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Abstract

Determinantal point processes have sparked interest in very diverse fields, such as ran-
dom matrix theory, point process theory, and networking. In this manuscript, we consider
them as random point processes, i.e. a stochastic collection of points in a general space.
Hence, we are granted access to a wide variety of tools from point process theory, which
allows for a precise study of many of their probabilistic properties.

We begin by laying out the probabilistic framework under which we will work in the
whole manuscript. We insist more particularly on advanced properties of the Papangelou
conditional intensity which turns out to be central in the rest of our analysis and appears
in numerous chapters of this manuscript.

Then, we move to the study of determinantal point processes from an applicative point
of view. To that end, we propose different methods for their simulation in a very general
setting. Moreover, we bring to light a series of models derived from the well-known Ginibre
point process, which are quite suited for applications.

Thirdly, we introduce a differentiable gradient on the considered probability space.
Thanks to some powerful tools from Dirichlet form theory, we discuss integration by parts
for general point processes, and show the existence of the associated diffusion processes
correctly associated to the point processes. We are able to apply these results to the specific
case of determinantal point processes, which leads us to characterizing these diffusions in
terms of stochastic differential equations.

Lastly, we turn our attention to the difference gradient on the same space. In a certain
sense, we define a Skohorod integral, which satisfies an integration by parts formula, i.e. its
adjoint is the difference operator. An application to the study of a random transformation
of the point process is given, wherein we characterize the distribution of the transformed
point process under mild hypotheses.
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Chapitre 1

Résumé

Nous allons commencer par développer la théorie générale des processus ponctuels
initiée dans [37], et le lecteur intéressé pourra aussi consulter [17, 18,64].

Avant-propos

Les processus ponctuels ont été abondamment étudiés. Mais, dans l’écrasante majorité
des cas, µ est un processus ponctuel de Poisson, dans quel cas la littérature est abondante.
Toutefois, malgré ses qualités mathématiques et théoriques indéniables, le processus ponc-
tuel de Poisson a aussi un désavantage considérable, celui de ne pas posséder de structure
de corrélation. Pour s’en rendre compte, rappelons la manière dont le processus de Poisson
est simulé. On commence par considérer un compact donné sur lequel va s’effectuer la
simulation. Puis, on simule le nombre de points dans ce compact selon une loi de Pois-
son de paramètre la mesure de Lebesgue du compact. Enfin, on simule chacun des points
uniformément sur le compact, et ce indépendamment des autres points. De sorte que le
processus ponctuel de Poisson est rarement un modèle de simulation pertinent, puisque les
phénomènes naturels que nous cherchons à modéliser possèdent souvent une structure de
corrélation. Le problème auquel nous sommes alors confrontés est celui de la modélisation
de ces corrélations, tout en se restreignant à une classe de processus ponctuels pour lesquels
la théorie mathématique est suffisamment poussée.
Un processus ponctuel étant sans hypothèse supplémentaire très général, il nous faut res-
treindre un peu le cadre lorsqu’il s’agit de trouver un modèle pratique. Un exemple de
classe de modèles pour la modélisation remonte à [58], et est connu sous le nom de proces-
sus ponctuel de Gibbs. Ce processus ponctuel est d’un intérêt majeur en physique théorique
puisqu’il a une interprétation en terme de potentiels d’interaction entre les différents points,
vus comme des particules. La théorie mathématique entourant les processus ponctuels de
Gibbs est abondante, et ces processus ponctuels forment une classe très générale de pro-
cessus ponctuels à répulsion.

2. Référence pour l’image : [34]
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Figure 1.1 – Comparaison 2 du processus ponctuel de Poisson (en haut à gauche), du
processus ponctuel déterminantal (en haut à droite), et du processus ponctuel permanental
(en bas)

Les processus ponctuels déterminantaux ont été introduits par O. Macchi en 1975 afin
de modéliser la position des fermions en physique théorique. Leurs analogues les processus
ponctuels permanentaux, qui modélisent eux la position des bosons, sont en fait liés aux
processus déterminantaux, comme l’ont montré T. Shirai et Y. Takahashi. Ces deux types
de processus ponctuels font en fait partie d’une classe que nous allons appeler processus
ponctuels α-déterminantaux. Ces processus ponctuels ont été étudié en détail dans [77],
qui est une de nos références principales quant au cadre théorique permettant l’étude de
ces processus.
Sans rentrer à ce stade dans le détail quant à la définition des processus α-déterminantaux,
mentionnons que le type de processus ponctuel sera très différent selon le signe de α ∈ R.
Spécifiquement, même si ces processus ponctuels ont été groupés dans [77], ils modéliseront
soit des particules à répulsion (fermions), soit des particules à attraction (bosons), selon le
signe de α. Cette différence fondamentale dans la structure de corrélation, et plus générale-
ment dans le cadre probabiliste derrière chacun des processus ponctuels, nous amène dans
ce manuscrit à ne considérer que le cas répulsif α < 0. Même si un certain nombre de nos
résultats pourraient être donnés dans un cadre général incorporant α ≥ 0, nous utiliserons
abondamment le caractère répulsif du processus ponctuel, en particulier pour obtenir une
domination stochastique par le processus ponctuel de Poisson. Ces résultats ne seront pas
vérifiés lorsque α ≥ 0, comme on peut le voir dans [23] par exemple.
Nous donnons dans Figure 2.2 une illustration des propriétés répulsives d’un processus
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ponctuel déterminantal, lorsqu’il est comparé au processus ponctuel de Poisson. Notons
qu’il existe des processus ponctuels possédant plus de répulsion que le processus ponctuel
déterminantal. Le paramètre α va quant à lui permettre d’ajuster la répulsion, et va servir
de classe intermédiaire entre le processus ponctuel déterminantal (à droite dans Figure 2.2)
et le processus ponctuel de Poisson (à gauche dans Figure 2.2).
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Figure 1.2 – Poisson vs determinantal
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Nous présentons aussi dans Figure 2.3 un tirage du processus ponctuel de Dyson, qui est
un processus ponctuel déterminantal sur R avec un noyau en forme de sinus cardinal.
L’introduction du processus ponctuel de Dyson remonte à [22], voir aussi [81] pour des
développement plus récents.

Figure 1.3 – Modèle de Dyson uni-dimensionnel (sur la diagonale) - 100 particules

Comme nous l’avons dit précédemment, les processus ponctuels déterminantaux mo-
dèlent à l’origine le comportement de particules physiques. Toutefois, ils sont apparus dans
un domaine en apparence orthogonal : la théorie des matrices aléatoires. En effet, on s’en
rendu compte que les valeurs propres d’une certaine classe de matrices aléatoires (par
exemple, les matrices orthogonales tirées selon la mesure de Haaz) forme un processus
ponctuel déterminantal.
Au contraire des processus déterminantaux, mentionnons que les processus ponctuels sont
attractifs. Ils sont en fait une sous-classe de processus ponctuels bien connus sous le nom
de processus de Cox. Les processus déterminantaux et permanentaux ont ainsi trouvé des
application en finance, réseaux, épidémiologie, etc.
Dans ce manuscrit, nous nous intéresserons plus particulièrement au cas des processus α-
déterminantaux, α < 0. Dès que cela sera possible, nous généraliserons les résultats obtenus
à un processus ponctuel très général, avec pour seule hypothèse l’existence d’une inten-
sité de Papangelou (que nous définirons plus tard). Ces généralisations seront par exemple
obtenues dans Section 5.4 ou Chapter 6.
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Processus ponctuels

Soit E un espace polonais, et O(E) la famille des ouverts non-vides de E ainsi que
B la tribu borélienne générée par O(E). Pour tout sous-ensemble A ⊂ E, on note |A| le
cardinal de l’ensemble A, avec la convention |A| = ∞ si A n’est pas fini. On utilise aussi
la notation Λ ⊆ E, pour désigner un compact Λ inclus dans E. On note X l’ensemble des
configurations localement finies de E, c’est-à-dire :

X := {ξ ⊂ E : |ξ ∩ Λ| <∞ ∀Λ ⊆ E}.

En fait, X est en bijection avec l’ensemble des mesures positives simples de Radon sur E
à valeurs entières (une mesure de Radon positive ξ est dite simple si pour tout x ∈ E,
ξ(x) ≤ 1). Parfois, on écrira N pour désigner l’ensemble des mesures de Radon positives
(non-simples) à valeurs entières sur E. Ainsi, la topologie naturelle sur l’ensemble X est
la topologie vague, qui est la topologie la plus faible telle que pour toutes les fonctions
continues à support compact f sur E, l’application

ξ &→ 〈f, ξ〉 :=
∑

y∈ξ

f(y)

est continue. La tribu correspondante sera notée F , et sera définie par

F :=σ({ξ ∈ X : |ξ ∩ Λ| = m}, m ∈ N, Λ ⊆ E ).

Dans la suite, les éléments de X seront nommés de manière informelle configurations et on
identifiera une configuration ξ ∈ X avec la mesure de Radon purement atomique

∑

y∈ξ εy,
où εy désigne la mesure de Dirac en un point y ∈ E. Pour un ξ =

∑

y∈ξ εy, on considérera
de la même manière que ξ peut être vu comme un ensemble, et on écrira ξ ∪ y0 = ξ ∪ {y0}
pour l’addition d’un point y0 et ξ \ y0 = ξ \ {y0} pour la soustraction d’un point y0. On
définit de manière similaire X0 l’ensemble des configurations finies sur E :

X0 :={ξ ⊂ E : |ξ| <∞},

qui est équipé en tant que sous-ensemble de X par la tribu de trace F0 = F|X0 . Enfin,
pour tout compact Λ ⊆ E, on note FΛ l’espace des configurations finies sur Λ, et FΛ la
tribu (de trace) associée.

Comme dans [28], on définit pour tout mesure de Radon λ sur E la mesure de
(λ−)échantillonnage notée Lλ et définie sur (X0,F0) par

∫

X0

f(α)Lλ(dα) :=
∑

n≥0

1

n!

∫

En

f({x1, . . . , xn})λ(dx1) . . .λ(dxn), (1.1)

pour toute fonction f : Nf → R mesurable. De même, on définit la restriction de cette
mesure à un compact Λ ⊆ E par :

∫

X0

f(α)LλΛ(dα) :=
∑

n≥0

1

n!

∫

Λn

f({x1, . . . , xn})λ(dx1) . . .λ(dxn),

pour toute fonction f : XΛ → R mesurable.
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Un processus ponctuel est par définition une mesure de probabilité µ sur l’espace mesurable
(X ,F). Une telle mesure de probabilité µ est caractérisée par sa transformée de Laplace
Lµ, qui est définie pour toute fonction mesurable positive f sur E par

Lµ(f) =

∫

X
e−〈f,ξ〉 µ(dξ).

Avec l’abus de notation classique, on notera de temps à autre ξ la variable aléatoire ca-
nonique sur l’espace probabilité (X ,F , µ). Avec le même abus de notation, on notera E

l’espérance de la variable aléatoire ξ, et on écrira ainsi

E[F (ξ)] =

∫

X
F (ξ)µ(dξ),

pour toute fonction mesurable F : X → R. On écrit

ξΛ = ξ ∩ Λ

pour la restriction de ξ à un compact Λ ⊆ E. La loi de ξΛ (i.e. la restriction de µ à Λ ⊆ E)
est notée µΛ. Enfin, pour un compact Λ ⊆ E, on note ξ(Λ) le nombre de points de ξΛ, i.e.
ξ(Λ) := |ξ ∩ Λ|.

On dit qu’un processus ponctuel µ possède une fonction de corrélation ρ : X0 → R par
rapport à une mesure de Radon λ sur (E,B) si ρ est mesurable et vérifie

E[
∑

α⊂ξ, α∈X0

f(α)] =

∫

X0

f(α) ρ(α)Lλ(dα),

pour toute fonction mesurable positive f sur X0. Quand une telle mesure λ existe, on
l’appelle la mesure sous-jacente. Pour une configuration finie α = {x1, . . . , xk}, où k ∈ N

∗,
on écrit parfois ρ(α) = ρk(x1, . . . , xk) et on dit que la fonction symétrique ρk sur Ek est
la k-eme fonction de corrélation.

Proposition 1.0.1. Les fonctions de corrélation de µ (si elles existent), par rapport à une
mesure de Radon λ sur E, vérifient

E

[

k
∏

i=1

ξ(Bi)

]

=

∫

B1×...×Bk

ρk(x1, . . . , xk)λ(dx1) . . .λ(dxk),

pour toute famille de compacts mutuellement disjoints B1, . . . , Bk de E, k ≥ 1.

Démonstration. On définit uN de la manière suivante :

uN : ω $→

{

1 si |ω| = N et il existe x1, . . . , xN ∈ ω tels que x1 ∈ A1, . . . , xN ∈ AN ,
0 sinon .
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Et on obtient

E[ξ(A1) . . . ξ(AN )] =

∫

X

∑

x1,...,xN∈ξ

1A1,...,AN
(x1, . . . , xN )µ(dξ)

=

∫

X

∑

ω∈X0:ω⊂ξ

uN (ω)µ(dξ)

=

∞
∑

m=0

1

m!

