.0000000 1.0000000 1.0000000
0.9766 0.6644227 0.6644194 0.6644520 0.6627950
0.9688 0.5808359 0.5808318 0.5808070 0.5798160
0.9609 0.5169277 0.5169214 0.5168170 0.5126750
0.9531 0.4723329 0.4723260 0.4721800 0.4709190
0.8516 0.3372212 0.3372128 0.3370270 0.3359990
0.7344 0.1886747 0.1886680 0.1885570 0.1883090
0.6172 0.0570178 0.0570151 0.0569487 0.0572112
0.5000 −0.0620561 −0.0620535 −0.0620790 −0.0616432
0.4531 −0.1081999 −0.1081955 −0.1082040 −0.1078430
0.2813 −0.2803696 −0.2803632 −0.2803280 −0.2808320
0.1719 −0.3885691 −0.3885624 −0.3883390 −0.3863410
0.1016 −0.3004561 −0.3004504 −0.3001060 −0.3009820
0.0703 −0.2228955 −0.2228928 −0.2225900 −0.2243200
0.0625 −0.2023300 −0.2023277 −0.2020430 −0.2041190
0.0547 −0.1812881 −0.1812863 −0.1810220 −0.1828680
0.0000 0.0000000 0.0000000 0.0000000 0.0000000

Table 3.1 – Driven cavity problem: velocity profiles on the median plane x = 0.5 at Re = 1000.
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Reynolds number. In particular, measurements near the walls cannot be found in the
literature. Thus, it makes the comparison and validation of the results on anisotropic
meshes at high Reynolds number difficult. Therefore, we will use in what follows our
results carried out on the isotropic meshes (600x600) as references.

We perform cross sections close to the walls; these are crucial for validating the
efficiency and accuracy in capturing the boundary layers. We present the new plots
taken near the corners in figure 3.19.

We show in these figures the velocity profiles for Vx along x = 0.1 and x = 0.9
at Reynolds 1000, 5000 and 10, 000. All the results are in very good agreement with
the proposed reference having 600x600 elements. It is clear that in regions of strong
vortices and very close to the walls, the use of anisotropic meshes plays a critical role.
All the boundary layers are sharply captured and automatically identified. We can
clearly see from these plots that the creation of extremely stretched elements near the
walls provides accurate results. The reference computed on a very fine isotropic mesh
(600x600) agrees with the anisotropic results obtained using only 10, 000 nodes.

Finally, in order to assess the capability of the VMS method to simulate high
Reynolds number flows on anisotropic meshes, we repeated the simulation for
Reynolds numbers 20, 000 and 100, 000. Note that details on obtaining the steady so-
lution for different Reynolds numbers is analyzed by the authors in [Hachem 10b] and
will not be repeated here.

We increased the number of nodes to 20, 000 in order to capture more accurately
the characteristic of the unsteady solution. We present in figure 3.20 snapshots of the
meshes at a certain time instance. As expected, all the main directional features charac-
terizing the velocity inside the lid-driven cavity are detected and well captured by the
anisotropic error estimator. The mesh elements are highly stretched along the direction
of the layers, at the detachments regions and around the developing secondary vortices.
Once again, the developed incompressible Navier-Stokes VMS solver proves to be very
efficient and robust at high Reynolds numbers using highly stretched elements. Again,
for a given constraint on the number of elements we can find the mesh that maximizes
the accuracy of the numerical solution.

To have a clear idea on the efficiency of the developed anisotropic mesh adaptation
in simulating high Reynolds flows, we summarize in table 3.2 the history of CPU time
needed to achieve 20 seconds of simulation with and without mesh adaptation. The
fixed mesh used for comparison is the one that yields the same level of accuracy as
in computing the solution with the anisotropic mesh adaptation. We also report the
percentage of simulation time spent by the adaptation algorithm. We notice that on
average the anisotropic mesh adaptation allows 5 times faster computations, and it
uses almost 20% of the simulation CPU time.
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Figure 3.19 – Driven cavity problem: comparison of velocity profiles for Re = 1, 000 (top), for
Re = 5, 000 (middle) and for Re = 10, 000 (bottom). Left: Velocity profiles for Vx along x = 0.1. Right:

Velocity profiles for Vx along x = 0.9.

Figure 3.20 – Driven cavity problem: snapshots of the anisotropic meshes for Reynolds 20, 00 and
100, 000
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Reynolds CPU time (fixed) CPU time (adaptive) % on anisotropic mesh Speedup
1000 7655.1 1822.8 21 4.2
5000 8158.6 2022.27 21.4 4

10000 8563.46 2320.3 20.1 3.7
20000 7978.2 3008.3 17.85 2.6
100000 7427.8 4956.7 20.7 1.5

Table 3.2 – History of CPU time needed to achieve 20s of simulation.

3.4.2 Driven flow cavity problem (3D)

We continue our investigation on the classical lid-driven flow problem and consider the
three dimensional case on the cubic domain [0, 1]3. A zero source term is employed.
Dirichlet boundary conditions are imposed on the velocity field: v = 1 on the upper
wall at z = 1 v = 0 elsewhere. The solution is evolved with a fixed time-step equal to
0.05s. The viscosity is adjusted in order to obtain Reynolds number of 1000, 3200 and
5000.

Figure 3.21 – Streamlines snapshots at Reynolds 1000, 3200 and 5000

All numerical experiments are done using a fixed number of nodes (∼ 150, 000).
Again, in 3D where the flow characteristics are much more complicated, all the bound-
ary layers as well as the vortices are sharply captured and identified.

Figure 3.21 highlights the stretching of the elements near the walls, in the corners
and even at the bifurcations of the eddies for Reynolds number equal to 1000, 3200 and
5000 respectively. One observes that the higher the Reynolds number, the denser the
mesh around these regions. The velocity profiles for Vx along x = 0.5 at Reynolds 1000
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and 3200 are presented in Figure 3.22. All the results are in good agreement with the
reference having a twice finer mesh of 96x96x96 grid points [Albensoeder 05].

Figure 3.22 – Comparison of the velocity field’s first component in the mid-plane x = 0.5 for
Re = 1, 000 (left) and for Re = 3, 200 (right).

In figure 3.23 we present different close-ups on the mesh, corresponding to Re =

3200, to show how the elements can be highly stretched along the direction of the layers.
This reflects well the accuracy and details of the resolution caused by the discontinuity
of the boundary conditions and the nature of the flow.

The anisotropic adaptive procedure modifies the mesh so that the local mesh res-
olutions become adequate in all directions. Recall again that these plots reflect for
the given fixed number of nodes (∼ 150, 000) the mesh that optimizes the accuracy of
the numerical solution. The presented test cases were considered here in the objective
of demonstrating the capability of the VMS method with the modified characteristic
length to simulate 2D and 3D high Reynolds number flows on anisotropic meshes.

Figure 3.23 – Zooms on the mesh details inside the 3D cavity
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3.4.2.1 Flow past a Naca 0012 airfoil

In this test case we intend to evaluate the capability of the stabilized finite element
method together with the Spalart-Allmaras turbulence model to handle turbulent flows
in the presence of our developed anisotropically adapted meshes. The steady flow
around a NACA 0012 airfoil is a fundamental benchmark in aerodynamic simulations
for its simplicity and ability to reflect many features that may appear in aircraft appli-
cations. The results that we provide in what follows are presented in [Cremonesi 14].

The anisotropic mesh adaptation coupled with the VMS approach and the Spalart-
Allmaras model is assessed on a fully turbulent high Reynolds number flow reproduced
from [Rumsey 13]. We immerse a NACA body in a sufficiently large domain to avoid
the influence of the farfield boundary conditions on the nature of the flow near the
airfoil.

Thus we set the domain to 8× 20 chords as shown in figure 3.24. Respecting the
incompressibility of the flow, we prescribe periodic boundary conditions at the inlet
and outlet. We choose the inlet boundary condition to yield a Reynolds number of
Re = 6× 106 and a Mach number Ma = 0.2. No slip conditions are imposed on the
horizontal boundaries v · n = 0, σn = 0 and a null farfield pressure value is imposed.

At the level of the NACA body, no slip conditions are imposed on the velocity field
coupled together with homogeneous Dirichlet conditions for the SA working variable.
The time-step size is fixed to ∆t = 10−4s to ensure stability.

Figure 3.24 – Geometry for the flow behind a
NACA body test case. Figure 3.25 – Mesh around the NACA body

with a detail of the anisotropy.

In this aerodynamic application, for comparison purposes, we are interested in the
drag force on the airfoil. We set the mesh size in the fixed mesh to 2.2× 10−5 resulting
in a y+ value around 5 based on Schlichting’s formula [Schlichting 68]. We investi-
gated two aspects of mesh adaptation: the number of nodes, and the variables driving
the adaptation. Note that, a poor mesh yields an unresolved boundary layer and may
cause failure of the simulation’s predictive abilities. First of all, exploiting the multi
criteria formulation, that will be discussed in chapter 5, we tested different variable
combinations (see fig. 3.26): pure velocity, velocity and pressure, velocity and turbulent
viscosity. Figure 3.27 shows the obtained meshes at the stationary state: we infer that
the pressure field is too localized to reflect the flow features. Nevertheless, when the
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Figure 3.26 – Adaptation driven by the velocity field (left) and a combination of velocity and turbulent
viscosity (right).

adaptation is performed on the velocity and turbulent viscosity, one can detect steep
anisotropic characteristics as a response to the sharp gradients of the latter two fields.
Notice the high density of the nodes in the wake and its gradual anisotropic decrease
as we move away. On the other hand, when adapting on the viscosity together with the

initial mesh Test #3

Test #4 Test #5

Figure 3.27 – Plots of initial and stationary state meshes.

velocity field, qualitatively better features can be explored. We adopt this combination
for the rest of our analysis.
The test case configuration and level of anisotropy are reported in table 3.3. The results

Test #1 Test #2 Test #3 Test #4 Test #5 Test #6

No. elements ×105
0.5 1.5 0.5 1.0 1.5 1.0

Adaptation no no v & νt v & νt v & νt v

Table 3.3 – Summary of test cases.

appear quite promising when confronted with the ones presented in [Rumsey 13]. The
effect of the mesh size is clearly visible from tests 3,4 and 5. The adaptation procedure
in test 3 does not have enough degrees of freedom to well capture the interface, and a
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Reference Test #1 Test #2 Test #3 Test #4 Test #5 Test #6

CD × 10−3
8.155 ± 0.35 8.12 8.16 7.90 8.12 8.16 8.10

Relative error 0.3% 0.1% 3% 0.3% 0.1% 0.6%

Table 3.4 – Computed drag coefficients for different meshes.

significant error in the drag computation is committed (note that this effect was artifi-
cially taken into account in test 1, at the expense of a very long and consuming mesh
construction procedure rendering an important computational cost). It is important
to mention that in test 1, the mesh is designed before starting computations, hence it
required an apriori knowledge about the nature of the flow, so if new features were
to be produced in some other location, away from the interface, the mesh will not be
accounting for it and hence yields an important error. On the other hand, using the pro-
posed anisotropic mesh adaptation algorithm, the mesh will be automatically adapted
and updated during runtime without apriori knowledge about the problem at hand.
Test 6 reveals that driving the mesh from the velocity and turbulent viscosity reduces
the induced numerical error. As may be seen from table 3.4 all the tests except test 3

are in a 1% range of error thus confirming the predictive performance and reliability of
this method. The final result plots for test 4 are shown in fig. 3.28 and appear in good
agreement with similar tests in the literature.

Mesh Turbulent viscosity

Pressure Velocity

Figure 3.28 – Plots for Test # 4 at the final time.

3.4.3 Application to a 3D coupled heat transfer and fluid flows problem

So far, we have tested the anisotropic mesh adaptation algorithm separately on the
convection-diffusion and the Navier-Stokes problems. In this test case we apply the
developed anisotropic mesh adaptation to simulate the coupled heat transfer and fluid
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flows inside an industrial furnace with complex geometry presented in [Hachem 09].
The objective of this numerical example is to show the applicability, efficiency and
potential of the developed algorithm in simulating long time heating inside large
scale complex three-dimensional enclosure. Stabilized finite element method is used
to numerically solve time-dependent, three-dimensional conjugate heat transfer and
turbulent fluid flows. More precisely, two additional stabilization terms have been in-
troduced for the stabilization of the transient convection-diffusion-reaction equations:
the first controls the oscillations in the streamline direction (SUPG) and the second
controls the derivatives in the direction of the solution’s gradient (SCPG). Moreover,
the variational multiscale approach is applied for stabilizing the Navier-Stokes equa-
tions. Starting with a gas at rest and a constant temperature of 333K, the heated air
is pumped into the furnace from 10 different inlets, with circular shape having 6m
diameter and positioned at 1.7m from the ground. For confidentiality purposes, we
omit the details on the geometry of the furnace. The velocity and temperature of
injection are set to 10m/s and 1073K respectively. Adiabatic and no slip conditions
are assumed on all the other boundaries for sake of simplicity. The air is vented out
the furnace through an outlet located at the center of the top wall (at z = 2.42m). The
solution is evolved in time with a time-step size equal to 0.01s. The computations have
been conducted using 16 2.4 Ghz Opteron cores in parallel (linked by an Infiniband
network) [Digonnet 03].

We have anisotropically adapted the mesh every 10 time-steps with a fixed imposed
mesh size of around 60, 000 nodes. In fact, in such a simulation we are interested in
accurately modeling the thermal evolution inside the enclosure. A combination of the
temperature field, the velocity direction and the velocity norm is considered as the
motor in driving the mesh toward optimality. The latter multi-criteria adaptation shall
be discussed in chapter 5.

Figure 3.29 presents a median plane cut in the z − direction showing the evolu-
tion of the isothermal distribution and the velocity streamlines at different time-steps.
Starting with a uniform isotropic mesh, the mesh adaptation technique automatically
detects the gas pumping inside the furnace. As a response, an anisotropic refinement
at the level of the burners is generated allowing a better representation and capture
of the flow. When the hot fluid spreads along the volume of the furnace, it induces
a turbulent and recirculating motion within the geometry. This forced convection is
caused by the interaction of the moving stream and the stationary fluid inside the fur-
nace. The streamlines and the temperature distribution clearly reflect the expected flow
pattern. Again, the mesh elements are automatically redistributed and well oriented to
give a better capture of the multi-scale flow characteristics and represent the emerging
gradients.

The highly stretched elements and significant density at the level of the temperature
gradient permit a better capture of the flow characteristics and the temperature field.
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Figure 3.29 – Streamlines and isotherms inside the furnaces at different time instances.

One can observe a number of vortexes inside different buffer zones. They are due to
the turbulence dissipation and mixing between the hot and cold air.

The objective of this simulation is to assess the applicability of the anisotropic mesh
adaptation in simulating coupled heat transfer and fluid flows inside a complicated ge-
ometry. The problem can be perceived as a first step toward a complex real application.
Comparative analysis in real contexts will be provided in chapter 7. The present re-
sults, describe only the first five minutes of the heating process, which required around
10 hours of computations. This limitation in the computational time is due to the small
chosen time-step size. To provide the same level of accuracy, a fixed mesh should be
fine everywhere in the domain in order to capture the spread of the velocity and tem-
perature fields all over the furnace. Hence, a speedup of computations is highlighted
using an anisotropic mesh adaptation.

However, it is still necessary to supply fast calculation in order to calculate full
heating sequences inside industrial furnaces, with different ingots, in a reasonable
computational time. These calculations would allow to predict different parameters
and to understand the flow characteristics for heat treatment furnaces. We recall that
one of the main industrial objectives of this work is to model and simulate conjugate
heat transfer for multi-components systems which is considered very essential for in-
dustrial applications especially in the case of the heat treatment of high-alloy steel by a
continuously heating process inside industrial furnaces.
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3.5 Conclusion

In this chapter, we have modified the definition of the characteristic length used in the
stabilization parameters to account for highly stretched elements. The performance of
the developed anisotropic mesh adaptation algorithm and the modified solvers have
been validated on several physical phenomena. We demonstrated the efficiency of the
method in accelerating the computations for the same level of accuracy with respect
to a fixed mesh. We assessed the adaptation on convection-diffusion problems at high
Peclet number. It showed to be favorable for capturing steep interior and boundary
layers. We have also validated the order of convergence and showed that using the
anisotropic mesh adaptation together with stabilized finite element methods, we are
capable of recovering the convergence orders. When applied to high Reynolds flows,
with or without turbulence models, the method reflected good accuracy in automati-
cally producing boundary layer meshes inside the 2D and 3D lid-driven cavities. The
numerical results demonstrated that the flow solvers based on stabilized finite element
method is able to exhibit good stability and accuracy properties in the presence of
anisotropic meshes. All the main directional features characterizing the velocity in-
side the cavities are detected and well captured by the anisotropic error estimator. The
mesh elements are highly stretched along the direction of the layers, at the detachments
regions and around all vortices.

We have also investigated the feasibility of the developed anisotropic mesh adap-
tation algorithm in simulating coupled heat transfer and fluid flows inside complex
three-dimensional geometries. The results demonstrated the potential of the method in
well capturing the characteristics of the simulation. This method has lead to a consider-
able improvement in the computational time required for the same level of accuracy on
a fixed mesh. However, the use of a constant time-step all over calculations might yield
a significant temporal slow-down. One way to resolve this issue can be by adopting
varying time-step sizes according to the nature and features of the simulated physical
phenomena. In other words, reducing the computational time can be obtained by de-
creasing the time-steps when the solution exhibits radical changes and increasing them
as the solution stabilizes, i.e. when the simulation error decreases for a given mesh:
this process is known as temporal adaptation. It will be the subject of the following
chapter.

3.6 Résumé français

Dans ce chapitre, nous avons modifié la définition de longueur caractéristique util-
isée dans les paramètres de stabilisation pour tenir compte des éléments très étirés.
La performance de l’algorithme d’adaptation de maillage anisotrope développé et
des solveurs modifiés a été validée à travers la simulation de plusieurs phénomènes
physiques. Nous avons démontré l’efficacité de la méthode vis-à-vis d’un maillage
fixe.
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La méthode d’adaptation a été validée sur des problèmes de convection-diffusion
à grand nombre de Péclet. L’approche a montré sa capacité de capturer les couches
internes et limites. Dans le cadre de méthodes de stabilisation, un demi ordre de
convergence est perdu par l’approche éléments finis P1, ceci est dû aux termes de
diffusion ajoutés aux endroits de convection dominante. Couplés avec la méthode
d’adaptation anisotrope du maillage, le second ordre de convergence a été récupéré.
Cette propriété a été validée sur plusieurs cas de convection-diffusion.

Ensuite, le couplage adaptation anisotrope de maillage et solveurs stabilisés a été
mis à l’épreuve sur des simulations d’écoulements à de nombres de Reynolds élevés,
avec ou sans modèles de turbulence. La méthode a reflété une bonne capacité à re-
produire automatiquement les couches limites de manière précise. Toutes les prin-
cipales caractéristiques directionnelles caractérisant la vitesse à l’intérieur des cavités
sont bien détectées et capturées par l’estimateur d’erreur anisotrope. Les éléments du
maillage sont fortement étirés le long de la direction orthogonale aux forts gradients, au
niveau des régions de détachements et autour des tourbillons qui se développent. Nous
avons également étudié la performance de l’algorithme d’adaptation et la robustesse
des solveurs dans le cadre de simulations 3D d’écoulements de fluide et de transferts
thermiques à l’intérieur de géométries complexes telles que les fours industriels. Cette
méthode a conduit à une amélioration considérable du temps de calcul obtenue pour
le même degré de précision sur un maillage fixe. Plus de validations numériques et
des confrontations avec des résultats expérimentaux seront évoqués dans le chapitre 7.

Cependant, l’utilisation d’un pas de temps constant durant toute la simulation
pourrait induire un ralentissement temporel significatif. Une façon de résoudre ce
problème peut être en adoptant des pas de temps qui varient en fonction de la nature
et des caractéristiques des phénomènes physiques simulés. En d’autres termes, la ré-
duction du temps de calcul peut être obtenue en diminuant les pas de temps lorsque la
solution présente des variations rapides et en augmentant les pas de temps lorsque la
solution se stabilise ou reflète des variations lentes. Ce procédé est nommé l’adaptation
de pas de temps et sera l’objet du chapitre suivant.
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Physical problems and industrial applications are intrinsically dynamic. Their res-
olution requires a great challenge as it involves following their unsteadiness with

a good accuracy while respecting an affordable CPU time and memory storage. In the
previous chapter, we have discussed the advantages of employing anisotropic mesh
adaptation for the resolution of physical phenomena (heat transfer and fluid flows).
The method permits an automatic and good capture of the physical phenomena’s
anisotropy. We have emphasized the substantial gain in computational cost compared
with using an isotropically adapted mesh or even with a uniform mesh. When com-
bined with stabilized P1 finite element method, a recovery of second order convergence
of the numerical scheme is obtained. However, using a time-step that is generally set to
a constant value or adaptively modified to satisfy stability conditions induces consid-
erable CPU time usage. Indeed, the choice of the time-step sizes is highly dependent
on the nature and characteristics of the problem being solved. We recall that one of the
objectives of the present work is to enhance the efficiency of computations. For that
purpose, we intend to resort to a time adaptive algorithm that accelerates computations
while maintaining a good level of accuracy.

This chapter is devoted to the derivation and implementation of an appropriate
time control algorithm. It emphasizes the importance of time adaptation in increas-
ing the efficiency of the simulations. We start by briefly presenting an overview on
existing time-adaptive schemes. Then we present the algorithm that is developed in
this thesis. The analysis departs from the existing methodology of adaptation based on
an explicit treatment of time advancing and their corresponding stability conditions.
The problematic related to this choice of time incrementation are then addressed point-
ing out the necessity for a different strategy of evolution. To deal with this issue, we
move on next to discuss several possible choices of time adaptation. We elaborate on
their advantages and disadvantages. We then derive the algorithm that we adopt in
the anisotropic adaptation framework and clarify its features in simulating complex
phenomena.
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4.1 State of the art

A large variety of physical phenomena are characterized by their multiscale features as
they involve the interaction of several processes evolving simultaneously at different
temporal and spatial scales. The simulation of industrial and engineering problems
usually deals with large-scale domains and should be run over a long period of time.
Nevertheless, mimicking the behavior of physical phenomena through numerical simu-
lations raises some challenges regarding the computational cost required to account for
the various physical parameters and scales of the problem. Note that the study should
be performed with a certain level of accuracy. The use of very small time-steps will
certainly permit a better capture of the physical patterns disclosed by real and complex
phenomena. However, such a choice of time-steps necessitates important computa-
tional costs and execution times. Therefore in practice, if no adaptation is applied, a
compromise between computational efficiency and accuracy should be sought.

Temporal discretization can be done using different approaches of which we recall
the explicit (e.g. explicit Euler or Runge Kutta), and the implicit (e.g. Euler backward,
Crank Nicolson and fractional time-steps) schemes. The resolution methods relying on
an explicit time integration scheme require a CFL condition that determines the range
of the time-steps. This condition guarantees the solution’s stability if the time-step is
smaller than the time required for a compression wave to traverse the smallest finite
element. The advantage of these methods resides in the fact that the resolution of the
equation is immediate, i.e. the solution at time tn+1 is directly obtained from the given
one at time tn which is not the case for implicit schemes. On the other hand, the implicit
resolution methods are unconditionally stable but they are not straightforward: they
require the resolution of a system at each time-step. Note that although these schemes
are unconditionally stable, a very large time-step can yield an inaccurate solution.

4.1.1 Stability constraints on explicit advancing

When employing an explicit time discretization of the fluid flows and heat transfer
equations, stability constraints on the choice of time-step sizes are to be respected
[Johnston 04]. The restrictions imposed by viscous terms stability conditions are de-
fined by:

∆tv ≤
1
µ

(
hmin

2

)d

, (4.1)

where µ refers to the kinematic viscosity of the fluid involved in the simulation, hmin

represents the smallest edge in the mesh and d the space dimension. Moreover, in order
to allow a good capture of the different characteristics of the flow, the choice of time-
steps should not exceed a Courant-Friedrichs-Levy (CFL) type limit for controlling the
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convection terms. This bounding on the time-steps for incompressible flows reads as:

∆tc ≤
hmin

||v||∞
with ||v||L∞ = max

x∈Ω


(

d

∑
i=1

v2
i

)1/d
 , (4.2)

where v stands for the velocity field and vi corresponds to its ith component. Enforcing
the two stability constraints for the convective and viscous terms, the time-step size is
selected such that:

∆t ≤ min
i∈{1,N}

(
min

(
∆ti

v, ∆ti
c

))
, (4.3)

where N denotes the number of nodes in the finite element mesh Hh. It is important
to mention that selecting hmin as the smallest edge in the mesh which is not an optimal
choice when this distance is taken in a different direction than the convective field.
When anisotropic mesh adaptation is applied, the parameter hmin can be determined
from the metric tensorsMi, taking into account the flow direction, as follows:

hmin = min
i∈{1,N}

1(
vt

||v||Mi v
||v||

)1/2 (4.4)

Nevertheless, in the context of anisotropic mesh adaptation, the mesher tends to gen-
erate highly stretched elements in the orthogonal directions to the solutions’ gradients.
Consequently, hmin takes very small values and in turn, the time-step size will be signif-
icantly reduced yielding a considerable CPU cost. Therefore the use of a stability driven
time-step selection scheme constitutes a serious bottleneck for numerical simulations.

4.1.2 Local time-stepping

A first attempt to reduce the computational cost due to time-stepping would be to
consider local time-steps dictated by local stability conditions. In these methods, the
computational domain is decomposed into several regions, called buffer zones, and the
solution is evolved accordingly with different time-step sizes. Usually these methods
are employed on structured meshes [Tam 03, Lörcher 07, Lörcher 08]. The extension
to unstructured or anisotropically adapted meshes requires great attention. A good
tuning between the solutions on different buffer zones must be performed. This can be
done by deriving transfer coefficients between submeshes, that can be viewed as local
boundary conditions. Moreover, a non heuristic parameter to delimit the buffer zones
shall be defined. A third issue that needs to be carefully studied is the parallelization
of this procedure. The method seems quite interesting however it is out of the scope
of the current work as it is not possible to apply it with the current CIMLIB parallel
library that we use.

In this work, an implicit time marching scheme is adopted. This type of temporal
discretization allows to circumvent the restrictive stability criteria and to take more re-
laxed choices of time-step sizes. Yet if a good temporal accuracy is desired, prescribing
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time-steps that respect condition (4.3) would be preferable. Nevertheless, this choice
can drastically affect the computational time of the simulation. Therefore a compro-
mise between accuracy and efficiency shall be considered. We present next an overview
on the methods that we can find in the literature for adaptively evolving the solution
in time. A brief summary about the algorithms will be provided next, more details
are given in [Jannoun 11]. We note that we omit the time-marching schemes that are
problem dependent as we are looking for an automatic algorithm that can be applied
without modification on any problem at hand.

4.1.3 Overview on existing time-stepping algorithms

4.1.3.1 Time-stepping based on local truncation error analysis

In 1999, Sloan et al. [Sloan 99, Kavetski 02] proposed an automatic consolidation algo-
rithm that attempts to take a step-size in such a way that the error lies close to a certain
predefined tolerance. After a first resolution of the system of equations at times tn and
tn+1, a local truncation error is determined and the solution is linearly reconstructed
along the time interval [tn, tn+1]. A relative error with respect to the reconstructed so-
lution is computed and compared to a user prescribed tolerance. Then the time-step
size is affected by a certain factor and the process is repeated until the relative error be-
comes smaller than the predefined tolerance. Although this time-adjustment algorithm
is conceptually simple, it requires recomputing the problem’s solution at each failure
of the time-step size which is computationally expensive when simulating complex 3D
phenomena.

In turn, Chen and Feng [Chen 04b] proposed in 2004 a time adaptation algorithm
based on an a posteriori error analysis applied on the diffusion equation. The basic
idea is to equally partition a tolerance value over time sub-intervals [tn, tn+1]. They
start by computing the solution at time tn+1 then measure the temporal error induced
on [tn, tn+1] and compare it to the equally distributed tolerance. They defined error
ranges and divided the time-step size by a constant factor related to the error range.

The method of Berrone and Marro [Berrone 09] is added in 2009 to the above men-
tioned works on time-adaptivity derived from an a posteriori error indicators. The
key point of their algorithm is to reduce the time-step size when the solution has a
fast evolution and to enlarge it when the solution exhibits slow changes. The initial
step of their method consists in tuning the time-step sizes so that the temporal error is
bounded by an interval around a specific tolerance.

As there are no specific study on the optimal choices of the prescribed parameters
(choice of the tolerance, factors for modifying the time-step sizes, · · · ), it is hard to
employ this method in a general framework.
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4.1.3.2 Heuristic time-stepping schemes

In the heuristic time stepping methods [Celia 92, Rathfelder 94, Paniconi 91] the time-
stepping adaptation for the (n + 1)th time-step is based on the number of iterations
Nit performed to obtain the solution of the nonlinear system at the previous time-step.
Although this method is easy to implement and requires a low computational cost, it
cannot be applied in a general framework for several reasons. First, the user-specified
parameters depend on the problem at hand and require a priori knowledge of the
solution’s behavior. In practice, when the user does not know much about the profile
of the solution the choice of the parameters will negatively affect the accuracy and
efficiency of the solution.
Moreover, this method relates the time-stepping size to the number of iterations needed
to solve the nonlinear system; in other words, the time-stepping choice is not directly
dependent on the actual induced temporal error. On the other hand, this scheme is
dependent on both the solver and the problem at hand so if any of the two is changed
then one has to re-estimate the parameters all over again.

4.1.3.3 The Residual-based time-stepping methods

Fidkowski and Luo proposed in 2011 an adjoint-weighted residual method for the
computation of the adaptive time-steps [Fidkowski 11, Kast 13]. Their work relies on
the study of primal and adjoint systems of equations. Through the use of an adjoint
system they aim to account for the effects of error propagation. From a theoretical
point of view this method has its pros as it provides a good level of accuracy however
it requires considerable implementation challenges and computational expenses since
it necessitates for each chosen time-step the solution of both the primal and the adjoint
problems.

4.1.3.4 Fictive residual methods

Fictive residual methods were introduced in 2009 by Georgiev et al. [Georgiev 09].
The time-step adaptive procedure is based on an error indicator computed as the dif-
ference between the approximated solution obtained using the Crank-Nicholson and
the backward Euler temporal discretizations. This error is then compared with a user
defined threshold and decisions on reducing or increasing the time-step sizes are de-
duced accordingly. Nevertheless, as the procedure computes the solution twice at every
time increment, once using the Crank-Nicholson time discretization and once using the
backward Euler discretization, it becomes computationally expensive.

4.1.3.5 Fixed point adaptive staggering method

An adaptive staggering method was proposed by Zohdi in [Zohdi 07] whereby a clas-
sical staggering approach is used to solve each field equation at a time in a decoupled
mode while activating only the primary field variable. After solving the equation, the



4.1. State of the art 191

field is updated and the process is applied to the next field equation. Once the analysis
is carried out for all the field equations, the time-step size is incremented. The orig-
inality proposed in [Zohdi 07] resides in the fixed point iterative staggering process
in which the computations are repeated recursively until the system converges with
respect to a tolerance value within a predefined number of iterations. The modification
of the time-step size is controlled as a function of the spectral radius of the considered
coupled system.

4.1.3.6 Space and time residual based methods

Micheletti and Perotto proposed space and time residual-based error estimators
[Micheletti 08c, Micheletti 08b]. Starting with initial guesses of the domain mesh and
the time-step size, the solution is approximated on the corresponding space-time slab
and a temporal error indicator is deduced. Depending on whether the estimated tem-
poral error is below or above a certain threshold value, the algorithm either reduces
the time-step size and repeats the computations or advances to the following time in-
crement. In this work, an adhoc procedure for the recovery of the numerical solution’s
time derivative is employed followed by the calculation of the temporal residual as the
jump in the solution over the space-time slab. The error estimation relies on residual
mathematical analysis of the primal and dual problems. The approach has been de-
rived separately on the convection-diffusion-reaction and the Navier-Stokes equations.
The derivation of a formulation for the coupled heat transfer and fluid flow problems
is a difficult task.

In this chapter, we adopt a different route for time-marching that we build in such
a way to complement the anisotropic mesh adaptation described in chapter 2. The
method that we develop is simple, easy to implement, automatic, independent of the
problem at hand and does not require a user-defined tolerance. It consists in equi-
distributing the error in both space and time hence yielding the same level of accuracy.

The first idea that comes to mind is to extend the metric construction to take into
account the time dimension. Hence, an optimal space-time mesh is built. This idea will
be explored in the following section.

4.1.4 Generating anisotropic space-time meshes

We consider a finite element discretization Hn
h of the computational domain Ω ×

[tn, tn+1] made up of pentatope elements (4-simplex elements). We want to determine
the optimal spatio-temporal mesh H̃n

h . For the clarity of illustration, we denote by Xi
n

the spatial node Xi at time tn. The problem of building the space-time mesh is cast
as a four-dimensional constrained optimization problem of finding the metric tensor
that minimizes the total interpolation error in space and time under the constraint of
a fixed number of nodes. The existing method of metric construction can be lever-
aged and needs only minor modifications to accommodate for the additional direction.
Looking toward that end, the length distribution tensor Xi at each node Xi

n will account
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for an additional edge Xin+1 connected to Xi
n:

Xi =
1

|Γ(i)|+ 1

 ∑
j∈Γ(i)

s2
ijX

ij ⊗ Xij + s2
in+1Xin+1 ⊗ Xin+1

 (4.5)

where Γ(i) represents the number of nodes connected to Xi and sij the stretching factor
of edge Xij in its own direction. Figure 4.1 shows a schematic interpretation of the 4D
mesh. It is important to mention that in this case, the coordinate vector Xi

n contains an
additional component referring to the time-dimension.

Figure 4.1 – Sketch of the edges connected to node Xi in a 4D mesh.

The stretching factors are determined based on an edge-based error estimation and
the equi-distribution process. The associated metric tensor will be deduced as in chap-
ter 2:

Mi =
1

d + 1

(
Xi
)−1

(4.6)

with d being the space dimension. The constructed metric will then be given to the
MTC mesher which in turn will generate the corresponding optimal mesh. We recall
that the MTC mesher’s capability to generate 4D meshes has been validated [Gruau 05].
Therefore, this method seems quite promising, however it will not be pursued further
and validated in this thesis for several reasons. First of all, adopting this adaptation
technique requires the development of a tool that transforms the results computed
on the 4D mesh into a set of data that can be visualized and physically interpreted.
Second, it necessitates the development and implementation, in the CimLib library, of
space-time stabilized finite element methods. Moreover, this type of meshes and solvers
are not bearable by the available parallel toolbox. Consequently, using this adaptation
scheme, the numerical simulations that we will be able to consider will be limited in
complexity which is a major drawback of this method. However, preparing the ground
for this technique and its validation constitutes a subject for perspective development.

Therefore in this work, the analysis is limited to considering that the time dimension
is orthogonal to the space dimension. At this level, two possibilities for treating the
space-time mesh optimization problem arise. The first one involves constructing a
space-time metric while imposing the orthogonality assumption and adopting space-



4.1. State of the art 193

time finite element schemes [Tezduyar 06] carried out for one space-time “slab” at a
time. In this approach, the mesh is made up of right prisms whose basis are triangles
in 2D and tetrahedra in 3D. The length distribution tensor at a spatial node Xi

n will be
defined by:

Xi =

(
Xi

s 0
0 (sin+1∆tn)2

)
(4.7)

where Xi
s stands for the length distribution tensor whose components contain informa-

tion from the spatial edges only. Since the temporal edge is orthogonal to the spatial
ones, the latter do not undertake any change in time hence the zero component below
Xi

s. Moreover, the temporal edge do not present any variation with respect to space
hence the zero component to the right of Xi

s. Based on the equi-distribution principle,
the optimal metric would be the one that equi-distributes the error over the spatial and
temporal edges in the mesh.

We recall that a metric tensor can be diagonalized into M = RΛRt where R is a
rotation matrix whose columns are eigenvectors ofM and Λ is a diagonal matrix with
diagonal elements λk the eigenvalues ofM. In an anisotropic mesh adaptation frame-

work, the mesh sizes are determined from the eigenvalues of the metric hk =
(

1
λk

) 1
2
.

Applying the same principle in the space-time context, an additional eigenvector and its
corresponding eigenvalue shall be accounted for. They reflect the direction correspond-
ing to the temporal edge and its associated time-step size. To accommodate for the
orthogonality assumption, the eigenvector will be set to a d + 1 vector rt = (0, · · · , 0, 1)
where d is the space dimension. Consequently, the metric tensor will be defined by:

Mi =

(
Mi

s 0
0 (sin+1∆tn)−2

)
(4.8)

whereMi
s is the spatial metric tensor at node Xi

n defined in the previous chapter.
The metric tensor can then be provided to the MTC mesher in order to generate

the optimal space-time mesh. It is important to point out that since we are accounting
for each node twice, one at time tn and its duplicate at time tn+1 then the prescribed
number of nodes in the mesh should be increased. However, as the space and time
dimensions are only connected through the equi-distributed error and in order to
maintain a good level of accuracy, the temporal error should not exceed the spatial
one. We recall that a second order finite element method is employed for evolving
the solution in space whereas an implicit first order time-marching scheme is adopted.
Therefore to enhance the accuracy of the space-time adaptation, the error control shall
be driven from an analysis based on the spatial error to compute an equi-distributed
error on the edges of the spatial mesh respecting the imposed fixed number of nodes in
the mesh. Then the error in time is limited to respect the equi-distributed error bound.
At this level, either a 4D remeshing is performed by giving the metric tensor to the
mesh generator, or a splitting of space and time dimensions is employed while respect-
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ing the error equi-distribution property. This is the second approach for developing a
space-time adaptation procedure. As it is well suited for capturing anisotropic features
of physical problems, it will definitely improve the accuracy of unsteady simulations
while preserving an affordable computational cost.

