D. Method and .. , 188 8.1.1 Presentation of the Spatially Coupled Problem 188 8.1.2 First Idea: Price Decomposition Scheme, Georg Pólya Contents 8.1 Overview of the

T. Analysis-of-the, D. Method, and .. , 203 8.3.1 Interpretations of the DADP method Consequences of Finitely Supported Noises, 203 8.3.2 Consistence of the Approximation, p.208

N. Results and .. The-hydraulic-valley-example, 209 8.4.1 Problem Specification, p.210

D. Topology, 221 A.1.1 General Definitions on, p.227

J. C. Alais, Risques et optimisation pour le management d'´ energies: applicationàapplicationà l'hydraulique. PhD dissertation, ´ Ecole des Ponts ParisTech, 2013.

C. Aliprantis and O. Burkinshaw, Positive operators, 1985.
DOI : 10.1007/978-1-4020-5008-4

C. D. Aliprantis and K. C. Border, Infinite dimensional analysis: a hitchhiker's guide, 2006.

M. F. Anjos and J. B. Lasserre, Handbook on Semidefinite, Conic and Polynomial Optimization, 2012.
DOI : 10.1007/978-1-4614-0769-0

P. Artzner, F. Delbaen, J. Eber, D. Heath, and H. Ku, Coherent multiperiod risk adjusted values and Bellman???s principle, Annals of Operations Research, vol.10, issue.1, pp.5-22, 2007.
DOI : 10.1007/s10479-006-0132-6

P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, Coherent Measures of Risk, Mathematical Finance, vol.9, issue.3, pp.203-228, 1999.
DOI : 10.1111/1467-9965.00068

P. Artzner, F. Delbaen, J. M. Eber, D. Heath, and H. Ku, Coherent multiperiod risk measurement, 2002.

H. Attouch, Variational convergence for functions and operators, 1984.

V. Barbu and T. Precupanu, Convexity and optimization in Banach spaces, 2012.

K. Barty, P. Carpentier, and P. Girardeau, Decomposition of large-scale stochastic optimal control problems, RAIRO - Operations Research, vol.44, issue.3, pp.167-183, 2010.
DOI : 10.1051/ro/2010013

URL : https://hal.archives-ouvertes.fr/hal-01232179

R. Bellman, Dynamic Programming and the Smoothing Problem, Management Science, vol.3, issue.1, pp.111-113, 1956.
DOI : 10.1287/mnsc.3.1.111

R. E. Bellman and N. J. , Dynamic Programming, 1957.

A. Ben-tal, L. Ghaoui, and A. Nemirovski, Robust optimization, 2009.
DOI : 10.1515/9781400831050

A. Ben-tal and A. Nemirovski, Lectures on Modern Convex Optimization ? Analysis, Algorithms , and Engineering Applications, MPS-SIAM Series on Optimization 2. SIAM, 2001.

A. Ben-tal and A. Nemirovski, Robust optimization ? methodology and applications, Mathematical Programming, pp.453-480, 2002.
DOI : 10.1007/s101070100286

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.8364

P. Bernhard, Max-plus algebra and mathematical fear in dynamic optimization. Set-Valued Analysis, pp.71-84, 2000.

D. Bertsekas, Dynamic programming and optimal control, Athena Scientific Belmont, vol.1, 1995.

D. Bertsekas, Dynamic Programming and Optimal Control, Athena Scientific, issue.2, 2000.

D. Bertsekas, Approximate dynamic programming. Citeseer, 2011.

D. Bertsekas and S. Shreve, Stochastic optimal control: The discrete time case, 1978.

J. R. Birge and F. Louveaux, Introduction to stochastic programming, 2011.
DOI : 10.1007/978-1-4614-0237-4

A. Bobrowski, Functional analysis for probability and stochastic processes: an introduction, 2005.
DOI : 10.1017/CBO9780511614583

K. Boda and J. A. Filar, Time Consistent Dynamic Risk Measures, Mathematical Methods of Operations Research, vol.225, issue.3, pp.169-186, 2006.
DOI : 10.1007/s00186-005-0045-1