∫

Em

uN ({x1, . . . , xm})ρ({x1, . . . , xm})λ
⊗m(dx1, . . . , dxm)

=

∫

A1×...×AN

ρ({x1, . . . , xN})λ
⊗m(dx1, . . . , dxN ).

La formule de la Proposition 1.0.1 se généralise de la manière suivante :

Proposition 1.0.2. Soient A1, . . . , An des compacts de E non-nécessairement disjoints.

Soient k1, . . . , kn des entiers vérifiant
∑n

i=1 ki = N . Alors,

E[
n
∏

i=1

ξ(Ai)!

(ξ(Ai)− ki)!
] =

∫

A
k1
1 ×...×A

kn
n

ρ({x1, . . . , xN})λ(dx1) . . .λ(dxN ).

Démonstration. La preuve se fait de la même manière que dans la proposition précédente.
En effet, Proposition 1.0.2 est identique à Proposition 1.0.1 hormis le fait qu’il y a ici moins
de compacts disjoints.

On exigera de plus que ρk(x1, . . . , xk) = 0 dès lors que xi = xj pour 1 ≤ i != j ≤ k. Notons
de plus que ρ1 est la densité de points par rapport à λ, et

ρn(x1, . . . , xn)λ(dx1) . . .λ(dxn)

est donc la probabilité de trouver un point autour de chaque xi, i = 1, . . . , n.

Pour tout compact Λ ⊆ E, les densités de Janossy de µ par rapport à une mesure de
Radon λ sur E, sont (si elles existent) des fonctions mesurables jn

Λ
: Λn → R telles que

pour toutes fonctions mesurables f : XΛ → R,

E [f(ξΛ)] =
∑

n≥0

1

n!

∫

Λn

f({x1, . . . , xn}) j
n
Λ (x1, · · · , xn) λ(dx1) . . .λ(dxn). (1.2)

Remark 1. Nous remarquons de plus que dans l’équation de définition (1.2), l’indice

n n’apparaît pas directement. Ainsi, nous utiliserons aussi parfois la notation simplifiée

jΛ(α) := jk
Λ
(x1, . . . , xk), pour α = {x1, . . . , xk}, où k ∈ N

∗.

jΛ est donc la densité de µΛ par rapport à Lλ
Λ
, dès lors qur µΛ ≪ Lλ

Λ
. Pour n ≥ 1, les

densités de Janossy satisfont les propriétés suivantes :
— Symétrie :

jnΛ
(

xσ(1), · · · , xσ(n)
)

= jnΛ (x1, · · · , xn) ,

pour toute permutation σ de {1, · · · , n}.
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— Contrainte de normalisation : pour tout compact Λ ⊆ E,

+∞
∑

n=0

1

n!

∫

Λn

jnΛ (x1, · · · , xn) λ(dx1) . . .λ(dxn) = 1.

Pour n ≥ 1, la n-eme densité de Janossy jn
Λ
(x1, . . . , xn) est en fait la densité jointe (à

une constant près) des n points conditionnellement au fait que le processus ponctuel a
exactement n points. Pour n = 0, j0

Λ
(∅) est la probabilité qu’il n’y ait pas de points dans

Λ, et est donc parfois nommée probabilité de trous. On remarque aussi qu’il est possible de
retrouver les densités de Janossy à partir des fonctions de corrélation à l’aide de la relation
suivante :

jnΛ(x1, . . . , xn) =
∑

m≥0

(−1)m

m!

∫

Λm

ρn+m(x1, . . . , xn, y1, . . . , ym)λ(dy1) . . .λ(dym),

pour tout compact Λ ⊆ E, et tous x1, . . . , xn ∈ Λ. La relation précédente est inversible et
permet de manière similaire d’exprimer les fonctions de corrélation en fonction des densités
de Janossy :

ρn(x1, . . . , xn) =
∑

m≥0

1

m!

∫

Λm

jm+n
Λ

(x1, . . . , xn, y1, . . . , ym)λ(dy1) . . .λ(dym).

La preuve des deux équations précédentes se trouve par exemple dans [17].

Noyaux et opérateur intégral

À partir de maintenant, on se donne une mesure de Radon λ sur (E,B). Pour tout
compact Λ ⊆ E, on note L2(Λ,λ) l’espace de Hilbert de fonctions de carré intégrable à
valeurs complexes par rapport à la restriction à Λ de la mesure de Radon λ, équipé du
produit scalaire

< f, g >L2(Λ,λ):=

∫

Λ

f(x)g(x)λ(dx), f, g ∈ L2(Λ,λ)

où ici z est le conjugué d’un complexe z ∈ C. Par définition, un noyau K est une fonction
mesurable de E2 dans C. On dit que K est localement de carré intégrable, si pour tout
compact Λ ⊆ E, on a

∫

Λ2

|K(x, y)|2λ(dx)λ(dy) <∞.

À tout noyau localement de carré intégrable K, on associe l’opérateur intégral

KΛ : L2(Λ,λ)→ L2(Λ,λ),

où Λ est un compact de E, défini par

KΛf(x) :=

∫

Λ

K(x, y)f(y)λ(dy), for λ-almost all x ∈ Λ.

Une application directe de l’inégalité de Cauchy-Schwarz montre que l’opérateur KΛ est
borné quand le noyau K est localement de carré intégrable. En fait, on peut montrer que
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KΛ est un opérateur compact.

À tout noyau localement de carré intégrable K, on associe l’opérateur intégral K défini par

Kf(x) :=

∫

E
K(x, y)f(y)λ(dy), for λ-almost all x ∈ E

pour toutes fonctions f ∈ L2(E,λ) ayant pour support un compact de E. On note PΛ
l’opérateur de projection de L2(E,λ) dans L2(Λ,λ). Dans ce cas, l’opérateur KΛ défini
précédemment est la projection K sur L2(Λ,λ), ou de manière équivalente KΛ = PΛKPΛ.
On notera aussi KΛ le noyau de KΛ, i.e. KΛ(x, y) := 1Λ(x)K(x, y)1Λ(y), pour x, y ∈ E.
On dit que l’opérateurK est hermitien ou auto-adjoint si son noyau vérifie

K(x, y) = K(y, x), for λ⊗2-almost all (x, y) ∈ E2. (1.3)

De manière équivalente, cela signifie que l’opérateur intégral associé KΛ est auto-adjoint
pour tout compact Λ ⊆ E. Si KΛ est auto-adjoint, par le théorème spectral pour des opé-
rateurs auto-adjoints compacts, on a que L2(Λ,λ) possède une base orthonormale {ϕΛj }j≥1
composée de vecteurs propres de KΛ. Les valeurs propres correspondantes {λΛj }j≥1 ont une
multiplicité finie (sauf potentiellement la valeur proper 0) et l’unique point d’accumulation
possible de valeurs propres est 0. Alors, le noyau KΛ de KΛ peut être décomposé dans cette
base :

KΛ(x, y) =
∑

n≥1

λΛnϕ
Λ

n(x)ϕ
Λ
n(y), (1.4)

pour x, y ∈ Λ. On dit qu’un opérateur K set strictement positif (respectivement positif) si
son spectre est inclus dans (0,+∞) (respectivement [0,+∞)). Pour deux opérateurs K et
I, on dit que K > I (respectivement K ≥ I) si K− I est un opérateur strictement positif
(respectivement un opérateur positif).

On dit qu’un opérateur auto-adjoint intégral KΛ est à trace si

‖KΛ‖1 :=
∑

n≥1

|λnΛ| <∞,

et on note ‖KΛ‖1 la norme de trace de KΛ. On définit alors la trace de l’opérateur KΛ
par TrKΛ =

∑

n≥1 λ
n
Λ
. Si KΛ est à trace pour tout compact Λ ⊆ E, alors on dit que

K est localement à trace. On remarque facilement que si on opérateur hermitien intégral
K : L2(E,λ) → L2(E,λ) est à trace, alors Kn est aussi à trace, pour n ≥ 2. En fait, on a
même l’inégalité Tr(Kn) ≤ ‖K‖n−1Tr(K), où ‖K‖ est la norme opérateur de K.

En pratiqué, pour évaluer des puissances fractionnaires de déterminants de Fredholm, on
aura besoin d’introduire la notion d’α-determinants. Prenons donc α ≤ 0. Pour une matrice
carrée A = (Aij)1≤i,j≤n de taille n× n, l’α-determinant detαA de A est défini par :

detαA =
∑

σ∈Sn

αn−ν(σ)
n
∏

i=1

Aiσ(i), (1.5)

où Sn est le n-eme groupe symétrique et ν(σ) est le hombre de cycles de la permutation
σ ∈ Sn. La définition précédente étend en fait celle de déterminant, qui est ici obtenue en
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prenant α = −1. Maintenant, il est possible de définir le déterminant de Fredholm de I+K
par

Det(I+K) = exp





∑

n≥1

(−1)n−1

n
Tr(Kn)



 , (1.6)

puisque Tr(Kn) <∞. Ici, I dénote l’identité de L2(E,λ) et K est un opérateur à trace géné-
ral de L2(E,λ). Alors, les puissances fractionnaires de déterminants de Fredholm peuvent
être calculées comme suit. Pour tout opérateur intégral à trace K, on a

Det(I−αK)−1/α =
∑

n≥0

1

n!

∫

En

detα(K(xi, xj))1≤i,j≤n λ(dx1) . . .λ(dxn), (1.7)

où K est le noyau de K et |α| ≤ 1. (1.7) a été obtenu dans le Théorème 2.4 de [77].

Enfin, terminons cette section en rappelant le résultat suivant de [28, Lemma A.4] :

Proposition 1.0.3. Soit K un opérateur intégral positif, borné, et localement à trace de
L2(E,λ). Alors on peut choisir son noyau K (défini partout) tel que les propriétés suivantes
sont vérifiées

(i) K est positif, au sens que pour tous c1, . . . , cn ∈ C, et presque tous x1, . . . , xn ∈ E,
on a

∑n
i,j=1 c̄iK(xi, xj)cj ≥ 0.

(ii) K est un opérateur de Carlman, i.e. Kx = K(·, x) ∈ L2(E,λ) pour presque tout
x ∈ E.

(iii) Pour tout compact Λ ⊆ E, TrKΛ =
∫

Λ
K(x, x)λ(dx) et

Tr (PΛK
kPΛ) =

∫

Λ

< Kx,K
k−2Kx >L2(Λ,λ) λ(dx),

pour k ≥ 2.

Donc, sous certaines hypothèses sur K, son noyau peut être choisi selon la proposition
précédente.

α-determinantal point processes

Soit

M = {α ≤ 0 : ∃m ∈ N, α = −
1

m+ 1
} ∪ {0}.

En gardant à l’esprit les définitions précédentes, nous allons maintenant définir des pro-
cessus ponctuels α-determinantaux. Pour ce faire, on introduit l’hypothèse suivante :

Hypothesis 1. Supposons que α ∈M. De plus, supposons que l’application K est un opé-
rateur de Hilbert-Schmidt de L2(E, λ) dans L2(E, λ) qui satisfait les conditions suivantes :

i) K est un opérateur intégral borné et auto-adjoint L2(E, λ), avec noyau K(., .).

ii) Le spectre de K est inclus dans [0, − 1
α
], i.e. 0 ≤ K < − 1

α
I.

iii) L’application K est localement à trace.
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Supposons que K satisfait Hypothesis 3. Un processus ponctuel simple µ sur E est appelé
un processus ponctuel α-determinantal process si ses fonctions de corrélations par rapport
à une mesure de Radon donnée λ sur (E,B) existent et satisfont

ρk(x1, . . . , xk) = detα(K(xi, xj))1≤i,j≤k,

pour tous k ≥ 1 et x1, . . . , xk ∈ E, et où l’α-determinant a été défini en (1.5). Quand
α = −1, on dit que µ est un processus ponctuel déterminantal, et dans ce cas l’α-
determinant est en fait le déterminant usuel. Quand α "= −1, µ est appelé un processus
ponctuel α-determinantal. On remarque de plus que sous Hypothesis 1, on peut choisir K
de sorte qu’il vérifie les points de 1.0.3. Clairement, nous aurons alors ρk(x1, . . . , xk) ≥ 0
pour λ-presque tout x1, . . . , xk ∈ E.
En général, on écrit µαK,λ pour le processus ponctuel α-determinantal avec un opérateur
intégral K et une mesure sous-jacente λ sur E. On omet l’indice α pour désigner le pro-
cessus ponctuel déterminantal d’opérateur intégral K et de mesure sous-jacente λ.