In [Belme 11], a space-time metric is constructed where the aim is to generate a
spatial mesh that minimizes the space and time errors over a slab of time under the
constraint of a fixed space-time complexity. This approach yields good accuracy con-
trol over an interval of time. However, an explicit time-marching scheme is adopted
with a fixed time-step size or dynamically evolving time-steps subject to a Courant
condition. The authors pointed out the limitation of the latter time evolution criterion.
This is due to the fact that under a Courant condition, the time-step length depends on
the smallest mesh size thus the applications using this adaptive process are restricted
to ones having smooth solution fields.

The second approach, as discussed previously, consists in decoupling the space-
time optimization problems, solve for the optimal metric in space and thus generate
the well-adapted anisotropic spatial mesh. The construction relies on the edge-based
error estimation and the equi-distribution principle. Once the spatial mesh has been
obtained, we control the time-step size by applying the same principles for adaptation
as in space and imposing the error equi-distribution property.

4.2 Time adaptation procedure

The basic idea of the time-adaptive algorithm that we develop in this chapter is to
extend the spatial error analysis introduced in the previous chapter to the time dimen-
sion. The main objective is to produce a time-step which preserves the accuracy of the
mesh adapted solution while accelerating the computations. Following the lines of the
mesh adaptation technique, the time-step will be controlled by the interpolation error.
Here we consider the time dimension as being analogous to a 1D spatial problem and
apply the whole theory exploited in chapter 2 in 1D. Now that we have shown how
to construct a metric field at each node Xi of the discretized domain that would lead
to an adapted anisotropic mesh in Rd, we move on to use the information from this
construction in order to build an adaptive time marching technique. The latter should
at the same time provide accurate estimations and not require a large computational
cost.

Based on the information given by the derived error estimator in space and the
history of the solutions, the algorithm should automatically calculate an appropriate
time-step for the following computations regardless of the properties of the problem at
hand. The time adaptation study is very similar to that of the anisotropic mesh adapta-
tion except that the analysis is performed in a one dimensional context where the only
studied variable being the time.
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We consider a scalar field u ∈ C0(Ω) = V and Vh a simple P1 finite element approxi-
mation space:

Vh =
{

wh ∈ C0(Ω), wh|K ∈ P1(K), K ∈ K
}

(4.9)

where K is a simplex (segment, triangle, tetrahedron, · · · ) in the mesh Hh. We define

X =
{

Xi ∈ Rd, i = 1, · · · , N
}

as the set of spatial nodes and

T = {t0, · · · , tn−1, tn, tn+1, · · · } ,

as the set of temporal nodes in the time interval [0, T]. We let tnk = |tn − tk| ; n, k ∈ T
be a temporal edge with length ∆tn = tn,n+1 as shown in figure 4.2. It is important
to mention that the number of temporal nodes, and hence time edges, is not known a
priori as it depends on the behavior of the solution along [0, T].

The space-time adaptive method can be split into two sub-optimization problems
whereby one intends to minimize the global interpolation error in both space and time
under the constraint of a fixed number of nodes. In the first sub-problem, we seek
a metric field defined at the nodes of the mesh and yields an optimal well-adapted
spatial mesh. The second sub-problem aims at finding the global time-step size that
minimizes the temporal interpolation error under the constraint of maintaining the
temporal error bounded by the spatial equi-distributed error. In the previous chap-
ter, we have emphasized how to derive the metric tensor that results in the optimal
anisotropic mesh adaptation. In this section, we intend to explain how to derive the
optimal time-step sizes.

Assume that the solution u is already computed on the whole domain up to time
tn. The aim is to determine an appropriate time-step ∆tn.

4.2.1 Edge-based temporal error estimation

Without loss of generality, the analysis will be carried on an arbitrary spatial node Xi.
Note that at a spatial node Xi, we only have one time edge to be determined (tntn+1).

Figure 4.2 – Temporal discretization at the spatial node Xi.

Define {τn,n+1} to be the temporal edge scaling (stretching) factor such that:

ẽn+1,n = τ2
n+1,nen+1,n∣∣∣t̃n+1,n

∣∣∣ = τn+1,n
∣∣tn+1,n

∣∣ ,
(4.10)
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where en+1,n is an approximation of the interpolation error known as the edge based
error (more details are defined later), ẽ and |t̃| are respectively the target error at the
temporal edge tntn+1 and its associated edge length.

Let un−1
i , un

i and un+1
i be the solutions at node Xi and times n − 1, n, and n + 1,

respectively. We introduce the time-step distribution function L n
i at the spatial node

Xi and time tn, which is equivalent to the length distribution tensor in space. As we are
evolving the solution with a fixed time-step, the length distribution function reduces
to a scalar value that is the same over all spatial nodes.

L n =
1
2

(
(∆tn)2 +

(
∆tn−1

)2
)

. (4.11)

Then applying the second order recovery gradient in 1D, we get:

u̇n = (L n)−1 Un
i , (4.12)

where,

Un
i =

1
2

(
un,n+1

i ∆tn + un,n−1
i ∆tn−1

)
. (4.13)

Substituting equations (4.11) and (4.13) in (4.12), yields the recovered derivative:

u̇n =
un,n+1

i ∆tn + un,n−1
i ∆tn−1

(∆tn)2 + (∆tn−1)
2 . (4.14)

Hence the change in the derivative along the temporal edge [tn−1, tn] is determined by:

u̇n,n−1
i = u̇n

i − u̇n−1
i (4.15)

and edge-based error estimation is given by:

en,n−1
i = u̇n,n−1

i ∆tn−1 . (4.16)

As discussed in the previous chapter, the error estimates change quadratically as a
response to changing or stretching the edge by a factor τn−1

i . Therefore:

ẽn,n−1
i = τn−1

i
2
u̇n,n−1

i ∆tn−1 , (4.17)

where u̇n,n−1
i = u̇n

i − u̇n−1
i .

At this level, the analysis will deviate from the one adopted in the derivation of the
anisotropic mesh adaptation. The direct extension would have been to fix a total num-
ber of time-steps and to determine the respective time-step sizes over the simulation
based on an error equi-distribution on the subintervals. However as the solution behav-
ior is not known apriori for the full time interval, the error estimates on the temporal
edges cannot be predicted. Therefore the time-adaptive approach cannot be completed
in this way. We will instead continue the analysis in a space-time framework, that is
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we equi-distribute the error in space and time. To do so, we modify the time-step size
in a way to prevent the temporal error from exceeding the equi-distributed error in
space at time tn computed according to equation 2.113. Hence, based on the space-time
equi-distribution error argument, we write

ẽn,n−1
i = e(N, tn) , (4.18)

where e(N, tn) is the equi-distributed error in space for a total number N of nodes.
Consequently, the stretching factor of the time-step size, driven by the assumption of
the quadratic change in the error as a result of scaling the temporal edge, is given by:

τn−1
i =

(
e(N, tn)

en,n−1
i

) 1
2

, (4.19)

and the optimal time-step is determined by:

∆̃tn = min
i

τn−1
i ∆tn . (4.20)

However, if we consider this formula closely we find out that it requires the solution
at time tn+1 which is not yet computed. Therefore instead of computing the optimal

time-step ∆̃tn we calculate ∆̃tn−2 and we let

∆tn = ∆̃tn−2 . (4.21)

It is important to note that when a frequency f of spatial adaptation is used, the
temporal stretching factors will be modified to account for a new equi-distribution. The
new stretching factor is then defined by:

τn−1
i =

(
e(N, tn)/ f

en,n−1
i

) 1
2

. (4.22)

In other words, the equi-distributed error e(N, tn) estimated at time tn to generate
the anisotropically adapted mesh that will last f time increments will be spread over
the time subinterval [tn, tn+ f ]. So that the total temporal error over [tn, tn+ f ] would
not exceed e(N, tn). The time-step adaptation is employed at every time increment to
maintain a good level of accuracy. This is possible and computationally inexpensive
as the algorithm for time-adaptation consists of simple arithmetic operations that are
affordable and yield a high level of accuracy. We note that throughout this thesis work
an implicit time marching scheme is employed. Nevertheless, adapting the mesh every
f time-steps using the developed space and time adaptive algorithms is not an optimal
choice when a second order time discretization scheme is used. We present in chapter
6 a new method that proceeds by slabs of time conserving second order temporal
accuracy.
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4.2.2 General space-time adaptive algorithm

The steps for the space and time adaptation are summarized in algorithm 3. The de-
coupled space-time mesh optimization problem starts by evaluating the edge-based
spatial error estimates. To do that, a length distribution tensor is computed and a
gradient reconstruction at the mesh nodes is performed. After determining the error
estimates on the edges in the mesh, an equi-distributed error is predicted. If the mesh
adaptation process is activated, the stretching factors for the edges and thus the length
distribution tensors and optimal metrics are deduced. Consequently, these metrics are
provided to the MTC mesher that generates the anisotropically adapted mesh. The
solution fields are interpolated into the new mesh. Afterward, derivative reconstruc-
tion on mesh nodes and error estimates on the edges are determined yielding a new
definition of the optimal time-step size for the following time increment. The process
is repeated iteratively until the end of the simulation.

Algorithm 3: Space and time adaptive algorithm

Input: The initial mesh H0
h, problem’s parameters u0

h, and time-step size
∆̃t = ∆t0.

Output: The numerical solution at time tn, the optimal mesh and time-step size.
begin

n = 1, t = 0 // Initialization

while tn−1 < T do // Time loop

Prescribe the number of nodes in the mesh N

Increment the time tn := tn−1 + ∆̃tn−1

Compute un
h on mesh Hn−1

h
for each node Xi do

Compute Xi // The length distribution tensor

Compute Gi // Recovery gradient operator

for each edge Xij do
Compute Gij // Change of the gradient over the edge

Compute eij // Edge based error

Compute e(N, tn) // The equidistributed error

for each node Xi do
Compute u̇n−1,n−2

i using eqs.(4.2.1) and (4.15) // Temporal derivative

Compute ẽn−1,n−2
i following eq.(4.16) // Temporal error

Compute τn−2
i using eq.(4.22) // Temporal stretching factor

Compute ∆̃tn−2 using eq.(4.20) // The optimal ∆tn−2

Set ∆tn = ∆̃tn−2 // Set the following time-step

When the target field u for time adaptation is a vector, the procedure is applied to
every component of this vector field and then the minimum prescribed time-step size
is selected for the following time-increment. More details about multi-field adaptation
will be provided in chapter 5.



4.3. Numerical validation 199

It is important to mention that the desired mesh density can be interactively up-
dated during the simulation time through an implemented user-interface. Moreover, an
anisotropic adaptation based on a desired tolerance instead of a fixed number of nodes
can be generated following exactly the same algorithm while replacing the equidis-
tributed error by the threshold value. Clearly, this will be at the cost of losing the
control on the mesh density. A combination between a control based on a tolerance
value and a maximum mesh density can be obtained by taking the maximum between
the prescribed error and the homogenous error determined with respect to the number
of nodes N.

4.3 Numerical validation

The main objective of this work is to provide a space and time adaptive method that can
be used to simulate diverse industrial applications. For practical reasons, it is highly
desirable to find the most accurate solution using the available computational resources
within a reasonable time. In this section, we assess the performance of the newly de-
veloped space and time adaptive algorithms on several time dependent problems. We
first assess the order of convergence of the couple mesh/time-step size on an analytical
function. Then we move on to analyze the dynamic properties of the space-time adap-
tive procedure. We start by investigating the impact of anisotropic mesh adaptation
and time-stepping control on the accuracy and efficiency of computations. We move
on next to test the capability of the method to well capture fluid flow problems at high
Reynolds numbers. Finally we evaluate the performance of the developed algorithms
on coupled fluid flows and heat transfer problems.

4.3.1 Convergence analysis on an analytical test case

The objective of this numerical example is to illustrate how the anisotropic mesh adap-
tation and time-step control enable an accurate capture of the displacement of a func-
tion’s anisotropic features over a time interval. The analytical function that we consider
was first presented in [Coupez 11] and was taken to be constant in time. In the previ-
ous chapter, we have investigated the developed metric construction technique on this
function and it showed good performance in accurately capturing the sharp solution
gradient over the domain. In this chapter, we let the analytical function vary both in
space and time yielding a good test for the developed error estimators, meshing tech-
niques and time adaptivity. It is defined on the domain [0, 1]d and is being evolved
over the time interval [0, 1] as follows:
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a(x) = tanh
(

E sin
(

5
π

2
||X||

))
b(x, t) = tanh

(
E sin

(
5

π

2
||X− tC||

))
C =

 1
·
1


u(x, t) = a o a(x) + b o b(x, t) (4.23)

The parameter E varies from 1 to 32; the larger E is, the sharper the function’s gradient,
favoring anisotropic meshing. Despite the simplicity of this function, it is characterized
by the displacement of the high gradients over time. The complexity of this example
resides in the expansion and interference of the evolving circular gradients forcing
isotropic meshing at the intersection zones.

We start our analysis by validating the proposed anisotropic mesh and time adapta-
tion algorithms. In figure 4.3 the analytical function is depicted at three different times,
with E = 16, on the anisotropically adapted meshes that correspond to an equivalent
number of nodes (around 20, 000 nodes) obtained at different time instances. The mesh
has been adapted on the L1 norm of the interpolation error every 5 time increments. We
can detect how the elements in the mesh are well oriented and stretched along the tan-
gential direction to allow a good capture of the function’s circular gradient. The nodes
are being automatically distributed with a higher density in the regions surrounding
high gradients. The reported zooms on the mesh reflect how well the elements are elon-
gated to provide a better capture of the solution’s sharp gradient. At the intersection
of two sharp layers (radial gradients), the mesh is isotropic giving equal importance
to the different directions and yielding equal capturing of the two sharp layers. This
observation is a direct result of the error equi-distribution principle.

We vary the number of nodes in the mesh between 4, 000 and 80, 000 and study
the interpolation error’s temporal order of convergence. Figure 4.4 reports the tem-
poral convergence history. The first order convergence in the range [4, 000 − 16, 000]
reflects that the number of nodes is not high enough to allow a correct capture of the
function’s characteristic steep variations. As of 16, 000 nodes, we can obviously detect
nearly second order accuracy in time which is in accordance with the construction of
the time-adaptive algorithm. In figure 4.5 we can identify that the number of time-
steps generated by the adaptive algorithm varies linearly with respect to the imposed
number of nodes in the mesh. Therefore by controlling the temporal error under the
constraint of a fixed number of nodes in the mesh, a second order temporal conver-
gence is implied.

Figure 4.6 gathers the time-step evolutions corresponding to three configurations of
mesh adaptation: adapting on the L1, L2 and L∞ norms of the interpolation error. The
computations were performed on a mesh of nearly 20, 000 nodes that is being anisotrop-
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Figure 4.3 – Anisotropic mesh obtained at different time instances (top) and closeups around the radial
steep gradient region (bottom).

Figure 4.4 – Temporal convergence of the interpolation error with respect to the mesh complexity.
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Figure 4.5 – Variations of the number of time-steps with respect to the imposed number of nodes in the
mesh.

ically adapted every 5 time increments. We notice that adapting the mesh on the L∞

norm of the error leads to smaller time-steps which goes in parallel with expectations
as the temporal error is not allowed to grow faster than the spatial one. The history of
the time-steps is characterized by a short period of abrupt increase, probably biased by
the choice of the initial time-step that is taken to be 5× 10−5, allowing the emergence of
the ring shaped gradient of the function into the domain. As the function evolves lin-
early with time for the different norms, all the profiles of time-stepping reach a phase
of steady oscillation around a critical value that guarantees the equi-distribution of the
error in space and time. Since the L∞ norm is more restrictive than the other norms,
the time-step will oscillate around a smaller value than the other norms.

Figure 4.6 – Time-step evolution corresponding to adapting the mesh on the L1, L2 and L∞ norms.

We compare in figure 4.6 and table 4.1 the time-step evolution and the CPU time
obtained using the developed mesh adaptation algorithm and time-stepping technique.
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The results are compared to the CPU time needed to evolve the function on anisotropic
meshes with a fixed time-step size set to be equal to two times the smallest mesh
size. This result validates the efficiency of the newly developed method in terms of
computational time.

hhhhhhhhhhhhhhhhhMethod
Number of nodes N = 8, 000 N = 16, 000 N = 32, 000 N = 64, 000

Fixed ∆t 37 54 65 92

spatio-temporal adaptation 22 29 38 53

Table 4.1 – Needed CPU times (mins) for a fixed time-stepping and an adaptive control of time-step
sizes by the proposed algorithm for different mesh complexities.

4.3.2 A two-dimensional analytical test case with sinusoidal evolution in time

The objective of this test case is to illustrate the behavior of the time-step algorithm
relative to sinusoidal evolution of the function in time. We consider the same analytical
function with a sharpness parameter equal to 16 and we let it vary sinusoidally in time
as follows:

u(x, t) = a o a(x) + b o b
(

x, sin
(

t
π

2

))
(4.24)

The rings emerging inside the domain move periodically back and forth over time.
Figure 4.7 shows the time-step history obtained using the time-adaptive algorithm.
The mesh made of around 20, 000 nodes is being adapted every 5 time increments.
We notice that the profile of time-stepping presents a periodic evolution over time. A
phase of slow steady time-steps reflects the expansion of the rings inside the domain.
A deceleration of the function follows and is accompanied by a quick increase of the
time-step sizes. An abrupt decrease of the latter is observed once the function changes
its direction of evolution. This succession of time-step behavior is periodically repeated
in accordance with the sinusoidal displacement of the function in time.

4.3.3 Applications on 2D fluid flow problems

We move on now to assess the developed spatio-temporal adaptation on fluid flow
problems with varying Reynolds numbers. These results were reported in a recent
publication on the subject [Coupez 13b].

4.3.3.1 Driven flow cavity problem (2-D)

In this example, we assess the performance of the newly developed space and time
adaptive algorithms on the classical 2-D lid-driven flow problem at low and high
Reynolds numbers with a zero source term. This test has been addressed in the previ-
ous chapter to validate the anisotropic mesh adaptation method. Now, we re-consider
the problem to evaluate the accuracy and efficiency of the time-adaptive technique. We
consider a fluid with density ρ = 1kg/m3. We vary the kinematic fluid viscosity in
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Figure 4.7 – History of the time-steps (s) obtained with the developed algorithm on problem (4.24) .

order to generate and compare the solutions for Reynolds numbers of 1, 000, 5, 000,
10, 000 and 20, 000; we fix the number of nodes N to 15, 000. Note that the initial mesh
used before any adaptation is an unstructured isotropic mesh made up of 20, 000 nodes.
We start all the numerical simulations using a time-step equal to 0.01s. We apply the
space-time adaptive algorithm every 5 time-increments while adapting on the norm
and direction of the velocity field. We assume that the steady state is reached when
the normalized velocity deviations within one step are lower than a chosen tolerance of
10−6. The results on the converged meshes (∼ 15, 000 nodes) for the different Reynolds
numbers are shown in Figure 4.8. Note the concentration of the resolution not only
along all the boundary layers but also at the detachment regions. This reflects well the
anisotropy of the solution caused by the discontinuity of the boundary conditions and
the nature of the flow. The elements at the central bulk of the cavity region around
the primary vortex are mostly isotropic and increase in size as the Reynolds number
increases. Again, this explains how, for a controlled number of nodes, the mesh is nat-
urally and automatically coarsened in that region with the goal of reducing the mesh
size around the secondary vortices in the bottom corners. This observation reflects that
the space-time adaptive method tends to refine the mesh in the hierarchical importance
of the solution’s gradient. That is when new features (with high gradients) appear in
the solution, the mesh is automatically coarsened in regions with lower gradient and
refined near the newly emerging features yielding an optimal capture of the solution
with the available degrees of freedom.

The velocity profiles for ux and uy along the lines x=0.5 and y=0.5 respectively
are depicted in figures 4.9 and 4.10. We note that a time-averaged velocity profile is
represented for Re = 10, 000.

The main objective of these simulations is to compare the newly obtained results to
very accurate reference solutions. For that purpose, we first plot the velocity profiles
for Vx along x = 0.5 and for Vy along y = 0.5 at Reynolds 1000 and 5000. Figure
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Figure 4.8 – Anisotropic meshes at Reynolds 1, 000, 5, 000, 10, 000 and 20, 000

4.9 shows respectively that all the results are in very good agreement with a reference
solution computed on a 600x600 = 360, 000 points fixed mesh [Hachem 10b].

We present in table 4.2 the execution time and number of time-steps taken by each of
the test cases using an adaptive method and a non-adaptive one. For the non-adaptive
case, the computations were performed on a mesh having 100, 000 nodes. Note that we
needed 5, 000 time-steps ∆t = 0.1 to reach the final time 1, 000s. An extreme improve-
ment in the CPU time needed to perform the computation of the numerical solution
was observed. This reflects the high efficiency of the proposed time-adaptive algorithm.

Reynolds Number 1, 000 5, 000 10, 000 20, 000
Non-Adaptive 900 2233 4745 7820

Adaptive 131 224 637 1365

Ratio 6.87 9.97 7.44 5.72

Table 4.2 – CPU time (s) needed for computing the solution with non-adaptive and a space/time
adaptive methods

Figure 4.11 shows that the time-adaptive algorithm meets the expected variations
of the time-steps. The test included time-adaptation on a fixed mesh (of around 60, 000
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Figure 4.9 – Comparison of velocity profiles in the mid-planes for Re = 1, 000 (top) and Re = 5, 000
(bottom). Left: Velocity profiles for Ux along x = 0.5 . Right: Velocity profiles for Uy along y = 0.5.
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Figure 4.10 – Comparison of time-averaged velocity profiles in the mid-planes for Re = 10, 000 (top)
and Re = 20, 000 (bottom). Left: Velocity profiles for Ux along x = 0.5 . Right: Velocity profiles for Uy

along y = 0.5.
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nodes) and space and time-adaptation with a prescribed number of nodes equal to
15, 000. Recall that for Reynolds numbers less than 5, 000, the solution reaches a steady-
state and this predicts high time-step sizes. On the other hand, as we increase the
Reynolds numbers, the solution exhibits the emergence of secondary vortices of dif-
ferent sizes that develop inside the domain and the flow becomes unsteady and very
chaotic. The time-step size is expected to behave accordingly and to oscillate all over the
simulation time as the solution does not stabilize. Indeed, for low Reynolds numbers
Re = 1, 000 and Re = 5, 000, the solution stabilizes after a certain time and conse-
quently, the time-steps increase considerably and then become almost constant once
the solution stabilizes when the spatial error, on which the algorithm depends, be-
comes almost constant. On the other hand, for high Reynolds numbers Re = 10, 000
and Re = 20, 000, the solution is unsteady and develops vortices of different sizes; in
parallel, the time-steps are oscillatory and change in small amplitude (as shown in the
plots of the solutions obtained on isotropic meshes with only time adaptation). We
can clearly detect differences in the time-steps variations between running the simula-
tion on a fixed mesh and anisotropically adapting the mesh. For laminar flows, both
profiles reflect almost the same behavior, once the steady solution was reached, large
time-steps are generated. The slight difference which can be viewed as a hesitation
of the space-time adaptive algorithm to take large values of time-steps are due to the
dynamic change of the mesh. As the mesh is modified toward optimality, a smaller
time-step size is computed allowing a better capture of the solution. On the contrary,
when the Reynolds number increases and the flow becomes more and more fluctuat-
ing, the sequence of generated time-steps presents faster evolution as compared with
the one obtained on a fixed mesh. This result can be related to the higher accuracy
provided by the anisotropic mesh adaptation algorithm allowing the creation of larger
time-step sizes and hence faster computations. At Re = 10, 000 and Re = 20, 000, the
time-step evolution on a fixed mesh presents an oscillatory periodic behavior that keeps
the computations within the same accuracy range. On the other hand, as the control
of accuracy is provided by both space and time adaptation algorithms, the time-step
evolution needs not maintain a periodic oscillatory profile.

Moreover, all the main directional features characterizing the velocity inside the lid-
driven cavity are detected and well captured by the anisotropic error estimator. The
mesh elements are highly stretched along the direction of the layers, at the detachments
regions and around all the secondary vortices that are being developed. Once again, the
developed incompressible Navier-Stokes VMS solver shows to be efficient and robust at
high Reynolds numbers using highly stretched elements and adaptive time-marching
approach.

In order to assess the capability of producing a more accurate solution as we in-
crease the number of nodes, we solve the driven cavity problem with Reynolds num-
ber 1000 and we vary the allowed number of nodes: 5, 000, 10, 000, 20, 000, and 40, 000.
It can be seen in figure 4.12 that as the number of nodes in the mesh increases, the
solution becomes more accurate.
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Figure 4.11 – Comparison of the time-step sizes’ variations (s) for Re = 1, 000, Re = 5, 000,
Re = 10, 000 and Re = 20, 000.
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Figure 4.12 – Comparison of velocity profiles in the mid-planes for Re = 1, 000 computed using
different number of nodes.
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We have pushed the analysis further to evaluate the response of the time-adaptive
algorithm to sudden changes in the setup of the problem. We consider the same flow
at Reynolds number 5, 000 and introduce an outlet of size 0.1 unit length at the bottom
wall allowing the fluid to exit the cavity. This outlet is the 2D analogous to opening
the door of an industrial furnace after a period of heating. The outlet is activated at
time t = 4, 000s, by that time, the flow would have settled inside the cavity. Figure 4.13

shows the abrupt change in the time-step evolution as a results of this perturbation. We
notice that the algorithm automatically decreases the time-step size in order to better
capture the changes in the physical phenomena inside the cavity.

Figure 4.13 – Time-steps evolution (s) after introducing an outlet to the cavity at time t = 4, 000
seconds.

4.3.4 Flow around a circular cylinder (2-D)

The following numerical test is another widely-studied problem, namely that of a chan-
nel flow with a cylindrical obstruction. This test case is a very popular benchmark
problem. It was defined by M. Schäfer and S. Turek [Schäfer 96] and has been tested
by many authors [Volker 04b, Volker 01, Frochte 09].

Important benchmark properties of the flows around bodies are the drag coefficients
and the difference in the pressure between two points at the edge of the obstacle. To
get proper values for these parameters one needs to have a high accuracy and very
small time-steps.

We consider the incompressible Navier-Stokes equations with a zero source term.
The setting of the problem is shown in figure 4.14. It consists of a rectangular channel
(2.2x0.41)m with a circular obstruction of diameter 0.1m. Zero initial condition is con-
sidered inside the domain and a zero flow boundary condition is imposed on the circle
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boundary. On the inflow and outflow boundaries the velocity is defined by:

u(t; 0, y) = u(t; 2.2, y) = 0.41−2 sin
(

πt
8

)
(1.2y(0.41− y), 0) m/s

No-slip conditions are prescribed at the other boundaries.

Figure 4.14 – Geometry of the problem adopted from [Schäfer 96].

For this problem, we set the kinematic viscosity µ to 10−3m2/s and the fluid density
to ρ = 1kg/m3 in order to obtain Reynolds numbers 0 ≤ Re ≤ 100. This problem
was well studied in [Volker 04b, Volker 01] and reference values for the characteristic
properties of the flows were provided.

Our motivation behind this simulation is to show that the proposed algorithm can
be used to “follow the physics” of a flow’s transition from a state of rest to a steady
state solution. The mesh has been adapted on the velocity field at a frequency of 5
time-steps with an assigned number of nodes equal to 20, 000.

Figure 4.15 retraces the evolution of the velocity magnitude over time with the corre-
sponding meshes. The initial flow inside the channel is at rest. As a result of the inflow
on the left wall of the cavity, the wake starts increasing in size and two vortices emerge
behind the cylinder (figure 4.15 (top)). This phase is followed by the detachement of
the vortices from the cylinder and due to the asymmetry in the channel’s geometry,
a vortex street shedding develops (figure 4.15 (bottom-left)). As the oscillatory vortices
interact with the walls, the symmetry is completely broken (figure 4.15 (bottom-right)).
The obtained behavior is in very good agreement with the reference [Volker 04b].

Figure 4.15 – Flow past a cylinder test case: evolution of the velocity magnitude (top) and of the mesh
(bottom) at different time instances.
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The time-step evolution history is depicted in figure 4.16. We can identify a profile
that responds to the physics of the problem: small values are generated at the beginning
to capture the emergence of the flow. An increase is then identified and is associated
with the spread of the velocity inside the cavity. When the flow hits the cylinder, and
the two vortices start to develop, a deceleration of computations is noticed allowing a
better resolution of the new features. Once the characteristics of the flow have been
identified and a vortex street is developed, the time-step sizes increase progressively
allowing faster computations. We recall that the method works under a fixed number
of nodes to produce the optimal mesh.

Figure 4.16 – Flow behind a circular cylinder: time-steps (s) history.

Figure 4.17 shows the evolution of the benchmark parameters over time. The first
solution is computed using a fixed mesh of 50, 000 nodes and a constant time-step ∆t =
0.0025. It is in good agreement with the solution presented in [Schäfer 96]. The second
solution is computed using the newly developed adaptive time-stepping algorithm.
The plots show the good tendency of the approximated solution (obtained within only
73 time-steps) to the reference solution (obtained within 3200 time-steps) although the
small wiggles in the coefficient are not reproduced. In fact, for this kind of problem, in
order to get very accurate solution one needs to take very small time-steps. But since
the aim of the algorithm is to simulate long time computations and come up with an
approximate solution, the method seems very competitive as it is capable of capturing
the general profile of the solution, not necessarily its details, within a few number of
iterations. Further analysis on this example will be provided in the following chapter.

4.3.5 Application to the unsteady convection-diffusion problem

In this subsection, we assess the performance of the newly developed anisotropic mesh
and time adaptation algorithms on time-dependent convection-diffusion problems with
sharp boundary layers. The focus is on the dynamic properties of the space-time adap-
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Figure 4.17 – Flow around a circular cylinder (2D): pressure difference
Pdiff = P(0.15, 0.2)− P(0.25, 0.2) (left) and drag coefficient (right).

tive procedure. In these examples, we present the numerical solutions obtained on
problems with boundary layers and internal layers that move throughout the domain.
We compare the obtained results with others from the literature [Picasso 09]. It will
be demonstrated that the combination of the space and time adaptive algorithms con-
stitutes a tool for numerical analysis. They allow the simulation of real unsteady con-
vection dominated problems and produce the optimal numerical solutions with the
available computational resources. These results have been the subject of a recent pub-
lication [Jannoun 14b].

4.3.6 Convection-diffusion in a plane shear flow

We consider a problem proposed in [Baptista 95] using a space-time adaptive algo-
rithm. It models the transport of a small source in a plane shear flow. The compu-
tational domain is set to Ω = (0, 24000) × (−34000, 34000). We consider zero source
term, a small diffusion coefficient κ = 1, a final time T = 9000s and a convective field
v = (v0 + λy, 0)t where a0 = 0.5 and λ = 1e−3. The initial condition is a point source
with mass m at (x0, y0) = (7200, 0). The analytical solution of the problem is given by:

u(x, y, t) =
m

4πεt
(

1 + λ2 t2

12

)1/2 exp−ζ

where

ζ =
(x− x− λyt/2)2

4εt
(

1 + λ2 t2

12

) +
y2

4εt
and x = x0 + a0t .

We start the numerical resolution at time t = 2400s with

m = 4πεt0

(
1 + λ2 t2

0
12

)1/2

The objective of this test case is to assess and compare the performance of the
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developed adaptation technique with the one proposed in [Picasso 09]. Therefore, we
repeated the simulations using the same number of nodes.

Figure 4.18 – The obtained isovalues and the adapted meshes at two different time-step.

Figure 4.18 presents the isovalues of the temperature field and the adapted mesh
for a fixed number of nodes 8000. We point out how well the mesh is refined in the
direction of high solution’s gradient. The corresponding history of the approximation
errors in the L2 norm and the number of time-steps to reach the adapted solution at
the final time are provided in Table 4.3.

Number of nodes εpresent work εreference Nτ present work Nτ reference
1679 0.04556 0.116 27 159
3728 0.02303 0.0551 37 206

11990 0.00970 0.0265 58 281
40525 0.00149 0.0129 160 400

Table 4.3 – The approximation error and the number of time-steps needed to reach the adapted solution
at final time.

We can see how the time-step size increases as the solution is convected and dif-
fused. We note that the profile of the time-step variations is similar to the one presented
in [Picasso 09] with a better control of the errors’ L2 norm for almost the same number
of nodes. We can identify that, for almost the same number of nodes, we achieve with
the proposed adaptation algorithms a better control on the approximation error within
a fewer number of time-steps.

Finally, we emphasize in Figure 4.19 that the optimal second order convergence is
reached with respect to the number of nodes and to the number of time-steps. In accor-
dance with [Picasso 09], we have the same order of convergence with fewer time-steps
and a lower error which proves the efficiency and accuracy of the proposed technique.

4.3.7 Internal and boundary layers

We present a second test case, taken from [Picasso 09], with challenging anisotropic
features, exhibiting internal and boundary layers. The convective field is considered to
be constant v = (2, 1)t in the whole computational domain Ω = (0, 1)2. The diffusion
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Figure 4.19 – Total number of time-steps with respect to the tolerance.

coefficient is set to κ = 10−3 and zero source term is assumed. The initial condition is
zero everywhere except at the boundary where the boundary condition is defined by:

u(x, y) =


1 if {x = 0 , 0 ≤ y ≤ 1} ∪ {0 ≤ x ≤ 1 , y = 1} ,
δ−x

δ if {x ≤ δ , y = 0} ,
y−1+δ

δ if {x = 1 , y > 1− δ} ,
0 if {x > δ , y = 0} ∪ {x = 1 , y ≤ 1− δ}.

As time advances, the gradient of temperature at the left boundary spreads into the
domain creating an internal layer that reaches the right wall resulting in a boundary
layer. On the other hand, the discontinuity at the top wall is reduced with time. Figure
4.20 shows the evolution of the temperature over time together with the corresponding
anisotropically adapted mesh. A localized refinement of the mesh where the solution
exhibits steep layers can be clearly observed. To keep up with the fixed number of
nodes, the mesh is automatically coarsened at the locations of lower solution gradients.
The plots also reflect how well the mesh follows the propagation of the solution with
time.

Note the importance of this test case in reflecting the potential of the developed
algorithm. If non adaptive mesh is used, a very fine mesh size would be necessary ev-
erywhere inside the domain and a very small time-step would be required to correctly
capture the layers’ propagation along the whole domain.

Figure 4.21 shows the history of the time-step sizes that responds very well to the
solution’s profile. We notice that the algorithm starts by generating small time-steps in
order to allow a good capture of the solution’s gradients. As the temperature diffuses,
the size is progressively increased then as it stabilizes (around the time t = 0.5s),
significant increase of the time-steps is detected.

We have reported in Table 4.4 the obtained error and the total number of time-steps
for different numbers of nodes N. As observed in the previous example, compared to
[Picasso 09], we achieve a better control of the approximation error with fewer time-
steps. Figure 4.22 shows that the optimal second order convergence with respect to
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Figure 4.20 – Numerical solutions at different time-steps with their corresponding anisotropically
adapted meshes.

the time-steps is again recovered as the number of time-steps is multiplied by
√

2, in
accordance with the reference when the user’s specified tolerance (TOL) is divided
by two. It is important to mention that for comparison purposes, we have fixed the
imposed mesh density to the one obtained in [Picasso 09] under a specified tolerance
for the error.

Number of nodes εpresent work εreference Nτ present work Nτ reference
3987 0.10369 0.25 46 163

12222 0.06134 0.125 62 247
38874 0.01964 0.0625 121 353
140057 0.00900 0.03125 204 502

Table 4.4 – The error and the number of time-steps of the adapted solution at final time.

4.3.8 Application to coupled heat transfer and fluid flows

The last two examples deal with 2D and 3D coupled heat transfer and fluid flow prob-
lems. We solved simultaneously the Navier-Stokes equations along with the heat trans-
fer convection-diffusion equation. Therefore, the adaptivity takes into account different
normalized fields: the temperature T

T∞
, velocity v

‖v‖2
,and velocity norm ‖v‖2

‖v‖∞
. More de-

tails on the multi-criteria adaptation will be provided in chapter 5. The aim of these
numerical examples is to demonstrate the ability of the proposed method to automati-



218 Chapter 4. Time accurate anisotropic adaptation for unsteady simulations

Figure 4.21 – Evolution of the time-step size over time.

Figure 4.22 – Total number of time-steps with respect to the tolerance.
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cally detect and reflect evolving/emerging layers, to produce oscillation free solutions
and to reduce the computational costs of large scale simulations.

4.3.8.1 Natural convection inside a cavity

As a first application to coupled heat transfer and fluid flows inside enclosures, we
reconsider the 2D natural convection example 1.6.2. We repeat exactly the same setup
for Ra = 106 using the developed anisotropic mesh adaptation and time adaptive tech-
niques for a fixed number of nodes 20, 000. It is worth mentioning that a thorough
analysis has been conducted in the thesis work of Veysset [Veysset 14a] to determine
the adaptation criteria for this test case in two and three dimensional spaces. The
objective was to determine the functional variables based on which the mesh shall
be adapted in order to get the most accurate solution. Several configurations have
been tested: adapting on the temperature field

{
T

Tmax

}
, the velocity norm

{
||v||
||v||max

}
,

the velocity norm and direction
{

v
||v|| ,

||v||
||v||max

}
, and the temperature and velocity fields{

T
Tmax

, v
||v|| ,

||v||
||v||max

}
. The numerical results obtained by Veysset have shown that adapt-

ing on the temperature field yields the most accurate numerical solution. Decisions
have been made based on the obtained Nusselt number and variations of the temper-
ature isotherms. Indeed, the findings are in good agreement with the nature of the
application since it is the gradient of the temperature that drives the flow inside the
cavity as a result of the gravitational forces and density changes. Hence, in this exam-
ple, we adapt the mesh on the temperature field every 5 time increments. Figure 4.23

depicts the temperature isotherms at time t = 20s for Rayleigh number 106 with its
corresponding obtained anisotropic mesh.

Figure 4.23 – Natural convection 2D: temperature isotherms at time t = 20s for Ra=106 and the
corresponding adapted mesh.

The elements in the generated meshes are well oriented and highly condensed in
the region of steep temperature’s gradient. The characteristics of the flow that is being
developed can be inferred just by looking at the meshes. One can detect the vortical
shapes formed by the mesh and reflecting the swirling motion of the flow.