J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems, 2000.
DOI : 10.1007/978-1-4612-1394-9

H. Brezis, Analyse fonctionelle, 1983.

P. Carpentier, J. Chancelier, G. Cohen, M. D. Lara, and P. Girardeau, Dynamic consistency for stochastic optimal control problems, Annals of Operations Research, vol.7, issue.1, pp.247-263, 2012.
DOI : 10.1007/s10479-011-1027-8

URL : https://hal.archives-ouvertes.fr/hal-00483811

Z. L. Chen and W. Powell, Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse, Journal of Optimization Theory and Applications, vol.75, issue.3, pp.497-524, 1999.
DOI : 10.1023/A:1022641805263

P. Cheridito, F. Delbaen, and M. Kupper, Dynamic Monetary Risk Measures for Bounded Discrete-Time Processes, Electronic Journal of Probability, vol.11, issue.0, pp.57-106, 2006.
DOI : 10.1214/EJP.v11-302

P. Cheridito and M. Kupper, COMPOSITION OF TIME-CONSISTENT DYNAMIC MONETARY RISK MEASURES IN DISCRETE TIME, International Journal of Theoretical and Applied Finance, vol.14, issue.01, pp.137-162, 2011.
DOI : 10.1142/S0219024911006292

G. Cohen, Auxiliary problem principle and decomposition of optimization problems, Journal of Optimization Theory and Applications, vol.2, issue.3, pp.277-305, 1980.
DOI : 10.1007/BF00934554

K. D. Cotter, Similarity of information and behavior with a pointwise convergence topology, Journal of Mathematical Economics, vol.15, issue.1, pp.25-38, 1986.
DOI : 10.1016/0304-4068(86)90021-2

A. Dallagi, Méthodes particulaires en commande optimale stochastique, 2007.

G. Dantzig, Linear programming and extensions, 1965.
DOI : 10.1515/9781400884179

D. Lara and L. Doyen, Sustainable management of natural resources, 2008.

C. Dellacherie and P. Meyer, Probabilités et potentiel, chapitres i-iv. hermann, paris, 1975. english translation: Probabilities and potentiel, chapters i-iv, 1978.

K. Detlefsen and G. Scandolo, Conditional and dynamic convex risk measures, Finance and Stochastics, vol.9, issue.4, pp.539-561, 2005.
DOI : 10.1007/s00780-005-0159-6

C. J. Donohue, Stochastic Network Programming and the Dynamic Vehicle Allocation Problem, 1996.

C. J. Donohue and J. R. Birge, The abridged nested decomposition method for multistage stochastic linear programs with relatively complete recourse, Algorithmic Operations Research, vol.1, pp.20-30, 2006.

L. Doyen and M. Lara, Stochastic viability and dynamic programming, Systems & Control Letters, vol.59, issue.10, pp.629-634, 2010.
DOI : 10.1016/j.sysconle.2010.07.008

URL : https://hal.archives-ouvertes.fr/hal-00453499

S. Dreyfus, Richard Bellman on the Birth of Dynamic Programming, Operations Research, vol.50, issue.1, pp.48-51, 2002.
DOI : 10.1287/opre.50.1.48.17791

N. Dunford and J. Schwartz, Linear Operators. Part 1: General Theory, Interscience publishers, 1958.

J. Dupacová and R. Wets, Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems. The annals of statistics, 1988.

R. Durrett and R. Durrett, Probability: theory and examples, 2010.
DOI : 10.1017/CBO9780511779398

I. Ekeland and R. Téman, Convex analysis and variational problems, Society for Industrial and Applied Mathematics, 1999.
DOI : 10.1137/1.9781611971088

H. Everett, Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources, Operations Research, vol.11, issue.3, pp.399-417, 1963.
DOI : 10.1287/opre.11.3.399

E. C. Finardi and E. L. Da-silva, Solving the Hydro Unit Commitment Problem via Dual Decomposition and Sequential Quadratic Programming, IEEE Transactions on Power Systems, vol.21, issue.2, pp.835-844, 2006.
DOI : 10.1109/TPWRS.2006.873121

H. Föllmer and A. Schied, Convex measures of risk and trading constraints, Finance and Stochastics, vol.6, issue.4, pp.429-447, 2002.
DOI : 10.1007/s007800200072

A. Georghiou, W. Wiesemann, and D. Kuhn, Generalized decision rule approximations for stochastic programming via liftings. Optimization Online, 2010.