L’existence et l’unicité (en loi) des processus ponctuels déterminantaux (ici, α = −1) est
assurée sous Hypothesis 3 par les résultats de [53], [77] et [80]. Voir aussi Lemme 4.2.6 et
Théorème 4.5.5 dans [35]. Plus précisément, si un noyau K et l’opérateur intégral associé
K satisfont Hypothesis 3, alors il existe un processus ponctuel déterminantal µK,λ sur E
associé à K. De plus, pour tout compact Λ ⊆ E il existe des constantes c1(Λ), c2(Λ) > 0
telles que µK,λ(ξ(Λ) > k) ≤ c1(Λ)e

−c2(Λ)k pour tout k ≥ 1, et dans ce cas les fonctions
de corrélation ρk(x1, . . . , xk) déterminent de manière unique la loi du processus ponctuel.
Ceci est dû au fait que pour des compacts disjoints B1, . . . , Bk ⊆ E, le vecteur aléatoire
(ξ(B1), . . . , ξ(Bk)) a une transformée de Laplace convergente dans un voisinage de 0 si les
queues de la distribution de ξ(Λ) sont exponentielles, c.f. [35, Remark 1.2.4]. Une autre
manière de prouver l’unicité du processus ponctuel résultant est d’utiliser le critère général
donné dans [45] et qui assure l’unicité :

∑

k≥0

( 1

k!

∫

Λk

ρk(x1, . . . , xk)λ(dx1) . . .λ(dxk)
)−1/k

= +∞,

pour tout compact Λ ⊆ E. Afin de prouver que la série précédente diverge, on peut utiliser
la formule classique de Fredholm (voir [79]) qui dit que

1

k!

∫

Λk

det(K(xi, xj))1≤i,j≤k λ(dx1) . . .λ(dxk) = Tr (∧k KΛ),

où on a défini ∧k T := T ⊗ · · · ⊗ T |As(L2(E,λ)⊗k), pour tout opérateur T on L2(E,λ), et
où As(H), pour H un espace de Hilbert séparable, est son sous-espace anti-symétrique.
Alors, il suffit d’utiliser l’inégalité Tr (∧k KΛ) ≤

1
k!Tr (∧KΛ)

k qui est prouvée par exemple
dans [79]. On obtient en somme

( 1

k!

∫

Λk

ρk(x1, . . . , xk)λ(dx1) . . .λ(dxj)
)−1/k

≥ (k!)1/kTr (∧KΛ)
−1 −−−→

k→∞
+∞,

ce qui prouve l’unicité.

Pour α ∈M, l’existence et l’unicité des processus ponctuels α-déterminantaux est garantie
sous Hypothesis 1 par les résultats de [77] pour des processus ponctuels α-déterminantaux,
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voir aussi [53] et [80] pour le cas déterminantal. Essentiellement, l’existence et l’unicité est
obtenu par consistance des fonctions de Janossy. Par contre, il a été prouvé dans [8] que
pour α /∈M, les processus ponctuels α-déterminantaux n’existent pas pour tout noyau K.
Plus précisément, il est obtenu dans [8] le résultat suivant :

Theorem 1.0.1. Pour α /∈M, on n’a pas que pour toute matrice réelle symétrique positive
et semi-définie A,

detαA ≥ 0,

et en conséquence, les fonctions de corrélation ne sont pas correctement définies pour α /∈
M.

À partir de maintenant, on considère donc α ∈M, et on suppose que l’opérateur intégral K
satisfait Hypothesis 1. Rappelons maintenant le résultat de [77] qui donne la transformée
de Laplace de µαK,λ.

Theorem 1.0.2. Soit K un opérateur satisfaisant Hypothesis 1. Alors, l’unique processus
ponctuel α-déterminantal µαK,λ a pour transformée de Laplace :

LµαK,λ
(f) = Det (I+αKϕ)

−1/α ,

pour toute fonction positive f sur E avec support compact, où ϕ = 1 − e−f et Kϕ est
l’opérateur intégral à trace, avec noyau

Kϕ(x, y) =
√

ϕ(x)K(x, y)
√

ϕ(y), x, y ∈ E.

De plus, µαK,λ est nécessairement simple.

En corollaire du théorème précédent, on obtient que µαK,λ est la superposition de m+1

copies indépendantes d’un processus ponctuel déterminantal de noyau K
m+1 et de mesure

sous-jacente λ.

Soit K un opérateur satisfaisant Hypothesis 1. On définit l’opérateur intégral à trace sur
L2(E,λ) par

J [Λ] := (I+αKΛ)
−1KΛ,

où le compact Λ ⊆ E indexe les opérateurs J [Λ]. J [Λ] est défini de façon à ce que K et
J [Λ] soient quasi-inverses, i.e. que

(I+αKΛ) (I−αJ [Λ]) = I . (1.8)

L’opérateur J [Λ] est appelé opérateur d’interaction local et on insiste sur le fait que KΛ,
J [Λ] n’est pas un opérateur de projection, i.e. en général, J [Λ] #= PΛ(I+αK)−1KPΛ.
Malgré tout, J [Λ] possède un certain nombre de propriétés remarquables résumées dans
[28]. On en rappelle ici quelques-unes qui seront utiles dans notre contexte. Tout d’abord,
il est immédiat que J [Λ] existe en tant qu’opérateur borné puisque ‖αK‖ < 1, et son
spectre est inclus dans [0,+∞). J [Λ] est encore un opérateur intégral, notons donc J [Λ]
son noyau (en fait, on peut même montrer que J [Λ] est aussi un opérateur de Carlman,
c.f. [28]). De plus, comme J [Λ] ≤ (1+ ‖αK‖)−1KΛ, on a que J [Λ] est encore un opérateur
à trace. Pour α = {x1, . . . , xk} ∈ XΛ, on note detα J [Λ](α) (= detα J [Λ]({x1, . . . , xk})) le
déterminant detα (J [Λ](xi, xj))1≤i,j≤k. Notons que pour tout k ∈ N

∗, la fonction

(x1, . . . , xk) '→ detα J [Λ]({x1, . . . , xk})
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est λ⊗k-p.s. positive (grâce à Proposition 1.0.3) et symétrique en x1, . . . , xk (voir e.g.
[28]), et on écrira simplement detα J [Λ]({x1, . . . , xk}) = detα J [Λ](x1, . . . , xk). L’opérateur
d’interaction local est particulièrement central dans l’étude des processus ponctuels α-
déterminantaux à cause de la proposition suivante :

Proposition 1.0.4 ( [77]). Supposons que le noyau K satisfasse Hypothesis 1. Alors, le
processus ponctuel α-déterminantal µαK,λ possède des densités de Janossy jn

Λ
, et celles-ci

sont données pour un compact Λ ⊆ E et n ∈ N
∗ par

jnΛ(x1, . . . , xn) = Det(I+αKΛ)
−1/α detα J [Λ](x1, . . . , xn), (1.9)

pour x1, . . . , xn ∈ Λ. On peut aussi calculer la probabilité de vide j0
Λ
(∅) = Det(I+αKΛ)

−1/α.

Ici, Det est le déterminant de Fredholm défini en (1.6).

Ici, on peut remarquer que (1.9) a encore du sens si ‖KΛ‖ = 1, puisque les zéros de
Det(I+αKΛ)

−1/α sont du même ordre que les pôles de detα J [Λ](x1, . . . , xk), ces deux
fonctions étant vues comme des fonctions de λ1

Λ
, . . . ,λn

Λ
, . . . les valeurs propres de KΛ.

Cette intuition est prouvée dans [77]. Il est aussi possible de calculer la fonction génératrice
des moments d’un processus ponctuel α-déterminantal.

Proposition 1.0.5 (Fonction génératrice des moments d’un processus ponctuel α-déterminantal).
La fonction génératrice des moments du nombre de points dans un compact Λ ⊆ E est

M(u) = E[euξ(Λ)] = Det(I+α(1− eu)KΛ)
−1/α,

pour u ∈ R.

Démonstration. Rappelons que pour une fonction mesurable F : N→ R+,
∫

XΛ

F (ξ(Λ))µ(dξ) =
∞
∑

m=0

1

m!

∫

Λm

F (m)jΛ({x1, . . . , xm})λ
⊗m (dx1, . . . , dxm).

Dans ce cas, par la formule (1.9), on a

M(u) = Det(I+αKΛ)
−1/α

∞
∑

m=0

1

m!

∫

Λm

det
α
(euJ [Λ](x1, . . . , xm))λ

⊗m (dx1, . . . , dxm).

Ici, il reste à reconnaître le développement de Det(I−αeuJ [Λ])−1/α prouvé dans la formule
(3.7), et on obtient

M(u) = Det ((I+αKΛ)(I−αe
uJ [Λ]))−1/α .

En développant le produit, on a par (1.8)

(I+αKΛ)(I−αe
uJ [Λ]) = I+(I+αKΛ) (αJ [Λ](1− eu)) = I+α(1− eu)KΛ,

ce qui conclut la preuve.

Remarquons que J [Λ] peut être décomposé dans la même base de L2(Λ,λ) que KΛ.
Plus précisément, en conséquence de (1.4), on obtient

J [Λ](x, y) =
∑

n≥1

λn
Λ

1 + αλn
Λ

ϕnΛ(x)ϕ
n
Λ
(y), (1.10)

pour x, y ∈ Λ.

Enfin, donnons des propriétés faisant le lien entre le rang de K (en tant qu’opérateur) et
le nombre de points du processus ponctuel associé.



20 1. Résumé

Proposition 1.0.6 (Théorème 4 de [80], voir aussi [35, 77]). Soit K un opérateur intégral
satisfaisant Hypothesis 1, et considérons le cas α = −1, i.e. µK,λ est un processus ponctuel
déterminantal. On a les propriétés suivantes :

a) La probabilité que le nombre de points soit fini est respectivement 0 ou 1, et vaut l’un ou
l’autre selon que Tr(K) est respectivement fini ou infini. Comme on pouvait s’y attendre,
le nombre de points dans un compact Λ ⊆ E est fini, puisque Tr(KΛ) <∞.

b) Le hombre de points du processus ponctuel est inférieur ou égal à n ∈ N
∗ avec probabilité

1 si et seulement si K est un opérateur de rang fini satisfaisant Rang(K) ≤ n.

c) Le hombre de points du processus ponctuel est n ∈ N
∗ avec probabilité 1 si et seulement

si K est un projecteur orthogonal de rang Rang(K) = n.

Nous avons aussi besoin d’une condition simple sur les noyaux qui assurent la convergence
(faible) des mesures α-déterminantales associées. Ceci est donné par la Proposition 3.10
de [77] :

Proposition 1.0.7. Soit (K(n))n≥1des opérateurs intégraux positifs avec des noyaux conti-
nus K(n)(x, y), x, y ∈ E. Supposons que K(n) satisfons Hypothesis 1, n ≥ 1, et que K(n)

converge vers un noyau K uniformément sur les compacts lorsque n tend vers l’infini.
Alors, le noyau K définit un opérateur intégral K satisfaisant Hypothesis 3. De plus, pour
α ∈ M, la mesure α-déterminantale µα

K(n),λ
converge faiblement vers µαK,λ quand n tend

vers l’infini.

Enfin, terminons cette section en mentionnant le cas des processus ponctuels determinan-
taux de projection. On définit pour ce faire un noyau de projection (sur {ϕn, 0 ≤ n ≤
N} ⊂ L2(E,λ)) par

Tp(x, y) =

N
∑

n=0

ϕn(x)ϕn(y), ∀x, y ∈ C (1.11)

où N ∈ N, et (ϕn)n∈N est une famille orthonormale de L2(E,λ). On appelle le processus
ponctuel α-déterminantal associé un processus ponctuel α-determinantal de projection (sur
{ϕn, 0 ≤ n ≤ N} ⊂ L2(E,λ)).

Intensité conditionnelle de Papangelou

Propriétés de base

Commençons par définir les mesures de Campbell, et donnons quelques propriétés
qu’elles vérifient, telles qu’elles ont été rappelées dans [28]. Le lecteur intéressé pourra
trouver plus de détails dans [18,52].

Definition 1 (Mesures de Campbell). La mesure de Campbell réduite d’un processus ponc-
tuel µ est la mesure Cµ sur l’espace produit (E × X ,B ⊗ F) définie par

Cµ(A×B) =

∫

∑

x∈ξ

1A(x)1B(ξ \x)µ(dξ), (1.12)

où A ∈ B et B ∈ F . On définit de manière similaire la mesure de Campbell composée de

µ comme la mesure Ĉµ sur l’espace produit (X0 × X ,F0 ⊗ F) définie par

Ĉµ(A×B) =

∫

∑

α⊂ξ, α∈X0

1A(α)1B(ξ \α)µ(dξ),
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où A ∈ F0 et B ∈ F .

On définit maintenant la condition (Σλ) introduite à l’origine dans [63] et [43] comme
suit

Hypothesis 2. On dit que le processus punctual µ satisfait la condition (Σλ) si Cµ ≪ λ⊗µ.
N’importe quelle densité de Radon-Nikodym c de Cµ par rapport à λ ⊗ µ est appelée une
version de l’intensité de Papangelou de µ.