Quantitatively, we are interested in evaluating the accuracy of the coupled
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space/time adaptation and stabilized finite element methods by comparing statistics on
the Nusselt number to the the ones obtained without adaptation and to existing bench-
mark values present in the literature [Paillère 05]. We present in table 4.5 statistics on
the Nusselt number obtained in the present work and in the reference [Paillère 05] for
Ra = 106. We can clearly identify a good agreement with the references for both the
adaptive and the non-adaptive cases. However, the numerical results with only 20, 000
nodes are closer to the reference values than the ones obtained on an isotropic non
adapted mesh. Indeed, as the elements are well localized around the temperature’s
gradient, they transport the solution’s variations over time with a higher precision.
The small discrepancies in the results with respect to the references can be attributed
to the difference in the discretization schemes. It is important to mention that in the
references, quadratic finite element method and semi-implicit time discretization have
been applied whereas our results were obtained using a linear finite element method
and an implicit time discretization.

Vierendeels Dabbene Beccantini Kloczko Heuveline Non-adaptive* Adaptive*
Nu(0, y) 8.85978 8.86380 8.85990 8.86200 8.859778 8.73698 8.79884

Nu(1, y) 8.85978 8.86200 8.86007 8.86380 8.85978 8.73056 8.79295

Nu(0, 0.5) 7.81938 7.82170 7.81978 7.82010 N.A. 7.65966 7.77361

Nu(1, 0.5) 8.79636 8.81710 8.79646 8.79750 N.A. 8.61058 8.75864

max Nu(0, y) 19.59642 19.62600 19.59538 19.61070 19.59633 19.19471 19.45033

min Nu(0, y) 1.07345 1.07690 1.07356 1.07380 1.07345 1.05583 1.06756

max Nu(1, y) 16.36225 16.35200 16.36333 16.37510 16.36226 15.9499 16.20312

min Nu(1, y) 0.85512 0.86102 0.85542 0.85620 0.85513 0.86811 0.85482

Mesh density 4.2× 106
102400 87616 57600 200000 50000 20000

Table 4.5 – Natural convection: statistics on the Nusselt number for Ra = 106. Reference values are
taken from [Paillère 05]. Results obtained in the present work on the two rightmost columns.

4.3.8.2 Forced convection inside a cavity

As a second validation on applications involving heat transfer and fluid flows, we
consider a 2D forced convection problem. This test case can be regarded as a simplified
model of a gas-fired furnace or a temperature distribution inside a room.

Heated air is pumped into the enclosure from an inlet at the left wall with a velocity
of magnitude 1m/s and a temperature of 100K. Adiabatic condition for the temperature
is applied at all other boundaries. The air is vented out of the enclosure through the
outlet positioned at the right wall. The computations were run over a period of 10, 000s
and the mesh adaptation algorithm is called every 5 time-increments.

For a fixed fluid density ρ = 1kg/m3, we have considered two different dynamic
viscosity values (µ = 0.01Pa · s and µ = 0.0005Pa · s) to test the performance of the
adaptive algorithms for quasi-static and unsteady turbulent flows. We have also varied
the parametric components of the vector field used to adapt the mesh. The aim of
this test case is first to select the best set of parameters for meshing and second to
validate the efficiency of the space and time adaptive techniques. The numerical results
have shown that the adaptation vector field taking into account the velocity and the
temperature i.e. T

T∞
, v
‖v‖2

, ‖v‖2
‖v‖∞

gives the best results. Figure 4.24 shows the obtained
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approximate temperatures and velocity streamlines and their corresponding meshes
obtained using the latter adaptation criteria. Note the concentration of the elements, not
only along the boundary layers, but also around the emerging vortices and detachment
regions. This reflects how, for a fixed number of nodes equal to 20, 000, the mesh is
automatically coarsened in regions with low solution gradient and is refined in regions
of high gradients. Also note the alignment between the direction of the gradient and the
direction of refinement which allows an accurate capture of the physical phenomena’s
anisotropy.

Figure 4.24 – Temperature fields and velocity streamlines with the corresponding adapted mesh for
µ = 0.01 (top) and µ = 0.0005 (bottom).

We have tested the time-step algorithm with the different possible combinations
for the adaptation vector field. Figure 4.25 provides the evolution of the time-step
sizes. The profiles of time-stepping, for the different combinations, are as expected in
the case where the solution stabilizes after a certain time. However, it can be noticed
from the plot corresponding to the unsteady case that when adapting with respect
to the velocity field only, the time-step grows significantly and in turn the resulting
numerical solution is never stable. However, when adapting on the temperature alone
and on the combination of both the temperature and the velocity field, the time-step
size oscillates around a small value allowing a good capture of the solution’s details.
This highlights once more the capability of the algorithm in producing automatic and
controlled time-steps.

Figure 4.6 shows a comparison of the execution times and the computational costs
needed for the simulation of the test cases. Note that these results correspond to adapt-
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Figure 4.25 – Time-step evolution (s) for the different possible combinations for adaptation.

Execution time (s) # time-steps
µ = 0.01 µ = 0.0005 µ = 0.01 µ = 0.0005

Fixed ∆t = 0.01 21,600 32,750 1,000,000 1,000,000

Adaptive ∆t 420 1800 310 3,788

Ratio 51.4 18.19 3225 263.99

Table 4.6 – Execution time and computational cost

ing on both the temperature and the velocity field as it presented the most accurate
results for this problem. It is obvious that for the same level of accuracy, the time-
adapted solution requires much less computations and CPU time for both laminar and
turbulent cases and thus leads to accelerating the computations and saving time and
cost. If a constant time-step should be used for the whole simulation, a question arises
regarding the choice of its size. Most of the time this choice is done by trial and er-
ror and is not founded on a study of consistency and stability. The originality of this
work relies in its automaticity and consistency in choosing the time-stepping sizes with
respect to the spatial and temporal errors.

4.3.9 Application to 3D heat transfer and turbulent flow inside an industrial fur-
nace

The last numerical example is dedicated to the simulation of the heating processes
inside a 3D industrial furnace. The idea is to assess the capability of the proposed
algorithms to deal with a complex 3D geometry and to handle simulating long time
heating inside large scale furnaces. For that purpose, we reconsider the same furnace
studied in chapter 1 with the same boundary conditions and fluid properties. In order
to focus on the capability of the adaptive methods to capture solution’s gradients in
large and complex geometries and simplify the setup of the problem, we assume that
the furnace is empty. The real furnace heating test cases in the presence of workpieces
will be treated in the following chapters. The 3D computations aim at simulating an
hour of heating and have been conducted in parallel on 32, 2.4Ghz Opteron cores.
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Figure 4.26 (top) shows the isothermal distribution at different time-steps. When the
hot fluid spreads along the volume of the furnace, it induces a turbulent motion within
the geometry. This forced convection is caused by the interaction of the moving stream
and the stationary fluid inside the furnace. The numerically obtained temperature
distribution clearly reflects the expected flow pattern. A number of small vortexes
inside different buffer zones can be observed. The latter are due to the turbulence
dissipation and mixing of the hot and cold air.

Figure 4.26 (bottom) highlights how well the mesh is adapted to capture the gradi-
ents of the solution, the boundary layers and the emerging vortices. All the boundary
layers as well as the vortices are sharply captured and identified. The obtained meshes
show the stretching of the elements and the high resolution near the walls, in the cor-
ners and at the location of steep gradients. The anisotropic adaptive procedure modifies
the mesh, according to the fixed number of nodes (100, 000), in such a way that the local
density is adequately distributed in all directions. The estimates were driven based on
the L2 norm of the interpolation error. Recall again that the algorithm builds up the
mesh in a way to maximize the accuracy of the numerical solution. Note that for this
forced convection, the mesh is adapted only according to the velocity components.

Figure 4.26 – Isotherms inside the furnace (Top) and corresponding adapted meshes (bottom) at three
different time-steps.

The results describing only one hour of the heating process required around 58
days of computations on 32 cores with a fixed mesh (of around 100, 000 nodes) and
time-step size equal to 0.005s whereas it required around 80 days when applying the
developed anisotropic mesh adaptation for almost the same number of degrees of free-
dom and the same time-step size. Both computations were performed using the k− ε

turbulence model. Although a higher computational cost is induced when adapting
the mesh, the computed solution is more accurate as the nodes are well distributed
to provide an optimal capture of the problem’s anisotropic features. However, in both
cases, the required computational time is important. This difficulty pointed out the ne-
cessity to supply fast algorithms capable of reproducing the full heating sequences in a
reasonable time. Significant CPU time and computational cost were saved by applying
the time adaptive procedure as it required only 2 days of calculations (see table 4.7)
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without the use of a turbulence model and 5.23 hours when using the k− ε model. It is
important to mention that the anisotropic mesh adaptation algorithm was employed at
a frequency of 10 time increments. Qualitative comparisons of the numerical solutions
generated will be provided in chapter 7 where real configurations will be considered
and experimental data will be used for validation.

With k-ε With k-ε Without k-ε With k-ε
fixed mesh adaptive mesh adaptive adaptive

and ∆t = 0.005 and ∆t = 0.005
CPU time 58 days 79.5 days 52 hours 5.23 hours

Table 4.7 – Statistics on simulating the heating of an empty furnace with non-adaptive, space adaptive
and a space/time adaptive methods.

We note that the implementation of the numerical tools gives the choice to the user
to use or not a turbulence model. Figure 4.27 depicts the time-stepping history for
computing one hour of heating without resorting to a turbulence model. It shows that
the evolution of the time-step sizes responds very well to the behavior of the solution.
When the air is pumped from the top inlet, the difference between the temperature of
the air and that inside the load creates a high temperature gradient. In response, the
time-step size decreases to capture this phenomenon. As the air propagates inside the
volume, the gradient decreases and hence the time-step size increases allowing a faster
diffusion of the flow. Once the air hits the opposite wall, a new high gradient emerges
reducing the time-step size. The latter size continues to oscillate around a certain
value allowing at the same time a good level of accuracy and an acceleration of the
computations. On the other hand, when using the k− ε turbulence model as presented
in figure 4.28, the generated time-step sizes are much bigger and in accordance with
the smoothing of the solution scales. Clearly the level of accuracy is not the same since
not all the details of the solution are modelled. However this model can be very useful
for the industrials as it provides very rapid testings of what-if scenarios and getting
an idea of the velocity profile. We highlight the reduced execution time required to
simulate an hour of heating with this turbulence model.

It is important to mention that the frequency of remeshing affects the quality and
accuracy of the final solution. We compare in figure 4.29 the magnitudes of the velocity
fields obtained after 50s on a horizontal plane cut along the z-axis at the burner’s level.
For these results, and for illustration purposes, we have fixed the time-step size to 0.05s.
Clearly, the velocity profile gets more diffusive as the frequency of remeshing increases
for the same number of nodes 100, 000. This is in accordance with the construction of
the anisotropic mesh algorithm. Indeed, the constructed mesh is not predicted for a
slab of time i.e. its validity is not controlled. The generated anisotropic mesh is not
optimal all over the interval of time between two remeshings and consequently, it is not
well adapted to contain all the evolving gradient of the velocity field. When combining
the anisotropic mesh adaptation with the time-adaptive algorithm, a pulse graph evo-
lution of the time-step sizes is obtained (as in figure 4.27). At every remeshing, a larger
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Figure 4.27 – Time-step evolution (s) for the simulation of an hour of the heating process inside an
industrial furnace.

Figure 4.28 – Time-step evolution (s) for the simulation of an hour of the heating process inside an
industrial furnace using the k− ε turbulence model. An hour of fluid flow (left) and zoom on the first

100s (right) are depicted.
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time-step size is generated since the mesh is well refined to contain the evolving solu-
tion. However, as the solution advances in time between two-remeshings, the induced
interpolation error becomes larger and to maintain the temporal error bounded by the
equidistributed error, the time adaptive algorithm tends to generate small step-sizes in
order to maintain the velocity’s sharp gradient within the well refined zones. This prob-
lematic of the adequacy between frequency of remeshing and the generated anisotropic
meshes will be reconsidered in chapter 6 where we extend the algorithms to generate
anisotropic meshes and time-step sizes that account for the solution’s evolution over
slabs of time.

Figure 4.29 – Velocity magnitude on a horizontal plane cut along the z-axis at the burner’s level
obtained at time t = 50s when adapting the mesh every 5 time-increments (left) and every 20

time-increments (right).

4.4 Conclusion

In this chapter we have developed a time-adaptive algorithm based on the extension of
the anisotropic mesh adaptation. It involves error estimation along the temporal edges
constructed at each spatial node and orthogonal to the space dimensions. In order to
maintain an accurate adaptation in both space and time, the error equi-distribution is
also applied in time by not letting the temporal error exceed the spatial one. We recall
that one of the main objectives of this work is to provide a method that can be used to
simulate diverse industrial applications. For practical reasons, and as noted previously,
it is highly desirable to find the most accurate solution using the available compu-
tational resources. Inhere the imposed number of nodes is the only parameter that
controls at the same time the adaptive meshing and the time-stepping. Consequently,
given an idea about the available computational power, the anisotropic mesh adapta-
tion and time-adaptive technique generate the optimal meshes and time-step sizes for
advancing the solution of the problem with good levels of accuracy and efficiency. The
accuracy and efficiency of the developed algorithm were evaluated on a 2D analytical
test case, flow problems, unsteady convection-diffusion problems, and coupled heat
transfer and fluid flow problems. In all the cases a significant gain in computational
time was highlighted reflecting the importance of the method for the simulation of
complex three dimensional problems.

So far, we have tackled the heat transfer and turbulent flow problems and tested
the developed space and time adaptive methods on problems involving fluid motion
and thermal heat transfer. However, in order to perform real physical simulations, one
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has to treat problems exhibiting both solid and fluid components that can arise in a
wide variety of multi-disciplinary applications. In the following chapter, we will solve
multi-material problems. The modelling should take into account the solid part, the
fluid part as well as their interaction resulting in a full thermal coupling framework.

4.5 Résumé français

Dans ce chapitre, nous avons développé un algorithme d’adaptation de temps basé
sur l’extension de l’adaptation de maillage anisotrope présentée dans le chapitre 2.
Il s’appuie sur une estimation d’erreur temporelle sur des arrêtes construites à chaque
nœud spatial et en direction orthogonale aux dimensions de l’espace. Afin de maintenir
une adaptation précise à la fois dans l’espace et le temps, l’erreur est équi-distribuée
également dans le temps en limitant l’erreur temporelle par l’erreur spatiale. Nous rap-
pelons que l’un des principaux objectifs de ce travail est de proposer un procédé qui
peut être utilisé pour simuler des applications industrielles diverses en temps réel. Pour
des raisons pratiques, et tel que mentionné précédemment, il est hautement souhaitable
de trouver la solution la plus précise en utilisant les ressources de calcul disponibles.
Le principal avantage des méthodes d’adaptation proposées en espace et en temps est
qu’elles dépendent d’un seul paramètre, le nombre de nœuds imposé dans le mail-
lage. Par conséquence, étant donné une idée de la puissance de calcul disponible,
l’adaptation de maillage anisotrope et l’approche d’adaptation temporelle génèrent des
maillages et des pas de temps optimaux pour faire avancer la solution du problème avec
de bons niveaux de précision et d’efficacité.

La précision et l’efficacité de l’algorithme d’adaptation de temps développé ont
été évaluées sur un cas test analytique 2D, des problèmes d’écoulement de fluides,
des problèmes de convection-diffusion instationnaires et des problèmes de traitements
thermiques. Dans tous ces cas un gain significatif de temps de calcul a été souligné
reflétant l’importance de la méthode pour la simulation de problèmes complexes en
trois dimensions de l’espace.

Jusqu’à ce point, nous avons abordé des problèmes de transfert de chaleur et
d’écoulements turbulents et testé les méthodes d’adaptations espace et temps dévelop-
pées sur des problèmes couplant mouvement de fluide et transfert de chaleur ther-
mique. Toutefois, afin de simuler des problèmes physiques réels, il faut prendre en
compte à la fois des composants solides et fluides qui peuvent se présenter dans di-
verses applications multi-disciplinaires. Dans le chapitre suivant, nous allons résoudre
des problèmes multiphasiques. La modélisation va prendre en compte les interactions
fluides/structures dans un cadre thermique fortement couplé.





5Immersed volume method and

multi-domain adaptation

”Heaven’s net is wide, but its mesh is fine”
Lao Tzu

Contents

5.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

5.2 Immersed Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.2.1 First component: the levelset function . . . . . . . . . . . . . . . . . . . . . 234

5.2.2 Second component: anisotropic mesh adaptation . . . . . . . . . . . . . . 238

5.2.3 Third component: mixing laws . . . . . . . . . . . . . . . . . . . . . . . . . 243

5.3 Mesh adaptation based on several fields . . . . . . . . . . . . . . . . . . . 246

5.3.1 Metric intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

5.3.2 Multi-components metric construction . . . . . . . . . . . . . . . . . . . . 247

5.4 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

5.4.1 Flow behind a circular cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 251

5.4.2 Turbulent flow behind a F1 racing car at 300km/h . . . . . . . . . . . . . 254

5.4.3 Forced turbulent convection . . . . . . . . . . . . . . . . . . . . . . . . . . 256

5.4.4 Simulation of a rotating helicopter propeller . . . . . . . . . . . . . . . . 260

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

5.6 Résumé français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

This chapter presents advancements toward a monolithic approach with anisotropic
mesh adaptation and time-stepping control for the numerical resolution of Fluid

Structure Interaction (FSI) problems. The Immersed Volume Method (IVM) will be
introduced to embed solid geometries inside fluid domains. The method is combined
with the newly developed anisotropic mesh adaptation to ensure an accurate capture
of the fluid/solid interface and a precise material distribution over the computational
domain. A multi-component metric construction will also be proposed accounting for
several fields for adaptation. The proposed method demonstrates its efficiency and
accuracy in simulating 2D and 3D unsteady heat transfers and turbulent flows inside
complex geometries in the presence of conducting solids.
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5.1 State of the art

Nowadays, the modelling and simulation of fluid-structure interactions (FSI) are con-
sidered challenging and intrinsic fields of multi-physical analysis. They involve the
study of the interaction between a solid body and its surrounding media of fluid flows.
FSI applications are involved in a wide variety of disciplines including aerodynamics,
automotive, biomedical engineering, metal forming and heat treatment. The numerical
simulations can contribute to the optimization of manufacturing markets, the analysis
of biomedical fluids, the tracking of tumor generation and propagation, the develop-
ment and design of high speed airships and many other fields of multi-physical prob-
lems. Clearly, the characteristic scale of applications can range from the micro-scale
(blood cells) to the macro-scale (industrial furnaces) or even the combination of both
small and large scales. To achieve an accurate capture of all the scales with a good
level of robustness and efficiency, several questions need to be addressed regarding the
modelling of the fluid and solid counterparts, the partitioning of the computational
domain, the discretization schemes, and the computational power.

In the context of fluid mechanics, the resolution of a flow is often sought in a spatial
domain delimited by solid boundaries. In other words, a body fitted mesh is used for
the simulation. However, for accurate and consistent understanding, coupling between
the fluid and its surrounding shall be emphasized in which case their influence on one
another is reflected by the numerical results. Therefore, the use of body fitted meshes
should be backed up by a numerical modelling or boundary conditions accounting for
the effect of the structure on the properties of the flow.

In this thesis, we are interested in the numerical simulation of thermal coupling
problems involving multiphase flows. The general objective is to develop powerful
and efficient tools capable of reflecting the thermal history of the full conjugate heat
transfer process. More precisely, we intend to perform a full heating/cooling simula-
tion of high alloy steel. These results will then be synthesized by the industrial partners
in the view of improving the thermo-mechanical properties and final microstructure of
the treated workpieces. The problem can therefore be posed as a thermal fluid struc-
ture interaction one, the resolution of which necessitates a technique for modelling the
exchanges between the solid and the fluid parts.

The most common trend to deal with multi-component domains is issued from the
body fitted approach whereby the global domain is partitioned into several local subdo-
mains over each of which a local model is solved. This technique is a sort of multi-level
multi-grid method [Aulisa 06]. The global solution is then recovered by gluing together
the local solutions. Nevertheless, the assembly may become cumbersome and infeasible
because of the communication between the sub-domains. This is due to the complexity
of determining closure laws for inter-domain variables. We can find in the literature
several methods relying on this principle for the numerical simulation of multiphase
flows. In particular, the immersed boundary method [Peskin 77] is a very well-known
technique for multi-domain applications. It employs an Eulerian mesh for the fluid
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domain and a Lagrangian one for the structure. The Lagrangian coordinate system fol-
lows the movement of the local fluid velocity and tracks the positions of the solid over
time. The solid’s effect on the flow is accounted for by embedding into the problem’s
formulation an additional source term that accounts for the influence of the immersed
interface on the flow. Moreover, a three-field formulation was proposed in [Farhat 95]
where in addition to the fluid and the solid subdomains, a dynamic fluid-mesh is re-
solved. This method improved the efficiency of domain-partitioning approaches.

On the other hand, FSI problems can be treated using immersed methods. We
can distinguish in the literature three classes of methods for immersing geometries
into a computational domain. The first group gathers the methods that tend to enrich
the numerical solution’s space in a finite element framework. This method avoids
the computational cost needed to construct a mesh that is well representative of the
immersed bodies but requires the modification of the finite element solvers. The X-
FEM (extended finite element method) employs a local enrichment of the functional
space together with the levelset method to render the interfaces, more details about
this method are provided in [Moës 99].

The second accounts for the effect of the immersed objects by introducing an ad-
ditional source term into the governing equations. The immersed interface method
[Lee 03] uses the jump function across the interface to determine the approximate so-
lution along it. The ghost fluid method [Fedkiw 99] benefits from a finite difference
discretization to define a coordination between subdomains. The fictitious domain
method [Glowinski 95] is also commonly known for multi-domain problems whereby
the interface continuity between subdomains is enforced through the use of Lagrange
multipliers. However, when using these techniques of treating multi-physical domains
for the simulation of conjugate heat transfer problems, a heat transfer coefficient needs
to be identified and employed as a boundary condition at the level of the interface. In
practice, the identification of this coefficient is not straightforward as it requires several
experimental studies and is in direct connection with the setup of the problems. That
is, if any of the problem’s parameters has been modified then a new experiment shall
be conducted. Consequently, these methods can rapidly become very expensive and
time-consuming.

The interface tracking methods constitute a third class of immersion [Lakehal 02];
they propose a different scenario than the previously mentioned techniques. They ben-
efit from a single fluid formulation with variant material properties. A single set of
equations is resolved for the multi-physical domains and their interfaces are tracked by
levelset functions. Compared to the multi-level multi-grid methods, the interface track-
ing methods allow a more subtle and accurate representation of interfaces hence over-
coming the drawback of transferring information between subdomains. The immersed
volume method (IVM) [Hachem 10a, Bernacki 08, Valette 09, Bruchon 09, Hachem 13]
was defined in that sense and can be applied on a wide range of multi-material appli-
cations. The key feature of this approach is to retain the advantages of a monolithic
formulation and couple it with anisotropic mesh adaptation to provide a high resolu-
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tion at the interfaces. In the monolithic framework, a levelset, signed distance function
is used to delimit the different sub-domains. The latter are treated as a single fluid
with different material properties, and hence the solution is evolved with a single set
of equations on the global domain. Indeed, Klaus’Jürgen Bathe [Bathe 09] once said
that “only in the human mind are fluids separated from solids” as the mechanical principles
of both materials are the same but it is the response to these principles that differs.
Thus, by accounting for the differences in response, a single system of equations and a
single domain can be adopted for both components. Applied in the context of conju-
gate heat transfer problems, the method bypasses the need for empirical data such as
heat transfer coefficients. The exchanges are rather obtained in a natural way by solv-
ing a convective equation for the phase indicator field [Lakehal 02]. For the resolution
of the governing equations, the methods introduced in chapter 1 can be adopted with a
minor modification to account for the non-constant, homogenous aspect of the thermal
material properties. The second feature of the IVM method is the use of anisotropic
mesh adaptation to well capture the interfaces between the materials. These interfaces
are defined as the zero isovalues of a distance function, called the levelset function.

Prior to this work, the anisotropically adapted mesh is generated in the pre-
simulation stage. It is constructed to be very fine at the interface level in order to
permit a high precision in distributing the physical properties. As the involved solids
were considered to be fixed, the same mesh can be maintained all over the computa-
tions and yields the same level of accuracy near the interface. However, when moving
interfaces shall be addressed, the mesh should be adapted over the computations to
conserve the desired accuracy. On the other hand, in addition to the interfaces, good
captures of the flow changes and heat transfers with an affordable computational cost
are highly desirable. The originality and novelty brought up by this work rely on the
capability of the anisotropic mesh adaptation to account for several fields at the same
time. The mesh can be automatically adapted to well represent the interfaces as well
as the sharp gradients of the problem’s variables.

In this chapter, we are interested in explaining how the space and time adaptation
techniques can be extended to deal with multiple fields. Furthermore, we intend to con-
sider a multi-domain method for solving coupled heat transfer problems with complex
geometries. For that purpose, we resort to the immersed volume method for immersing
and distributing the multi-physical properties inside a multi-components domain. The
method involves solving a single set of equations for both domains with variable ma-
terial properties. We start in section 5.2 by introducing the immersed volume method
and its three main components: the monolithic formulation, the anisotropic mesh adap-
tation and the mixing laws. Then we point out its advantages over other methods for
mutli-material simulations. We move on in the second part of this chapter to elaborate
on the multi-component mesh adaptation. We provide afterward some validations of
the newly developed numerical tools on fluid/structure interaction problems.
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5.2 Immersed Volume Method

Recently, immersed methods have been the subject of advanced research for various
CFD applications. When simulating physical phenomena with complex 3D geometries,
the generation of a mesh fitting the geometry may require a considerable computational
time and cost especially because the mesh shall be maintained with the same resolution
at the interface level so that to guarantee the same level of accuracy. Hence, a numerical
simulation with non-body fitted grid seems a good resort for significantly improving
the computational costs. In spite of the advantage of the methods relying on non-
body fitted meshes, they require a special non-straightforward interface treatment. For
instance, in the context of conjugate heat transfer problems, such as the heating of
ingots inside industrial furnaces, heat transfer coefficients between the solid bodies and
the surrounding fluid need to be prescribed as boundary conditions at the level of the
interface. Recent developments address the immersion of 3D complex geometries, the
development of interface detection algorithms as well as the boundary conditions at the
interface level [Ilinca 11, Abgrall 14, Quan 14]. The immersed volume method (IVM)
[Bernacki 08, Valette 09, Bruchon 09, Hachem 10a, Hachem 13] can be considered as
a good tool for reducing the computational cost induced by body-fitted approaches
and overcoming the interface treatment step required by non-body fitted techniques.
It involves solving a single set of equations for the whole computational domain and
accommodates for the different subdomains by considering a single fluid with variable
material properties. We can distinguish three main ingredients of the immersed volume
method that we will detail in the sequel. As a first step, the levelset, a signed distance
function that is used to localize and immerse the solids inside the global domain. The
fluid-solid interface is hereby identified as the zero isovalue of the distance function.
Then an anisotropic mesh adaptation is employed to provide a good capture of the
interfaces between the solid and the fluid parts. The third step consists in mixing the
different material properties using a homogenous distribution along the interface. The
IVM method can be applied without modification for any geometry and any physical
property. It can be very easily implemented and applied with stabilized finite element
methods and in the context of moving structure problems.

5.2.1 First component: the levelset function

This section is devoted to illustrate on the signed distance function used for defin-
ing the interfaces between immersed bodies and their surrounding. In the context of
monolithic formulation, we aim at using a single mesh for both solid and fluid sub-
domains. For simple geometries, we resort to analytical functions to define the solids
(like a sphere, a square, · · · ) and build up their corresponding mesh. However, in gen-
eral industrial applications, we intend to immerse geometrical objects whose analytical
shapes are not known. In these cases, an object is defined in a CAD environment. After
cleaning the CAD geometry (eliminating small details, trimming overlapping surfaces,
· · · ), a surface mesh of the object is generated using an STL mesher. The latter is made
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up from segments in 2D simulations and from triangles in 3D simulations. The surface
mesh is then embedded in the computational domain which is in turn remeshed result-
ing in a single fluid/solid mesh. An accurate representation of the body is obtained
through successive mesh adaptations. More details about this step will be provided
in the following section. Figure 5.1 provides a schematic representation of the mesh
generation process accounting for immersed bodies.

Figure 5.1 – Schematic for immersing objects inside computational domains.

The first step in the immersed volume method is to determine the signed distance
from any point in the computational domain to the immersed solid body. The levelset
function, first introduced by Stanley and Sethian [Stanley 88], is a real valued Lipschitz
function α : R3 7→ R that evaluates the signed distance to the surface of an object.
For simple objects, defined by their analytical forms, the distance function is easily
determined analytically. For instance, in a 3D computational domain, the distance
from a point Xi = (x, y, z) in the domain to a spherical object with center (x0, y0, z0)

and radius r, is computed by:

d(Xi) =

∣∣∣∣r−√(x− x0)2 + (y− y0)2 + (z− z0)2

∣∣∣∣ (5.1)

Nevertheless, when immersing a complex object, analytical functions representing the
distance cannot be found and the distance to the geometry’s surface requires a special
algorithm. To that regard, we follow the lines of [Bruchon 09] to compute the signed
distance function. This function will then be used to delimit the interface of the object.
In order to determine the distance between the mesh nodes and the geometry, we
iterate over the nodes and find, for each one of them, the distance that separates it
from each facet in the surface mesh. The distance that we seek is then identified to be
the minimum of the computed distances.

Define Ω as the computational domain and let Γs be the boundary of the solid body.
At any point Xi of Ω, the function α corresponds to the signed distance from Γs and is
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defined by:

α(Xi) =

 −min
P∈Γs
||Xi − P|| for Xi /∈ Ωs,

+min
P∈Γs
||Xi − P|| for Xi ∈ Ωs .

(5.2)

where P refers to the projection of Xi onto the boundary of the solid body Γs and Ωs

the domain of this solid.
In other words, the distance is positive if the node is located inside the solid, nega-

tive outside it, and zero at the level of the interface. A schematic representation of the
levelset function on a 2D hat shaped solid object is presented in figure 5.2.

Figure 5.2 – Schematic representation of the
levelset function for multi-domain problems. Figure 5.3 – Schematic representation of a node Xi’s

projection onto an element on the surface mesh.

Two main concerns arise at this level. The first one is related to the sign of the
distance function, i.e. how to determine whether a point lies inside or outside the body.
Second, as the computational cost induced by the calculation of the distances is linear
with respect to the number of faces in the object’s surface mesh, the CPU time needed
for that process grows very fast and can yield unfeasible complex simulations. To
deal with the latter limitation, we resort to a hierarchical representation of the surface
mesh. The method consists in packing the elements in the surface mesh into large cells,
each of which contains a fixed number of facets, and then evaluating the distances
to these cells. The closest cell to the node is retained while the others are eliminated
from computations. The selected cell is in turn divided into smaller ones with respect
to which the distance computation is now performed. The process of packing and
distance evaluation is repeated iteratively in order to determine the location of the
projected node. The use of this strategy avoids checking the distances with respect to
every face in the surface mesh thereby eliminating the cost induced by such a process.
We will omit the details of the hierarchical method for brevity, the interested reader is
referred to [Bruchon 09]. As for signing the distance, we define it with respect to the
outward pointing normal nF to the closest face in the surface mesh. If the scalar product

of the projection vector
−→
XiP by the normal nF is negative then so does the distance and

vice versa. When the projection coincides with a mesh node (see fig. 5.3), the normal

to the closest face is used that is if |
−→
XiP · nF2 | > |

−→
XiP · nF1 | then we investigate the sign

of
−→
XiP · nF1 . The algorithm and further details about signing the distance function are

provided in [Bruchon 09].
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Now that the signed distance has been computed, the fluid/solid interface Γs is
given by the zero isovalue of the function α:

Γs = {X, α(X) = 0}. (5.3)

The maximum absolute value of the levelset function is reached in the vicinity of the
interface. It’s quite useless and time-consuming to compute the signed distance func-
tion far away from the immersed object. The key idea in this work for defining the
levelset function stems in reducing the computational time by reducing the compu-
tational domain. In other words, we construct a rectangular computational domain
enclosing the object of interest and whose dimensions are a bit larger than the body
itself. The signed distance function is then determined over this subdomain. In fig-
ure 5.1 we show a surface mesh of a missile (center) and the corresponding mesh that
is well adapted to the geometry (right). The aim now is to define the signed distance
function over the simulation’s computational domain. This is achieved by interpolating
the levelset function from the fitting domain that is constructed to fit the solid onto the
global computational domain as depicted in figure 5.4. The interpolation process relies
on the hierarchical packing method that rapidly identifies for each node in the fitting
domain the corresponding element in the global domain. Since there will be nodes
in the global domain where the levelset field is not assigned, we set its value at these
nodes to its maximum (in absolute value) over the fitting domain. Clearly as these
nodes are located outside the object then the sign of the levelset function is negative.

Figure 5.4 – Zero-isovalues of the levelset function of a missile object in the fitted domain (left) and the
computational domain (right).

The advantage of this interpolation technique resides in its flexibility and rapidity.
It permits the creation of several instances of the same object at different locations in the
global domain. To do so, we just need to change the position of the fitting domain with
respect to the global one. It allows, as well, moving the solid over the computations by
simply modifying the position of the fitting domain.

As explained earlier, the signed distance function is employed to position the in-
terface of the immersed object inside the global computational domain. This function
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can also be used to initialize the desirable material properties on the single mesh rep-
resenting the fluid and the solid parts as will be discussed in the following subsection.

It is important to mention that in the case of a geometry’s immersion using its
corresponding STL file, the quality and accuracy of the defined surface mesh limits
the precision of the described immersed structure. Another approach for immersion
is currently under development in the work of Veysset [Veysset 14b]. This method
bypasses the generation of surface meshes by defining Non Uniform Rational B-Splines
(NURBS) curves or surfaces, to represent simple or complex geometries. The distance
function is now computed with respect to the NURBS functions and the interfaces of
the immersed solids are defined as the zero-isovalues of these functions.

5.2.2 Second component: anisotropic mesh adaptation

In order to provide an accurate configuration of the physical problem, immersed ob-
jects should be properly defined and material properties should be well distributed.
Difficulties might arise due to the discontinuities in the material properties between
the solid and the fluid parts. Indeed, when the discontinuities intersect the mesh el-
ements arbitrarily, they will not be properly captured and hence they might result in
the deterioration of the solution’s accuracy. Motivated by the lack of fields’ fidelity at
the level of interfaces that can severely limit the applicability of the immersed volume
method, a mesh refinement around the interfaces stems as a good remedy to this issue.

The objective is therefore to combine the levelset representation with local mesh
refinement around the zero isovalue of the levelset function yielding an accurate cap-
ture of a fluid-solid interface at a low computational cost. The key to these regards is
anisotropic mesh adaptation that generates highly stretched and well oriented elements
allowing a good capture of sharp gradients.

In the past few years, progress has been made in the CIMLIB library to build up
an anisotropic mesh adaptation technique that is locally refined in the vicinity of the
interface [Gruau 05, Coupez 09, Bernacki 08]. In what follows, we retrace the steps
used prior to this work in order to construct an anisotropic mesh suiting this kind of
applications.

We recall that the anisotropic mesh adaptation procedure can be interpreted as a
metric construction problem where a metric is a symmetric positive definite tensor
whose eigenvalues and eigenvectors can be used to prescribe respectively the mesh
sizes and the directions along which these mesh sizes are prescribed. In the framework
of mesh adaptation at the interface of an immersed object, the mesh shall be driven by
the gradient of the levelset function

x =
∇α

||∇α|| .

To ensure a good capture, small mesh sizes shall be imposed along the unit normal
to the interface that is in the gradient direction while maintaining a fixed default or a
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background size hd in the orthogonal direction to the interface and in the zones that
are far from it.

A likely definition for the mesh size evolution is:

h =


hd if |α(x)| > ε/2

2hd(m− 1)
m ε

|α(X)|+ hd

m
if |α(X)| ≤ ε/2

(5.4)

This means that, at the interface, the mesh size is m times smaller than the background
size hd. As we get far away from it this size increases gradually till equaling hd at a
distance ε/2 with ε being a predefined thickness.

The levelset’s gradient direction x and the mesh size h defined above, imply the
following metric:

M = C (X⊗ X) +
1
h2

d
I with C =


0 if |α(X)| ≥ ε/2
1
h2 −

1
h2

d
if |α(X)| < ε/2

(5.5)

where I denotes the identity tensor. This metric yields an anisotropic mesh near the
interface, with a mesh size h in the levelset’s gradient direction and hd in the other
directions, and an isotropic mesh far from the interface, with a constant mesh size hd

in all the directions. We present in figure 5.5(left) the mesh obtained using the metric
M constructed with the layer based approach. We can identify how the elements are
anisotropic in the vicinity of the interface and how they become isotropic and increase
progressively in size as we move away from the interface. The obtained mesh is made
up of 4, 000 nodes distributed over the domain with a higher concentation near the
interface.

On the other hand, as discussed earlier, in order to provide a good capture of
the object’s interface, we need to create a sharp gradient in its surrounding. However,
relevant information about the levelset function are condensed in a narrow layer around
its zero-isovalue so as to determine the signed distance field, the gradient direction and
refine the mesh in this zone. Outside this layer, one just needs to know whether a node
is inside or outside the solid object. Therefore, it is not necessary to compute the
levelset function far from the interface. For that reason, we only retain the information
provided at a narrow layer around the interface by applying a hyperbolic tangent filter
on the signed distance function as described in [Coupez 14]. The filtered function is
then defined by:

ϕ = ε tanh
(α

ε

)
. (5.6)

This filtering process yields a sharp gradient of ϕ. The parameter ε controls the steep-
ness of the gradient and thus the anisotropy of the mesh in the vicinity of the interface.
The smaller ε, the sharper the gradient of ϕ and hence the higher the stretching of the
elements near the interface. The resulting function ϕ is continuous and differentiable,
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Figure 5.5 – Anisotropic meshes adapted on the immersed hat shaped solid obtained using the layer
based approach (left) and the edge-based metric construction developed in this work (right).

and in the narrow layer around the interface, is equal up to the first order to α and
grows up to size ±ε outside the layer of size 2ε.