P. Girardeau, Résolution de grandsprobì emes en optimisation stochastique dynamique et synthèse de lois de commande, 2010.

D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, 1989.

G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes: Second Edition, 1992.

P. Hammond, Changing Tastes and Coherent Dynamic Choice, The Review of Economic Studies, vol.43, issue.1, pp.159-173, 1976.
DOI : 10.2307/2296609

URL : http://restud.oxfordjournals.org/cgi/content/short/43/1/159

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning, 2009.

M. Hindsberger and A. Philpott, ReSa: A method for solving multi-stage stochastic linear programs, SPIX Stochastic Programming Symposium, 2001.

A. Jobert and L. Rogers, VALUATIONS AND DYNAMIC CONVEX RISK MEASURES, Mathematical Finance, vol.12, issue.1, pp.1-22, 2008.
DOI : 10.1111/j.1467-9965.2007.00320.x

URL : http://arxiv.org/abs/0709.0232

J. E. Kelley-jr, The Cutting-Plane Method for Solving Convex Programs, Journal of the Society for Industrial and Applied Mathematics, vol.8, issue.4, pp.703-712, 1960.
DOI : 10.1137/0108053

A. King and R. Wets, Epi???consistency of convex stochastic programs, Stochastics and Stochastic Reports, vol.300, issue.1-2, 1991.
DOI : 10.1137/1016053

S. Kirkpatrick and M. P. Vecchi, Optimization by Simulated Annealing, Science, vol.220, issue.4598, pp.671-680, 1983.
DOI : 10.1126/science.220.4598.671

D. M. Kreps and E. L. Porteus, Temporal Resolution of Uncertainty and Dynamic Choice Theory, Econometrica, vol.46, issue.1, pp.185-200, 1978.
DOI : 10.2307/1913656

H. Kudo, A note on the strong convergence of ?-algebras. The Annals of Probability, pp.76-83, 1974.

D. Kuhn, W. Wiesemann, and A. Georghiou, Primal and dual linear decision rules in stochastic and robust optimization, Mathematical Programming, 2011.
DOI : 10.1007/s10107-009-0331-4

K. Linowsky and A. Philpott, On the Convergence of Sampling-Based Decomposition Algorithms for Multistage Stochastic Programs, Journal of Optimization Theory and Applications, vol.10, issue.2, pp.349-366, 2005.
DOI : 10.1007/s10957-004-1842-z

M. Machina, Dynamic consistency and non-expected utility models of choice under uncertainty, Journal of Economic Litterature, vol.27, pp.1622-1668, 1989.

K. Miettinen, Nonlinear multiobjective optimization, 1999.
DOI : 10.1007/978-1-4615-5563-6

J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios, Robust Optimization of Large-Scale Systems, Operations Research, vol.43, issue.2, pp.264-281, 1995.
DOI : 10.1287/opre.43.2.264

G. Nemhauser and L. Wolsey, Integer and combinatorial optimization, 1988.
DOI : 10.1002/9781118627372

URL : http://dx.doi.org/10.1016/s0898-1221(99)91259-2

Y. Nesterov, Introductory Lectures on Convex Optimization, Kluwer, vol.87, 2004.
DOI : 10.1007/978-1-4419-8853-9

Y. Nesterov, Introductory lectures on convex optimization: A basic course, 2004.
DOI : 10.1007/978-1-4419-8853-9

M. Nowak, A characterization of the Mackey topology ? (L ? , L 1 ) Proceedings of the, pp.683-689, 1990.

K. Owari, A robust version of convex integral functionals. arXiv preprint, 2013.

B. Peleg and M. Yaari, On the Existence of a Consistent Course of Action when Tastes are Changing, The Review of Economic Studies, vol.40, issue.3, pp.391-401, 1973.
DOI : 10.2307/2296458