L’hypothèse précédente implique aussi que Ĉµ ≪ Lλ ⊗ µ et on noter donc de manière
similaire ĉ la density de Radon-Nikodym de Ĉµ par rapport à Lλ ⊗ µ, et on appelera ĉ
l’intensité de Papangelou composée de µ. On a alors pour tout ξ ∈ X , ĉ(∅, ξ) = 1, de même
que pour tout x ∈ E, ĉ(x, ξ) = c(x, ξ). L’intensité de Papangelou c de µ est interprétée
comme la densité conditionnellement à la configuration ξ ∈ X . Plus précisément,

c(x, ξ)λ(dx)

est la probabilité de trouver un point dans un voisinage de x ∈ E conditionnellement à la
configuration ξ ∈ X .
L’intensité de Papangelou composée vérifié la relation de commutation suivante :

∀η, ν ∈ X0, ∀ξ ∈ X , ĉ(ν, η ∪ ξ) ĉ(η, ξ) = ĉ(ν ∪ η, ξ). (1.13)

L’application récursive de la relation précédente donne aussi ∀x1, . . . , xn ∈ E, ∀ξ ∈ X ,

ĉ({x1, . . . , xn}, ξ) =
n
∏

k=1

c(xk, ξ ∪ x1 ∪ · · · ∪ xk−1),

où on a utilisé la convention x0 := ∅.

Hypothesis 4, conjointement avec la définition de la mesure de Campbell réduite, donne
lieu à l’identité suivante, connue sous le nom d’identité de Georgii-Nguyen-Zessin :

∫

X

∑

y∈ξ

u(y, ξ \ y)µ(dξ) =

∫

X

∫

E
u(z, ξ) c(z, ξ)λ(dz)µ(dξ), (1.14)

pour toute fonction positive Cµ-mesurable u : E×X → R. On a aussi une identité similaire
pour l’intensité de Papangelou composée :

∫

X

∑

α⊂ξ, α∈X0

u(α, ξ \α)µ(dξ) =

∫

X

∫

X0

u(α, ξ) ĉ(α, ξ)Lλ(dα)µ(dξ), (1.15)

pour toute fonction positive Ĉµ-mesurable u : X0 × X → R. En combinant (1.14) et la
définition des fonctions de corrélation, on obtient :

E[c(x, ξ)] = ρ1(x), (1.16)

pour presque tout x ∈ E. On obtient aussi de manière plus générale, en utilisant (1.15),
que

E[ĉ(α, ξ)] = ρ(α), (1.17)

pour presque tout α ∈ X0.
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Intensité de Papangelou des processus ponctuels déterminantaux

Dans cette section, on considère le cas d’un processus punctual déterminantal (α = −1)
et on rappel un certain nombre de résultats de [28]. Le premier résultat donne l’intensité
de Papangelou de µΛ, i.e. la restriction de µK,λ à un compact Λ ⊆ E.

Theorem 1.0.3 (Théorème 3.1 de [28]). Pour tout Λ ⊆ E, µΛ satisfait la condition (ΣλΛ)
(ici, λΛ est la restriction de λ à un compact Λ). Une version de son intensité de Papangelou
composée ĉΛ est donnée par

ĉΛ(α, ξ) =
det J [Λ](α ∪ ξ)

det J [Λ](ξ)
, α ∈ X0, ξ ∈ X , (1.18)

où par convention, le rapport est supposé être nul quand le dénominateur l’est. Cette version
de l’intensité de Papangelou composée vérifie en outre

ĉΛ(α, ξ) ≥ ĉΛ(α, η), and 0 ≤ ĉΛ(α, ξ) ≤ det J [Λ](α) ≤
∏

x∈α

J [Λ](x, x), (1.19)

dès que ξ ⊂ η ∈ XΛ et α ⊂ XΛ \ η.

Définissons maintenant
J := (I+αK)−1K, (1.20)

qui peut être vu comme un opérateur d’interaction globale. Comme cela a été prouvé
dans [28], J satisfait un certain nombre de bonnes propriétés : c’est un opérateur intégral
localement à trace, et son noyau (x, y) &→ J(x, y) peut être choisi selon la Proposition 1.0.3.
Alors, on a que le processus ponctuel déterminantal est stochastiquement dominé par le
processus ponctuel de Poisson avec intensité x &→ J(x, x)λ(dx), dénoté ici par πJ . La
notion de domination stochastique est notée

µ ( πJ , (1.21)

et a été prouvée dans [28]. Voir aussi [29] pour des résultats plus avancés à propos de
domination stochastique. Rappelons simplement que pour deux processus ponctuels ν, ν ′,
on dit que ν ′ domine stochastiquement ν, et on écrit ν ( ν ′ si

∫

f dν ≤

∫

f dν ′,

pour toute fonction croissante mesurable f . Ici, on dit que f est croissante si f(η) ≤ f(η′)
pour η ⊂ η′ ∈ X .

Pour nos besoins, il reste à citer le principal théorème de [28] :

Theorem 1.0.4 (Théorème 3.6 de [28]). Le processus ponctuel déterminantal µK,λ satisfait
la condition (Σλ), et son intensité de Papangelou composée est donnée par

ĉ(α, ξ) = lim
n→∞

ĉ∆n(α, ξ∆n), pour LΛ ⊗ µ - presque tout (α, ξ) , (1.22)

où (∆n)n∈N est une suite de compacts de E, qui croît vers E.

Notons qu’en général, (1.22) ne donne pas de forme fermée pour les intensités de Pa-
pangelou composées. Afin d’avoir une formule fermée pour ĉ, il est nécessaire d’ajouter des
conditions, c.f. Proposition 3.9 de [28]. Plus précisément, définissons
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Hypothesis 3. Supposons E = R
d, λ est la mesure de Lebesgue, et

— J a un noyau intégral continu J .
— J a un rayon d’attraction fini R <∞, i.e. J(x, y) = 0 if |x− y| ≥ R.
— µK,λ ne percole pas.

Sous Hypothesis 3, on a le théorème suivant :

Theorem 1.0.5 (Proposition 3.9 de [28]). Supposons Hypothesis 3. Alors, le processus
ponctuel déterminantal µK,λ satisfait la condition (Σλ), et son intensité de Papangelou
composée est donnée par

ĉ(α, ξ) =
det J(ξW ∪ α)

det J(ξW )
1diamW (α,ξ)<∞, for L⊗ µK,λ - almost every (α, ξ) , (1.23)

où W (α, ξ) est l’union des BR(α ∪ ξ) touchant la configuration α, et ξW := ξW (α,ξ) est la
restriction de ξ à W (α, ξ).

Résultats

Nous avons donc introduit les notions nécessaires à l’étude des processus ponctuels, et
en particulier des processus ponctuels α-déterminantaux. Nous allons maintenant passer à
la présentations des résultats à proprement parler obtenus dans ce manuscrit.

Simulation des processus α-déterminantaux

Nous nous sommes tout d’abord intéressés à des méthodes de simulation pratique des
processus ponctuels α-déterminantaux, en même temps que des implémentations numé-
riques de modèles. En effet, la simulation de processus ponctuels déterminantaux était
largement ignorée jusqu’à l’article fondateur de [34] dans lequel les auteurs donnent un
algorithme pratique pour la simulation de processus ponctuels déterminantaux. Une dis-
cussion théorique de l’algorithme ainsi que des résultats statistiques ont aussi été explorés
dans [44]. Nous avons eu deux axes d’intérêt principaux dans la thématique de la simula-
tion des processus α-déterminantaux. Nous nous sommes intéressés plus particulièrement
au processus ponctuel de Ginibre, pour des raisons que nous expliquerons plus loin. Ce
processus ponctuel possède des propriétés qui le rendent pertinent pour la simulation, et
nous étudierons donc des manières plus efficaces de le simuler.
Commençons donc à nous intéresser au processus ponctuel de Ginibre, qui a soulevé un
grand intérêt depuis son introduction par J. Ginibre dans [30]. Plus récemment, des résul-
tats probabilistes ont été obtenus dans le cas particulier du processus ponctuel de Ginibre,
par exemple dans [31,76]. La procédure de simulation qui est sous-entendue dans [30] a été
développée complètement d’un point de vue numérique dans [12]. La première utilisation
du processus ponctuel de Ginibre en tant que modèle semble remonter à [12]. Plus récem-
ment, dans [54,84,87], différents auteurs ont utilisé le processus ponctuel de Ginibre pour
modéliser des phénomènes apparaissant en réseaux. En effet, ce modèle a de nombreux
avantages en vue d’applications : il est invariant par rapport aux rotations et aux transla-
tions, ce qui lui donne un compact naturel sur lequel le simuler : la boule centrée autour
de l’origine. De plus, la répulsion électrostatique entre les particules semble être réalise et
modeler de nombreuses applications. Notre objectif dans ce papier est d’étudier la simu-
lation du processus ponctuel de Ginibre d’un point de vue pratique, et donner différentes
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méthodes qui seront plus ou moins appropriées selon l’application qui nous concernera.
Le problème principal qu’il nous faudra contourner est que, même si les valeurs propres de
matrices de l’ensemble GUE forment un processus ponctuel de Ginibre, ces valeurs propres
ne sont pas distribuées sur un compact, même si nous remarquerons que quand la taille
de la matrice N tend vers l’infini, elles tendent à l’être (résultat connu sous le nom de loi
circulaire en théorie des matrices aléatoires). De plus, comme nous le verrons plus loin,
tronquer le processus ponctuel à un compact naturel et faire tendre N vers l’infini n’est
pas la manière optimale de procéder, quoique cette opération conserve la nature détermi-
nantale du processus ponctuel. En fait, nos méthodes se baseront sur une modification du
noyau associé classiquement au processus ponctuel de Ginibre. Nous étudierons en détail
la projection de ce noyau sur un compact, sa troncature à un rang fini, et enfin une combi-
naison de ces deux opérations. Chacune de ces opérations sur le noyau aura des résultats
différents sur le processus ponctuel résultant, ainsi que sur les techniques de simulations
optimales associées.

Pour être plus précis concernant nos résultats, introduisons ce que nous appellerons le
processus ponctuel de Ginibre. Le processus ponctuel de Ginibre, noté µGin dans le reste
de ce résumé est défini comme le processus ponctuel de Ginibre sur C avec comme noyau

KGin(z1, z2) =
1

π
ez1z̄2e−

1
2
(|z1|2+|z2|2), z1, z2 ∈ C, (1.24)

et par rapport à la mesure sous-jacente λ := dℓ(z), la mesure de Lebesgue sur C (i.e.
dℓ(z) = dx dy, lorsque z = x + iy). Le noyau KGin peut être décomposé de manière
naturelle de la manière suivante :

KGin(z1, z2) =
∑

n≥0

φn(z1)φn(z2), z1, z2 ∈ C,

où φn(z) := 1√
πn!

e−
1
2
|z|2zn, pour n ∈ N et z ∈ C. On vérifiera facilement que (φn)n∈N

est une famille orthonormale de L2(C, dℓ). En fait, (φn)n∈N est un sous-ensemble dense de
L2(C, dℓ). Le processus ponctuel de Ginibre µGin vérifie les propriétés basiques suivantes :

Proposition 1.0.8. Le processus de Ginibre µGin, i.e. le processus ponctuel déterminantal
ayant pour noyau KGin, satisfait :

— µGin est ergodique par rapport aux translations sur le R
2.

— µGin est isotropique.
— µGin(C) = +∞ presque sûrement, i.e. le processus ponctuel de Ginibre a une
infinité de points presque sûrement.

Puisque µGin a une infinité de points presque sûrement, il n’est pas possible de le simuler
directement. Ainsi, nous chercherons dans la suite à modifier le noyau KGin de façon à ob-
tenir certaines versions du processus ponctuel de Ginibre qui seront elles possibles à simuler.

La première idée est de considérer le processus de Ginibre tronqué, défini pour N ∈ N∗

par

KN
Gin(z1, z2) =

N−1
∑

n=0

φn(z1)φn(z2), z1, z2 ∈ C, (1.25)

et qui est en fait la troncature de (1.24) au n-eme terme. De plus, on note µNGin le pro-
cessus ponctuel déterminantal associé, aver comme mesure sous-jacente dℓ. On remarque
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que µNGin tend vers µGin faiblement, quand N tend vers l’infini. Comme c’est un noyau de
projection du type (1.11), nous avons vu précédemment que µNGin avait N points presque
sûrement. µNGin n’est par contre clairement plus invariant par translations ; par contre, il
reste isotropique pour les mêmes raisons que µGin l’est. Physiquement, µNGin représente la
distribution de N électrons polarisés dans un champ magnétique perpendiculaire, remplis-
sant les N niveaux de Landau les plus bas, ainsi que remarqué dans [74].

La simulation du processus déterminantal avec pour noyau (1.25) est relativement
simple. En effet, puisque le processus ponctuel a N points presque sûrement, il ne reste
qu’à simuler l’emplacement des points. Pour ce cas particulier, il n’y a même pas besoin
de tirer les points selon la densité jointe puisqu’il a été prouvé dans [30] que les valeurs
propres d’une matrice hermitienne N × N avec des entrées gaussiennes sont distribuées
selonµNGin. Plus précisément, considérons une matrice A := (Anm)1≤n,m≤N , telle que pour
1 ≤ n,m ≤ N ,

Anm =
1
√
2

(

A1
nm + iA2

nm

)

,

où A1
nm, A

2
nm ∼ N (0, 1), 1 ≤ n,m ≤ N sont des gaussiennes indépendantes. Alors, les

valeurs propres de A ont pour distribution µNGin. Cette manière de simuler est de loin la
plus efficace dans ce cas.
Cette méthode de simulation, quoique efficace, possède un désavantage de taille : le support
de la loi du processus ponctuel déterminantal associé a pour support tout C. De plus, le
fait de projeter le déterminantal sur un compact rend le nombre de points du processus
ponctuel aléatoire. Ainsi, ce premier modèle sera utile principalement dans les applications
pour lesquelles il n’est pas nécessaire que le processus ponctuel soit dans un compact de C

fixé à l’avance.