Although the anisotropic meshing technique driven by the metric defined in equa-
tion (5.5) seems simple and easy to employ, it does not provide a control on the total
number of degrees of freedom in the constructed mesh. Therefore when complex in-
dustrial applications are involved, a drastic increase in the mesh complexity can be
expected yielding a considerable computational cost.

In chapter 2, we have proposed a novel method for generating anisotropic meshes.
Starting with an arbitrary mesh, the developed approach automatically detects the
locations of sharp solution/function gradients from an a posteriori edge-based error
estimator. At each node in the mesh, a metric tensor is constructed without prior infor-
mation from the element, neither considering any underlying interpolation. The metric
assigns optimal mesh sizes in the different directions issued from that node under a
constraint of a fixed number of nodes. It is performed by introducing a statistical con-
cept: the length distribution tensor that gathers information from all the edges at the
node. Then the error is computed along and in the direction of each edge. These error
estimates would then be used to prescribe stretching factors along the edges in the
mesh. Taking into account the stretching of the edges, a modified metric tensor is con-
structed and in turn is given to the MTC mesher to generate an optimal mesh in terms
of minimum interpolation error. The method has been theoretically and numerically
validated and achieves second order convergence rates.

In the framework of the immersed volume method, the goal is to provide a good
representation of the fluid/solid interfaces for a fixed number of nodes in the mesh.
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The procedure consists in applying the mesh adaptation algorithm on the normalized
filtered levelset function. Indeed, as the gradient of the levelset function has a unit
norm over the mesh, the error is equi-distributed over the domain and consequently
applying an anisotropic mesh adaptation based on this error would not lead to a sharp
capture of the interfaces. In order to condense the nodes around the zero-isovalue of
the levelset function, we resort to the filtered levelset function which exhibits strong
gradients at that level.

We repeat the anisotropic mesh adaptation on the 2D hat shaped body using the
new anisotropic mesh adaptation tools with the same number of nodes 4, 000. We
present in figure 5.5(right) the obtained mesh when adapting on the filtered levelset
function. We can clearly see how stretched the elements are far from the interface as
the gradient of the function does not vary at this level. The nodes are highly con-
densed in the vicinity of the interface favoring its accurate capture. This validates how
the developed algorithm optimizes the distribution of the nodes to produce a sharp
anisotropic mesh that is well adapted based on a given variable.

We move on now to evaluate the performance of the developed method on 3D
complex geometries. Figure 5.6 depicts the surface plots of the levelset and the filtered
levelset functions on a 2D horizontal cut along the x-axis and y-axis of the missile
object. Clearly, the filtered levelset function provides a better description of the object
at hand.

Figure 5.6 – Levelset (left) and filtered levelset (right) functions corresponding to an immersed missile
object.

For illustration on the performance of the anisotropic mesh adaptation tool, figures
5.7 and 5.8 present different snapshots on the zero isovalues of the levelset functions
corresponding to a missile object and a F1 car. Inhere, the meshes were adapted only
on the filtered levelset function describing the geometry. The close-up snapshots depict
the layers of elements near the objects boundaries. We can clearly detect the bandwidth
across the interface where the elements are highly condensed. One can also observe
the extremely stretched elements along the boundary of the immersed objects whereas
the rest of the domain keeps almost the same background mesh size. Note that this
background size can be controlled by the prescribed minimum value for the mesh sizes.
These results reflect how well, for a fixed number of nodes (40, 000 for the missile and
150, 000 for the F1 car), the developed algorithm captures complex geometries in terms
of curvatures, sharp angles and singularities.
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Figure 5.7 – Immersed missile object with its corresponding anisotropic mesh.

Figure 5.8 – Immersed F1 car with its corresponding anisotropic mesh.
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Nevertheless, generating anisotropic meshes based only on the geometry of the im-
mersed objects is not the optimal choice for CFD simulations. These meshes, by control-
ling the element sizes, stretching and orientation, will tend to generate fine elements in
the surrounding of the fluid/solid interfaces and coarse ones far away. Consequently,
they will ignore the characteristic features of the flow around the objects as well as the
evolution of the thermo-dynamic properties. Hence, this choice of adaptation turns out
to be insufficient and may yield an ill-conditioned stiffness matrix incapable of describ-
ing the heat transfers and the complex dynamics of the flow. Therefore, two possible
attempts can be adopted to deal with this issue. The first one relies on imposing a
relatively fine background mesh that can be obtained by prescribing a relatively large
minimum mesh size. The second one consists in generating a mesh that is adapted to
several fields of interest. This can be achieved by generating a metric tensor for every
field and then applying a metric intersection procedure followed by a mesh generation.
However this process necessitates a considerable computational cost. In this work, we
propose another way to account for multi-components mesh adaptation.

The extension to deal with multi-component fields (tensors, vectors, scalars) is pro-
vided in the following section. Rather than considering several metric intersections, we
propose an easy way to account for different fields (e.g. velocity norm, velocity compo-
nents, levelset function, ...) in an a posteriori analysis while producing a single metric
field. Note also that the proposed algorithm is implemented in the context of adaptive
meshing under the constraint of a fixed number of nodes. With such an advantage, we
can provide a very useful tool for practical CFD and FSI problems while preventing a
drastic increase of mesh complexity and hence in computational cost. The generality,
automatism and efficiency of the proposed method make it an important tool for the
resolution of complex CFD applications.

5.2.3 Third component: mixing laws

Once the mesh has been well adapted around the zero-isovalue of the levelset function
providing an accurate capture of the fluid/solid interface, we resort to the use of mixing
laws in order to well distribute the material properties on the different subdomains.
The assignment of the physical properties can be specified on the basis of the levelset
function’s sign by means of a Heaviside function given by:

H(α) =

1 if α ≥ 0

0 if α < 0
. (5.7)

However, sharp variations across the interface might be devastating for numerical
solvers. To improve the stability and continuity of the numerical solution, the sharp
discontinuities can be relaxed by artificially thickening the interface layer. This can be
achieved by smoothing the transition of material properties along the interface. To do
so, a smoothed Heaviside function is employed over a characteristic thickness of 2ε
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[van der Pijl 05]:

Hε(α) =


1 if α > ε

1
2

(
1 +

α

ε
+

1
π

sin
(πα

ε

))
if |α| ≤ ε

0 if α < −ε

(5.8)

with ε = O(hd) being a thickness parameter for smoothing the Heaviside function and
hd the mesh size in the normal direction to the interface. In the numerical experiments
we set ε = 2hd. In the vicinity of the interface, the latter parameter can be determined
according to the following expression:

hd = max
j,l∈K
∇α · Xjl , (5.9)

where K is a mesh element in the tight sublayer around the interface and Xjl = Xl − Xj

is an edge of K.
The objective now is to benefit from the regularity provided by the smoothed Heav-

iside function defined in equation (5.8) to define the physical properties on one side or
the other of the interface. When treating heat transfer and fluid flow problems, linear
variation of the properties is prescribed for the density ρ, the initial temperature T0, the
dynamic viscosity µ, the specific heat capacity Cp and the mean absorption coefficient
κ, as follows:

ρ = ρ f Hε(α) + ρs(1− Hε(α)) ,

µ = µ f Hε(α) + µs(1− Hε(α)) ,

ρCp =
(
ρ f Cp f Hε(α) + ρsCps(1− Hε(α))

)
,

ρCpT0 = ρ f Cp f T0 f Hε(α) + ρsCpsT0s(1− Hε(α)) ,

κ = κ f Hε(α) + κs(1− Hε(α)) ,

(5.10)

where the solid properties are referred to using the subscript ‘s’ and the fluid ones
using the subscript ‘ f ’.

However, the use of linear distribution for thermal conductivity surrenders to
abrupt changes along the interfaces and yields inaccurate results as pointed out in
[Patankar 80, Batkam Hemo 02, Hachem 09]. Harmonic variations were proposed to
ensure the conservation of the heat flux:

λ =

(
Hε(α)

λ f
+

1− Hε(α)

λs

)−1

. (5.11)

Figure 5.9 depicts the distribution of the density over the domain, obtained using
the above defined mixing law, on a gradually refined mesh made up of 4, 000 nodes
obtained using the layer-based approach and the one obtained for the same mesh res-
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olution using the developed anisotropic mesh adaptation. We can clearly see how
precisely the transition from the solid subdomain to the fluid one is captured using
the anisotropic meshing tools. We note that the sharp discontinuity of the material
properties across the interface, if not properly represented, can affect the quality of the
numerical solution.

Figure 5.9 – Density distribution in a multi-domain simulation on adapted meshes of 4, 000 nodes
based on a gradual refinement (left) and on an anisotropic refinement (right).

We recall that the fluid/solid interface is no longer an explicit geometric bound-
ary of the domain and consequently one cannot impose boundary conditions (such as
radiative heat transfers) at its level. The alternative proposed by the IVM approach ac-
counting for heat transfers is to employ a monolithic formulation of the multi-materials
problem whereby a single set of equations is solved. The coupled problem involves
simultaneously resolving the momentum equations, energy equation, the turbulent ki-
netic and dissipation energy equations, and the radiative transport equations over the
entire domain with variable material properties.

The power of the proposed direct thermal coupling analysis resides in the natural
treatment of the heat transfers without resorting to experimental investigations in order
to determine heat transfer coefficients. Obviously the computation of these coefficients
requires repeating the whole experiment at every change in the material properties
or in the setup of the problem which can rapidly become unfeasible, especially when
complex simulations with complicated geometries are involved. The immersed volume
method can be applied to any heat transfer problem and the only needed parameters
are the physical properties of the different materials.

When a fixed mesh is maintained all over the computations, the immersed volume
method is applied only once prior to the simulation. The associated computational cost,
due to the calculation of the levelset function and the initial mesh generation is rela-
tively small with respect to the total cost of the simulation. However, if the mesh has
to be dynamically adapted over time, then the IVM algorithm shall be applied at every
update of the mesh. This will induce a considerable cost related to the computation of
the levelset function, the redistribution of the material properties, and the anisotropic
well adapted mesh. In complex fluid/structure interaction applications, mesh adap-
tation is considered as a powerful tool for improving the accuracy of the numerical
results and accelerating the computations. However, adapting the mesh only on the
levelset function is not sufficient to provide a good capture of the physical phenomena
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that are involved. The objective of the adaptive methods is to lower the gap between
the real physical problem and the numerical one. This is achieved by increasing the
grid’s resolution at the locations of solution discrepancies in the aim of reducing the
estimated errors. Therefore the mesh shall be adapted on the different features of the
problem including the immersed objects’ interfaces. This concern rises the need to con-
struct a single metric tensor that accounts for different error indicators which will be
discussed in the following section.

5.3 Mesh adaptation based on several fields

When simulating complex physical phenomena involving turbulent flows and heat
transfers, it is highly desirable to accurately capture all the characteristics of the prob-
lem, including but not limited to, the flow field, the temperature variations, and the
fluid/solid interfaces. For instance when simulating turbulent flows, the boundary
layer and the flow separation need to be modeled accurately. Two strategies are gener-
ally adopted: the ‘a priori’ and ‘a posteriori’ adaptations. The former approach departs
from a mesh that is pre-adapted around the boundaries, the main vortices and in the
wake region. However to design such a mesh, a priori assumptions on the profile of
the solution shall be considered (i.e. Reynolds number, y+ value, ...). In this case the
mesh adaptation criteria are geometric and do not evolve with the solution. In the
second approach, the mesh adaptation problem is cast as a dynamic optimization one
suited to control the interpolation error over time. The anisotropic decisions are driven
by ‘a posteriori’ error estimates on the desired indicator fields. In the framework of
the anisotropic mesh adaptation technique developed in chapter 2, the objective of the
error estimates is to survey the spatial variations of the fields of interest over the mesh
edges. The gathered estimates will then be synthesized into a metric tensor that will
incorporate information about the locations of anisotropic refinement. Finally the op-
timal mesh is generated by a single metric tensor based on the control of the desired
sensors’ interpolation errors.

5.3.1 Metric intersection

The common technique to derive a single metric at each node in the mesh account-
ing for several fields of interest relies on the rigor of computing the metrics corre-
sponding to each of the sensor fields then performing a metric intersection operation
[Alauzet 10a]. The constraint yielding the smallest mesh size imposed in each direction
by the set of metrics is maintained. The geometric interpretation of the intersection op-
erator corresponds to the largest ellipsoid contained in the intersection of the ellipsoids
associated with the concerned metrics. At a node Xi in the mesh, when two metrics
M1 and M2 shall intersect, a simultaneous reduction is performed to ensure a com-
mon diagonalizable basis for the metrics. According to [Alauzet 10a] the basis is made
up from the normalized eigenvectors ei (i=1,2,3 in 3d) of the metric N = M−1

1 M2.
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The corresponding diagonal components associated to M1 and M2 in this basis are
determined by:

λi = et
iM1ei µi = et

iM2ei for i = 1, 2, 3 . (5.12)

The metric reflecting the intersection is thus given by:

M1∩2 = R−t

 max(λ1, µ1) 0 0
0 max(λ2, µ2) 0
0 0 max(λ3, µ3)

R−1 . (5.13)

where R is a rotation matrix whose columns are the eigenvectors of the metric M1∩2.
In practice, following the lines in [Alauzet 10a], the eigenvalues of N are computed
using a Newton algorithm and accordingly the eigenvectors are deduced. The metric
tensor representing the intersection of k metrics is defined by:

M(1···k) =M((((1∩2)∩3)··· )∩k) . (5.14)

However as the intersection operation is not commutative, the resulting mesh is not
unique and depends on the order of intersection when the number of intersected met-
rics is higher than 2.

An alternative for finding the intersection of k metrics is proposed in [John 48,
Loseille 09] and consists in resolving the following optimization problem:

M∩i Mi = argmin
M

ln
(

det (M)−1
)

, (5.15)

under the constraints that the ellipsoid associated with M∩i Mi is contained in each of
the ellipsoids of the k metrics. This solution is computationally more expensive but
produces a unique metric tensor.

5.3.2 Multi-components metric construction

In this work, we omit the metric intersection process and we construct directly one
metric that accounts for several variables [Coupez 13a, Coupez 13b]. Based on the
theoretical analysis conducted in the previous chapter, we extend the scalar field repre-
senting the edge error estimation of a single variable into a vector whose components
are the error estimates on the different variables under consideration. That is, instead
of considering each variable at a time, constructing its corresponding metric tensor then
intersecting the different metrics, we perform the analysis on a vector field u, recover
its gradient then estimate the corresponding vector of error estimates on the edges of
the mesh. The vector field components are normalized to give equal weights to the
different variables. An example of such a vector, at a node Xi, can be:

u(Xi) =

 vi

||vi|| ,
||vi||

max
j
||vj||

,
α

max(α)
, · · ·

 ,
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where v is the velocity field, ||vi ||
max

j
||vj|| refers to the normalized velocity magnitude, and

α denotes a scalar field (filtered levelset function, temperature, turbulent viscosity, · · · ).
Consequently, the adaptivity accounts for the change of direction of the velocity, its
magnitude and the variation of the scalar α. The resulting vector of error estimates is:

eij =
{

e1
ij, e2

ij, · · · , en
ij

}
. (5.16)

Therefore, by defining a suitable Lp norm || · ||p the corresponding stretching factors
become:

sij =

( ||e(N)||p
||eij||p

) 1
2

. (5.17)

To illustrate on the performance of the multi-criteria metric construction, let us consider
4 geometric objects (2 circles and 2 squares) and adapt the mesh on the iso-zero value
of their levelset functions. Figure 5.10 depicts the meshes obtained after 10 adaptive
iterations, using the metric intersection, based on the simultaneous reduction method
(left) and the multi-components method developed in this work while adapting on the
L2 norm of the edge error vector field (right). In both cases, 4, 000 nodes were pre-
scribed to drive the mesh. It is clear from the obtained meshes that the mesh converges
faster when using the developed multi-criteria adaptation. The elements are well lo-
calized over the regions of high gradients permitting a good capture of the geometries’
isovalues. In the case of metric intersection, the nodes in the mesh are concentrated
at the zones of geometrical intersections providing an important precision at this level
while a weaker capture is associated to the other locations of steep gradients. We have
reported in table 5.1 the needed time to perform 10 mesh adaptations on the geometries
and the number of adaptive iterations to converge the mesh to the optimal one. We can
clearly identify the advantage of the proposed multi-component metric construction.
Implementation-wise, the method is simpler as it requires only to fill in a vector of
several components and compute its corresponding gradient field.

Figure 5.10 – Anisotropic mesh adaptation around different shapes obtained after 10 adaptive iterations
using the metric intersection (left), the multi-components metric construction based on the L2 norm of

the edge error (right).



5.3. Mesh adaptation based on several fields 249

Metric intersection Multi-criteria
CPU time (s) 34.65 24.77

# of iterations to mesh convergence 35 10

Table 5.1 – Statistics on the CPU time and the number of mesh adaptations to converge the mesh toward
optimality using the metric intersection and the multi-criteria techniques.

We move on now to highlight the importance of adapting the mesh on several
fields of interest, we reconsider the 2D driven cavity problem described in the previous
chapters. The computations were performed on the domain [0, 1] × [0, 1]. A fluid
motion inside the cavity is driven by shear forces resulting from a moving top wall
at a velocity of 1m/s and no-slip conditions on the other walls. The density of the
fluid is set to 1kg/m3 and its dynamic viscosity to 2× 10−4Pa · s yielding a Reynolds
number of 5, 000. We have conducted the same test case while adapting the mesh on
the norm of the velocity field and on the combination of the norm and direction of
that field using 10, 000 nodes. As shown in figure 5.11, the normalized velocity field
reflects better the locations where the velocity field sustains strong variations. The
corresponding anisotropic meshes are depicted in figure 5.12. We can clearly identify
that the anisotropic mesh adaptation accommodating for the intensity of the velocity
field and its changes of directions allows a better capture of the emerging small vortices,
the boundary layers and detachment points.

Figure 5.11 – Normalized velocity field (left) the velocity vector (right).

Figure 5.12 – Anisotropic mesh obtained when adapting on the velocity norm (left) and on its norm
and direction (right).

Remark 38. There are two possibilities for defining mesh adaptation criteria. The first one,
‘sensor based’, consists in minimizing the interpolation error for selected solution fields (such
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as the levelset function, the temperature field, the velocity norm, and the velocity direction,
etc.). This technique for deriving the anisotropic mesh is independent from the problem at
hand. It tends to generate an optimal capture of the desired fields but does not provide a full
representation of the equations being solved. The sensor based choice for adaptation seems
interesting from a computational standpoint as it does not require a data analysis before mesh
adaptation. Moreover, it does not necessitate an a priori analysis of the equations and parameters
at hand. The second criterion for anisotropic mesh adaptation focuses on the problem being
solved and not on particular sensor fields. This approach is applied when the objective is to get
as close as possible to the equations at hand. It is known as ‘problem oriented’ mesh adaptation
[Alauzet 12, Belme 12, Venditti 02, Venditti 03] and intends to derive the anisotropic mesh that
optimally reflects the features of the problem. The approach consists in performing an a priori
analysis based on a goal oriented rationale and controlling the error with respect to a specified
output functional. This method takes into account the error propagation along the computational
domain through the resolution of the dual, or adjoint functional. Several techniques for reducing
the error correction of the output function can be found in the literature, the interested reader
can consult the following references [Dwight 08, Müller 01, Venditti 02, Venditti 03].

As the objective of this work is to conduct anisotropic adaptation decisions entirely from the
a posteriori error estimates without resorting to a priori assumptions nor resolving an additional
problem, we employ a “sensor based” adaptation technique.

In the following section, we are interested in evaluating the performance of the
immersed volume method associated with a dynamic anisotropic mesh adaptation
in resolving two and three dimensional physical problems. We recall that prior to
this work, the IVM was applied once, in the problem’s preparation phase, and the
anisotropic mesh was generated based only on the levelset function and respecting
a fixed small background mesh size. The resulting mesh that is well adapted to the
immersed objects’ interfaces was maintained all over computations. Clearly, the grid
was not adapted to the characteristic features of the physical phenomena (e.g. vor-
tices, boundary layers, temperature gradients) whose locations are not known apriori.
Therefore, in order to obtain a good level of precision, a fine mesh shall be considered
over the whole domain resulting in a high execution time and memory storage. In the
context of problems involving a moving geometry, all the region traversed by the solid
needs to be refined in order to maintain a sharp capture of the moving interface. This
would require a clustering of elements in this zone of the domain and consequently will
induce a considerable computational cost. Another problematic arises when the path
of the solid is not known prior to the simulation. As it will be shown by the numerical
results, the use of dynamic mesh adaptation overcomes these difficulties. The mesh
will automatically follow the moving interface ensuring its accurate capture without
drastically increasing the grid resolution and consequently the simulation’s CPU time.



5.4. Numerical validation 251

5.4 Numerical validation

We have conducted several numerical experiments in the view of validating the IVM
with a dynamic anisotropic mesh adaptation. In this section, we will start by showing
that the IVM compares well with the regular body fitted method. We move on next
to present the results obtained using the approach on a 2D forced convection problem.
Then the performance and scalability of the adaptive procedure will be evaluated on
3D simulations with complex geometries.

5.4.1 Flow behind a circular cylinder

We reconsider the same test case presented in Section 4.3.4 and apply it in an
IVM framework. This example consists in the study of a flow past a circular
cylinder and was taken from [Schäfer 96]. It has been tested by many authors
[Volker 04b, Volker 01, Frochte 09] using the body fitted technique. In this applica-
tion, we intend to compare the results obtained with the IVM to these references and
to our results obtained using a body fitted approach. We conduct two simulations
with exactly the same setup using the anisotropic mesh adaptation and time adaptive
technique. The number of nodes in the mesh was fixed to 20,000 and the mesh was
adapted on the filtered levelset function and the velocity’s norm and direction every 5
time-steps. Figure 5.13 depicts the velocity field and adapted mesh at time t = 6s ob-
tained using the IVM and the body fitted approach. One can clearly identify the sharp
representation of the immersed cylinder and the good capture of the boundary layers
and vortex shedding in the former case. It can be detected from the close-up snapshots
around the cylinder how the elements are symmetrically and isotropically distributed
in that region which agrees with the symmetric profile of the velocity gradient field
and hence with the error estimations. Anisotropic well oriented elements are generated
away from the cylinder following the direction of the velocity field. From a qualitative
point of view, both techniques are capable of rendering a good representation of the
flow characteristics and generate a well adapted anisotropic mesh. Moreover, we point
out the presence of mesh elements inside the cylinder, typical of the immersed volume
approach. However, as the velocity field does not change in this region, these elements
are very few, and consequently the computational cost due to the additional degrees of
freedom is not significant.

To give a quantitative comparison, the evolutions of the drag and lift coefficients
over time have been studied and the results are reported in figure 5.14. To generate
a reference solution, we apply the body fitted approach on a fixed mesh of around
120, 000 nodes and a time-step size ∆t = 0.0025. A slight difference between the re-
sults can be spotted. Compared with the reference solution provided in [Schäfer 96],
the IVM yields a better capture of the drag and lift coefficients than the body fitted
technique (BF). Table 5.2 summarizes the statistics on the maximum drag and lift co-
efficients obtained using a body fitted method on a fixed mesh of around 120, 000
nodes and a time-step size ∆t = 0.0025, the body fitted approach and the IVM with
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Figure 5.13 – Flow behind a circular cylinder: comparison of the velocity profiles (top) obtained using
the body fitted and the IVM and their corresponding meshes (bottom) at time t = 6s.

Figure 5.14 – Flow behind a circular cylinder: time history of the drag (top) and lift (bottom)
coefficients.
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cd,max cl,max
Schäfer & Turek [Schäfer 96] 2.95 ± 0.02 0.48 ± 0.01

Schäfer & Turek FEM [Schäfer 96] 2.92 0.491

Volker [Volker 04b] 2.95 0.382

Present work (BF no adaptation) 2.9703 0.523

Present work (BF) 2.9562 0.428996

Present work (IVM) 2.9605 0.48215

Table 5.2 – Statistics on the maximum drag and lift coefficient values.

CPU time (s)
Present work (no adaptation) 83201

Present work (Body fitted) 16442

Present work (IVM) 17307

Table 5.3 – CPU time needed for the simulation of a flow behind a circular cylinder.

anisotropic mesh and time adaptivity ( 20,000 nodes). All these results are compared
with reference values found in the literature. The second row in the table reports the
data in [Schäfer 96] obtained using a P2/P1 (Taylor-Hood) finite element method on
unstructured grid made up from 21, 508 degrees of freedom and a time-step 0.005.
The reference values taken from [Volker 04b] correspond to an implicit time-marching
scheme and the Q2/Pdisc

1 finite element formulation on a mesh made up of 159, 744
nodes and a time-step ∆t = 0.00125. When using a body fitted approach, the failure to
achieve the reference values especially for the lift coefficient can be attributed to the use
of a first order time discretization as compared to the second order scheme employed
in the reference paper. These discrepancies were also highlighted in [Volker 04b] when
using a first order scheme. In the wake region behind the cylinder as shown in fig-
ure 5.13, the elements are well oriented and highly condensed in the vicinity of the
interface providing a good level of accuracy and achieving the reference values.

As for the execution time needed to perform these simulations, table 5.3 provides
statistics on the CPU time needed by the body fitted approach and the the immersed
volume method with space and time adaptations. Compared with the solution ob-
tained without adaptation, both adaptive approaches tested in the present work show
considerable gain in efficiency. We notice that the body fitted approach is faster than
the IVM. It is worth mentioning that the reported CPU time for the body fitted method
did not account for the pre-simulation mesh generation phase. In this test case, the
immersed solid has a simple geometry and hence this phase requires a negligible time.
However, when the immersed object’s geometry is complicated, the needed time for
generating the initial mesh will be important and shall be accounted for.

Remark 39. It was reported in [Schäfer 96] that the solution obtained using a P2/P1 (Taylor-
Hood) finite element method on unstructured grid made up from 21, 508 degrees of freedom and
a time-step 0.005 required 44000s on an 8.3 Linpack1000 machine, however comparison with
our work can not be made due to the differences in computer hardware.
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5.4.2 Turbulent flow behind a F1 racing car at 300km/h

In this test case, we aim at evaluating the performance of the IVM combined with
anisotropic adaptation and stabilized flow solvers in resolving complex fluid-structure
interaction problems. It is also employed to test the limit of the developed VMS solver.
Indeed, beyond 300km/h, an extension of the solver to deal with compressible flows is
needed. For that purpose, we consider a turbulent flow past an immersed highly so-
phisticated shape of a modern Formula One (F1) car (of dimensions 6x1.31x2.07) with
several deflectors and additional winglets essential for enhancing the aerodynamic ef-
ficiency and the performance. The computational domain is a plane channel of dimen-
sions 20x4x6. The 3D computations have been obtained using 64 2.4Ghz Opteron cores.
This example can be considered as the three-dimensional extension of the previous one
with a complex geometry. It clearly highlights the utility and the advantages of the
proposed immersed computational framework (Immersing −→ Adapting −→ Solving)
as it points out the ease of changing/modifying/adjusting/adding geometrical details
to the immersed car and study their impact on the car’s performance. Each new im-
mersed appendix may be represented easily by a new levelset function. If a body fitted
mesh was to be used for this kind of simulation then the mesh construction phase
will take a significantly important time. On the other hand, in the case of a moving
geometry, this time will be even more expensive.

From a design and performance optimization standpoint, an important motivation
for modelling the flow behind the F1 car is the capability to study the aerodynamic
forces, improve the shape, brake/engine cooling, and control the wake structures. In-
here, we will not conduct such an analysis as the aim is only to show the capability
of the developed IVM together with the space and time adaptations and the available
stabilized solvers to perform such a study.

An inlet air velocity of 300km/h was imposed on the left wall and no-slip conditions
were prescribed at the other walls and the F1 car. We start the computations with an
isotropic initial mesh made up of 4 million elements. Preserving half of this density,
the mesh was then dynamically and anisotropically adapted every 10 time-increments
based on the filtered levelset function, the velocity norm and directions. Figures 5.15

and 5.16 depict the velocity streamlines and pressure profile’s evolution over time at
different regions of the domain. The snapshots reflect the complex nature of the flow
that is highly manipulated by the front wings. A high fidelity solution is needed
to ensure an accurate representation of the wake at the level of the front wing, rear
wings, sidepods and other small vertical winglets added as vortex generators in order
to boost the boundary layers and increase the velocity streams. Clearly the wakes are
highly dependent on the vehicle model that is being studied. A complicated bluff
body aerodynamic scenario is identified, where vortices of different sizes emerge and
re-energize the flow motion.

The structures of the generated anisotropic meshes (figure 5.17) reflect how well
they capture the anisotropy of the solution. One can see how the mesh is dynamically
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Figure 5.15 – Flow behind a F1 racing car: Velocity streamlines, pressure field and their corresponding
dynamically adapted meshes at different time instances.

Figure 5.16 – Frontal view on the flow behind the F1 racing car at different time instances.

Figure 5.17 – Anisotropic meshes describing the characteristics of the flow behind the F1 racing car.
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and progressively evolving as the flow develops. With time, a sharp layer of elements
delimits the mushroom shape of the wake behind the geometry and yields a good pre-
cision at that level. Note also the high resolution that is following the development
of the boundary layers and the detachments behind the tires and wheels. This reflects
well the anisotropy of the solution caused by the discontinuity of the boundary condi-
tions and the nature of the flow. Indeed, taking a closer look at the mesh near these
interfaces, we can detect the good orientation of the elements with the stretching in the
right direction. Although it is difficult to observe, a Venturi effect, closely related to
the underground aerodynamics, develops absorbing a good amount of mesh nodes. In
the far gradients’ zone, the mesh is being systematically and automatically de-refined
and the nodes are being redistributed over the domain. This demonstrates the ability
of the algorithm to work under the constraint of a fixed number of nodes and to effec-
tively control the element sizes, orientations and locations. If a pre-adapted fixed mesh
were to be used over the whole simulation, then a mushroom shaped box that is highly
refined needs to be maintained behind the geometry as well as along the wing, tires,
sidepods and other locations of interest. Therefore isotropic fixed mesh is far from the
optimal choice for efficient computations.

5.4.3 Forced turbulent convection

We aim in this numerical example at assessing the performance of the IVM in simulat-
ing conjugate heat transfer and turbulent air flow inside a 2D cavity. This test case can
be viewed as a simplified model of a gas fired furnace. We consider a pre-heated rect-
angular domain [0, 23]× [0, 12]m2 where we immerse two steel alloy bodies at positions
(5, 0) and (13, 0). For illustration purposes on the multi-criteria feature of the proposed
adaptation algorithm, we assume constant material properties and focus only on the
dynamic adaptation and response to the changes in the characteristics of the physical
problem. The material properties affected to the fluid and the solid bodies are reported
in table 5.4. We note that in this example the radiation effects are neglected. The initial
temperature of the domain is set to 250 ◦C and that of the solids to 50 ◦C. Heated air
is pumped into the enclosure through an inlet of size 0.7m positioned at (0, 2) with a
velocity of 2m/s and a temperature of 1000 ◦C. The air is vented out of the domain
through two outlets of size 0.7m centered at (23, 4.5) and (23, 10.5). A schematic rep-
resentation of the domain is provided in figure 5.18. Adiabatic temperature and slip
boundary conditions are prescribed on the other walls. Before starting the computa-
tions, a levelset function is computed to define and position the immersed solids. A
subsequent anisotropic mesh adaptation on the filtered levelset function is applied per-
mitting a precise capture of the solid interfaces. The rest of the domain is discretized
while respecting a fixed background size. Now, that the mesh has been created, we dis-
tribute the material properties according to equation 5.10 where we handle the sharp
discontinuities in the thermal conductivities along the solid/air interfaces using har-
monic mean formulation. It is important to mention that a high kinematic viscosity is
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Properties Air Steel
Density (kg/m3) 1.25 7850

Specific heat (J/kg · K) 1000 1499

kinematic viscosity (Pa · s) 1.95e−5 -
Conductivity (W/m · K) 0.0262 48.6

Table 5.4 – Material properties of the air and the steel alloy solids.

assigned to the solid part and yields a negligible velocity field at the level of the solid
bodies. Consequently, the energy equation reduces to a conduction equation at that
level as the convection term vanishes. Moreover, in order to preclude possible numeri-
cal oscillations incurred by the sharp gradient in the temperature field at the locations
of high convection, the SCPG stabilization is used. On the other hand, the stabiliza-
tion of flow inside the enclosure is accounted for by using the variational multiscale
(VMS) approach. As the Reynolds number corresponding to this simulation reflects a
turbulent behavior of the airflow, a turbulence model will therefore be used. We solve
the Reynolds-averaged Navier-Stokes problem with the k− ε model to account for the
turbulence inside the cavity as explained in chapter 1.

Figure 5.18 – Forced convection: sketch of the geometry and initial conditions.

Along the simulation time, the mesh is adapted on the L2 norm of the interpolation
error of the temperature field, the filtered levelset function, the velocity norm and the
velocity direction using 20, 000 nodes.

The temperature distribution over time and the velocity field are depicted together
with the corresponding anisotropically adapted meshes in figure 5.19. We can infer
from the temperature profile that as the heated air enters the enclosure and gets in
contact with the colder stationary fluid present there, an important gradient occurs.
In parallel, two main vortices are formed and advected by the flow. Turbulent chaotic
fluctuations are induced breaking up the steady nature of the flow inside the domain.
As a response, the dynamic anisotropic mesh tool detects these gradients and removes
elements from other locations and insert them in the vicinity of the sharp variations.
Furthermore, as the flow advances small eddies are generated and developed. We
can observe how the mesh follows their movement and ensures their good capture.
The elements are very well oriented and highly stretched to better capture the solid
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Figure 5.19 – Forced convection: temperature distribution, velocity profiles and the corresponding
meshes over time.
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Figure 5.20 – Forced convection: thermal heating of immersed ingots.

interfaces as well as the evolution of the velocity and temperature fields. The boundary
layers are also very well rendered by highly elongated elements in the flow direction.

On the other hand, we can clearly notice that the presence of ingots slows down the
injected air from the burner and slightly influences the main air circulation inside the
domain.

Once the chaotic flow settles down and a warm temperature is spread inside the
cavity, the mesh becomes finer at the level of the solid bodies ensuring their accurate
heating (figures 5.19 and 5.20). This example illustrates well the dynamic nature of
the anisotropic adaptation. We can detect how the elements are refined, stretched and
displaced over time and in accordance with the flow characteristics.

Regarding the time-stepping sizes over the simulation time, we present in figure
5.21 the history of the time-steps generated by the time-adaptive algorithm to advance
the solution while maintaining the temporal error below the spatial one which is in
turn controlled by a fixed number of nodes in the mesh N = 20, 000. We observe that
over the first 20s of the simulation, the time-step sizes are small allowing a precise
capture of the newly emerging physics. As the flow settles down, and the temperature
field in the cavity does not show much variations, the generated time-steps become
larger accelerating the computations. Obviously, this is much more advantageous than
evolving the solution with a fixed time-step size.

Finally, this test case can serve as a furnace design optimization one, whereby based
on the profile of the flow’s characteristic functionals, one can determine the best con-
figuration for positioning the workpieces.
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Figure 5.21 – Forced convection: time-steps evolution over time (left) and a zoom on the first 200s
(right).

5.4.4 Simulation of a rotating helicopter propeller

Now that the performance of the IVM with the anisotropic mesh adaptation and time
adaptivity have been validated on heat transfer and flow problems, we move on to
illustrate its performance in capturing moving structures. The aim is to investigate the
capability of the developed tools to simulate airflows behind moving bodies. We now
immerse a helicopter geometry in a large computational domain and let the propeller
rotate with a constant angular velocity θ = 2π

3 rad/s which is 3 full turns per second.
We fix the number of nodes in the mesh to 200, 000 and the meshing frequency to 5. The
main challenge is to preserve the precise anisotropic and sharp capture of the blades
over the simulation. If a constant time-stepping were to be employed together with the
anisotropic mesh adaptation, then a very small size should be used in order to maintain
the rotating interface of the propeller inside the refined zone. Indeed, when anisotropic
mesh adaptation is employed, in the view of optimizing the mesh with the available
number of nodes, the method tends to create a very sharp layer of condensed elements
in the vicinity of the interface allowing its good capture. This layer has a very small
thickness as shown by the 2D horizontal cut along the blade in figure 5.22. The mesh
is highly refined around the Naca profile representing the zero-isovalue of the blade’s
levelset allowing its good capture. However, when a frequency of mesh adaptation is
used and the propeller is rotating, the time-step size shall be set to a very small value
in order to maintain the moving geometry in the highly refined zone. Otherwise, the
refined mesh remains behind the rotating blades implying a very poor representation
of the geometry as depicted in figure 5.23. The selected time-step size is equal to 0.001.
One can clearly notice how the interface, the zero-isovalue of the levelset function, is
very poorly represented. Therefore, it is hard to determine the fixed time-step size to
be imposed in a way that guarantees the good capture of the moving interface. On
the other hand, using the adaptive time-stepping approach developed in this work, the
selection of the time-step size is automatic and in accordance with the mesh adaptation
frequency. Figure 5.24 presents the propeller’s displacement over time. We highlight
the good capture of the geometry at the different instances. This is rendered by the
appropriate selection of the time-step sizes. However, as reflected in the history of
the first 0.05s of time-stepping (fig. 5.25), the generated sizes oscillate around a small
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Figure 5.22 – 2D mesh of the horizontal cut
along the blade and the zero-isovalue of the

blade’s levelset (in solid red line).

Figure 5.23 – Three time-steps after remeshing:
mesh and zero-isovalue of the blade’s levelset.

value ∆t = 0.0005. This oscillatory profile is in good agreement with the nature of the
movement as the blades perform a steady rotation over time.

Figure 5.24 – Different snapshots on the mesh capture of the blade’s trajectory over time and a zoom on
the blade’s mesh.

Figure 5.25 – History of the time-step sizes for the first 0.05s of the propeller’s rotation.