T. Pennanen, Epi-Convergent Discretizations of Multistage Stochastic Programs, Mathematics of Operations Research, vol.30, issue.1, pp.245-256, 2005.
DOI : 10.1287/moor.1040.0114

T. Pennanen, Epi-convergent discretizations of multistage stochastic programs via integration quadratures, Mathematical Programming, pp.461-479, 2009.
DOI : 10.1007/s10107-007-0113-9

T. Pennanen and M. Koivu, Epi-convergent discretizations of stochastic programs via integration quadratures, Numerische Mathematik, vol.24, issue.1, pp.141-163, 2005.
DOI : 10.1007/s00211-004-0571-4

G. Pflug and A. Pichler, On dynamic decomposition of multistage stochastic programs. Optimization Online preprint, 2012.

A. Philpott, V. De-matos, and E. Finardi, On Solving Multistage Stochastic Programs with Coherent Risk Measures, Operations Research, vol.61, issue.4, pp.957-970, 2013.
DOI : 10.1287/opre.2013.1175

A. Philpott and Z. Guan, On the convergence of stochastic dual dynamic programming and related methods, Operations Research Letters, vol.36, issue.4, pp.450-455, 2008.
DOI : 10.1016/j.orl.2008.01.013

A. Philpott and Z. Guan, A multistage stochastic programming model for the New Zealand dairy industry, International Journal of Production Economics, vol.134, issue.2, pp.289-299, 2011.

L. Piccinini, A New Version of the Multivalued Fatou Lemma, Journal of Applied Analysis, vol.4, issue.2, 1998.
DOI : 10.1515/JAA.1998.231

W. Powell, Approximate Dynamic Programming: Solving the curses of dimensionality, 2007.
DOI : 10.1002/9781118029176

F. Riedel, Dynamic coherent risk measures, Stochastic Processes and their Applications, pp.185-200, 2004.

F. Riedel, Dynamic coherent risk measures, Stochastic Processes and their Applications, pp.185-200, 2004.
DOI : 10.1016/j.spa.2004.03.004

URL : http://doi.org/10.1016/j.spa.2004.03.004

R. T. Rockafellar and R. Wets, Stochastic convex programming: singular multipliers and extended duality singular multipliers and duality, Pacific Journal of Mathematics, vol.62, issue.2, pp.507-522, 1976.
DOI : 10.2140/pjm.1976.62.507

R. T. Rockafellar, Extension of Fenchel's duality theorem for convex functions. Duke mathematical journal, pp.81-89, 1966.

R. T. Rockafellar, Integrals which are convex functionals, Pacific Journal of Mathematics, vol.24, issue.3, pp.525-539, 1968.
DOI : 10.2140/pjm.1968.24.525

R. T. Rockafellar, Conjugate duality and optimization, Society for Industrial Applied Mathematics, vol.16, 1974.

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions, Journal of Banking & Finance, vol.26, issue.7, pp.1443-1471, 2002.
DOI : 10.1016/S0378-4266(02)00271-6

R. T. Rockafellar and R. Wets, Stochastic convex programming: Kuhn-Tucker conditions, Journal of Mathematical Economics, vol.2, issue.3, pp.349-370, 1975.
DOI : 10.1016/0304-4068(75)90003-8

R. T. Rockafellar and R. Wets, Nonanticipativity and L 1-martingales in stochastic optimization problems, Stochastic Systems: Modeling, Identification and Optimization, II, pp.170-187, 1976.
DOI : 10.1007/BFb0120750

R. T. Rockafellar and R. Wets, Stochastic Convex Programming: Relatively Complete Recourse and Induced Feasibility, SIAM Journal on Control and Optimization, vol.14, issue.3, pp.574-589, 1976.
DOI : 10.1137/0314038

R. T. Rockafellar and R. Wets, Measures as Lagrange multipliers in multistage stochastic programming, Journal of Mathematical Analysis and Applications, vol.60, issue.2, 1977.
DOI : 10.1016/0022-247X(77)90020-8

R. T. Rockafellar and R. Wets, The Optimal Recourse Problem in Discrete Time: $L^1 $-Multipliers for Inequality Constraints, SIAM Journal on Control and Optimization, vol.16, issue.1, 1978.
DOI : 10.1137/0316002