Après un certain nombre de considérations liées au compact sur lequel nous comptons
simuler, nous sommes en mesure d’introduire un nouveau noyau, donné par

K̃N
Gin(z1, z2) =

N−1
∑

n=0

φNn (z1)φ
N
n (z2), z1, z2 ∈ BR, (1.26)

et où φNn correspond à la fonction φn restreinte au compact B√N (après renormalisation).

Commençons par prouver que µ̃NGin, le processus ponctuel déterminantal avec noyau K̃N
Gin,

converge vers µGin faiblement quand N tend vers l’infini. C’est une conséquence de Pro-
position 1.0.7, et nous l’avons prouvé dans la proposition suivante :

Theorem 1.0.6. K̃N
Gin converge uniformément sur les compacts vers KGin quand N tend

vers l’infini. En conséquence, les mesures déterminantes correspondantes convergent faible-
ment vers le processus ponctuel déterminantal de noyau KGin.

Revenons maintenant au problème de la simulation d’un processus ponctuel détermi-
nantal de noyau (1.26). En tant que processus ponctuel déterminantal de projection, il
est simulé de manière efficace par l’algorithme de [34]. Par contre, notons que l’étape de
génération des variables aléatoires de Bernoulli n’est plus nécessaire, puisque ce processus
ponctuel possède N points presque sûrement. Pour résumer, la simulation du processus
ponctuel associé au noyau (1.26) sur une boule centrée autour de l’origine et de rayon
a ≥ 0 se fera selon l’algorithme suivant :
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Algorithm 1 Simulation du processus de Ginibre tronqué sur un compact

définir φk(z) =
N

πa2γ(k+1,N)
e−

N

2a2
|z|2(Nz

a2
)k, pour z ∈ BN et 0 ≤ k ≤ N − 1.

définir v(z) := (φ0(z), . . . ,φN−1(z)), pour z ∈ BN .
tirer XN à partir de la loi de densité pN (x) = ‖v(x)‖2/N , x ∈ Λ
poser e1 = v(XN )/‖v(XN )‖
for i = N − 1 → 1 do
tirer Xi à partir de la loi de densité

pi(x) =
1

i

[

‖v(x)‖2 −

N−i
∑

j=1

|e∗jv(x)|
2
]

set wi = v(Xi)−
∑N−i

j=1

(

e∗jv(Xi)
)

ej , eN−i+1 = wi/‖wi‖

end for
return (X1, . . . , XN )

Le processus ponctuel résultant est donc un processus ponctuel de noyau (1.26). Son sup-
port est Ba et ce processus a N points presque sûrement.

Nous donnons enfin le résultat de l’application de cet algorithme et l’obtention d’un
tirage du processus ponctuel associé.

Ce processus ponctuel déterminantal a l’avantage d’être facile à utiliser dans les simu-
lations, et d’avoir un nombre de points fixé à l’avance. De plus, Théorème 4.4.1 prouve sa
convergence vers le processus ponctuel de Ginibre quand N tend vers l’infini.

Analyse stochastique et intégration par parties

Afin de présenter nos résultats en analyse stochastique, nous procédons comme dans [2]
et introduisons le même gradient ainsi que les mêmes fonctions test. Plus précisément, on
dit que F : X → R est dans FC∞b (C∞(E),X ) si F est de la forme

F : ξ #−→ f(
∑

x∈ξ

h1(x), . . . ,
∑

x∈ξ

hN (x)),
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pour un certain N ∈ N, h1, . . . , hN ∈ D = C∞(E), F ∈ C∞b (RN ). Pour une fonction F
dans FC∞b (C∞(E),X ), on définit son gradient comme

∇F (ξ) =
N
∑

i=1

∂if(
∑

x∈ξ

h1(x), . . . ,
∑

x∈ξ

hN (x))
∑

x∈ξ

∇
Ehi(x),

où ∇E est le gradient usuel sur E. Rappelons maintenant un certain nombre de résultats
de [2] obtenus dans le cas du processus ponctuel de Poisson. Il a été montré qu’il existe
une formule d’intégration par parties sur L2(X , µ) au sens où il existe un opérateur, que
nous appellerons divergence, et noterons div, et tel qu’on ait la formule suivante :

E[F ∇G] = E[G divF ],

pour F,G ∈ FC∞b (C∞(E),X ). Puis, après l’étude du générateur HF = div∇F , il y est
montré qu’il existe une diffusion quasi-continue correctement associée avec le processus
ponctuel de Poisson. Dans ce cas, la diffusion est un mouvement brownien sur l’espace des
configurations. La même étude a été effectuée dans [3] pour le processus ponctuel de Gibbs,
et cette étude a été initiée dans [14] pour le cas d’un processus ponctuel déterminantal, et
il y a été obtenu une formule d’intégration par parties. Notre objectif dans une première
étape est de clarifier un certain nombre d’arguments de [14] qui n’étaient pas suffisamment
rigoureux. Puis, nous effectuerons la suite du cheminement effectué dans [2, 3] dans le cas
d’un processus ponctuel déterminantal, i.e. nous construisons la diffusion associée avec le
processus ponctuel déterminantal. Nous allons maintenant expliquer plus précisément cette
dernière étape
Nous construisons des formes de Dirichlet associées aux processus ponctuels déterminan-
taux, et nous les utilisons pour prouver l’existence de diffusions correctement associées
aux processus ponctuels déterminantaux. À cette fin, nous donnons une formule d’intégra-
tion par partie pour des fonctions du processus ponctuel qui est basée sur un résultat de
quasi-invariance prouvé dans [14]. Puis, cette formule d’intégration par parties est étendue
à la fermeture des opérateurs de gradient et de divergence. Notre approche est similaire
à celle de [2] et notre construction diffère de celle de [83] qui est basée sur des identités
trajectorielles. Une telle construction peut être utilisée pour obtenir des formules d’esti-
mation de densités et d’analyse de sensibilité pour des fonctions des processus ponctuels
déterminantaux, du type celles de [69].
Notre théorème principal donne la forme de Dirichlet symétrique associée à un processus
ponctuel déterminantal :

Theorem 1.0.7 (Intégration par parties sur les compacts pour des processus ponctuels
déterminantaux). Supposons que K,λ satisfons Hypothesis 1, ainsi que des conditions d’in-
tégrabilité suffisantes. Pour F et G deux fonctions cylindriques de FC∞b (C∞(Λ),XΛ), et
tout compact Λ ⊂ E, on a

∫

XΛ

∇vF (ξ)G(ξ)µKΛ,λ(dξ) = −

∫

XΛ

F (ξ)∇vG(ξ)µKΛ,λ(dξ)

+

∫

XΛ

F (ξ)G(ξ)(Bλ
v (ξ) +∇vU [Λ](ξ))µKΛ,λ(dξ), (1.27)

où Bλ
v sera défini plus tard en (5.11).
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Une application aux dynamiques stochastiques associées est ensuite obtenue, et nous
caractérisons les diffusions associées au processus ponctuel déterminantal.
Tous les résultats de cette sous-section seront en fait généralisés à un processus ponctuel
quelconque, ou presque. Plus précisément, nous considérons un processus ponctuel qui ad-
met des intensités conditionnelles de Papangelou. Alors, sous des conditions d’intégrabilité,
nous prouvons comme dans le cas déterminantal l’existence de diffusions correctement as-
sociées au processus ponctuel. Ceci nous permet de généraliser au passage les résultats
de [14], au sens où nos résultats incluent le cas d’un processus ponctuel déterminantal
possédant une intensité de Papangelou, i.e. tous les exemples de [28].

Formules de moments pour des processus ponctuels généraux

Notre objectif ici est de généraliser les formules de [66,67] au cas d’un processus ponctuel
quelconque, ou presque. Pour obtenir nos résultats, nous ne pouvons recourir aux mêmes
types de preuves que dans [68], vu que celles-ci reposent principalement sur des outils de
calcul de Malliavin développés uniquement dans le cadre poissonnien. Pour être plus précis,
nous cherchons à calculer les moments de tous ordres d’objets du type

∑

x∈ξ u(x, ξ), où ξ

est une configuration sur un espace Polonais et u un processus stochastique. Ainsi, nous
obtenons le Théorème 1.0.8 qui généralise ce qui a été obtenu dans [68] pour un processus
ponctuel de Poisson. Ce théorème généralise aussi ceux de [17] qui concernent un processus
ponctuel général, mais uniquement pour une fonction u(x, ξ) ne dépendant que de x. Notre
démonstration est basée principalement sur l’équation de Georgii-Nguyen-Zessin rappelée
en (1.14). Elle implique la notion d’intensité de Papangelou c(x, ξ), définie intuitivement
comme la densité de probabilité d’avoir une particule en x sachant que l’on observe la
configuration ξ.
Puis, nous en déduisons un opérateur de divergence δ, traditionnellement défini pour un
processus ponctuel de Poisson, et que nous généralisons à un processus ponctuel quel-
conque via la formule (1.29). Nous sommes de même en mesure de calculer les moments
de δ(u), mais surtout en déduisons le Corollaire 1.0.3 qui généralise la formule d’isométrie
bien connue dans le cas du processus ponctuel de Poisson.
Enfin, nous considérons une transformation τ(x, ξ) qui perturbe les particules x d’une
configuration ξ selon τ(ξ) :=

∑

x∈ξ δτ(x,ξ), où ici δ est la fonction de Dirac. Nous carac-
térisons dans le Théorème 1.0.9 la mesure transformée. Les conditions imposées ici sur la
transformation τ sont les mêmes que dans le cas du processus ponctuel de Poisson.

Theorem 1.0.8. Pour tout n ∈ N, toutes fonctions mesurables uk : E × X → R, k =
1, . . . , n, et toute fonction mesurable positive F sur X , on a

E[F
n
∏

k=1

∫

uk(y, ξ) ξ(dy)] =
n
∑

k=1

∑

P∈T k
n

E

[

∫

Ek

F (ξ ∪ x)uP(x, ξ ∪ x)c(x, ξ)λk(dx)
]

,

où T k
n est l’ensemble des partitions de {1, . . . , n} en k sous-ensembles. Ici, pour P =

{P1, . . . , Pk} ∈ T k
n , on utilise la notation plus compacte x := (x1, . . . , xk), ainsi que

λk(dx) := λ(dx1) . . .λ(dxk) et

uP(x, ξ) :=
k
∏

l=1

∏

i∈Pl

ui(xl, ξ).
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Cette formule généralise ainsi un certain nombre de formules obtenues dans [66], puis-
qu’elles sont ici valables pour un processus ponctuel quelconque. En particulier, nous ob-
tenons

Corollary 1.0.1. Pour tout n ∈ N, et toute fonction mesurable v sur E, on a

E[F
(

∫

v(y) ξ(dy)
)n
] =

n
∑

k=1

∑

{P1,...,Pk}∈T k
n

∫

Ek

v(x1)
|P1| . . . v(xk)

|Pk|

E[F (ξ ∪ x1 ∪ · · · ∪ xk)c({x1, . . . , xk}, ξ)]λ(dx1) . . .λ(dxk).

Avant d’aller plus loin, nous introduisons une hypothèse supplémentaire.

Hypothesis 1. Supposons que pour tout i et tout entier k,

E[ξ(Λ)k
(

∫

Λ

c(z, ξ)λ(dz)
)i
] <∞,

pour tous compacts Λ ⊂ E.

Cette hypothèse est en particulier vérifiée pour des processus α-déterminantaux (voir
[28,77]). Alors, nous sommes en mesure de prouver :

Proposition 1.0.9. Qupposons que Hypothesis 1 est vérifiée. Alors, pour tout n ∈ N, tout
processus borné u : E × X → R avec un support compact sur E, et toute fonction bornée
F sur X , on a

E[F
(

∫

u(y, ξ) ν(dy)
)n
] =

n
∑

i=0

(−1)i
(

n

i

) n−i
∑

k=1

∑

{P1,...,Pk}∈T
k
n−i

E

[

∫

Ek

c(x, ξ)F (ξ ∪ x)
(

∫

u(z, ξ ∪ x)c(z, ξ ∪ x)λ(dz)
)i

k
∏

l=1

u(xl, ξ ∪ x)
|Pl| λk(dx)

]

.

(1.28)

Dans le contexte du calcul de Malliavin appliqué aux processus de Poisson, nous sa-
vons que l’opérateur différence admet comme adjoint l’intégrale stochastique compensée.
Les formules précédentes impliquent une généralisation élégante de la formule d’intégration
par parties sur l’espace de Poisson à un processus ponctuel quelconque. De manière équiva-
lente, nous obtenons une formule de caractérisation de l’adjoint de l’opérateur différence.
Commençons par définir ces différentes notions.