For illustrative purposes, we re-consider a mesh of 500, 000 nodes that is well re-
fined around the immersed geometry and in a rectangular box that would contain the
moving propeller over time and set the time step size to ∆t = 0.0005. The simulations
were run on 64 cores from a GNU/LINUX cluster of 2.4 Ghz Opteron cores connected
by an InfiniBand network. Table 5.5 reports the CPU times needed using a fixed fine
mesh and a small time-step size, an anisotropically adapted mesh and a fixed time-step
and an anisotropically adapted mesh and an adaptive time-stepping for the simulation
of 1s rotating immersed propeller inside a cavity. We can clearly identify an improve-



262 Chapter 5. Immersed volume method and multi-domain adaptation

CPU Time (h)
Fixed mesh & ∆t = 0.0005 22.65

Adaptive space & ∆t = 0.0005 14.21

Adaptive space & time 12.53

Table 5.5 – CPU time needed for the simulation of 1s propeller’s rotation.

ment in the execution time as a result of the space-time adaptation. However, the
obtained CPU time is still significantly large for this kind of problems.

Consequently, in this numerical test case, the anisotropic mesh adaptation has pro-
vided a good level of accuracy but showed to be blocking the efficiency of computa-
tions. That is, as the mesh is being dynamically and anisotropically adapted, it ne-
cessitates a tiny time-step size in order to advance the moving interface in time. The
reason for this limitation is related to the imposed frequency of adaptation. Two pos-
sible remedies can be adopted: the first consists in adapting the mesh at every time
increment and the second would be to construct a mesh that is well adapted for several
time-steps. The former solution is computationally expensive and accumulates inter-
polation error. The latter seems to be more accurate and efficient method and will be
the subject of the following chapter.

5.5 Conclusion

In this chapter, we have introduced the Immersed Volume Method (IVM) and coupled
it with the anisotropic mesh adaptation and time adaptive algorithms. This method
is employed in the context of multi-material applications where the interfaces between
the solid and the fluid subdomains are rendered by the zero-isovalue of a levelset
function. A single mesh is constructed for both subdomains whereby a single set of
equations is being solved. Mixing laws have been used to define the material properties
in the different subdomains. A harmonic mean formulation is applied to handle abrupt
changes in the material properties. In order to impose the no-slip boundary condition
at the solid body’s level, a high value for kinematic viscosity is considered in that region
making the velocity component in the momentum equation negligible. The dynamic
anisotropic mesh adaptation permitted a sharp capture of the interfaces and an accurate
material distribution over the different subdomains. The method has been tested on
examples of flow behind solid bodies and a heat transfer problem and proved to be
a powerful tool for simulating fluid/structure interaction problems. A P1 radiative
formulation, developed and implemented in the CIMLIB library, was used to account
for the radiative heat transfers. In chapter 7, we intend to validate the developed tools
brought forth in this thesis work on industrial applications and confront the results to
experimental data.

We have also tested the IVM and the developed dynamic adaptations on a moving
solid problem. Although the results were accurate, the method showed to be compu-
tationally expensive in that context. Indeed, when a frequency of remeshing is being
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used, the constructed mesh is not well prepared to contain the evolving solution over
the interval of no adaptation. Consequently, the time-adaptive algorithm, in the view
of limiting the computational error tends to generate very small time-steps thus limit-
ing the advancement of the solution over time. We intend, in the following chapter, to
derive an adaptation technique that takes into account a frequency of remeshing. The
method generates meshes and time-step sizes that are adequate to several time-steps
and hence the solution would be able to evolve more smoothly in time.

5.6 Résumé français

Dans le cadre de simulation de problèmes d’interaction fluide-structure, deux ap-
proches peuvent être utilisées: les approches de partitionnement des domaines et les
approches monolithiques. Les premières considèrent les domaines de fluides et solides
séparément puis le couplage s’effectue par des conditions aux limites. Néanmoins, la
détérmination de ces conditions est compliquée et des instabilités peuvent apparaître
lorsque les ratios des propriétés physiques sont importants. En revanche, les approches
monolithiques considèrent un seul domaine de calcul avec des propriétés physiques
variées pour les différents fluides et solides. Un seul maillage est alors utilisé et ne
nécéssite pas sa coïncidence avec la frontière fluide-solide. Dans cette thèse nous avons
adopté la méthode d’immersion de volume, une approche monolithique, par laque-
lle les objets solides sont immergés et localisés dans la partie fluide en utilisant une
fonction distance signée, la levelset. Ensuite, les propriétés physiques et thermiques
des différentes composantes sont distribuées à l’aide d’une fonction Heaviside lissée.
L’avantage de cette méthode réside dans sa capacité de s’affranchir de la nécéssité de
détérminer les coefficients d’échanges thermiques au niveau de l’interface. Cependant,
une bonne précision du maillage à ce niveau permet une bonne distribution des pro-
priétés.

Dans ce chapitre, nous nous sommes intéréssé au couplage de la méthode
d’immersion de volume et la méthode d’adaptation anisotrope du maillage. L’idée était
non seulement de générer un maillage raffiné au niveau de l’interface mais aussi d’avoir
un maillage qui s’adapte dynamiquement et automatiquement aux caractéristiques de
l’écoulement autour. Afin de répondre à ces besoins, une extension de l’adaptation
anisotrope à une approche multi-composante a été introduite. L’originalité de cette
méthode réside dans sa simplicité et sa capacité d’adapter le maillage sur plusieurs
champs en une seule métrique.

Le couplage a été testé sur plusieurs applications d’écoulement de fluide et de
transfert de chaleur et s’est avéré être un outil puissant pour simuler des prob-
lèmes d’interaction fluide/structure. En effet, les maillages obtenus par la méthode
d’adaptation anisotrope permettent de capturer précisement les interfaces des objets
immergés, les differents vortexes, les couches limites et les gradients de temperature.
L’adaptation en espace et en temps a démontré encore une fois sa capacité d’ameliorer
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les temps de calcul ce qui rentre dans l’objectif général de la thèse d’arriver à des
simulations réalistes de traitement thermiques dans des fours industriels.

Nous avons également testé la méthode d’immersion de volume et les méthodes
d’adaptations dynamiques développées sur un problème de mouvement d’interface.
Dans ce contexte, bien que les résultats furent précis, la méthode s’est avérée coûteuse
en temps de calcul. En effet, quand une fréquence de remaillage est utilisée, le mail-
lage construit n’est pas bien préparé pour contenir l’évolution de la solution le long
de l’intervalle de temps au cours duquel le maillage est maintenu. Par conséquent,
l’algorithme d’adaptation de temps, dans la vue de limiter l’erreur commise, a tendance
à générer de très petits pas de temps limitant ainsi l’avancement de la solution au fil du
temps. Nous avons l’intention, dans le chapitre suivant, de développer une technique
d’adaptation qui prend en compte une fréquence de remaillage. Le procédé génère des
maillages et des tailles de pas de temps qui vont être utilisés durant plusieurs pas de
temps et par conséquence la solution serait capable d’évoluer plus facilement dans une
région bien adaptée au cours du temps.



6Space-Time slab adaptive meshing

"How wonderful that we have met with a paradox.
Now we have some hope of making progress."

Niels Bohe
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In the previous chapters, we have developed space and time adaptive algorithms for
the resolution of steady and unsteady CFD applications. The methods proved to

yield a good level of accuracy and reduced the computational cost of the simulations.
Nevertheless, when applied in the context of problems involving rapid solution’s evo-
lution, these adaptations induced a deceleration in the computations. One way to
preserve the good level of accuracy, is to apply the mesh adaptation at every solver
iteration. Another possibility is to generate very small time-steps to advance the solu-
tion within the refined zones. Adapting the mesh at every solver iteration would not
only yield an important execution cost but also accumulate interpolation errors. These
problems can be treated by lowering the frequency of mesh adaptation. However, in
the case of an imposed fixed time-step size, as the mesh is being predicted only for
the very next solver iteration, it remains behind the advancing interface yielding a loss
of accuracy. When applying the time-adaptive algorithm together with the anisotropic
mesh adaptation, the moving interface is precisely captured but the generated time-step
sizes are too small and thus the computations are very slow. To overcome the above
mentioned bottlenecks, a new fully adaptive method is proposed in this chapter. It
intends to automatically generate a mesh and a set of time-step sizes. This mesh/time
step sizes couple takes into account the solution’s evolution over the concerned period
of time.
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6.1 State of the art

The numerical simulation of time-dependent problems constitutes an important tool for
the understanding of physical phenomena. Nevertheless the latter are usually charac-
terized by a multiscale nature; then in order to properly handle and accurately capture
complex phenomena a considerable computational effort is needed. A very fine mesh,
employing an unnecessarily large number of vertices and hence a large computational
cost, is required everywhere on the domain so that an accurate numerical solution is
computed. Therefore mesh adaptation is crucial when dealing with time dependent
problems especially if the solution is not known a priori and presents an arbitrary
behavior all over the computations. On the other hand, the time-step size should be
carefully chosen so that to reproduce the time multiscale features of the problem.

When simulating 3D complex physical phenomena and industrial applications, it
is highly desirable to provide a good level of accuracy within a reasonable computa-
tional cost. Therefore, in order to avoid excessive computational expenses due to mesh
adaptation, a frequency of adaptation is generally adopted. However, this procedure
may yield a delay of the mesh with respect to the solution. Assuming that we adapt
the mesh based on the solution computed at time tn using the algorithm introduced in
chapter 2, when the solution advances in time, the mesh will no longer provide an error
control at time tn+1. The time adaptive algorithm devised in chapter 4 tends to limit
the induced error by generating small time-step sizes. In other words, as the solution
at time tn+1 is computed on the new mesh which is optimal based on the solution at
time tn, this mesh will not necessarily be the optimal one at time tn+1. This is the case
when propagating a discontinuity, or moving a geometry with time.

Dynamic body movement inside a computational domain can be investigated using
the body fitted or the immersed/embedded techniques. The authors in [Hassan 07]
provided a summary on the different techniques developed in the literature to enable
the simulation of flows involving moving boundaries. In the body-fitted framework,
we can distinguish several approaches to handle simulations with moving structures
[Farhat 98, Johnson 99, Saksono 07, Hassan 07, Compère 10, Alauzet 13]. The general
idea proposed in [Farhat 98] is to follow the boundary by moving the nodes surround-
ing the objects in the mesh while maintaining their connectivity. We omit the details
of these methods for brevity and refer the reader to [Hassan 07] for more details. In
this work, to handle geometry displacement, we are interested in adopting the im-
mersed volume method (IVM), discussed in chapter 5, for its flexibility, ease of use and
monolithic formulation. In order to account for the moving objects, it suffices to let the
corresponding levelset function vary in time. We couple the IVM technique with the
developed dynamic anisotropic mesh adaptation and time adaptive algorithm. We re-
call that during the error analysis performed prior to remeshing, a uniform error ε(N)

is computed and intends to equi-distribute the error over the edges in the mesh under
the constraint of a fixed number of nodes N. This error is then used to control the
temporal error. The latter is limited by ε(N)

f , where f is the frequency of mesh adapta-
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tion. Hence, the error will also be equi-distributed over the temporal edges. However,
in the case of simulations involving discontinuity propagation or moving geometries,
as shown in example 5.4.4, the generated time-steps are very small thus blocking the
advancement of the solution over time.

One possible remedy to this problematic involves adapting more frequently the
mesh so that the solution’s gradient remains in the refined zones. Nevertheless, another
problematic needs to be addressed in this case. It is related to the interpolation error
induced at each remeshing as the solution should be transferred from the old mesh
to the new optimal one. Consequently, the frequency of mesh adaptation affects the
global accuracy of the numerical solution. In order to avoid the excessive interpolation
error due to frequent remeshing, it was suggested in [Löhner 92, Rausch 92] to adapt
the mesh based only on refinement/coarsening without vertex displacement. A safety
region around critical zones are introduced to maintain the solution’s gradient in the
refined locations between two adaptations. However, as a result of creating safety
regions, the generated meshes are no longer optimal in the anisotropic sense. Moreover,
these methods provide no control on the temporal error induced over the computations.

Another approach for dealing with the mesh/solution compatibility would be
to employ a dynamic frequency of adaptation [Zienkiewicz 87, Zienkiewicz 92,
de Sampaio 93, Micheletti 08a, Picasso 09]. That is, one defines a certain threshold
value on the global interpolation error and when the latter exceeds the specified value,
the mesh adaptation algorithm is applied. These methods are derived from on strong
mathematical analysis of the equations at hand and provide space-time error estimates
for unsteady problems. In practice, the mesh is adapted only when a threshold value
is exceeded, i.e. a degradation of mesh/solution compatibility is permitted up to a
certain value. However the result of this degradation is not tracked and can affect
the global accuracy of the simulation. An extension of these methods consists in con-
serving the same mesh connectivity while moving the nodes using an R-adaptation
technique. The equations are then solved in a fully Arbitrary Lagrangian Eulerian
(ALE) way. The process is repeated until the mesh elements’ quality deteriorates. At
that level, an H-adaptation is performed creating a new mesh topology on which the
ALE resolution is applied. Although this approach reduces the interpolation error as a
result of the ALE computations, in practice when simulating real physical applications,
the number of remeshing can drastically increase affecting negatively the CPU time.
For instance, the authors in [Saksono 07] adopted this approach to a turbo-machinery
problem whereby in order to preserve a good precision, the mesh was adapted at ev-
ery solver iteration. This is in addition to the generation of badly shaped elements as
a result of the R-adaptation, thus affecting the convergence of the solvers and the qual-
ity of the solution. In the immersed volume framework, the mesh adaptation is more
straightforward, as the geometry’s interface is defined as the zero-isovalue of a levelset
function. As the geometry advances in time, the levelset will be recomputed and the
mesh will be re-generated accordingly.

Using the time-adaptive technique proposed in chapter 4, the error is bounded
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all over the simulation thus bypassing the need to move the mesh nodes during the
no-adaptation interval. However, the time-step sizes are considerably reduced thus
increasing the total CPU time of the simulation.

In this chapter, we are interested in developing a new approach, called the ‘para-
doxical meshing’, that guarantees the compatibility of the mesh/solution couple without
accumulating excessive interpolation errors due to the transfer of the solution from an
old mesh to a new one. The objective is to build up a mesh that controls the space and
time interpolation error over a time interval [tn, tn+ f ]. For this purpose, we revisit the
theory of classical adaptation developed in chapters 2 and 4 on anisotropic meshing
and extend it to contain an analysis for several solver iterations. The method will be
based on a predictive-corrective formulation. It is referred to as paradoxical as it per-
mits to overcome the paradox of predicting a mesh, based on a posteriori error analysis,
that will contain the upcoming unknown solution. The developed space-time adaptive
algorithm is independent from the properties of the problem at hand and significantly
reduces the computational cost and improves the global accuracy of the calculations.
In the context of the immersed volume method, with applications involving moving
geometries, it should be capable of following the time-evolving interfaces.

This chapter is divided into 6 sections. We start in section 1 by defining the general
structure of the new space-time adaptive algorithm. Then we move on in section 2 to
extend the edge-based error estimator to account for intervals of time. The optimal
metric controlling the global Lp norm of the interpolation error under the constraint
of a fixed number of nodes over the interval of time will then be presented in section
3. Section 4 discusses the temporal error control in accordance with the new spatial
equidistributed error. A 1D time mesher will be developed in section 5 allowing the
redistribution of the temporal nodes according to the predicted optimal time-slab sizes.
Finally, section 6 provides some numerical examples validating the performance and
the potential of the new method.

6.2 Single time-step space-time adaptive remeshing

When dealing with steady state problems, the single time-step mesh adaptation tech-
nique, also called the ‘classical adaptation’ technique presented in chapter 2, performs
very well for converging the mesh-solution couple. Nevertheless, this method is no
longer optimal, from an accuracy/efficiency standpoint, when applied with a certain
frequency to unsteady problems as the physical solution evolves in time. The validity
of a mesh cannot be determined a priori. So if the mesh is not adapted at every solver
iteration, the time-step size might be greater than the length of the mesh’s validity in-
terval; hence the solution may propagate into a non pre-adapted region of the domain
resulting in a mesh/solution lag and an increase in the numerical error.

Together with the time-adaptive method introduced in chapter 4, the single time-
step mesh adaptation can be efficiently and accurately adapted to time dependent prob-
lems. The general structure of the simulation flow using a single time-step space-time
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adaptive method is summarized in algorithm 4. In this algorithm, two parameters are
to be supplied by the user: the number of nodes desired in the mesh, which is usu-
ally set in accordance with the available computational resources, and the frequency
of adaptation, that can be regarded as a calibration between efficiency and accuracy.
For more details on the anisotropic mesh adaptation and time-adaptive procedure, the
reader can consult algorithm 3. We note that this algorithm can also be applied in the
case of moving geometries where the solution is considered as a levelset function that
is advancing in time.

Algorithm 4: Single time-step space-time adaptive algorithm based on a frequency
of adaptation for unsteady problems.

Input: An initial mesh-solution couple (H0,S0
0 ).

An initial time-step size ∆t0
0.

A user-prescribed mesh complexity N.
A user-prescribed frequency of adaptation f .

Output: At each time t, the mesh-solution couple (Hk,S j
k) and the time-step size

∆tj
k for the following time increment.

begin
Set the mesh counter k and the time t to 0.
while t < T i.e. the final time of the simulation is not reached, do

Construct the metric tensorMk.
Generate the optimal mesh H̃k.
Interpolate the solution S j

k from the mesh Hk onto the mesh H̃k.
for j : 1→ f do

Compute the solution S j
k on the mesh H̃k.

Determine the time-step size ∆tj
k for the following time-increment.

Advance in time: t→ t + ∆tj
k.

Update the counter k: k→ k + 1.

6.3 Paradoxical meshing: Full adaptivity algorithm

In this chapter, we develop a new method for full adaptation in the case of unsteady
problems or applications involving moving geometries. As a first step, the computation
time interval is divided into several subintervals [tn, tn+nfreq ]. The technique relies on a
predictor corrector approach whereby a first run on an interval [tn, tn+nfreq ] is conducted
with relatively large time step sizes on the same initial mesh. Inhere, the time interval
[tn, tn+nfreq ] is constituted of nfreq + 1 temporal nodes with nfreq being the frequency of
adaptation. On each of the spatial edges of the initial mesh, the maximum estimated
error of interpolation over the time interval is stored. Based on these estimations, an
equi-distributed error is then determined for the whole interval of time. Stretching
factors are also defined in the same way as in the single time-step formulation. Then
a metric construction follows yielding an optimal mesh adapted, for a specific number
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of nodes, to the solution’s evolution over a certain time interval. On the other hand,
as in the single time-step approach, temporal errors are determined along the tempo-
ral edges. Afterwards, using the computed equi-distributed error, and the estimated
temporal errors, stretching factors are evaluated on the temporal edges. The process
is repeated for the different subintervals [tn, tn+nfreq ] constituting the simulation time
interval. Once all the estimations have been gathered, spatial mesh adaptation based
on the estimated metrics are generated using the MTC mesher and a time-adaptation
is performed based on a newly developed 1D temporal mesher. All the details of this
approach will be provided in the following. In this chapter, we develop a new method
for full adaptation in the case of unsteady problems or applications involving moving
geometries. As a first step, the computation time interval is divided into several subin-
tervals [tn, tn+nfreq ]. The technique relies on a predictor corrector approach whereby a
first run on an interval [tn, tn+nfreq ] is conducted with relatively large time step sizes on
the same initial mesh. Inhere, the time interval [tn, tn+nfreq ] is constituted of nfreq + 1
temporal nodes with nfreq being the frequency of adaptation. On each of the spatial
edges of the initial mesh, the maximum estimated error of interpolation over the time
interval is stored. Based on these estimations, an equi-distributed error is then deter-
mined for the whole interval on time. Stretching factors are also defined in the same
way as in the single time-step formulation. Then a metric construction follows yielding
an optimal mesh adapted for a specific number of nodes to the solution’s evolution
over a certain interval of time. On the other hand, as in the single time-step adaptation
approach, temporal errors are determined along the temporal edges. Afterwards, us-
ing the computed equi-distributed error, and the estimated temporal errors, stretching
factors are computed on the temporal edges. The process is repeated for the different
subintervals [tn, tn+nfreq ] constituting the simulation time interval. Once all estimations
have been gathered, spatial mesh adaptation based on the estimated metrics are gener-
ated using the MTC mesher and a temporal time-adaptation is performed based on a
newly developed 1D temporal mesher. All the details of this approach will be provided
in the following.

Before proceeding into the details of the newly developed paradoxical meshing
method, we illustrate on the validity interval of the meshes generated using the single
time-step adaptation technique.

6.3.1 Validity of the generated mesh and frequency of remeshing

The validity of a mesh is defined as the size of the largest time interval during which the
error remains bounded and the solution is accurately captured. It is worth mentioning
that the frequency of remeshing is in direct correlation with the duration of applicabil-
ity of the mesh. Note that this parameter depends on the desired error, the time-step
sizes, the speed of propagation and the evolution of the desired solution/geometry. As
the time-dependent problems exhibit arbitrary progression with time, the duration of
applicability of a mesh cannot be known apriori. When the time-step size is greater



272 Chapter 6. Space-Time slab adaptive meshing

than the length of the mesh’s time interval, the solution may propagate into a non
pre-adapted region of the domain resulting in a mesh/solution lag. Hence, a remark-
able increase in the numerical error is induced. A possible solution to this problem is
to adapt the mesh at each solver iteration guaranteeing that the spatial error remains
bounded. However this approach increases drastically the computational cost and thus
induces an important CPU time. On the other hand, when adapting the mesh at every
time-step a transfer of the variables through interpolation is required, and this causes
the accumulation of interpolation errors that affects the solution’s accuracy on the long
run.

The above described bottlenecks of the single time-step mesh adaptation method
when applied to time-dependent problems raise the need for an extension of the de-
veloped tools to anticipate the solution’s evolution over a period of time and generate
the corresponding mesh.

6.3.2 A predictor-corrector approach

A predictor corrector principle, called the fixed point method, was investigated in the
literature for developing space and time adaptive algorithms [Zohdi 07, Alauzet 07].
The approach proposed in [Zohdi 07] focuses on the prediction of the solution’s behav-
ior over a time interval and based on the induced error, an optimal time-step size is
deduce. Another variant of this method for the resolution of unsteady problems was
proposed in [Alauzet 07]. The main idea consists in dividing the simulation time [0, T]
into subintervals on each of which a single adapted mesh is used and intends to mini-
mize the global space-time error. The generation of the adapted meshes is preceded by
a prediction phase whereby the solution’s evolution over the time interval is predicted.
However in this work, the time-step sizes are either user specified, or controlled by the
CFL condition. In the former case, when the problem’s characteristics are not known a
priori, the time-step size is maintained at a small value to guarantee the convergence of
the computations. In the latter case, the size is proportional to the smallest altitude in
the mesh. Consequently, a single small-altitude element, which is very likely in the case
of anisotropic meshing, can considerably reduce the time-step size and thus drastically
increase the simulation’s CPU time. Therefore, the fixed point algorithm, provides a
good level of accuracy by constructing meshes well adapted to the displacements of
the solutions over time. It reduces the computational cost when compared to methods
involving frequent remeshing. However, the time-step size is limited either by a CFL
condition or a user-prescribed value which in turn may increase the CPU time of the
simulation. Moreover, a control only on the L∞ norm of the space-time interpolation er-
ror is provided. A metric is constructed at every time-increment in the time-subinterval.
The set of constructed metrics are then intersected yielding a single metric and thus a
mesh controlling the maximum space and time errors. The process is repeated un-
til the convergence of the mesh/solution couple. In addition to the above mentioned
bottlenecks of the algorithm, the convergence criterion is defined in terms of a fixed
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number of iterations nnptfx. Nevertheless, the choice of this number is pre-defined and
independent of the problem’s features which is not optimal as a convergence indicator.
Furthermore, the fixed point algorithm, by controlling the space-time error in a single
metric that will be used to generate the anisotropic mesh for the intended interval of
time, might not capture a sharp spatial discontinuity that does not evolve in time. This
is the case of a stationary shock or a non-moving object’s interface.

In this work, we are interested in developing a space and time fully adaptive
algorithm. The latter aims at anticipating the solution’s progress over a period of time
and generating the optimal mesh that is adequately adapted, for a fixed number of
nodes, to the evolving solution along that time interval. The analysis is carried out on
a (3D+1D) mesh, in other words the computations are performed synchronously on a
three dimensional spatial mesh and a one dimensional temporal mesh. So the time is
considered as an additional dimension taken to be orthogonal to the spatial one. We
aim at generating a mesh that remains valid for several time-increments together with
the corresponding optimal set of time-step sizes. Note that, in this case, the user can
assign a frequency of adaptation and the algorithm will accordingly adapt the meshes.
The scheme predicts the transient behavior and the displacement of the solution over
an interval of time and produces the optimal mesh and set of time-step sizes that give
the most accurate capture of the physical phenomena.

The method combines the advantages of the fixed point algorithm, with the anisotropic
mesh adaptation and time-adaptive techniques developed in chapters 2 and 4. The
objective is to address and answer several problematics including: the control of the
space and time interpolation errors, the generation of anisotropic meshes that are
optimal for slabs of time, and the optimal definition of time-step sizes. Unlike the
fixed point algorithm that employs a metric intersection to generate a single metric
for the time-slab, we intend to use the developed multi-components construction that
accounts for several fields in a single metric. Moreover, in our approach, the space and
time dimensions are decoupled in the sense that the control provided by the generated
anisotropic mesh depends entirely on the spatial error estimates whereas the stretching
of the time-step sizes will be generated in such a way to bound the temporal error by
the computed equi-distributed error. In that sense, a discontinuity that is not evolving
in time will be compared to other spatial discontinuities/locations of solution’s high
gradient and accordingly the mesh will be anisotropically adapted to the regions of
sharpest evolutions.

6.3.3 Generating time-slabs for adaptation

The first step in the paradoxical meshing algorithm, as in the fixed point algorithm,
consists in dividing the simulation time interval [0, T] into nSI subintervals, time-slabs,
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such that:

[0, T] = [0, T1]∪ [T1, T2]∪ · · · [Tk−1, Tk]∪ [Tk, Tk+1]∪ · · · ∪ [TnSI−2, TnSI−1]∪ [TnSI−1, TnSI ]

each will in turn be divided into nfreq subintervals where nfreq is the frequency of
adaptation assigned by the user. A single adapted mesh will be generated in the sequel
for each of these subintervals. We call the adaptation method a paradoxical meshing as
the resulting mesh is being adapted to nfreq time-steps while adapting every nfreq steps.
It is important to mention that, unlike the fixed point algorithm, neither the length of
the time-slabs nor their number is fixed over the computations. On the contrary, these
two parameters will be dynamically updated based on the induced temporal error.

The mesh and the set of time-step sizes are computed through an iterative process
along which we try to converge both meshes (the spatial and the temporal one) to
the optimal configurations that give the most accurate solution for the corresponding
interval of time. At every iteration, we consider each of the nSI intervals at a time and
divide it into nfreq subintervals as shown in figure 6.1:

[Tk, Tk+1] = [Tk = tk
0, tk

1] ∪ [tk
1, tk

2] ∪ · · · ∪ [tk
l , tk

l+1] ∪ · · · ∪ [tk
nfreq−1, tk

nfreq
= Tk+1]

such that the temporal node tk
l+1 is defined by:

tk
l+1 = tk

l + ∆tk,l = Tk + l × ∆tk,l , (6.1)

with
∆tk,l =

δtk

nfreq
, (6.2)

being the time-step size at the temporal node tk,l and δk is the time-slab size.

Figure 6.1 – Time slabs [Tk−1, Tk] and their corresponding initial meshes.

This discretization will result in a 1D temporal mesh of the time interval [0, T]. The
elements in this mesh are the time-slabs [Tk, Tk+1] of length δtk. The latter slabs of time
are in turn split into nfreq sub-intervals of the same length ∆tk,l .

6.3.4 Solution sampling

Without loss of generality, we assume that we are at a certain iteration of the para-
doxical meshing algorithm. Each time slab [Tk, Tk+1] is considered at a time. The
physical problem’s solution Sk,l is predicted at each of the {tk

l } temporal nodes in this
sub-interval using the numerical scheme. We note that the solution can be a vector
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of several components such as the velocity, pressure, temperature, levelset function,
etc. In practice, the vector will include only the variables of interest for the anisotropic
adaptation. An example of such a multi-components normalized vector can be:

Sk,l =

 vi

||vi|| ,
||vi||

max
j
||vj||

,
α

max(α)
, · · ·

︸ ︷︷ ︸
ncomp components

(6.3)

where vi denotes the velocity field at node Xi, and α stands for any scalar field (tem-
perature, pressure, levelset function, · · · ).

The collected solutions are then gathered in a vector field associated with the time
slab:

Vk =
{
Sk,0, Sk,1, Sk,2, · · · , Sk,l , · · · , Sk,nfreq−1

}
(6.4)

6.3.5 Edge-based error estimation

In the view of controlling the interpolation error for several time-increments consti-
tuting the time slab [Tk, Tk+1], we propose an L∞

(
t; Lp (Ω)

)
approach for defining the

error estimates on the edges of the mesh. In other words, we define the spatial error
estimate at every temporal node {tk

l } in an Lp interpolation sense using the constructed
field of gathered data:

es
ij

(
tl
k

)
=
∥∥∥ek,l

ij

∥∥∥
p
=
∥∥∥{|Gij

1 · X
ij|, |Gij

2 · X
ij|, · · · , |Gij

m · Xij|, · · · , |Gij
ncomp · Xij|

}∥∥∥
p

(6.5)

with Gi
m being the reconstructed gradient at node Xi of the mth component of the

solution’s vector field Sk,l .
Then for each edge in the mesh, the maximum of the collected error estimates

among the different temporal nodes will be considered during the construction of the
metric tensor, i.e. the error on edge Xij will be set to:

es
ij

([
Tk, Tk+1

])
= max

tl
k∈[Tk ,Tk+1]

es
ij

(
tl
k

)
(6.6)

Therefore, during the remeshing process, the edges, on which the highest magnitude
of the errors over time is spotted, will be given more importance than the ones with
the lower magnitudes. We note the use of the Lp norm in the computation of the
interpolation errors along the edges at every temporal node, which is calibrated to
capture the multi-scale aspects of physical problems.

6.3.6 Metric construction for a slab of time

Now that we have estimated the errors on the edges of the mesh over the slab of time,
we move on to construct the appropriate metric tensor for a fixed number of nodes N.
To do so, we follow the lines in section 2.4 and determine the modified equidistributed
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error as follows:

ε[Tk ,Tk+1](N) =

 N
∑
i

ni
[Tk ,Tk+1]

(1)


− 4

d

, (6.7)

where,

ni
[Tk ,Tk+1]

(1) =

√√√√√det

1
d
(Xi)−1

 ∑
j∈Γ(i)

(
1

es
ij ([T

k, Tk+1])

− 1
2

Xij ⊗ Xij

) (6.8)

denotes the number of created nodes along the different directions of the edges con-
nected to Xi, and

Xi =
1
|Γ(i)| ∑

j∈Γ(i)
Xij ⊗ Xij (6.9)

is the length distribution tensor at a node Xi. We note that it is also possible to employ
the privileged length distribution tensor at that level.

Consequently, the metric tensorMi
[Tk ,Tk+1]

controlling the L∞
(
t; Lp (Ω)

)
spatial in-

terpolation error along the edges connected to node Xi is determined by:

Mi
[Tk ,Tk+1]

=
1
d

 1
|Γ(i)| ∑

j∈Γ(i)
s2

ijX
ij ⊗ Xij

−1

(6.10)

with,

sij =

(
ε[Tk ,Tk+1](N)

es
ij ([T

k, Tk+1])

) 1
2

(6.11)

being the scaling factors associated with stretching, or shrinking, the edges Xij in their
own direction. The resulting metric will then be used to generate an anisotropic mesh
well adapted at the locations of sharp solutions’ gradients over the time slab

[
Tk, Tk+1].

6.3.7 Temporal stretching factors

The second goal of the spatio-temporal algorithm that we are developing is to pro-
vide a control on the temporal error. As discussed in chapter 4, this is achieved by
equidistributing the error in space and time. In other words, the time-step sizes will be
stretched/coarsened in a way not to allow the temporal error along a temporal edge to
exceed the global spatial equidistributed error. Therefore, the stretching factors to be
imposed on a temporal edge [tk

l , tk
l+1] will be defined by:

τk
l =

 ε[Tk ,Tk+1](N)

max
Xi

(
ek

l,l+1

)i


1
2

(6.12)
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where the temporal errors
(

ek
l,l+1

)i
are evaluated in exactly the same way as in chapter

4, i.e. (
ek

l,l+1

)i
=

˙
(Sk,ll+1)

i∆tk,l (6.13)

with
˙

(Sk,ll+1)
i =

˙
(Sk,l+1)

i − ˙
(Sk,l)

i , (6.14)

being the change in the solution’s temporal gradient along the temporal edge [tk
l , tk

l+1]

at a spatial node Xi and

˙
(Sk,l)

i =
(Sk,ll+1)

i ∆tk,l − (Sk,ll−1)
i ∆tk,l−1

∆t2
k,l + ∆t2

k,l−1
(6.15)

being the reconstructed temporal gradient at a spatial node Xi and temporal node tk
l .

As a result, one obtains a set of stretching factors for the temporal edges [tk
l , tk

l+1]

and consequently a stretching factor for the slab of time can be deduced:

τk = ∑
l=0,··· ,nfreq−1

τk
l , (6.16)

implying an optimal size of the time interval
[
Tk, Tk+1]:

δ̃tk = τkδtk . (6.17)

6.3.8 Space and time remeshing

We have discussed in the previous section the main steps constituting the prediction
phase of the paradoxical meshing algorithm. Metric tensorsMi

[Tk ,Tk+1]
have been gener-

ated prescribing at each spatial node Xi stretching factors along the different orientation
(edges’ directions) issued from that node for the time interval

[
Tk, Tk+1]. Moreover, a

temporal error analysis accounting for the equi-distribution of the errors in space and
time permitted the derivation of the optimal time-slab’s stretching. The process of met-
ric construction and computation of the temporal edges’ stretching factors is carried

out on the different time-slabs yielding a set of metric tensors
{
Mi

[Tk ,Tk+1]

}
k

together

with the corresponding stretching factors of the time slabs.
Based on the constructed metric tensors, a 2D/3D remeshing using the MTC mesher

is performed for each slab of time resulting in a new mesh anisotropically adapted to
control the L∞

(
t; Lp (Ω)

)
spatial error. In turn, the optimal lengths of the time-slabs

δ̃tk, which are in accordance with the optimal anisotropic spatial mesh, will be given
to a 1D time mesher yielding a new discretization of the interval [0, T]. It is important
to mention that the number of subintervals nSI is automatically changed due to the 1D
remeshing. The data structure of the temporal mesh will also be updated where the
temporal nodes Tk will be redistributed and their number can be increased or reduced
depending on the features of the problem. More details on the 1D time mesher will be
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provided in the following section. Figure 6.2 portrays a possible optimal distribution
of the temporal nodes.

Figure 6.2 – Updated time slabs [Tk−1, Tk] and their corresponding optimal meshes.

6.3.9 Convergence of the space-time adaptive algorithm

To sum up, in this section, we have described the skeleton of the paradoxical meshing
technique. We recall that the objective of this algorithm is to build up meshes that
would hold for slabs of time. Each of these slabs will be constituted of nfreq + 1 temporal
nodes. Starting with an initial mesh Hinit, an initial time-slab size δinit and a prescribed
frequency of adaptation, the method will generate, for a fixed number of nodes N, a
set of optimal meshes {H}k and time-slab sizes {δk}k. We note that since an implicit
time discretization is being used, the choice of the initial time-slab size will not affect
the global stability of the simulation.

Given the initial mesh, time-slab size, and frequency of remeshing, the starting
point consists in considering the whole simulation time, splitting it into nSI subinter-
vals using the prescribed initial time-slab size. These intervals will in turn be divided
into nfreq subintervals delimited by temporal nodes tl

k. The physical unsteady problem
is solved on Hinit at the different temporal nodes tl

k. Variables of interest for adaptation
are collected over the computations. Afterward, each time-slab

[
Tk, Tk+1] is considered

at a time, and edge-based error estimation is performed associating to each edge in
the mesh Hinit a spatial error es

ij
(
tl
k

)
. These errors will then be used to determine a

global equi-distributed error ε[Tk ,Tk+1](N) for a fixed number of nodes N and a set of
stretching factors. Metric tensors will subsequently be constructed reflecting at each
node Xi in Hinit the optimal stretching of the edges connected to it in their own direc-

tion. Moreover the sampled data will also be used to evaluate temporal errors
(

ek
l,l+1

)i
.

The latter together with the estimated equi-distributed error yield stretching factors on
the temporal edges and thus stretching factors on the time-slab

[
Tk, Tk+1]. The same

computations of data sampling, metric construction and temporal stretching estimation
are carried on the different time-slabs. Given the collected metrics, a new mesh will
then be generated on each time-slab

[
Tk, Tk+1] controlling the L∞

(
t; Lp (Ω)

)
spatial in-

terpolation error. We recall that the adaptation on the Lp (Ω) norm of the interpolation
errors raises the possibility to control the multiscales of the problem’s characteristics.
Furthermore, the set of generated optimal time-slab sizes will be provided to the time
mesher yielding a 1D remeshing of the time-slabs.

Consequently, a first prediction of meshes and time-slabs has been conducted. Start-
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ing now from the set of generated meshes and time-slabs a solution sampling is pre-
dicted followed by an error estimation, a metric construction, and an estimation of
optimal time-slab sizes. Finally, a new set of meshes and time-slab sizes is regenerated.
The whole process of prediction/remeshing/correction is iteratively repeated until the
space and time meshes provide an optimal representation of the variables of interest.