R. T. Rockafellar and R. Wets, Stochastic convex programming: basic duality, Pacific Journal of Mathematics, vol.62, issue.1, pp.173-195, 1976.
DOI : 10.2140/pjm.1976.62.173

R. T. Rockafellar and R. Wets, Scenarios and Policy Aggregation in Optimization Under Uncertainty, Mathematics of Operations Research, vol.16, issue.1, pp.119-147, 1991.
DOI : 10.1287/moor.16.1.119

W. Rudin, Functional analysis. International series in pure and applied mathematics, 1991.

B. Rudloff, A. Street, and D. M. Valladão, Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences, European Journal of Operational Research, vol.234, issue.3, 2013.
DOI : 10.1016/j.ejor.2013.11.037

A. Ruszczy´nskiruszczy´nski, Decomposition methods. Handbooks in Operations Research and Management Science, pp.141-211, 2003.

A. Ruszczy´nskiruszczy´nski, Nonlinear Optimization, 2011.

A. Ruszczy´nskiruszczy´nski and A. Shapiro, Conditional risk mappings, Mathematics of Operations Research, pp.544-561, 2006.

A. Ruszczy´nskiruszczy´nski and A. Shapiro, Optimization of convex risk functions, Mathematics of Operations Research, pp.433-452, 2006.

A. Ruszczy´nskiruszczy´nski, Risk-averse dynamic programming for Markov decision processes, Mathematical Programming, vol.37, issue.1, pp.235-261, 2010.
DOI : 10.1007/s10107-010-0393-3

Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of multiobjective optimization, 1985.

A. Shapiro, On a time consistency concept in risk averse multistage stochastic programming, Operations Research Letters, vol.37, issue.3, pp.143-147, 2009.
DOI : 10.1016/j.orl.2009.02.005

A. Shapiro, Analysis of stochastic dual dynamic programming method, European Journal of Operational Research, vol.209, issue.1, pp.63-72, 2011.
DOI : 10.1016/j.ejor.2010.08.007

A. Shapiro, Minimax and risk averse multistage stochastic programming, European Journal of Operational Research, vol.219, issue.3, pp.719-726, 2012.
DOI : 10.1016/j.ejor.2011.11.005

A. Shapiro, D. Dentcheva, and A. Ruszczy´nskiruszczy´nski, Lectures on stochastic programming: modeling and theory, Society for Industrial and Applied Mathematics, vol.9, 2009.
DOI : 10.1137/1.9780898718751

A. Shapiro and A. Nemirovski, On Complexity of Stochastic Programming Problems, Continuous optimization, 2005.
DOI : 10.1007/0-387-26771-9_4

A. Shapiro, On complexity of multistage stochastic programs, Operations Research Letters, vol.34, issue.1, pp.1-8, 2006.
DOI : 10.1016/j.orl.2005.02.003

R. H. Strotz, Myopia and Inconsistency in Dynamic Utility Maximization, The Review of Economic Studies, vol.23, issue.3, pp.165-180
DOI : 10.2307/2295722

C. Strugarek, Approches variationnelles et autres contributions en optimisation stochastique, 2006.
URL : https://hal.archives-ouvertes.fr/pastel-00001848

J. Watson, L. David, and . Woodruff, Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems, Computational Management Science, vol.41, issue.2, pp.355-370, 2011.
DOI : 10.1007/s10287-010-0125-4

R. Wets, On the Relation between Stochastic and Deterministic Optimization, Control Theory , Numerical Methods and Computer Systems Modelling, pp.350-361, 1975.
DOI : 10.1007/978-3-642-46317-4_26

P. Whittle, Optimization over time, 1982.

H. S. Witsenhausen, A standard form for sequential stochastic control, Mathematical Systems Theory, vol.3, issue.1, pp.5-11, 1973.
DOI : 10.1007/BF01824800

M. Zervos, On the Epiconvergence of Stochastic Optimization Problems, Mathematics of Operations Research, vol.24, issue.2, 1999.
DOI : 10.1287/moor.24.2.495