Definition 2 (Opérateur différence). Pour F : X → R, on définit DF , l’opérateur diffé-
rence appliqué à F , comme suit :

DF : E × X −→ R

(x, ξ) $−→ DxF (ξ) = F (ξ ∪ x)− F (ξ \x).

Definition 3 (Opérateur divergence). On dit qu’une fonction mesurable u : E × X →
R appartient à Dom(δ) dès lors que E[

∫

|u(y, ξ)| c(y, ξ)λ(dy)] est finie. Alors, pour u ∈
Dom(δ), on définit δ(u) par

δ(u) =

∫

u(y, ξ \ y) ξ(dy)−

∫

u(y, ξ) c(y, ξ)λ(dy). (1.29)
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Il s’ensuit par Proposition 1.0.9 la formule suivante :

Corollary 1.0.2 (Formule de dualité). Pour toute fonction bornée F sur X , et tout pro-
cessus u : (x, ξ) �→ u(x, ξ), Cµ-mesurable, et dans Dom(δ), on a

E[F δ(u)] = E[

∫

E
DzF (ξ)u(z, ξ)c(z, ξ)λ(dz)]. (1.30)

Comme corollaire, nous obtenons aussi une formule d’isométrie modifiée :

Corollary 1.0.3. Pour un processus u : (x, ξ) �→ u(x, ξ), Cµ-mesurable, et dans Dom(δ),
on a

E[δ(u)2] = E[

∫

u(y,ω)2c(y,ω)dλ(y)]+E[

∫∫

Dyu(z, ω)Dzu(y, ω)c({y, z}, ω)dλ(y)dλ(z)]

− E[

∫∫

u(z, ω)u(y, ω)

(

c({y, z}, ω)− c(y, ω)c(z, ω)

)

dλ(y)dλ(z)].

Nous pouvons noter que les deux premiers termes apparaissent dans la formule corres-
pondante pour le processus ponctuel de Poisson. Par contre, le dernier terme est intrinsè-
quement lié à la structure de corrélation du processus ponctuel.

Enfin, donnons une application des formules de moments obtenues précédemment. Nous
avons pour objectif d’étudier une transformation aléatoire du processus ponctuel général
µ. Dans la suite, nous nous intéresserons à la condition suivante :

Hypothesis 2. Pour u : E × X → R, on suppose que u vérifie

Dx1 . . . Dxku(x1, ξ) . . . u(xk, ξ) = 0, for Cµ-a.e. (x, ξ) ∈ E × X

pour tout k ≥ 1.

Maintenant, considérons la transformation aléatoire τ : E × X → E. Pour ξ ∈ X ,
considérons la mesure image de ξ par τ , que nous appellerons la transformation aléatoire
τ∗(ξ), définie par

τ∗(ξ) =
∑

x∈ξ

δτ(x,ξ),

et donc τ∗ déplace chacun des points de la configuration dans la direction τ . Nous cherchons
à étudier l’effet de cette transformation sur la mesure µ sous des hypothèses suffisamment
fortes sur τ . Spécifiquement, nous introduisons la condition suivante :

(H1) La transformation aléatoire τ∗ satisfait Hypothesis 12, au sens que pour tout u :
X → R, u ◦ τ∗ vérifie Hypothesis 12.

(H2) Pour presque tout ξ ∈ X , τ(·, ξ) est inversible, et nous noterons son inverse τ−1(x, ξ),
x ∈ E, ξ ∈ X . On noter aussi τ−1

∗ (ξ) la mesure image de ξ par τ−1.

Nous sommes maintenant en mesure de donner le résultat principal :

Theorem 1.0.9. Soit τ : E × X → E une transformation aléatoire ainsi que définie
précédemment, et satisfaisant (H1) et (H2). Supposons que τ transforme λ en σ, i.e.
τ(·, ξ)λ = σ, ξ ∈ X , où σ est une mesure fixée sur (E,B). Alors, τ∗µ a des functions de

corrélation par rapport à σ qui sont données par

ρτ (x1, . . . , xk) = E
[

c({τ−1(x1, ξ), . . . , τ
−1(xk, ξ)}, ξ)

]

, x1, . . . , xk ∈ E. (1.31)
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Ce théorème généralise tous les résultats connus. Remarquons en particulier que dans
le cas d’un processus ponctuel de Poisson, le théorème précédent s’écrit de la manière
suivante.

Corollary 1.0.4. Soit µ = πdλ un processus de Poisson avec intensité λ. Soit τ : E ×
X → E une transformation aléatoire satisfaisant (H1) et (H2). Supposons de plus que τ

transforme λ en σ, i.e. τ(·, ξ)λ = σ, ξ ∈ X . Alors, τ transforme πdλ en πdσ.

Ces résultats ont donné lieu aux publications suivantes :

Publications

— Laurent Decreusefond, Ian Flint, Nicolas Privault, Giovanni Luca Torrisi. Determi-
nantal processes : a survey.
À paraître dans "Stochastic analysis for Poisson point processes : Malliavin calculus,
Wiener-Itô chaos expansions and stochastic geometry", G. Peccati and M. Reitzner
editors, Bocconi & Springer Series, 2014.

— Laurent Decreusefond, Ian Flint. Moment formulae for general point processes. Ac-
cepté dans "Comptes rendus Mathématique", 2013.

Preprints

— Laurent Decreusefond, Ian Flint, Anaïs Vergne. Efficient simulation of the Ginibre
point process. Soumis, 2013.
http ://hal.archives-ouvertes.fr/hal-00869259
Inclus dans Chapitre 4.

— Laurent Decreusefond, Ian Flint. Moment formulae for general point processes. Sou-
mis à JFA, 2013.
http ://hal.archives-ouvertes.fr/hal-00753801
Inclus dans Chapitre 6.

— Anaïs Vergne, Ian Flint, Laurent Decreusefond and Philippe Martins. Homology
based algorithm for disaster recovery in wireless networks. Soumis, 2013.
http ://hal.archives-ouvertes.fr/hal-00800520
Inclus dans Appendice A.

— Laurent Decreusefond, Ian Flint, Nicolas Privault, Giovanni Luca Torrisi. Stochastic
dynamics of determinantal processes by integration by parts. Soumis, 2013.
http ://arxiv.org/abs/1210.6109
Inclus dans Appendice B, voir aussi Section 5.3

— Laurent Decreusefond, Ian Flint, Kah Choon Low. Perfect Simulation of Determi-
nantal Point Processes. Soumis, 2013.
http ://hal.archives-ouvertes.fr/hal-00879101
Inclus dans Appendice C.
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Chapter 2

Introduction

Background

In this manuscript, we consider a Polish space E, which in examples will be taken to
be E = R or E = R

d. E is said to be the underlying space, and is endowed with a diffusive
Radon measure λ, which we call the intensity measure. We call configuration space, and
denote by X , the space of subsets of E which have a finite number of points in compact
sets. It is then natural to topologize X with the vague topology, and to define F the
corresponding Borel σ-algebra. Then, we call random point process a triplet (X ,F , µ),
where µ is a probability measure on (X ,F). Intuitively, a random point process is thus a
random variable with state space X .
In the following, we write x for an element of E, while we favor ξ to denote elements of
the configuration space X . ξ also sometimes denotes the canonical random variable on
(X ,F , µ), i.e. ξ is sometimes treated as the random variable with distribution µ.
A random point process µ is characterized by a wide variety of functionals which give
information on some of its properties. Let us recall some of them here. First, the so-called
correlation functions ρn, indexed by n ∈ N, which are defined in such a way that

ρn(x1, . . . , xn)λ(dx1) . . .λ(dxn)

is the probability of finding a particle in the vicinity of each xi, i = 1, . . . , n. Therefore,
correlation functions indicate repulsiveness or attractiveness since

ρ2(x, y) ≤ ρ1(x)ρ1(y), x, y ∈ E (2.1)

signals repulsiveness, while

ρ2(x, y) ≥ ρ1(x)ρ1(y), x, y ∈ E

signals attractiveness. The other tool of major importance which will be useful throughout
the manuscript is the so-called Papangelou (conditional) intensity. Intuitively, the Papan-
gelou intensity c is such that c(x, ξ)λ(dx) is the conditional probability of finding a particle
in the vicinity of x, given the configuration ξ. Historically, the first type of processes sat-
isfying this condition is the Gibbs process. For a Gibbs process, c(x, ξ) = eH(x∪ξ)−H(ξ),
where H is a global energy function, chosen in a suitable class of functions.

Random point processes have been extensively studied. However, more often than not,
the measure µ is the Poisson measure, in which case extensive work has been done. How-
ever the Poisson measure has an important flaw, which is that the points do not have a
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correlation structure. To visualize this, recall how a Poisson process is simulated. First,
we are to simulate the number of points in a certain compact set, and then we simulate
each point uniformly on the compact set, independently of the other points. As such, the
Poisson measure rarely fits realistic data, which often exhibits correlation between events.
The question is then of the modeling of such correlation, while maintaining a satisfying
mathematical framework.
A random point process being a priori very general, we have very few constraints when
choosing a model. One example of such a model traces back to [58], and is known as
the Gibbs point process. This point process of major interest in physics models simple
interactions between particles, given in the form of a potential. In a certain sense, the
global interaction of a system of particles on a certain particle can be modeled by a sum of
one to one interactions. There is a satisfying framework for Gibbsian measures, but some
smoothness conditions on the potential are quite restrictive. Gibbs point processes model
one-to-one interactions which appear in physics quite well, and can be generalized to more
general k-body interactions.

Figure 2.1: Comparison 2 of Poisson point process (top left), determinantal point process
(top right), and permanental point process (bottom)

2. Reference for the image: [34]
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Determinantal processes were introduced by O. Macchi in 1975 as a mathematical model
which model the positioning of fermion particles. The analog - the permanental process,
which is associated with bosons - was shown to be linked to determinantal processes by
T. Shirai and Y. Takahashi, both types of processes being incorporated in a common class.
In some sense, these two types of processes are extreme cases of a general type of point
process, that have a particular correlation structure. In this manuscript, we call these
processes α-permanental point processes. These point processes were studied in depth
in [77], which is one of our main references for the general framework concerning these
point processes.
Mathematically speaking, α-determinantal point processes are defined via their correlation
functions. To be more precise, we define for a square matrix A = (Aij)1≤i,j≤n of size n×n,
the α-determinant detαA by:

detαA =
∑

σ∈Sn

αn−ν(σ)
n
∏

i=1

Aiσ(i),

where Sn stands for the n-th symmetric group and ν(σ) is the number of cycles in the
permutation σ ∈ Sn. Then, an α-determinantal point process is chosen so as to have its
correlation functions satisfy

ρk(x1, . . . , xk) = detα(K(xi, xj))1≤i,j≤k,

for any k ≥ 1 and x1, . . . , xk ∈ E. Here K is a quite general operator which will satisfy
some hypotheses defined later on. Most importantly, K is chosen to be symmetric and
with spectrum in [0, 1]. We notice straight away that when α = −1, we obtain the usual
determinant and hence (2.1) is trivially satisfied by symmetry of K.
Although these general α-permanental point processes were grouped together in [77], the
correlation structure of these point processes is very different depending on the sign of α,
which leads us to categorize the resulting process as one modeling either fermion or boson
particles. To be more precise, when α > 0, the point process exhibits attraction, and is
used to model bosons. On the contrary, when α < 0, the point process exhibits repulsion
and is used to model fermions. This profound difference in the correlation structure lead
us to focus our attention in this thesis to the case of α < 0. Although some of our results
could be stated in a very general setting and incorporate the α ≥ 0 case, we use abundantly
the fact that the point process is repulsive, specifically to obtain a stochastic domination
by the well-known Poisson process, which is known not to be true when α ≥ 0, see [23].
The difference in the correlation properties of these different processes is shown in Fig-
ure 2.2. Let us also point out that α serves as a parameter which gives rise to an inter-
mediate class of point processes between the extreme cases that are determinantal and
permanental point processes. We also give in Figure 2.3 a sample of Dyson’s model, which
is a determinantal process on E := R with the sine kernel. Dyson’s model traces back
to [22], see also [81] for further developments.
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Figure 2.2: Uniform vs determinantal sampling.

Figure 2.3: Dyson’s model on the diagonal (one dimension) - 100 particles

As we have said, determinantal process model a certain type of physical interactions
very well. They have also arisen in another seemingly orthogonal domain : stochastic
matrix theory. It is known that the eigenvalues of certain classes of random matrices (as
an example, consider orthogonal matrices sampled from the Haar measure) form a deter-
minantal process.
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On the contrary of determinantal processes, permanental processes exhibit attraction.
They are a generalization of well known Cox processes. Both of these processes can seem-
ingly be used to model quite diverse phenomena. Indeed, this correlation structure seems
to fit many realistic observations in finance, networking, epidemiology,...
In this manuscript, we study specifically α-determinantal point processes, while sometimes
restricting our attention to the case α = −1, which will be known as the determinantal
point process. When we find it to be possible, we generalize the results to any point process
possessing a Papangelou conditional intensity, as for example in Section 5.4 or Chapter 6.