Therefore, we have defined all the blocks that constitute the new adaptation al-
gorithm. The only missing piece on the derivation checkerboard is the definition of
a convergence criterion for the mesh/solution couple. Several possible convergence
detectors can be adopted. The first one is based on a fixed number of iterations of
the algorithm which is the choice made in the fixed point algorithm. Another possi-
bility, which is adopted in this work, would be to consider a fixed tolerance on the
equidistributed error. More precisely, convergence is reached when the relative change
in the equidistributed error is less than a certain prescribed tolerance. Therefore, the
convergence criterion reads as:

ε[Tk ,Tk+1](N)ζ − ε[Tk ,Tk+1](N)ζ−1

ε[Tk ,Tk+1](N)ζ
≤ εTOL ∀k = 1, · · · , nSI − 1 (6.18)

where ζ is the algorithm’s iteration number. Indeed, the convergence of the global
equidistributed error means that the mesh has converged to the optimum for a given
fixed number of nodes. Furthermore, since this error controls as well the time-step
sizes, this means that the time-adaptive algorithm converged as well. At convergence,

computations are resumed on the predicted optimal set of meshes → H̃k
ζ

with the
corresponding set of time-step sizes T̃ ζ−1. In the following numerical computations,
we set the convergence parameter to 0.01. In other words, we assume the the couple
mesh/solution has converged when the change in the mesh is less than 1%.

6.4 Paradoxical meshing algorithm

Algorithm 5 retraces the steps of anisotropic mesh and time-step generation. The
method can be easily implemented and parallelized. This technique ensures a good
level of accuracy in particular for problems involving steep variations and sharp evo-
lution in time.

Remark 40. We note that the proposed approach can also be applied in the context of physical
problems involving moving geometry using the immersed volume formulation. The solid’s in-
terface is rendered by the zero-isovalue of the levelset function that is moved over time. Using
the paradoxical meshing, the object’s interface will emerge into a pre-adapted zone and therefore
will be well represented all over the simulation.

Using the single time-step adaptation, the mesh is dynamically adapted at a specific
frequency. Nevertheless, it will not be predicted for an interval of time, thus yielding
small time-step sizes in order to maintain the evolving interface in a well adapted
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region. This will imply a considerable computational cost, as it will be shown in the
numerical results. The paradoxical meshing, on the other hand, permits a smoother
movement of the geometry as the well refined zones of the mesh form a wide layer in
the movement direction.

We have therefore established all the steps for the development and implementation
of the paradoxical meshing algorithm. We note that the algorithm does not require to
work on the whole interval of time. It can be applied on subintervals of the simulation
time. That way, there is no need to wait for the end of the iterative process on the
different slabs of time in order to perform the computations on the generated optimal
meshes and evolve the solution with the optimal time-step sizes. On the other hand, the
method can also be applied in parallel with the single time-step adaptation approach.
When the computed global error is relatively large, reflecting large estimated errors
along the edges of the spatial mesh which in turn highlight important variations in
the solution between two successive spatial remeshing. At that stage, the paradoxical
technique can be activated to construct the appropriate optimal mesh and time-step
sizes over the time interval.

As it was already mentioned a keystone step in the paradoxical meshing algorithm
is the time remeshing. We point out that it is possible to use any mesher in order
to remesh the time-interval of simulation. However, the algorithm for time-remeshing
that we develop in the following section is well devised for time-advancing, simple and
easy to implement.

6.5 1D Temporal mesher

In this chapter, we have developed a new algorithm for anisotropic space and time
adaptation. The method relies on a predictor-corrector formulation whereby a set of
meshes H̃k and their corresponding optimal time-step sizes δ̃tk are generated. These
predicted meshes are designed to contain the evolving solution over slabs of time. The
most trivial approach for running the computations is to consider the meshes H̃k one
after the other and to advance the solution over the predicted slab δ̃tk at the predefined
frequency. However, as illustrated in figure 6.3, this approach is inadequate. Indeed,
a mesh that is optimally generated to contain the solution emerging from time Tk and
can optimally hold for a time-slab of size δ̃tk, may not be optimal at time Tp for an
interval of size δ̃tk. For instance, we can clearly see in the example presented in figure
6.3 that letting the mesh H̃k−1 valid on an interval of length δ̃tk would make the mesh
H̃k be used as of time Tp whereas this mesh was designed to contain the solution’s
evolution starting from time Tk and ending at Tk + δ̃tk. Therefore careful generation
shall be developed yielding appropriate temporal nodes’ distribution.

We aim in this section at developing a new 1D mesher that is well-suited for time
adaptation. Given the initial temporal mesh configuration, the algorithm shall be able
to redistribute the nodes, insert new ones and remove other ones based on the esti-
mated optimal time-step sizes.
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Algorithm 5: Paradoxical space-time adaptive algorithm based on a frequency of
adaptation for unsteady problems.

Input: An initial mesh Hinit.
An initial time-slab size δtinit.
A user-prescribed mesh complexity N.
A user-prescribed frequency of adaptation nfreq.

Output: A set of meshes lasting nfreq time-steps with their corresponding
time-slap sizes.

begin
Initialization: temporal mesh T , time slabs, spatial meshes on these slabs.
while not converged do

for k : 0→ nSI − 1 : loop over the slabs of time do
for l : 0→ nfreq − 1 : loop over the temporal nodes do

Consider the mesh Hk.
Advance in time with ∆tk,l =

δtk
nfreq

.
Solve the physical problem and collect the variables of interest Sk,l .
if (k > 0 & l == 0) then

Determine the temporal error at the previous temporal node:

max
Xi

(
ek−1

nfreq−1,nfreq

)i
.

Deduce the temporal stretching factor τk−1
nfreq−1.

Update δ̃tk−1.

Compute the edge-based errors es
ij
(
tl
k

)
and track the L∞

(
t; Lp (Ω)

)
interpolation error’s estimates.
if ((k, l) > (0, 1)) then

Compute the temporal error max
Xi

(
ek

l,l−1

)i
.

Compute the equidistributed error ε[Tk ,Tk+1](N).
Determine the corresponding stretching factors for the mesh
edges.
Construct the metric tensorsMi

[Tk ,Tk+1]
on the nodes of the mesh.

Determine the stretching of the temporal edges τk
l=1,··· ,nfreq−1.

Update δ̃tk.

Spatial remeshing→ H̃k
ζ
.

Check for convergence.
if not converged then

Temporal remeshing→ T̃ ζ .
Update the set of optimal meshes.
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Figure 6.3 – Example on the failure of the trivial time advancing.

The algorithm will iterate over the time-slabs in the initial temporal mesh and de-
cide for each one of them whether to shrink it, stretch it or keep it the same.

For illustration purposes, we consider two successive time-slabs [Tk−1, Tk] and
[Tk, Tk+1] with their optimal meshes and time-slab sizes (H̃k−1, δ̃tk−1) and (H̃k, δ̃tk).
We assume that the algorithm is considering the slab [Tk−1, Tk] in the initial temporal
mesh. Without loss of generality, we assume also that the node Tk−1 will be maintained
in the new mesh and corresponds to node Tp−1. Several possible scenarios can be iden-
tified. In what follows, we will detail how to treat each one of them. We denote by
{Tk}k the nodes belonging to the old temporal mesh and {Tp}p the nodes of the new
temporal mesh.

• Scenario 1 In this scenario, we consider that the temporal error is larger than the
equi-distributed error over the time-slab [Tk−1, Tk]. In that case, the optimal time-
slab size will be smaller than the initial one. To control the temporal error on
the following iteration of the paradoxical meshing algorithm, new nodes will be
inserted in this interval yielding new time-slabs as shown in figure 6.4.

The principle of temporal mesh slab insertion follows the sub-routine defined in
algorithm 6. According to this algorithm, new time-slabs of size δ̃tk will be added

Algorithm 6: Mesh slab insertion subroutine.

Data: The interval [Tk−1, Tk] and the generated optimal time-slab size δ̃tk−1
begin

Set Tp−1 = Tk−1

while (Tp−1 + δ̃tk) ≤ Tk do
Tp ← Tp−1 + δ̃tk .
Update p: p← p + 1 .

if (Tp−1 < Tk) then
Tp ← Tk .
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Figure 6.4 – Scenario 1: the optimal time-slab size is smaller than the initial one. Consequently, new
slabs will be generated in the mesh.

to the temporal mesh and it is also possible to have an additional subinterval of
size Tk − Tp where Tp is the last inserted node before Tk. Depending on the size
of this interval, it is either kept the same or modified. The modification can be
done through merging it with the previous subinterval or summing both intervals
and then splitting the resulting interval into two equal subintervals. The optimal
mesh H̃k−1 will be maintained over each of these slabs in the following iteration
of the paradoxical algorithm.

• Scenario 2 The second scenario, as illustrated in figure 6.5, takes into account the
cases when the initial time-slab size H̃k−1 is optimal, i.e. δ̃tk−1 = δtk−1. Thus, no
change needs to be made on the nodes. Consequently, we set Tp−1 = Tk−1 and
Tp = Tk.

Figure 6.5 – Scenario 2: the optimal time-slab size is equal to the initial one.

• Scenario 3 The predicted validity interval of mesh H̃k−1, starting at node Tp−1 =

Tk−1, contains the node Tk. Two possibilities arise in that case as shown in figure
6.6.

In the first possibility, only Tk is contained inside [Tp−1, Tp−1 + δ̃tk−1]. Then,
we examine the interval [Tk, Tk+1]. Depending on δ̃tk either this interval should
be shrunk, stretched or remain the same. If it should remain the same or be
stretched i.e. δ̃tk ≥ δtk, or even be shrunk with its endpoint remaining outside
[Tp−1, Tp−1 + δ̃tk−1], an additional node is added in the new mesh and corre-
sponds to Tp = Tp−1 + δ̃tk−1, whereas the node Tk will not be introduced into the
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Figure 6.6 – Scenario 3: The time-slab [Tk−1, Tk] will be stretched.

new temporal mesh. The spatial mesh H̃k−1 will be employed to evolve the solu-
tion at the following iteration of the paradoxical meshing algorithm over the time
slab [Tp−1, Tp]. Figure 6.7 sketches this situation and the adequate remeshing.

Figure 6.7 – Scenario 3 (a): The time-slab [Tk−1, Tk] will be stretched with Tk+1 and the new endpoint
of the predicted optimal slab [Tk, Tk + δ̃tk] lying outside [Tp−1, Tp−1 + δ̃tk−1].

On the other hand, as illustrated in figure 6.8, if the time-slab size is to be shrunk
with (Tk + δ̃tk) < (Tp−1 + δ̃tk−1), that means a considerable temporal error is in-
duced over [Tk, Tk+1], the node Tp = Tk will be added to the new temporal mesh.
The spatial mesh H̃k−1 will be considered to evolve the solution over [Tp−1, Tp]

in the following iteration of the paradoxical meshing algorithm. However, if
(Tk + δ̃tk) ≥ (Tp−1 + δ̃tk−1), a new node Tp = (Tp−1 + δ̃tk−1) will be inserted.

In the second case, the mesh H̃k−1 is well prepared to contain the evolving solu-
tion for a δ̃tk−1 time-slab, therefore, there is no need to change the mesh at time
Tk. In this scenario, both Tk and Tk+1 belong to the predicted optimal interval
[Tp−1, Tp−1 + δ̃tk−1]. If additionally, the interval [Tk, Tk+1] is to be stretched with
(Tk + δ̃tk) ≥ (Tp−1 + δ̃tk−1), the nodes Tk and Tk+1 will not be inserted in the
new mesh and the analysis is carried out for the following interval [Tk+1, Tk+2].
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Figure 6.8 – Scenario 3 (b): The time-slab [Tk−1, Tk] will be stretched with Tk and the new endpoint of
the predicted optimal slab [Tk, Tk + δ̃tk] lying inside [Tp−1, Tp−1 + δ̃tk−1].

All the intervals falling inside [Tp−1, Tp−1 + δ̃tk−1] and that are predicted to be
stretched and going beyond Tp−1 + δ̃tk−1 will be omitted from the new tempo-
ral mesh together with their corresponding optimal meshes. The process will
stop at index m for which Tk+m is within [Tp−1, Tp−1 + δ̃tk−1] whereas Tk+m

is beyond this interval. In this case, the same judgment described in the first
possibility applies. That is if the time-slab [Tk+m, Tk+m+1] is to be shrunk with
(Tp−1 + δ̃tk−1) > (Tk+m + ˜δtk+m+1), then the node Tp = Tk+m will be added to
the new temporal mesh and the mesh H̃k−1 will be used to evolve the solution
on the time-slab [Tp−1, Tp] at the following iteration of the paradoxical algorithm.
The time remeshing then resumes at time-slab [Tk+m, Tk+m+1]. On the other hand,
if the time-slab [Tk+m, Tk+m+1] is to remain the same, be stretched or even be
shrunk with (Tp−1 + δ̃tk−1) lying inside the predicted optimal interval, a node
Tp = (Tp−1 + δ̃tk−1) is added to the new temporal mesh and the spatial mesh
H̃k−1 will be used to evolve the solution on the time-slab [Tp−1, Tp] at the fol-
lowing iteration of the paradoxical algorithm. Then the time remeshing resumes
at time-slab [Tk+m, Tk+m+1]. Figure 6.9 shows an example of this scenario with
m = 2.

Another possibility to stop the process is to have a time-slab [Tk+m, Tk+m+1] that
will be contained inside Tp−1 + δ̃tk−1 after adaptation. That is, in the error estima-
tion, the time adaptation algorithm detected a temporal error higher than the es-
timated equi-distributed error. Consequently, all the previous temporal nodes in
the old mesh will not be included in the new one and their corresponding meshes
will be omitted at the next iteration of the paradoxical meshing algorithm. The
node Tp = Tk+m will be added to the new temporal mesh and the mesh H̃k−1 will
be used to evolve the solution on the time-slab [Tp−1, Tp] at the following itera-



286 Chapter 6. Space-Time slab adaptive meshing

Figure 6.9 – Scenario 3 (c): The time-slab [Tk−1, Tk] will be stretched with Tk, Tk+1, Tk+2 lying inside
[Tp−1, Tp−1 + δ̃tk−1].

tion of the paradoxical algorithm. The time remeshing then resumes at time-slab
[Tk+m, Tk+m+1].

Figure 6.10 – Scenario 3 (d): The time-slab [Tk−1, Tk] will be stretched with Tk, Tk+1, Tk+2 and
Tk+2 + δ̃tk+2 lying inside [Tp−1, Tp−1 + δ̃tk−1].

• Scenario 4 This scenario, sketched in figure 6.11, examines the case when the
generated optimal mesh is valid from Tp−1 = Tk−1 to the end of the simulation
time. This occurs when the solution of the problem has converged to a steady
state. In that case, all the following nodes in the temporal mesh will be removed
and Tp is set to the final simulation time T. Furthermore, the remaining meshes
will also be removed and will not be used in the second run of the paradoxical
algorithm. We note that this scenario is a particular case of scenario 3.
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Figure 6.11 – Scenario 4: the generated optimal mesh H̃k−1 up to the end of the simulation.

Remark 41. For simplicity of elucidation, we have considered that Tk−1 is inserted in the
new mesh nevertheless in practice Tp−1 need not coincide with Tk−1. For this case, instead
of considering an optimal time-slab size δ̃tk−1, we use a slab size (δ̃tk−1 − (Tp−1 − Tk))

and apply the same analysis suggested previously.

Finally, in this section we have evoked the different possibilities addressed in the
temporal mesher developed in this work. We recall that this algorithm permits the
redistribution, the insertion and the removal of nodes in the 1D time mesh. We sum-
marize in algorithm 7 the general structure of the temporal mesher.

Algorithm 7: Time meshing of the interval [0, T] in accordance with the estimated
optimal slab sizes.

Input: The vector of initial time slab sizes Tinitial = {δtk}k.

The vector of optimal time slab sizes Toptimal =
{

δ̃tk

}
k
.

The vector of previous temporal mesh nodes Tinitial =
{

Tk}
k.

The set of corresponding optimal meshes Hoptimal

Output: The vector of new temporal mesh nodes Tnew =
{

Tk}
k.

The vector of new time slab sizes Tnew = {δtk}k.
The set of corresponding meshes Hnew

begin
Initialization:
Define the first temporal node: Tnew[0] = Tinitial[0].
Define a counter, count, that stands for the position in the vector of temporal
nodes.
Initialize the counter: count = 1.

for k : 0← nSI − 1 : loop over the slabs of time, do
• Check for Scenario 1 using algorithm 8,

• Check for Scenario 2 using algorithm 9,

• Check for Scenario 3 and 4 using algorithm 10.

• Adapt the temporal mesh accordingly.
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Algorithm 8: Subroutine representing scenario 1 in the main time meshing algo-
rithm 7.

Scenario 1: treats the case where the optimal time slab size is smaller than the
old one.
if (Toptimal[k] < Tinitial[k]) then

for i : 1←
⌊

Tinitial[k]
Toptimal[k]

⌋
do

Fill in the large non-optimal slab of initial size Tinitial[k] time with smaller
slabs Toptimal[k].
Tnew[count] = Tnew[count− 1] +Toptimal[k].
Tnew[count− 1] = Toptimal[k].
Associate the corresponding mesh Hnew[count− 1] = Hoptimal[k].
Increment the counter: count = count + 1.

// If it cannot be evenly filled with slabs of size Toptimal[k]: define the last one of size
Tinitial [k + 1]− Tnew[count− 1]
if (Tnew[count− 1] < Tinitial [k + 1]) then
Tnew[count] = Tinitial[k + 1].
Tnew[count− 1] = Tnew[count]− Tnew[count− 1].
Optimize the last interval if needed by merging with the previous one or
by summing them and then dividing by two.
Associate the corresponding mesh Hnew[count− 1] = Hoptimal[k].
Increment the counter: count = count + 1.

Algorithm 9: Subroutine representing scenario 2 in the main time meshing algo-
rithm 7.

Scenario 2: treats the case where the optimal time slab size is equal to the old
one.
if (Toptimal[k] == Tinitial[k]) then
Tnew[count] = Tinitial[k + 1].
Tnew[count− 1] = Tnew[count]− Tnew[count− 1].
Associate the corresponding mesh Hnew[count− 1] = Hoptimal[k].
Increment the counter: count = count + 1.
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Algorithm 10: Subroutine representing scenario 3 and 4 in the main time meshing
algorithm 7.

Scenario 3: treats the case where the optimal time slab size is larger than the old
one.
if (Toptimal[k] > Tinitial[k]) then

if ((Tnew[count− 1] +Toptimal[k]) ≥ T)) then
The problem has converged to a steady state.
Scenario 4:
Stop looping and set:
Tnew[count] = T.
Tnew[count− 1] = Tnew[count]− Tnew[count− 1].
Associate the corresponding mesh Hnew[count− 1] = Hoptimal[k].

else
Define a temporary index, Index, that accounts for the nodes lying inside
the optimal time-slab.
Set the temporary index to k + 1: Index ← k + 1.
while (Tinitial[Index] < (Tnew[count− 1] +Toptimal[k])) do

The time slab [Tinitial[Index− 1]; Tinitial[Index]] contains the node
Tnew[count− 1] +Toptimal[k].
Increment the indexing: Index = Index + 1.

if ( Tnew[count− 1] +Toptimal[k] > (Tinitial[Index− 1] +Toptimal[Index− 1]) )
then

This is the case when the interval [Tnew[Index− 1], Tnew[Index]] will
be shrunk and Tnew[count− 1] +Toptimal[k] will fall outside the
predicted optimal slab.
Tnew[count] = Tinitial[Index− 1].
Tnew[count− 1] = Tinitial[Index− 1]− Tnew[count− 1].
Associate the corresponding mesh Hnew[count− 1] = Hoptimal[k].
Reset k: k = Index− 2.

else
Tnew[count] = Tnew[count− 1] +Toptimal[k].
Tnew[count− 1] = Toptimal[k].
Associate the corresponding mesh Hnew[count− 1] = Hoptimal[k].
Reset k: k← Index− 2.
if Tnew[count] == Tinitial[Index] then

The created node coincides with the endpoint of a slab of time.
Skip the interval [Tinitial[Index− 1]; Tinitial[Index]].
Set k = k + 1.

else
Toptimal[k + 1] = Toptimal[k + 1]− (Tnew[count]− Tinitial[k + 1]).
Tinitial[k + 1] = Tinitial[k + 2]− Tnew[count].

Increment the counter: count = count + 1.
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6.5.1 Application of the Time mesher

Before proceeding into the numerical evaluation of the paradoxical meshing algorithm,
let us consider an example to validate the 1D temporal mesh generation. As depicted
in figure 6.12, starting with an initial mesh:

Tinitial = { 0, 0.1, 0.15, 0.17, 0.18, 0.38, 0.68, 1.08, 1.18 } ,

initial time-step sizes:

Tinitial = { 0.1, 0.05, 0.02, 0.01, 0.2, 0.3, 0.4, 0.1 } ,

and predicted optimal time-step sizes:

Toptimal = { 0.15, 0.2, 0.1, 0.01, 0.1, 0.2, 0.45, 0.1 }

Using the 1D temporal mesher, the temporal nodes will be modified, some of them will
be removed and new ones will be inserted. The resulting temporal nodes are:

Tnew = { 0, 0.15, 0.25, 0.28, 0.31, 0.34, 0.37, 0.38, 0.68, 1.13, 1.18 } ,

As it can be inferred from figure 6.12, the time-slab sizes are different from the pre-
dicted optimal sizes and do not necessarily coincide with the initial time-slabs.

Figure 6.12 – Example of application of the time mesher.

The novel method, called paradoxical meshing, that we presented in this chapter
is perceived not only as a fully adaptive technique but also as a space and time accu-
rate way of solving time-dependent problems within reasonable computational costs.
Indeed it avoids the computation of a new mesh at every solver iteration and hence
the drastic increase of the CPU time. Furthermore, fewer function interpolation are
performed lowering the accumulated interpolation errors. The new metric for several
time-steps ensures that the error on each edge of the domain remains bounded by the
global error. Nevertheless the mesh is not optimal for one solution at a time but op-
timal for the whole interval of time. A new temporal meshing algorithm is devised.
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It allows the redistribution of the temporal nodes with respect to prescribed time-slab
sizes. We aim in the following section to validate the proposed approach on several
numerical examples where we compare the performance of the paradoxical technique
to the classical one and highlight the accuracy and efficiency of the former.

The space-time adaptive algorithm was fully detailed, allowing for an easy, straight-
forward implementation in any similar context.

6.6 Numerical examples

In this section, we assess the performance of the newly developed fully-adaptive al-
gorithm on several test cases and compare the result with the single time-step space-
time adaptive techniques. The numerical experiments will show that the developed
algorithm together with the stabilized finite element method are capable of producing
accurate results within a reasonable execution time and a low computational cost. In
particular, the boundary layers and the vortices are well captured by the mesh.

6.6.1 A two-dimensional rotating Circle

We begin our validation of the fully adaptive technique by evaluating its interface track-
ing ability. We consider a function representing the rotation of a 2D circular interface
of radius 0.1 initially located at (0.5, 0.5) in the computational domain [−1, 1]× [−1, 1]:

u(x, t) = E tanh
(
(x− x(t))2 + (y− y(t))2

)
(6.19)

where E = 0.0005 is a stiffness parameter defining the thickness of the interface. The
smaller E is, the sharper the function’s gradient. The simulation consists in rotating the
circle in the counterclockwise direction at the rate θ = 1rad/s. The objective is to test
the capability of the anisotropic paradoxical meshing technique to accurately capture
the dynamically evolving interface. We note that this is a very challenging example, if
a single time-step mesh adaptation were to be used, the thickness of the refined layer
in the vicinity of the function’s high gradient is 2E and consequently if the time-step
size is not small enough to maintain the evolving gradient within the refined zone, a
loss of accuracy would result.

Figure 6.13 shows the adapted mesh, made up of 10, 000 nodes, for the slab of time
[tn, tn+1] gathering 10 sub-intervals of time. We can clearly see how refined the mesh
is at the location of high function’s gradient and how accurate the capture of the in-
terface is as it rotates from time tn(left) to time tn+1(right). The elements all along the
interface are isotropic yielding a well respected curvature. The algorithm progressively
detects and refines the mesh at the interface when the circle advances in time and moves
throughout the domain. We can detect how for a controlled number of nodes, the mesh
is naturally, automatically, and anisotropically coarsened in one region (far from the in-
terface) with the goal of reducing the mesh size at the location of interest (at the mov-
ing interface level). The time intervals’ lengths [tn, tn+1] = [tn

0 , tn
1 , · · · , tn

i , · · · tn+1
10 ] are
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Figure 6.13 – Paradoxical meshing algorithm applied to a rotating circle for the interval [tn, tn+1].

automatically generated by the paradoxical meshing algorithm and the corresponding
optimal meshes are valid for the 10 consecutive time-steps. Figure 6.14(right) presents
the time-step sizes for the first few iterations of the algorithm. We can clearly see
the periodic profile as the time-steps vary periodically and oscillate around a constant
value 7.6× 10−3. This periodic variation is in good agreement with the nature of the
problem, as the circle rotates at a constant rate and maintains the same behavior all over
computations. We recall that within the time-slab of size δtn, the algorithm generates
equally distributed sub-intervals of size ∆tn

l = δtn

10 .

Figure 6.14 – Time-steps generated by the single time-step adaptation (left) and the paradoxical (right)
meshing algorithms.

Figure 6.15 – Instabilities appearing when adapting the mesh using the single time-step meshing
algorithm applied to a rotating circle with a fixed time-step ∆t = 0.01.

Using the single time-step mesh adaptation technique at every solver iteration will
keep the mesh in phase with the rotating interface, nevertheless, beside the consider-
able computational cost, an important accumulation of interpolation error will result,
hence affecting the accuracy of the solution. Therefore such an algorithm is not the
optimal one when dealing with time-dependent simulations. To reduce the mentioned
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drawbacks, the mesh should be adapted less frequently. However, if no time adap-
tation is applied, the mesh would at some point fail to well capture the solution that
is advancing in time and instabilities will appear as shown in figure 6.15. When ap-
plying our developed single time-step space-time adaptive technique and adapting the
mesh anisotropically every 10 time-increments, the generated time-step sizes will be too
small, as seen in figure 6.14(left), in order to reduce the temporal error, preventing the
progress of the solution in time. Therefore, in this case, the anisotropic mesh adapta-
tion that provides a sharp capture of the evolving interface and aims at accelerating the
computations seems to be blocking the circle’s movement. Indeed, the single time-step
mesh-time adaptive algorithm produces time-step sizes in such a way to guarantee that
no phase lag occurs between the solution and the mesh. By constructing a mesh that
is very steep in capturing the gradient of the levelset representing the moving circle,
the anisotropic mesh adaptation creates a very thin layer of size 2E that is well refined
around the boundary of the circle. The generated time-step sizes between two spatial
remeshing shall be small enough to maintain the interface within the well refined zone.
Consequently the execution time of the simulation will significantly increase.

We recall that the paradoxical method aims at dynamically and automatically gen-
erating optimal meshes for slabs of time hence yielding a better efficiency than the
single time-step adaptation algorithm. This is exactly what we notice when comparing
figures 6.14(left) and 6.14(right); the paradoxical meshing technique produces time-step
sizes that are in average 20 times larger than those generated by the single time-step
adaptation algorithm. We summarize in table 6.1 the CPU times needed to simulate
1s of rotation with a very fine fixed mesh (around 150000 nodes) and a fixed time-step
∆t = 0.005, with the single time-step space-time adaptation and with the paradoxi-
cal meshing technique. The results reveal the efficiency of the proposed anisotropic
adaptation method. The computational time is almost 10 times faster than the one
produced with fixed mesh and time-steps, and 7 times faster than the one produced
with the single time-step space-time adaptation. It is important to mention that the
CPU time of the paradoxical adaptation is the sum of the time needed to generate the
sets of meshes/time-step sizes and the time needed for the simulation with these sets.
Note that the inner loop of the algorithm was repeated only two times to generate the
optimal meshes and time-step size for which the solution remains bounded.

CPU time (hrs) Ratio VS fixed Ratio VS single
time-step adaptation

Fixed ∆t = 0.005 19 - -
Single time-step adaptation 14.06 1.35 -

Slab of time adaptation 1.081+0.78

(Generation + simulation) =1.861 10.21 7.55

Table 6.1 – History of the CPU times corresponding to the single time-step and slab of time meshing
techniques applied to the rotating circle test case.

The developed technique results in a second order accurate solution. Using an
isotropic refinement of the mesh, it was stated in [Guégan 10] that a second order ac-
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curate capture of a physical phenomena with an error reduction factor of 4 is obtained
as the number of nodes in the mesh passes from N1 to N2 = 16N1. However this con-
dition is not enough for second order convergence, the size of the time sub-intervals
should become 8 times smaller too. It was also highlighted in [Guégan 10] that in the
anisotropic case, the mesh size should be 4 times smaller in regions with high gradients
and only 2 times smaller elsewhere. Hence 2 times smaller sub-intervals of time are
necessary for second order convergence when using anisotropic mesh adaptation. Fig-
ure 6.16 shows that the time-intervals generated by the paradoxical meshing approach
satisfy the necessary condition for second order convergence in the anisotropic case.

Figure 6.16 – Time sub-intervals satisfying the requirement for second order convergence in the
anisotropic case.

We have repeated the same test case in three dimensional spaces and almost the
same results were noted in terms of computational acceleration. Figure 6.17 depicts
several snapshots on the predicted meshes and evolving sphere over time. Again, one
can clearly identify how the mesh is well predicted to contain the moving sphere over
slabs of time.

6.6.2 A two-dimensional analytical test case

The objective of this numerical example is to illustrate how the metric construction
developed in this chapter enables the capture of the displacement of a function’s
anisotropic features over a slab of time. The analytical function that we consider inhere
was presented in [Coupez 11], and was reconsidered in chapter 4 with an extension to
account for time evolution. It is defined on the domain [0, 1]d and is being evolved over
the time interval [0, 1] as follows:
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a(x) = tanh
(

E sin
(

5
π

2
||X||

))
b(x, t) = tanh

(
E sin

(
5

π

2
||X− tC||

))
C =

 1
·
1


u(x, t) = a o a(x) + b o b(x, t) (6.20)

The parameter E varies from 1 to 32; the larger E is, the sharper the function’s gradient,
favoring anisotropic meshing. Despite the simplicity of this function, it is characterized
by the displacement of the high gradients over time thus reflecting the ability of the
algorithm to predict the behavior of the function and to prepare the adapted mesh
for the coming slab of time. The complexity of this example, which is similar to a
propagating wave, resides in the expansion and interference of the evolving circular
gradients forcing isotropic meshing at the intersection regions.

We have repeated the same test case using the paradoxical meshing algorithm. The
mesh is being adapted at a frequency of 10 time-steps. Figure 6.18 shows how the
mesh is very well predicted to contain the function over a slab of time. The function is
being presented at the beginning (left) and in the middle (right) of the time slab. Note
that the paradoxical meshing algorithm is based on the same definition of the error
estimators as in the single time-step adaptation algorithm so the same error analysis
applies for this new adapting technique. We are presenting here the results obtained
when adapting the mesh on the L1 norm of the error.

We compare in figure 6.19 and table 6.2 the time-step evolution and the CPU time
obtained using the single time-step and the paradoxical meshing techniques. Note
that the mesh is adapted on the L1 norm of the edge based error estimation every 5

time-steps so that the single time-step meshing do not lead to very small time-step
sizes. We can clearly see that the single time-step method produces smaller time-
steps and requires a higher CPU time. Indeed, unlike the paradoxical meshing that
predicts a mesh for a slab of time where the solution can evolve smoothly in time, the
single time-step meshing produces a mesh that is adapted to the very first time-step
following the adaptation. The temporal adaptation algorithm corresponding to the
latter approach will generate smaller time-steps, hence higher computational cost, in
order to maintain the function’s steep gradient within the refined regions. This result
validates the efficiency of the newly developed method in terms of computational time.

6.6.3 A two-dimensional analytical test case with sinusoidal evolution in time

The objective of this test case is to illustrate the behavior of the time-step algorithm
relative to sinusoidal evolution of the function in time. We consider the same analytical
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CPU time (mins) Ratio VS fixed ∆t
Fixed ∆t = 0.0015 37 -

Single time-step adaptation 22 1.68

Paradoxical adaptation 17 2.17

Table 6.2 – History of the CPU times corresponding to the single time-step and the paradoxical meshing
techniques applied to (6.20).

function with a sharpness factor E = 16 and we let it vary sinusoidally in time as
follows:

a(x) = tanh
(

E sin
(

5
π

2
||X||

))
b(x, t) = tanh

(
E sin

(
5

π

2
||X− tC||

))
C =

 1
·
1


u(x, t) = a o a(x) + b o b

(
x, sin

(
t
π

2

))
(6.21)

The rings emerging inside the domain move periodically back and forth over time.
Figure 6.20 shows the time-step history obtained with the single time-step and para-
doxical meshing approaches. The mesh made of around 20, 000 nodes is being adapted
every 5 time increments using the single time-step adaptation approach and every 10

increments using the paradoxical meshing technique. We notice that both profiles have
the same tendency of periodic evolution over time. A phase of slow steady time-steps
reflects the expansion of the rings inside the domain. A deceleration of the function
follows and is accompanied by a quick increase of the time-steps. An abrupt decrease
of the latter is observed once the function changes its direction of evolution. This suc-
cession of time-step behavior is periodically repeated in accordance with the sinusoidal
displacement of the function in time.

The higher time-steps produced by the paradoxical meshing algorithm are in accor-
dance with expectations. The predicted mesh, being well refined to contain the function
for a slab of time, enables a faster and smoother propagation of the function over the
domain. This explains also the lower CPU time cost of the method illustrated in table
6.3.

CPU time (mins) Ratio VS fixed ∆t
Fixed ∆t = 0.00015 351 -

Single time-step adaptation 213 1.647

Paradoxical adaptation 132 2.65

Table 6.3 – History of the CPU times corresponding to the single time-step and the paradoxical meshing
techniques applied to (6.21).
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6.6.4 Fluid flow for different Reynolds numbers

We continue our validation of the paradoxical adaptive technique by considering the
classical 2-D lid-driven flow problem with a zero source term. We intend to prove the
applicability and efficiency of the newly developed paradoxical meshing technique to
unsteady CFD problems. The viscosity is adjusted to yield Reynolds number of 5, 000,
10, 000 and 20, 000. In order to generate and compare the solutions we fix the number
of nodes N to 30, 000. The user-prescribed number of nodes is an advantage of this
method as it avoids the drastic increase in the number of degrees of freedom, and
hence controls the computational time. We start the simulation with a time-slab size
of 2s on an unstructured isotropic mesh and adapt every 20 increments. We adapt the
mesh on the velocity norm as well as the normalized velocity vector field.

For illustration purposes, we consider the case of Re = 5, 000 and present the result-
ing mesh on the evolving solution over the time slabs [1.93 , 2.75] and [6.8027 , 7.11646]
in figures 6.21 and 6.22, respectively. Figure 6.23 depicts the final mesh generated once
the flow has been settled down inside the cavity. It shows the correct orientation and
deformation of the mesh elements (longest edges parallel to the boundary). This yields
a great reduction of the number of elements. These results give confidence that the
extension of the approach to take into account all the velocity components (Vx, Vy, and
||V||) holds very well and plays an important role for transient flows. Note the high
resolution in the domain region where the solution will be traveling, on the boundary
layers and at the detachment regions reflecting the multi-component structure of the
metric field. The paradoxical meshing algorithm proves to be capable of capturing the
anisotropy of the solution caused by the discontinuity of the boundary conditions and
the nature of the flow.

The same simulation is conducted for Re = 100, 000, the flow is characterized by
turbulent features with the emergence of vortices of different sizes over the simulation.
Since benchmark values on the velocity profile cannot be found in the literature, we
limit this case to showing that the mesh is well adapted to capture the different fea-
tures of the flow. We can detect from figure 6.24 how refined is the mesh in the vicinity
of the velocity gradient over the slab of time [9.524, 10.073]. The emerging small eddies
are very accurately captured and followed over time. As the mesh is well predicted
to contain the velocity field, the computations went very smoothly with a rapid con-
vergence of the Navier-Stokes VMS solver. This is highlighted by the reduced CPU
time (33192s) as compared with the one needed when using the single time-step space-
time adaptive meshing algorithm (41347s). We move on next to compare the accuracy
of the newly developed paradoxical meshing technique, to the single time-step adap-
tation approach and to very accurate reference solutions. For that purpose, we first
plot the velocity profiles for Ux along x = 0.5 and for Uy along y = 0.5 at Reynolds
1, 000, 5, 000, and Reynolds 10, 000. It can be seen that all the results are in very good
agreement with the reference solution computed on a 600x600 = 360, 000 points fixed
mesh [Hachem 10b]. Almost the same accuracy of the solution is obtained with both
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anisotropic meshing techniques for Reynolds 1, 000 and 5, 000. A better performance of
the paradoxical algorithm can be spotted for Reynolds 10, 000 resulting from the high
concentration of refined meshes over the regions of sharp gradients allowing the good
capture of the solution all over the simulation time and avoiding the accumulation of
numerical errors due to the mesh-solution time lag.

Regarding the efficiency of the proposed algorithm, we summarize in table 6.4,
the CPU time needed to simulate 1, 000s of the flow using a fixed mesh and a fixed
time-step size, an anisotropically adapted mesh and time-steps generated by the single
time-step adaptation algorithm and an anisotropically adapted mesh and time-steps
generated by the paradoxical meshing algorithm. It is important to mention that the
reported CPU times using paradoxical meshing technique account for both the gener-
ation and the simulation phases. It can be inferred from the gathered statistics that the
single time-step adaptation is faster than the paradoxical meshing for Re <= 5, 000,
that is for laminar flows. As the Reynolds number increases, the paradoxical meshing
technique becomes more efficient. This is in accordance with the time-step sizes gener-
ated by both methods and reported in figure 6.26. The observed slower computations
can be related to the predictor corrector nature of the algorithm therefore the simulation
is repeated several times whereas in the single time-step adaptation technique a single
run is performed. A fast convergence of the Navier-Stokes VMS solver is noted in both
cases. In addition, being adapted all over the simulation, the mesh provides a good
track of the small scale vortices that develop with time. Consequently, the time-step
size decreases to allow the resolution of these new physics. When the flow becomes
turbulent and develops eddies of different sizes, the solver requires more time to con-
verge the solution on the available mesh and with the available time-steps generated
by the single time-step adaptation algorithm, hence the increase in the CPU time. We
recall that the mesh is adapted every 5 time increments while it is not actually valid
for this slab of time. On the other hand, using the paradoxical meshing technique pro-
posed in this chapter, the mesh holds for slabs of time with lengths equal to 20 time
increments. A faster convergence of the solvers is detected yielding a reduction of the
total CPU time.