Results

In Chapter 3, we introduce the theoretical background which will be necessary for the
study of point processes. After a brief presentation of the classical tools that appear in
point process theory, we move on to define integral operators and their kernels. The linear
operators introduced there will be central to the study of determinantal point processes,
therefore we insist on some important properties of the trace and the Fredholm determinant
of such operators. Afterwards, we introduce rigorously α-determinantal point processes by
mean of their correlation functions or their Janossy density. Lastly, we insist specifically
on the Papangelou conditional intensity which is found to be of most importance in the
whole manuscript.

In Chapter 4, we turn our attention to practical ways of simulating α-determinantal
point processes, as well as the numerical implementation of models. Indeed, simulation
of general determinantal point processes is mostly unexplored, and was in fact initiated
in [34] wherein the authors give a practical algorithm for the simulation of determinantal
point processes. Theoretical discussion of the aforementioned algorithm as well as statisti-
cal aspects have also been explored in [44]. More specifically, the Ginibre point process has
spiked interest since its introduction in [30]. Even recently, probabilistic results have been
obtained in the specific case of the Ginibre point process, see e.g. [31, 76]. The simulation
procedure which is hinted in [30] was fully developed numerically in [13]. To the best of
our knowledge, the first use of the Ginibre point process as a model traces back to [12].
More recently, in [54,84,87], different authors have used the Ginibre point process to model
phenomena arising in networking. Indeed, this particular model has many advantages with
regards to applications. It is indeed invariant with respect to rotations and translations,
which gives us a natural compact subset on which to simulate it: the ball centered at
the origin. Moreover, the electrostatic repulsion between particles seems to be fitting for
many applications. Our aim in this paper is to study the simulation of the Ginibre point
process from a practical point of view, and give different methods which will be more or
less suited to the application at hand. The main problem that arises in practice is that
although the eigenvalues of matrices in the GUE ensemble form a Ginibre point process,
these eigenvalues are not compactly supported, although after renormalization, they tend
to be compactly supported as N tends to infinity (this is known as the circular law in
stochastic matrix theory). Moreover, as will be seen here, truncating to a natural compact
and letting N tend to infinity is not the most efficient way to proceed, even though this op-
eration preserves the determinantal property of the point process. Therefore, our methods
will rely on the modification of the kernel associated with the Ginibre point process. We
study in depth the projection of the kernel onto a compact, its truncation to a finite rank,
and in the last part a combination of both operations. Each of these operations on the
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kernel will have different results on the resulting point process, as well as the simulation
techniques involved.
To be more specific concerning our results, a simulation of a rank N (truncated) Ginibre
point process is obtained here in Figure 2.4. This point process has N points almost surely,
but is not necessarily compactly supported, even though it tends to be as N tends to in-
finity. Determinantal point process allow a finer control of such properties of the model:
we are able to modify the kernel K and introduce (4.15) in order to obtain a compactly
supported point process with N points almost surely, and which tends to the Ginibre as
N tends to infinity, as proved in Theorem 4.4.1. In effect, we truncated the kernel so that
its rank is less than N , then conditioned on there being N points. The conditioning con-
serves the determinantal property of the point process, and yields a simple model usable
in applications such as the one given in [87], and recalled in Appendix A.

Figure 2.4: Rank N Ginibre model in two dimensions - 100 particles

In Chapter 5, we begin by recalling all the notions and properties from Dirichlet form
theory which will be useful in the chapter. These notions range from basic properties of
Dirichlet form theory well presented in [27] to more advanced results from [49] which will
be useful in our analysis. Next, we proceed as in [2] and introduce the same differential
gradient alongside their test functionals. More precisely, we say that a function F : X → R
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is in FC∞b (C∞(E),X ) if F is of the form

F : ξ �−→ f(
∑

x∈ξ

h1(x), . . . ,
∑

x∈ξ

hN (x)),

for some N ∈ N, h1, . . . , hN ∈ D = C∞(E), F ∈ C∞b (RN ). For a function F in
FC∞b (C∞(E),X ), we define its gradient as

∇F (ξ) =
N
∑

i=1

∂if(
∑

x∈ξ

h1(x), . . . ,
∑

x∈ξ

hN (x))
∑

x∈ξ

∇Ehi(x),

where ∇E is the usual gradient on E. Let us now recall some of the results of [2] obtained
in the case of the Poisson point process. It was shown there that there exists an integration
by parts formula in L2(X , µ) in the sense that there exists an operator, which we call the
divergence div such that the following holds:

E[F ∇G] = E[G divF ],

for F,G ∈ FC∞b (C∞(E),X ).Then, after the study of the generator HF = div∇F , it is
shown that there exists a quasi-continuous diffusion correctly associated with the Poisson
point process. In that case, the diffusion is known as a brownian motion on the config-
uration space. The same study was performed in [3] for the Gibbs point process, and
the study was begun in the α-determinantal case in [14] wherein an integration by parts
formula was obtained. Our aim in a first step is to clarify some of the arguments in [14]
which were found to not be precise. Then, we conduct the rest of the work done in [2,3] in
the determinantal case, i.e. we construct the diffusion associated with the determinantal
point process. We now explain in detail this part of the chapter, which lead to the publi-
cation [20].
We construct Dirichlet forms related to determinantal processes, and we apply them to
derive the existence of the associated interacting diffusion processes. For this we provide
an integration by parts formula for functionals of determinantal processes which is based
on a quasi-invariance result proved in [14]. This integration by parts formula is extended
to closed gradient and divergence operators. Our approach follows the lines of [2] and our
construction differs from the one considered in [83] which is based on sample-path iden-
tities. Such a construction can be applied to derive formulas for density estimation and
sensitivity analysis for functionals of determinantal processes along the lines of [69].
Our main result, Theorem 5.3.1, provides the symmetric Dirichlet form associated to a
determinantal process. An application to the associated stochastic dynamics follows in
Theorem B.5.1, in which we prove the existence of the diffusion process associated with a
determinantal process satisfying the assumptions of Theorem 5.3.2.
In the last section of this chapter, we put to light the fundamental specificities of µ that
allow there to be an integration by parts formula for the point process. That is, we consider
a general point process which we only assume to possess a conditional Papangelou inten-
sity. Then, under some integrability conditions, we show the existence of the associated
diffusions. This allows us along the way to slightly generalize the results obtained in [14],
in that we include the case of any determinantal point process possessing a conditional
Papangelou intensity, i.e. all examples of [28].
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Our aim in Chapter 6 is to obtain moment formulae for quite general point processes.
Hence, we follow the path of [68], in which some moment formulae were obtained for
the Poisson point process. In particular, the main result of [68] is the following formula,
obtained in the Poisson case:

E[
(

∑

y∈X

uy(ξ)
)n
]

=
∑

{P1,...,Pk}∈Tn

E

[

∫

Ek

u|P1|
x1 . . . u|Pk|

xk
(ξ ∪ x1 ∪ · · · ∪ xk)λ(dx1) . . .λ(dxk)

]

,

where Tn is the set of all partitions of {1, . . . , n}, |Pi| is the cardinality of Pi, i = 1, . . . , k,
and u : E × X → R is a nonnegative measurable process.
The proofs in [68] are mostly based on the use of previous results related to Malliavin cal-
culus (in particular the formula that gives E[δ(u)n]). In this chapter, we generalize all the
formulae in [68] to the case of a point processes which has Papangelou intensities (which
obviously includes the case of the Poisson point process). Our proofs are mainly based on
the Georgii-Nguyen-Zessin formula, and as a consequence, we also obtain analogues of the
formula that gives E[δ(u)n], for a suitable definition of δ(u) in our context. We also obtain
an analogue of the Skohorod isometry formula in a general setting as a nice corollary. In
all our results, the difference between the Poissonian case and a general point process is a
randomization of the underlying measure λ obtained by multiplying it by c(·, ξ).
Our results also allow us to study random transformations of point processes. In the case of
a general point process µ, we consider a random transformation τ , such that each particle
x of the configuration ξ is moved to τ(x, ξ). Then, we obtain an explicit characterization of
τ∗µ if we assume that τ satisfies a suitable condition, where here τ∗ is the image measure
of µ. An application is to show that a non-random transformation of a determinantal point
process yields another determinantal point process.

Lastly, in the appendices, we include collaborations that do not fit directly in the scope
of this dissertation thesis. All three appendices are mostly unedited excerpts from the
papers which were the fruit of these collaborations. We therefore just give here a brief
summary of the work done therein.
In Appendix A, we present an algorithm for the recovery of wireless networks after a dis-
aster. Considering a damaged wireless network, presenting coverage holes or/and many
disconnected components, we propose a disaster recovery algorithm which repairs the net-
work. It provides the list of locations where to put new nodes in order to patch the coverage
holes and mend the disconnected components. In order to do this we first consider the
simplicial complex representation of the network, then the algorithm adds supplementary
vertices in excessive number, and afterwards runs a reduction algorithm in order to reach
an optimal result. One of the novelty of this work resides in the proposed method for
the addition of vertices. We use a determinantal point process: the Ginibre point pro-
cess which has inherent repulsion between vertices, and has never been simulated before
for wireless networks representation. We compare both the determinantal point process
addition method with other vertices addition methods, and the whole disaster recovery
algorithm to the greedy algorithm for the set cover problem.
In Appendix B, we construct the interacting diffusion processes associated to determinan-
tal processes. The notations of this paper are quite different than those of the present
manuscript, therefore we start by recalling notations and notions specific to this chapter.
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Our construction is based on the notion of Dirichlet form and an integration by parts for-
mula for functionals of determinantal processes. We also give examples of such diffusions.
In Appendix C, we investigate the application of perfect simulation via coupling from the
past on determinantal point processes. We give a general framework for perfect simu-
lation in the determinantal model. It is shown that the limiting sequence of the time-
to-coalescence of the coupling is bounded by K|Λ| logK|Λ|. An application is given to
stationary determinantal point processes.
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Included in Appendix C.
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Chapter 3

Introduction to the theory of point

processes

The general framework was initially developed in [37], see also [17, 18, 64].

3.1 Locally finite point processes

Let E be a Polish space, O(E) the family of all non-empty open subsets of E and
B denotes the corresponding Borel σ-algebra. For any subset A ⊂ E, let |A| denote the
cardinality of A, setting |A| =∞ if A is not finite. We use the notation Λ ⊆ E, to denote
a compact set Λ in E. We denote by X the set of locally finite point configurations on E:

X := {ξ ⊂ E : |ξ ∩ Λ| <∞ ∀Λ ⊆ E}.

In fact, X consists of all simple positive integer-valued Radon measures on E (by simple we
mean that for all x ∈ E, ξ(x) ≤ 1). Sometimes, we write N for the space of (non-simple)
positive integer-valued Radon measures on E. Hence, it is naturally topologized by the
vague topology, which is the weakest topology such that for all continuous and compactly
supported functions f on E, the mapping

ξ &→ 〈f, ξ〉 :=
∑

y∈ξ

f(y)

is continuous. We denote by F the corresponding σ-algebra, i.e.

F :=σ({ξ ∈ X : |ξ ∩ Λ| = m}, m ∈ N, Λ ⊆ E ).

We usually call elements of X configurations and identify a locally finite configuration
ξ ∈ X with the atomic Radon measure

∑

y∈ξ εy, where we have written εy for the Dirac
measure at y ∈ E. For a given ξ =

∑

y∈ξ εy, we usually view ξ as a set, and write
ξ ∪ y0 = ξ ∪ {y0} for the addition of a particle at y0 and ξ \ y0 = ξ \ {y0} for the removal
of a particle at y0. We define similarly X0 the set of finite point configurations on E:

X0:={ξ ⊂ E: |ξ| <∞},

which is naturally equipped with the trace σ-algebra F0 = F|X0 . Lastly, for any compact
subset Λ ⊆ E, let FΛ be the space of finite configurations on Λ, and FΛ the associated
(trace-) σ-algebra.
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As in [28], we define for any Radon measure λ on E the (λ-)sample measure Lλ on
(X0,F0) by

∫

X0

f(α)Lλ(dα) :=
∑

n≥0

1

n!

∫

En

f({x1, . . . , xn})λ(dx1) . . .λ(dxn), (3.1)

for any measurable f : Nf → R. Similarly, we also define its restriction to Λ ⊆ E a
compact subset:

∫

X0

f(α)LλΛ(dα) :=
∑

n≥0

1

n!

∫

Λn

f({x1, . . . , xn})λ(dx1) . . .λ(dxn),

for any measurable f : XΛ → R.

A random point process is defined as a probability measure µ on (X ,F). Such a probability
measure µ is characterized by its Laplace transform Lµ, which is defined for any measurable
nonnegative function f on E as

Lµ(f) =

∫

X
e−〈f,ξ〉 µ(dξ).

With the classical abuse of notation, we scarcely write ξ to denote the canonical random
variable on (X ,F , µ). In that case, we write E for the expectation of the random variable
ξ, i.e.