Reynolds Number 1, 000 5, 000 10, 000 20, 000 100, 000
Single time-step 372 618 1487 2622 41347

Slab of time 426 791 1530 1970 33192

Table 6.4 – CPU time needed for computing the solution with the single time-step space-time adaptive
and the paradoxical methods.

6.6.5 Flow past a wind turbine

In this application we intend to assess the validity and potential of the paradoxical
meshing tool together with the IVM and the stabilized solver in simulation complex
three dimensional flow behind a moving structure.
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Over the last decade, considerable attention has been devoted to the numerical
studies of renewable energy devices such as wind turbines in the view of optimizing
the power production, energy conservation and the shapes of the blades. The main
focus shall be on the wake velocity deficits that reduce the power production and on
the aerodynamics loads on the blades. The numerical investigation that we conduct
inhere does not intend to perform an aerodynamic analysis or optimize the wind farm
layout. Instead, we aim at providing a useful tool that facilitates and improves the
accuracy of such an analysis. The objective is to test the applicability and potential
of the paradoxical meshing algorithm together with the Immersed Volume Method
and the stabilized Variational multiscale approach in simulating such a challenging
problem. Indeed the full scale modelling of wind turbine applications requires several
numerical tools. The first is the generation of a well refined mesh that is capable
of following the blades’ movement. The second involves the precise capture of the
boundary layers on the blades and the third accounts for the compressibility effects at
the blade tips.

Inhere we are interested in addressing the first component of such an application.
The computational domain is set to 20m in the stream direction and 10m in the lateral
direction. We consider a 3 twisting blades wind turbine positioned at 3m from the
tunnel’s inlet. The wind inflow velocity v = 5.75

( y
195

)0.35 such that ||vmax ≈ 2m/s|| is
chosen to yield a low Mach number and a Reynolds number of around 35, 000 whereas
the tip speed ratio is set to λ = Rω

v = 7 with R being the rotor radius and ω the angular
velocity of the blades in the z−axis direction. This setup of the problem implies a low
Mach number and consequently can be performed using the available incompressible
solver.

As discussed in example 5.4.4, the use of the single time-step meshing and time
adaptive algorithms slows down the computations as the mesh should be maintained
very dense and sharp around the interfaces of the blades and rotor. This will induce
significantly small time-step sizes (∆t = 0.0005) and consequently imply a consider-
able execution time. On the contrary, the paradoxical meshing algorithm predicts the
solution’s evolution over the frame of time and constructs the optimal mesh that is
adequately designed to minimize the Lp norm of the interpolation error over the slab
of time. This example reflects the multi-components feature of the devised anisotropic
adaptation algorithm by adapting the mesh on the velocity norm, the velocity field di-
rections, the filtered levelset function of the blades and the filtered levelset of the rotor.
The number of nodes is fixed to N = 500, 000 and the initial time-step size to 10−4. The
simulation was run on 64 cores from a GNU/LINUX cluster of 2.4 Ghz Opteron cores
connected by an InfiniBand network.

Figures 6.27,6.28 and 6.29 depict respectively the Q-criterion value, the pressure
field and velocity streamlines and the velocity magnitude on the blades with the cor-
responding anisotropic meshes generated over the simulation time. We recall that the
Q-criterion represents the second invariant of the velocity field’s gradient. When this
value is positive, the rotation dominates the strain and vice versa. The contours of
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this field highlight the vortices developed over time by the trailing interfaces and tips
of the blades. This is also reflected in figure 6.28 by the swirling and intensity of the
velocity streamlines at the level of the rotating blades. The negative pressure profile
on the zero iso-value of the levelset function pinpoints the zones of intensive lift forces
exerted on the moving blades. One can clearly detect, in figure 6.29, how well the mesh
is refined to capture the gradient of the velocity field, the emerging eddies and the ro-
tating geometry. We can identify how the anisotropic mesh adaptation renders a good
capture of the flow’s details such as the fully developed vortical structure around the
turbine and the boundary layers at the blades’ level. The elements are highly concen-
trated and well oriented in the wake region and at the blades’ boundary level where
a strong boundary layer is being developed. This reflects how, for a fixed number of
nodes, the algorithm automatically and dynamically optimizes the nodes’ distribution
and orientation. The evolution of the velocity streamlines enables us to understand the
flow characteristics over time. With time, the flow starts exhibiting a turbulent behav-
ior, fluctuations become more important and small and large eddies appear at different
positions behind the geometry. In parallel, one can identify how the dynamic mesh
adaptation automatically refines the critical zones of sharp velocity gradients behind
the wind turbine where the wake is developing. The mesh is also highly refined in a
large layer around the blades and the cylindrical support, following the development
of a strong boundary layer on their surface.

Using these tools, a full scale wind turbine with the exact dimensions and airflow
conditions will be the subject of an upcoming thesis work [Billon 16] where the bound-
ary layers and compressibility effects at the blades’ tips will be accounted for.



6.6. Numerical examples 301

Figure 6.17 – Different snapshots reflecting the rotating sphere at the beginning, the middle and the
end of the predicted slabs of time.
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Figure 6.18 – Anisotropic mesh adapted over a slab of time to contain the analytical function defined by
(6.20).

Figure 6.19 – History of the time-steps corresponding to the single time-step and the paradoxical
meshing techniques applied to (6.20).

Figure 6.20 – History of the time-steps corresponding to the single time-step and the paradoxical
meshing techniques applied to (6.21) .
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Figure 6.21 – Plot of the mesh and a zoom on the main velocity vortex over the time slab [1.93 , 2.75]
corresponding to 20 time-increments.

Figure 6.22 – Plot of the mesh and the main velocity vortex over the time slab [6.8027 , 7.11646]
corresponding to 20 time-increments.
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Figure 6.23 – Final mesh corresponding to the stable flow inside the cavity (left). Zooms on the mesh
close to the right wall (right).

Figure 6.24 – Velocity magnitude over a slab of time with the optimal anisotropic mesh obtained at
Re=100, 000.
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Figure 6.25 – Comparison of velocity profiles in the mid-planes for Re = 1, 000 (top), Re = 5, 000
(middle) and for Re = 10, 000 (bottom). Left: Velocity profiles for Ux along x = 0.5 . Right: Velocity

profiles for Uy along y = 0.5.

Figure 6.26 – Variation of the time-slab sizes generated by the single time-step (solid line) and the
paradoxical (dashed line) meshing techniques for the driven cavity problem at Reynolds numbers 5, 000

and 20, 000.
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Figure 6.27 – Q-criterion contours for the value 0.5 at different time instances.

Figure 6.28 – Pressure field and velocity streamlines at three successive times.
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Figure 6.29 – Velocity magnitude on the blades and the generated anisotropically adapted meshes.
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6.6.6 Conjugate heat transfer inside an industrial furnace

We are interested in this numerical example in validating the developed full adapta-
tion approach on a 3D simulation of conjugate heat transfer and fluid flows inside an
industrial furnace. The performance of the stabilized finite element solvers has been
investigated on this physical problem in chapter 1. We intend inhere to reconsider the
same problem setup and apply the adaptation algorithms in the view of improve the
accuracy and efficiency of computations. For that purpose, we fix the number of nodes
to 50, 000 and adapt the mesh for 10 time-increments based on the levelset functions
associated with the ingots, the outlets and the burner, on the temperature field, and
the velocity’s norm and direction. We present in figure 6.30 the initial mesh generated
by the adaptation algorithm. We highlight the sharp capture of the ingots allowing
a precise material distribution on each side of their interfaces. We recall that hot gas
is injected inside the furnace at a speed of 38m/s and a temperature of 1350◦C. The
enclosure is initially taken at rest and having a temperature of 700◦C and the Steel
40CDVL3 workpieces are immersed with a temperature of 400◦C.

Figure 6.30 – Initial configuration and mesh for the heat treatment inside an industrial furnace.

The thermal distribution inside the 3D enclosure along 5 different horizontal and
vertical plane cuts is shown in figures 6.31 and 6.32 at different time instances through-
out the simulation. Once the burner is turned on, the hot gas spreads inside the domain
and gets in contact with the air initially at rest creating sharp temperature and velocity
gradients. The temperature profile follows the expected spread over time. While it
took only few seconds to achieve the desired temperature inside the furnace, a con-
siderable time was needed to raise the solids’ temperatures by few degrees. This is
clearly in accordance with the material properties of the ingots. We identify the grad-
ual change in the temperature of the ingots with time. As the surface gets in contact
with the hot fluid, it gets heated faster than the heart of the workpieces then the heat
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is transferred by conduction to the interior. We can also spot that the workpieces that
are the farthest from the burner are heated first. This is in accordance with the features
of the flow. Indeed, the injected flame does not get in direct contact with the solids,
on the contrary, it hits the opposite wall generating a counter-rotating flow and the
main vortex dissociates into two smaller vortices: the first one climbs the wall and the
second spreads into the lower part of the cavity ensuring an equidistributed heating
of the furnace. The latter vortex transports the hot gas and induces the heating of the
cold ingots. This interaction between the hot fluid and the cold solid results in a heat
exchange between them, cooling the fluid and heating the solid. Thus the moving flow
will lose few degrees of its temperature and hits the following workpiece at a lower
value. This explains the slower raise in the temperature of the ingots that are closer to
the burner.

The velocity field and streamlines distribution within the duct are provided in fig-
ures 6.33 and 6.34. They reveal the complex structure of the flow pattern. The latter is
characterized by a fluctuating and chaotic behavior with the appearance of small and
large scale vortices. Indeed, as the hot fluid is pumped, it induces a turbulent and
swirling motion inside the volume. In order to account for the turbulent pattern, the
k − ε model is employed. We notice that primary vortex is decelerated by the work-
pieces and is dissociated into smaller secondary vortices in a counter-rotating behavior
near the fluid/solid interfaces.

Figure 6.35 presents the anisotropic mesh generated for the slab of time
[26.05, 29.65]. We can clearly see how sharp is the capture of the workpieces and
how well the mesh is being predicted to contain the flame jet over this interval.

A quantitative comparison between the temperatures evolution profiles obtained
with and without space-time adaptations at different positions inside the furnace are
reported in figure 6.36. We detect a very good agreement between the thermal distri-
bution on a fixed mesh made up of 157, 347 nodes and on the anisotropically adapted
ones having around 50, 000 gridpoints in the furnace volume whereas a difference can
be spotted at the level of ingots. By optimizing the distribution of the nodes inside
the computational domain a more precise representation of the interfaces and a better
material distribution are provided by the newly developed anisotropic mesh adapta-
tion tools. This higher accuracy results in a less diffusive thermal expansion inside
the ingots. Consequently, a faster heating is numerically reflected as compared with
the fixed mesh and time-stepping. Furthermore, while the former simulation required
5 days of computations on 32 cores, the latter took only 17 hours of execution time.
This computational improvement reveals the great utility of the developed adaptive
approaches.

The generated time-slab sizes over the simulation time are summarized in figure
6.37. We notice that during the first 2000s of heating, small time-steps are created al-
lowing an accurate capture of the thermal evolution and flow pattern inside the volume.
Once the furnace reaches the desired temperature and the flow settles down, the main
heat transfer process is dominated by the conduction at the level of the workpieces,
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the generated time-slabs increase in size resulting in faster computations. We recall
that the k− ε turbulence model has been employed to generate a mean flow profile, a
more accurate solution can be obtained by deactivating this model however a higher
mesh density is acquired to achieve a good level of accuracy, hence inducing smaller
time-step sizes and thus a higher CPU time.

Therefore, the developed paradoxical meshing method permits, through the dy-
namic and automatic update of the anisotropic mesh and the time-slab sizes, the im-
provement of the accuracy and efficiency of the computations.

6.7 Conclusion

In this chapter, we have developed a new approach for space and time adaptation in the
context of unsteady CFD problems, and more importantly, problems involving mov-
ing geometries. In the latter case, the adaptation benefits from the advantages of the
Immersed Volume Method whereby, a unique mesh is employed for the different sub-
domains and the evolving geometries’ interfaces are tracked using a levelset function.
The gradient of this function will guide the spatial adaptation to follow the movement
of the objects over time.

The developed anisotropic mesh adaptation and time adaptive algorithm relies on
a predictive corrective approach whereby the solution’s evolution over a slab of time
is predicted and the corresponding spatial mesh and time-step sizes are automatically
generated allowing a good level of accuracy. Furthermore, fewer function interpolation
are performed lowering the accumulated interpolation errors. The new metric con-
structed for several time-steps ensures that the error on each edge of the spatial domain
remains bounded by the global error over the slab of time. Moreover, the efficiency of
computations is improved with respect to the classical approach for adaptation as the
novel technique avoids the computation of a new mesh at every solver iteration.

The paradoxical meshing algorithm enabled the generation of a set of optimal time-
step sizes and anisotropic meshes that hold for a slab of time. The method was formu-
lated as an iterative process of prediction/remeshing/correction whereby the aim was
to control the L∞

(
t; Lp (Ω)

)
norm of the spatial interpolation errors and the L∞ norm

of the temporal error over the different slabs of time. An extension of the edge-based
error estimation developed in chapter 2 was provided. It allowed the estimation of the
maximum Lp (Ω) norm of the interpolation errors along the edges of the mesh over the
slab of time. These collected error estimates were then used to estimate a homogenized
equidistributed error and yield the construction of metric tensors. Each of these ten-
sors were defined in a way to prescribe on a node of the initial mesh a set of stretching
factors along and in the direction of the edges connected to it.

Moreover, an extension to take into account several normalized fields in a single
metric was proposed. The constructed spatial metrics were then provided to the MTC
mesher that in turn generated appropriate optimal meshes. A coupling between the
space and time adaptations was enhanced through the use of a homogenized equidis-
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tributed error to control the temporal errors induced on the slabs of time. Conse-
quently, stretching factors were determined on the different slabs of time predicting for
each temporal edge its optimal size.

A new 1D temporal mesher was developed and allowed the redistribution of the
temporal nodes according to the estimated optimal time-slab sizes.

The paradoxical algorithm has been validated on analytical examples, CFD prob-
lems and problems involving moving geometries in two and three dimensional spaces.
In all the cases, the method demonstrated a good performance and a high level of
precision. In terms of CPU cost, an important reduction was highlighted due to the
adaptive time-stepping and the smoother convergence of the solvers. This faster con-
vergence is in accordance with the consistency between the predicted meshes and the
evolving solution.

We note that the novel adaptation technique can be applied in conjunction with
the classical adaptation approach. Indeed, the computations can be performed using
the classical approach with a fixed frequency of adaptation. When the induced errors
along the spatial edges of the mesh become large on an interval of time between two-
remeshings, the paradoxical technique can be activated to construct the appropriate
optimal meshes and time-slab sizes.

We intend in the following chapter, to validate the developed space and time
adapted tool on complex industrial applications. The numerical results will be con-
fronted to experimental ones and with the ones obtained without adaptation reflecting
the potential and efficiency of the novel approach.

6.8 Résumé français

Dans ce chapitre, nous avons développé une nouvelle approche dite paradoxale (ou
adaptation espace-temps pour des slabs de temps) dans le contexte de simulation de
problèmes CFD instables, ainsi que des problèmes impliquant des géométries mobiles.
La nouvelle méthode repose sur une approche prédictive corrective.

Une prévision de la solution sur un slab de temps est réalisée, le maillage anisotrope
optimal et les pas de temps correspondants à ce maillage sont automatiquement
générés permettant un bon niveau de précision vis-à-vis de la solution prédite. Une
nouvelle métrique est construite pour plusieurs pas de temps garantissant que l’erreur
induite sur chaque arrête du maillage spatial reste limitée par l’erreur globale associée
au slab de temps.

La méthode a été formulée comme un processus itératif de prédiction / remaillage
/ correction permettant de contrôler la norme L∞(t; Lp(Ω)) des erreurs d’interpolation
spatiale et la norme L∞ de l’erreur temporelle sur les différents slabs de temps. Une
extension de l’estimateur d’erreur développé dans le chapitre 2 a été développée.
Ainsi, la méthode réalise un contrôle du maximum des normes Lp(Ω) des erreurs
d’interpolation induites le long des arrêtes du maillage au cours du slab de temps.
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Ces estimations d’erreur ont ensuite été utilisées pour estimer une erreur équidis-
tribuée homogénéisée sur tout le maillage au cours du slab de temps. Ensuite, une
métrique était construite en chaque nœud du maillage initial imposant une taille de
maille le long des differentes arrêtes connectées à ce nœud. De plus, une extension
vers une construction multi-composante a été proposée. Les slabs de temps optimaux
ont été déduit en appliquant le principe d’équi-distribution de l’erreur en espace et en
temps. Cependant pour répartir les pas de temps d’une manière optimale sur l’interval
de temps de la simulation, un mailleur 1D temporel a été développé.

L’algorithme de la méthode paradoxale a été validé sur des exemples analytiques,
des problèmes CFD et les problèmes impliquant des géométries mobiles en deux et trois
dimensions. Dans tous ces cas, la méthode a démontré une bonne performance et un
niveau élevé de précision. En termes de coût de calcul, une réduction importante a été
soulignée en raison de l’adaptation dynamique des pas de temps et de la convergence
rapide des solveurs. Cette convergence plus rapide est une conséquence directe de la
bonne compatiblité entre le maillage prédit et l’évolution des gradients de la solution.

Nous notons que la technique d’adaptation paradoxale peut être appliquée en
combinaison avec l’approche d’adaptation classique (adaptation pour un seul pas de
temps). En effet, les calculs peuvent être effectués en utilisant la méthode classique
avec une fréquence fixe d’adaptation. Lorsque les erreurs induites le long des arrêtes
spatiales du maillage deviennent grandes sur un intervalle de temps entre deux remail-
lages, la technique paradoxale peut être activée pour prédire des maillages et des pas
de temps optimaux le long de slabs de temps.

Nous avons l’intention dans le chapitre suivant, de valider la méthode d’adaptation
espace et temps développée sur des applications industrielles complexes. Les résultats
numériques seront confrontés à des données expérimentales reflétant le potentiel et
l’efficacité de la nouvelle approche.
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Figure 6.31 – Thermal distribution inside the volume and on the surface of the immersed solids.
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Figure 6.32 – Thermal distribution inside the volume and in the core of the immersed solids.
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Figure 6.33 – Velocity streamlines at different time instances.

Figure 6.34 – Velocity field at the beginning and during the course of the simulation.



316 Chapter 6. Space-Time slab adaptive meshing

Figure 6.35 – Anisotropic mesh generated for the time-slab [26.05, 29.65].

Figure 6.36 – Temperature distribution at selected nodes inside the volume (top) and at the heart of the
central thick workpiece (bottom).
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Figure 6.37 – History of the time-step sizes generated by the paradoxical meshing approach for a
conjugate heat transfer application.
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”La sagesse est la vertu oubliée de notre temps. Un savant qui n’est pas aussi un sage
est, soit dangereux, soit, dans le meilleur des cas, inutile.”

Amin Maalouf
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In this chapter, we are interested in evaluating the developed numerical tools in re-
solving large scale and long time computations. More precisely, we aim at validat-

ing the potential of the immersed volume method with an anisotropic mesh adaptation
and time adaptive control and the stabilized finite element solvers to deal with heat
treatment phenomena within complex 3D enclosures. The study will include thermal
heating inside industrial furnaces and thermal cooling inside quenching chambers by
either natural or forced convection. Heat transfer in its three forms conduction, con-
vection and radiation will be accounted for. We recall that this work was developed
in the context of the REALisTIC project with the main objective being the improve-
ment of the accuracy and efficiency of the numerical solutions computed using the
available solvers through the development of space and time adaptive algorithms. The
numerical investigations will compare the results obtained using the anisotropic mesh
adaptation and time adaptive algorithms to experimental data and to the numerical
solutions computed on fixed meshes using fixed time-step sizes.
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7.1 Introduction

Back to the iron age, when iron started replacing bronze in tools and weapons for its
ductility, strength and resistance properties when alloyed with carbon, the mechanical
and physical properties were considered as the essential characteristics of metals. It was
in the late 1900S that iron was replaced by steel which showed to be more interesting in
terms of flexibility and hardness for its higher content in carbon. Though not as brittle
as cast iron, steel has a higher resistance and durability which makes it more reliable.

Nowadays, steel is a major component of a wide range of manufacturing industries
including automotives, machinery, household equipments, and construction. The final
steel product used in these appliances goes through a series of steel-making processes:
iron ore extraction and processing, mixing with carbon materials, and heat treatment.

The heat treatment cycle consists in a sequence of controlled heating, quenching
and tempering operations whereby a raw material steel undertakes metallurgical and
mechanical changes to either convert it into molten steel or to change its shape (metal
forging/rolling). During this treatment, a steel metal is loaded into a pre-heated fur-
nace and placed on a skid to ensure its heating from the top and the bottom. Heated gas
is then injected from the burners yielding a combustion process and releasing chemical
and thermodynamic energy in the heating chamber. This energy will then be absorbed
by the workpieces changing their metallurgical and physical properties. The heating
process will be conducted for several hours. When the temperature of the steel metal
reaches its critical value (austenitic temperature), the furnace door is opened, the heated
ingot is removed and a new one is loaded. Then the heated workpiece is transported
to a quenching bath or it is left in the large to cool down via natural convection. Figure
7.1 presents the extraction of a heated large hollow steel shell from the furnace and its
transportation to the quenching chamber. We note that these images were supplied by
our industrial partners at Areva, Creusot Forge.

Figure 7.1 – Heat treatment of a large hollow steel shell.

An accurate control on this process and a good calibration of heating sequences and
energy injection results in a good quality production. However, heat treatment requires
high energy consumption, indeed a typical industrial furnace consumes between 700−
4000kWh per ton of steel [Von Schéele 10]. This includes the chemical energy from the
burners as well as the chemical reactions within the load. Driven by the need to respect
the new regulations for reducing energy consumption and pollutant carbon emissions
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while maintaining a high quality production, industrials are interested in limiting the
energy losses during the heating process. Different forms of losses can be identified
as stated in [Was 14] and shown in figure 7.2. One form of losses is issued from the
pre-heating of the furnace’s insulation structures which store heat all over the ingots’
treatment process then release it once the workpieces are removed and the furnace is
turned off. The second form is caused by the heat conduction at the walls’ level, roof
and workpieces support positioned on the floor. Other forms of losses are related to
the heat release when opening the door of the furnace to insert/remove workpieces,
and to the radiations effect with the external surrounding. The most important form
is the waste-gas (also known as flue losses) which manifests in the heat that cannot
be removed from the combustion gases. It was also emphasized in [Was 14] that this
waste is closely related to the production volume and in order to optimize the energy
consumption it is important to maintain the furnace efficiency around 100%. Two
main factors affect the furnace efficiency: thermal scheduling and furnace loading. The
thermal scheduling refers to the planning of the heat treatment sequences, calibration of
the burners’ temperatures over time and defining the charges’ insertion times whereas
loading stands for the amount of ingots inserted in the furnace over a given time. Hence
in order to keep the furnace efficiency around 100%, optimization analysis shall be
carried on the scheduling and loading aspects of the heat treatment cycle.

Figure 7.2 – Heat losses during a furnace heating process taken from [Was 14].

To do so a better understanding of the heat treatment cycle needs to be acquired in
the view of devising a thermally and energy efficient heating schedule and optimizing
the duct throughput and microstructure of the workpieces. This can be achieved either
by experimental or by numerical analysis. Based on the thermal history of the work-
pieces and temperature distribution inside the furnace, the quality of the final product
can be deduced in terms of flexibility, ductility and resistance. However, in order to
conduct experimental studies, raw materials and machinery are needed. Moreover,
experimental testings on the design of the furnace, the location of the burners, the
thermal schedule and the positioning of the ingots necessitate material resources and
require a long time. Therefore, these studies can rapidly become unfeasible. On the
other hand, with the continuous growth in computer resources and development of
numerical tools, the modelling of heat transfers and fluid flows inside industrial com-
partments (furnaces, quench chambers, pools, · · · ) is now possible. This modelling
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involves computationally solving conjugate heat transfer problems with a good level
of accuracy and a reasonable computational cost. The simulation is very challenging
as it involves solving simultaneously heat transfers between the solid bodies and the
surrounding fluid, radiation due to the interaction between the solid bodies and also
their interactions with the walls, conduction and turbulent fluid flows.

Prior to this work, finite element stabilized solvers for the modelling of the conju-
gate heat transfer process were developed within CEMEF. With these tools a real full
scale simulation was unaffordable as it required very long computational time and a
high fidelity mesh [Hachem 09]. The REALisTIC project, in the scope of which the
work of this thesis stands, intends to design and develop adaptation techniques ca-
pable of reducing the execution time by accelerating the numerical prediction of heat
treatment while achieving quality solutions with good precision.

In that regard, we aim in this chapter to validate the developed anisotropic adap-
tation tools and the modified stabilized formulations in their capacity to reduce the
computational time of simulations. Consequently, they can be used for optimization
and thermal control strategies. For our industrial partners, this means easier analysis of
’what-if ’ scenarios and sensitivity of parameters, material properties and geometric se-
tups. We note that in these simulations some simplifications were adopted to cope with
the currently available solvers. In particular, the combustion processes at the burners’
levels were ignored and a simplified radiation model, the P1 model, was considered for
the computation of the radiation transfers although this model has shown to be diffu-
sive and might yield an over prediction of the radiation effect on the global solution
when the temperature’s gradient is important as it employs a uniform radiation distri-
bution in all the directions. We recall that a more accurate model, the M1 model, that
takes into account directional dependence of the radiation energy is currently under
development in the thesis work of Schmidt [Schmidt 16]. Bearing the above limitations
on the numerical tools, we have taken into account the real setup in terms of full geo-
metric design of the problem, the material properties of the workpieces, and the true
initial and boundary conditions.
We depict in figure 7.3 the general diagram for the simulation of a heat treatment inside
an industrial heating or quenching chamber.

7.2 2D quenching of a heated ingot by forced convection

As a first validation of the accuracy and efficiency of the developed tools on industrial
applications, we consider an air cooling problem of a crown shaped Inconel-718 solid
by forced convection. The solid having a thickness of around 10cm is initially heated
up to 1030◦C and placed inside the quenching chamber. Air at 20◦C is pumped into
the enclosure at a constant stream of 11.55m/s from a ventilation device positioned at
the bottom wall. Adiabatic temperature, a Neumann boundary condition ∇v · n = 0
and a pressure p = 0 are prescribed at the top wall. Slip conditions and adiabatic
temperature are assigned on the other walls. The material properties of the air and the
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Figure 7.3 – General diagram for heat treatment simulation.
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ingot are updated dynamically in accordance with their temperatures. The computa-
tional domain, the initial mesh and temperature and the thermocouples’ positions are
depicted in figure 7.4.

Figure 7.4 – Computational domain, initial mesh and temperature (left) and thermocouples’ positions
(right).

For comparison purposes, we restrict the analysis to the 2D case, for which numer-
ical validation with the commercial CFD software package, FLUENT, were provided
to us by our industrial partner Aubert& Duval. The objective is to simulate the first
600s of forced convection where the radiation effects can be neglected and compare
our numerical tools. The Immersed volume method is used to immerse the solid ob-
ject into the domain and distribute the material properties. A single set of equations
is solved simultaneously for both fluid and solid domains. The variational multiscale
approach is employed to stabilize the fluid flow solution whereas the SCPG method is
used to preclude numerical oscillations at the locations of convection domination and
sharp gradients especially in the vicinity of the interface. Turbulent effect in the flow
are accounted for using the k− ε model with standard logarithmic wall functions de-
fined in [Launder 74] and [Han 97]. Therefore, as described in chapter 1, we solve the
RANS problem with two additional transport equations accounting for the turbulent
kinetic energy k and the turbulent dissipation ε. This modelling introduces two addi-
tional terms, the effective viscosity and the effective conductivity that will be used in
the RANS equations:

µe = µ + µt and λe = λ +
Cpµt

Prt
, (7.1)

with Prt = 0.89 being the turbulent Prandtl number and µt the turbulent viscosity
computed by:

µt = ρCµ
k2

ε
(7.2)

with Cµ an empirical constant set to 0.09.
At the inflow boundary, we impose:

kinlet = cbc · |v|2 , (7.3)

where v refers to the velocity and cbc = 0.02 is an empirical constant. We then determine
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the value of ε at the inlet by:

ε inlet =
Cµ · k3/2

L
, (7.4)

where L stands for the characteristic length of the model [Launder 74]. We note that
these values of k and ε are also imposed as initial conditions on the domain’s interior.
Homogeneous Neumann boundary conditions are assigned on the outflow boundary:

n ·∇k = 0 and n ·∇ε = 0 . (7.5)

We use the classical wall function [Launder 74] on the rest of the computational bound-
ary to describes the asymptotic behavior of the different variables near the wall. Ac-
cordingly, when the boundary mesh nodes are located in the logarithmic region, wall
shear stress which serves as non-homogeneous Neumann boundary condition for the
momentum equation in the tangential direction is computed:

τw = ρV∗
2

. (7.6)

On the other hand, the normal component of the velocity is set to zero. In equation
7.6, V∗ refers to the friction velocity, which is the solution to the following nonlinear
problem:

Vτ

V∗
=

1
κ

ln
(

ρEδ

µ
V∗
)

, (7.7)

inhere, Vτ is the tangential velocity, δ the distance to the wall, κ = 0.41 the Von Karman
constant and E = 9.0 is a roughness parameter.
A function of the friction velocity [Launder 74] is used to define the boundary values
of the turbulent kinetic energy and its dissipation as follows:

kw =
V∗

2√
Cµ

and εw =
U∗

3

kwδ
. (7.8)

Furthermore, a temperature wall function enables to define the boundary condition for
the energy equation where the effective heat flux in the wall function is being computed
by:

qw = n · qw =
ρCpC1/4

µ kw(Tw − T)
T+

, (7.9)

where Tw denotes the wall temperature and

T+ = 2.1 ln(y+) + 2.5 ,

refers to the normalized temperature as suggested in [Han 97].
It is important to mention that using the FLUENT software conjugate heat transfer
problem is decoupled into two phases whereby in the first phase, the flow problem is
solved until the velocity field stabilizes then using the obtained steady state velocity
profile the energy equation is solved yielding the desired temperature field.
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In our numerical simulation, the fully coupled problem is being solved, and the classi-
cal anisotropic mesh adaptation and time adaptive algorithm were applied. The mesh
is adapted on the temperature field, the velocity norm and direction every 5 time-
increments with a fixed number of nodes equal to 20, 000. We highlight the challenge in
remeshing the domain as it includes curvature and sharp angles on its boundary. Fig-
ure 7.5 presents the temperature’s evolution over time together with the corresponding
anisotropically adapted meshes. We can detect how the mesh refinement is localized
and responds to the characteristics of the problem. It mainly reflects the trajectory
of the small scale plumes of temperature and the direction of the velocity field that is
guiding them. We report in figure 7.6 the history of temperature at different locations in

Figure 7.5 – Temperature profiles and corresponding meshes at times t = 53s, 175s, 323s, 600s (from top
to bottom and left to right).

the workpiece. A good agreement can be noted between the results computed with the
FLUENT software and the present work. The slight difference can be associated with
the procedural difference in solving the problem since in here we solve a fully coupled
system and use the immersed volume method whereas in the reference, a decoupled
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system is solved. To validate the anisotropic adaptation and modified stabilized flow
solver accounting for anisotropic meshes, we compare the velocity distribution at differ-
ent horizontal cuts at time t = 600s with the ones obtained with FLUENT. The velocity
field at the final time and the positions of the horizontal cuts are provided in figure
7.7. We plot the vy component of the velocity field along the different cuts and report

Figure 7.6 – History of temperature at different sensors inside the workpiece.

Figure 7.7 – Velocity field (top) and position of the horizontal cuts (bottom).

the comparisons in figure 7.9. We point out the very good agreement in the velocity
field between the two approaches at the bulk region. Nevertheless, in the near-wall
region, some differences can be spotted. One possible reason for this disagreement
can be related to the difference in the used wall functions. Another possible reason is
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the difference in the approaches: an immersed volume method from one hand and a
decoupled resolution from the other hand. The time-step sizes’ evolution over time is

Figure 7.8 – History of time-step evolution for the forced convection quenching of a heated workpiece.

provided in figure 7.8. It shows an oscillatory profile with a tendency to generate large
time-step sizes. We recall that the use of a turbulence model to account for the effect
of the emerging small eddies on the global solution reduced the scale heterogeneity
of the velocity field captured by the adaptation algorithm and consequently helped in
accelerating the computations. The simulation necessitated 56 minutes using 8 2.4 Ghz
Opteron cores.
Therefore, in this example the numerical tools developed in this thesis were confronted
with a well known software package and reflected good performance in capturing the
quenching process in a reasonable execution time.

7.3 Air cooling of a hat shaped ingot by natural convection

The objective of this test case is to validate the performance of the developed space-time
adaptive methods and the modification of the solvers to cope with highly anisotropic
elements on a three dimensional industrial application. The problem studies the heat
transfers by conjugate natural convection and thermal radiation involved in an hour
of cooling process of an Inconel-718 hat shaped ingot initially heated to 1160◦C and
embedded inside an air filled cubical cavity.

The interest from an industrial perspective is to understand the characteristics of
the flow and ingot’s thermal history in the view of benefiting to the maximum from
this naturally occurring quenching process without resorting to cooling devices. The
numerical analysis can serve them for optimizing the heat transfer effect in terms of the
enclosure’s volume and to determine the needed spacing between ingots when several
workpieces are to be cooled in the same duct.

The computational domain, the initial mesh and the immersed solid geometry are
given in figure 7.10. The air inside the enclosure is initially at rest and has a temperature
of 20◦C. The bounding walls are maintained adiabatic throughout the computations.
A Neumann boundary condition ∇v · n = 0 and a pressure p = 0 are prescribed at the
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Figure 7.9 – Comparisons of the velocity field’s component vy along the different horizontal cuts at the
final time 600s.
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Figure 7.10 – Computational domain, initial mesh and the iso-zero value of the immersed solid.

top wall whereas a slip condition is assigned on the other walls. The immersed volume
method is adopted to embed the solid and to distribute the material properties over
the domain. We note that the thermophysical properties of the air and the ingot are
updated dynamically in accordance with their temperatures. The initial mesh, shown
in figure 7.10, is adapted using the newly developed anisotropic mesh adaptation tools
based on the filtered levelset function. We can clearly detect the sharp representation
of the solid’s interface and the highly stretched elements away from the ingot. This re-
flects how for a controlled fixed number of nodes (around 50,000), the anisotropic mesh
adaptation algorithm generates an optimal representation of the desired field. Using
the obtained mesh, the levelset function and the mixing laws, the material properties
are distributed over the domain. We recall that harmonic mean formulation enables
to well render the sharp discontinuity in the thermal conductivity field. We point out
that a high relative kinematics viscosity is prescribed inside the solid region yielding a
negligible velocity at that level. Consequently, the heat transfers are limited to the con-
duction inside the workpiece. The natural convection problem under the Boussinesq
assumption (explained in section 1.6.2) is solved coupled with the thermal radiation
and heat conduction. The medium is supposed to be gray, emitting and absorbing
radiation, and isotropically scattering. Under this assumption, the mean absorption
coefficient κa is determined from the ingot’s emissivity respecting the Bouguer’s law
given by:

κa = −
1

Lm
ln(1− ε) , (7.10)

where Lm represents the mean beam length and is computed as follows:

Lm = 3.6
∆V
∆S

, (7.11)

with ∆V = ∆x∆y∆z and ∆S = 2(∆x∆y + ∆y∆z + ∆z∆y) being respectively the volume
and surface of each element in the mesh [Siegel 02].
In this problem, the IVM permits a natural treatment of solid/air heat transfers without
a priori definition of a heat transfer coefficient which is usually determined through
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experimental studies. Subsequently, if the geometry were to be changed the same sim-
ulation can be leveraged without modification which makes of these tools an important
asset for industrial investigations.
In order to reflect on the thermo-dynamics inside the cavity induced by the natural con-
vection phenomena, we perform a first simulation while ignoring the radiative effects.
Figure 7.11 presents snapshots on the temperature’s distribution over time (left) with
the corresponding anisotropic meshes (right). The obtained fluid motion inside the cav-
ity respects the physics of the problem. Buoyancy forces induced by the gravitational
acceleration and the thermal gradient in the duct are at the origin of this motion. In-
deed, the air in contact with the hot solid gets warmer and thus lighter. Consequently,
in response to the buoyancy forces, this air rises whereas heavier one falls down cre-
ating a fluid motion inside the enclosure. This is exactly what we observe in figure
7.11(left) where ascending thermal plumes of heated air can be detected. Moreover, a
Marangoni effect can be spotted whereby the fluid that is getting in contact with the
outer interfaces of the hat shaped solid moves along that interface from hot to cold
regions then it is dragged by the fluid at that level. We report in figure 7.12 the temper-
ature distribution inside the steel workpiece at different time instances, we can observe
how the solid cools down and how the heat is transferred between the two subdomains.

In this application, we adapted the mesh every 10 time-increments with a fixed
number of nodes N = 50, 000 on the L2 norm of the interpolation error based on the
temperature field and the velocity’s direction and norm. The anisotropic mesh adap-
tation algorithm responds very well to the thermal variations and the induced flow
motion by strongly refining the regions with sharp gradients and highly stretching the
elements in the rest of the domain thus optimizing to the best the use of the prescribed
nodes. A dynamic and automatic follow of the developing flow can be identified en-
suring its ascendance. In addition, a precise capture of the interface is maintained all
over the simulation resulting in an accurate heat transfer between both sides of the
interface.

From a quantitative perspective, experimental analysis was also conducted on the
hat shaped solid which was equipped with several sensors at different positions inside
the workpiece as shown in figure 7.13. The thermal history has been registered through
a data acquisition device and provided to us by our industrial partner. We compare in
figure 7.14 the temperature variations at sensors 4, 6, 12 and 13. A very good agreement
is noted between the experimental data and the numerical distribution.

We note that in order to validate the importance of the radiative effects on the sim-
ulation, we have carried out another experiment accounting only for the heat transfers
due to natural convection. We report in figure 7.15 the temperature variations on sen-
sors 1, 5, 8 and 14 collected from the experimental studies and the numerical tests.
We point out that the selected sensors are the most critical ones since two of them are
very close to the interface and reflect the accuracy of the heat transfers at that level
and the third is at the bulk of the solid. It can be inferred from the obtained results
that the radiative exchanges play an essential role on the temperature distribution and
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Figure 7.11 – Thermal evolution inside the enclosure at different time instances with the corresponding
anisotropic meshes.
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Figure 7.12 – Temperature distribution inside the hat shaped ingot at times t = 40s, t = 600s and
t = 1600s.

Figure 7.13 – Thermocouples’ positioning inside the hat shaped ingot.

Figure 7.14 – Temeprature evolution at different locations inside the hat shaped ingot.
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the physical characteristics of the flow. On the other hand, the slight discrepancies
(less than 5%) depicted at the surface of the ingot can be associated with the diffusive
character of the P1 radiation model as it does not account for directional emissions.

Figure 7.15 – Temperature evolution at different locations inside the hat shaped workpiece, with and
without thermal radiation effects.

Regarding the efficiency of computations, we present in figure 7.16 the time-steps
generated by the time adaptive algorithm to advance the solution. We notice that the
method starts by generating small values in order to follow up with the developing
flow. Once the motion is well developed inside the enclosure, large time-steps are
produced thus reducing the global execution cost. It is important to mention that the
simulation took only 32 minutes to get to 1600s with the developed space-time adaptive
algorithm.

7.4 3D heating of an industrial furnace

In this numerical example, we aim at investigating the conjugate heat transfer and tur-
bulent flows inside an industrial furnace. The validation is twofold: on the one hand,
we validate the ability of the numerical solvers to produce an oscillation free solu-
tion, and on the other hand, we investigate the performance of the immersed volume
method (IVM) with the developed anisotropic mesh and time adaptations on a three
dimensional complex geometry and highly coupled physical phenomena.

The geometry of the problem (fig. 7.17) consists in a three dimensional cylindrical
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Figure 7.16 – Generated time-steps for the cooling of a hat shaped solid.

duct instrumented with 4 inclined burners and a rectangular prismatic outlet centered
at the top wall of the enclosure. For confidentiality purposes, we omit the details on
the geometry and the parameters’ scales. A cylindrical Inconel-718 ingot with diameter
200mm and height 280mm is immersed at the center of the bottom wall.

Figure 7.17 – Geometry and initial mesh of the 3D furnace.

The temperature in the domain is initially set to Tdomain, heated gas is injected
into the furnace at a temperature Tmax at speeds v1

inlet from burners B1 and B2 and
v2

inlet from burners B3 and B4, with v1
inlet > v2

inlet. We note that Tdomain is taken to
be 0.8Tmax. At time t = 840s, the last two burners are turned off. The air is vented
out through the outlet at the top wall. On the other walls, slip boundary conditions
and adiabatic temperature are maintained all over the simulation. At the level of the
immersed solid geometry, the no-slip boundary condition is prescribed by imposing
a high kinematic viscosity. Before starting the computations, an anisotropic mesh, of
around 250, 000 nodes, well adapted to the initial temperature field and the iso-zero
value of levelset functions corresponding to the immersed solid, the burners and the
outlet was generated using the newly developed tools. Based on this high quality mesh,
the material properties are distributed over the domain. We note that the physical
properties of the air inside the furnace and the solid object are changed dynamically
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with respect to their temperatures. The radiative effect are accounted for under the
gray gas assumption.

The workpiece is initially taken at 23◦C and the objective is to study three hours
of the heating process. The anisotropic mesh adaptation is applied every 10 time-
increments using a fixed number of nodes 250, 000 based on the temperature field, the
velocity norm and direction, and the ingot’s levelset function. The 3D computations
were run in parallel on 64, 2.4Ghz Opetron cores linked by an Infiniband network. Fig-
ures 7.18 and 7.19 present respectively the evolution of the temperature field and the
velocity field and streamlines inside the enclosure at different times. We can see how
the temperature spreads into the domain in accordance with the fluctuating motion
of the flow. Moreover, we can clearly see how the temperature’s profiles do not suf-
fer from numerical instabilities or spurious oscillations that appear in the presence of
sharp gradients near the interface. This validates the adopted stabilized finite element
approaches and the appropriate smoothing of the material properties. The stream-
lines, presenting a rotational behavior, ensure the good homogenous distribution of
the temperature field all over the enclosure which is an essential asset for the final mi-
crostructure and material properties of the workpiece. We point out as well that the
hot air pumped from the burners do not directly tap the solid which causes a ther-
mal shock and results in a defected final product. Instead, it spins within the furnace
increasing its global temperature and hence the ingot’s temperature will be increased
progressively avoiding the appearance of thermal shocks. The flow is decelerated by
the ingot and forms a counter-rotating swirling around it. This contact between the
cold solid and the warm fluid favors the heat transfers and enables the heating of the
workpiece. The flow’s movement is changed at that level and it ascends the cavity to
the top wall where it exists the enclosure dragging with it the cooled air.

We provide in figure 7.20 the anisotropic meshes corresponding to the tempera-
ture field and the velocity streamlines shown in figures 7.18 and 7.19. We can clearly
identify the directional feature of the mesh which reflects very well the characteristics
of the problem. The elements are well refined along the gradients of the adaptation
fields and highly elongated in their orthogonal direction. We observe how the mesh is
dynamically and optimally updated to ensure an accurate capture of the desired fields.
The boundary layers and the developing recirculations are sharply represented. In-
deed, when the four burners are turned on at the beginning of the simulation, a sharp
gradient is induced due to the interaction between the air at rest inside the volume and
the injected fluid. The anisotropic mesh adaptation algorithm responds to this sharp
change in the flow motion by refinning the zones of steep gradients. Moreover, we can
identify how well refined the mesh is anticipating the propagation of the flame inside
the enclosure and hence ensuring its accurate capture. When the burners 2 and 3 are
turned off and their corresponding flames fade out, the mesh dynamically and auto-
matically de-refines their locations optimizing the distribution of the nodes and hence
permitting a better control of the interpolation errors. Once the incident flow hits the
opposite wall, a boundary layer is formed and the mesh responds systematically by re-
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Figure 7.18 – Temperature distribution inside the furnace volume at different time instances.



7.4. 3D heating of an industrial furnace 339

Figure 7.19 – Velocity streamlines inside the furnace volume at different time instances.
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Figure 7.20 – Anisotropic meshes generated at different time instances.
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localizing the available nodes in an optimal way to allow a good capture of this layer.
At this level, we highlight the importance of adapting the mesh on the velocity field in
order to detect and represent the emerging boundary layer. Then, as the temperature
gets homogenized inside the cavity and the flow achieves a steady rotating motion, the
conduction dominates the heat transfers at the ingot’s level. Consequently, the mesh
concentrates most of the elements in the workpiece ensuring the accurate capture of the
thermal distribution inside it. While the elements inside the volume are highly elon-
gated and very well oriented, a well refined boundary layer is identified and a high
density of elements is spotted near and inside the ingot. Finally, since the inside of the
furnace does not reach the temperature of the injected fluid, an important gradient is
present and well captured at the flame’s level. We note the complexity of generating a
well adapted anisotropic meshing of the furnace’s geometry as it presents at the same
time curvatures and sharp edges. We point out that as the velocity field stabilizes in-
side the enclosure, the generated meshes converge to an optimal configuration and do
not undertake significant improvements.

Figure 7.21 – Sensors’ positions inside the cylindrical workpiece.

This application has been studied qualitatively from both experimental and numer-
ical aspects. The industrial partner provided us with temperature data at different
positions, inside the enclosure and the Inconel solid, over the simulation time to val-
idate the accuracy of the developed numerical tools. The sensors locations inside the
workpiece are sketched in figure 7.21 and the thermocouple inside the furnace volume
is placed at the center of the planar cut having the same horizontal level as the centers
of the burners. During the numerical investigation, we have run three simulations: the
first on a fixed mesh with the same number of nodes (250, 000) and a fixed time-step
size 0.1s, the second using the anisotropically adapted mesh and a fixed time-step size
0.1s, and the third using the anisotropically adaptive space-time algorithm. Figures
7.22, 7.23 and 7.24 present the temperature evolution over time at the different sensors
positioned inside the ingot and in the furnace chamber.

Comparing the numerical results to the experimental data, we observe that the
temperature plots obtained using a fixed mesh and time-step size, present the same
response to heating: a quick rise in temperature followed by a slowdown. However,
the reached final temperature at the different sensors presents an error of around 48%.
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Figure 7.22 – Temperature distribution in the core of the workpiece.
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Figure 7.23 – Temperature distribution at the surface of the workpiece.

Figure 7.24 – Temperature distribution in the furnace volume.
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The challenge posed on the new adaptation tools was to reduce this error while main-
taining the same mesh resolution. As a first test, we have considered the same fixed
time-step size and adapted anisotropically the mesh. The generated numerical tem-
perature evolution at the different sensors reflected a diffusive nature. Indeed, inside
the ingot instead of showing a rapid rise in temperature during the first 3, 000s then a
slowdown followed by a stagnation at a certain critical value, the temperature exhibits
a gradual and smooth increase over time. Nevertheless, the achieved final temperature
is closer to the experimental one and the error is around 27.3%. Thus, the anisotropi-
cally adapted test case provides a closer final temperature for the same mesh resolution
on the different thermal sensors. Combining the anisotropic mesh adaptation with the
time-adaptive algorithm, we observe a great improvement in the numerical solution,
reducing the final error to 19%. Although the final experimental temperature at the
heart of the solid geometry is still not reached, the numerical solution portrays well
the profile of variation: a fast rise in temperature, followed by a gradual increase and
a stagnation. Moreover, we can clearly detect a phase lag between the numerical and
the experimental graphs. Several possible interpretations for this discrepancy can be
attributed. First, the prescribed mesh resolution might not be enough to detect and
follow the small scale details of the solution. Second, the thickness of the smoothed
Heaviside function might not be small enough to render the sharp discontinuity in the
material properties. A third reason is related to the inaccurate modelling of the initial
setup of the problem in terms of boundary conditions, the approximated thermal heat
flux at the walls, the approximation of the material and gas properties, etc. Moreover,
the discrepancies can also be related to the diffusive aspect of the radiative model. Fi-
nally and most importantly, the failure to achieve the experimental temperature profile
can be associated with the lack of a combustion modelling which is considered as a
backbone component of heat exchanges and energy production inside industrial fur-
naces. Indeed, these geometries are called combustion chambers reflecting the role of
combustion in stimulating and heating the induced thermal flow. We provide in figure
7.25 the thermal evolution at sensors 1 and 4. The temperature within the ingot evolves
as expected with a faster heating on the surface which is in direct contact with the
heated air.

As for the efficiency of computations, we summarize in table 7.1 the execution time
required for each of the numerical tests. On the one hand, compared with a fixed mesh,
an anisotropic mesh adaptation with a fixed time-step size reduces the computational
cost of the simulation. Although the cumulative time for remeshing constitutes around
20% of the total CPU time, the solvers reflect faster convergence when the mesh is well
prepared for the evolving solution, yielding faster computations. On the other hand, a
more reduced execution time is noted when applying the time adaptation technique.
This is in accordance with the tendency of the time adaptation algorithm to generate
larger time-step sizes as depicted in figure 7.26.

Therefore, in this complex 3D conjugate heat transfer and fluid flow simulation
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Figure 7.25 – Thermal evolution on the surface and at the heart of the workpiece.

CPU Time (h)
Fixed mesh & ∆t = 0.1 201

Adaptive space & ∆t = 0.1 185

Adaptive space & time 167

Table 7.1 – CPU time needed to simulate the conjugate heat transfers and fluid flows inside an
industrial furnace.

Figure 7.26 – Evolution of the time-step sizes.
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inside a furnace volume, we have validated the role of the developed space and time
adaptation tools in improving the accuracy and efficiency of the numerical solutions.

It is worth mentioning that the actual Tdomain used in the experimental analysis was
not the same as in the numerical setup for confidentiality reasons. The aim was mostly
to improve, using the developed tools, the results obtained without adaptation.

7.5 3D cooling inside a quenching chamber

We are interested in this numerical example in studying the cooling of a steel work-
piece inside a water-filled tank. This quenching process is known to induce a change in
the metal structure and thermo-physical properties of the ingot. Therefore, an accurate
modelling of the process is highly desirable in order to well predict the resulting final
product. The simulation is divided into two phases: the pre-cooling whereby a flow is
initiated inside the enclosure and the cooling phase where a hot solid is injected and is
being cooled down by forced convection. The pre-cooling chamber’s configuration is
shown in figure 7.27 together with the generated initial mesh anisotropically adapted
to the different components of the geometry. A cylindrical water injector, with surface
area 0.3m2, is positioned at the center of the bottom wall and pumps water at tem-
perature of 21◦C and a speed of 0.1m/s. The flow inside the enclosure is vented out
through an cylindrical outlet, with radius 0.2m and length 0.3m located at the top of
the octahedral walls. In order to provide a uniform cooling and prevent the accumula-
tion of heat around the ingot during the cooling process, the periphery of the tank was
instrumented with 8 cylindrical turbine agitators. While agitators 1 through 6 have a
length of 0.64m, a radius 0.1845m and mixing speeds of 0.294m/s, turbines 7 and 8,
of length 0.85m and radius 0.29m, provide faster agitation of order 0.618m/s. Before
immersing the hollow cylinder steel object inside the quenching medium, the water is
agitated for 1100s to achieve its maximum capability as a liquid quenchant and provide
an adequate cooling process. We present in figures 7.28 and 7.29 the velocity stream-

Figure 7.27 – Initial configuration and mesh of the quenching chamber for the pre-cooling phase.
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lines’ evolution over the pre-cooling phase. It shows the spread of the flow inside the
chamber and the developing chaotic behavior. We can detect how the flow is injected
at high speed and hits the opposite wall forming a boundary layer and decomposing
into smaller vortices that are at the origin of the dynamic recirculating motion inside
the cavity. A good capture is rendered by the use of the anisotropic mesh adaptation
tools, where the adaptation is performed based on the velocity field and norm and
the levelset functions associated with the turbines, the injector and the outlet. We can
detect in figure 7.30 the sharp representation of the emerging small and large eddies
and boundary layers. By the time 1100s, the hollow cylinder of height 4.065m, outer

Figure 7.28 – Velocity streamlines during the pre-cooling phase inside the quenching chamber at
different time instances.

radius 2.605m, and an inner radius 2.2425m, taken initially at 980◦C, is inserted into the
water tank and positioned on the ground, creating a strong temperature gradient along
the fluid/solid interface. This gradient can numerically be at the origin of a thermal
shock and numerical instabilities if the numerical method is not well prepared to treat
these cases. We recall that, in the numerical simulation, we use the shock capturing
Petrov-Galerkin stabilized finite element method to deal with this kind of problems.
No slip boundary conditions are imposed on the walls. The thermal exchange with the
external medium is ensured by enforcing a Fourier type heat flux at the top wall and
a constant flux at the other walls. The developed space and time adaptive tools are
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Figure 7.29 – A top view on the velocity field inside the quenching chamber during the pre-cooling
phase at two different time instances.

Figure 7.30 – Snapshot on the anisotropic mesh associated with the quenching chamber at time 1100s.
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applied at a frequency of 10 time increments using 100, 000 nodes while adapting on
the levelset functions of the agitators, the injector, the outlet and the hollow metal as
well as the temperature field and the velocity field and norm.

We present in figures 7.31 and 7.32 the velocity field and streamlines’ distribution
after immersing the heated workpiece at increasing time instances. We can identify
the toroidal aspect of the flow. It is characterized by uniform internal and external cir-
cular rotating behaviors around the hollow cylinder. This velocity distribution allows
homogenous heat transfer between the cold water pumped into the enclosure and the
steel ingot. The thermal distribution over the simulation time on different planar cuts

Figure 7.31 – Velocity streamlines during the cooling phase inside the quenching chamber at different
time instances.

are depicted in figure 7.33. The snapshots reveal the uniform and symmetric cooling
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Figure 7.32 – Velocity field inside the quenching chamber during the cooling phase at two different time
instances.

of the metal which is at the origin of a uniform change in the thermo-mechanical prop-
erties of the final product in terms of resistance, ductility and flexibility. We point out
that the obtained solution is free of numerical oscillations reflecting the good tuning
of the adopted stabilization approach. The anisotropic mesh generated while adapting
on the hollow object, the injector, the turbines, the temperature field and the velocity
field and norm is provided in figure 7.34. We can clearly identify how accurately the
solid/fluid interface is represented yielding a good material distribution and thus accu-
rate heat transfers over the computational domain. The nodes are optimally distributed
in accordance with the physics of the problem providing a good control on the interpo-
lation errors of the solution. During the experimental analysis, the hollow ingot was
instrumented with thermocouples and thermal variations were reported for numerical
comparisons. We present in figures 7.35 and 7.36 the thermal distribution at different
sensors positioned inside and outside the workpiece. The variations obtained using the
anisotropic mesh adaptation and time adaptive approaches are compared to the ones
generated on a fixed mesh and using a fixed time-step size 0.1s and to the experimental
data. It can be clearly identified that the experimental data are way from being well
captured and that numerically a faster cool down is being predicted. This discrepancy
can be associated with the absence of a boiling model as well as the diffusive character
of the used P1 radiative model. Indeed, water, having a higher thermal conductivity
than vapor, provides faster cooling rates. Moreover, since the specific heat capacity as-
sociated with water is higher than that of vapor, the former is able to absorb more heat
than the latter for the same raise in their temperatures. Therefore, by ignoring the pres-
ence of vapor films in the surrounding of the hollow ingot and by assuming that this
solid is in direct contact with the water, that presents higher quenching rates, a rapid
decrease in its temperature is expected. This is exactly what was reflected by the nu-
merical simulations. Furthermore, comparing the results obtained with the anisotropic
mesh adaptation and time adaptive approach we detect a better capture of the thermal
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Figure 7.33 – Temperature distribution inside the quenching chamber during the cooling phase at two
different time instances.

Figure 7.34 – Snapshot on the anisotropic mesh associated with the quenching chamber after immersing
the hollow solid.
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evolution on all the sensors. This proves once again that the developed adaptation tools
improve the accuracy of the numerical solutions. Figure 7.37 presents a comparison

Figure 7.35 – Temperature variation at thermocouples C1 and C3 implanted on the surface of the
workpiece.

of the thermal distribution on the different sensors implanted inside the workpiece.
The obtained variations are in very good agreement with expectations while a very fast
cooling is noted at sensor 3 that is the closest to the cold water injector, a slower rate is
highlighted in the core of the workpiece. In addition, due to the heat transfer between
the hot metal and the cold fluid, as the former gets cooler the latter gets hotter and
hence presents lower cooling rates. This is revealed by the slow down of the cooling
at sensor 3 after 200s. Furthermore, being close to the surface, thermocouples C1 and
C5 reflect a quicker cooling than thermocouples C2 and C4 which are at the heart of
the solid object. In the absence of the heat transfer coefficient, the IVM based on the
new adaptive algorithm proves, once again, to be essential for the resolution of such a
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Figure 7.36 – Temperature variation at thermocouples C2, C4 and C5 implanted at the heart of the
workpiece.
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Figure 7.37 – Comparison of the thermal distribution at the different thermocouples implanted inside
the workpiece.

complex conjugate heat transfer fluid/structure interaction problem. In order to quan-
tify the accuracy of the computed solution, we compare the obtained results using the
anisotropic mesh adaptation and the time adaptive method with the ones computed
on a fixed mesh of around 100, 000 nodes and a fixed time-step size 0.01s and the ones
computed on a very fine mesh of 875, 000 nodes and a time-step 0.005s. We can clearly
see that the solution generated on an anisotropically adapted mesh is more accurate
than the one computed on a fixed mesh having the same resolution.

As for the efficiency of computations, we summarize in table 7.2 the CPU time
needed for generating each of the computed solutions. The 3D computations were run
in parallel on 40, 2.4Ghz Opetron cores linked by an Infiniband network. Although
using the anisotropic mesh adaptation tools induces an associated execution time, a
faster convergence of the finite element solvers is noted when the meshes and time-
step sizes are optimally predicted to control the interpolation error in the solution.
The obtained data reflect the great advantage of the developed approach in terms of
simulation time.

We note that in this test case the prediction of the boiling process is very important
for determining the thermal variation and heat transfer at the fluid/solid interface.
Indeed, during the cooling process, a vapor film is formed around the metal with
quenching properties weaker than those of water and hence if taken into account they
would result in a numerical solution that is closer to the experimental one. This mod-
elling is not taken into account in the current study and will be the subject of future
investigations. This explains the discrepancies between the numerical results and the
experimental data.
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CPU Time (h)
Fixed mesh 875, 000 nodes & ∆t = 0.005 458.6

Fixed mesh 100, 000 nodes & ∆t = 0.1 134.8
Adaptive space 100, 000 nodes & ∆t = 0.1 164.3

Adaptive space & time 100, 000 nodes 2.9

Table 7.2 – CPU time needed to simulate the conjugate heat transfers and fluid flows inside a quenching
chamber.

7.6 Résumé français

Dans ce chapitre, nous nous sommes intéréssé à l’application des outils développés
et des méthodes numériques présentées dans les chapitres précédents à la modéli-
sation et la simulation de procédés industriels tels que le traitement thermique de
pièces métalliques dans des fours et la trempe dans des bâches ou des chambres de
refroidissement. La complexité du procédé, des géométries, les ratio de propriétés
physiques élevées rendent une telle simulation difficile en terme de modélisation et de
coût de calcul. La compréhension des phénomènes physiques impliqués permettra à
nos partenaires industriels de contrôler les séquences de traitement thermique en vue
de réduire la consommation d’énergie et d’améliorer la qualité de leurs produits en
termes de microstructure, fléxibilité, ductilité et résistance.

Trois classes différentes de procédés industriels ont été traitées: refroidissement 3D
par convection naturelle d’un lingot en forme de disque chapeau, chauffage 3D d’une
pièce métallique à l’intérieur d’un four industriel, trempe 2D d’un lingot en forme
de couronne par convection forcée de gaz et un cas de trempe 3D dans une bâche
à eau. Il est important de signaler que ce travail constitue la première fois que de
véritables simulations ont été abordées, avec un coût de calcul raisonnable, modélisant
les procédés dans leur intégralité ce qui se pose comme une avancée majeure au vu de
la complexité des cas considérés.

Dans tous les cas, en comparaison avec les profils expérimentaux, la tendance des
solutions numériques obtenues refléte le potentiel des outils numériques en termes
de méthodes de stabilisation et d’adaptation espace et temps. Bien que les données
expérimentales n’ont pas pu être récupéré numériquement pour tous les exemples,
les outils dévéloppés ont démontré leur efficacité et utilité à améliorer la qualité des
solutions cherchées. La confrontation avec les données expérimentales a souligné la
nécéssité de développer des modèles numériques supplémentaire, tel que des modèles
de combustion, d’ébullition, et des modèles de rayonnement moins diffusifs afin de
mieux représenter les procédés envisagés.
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"Seuls se félicitent d’être arrivés ceux qui se savent incapables d’aller plus loin."
Amin Maalouf

This thesis was motivated by the need to perform long time and large-scale sim-
ulations of complex fluid/structure interaction problems. These problems can exhibit
challenges at the interface levels and variations at the small and the large scales, and in
both cases it is highly desirable to capture those variations with good levels of accuracy
and efficiency. To answer this objective, we aimed at developing a general space and
time adaptation framework. The adopted approach responds to the anisotropic nature
of the physical phenomena by constructing anisotropically adapted meshes that control
the global interpolation error induced during the computations. The present work can
be regarded as a sedimentation and cultivation plan in a fertile land.

We started in chapter 1 with the land preparation process where we introduced the
numerical tools adopted for the modelling and simulation of conjugate heat transfer
and turbulent flow problems. Since, on the one hand, standard Galerkin formulations
exhibit numerical oscillations in convection or diffusion dominated regimes especially
in the vicinity of sharp solution gradient, and, on the other hand, incompatibility re-
strictions on the choice of the finite element spaces are necessary for flow problems to
ensure the stability of the formulation, we resort to the use of stabilization techniques
in order to deal with numerical instabilities. In order to deal with the turbulent be-
havior of the flow, turbulence models were considered. The performance and potential
of these numerical methods have been exposed on two and three dimensional applica-
tions reflecting their accuracy in simulating physical phenomena. In all the examples,
a fixed fine mesh and a fixed small time-step size have been used. Although these tools
resulted in precise computations, the investigation on complex three dimensional cou-
pled problems reflected the need for further considerations tackling the computational
efficiency to cope with the limitation in the available computer resources.

The novelty brought forth in this work resides in the development of space and
time adaptive approaches capable of improving the accuracy and efficiency of the com-
putations while respecting the available computational power. An anisotropic mesh
adaptation technique, working under the constraint of a prescribed fixed number of
nodes in the mesh has been developed, implemented and validated in chapter 2. The
mesh generation process has been briefly described pointing out its capability to receive
metric tensors and generate the corresponding adapted mesh. A detailed description
of the adaptation framework has been provided. The mesh adaptation problem was
reformulated as an optimization one whereby one seeks, at each node in the mesh, the
metric tensor that best controls the interpolation error in the Lp norm. The tensor, at
a certain node, prescribes optimal mesh sizes along the different directions connected
to the node. Moreover, a natural way to obtain the latter direction was defined using
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the length distribution tensor and the optimal mesh sizes were obtained by imposing
stretching factors along the existing edges in the mesh. Two approaches for comput-
ing the stretching factors while respecting a fixed mesh complexity were proposed.
The first one relies on the minimization of the total error over the edges in the mesh
whereas the second intends to equi-distribute the error along these edges. In order
to quantify this error, a new edge-based a posteriori error estimator was derived. It
defines the error along a spatial edge as the projected change in the field’s gradient
along that edge. Furthermore, since for most physical problems the exact solution’s
gradient is not known analytically then a recovery process has been proposed through
the resolution of a least square problem and resulted in a second order reconstruction.
The theoretical and numerical validation on the control of the Lp norm of the inter-
polation error through the use of this edge-based error estimator have been provided.
Further consideration of the metric derivation lead to the extension of the definition of
the averaged length distribution tensor to a privileged distribution giving more weight
to the edges in the gradient direction and yielding a faster and sharper representation
of anisotropic features and a capture of small scale variations. The global accuracy
and efficiency of the derived method were validated on analytical functions exhibiting
sharp gradients, multiscale variations and steep discontinuities. In all the cases, the
adaptation algorithm proved to improve the quality of the results and to maintain a
reduced execution time.

In chapter 3, we aimed at testing the developed anisotropic mesh adaptation tool
on CFD problems. We started with an a priori error analysis demonstrating that the
control of the interpolation error on the convection-diffusion-reaction and the Navier-
Stokes equation yields a control of the approximation error of these problems. Then
definitions of the characteristic lengths involved in the solvers’ stabilization param-
eters were provided accounting for highly stretched elements. Applications of the
anisotropic mesh adaptation technique on CFD problems, provided next, reflected the
capabilities of the developed approach to enhance the precision of computations and
reduce the simulation time.

The theory of adaptation was then extended in chapter 4 to include a time-adaptive
technique. The coupling between the spatial and temporal adaptations was respected
using the equi-distribution principle. The convergence, accuracy and efficiency of the
newly developed adaptation method, known as the classical approach or the single
time-step adaptation, have been validated on two and three dimensional problems
involving conjugate heat transfer and turbulent flows.

In the view of resolving fluid structure interaction problems, we have adopted in
chapter 5 the immersed volume method and extended it to contain dynamic and au-
tomatic mesh adaptation. A full description of the method’s components was empha-
sized. The method retains the use of a monolithic formulation whereby the fluid and
solid parts of the problem were considered as a single medium with variable material
properties. A levelset function was used to delimit the interface between the subdo-
mains and to distribute the material properties using mixing laws. Combined with the
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dynamic anisotropic mesh adaptation technique, the IVM lead to accurate simulation
of FSI problems. By virtue of the monolithic formulation, the method does not need to
impose a heat transfer coefficient at the interface level. This parameter is usually dif-
ficult to determine and requires experimental studies and hence constitutes a limiting
factor for industrial applications. In this chapter, we have also described the simple
and powerful multi-criteria adaptation that permits the generation of meshes adapted
on several fields of interest. The numerical results on turbulent fluid flows and con-
jugate heat transfer problems highlighted the potential of the IVM and the classical
adaptation technique to handle fluid-structure interaction problems with good levels
of accuracy and efficiency. Nevertheless, when applied with a certain frequency in the
context of problems involving moving geometries, the anisotropic adaptation showed
to be slowing down the advancement of the objects over time raising the need for an
adaptation that deals with slabs of time.

To overcome this computational difficulty and ensure full adaptation over the whole
simulation time, the spatio-temporal anisotropic adaptation has been extended in chap-
ter 6 to construct optimal meshes and time-step sizes for slabs of time. All the details
on the derivation, structure and implementation of the method were discussed. The
algorithm involves the generation of a set of optimal metric tensors and slab sizes fol-
lowed by a 2D or a 3D remeshing in space and a 1D remeshing in time. Notably, the 1D
remesher was developed and implemented in this work permitting the redistribution
of the temporal nodes in an optimal configuration. The algorithm demonstrated its
accuracy and efficiency on analytical functions, CFD application, and a fluid-structure
interaction problem involving moving geometries.

The application of the developed numerical tools on 3D complex problems involv-
ing conjugate heat transfers and turbulent flows inside large scale geometries have been
investigated in chapter 7. The obtained results reflected an improvement in the numer-
ical accuracy and the efficiency of computations compared to the ones computed on a
fixed fine mesh and a fixed small time-step size.

Therefore, we have prepared and sedimented the fertile land with nutrients and
cultivated some of its fruits. At this stage, it is ready to receive new implements from
successive endeavors. There is a series of short and long term prospects of this work.
These can be divided into three main parts. The first one concerns the improvement
of the existing solvers, the second deals with the adaptation algorithm and the third
concerns the industrial applications.

• At the level of the solvers, we have used a P1 radiation model which is known
to overestimate the radiative effects and to equally diffuse the temperature to
the neighboring medium. The work has already started on the development of
a more accurate radiation model, the M1 model, in the work of [Schmidt 16].
This model accounts for the radiative directions of propagation. In addition, to
improve the accuracy of the computations, a first attempt would be to enrich the
variational multiscale stabilization approach to account for dynamic variations of
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the small scales and hence model the nonlinear effect of turbulence on the global
flow. The second goal would be to extend the available numerical tools to deal
with compressible flows. A third objective is to extend the implemented stabilized
finite elements methods to account for higher order temporal discretization.

• The enhancement of the developed space and time adaptation techniques can be
achieved by providing a control on the approximation error instead of the inter-
polation one. A second improvement would be to provide a problem oriented
control instead of a field based adaptation. An extension to build up anisotropic
meshes with a desired resolution at the boundary layers is currently under inves-
tigation in the thesis work of [Billon 16] and will in turn open the door to further
considerations concerning the accuracy provided by the adaptation process.

• Concerning the industrial applications in the frame of the REALisTIC project,
combustion and boiling models seem mandatory to reduce the discrepancies be-
tween the numerical solutions and the experimental data. This would permit
the investigation of what-if scenarios and answer the general industrial objec-
tive of reducing pollutant emissions and energy consumption as well as improv-
ing the quality of the final product. Moreover, more accurate experimental data
are highly demanded for conducting real simulations, these include the thermo-
mechanical properties of the insulating walls, the chemical constituents and thus
the combustion power of the injected gas. Until now, adhoc conditions were pro-
vided by our industrial partners based on observations and estimations. However,
for accurate representation of the conjugate heat transfers, qualitative information
are still needed. To do so, the industrials are currently setting up heating and
quenching chambers that would only serve for experimental studies and thus for
numerical validations.

On the long run, these developments can serve as the basis for building design opti-
mization algorithms for aerodynamic simulations, automotive industry, heat treatment
furnaces and many other applications.

Résumé français

Dans cette thèse, de nouvelles méthodes d’adaptations anisotropes en espace et en
temps ont été proposées. Une approche de construction de métriques basée sur un es-
timateur d’erreur par arrête a été développée. Le principe d’équidistribution de l’erreur
en espace et en temps a permis le contrôle de l’erreur d’interpolation spatiale et tem-
porelle avec un seul paramètre: le nombre fixe de nœuds dans le maillage. Cette restric-
tion se pose comme un avantage essentiel de la méthode proposée et permet de réduire
le temps de calcul. Les outils numériques proposés: solveurs éléments finis stabilisés,
méthode d’immersion de volume, et adaptation anisotrope en espace-temps ont révélé
une robustesse et une capacité à modéliser et simuler des problèmes fortement cou-
plés d’écoulement de fluides turbulents et de transfert thermiques. Leur performance
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a été confronté aux résultats obtenue sans adaptation et aux données expérimentales
sur plusieurs problèmes industriels. Des améliorations de précision des résultats et des
réductions des temps de calculs ont été notés. Cependant, dans cette dernière partie
de la thèse, des propositions de dévéloppements supplémentaires ont été discutées au
niveau de l’adaptation en espace-temps, des solveurs et des modélisations de procédés
industriels.
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Adaptation anisotrope précise en espace-temps et méthodes d’éléments finis
stabilisées pour la résolution de problèmes de mécanique des fluides instationnaires

RESUMÉ: Aujourd’hui, avec l’amélioration des puissances de calcul informatique, la simulation
numérique est devenue un outil essentiel pour la prédiction des phénomènes physiques et l’optimisation
des procédés industriels. La modélisation de ces phénomènes pose des difficultés scientifiques car leur
résolution implique des temps de calcul très longs malgré l’utilisation d’importantes ressources infor-
matiques. Dans cette thèse, nous nous intéressons à la résolution de problèmes complexes couplant
écoulements et transferts thermiques. Les problèmes physiques étant fortement anisotropes, il est néces-
saire d’avoir un maillage avec une résolution très élevée pour obtenir un bon niveau de précision. Cela
implique de longs temps de calcul. Ainsi il faut trouver un compromis entre précision et efficacité. Le
développement de méthodes d’adaptation en temps et en espace est motivé par la volonté de mettre en
place des applications réelles et de limiter les inconvénients inhérents aux méthodes de résolution non
adaptatives en terme de précision et d’efficacité. La résolution de problèmes multi-échelles instationnaires
sur un maillage uniforme avec un nombre de degrés de liberté limité est souvent incapable de capturer
les petites échelles, nécessite des temps de calcul longs et peut aboutir à des résultats incorrects. Ces
difficultés ont motivé le développement de méthodes de raffinement local avec une meilleure précision
aux endroits adéquats. L’adaptation en temps et en espace peut donc être considérée comme une
composante essentielle de ces méthodes. L’approche choisie dans cette thèse consiste en l’utilisation
de méthodes éléments finis stabilisées et le développement d’outils d’adaptation espace-temps pour
améliorer la précision et l’efficacité des simulations numériques. La dérivation de la méthode adaptative
est basé sur un estimateur d’erreur sur les arrêtes du maillage afin de localiser les régions du domaine
de calcul présentant de forts gradients ainsi que les couches limites. Ensuite une métrique décrivant la
taille de maille en chaque noeud dans les différentes directions est calculée. Afin d’améliorer l’efficacité
des calculs, la construction de cette métrique prend en compte un nombre fixe de noeuds et aboutit à
une répartition et une orientation optimale des éléments du maillage. Cette approche est étendue à une
formulation espace-temps où les maillages et les pas de temps optimaux sont prédits sur des intervalles
de temps en vue de contrôler l’erreur d’interpolation sur le domaine de calcul.

Mots clés: Adaptation de maillage anisotrope, Adaptation de temps, Méthodes éléments finis stabilisées,
Résolution de transferts thermiques, Résolution de écoulements turbulents, Fours industriels

Space-Time accurate anisotropic adaptation and stabilized finite element methods for
the resolution of unsteady computational fluid dynamics problems

ABSTRACT: Nowadays, with the increase in computational power, numerical modeling has become an
intrinsic tool for predicting physical phenomena and developing engineering designs. The modeling of
these phenomena poses scientific complexities the resolution of which requires considerable computa-
tional resources and long lasting calculations. In this thesis, we are interested in the resolution of complex
long time and large scale heat transfer and fluid flow problems. When the physical phenomena exhibit
sharp anisotropic features, a good level of accuracy requires a high mesh resolution, hence hindering the
efficiency of the simulation. Therefore a compromise between accuracy and efficiency shall be adopted.
The development of space and time adaptive techniques was motivated by the desire to devise realistic
configurations and to limit the shortcomings of the traditional non-adaptive resolutions in terms of lack
of solution’s accuracy and computational efficiency. Indeed, the resolution of unsteady problems with
multi-scale features on a prescribed uniform mesh with a limited number of degrees of freedom often
fails to capture the fine scale physical features, have excessive computational cost and might produce
incorrect results. These difficulties brought forth investigations towards generating meshes with local
refinements where a higher resolution was needed. Space and time adaptations can thus be regarded as
essential ingredients in this recipe. The approach followed in this work consists in applying stabilized
finite element methods and the development of space and time adaptive tools to enhance the accuracy
and efficiency of the numerical simulations. The derivation process starts with an edge-based error
estimation for locating the regions, in the computational domain, presenting sharp gradients, inner and
boundary layers. This is followed by the construction of nodal metric tensors that prescribe, at each
node in the spatial mesh, mesh sizes and the directions along which these sizes are to be imposed. In
order to improve the efficiency of computations, this construction takes into account a fixed number
of nodes and generates an optimal distribution and orientation of the mesh elements. The approach is
extended to a space-time adaptation framework, whereby optimal meshes and time-step sizes for slabs of
time are constructed in the view of controlling the global interpolation error over the computation domain.

Keywords: Anisotropic mesh adaptation, Time Adaptation, Stabilized finite element methods, Resolution
of heat transfers, Resolution of turbulent flows, Industrial furnaces
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