E[F (ξ)] =

∫

X
F (ξ)µ(dξ),

for any measurable F : X → R. We write

ξΛ = ξ ∩ Λ

for the restriction of ξ to a compact subset Λ ⊆ E. The law of ξΛ (i.e. the restriction of µ
to Λ ⊆ E) is denoted by µΛ. Lastly, for a compact subset Λ ⊆ E, we denote by ξ(Λ) the
number of points of ξΛ, i.e. ξ(Λ) := |ξ ∩ Λ|.

A point process µ is said to have a correlation function ρ : X0 → R with respect to (w.r.t.)
a Radon measure λ on (E,B) if ρ is measurable and

E[
∑

α⊂ξ, α∈X0

f(α)] =

∫

X0

f(α) ρ(α)Lλ(dα),

for all measurable nonnegative functions f on X0. When such a measure λ exists, it is
known as the intensity measure of µ. For α = {x1, . . . , xk}, where k ∈ N

∗, we sometimes
write ρ(α) = ρk(x1, . . . , xk) and call ρk the k-th correlation function, where here ρk is a
symmetrical function on Ek.

Proposition 3.1.1. The correlation functions of µ (if they exist), w.r.t. a Radon measure
λ on E, verify

E

[

k
∏

i=1

ξ(Bi)

]

=

∫

B1×...×Bk

ρk(x1, . . . , xk)λ(dx1) . . .λ(dxk),

for any family of mutually disjoint compact subsets B1, . . . , Bk of E, k ≥ 1.
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Proof. Define u as follows:

u = uN : ω �→

{

1ΛN (ω) if |ω| = N,
0 if |ω|  = N.

We obtain,

E[ξ(A1) . . . ξ(AN )] =

∫

X

∑

x1,...,xN∈ξ

1A1,...,AN
(x1, . . . , xN )µ(dξ)

= N !

∫

X

∑

ω∈X0:ω⊂ξ

uN (ω)µ(dξ)

= N !

∞
∑

m=0

1

m!

∫

Em

uN ({x1, . . . , xm})ρ({x1, . . . , xm})λ
⊗m(dx1, . . . , dxm)

=

∫

A1×...×AN

ρ({x1, . . . , xN})λ
⊗m(dx1, . . . , dxN ).

The previous formula can be generalized as follows:

Proposition 3.1.2. Let A1, . . . , An be disjoint bounded Borel subsets of E. Let k1, . . . , kn
be integers such that

∑n
i=1 ki = N . Then,

E[
n
∏

i=1

ξ(Ai)!

(ξ(Ai)− ki)!
] =

∫

A
k1
1 ×...×A

kn
n

ρ({x1, . . . , xN})λ(dx1) . . .λ(dxN ).

Proof. The proof is the same as the first proposition. Indeed, Proposition 3.1.2 is the same
as Proposition 3.1.1 except for the fact that there are less subsets. This allows us to extend
the first formula to subsets that are not disjoint.

Henceforth, we require in addition that ρk(x1, . . . , xk) = 0 whenever xi = xj for some
1 ≤ i  = j ≤ k. Recall that ρ1 is the particle density with respect to λ, and

ρn(x1, . . . , xn)λ(dx1) . . .λ(dxn)

is the probability of finding a particle in the vicinity of each xi, i = 1, . . . , n.

For any compact subset Λ ⊆ E, the Janossy densities of µ, w.r.t. a Radon measure λ

on E, are (if they exist) measurable functions jn
Λ
: Λn → R satisfying for all measurable

functions f : XΛ → R,

E [f(ξΛ)] =
∑

n≥0

1

n!

∫

Λn

f({x1, . . . , xn}) j
n
Λ (x1, · · · , xn) λ(dx1) . . .λ(dxn). (3.2)

Remark 2. Here, we can notice that in definition (3.2), we do not need to make the
subscript n directly appear. In fact, we sometimes also use the simplified notation, jΛ(α) :=
jk
Λ
(x1, . . . , xk), for α = {x1, . . . , xk}, where k ∈ N

∗.



46 3. Introduction to the theory of point processes

Hence, jΛ is the density of µΛ with respect to Lλ
Λ
, when µΛ ≪ Lλ

Λ
. For n ≥ 1, the

Janossy densities satisfy the following properties:

— Symmetry:

jnΛ
(

x
σ(1), · · · , xσ(n)

)

= jnΛ (x1, · · · , xn) ,

for every permutation σ of {1, · · · , n}.
— Normalization constraint. For each compact subset Λ ⊆ E,

+∞
∑

n=0

1

n!

∫

Λn

jnΛ (x1, · · · , xn) λ(dx1) . . .λ(dxn) = 1.

For n ≥ 1, the Janossy density jn
Λ
(x1, . . . , xn) is in fact the joint density (multiplied by a

constant) of the n points given that the point process has exactly n points. For n = 0,
j0
Λ
(∅) is the probability that there are no points in Λ, and is thus sometimes called the void

probability. We also recall that the Janossy densities can be recovered from the correlation
functions via the relation

jnΛ(x1, . . . , xn) =
∑

m≥0

(−1)m

m!

∫

Λm

ρn+m(x1, . . . , xn, y1, . . . , ym)λ(dy1) . . .λ(dym),

for any compact Λ ⊆ E, and any x1, . . . , xn ∈ Λ. The previous relation can also be
inverted, and leads to

ρn(x1, . . . , xn) =
∑

m≥0

1

m!

∫

Λm

jm+n
Λ

(x1, . . . , xn, y1, . . . , ym)λ(dy1) . . .λ(dym).

The proof of the previous results can be found in [17].

3.2 Kernels and integral operators

From now on, we consider a general Radon measure λ on (E,B). For any compact
set Λ ⊆ E, we denote by L2(Λ,λ) the Hilbert space of complex-valued square integrable
functions w.r.t. the restriction of the Radon measure λ to Λ, equipped with the inner
product

< f, g >L2(Λ,λ):=

∫

Λ

f(x)g(x)λ(dx), f, g ∈ L2(Λ,λ)

where z denotes the complex conjugate of z ∈ C. By definition, a kernel K is a measurable
function from E2 to C. We say that K is locally square integrable if, for any compact set
Λ ⊆ E, we have

∫

Λ2

|K(x, y)|2λ(dx)λ(dy) < ∞.

To any locally square integrable kernel K, we associate the integral operators

KΛ : L2(Λ,λ) → L2(Λ,λ),

where Λ is a compact subset of E, defined by

KΛf(x) :=

∫

Λ

K(x, y)f(y)λ(dy), for λ-almost all x ∈ Λ.
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A straightforward application of the Cauchy-Schwarz inequality shows that the operator
KΛ is bounded when the kernel K is locally square integrable. In fact, it can be shown
that KΛ is a compact operator.

To any locally square integrable kernel K, we also associate the integral operator K defined
by

Kf(x) :=

∫

E
K(x, y)f(y)λ(dy), for λ-almost all x ∈ E

for functions f ∈ L2(E,λ) that vanish outside a compact subset of E. We note PΛ
the projection operator from L2(E,λ) to L2(Λ,λ). Therefore, the operator KΛ defined
previously is the projection of K onto L2(Λ,λ), or equivalently KΛ = PΛKPΛ. We also
denote by KΛ the kernel of KΛ, i.e. KΛ(x, y) := 1Λ(x)K(x, y)1Λ(y), for x, y ∈ E. The
operator K is said to be Hermitian or self-adjoint if its kernel verifies

K(x, y) = K(y, x), for λ⊗2-almost all (x, y) ∈ E2. (3.3)

Equivalently, this means that the integral operators KΛ are self-adjoint for any compact
set Λ ⊆ E. If KΛ is self-adjoint, by the spectral theorem for self-adjoint and compact oper-
ators we have that L2(Λ,λ) has an orthonormal basis {ϕΛj }j≥1 of eigenvectors of KΛ. The

corresponding eigenvalues {λΛj }j≥1 have finite multiplicity (except possibly the zero eigen-
value) and the only possible accumulation point of the eigenvalues is the zero eigenvalue.
Then, the kernel KΛ of KΛ can be written as

KΛ(x, y) =
∑

n≥1

λΛnϕ
Λ

n(x)ϕ
Λ
n(y), (3.4)

for x, y ∈ Λ. We say that an operator K is positive (respectively nonnegative) if its spec-
trum is included in (0,+∞) (respectively [0,+∞)). For two operators K and I, we say
that K > I (respectively K ≥ I) in the operator ordering if K − I is a positive operator
(respectively nonnegative operator).

We say that a self-adjoint integral operator KΛ is trace-class if

‖KΛ‖1 :=
∑

n≥1

|λnΛ| <∞,

and we call ‖KΛ‖1 the trace norm of KΛ. We then define the trace of the operator KΛ
as TrKΛ =

∑

n≥1 λ
n
Λ
. If KΛ is trace-class for every compact subset Λ ⊆ E, then we

say that K is locally trace-class. It is easily noted that if a Hermitian integral operator
K : L2(E,λ)→ L2(E,λ) is trace-class, then Kn is also trace class for all n ≥ 2. In fact, we
even have Tr(Kn) ≤ ‖K‖n−1Tr(K), where ‖K‖ is the operator norm of K.

The practical computations of fractional powers of Fredholm determinants involve the
so-called α-determinants, which we introduce now. Take α ≤ 0. For a square matrix
A = (Aij)1≤i,j≤n of size n× n, the α-determinant detαA is defined by:

detαA =
∑

σ∈Sn

αn−ν(σ)
n
∏

i=1

Aiσ(i), (3.5)

where Sn stands for the n-th symmetric group and ν(σ) is the number of cycles in the
permutation σ ∈ Sn. The previous definition actually extends that of the determinant,
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which is obtained by taking α = −1. Now, we can define the Fredholm determinant of
I+K as

Det(I+K) = exp





∑

n≥1

(−1)n−1

n
Tr(Kn)



 , (3.6)

since Tr(Kn) < ∞. Here, I denotes the identity operator on L2(E,λ) and K is a general
trace class operator on L2(E,λ). Then, the fractional powers of Fredholm determinants
can be calculated as follows. For any trace class integral operator K, we have

Det(I−αK)−1/α =
∑

n≥0

1

n!

∫

En

detα(K(xi, xj))1≤i,j≤n λ(dx1) . . .λ(dxn), (3.7)

where K is the kernel of K and |α| ≤ 1. (3.7) was obtained in Theorem 2.4 of [77].

Let us end this section by recalling the following result from [28, Lemma A.4]:

Proposition 3.2.1. Let K be a nonnegative, bounded, and locally of trace class integral
operator on L2(E,λ). Then one can choose its integral kernel K (defined everywhere) such
that the following properties hold:

(i) K is nonnegative, in the sense that for any c1, . . . , cn ∈ C, a.e. x1, . . . , xn ∈ E,
we have

∑n
i,j=1 c̄iK(xi, xj)cj ≥ 0.

(ii) K is a Carleman kernel, in the sense that Kx = K(·, x) ∈ L2(E,λ) for a.e.
x ∈ E.

(iii) For any compact subset Λ ⊆ E, TrKΛ =
∫

Λ
K(x, x)λ(dx) and

Tr (PΛK
kPΛ) =

∫

Λ

< Kx,K
k−2Kx >L2(Λ,λ) λ(dx),

for k ≥ 2.

Henceforth, under proper hypotheses on K, its kernel is chosen according to the previous
proposition.

3.3 α-determinantal point processes

Let

M = {α ≤ 0 : ∃m ∈ N, α = −
1

m+ 1
} ∪ {0}.

With the previous definitions in mind, we move onto the precise definition of α-determinantal
point processes. To that effect, we henceforth use the following set of hypotheses:

Hypothesis 3. Assume that α ∈ M. Moreover, assume that the map K is an Hilbert-
Schmidt operator from L2(E, λ) into L2(E, λ) which satisfies the following conditions:

i) K is a bounded symmetric integral operator on L2(E, λ), with kernel K(., .).

ii) The spectrum of K is included in [0, − 1
α
], , i.e. 0 ≤ K < − 1

α
I in the operator ordering.

iii) The map K is locally of trace-class.
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Suppose that K satisfies Hypothesis 3. A locally finite and simple point process µ on E is
called an α-determinantal process if its correlation functions w.r.t. the Radon measure λ
on (E,B) exist and satisfy

ρk(x1, . . . , xk) = detα(K(xi, xj))1≤i,j≤k,

for any k ≥ 1 and x1, . . . , xk ∈ E, and where the α-determinant was defined in (3.5).
When α = −1, we say that µ is a determinantal point process, since the α-determinant
reduces to the usual determinant. When α "= −1, µ is called an α-determinantal point
process. It is worth noting that under Hypothesis 3, we can choose a proper kernel for K,
in the sense of proposition 3.2.1. Clearly, we then have that ρk(x1, . . . , xk) ≥ 0 for λ -a.e.
x1, . . . , xk ∈ E.
In general, we write µαK,λ for the α-determinantal point process with integral operator K
and intensity measure λ on E. We omit the superscript α to denote the determinantal
point process with integral operator K and intensity measure λ.

Existence and uniqueness (in law) of determinantal processes (here, α = −1) is guaran-
teed under Hypothesis 3 by the results in [53], [77] and [80]. See also Lemma 4.2.6 and
Theorem 4.5.5 in [35]. More precisely, if a kernel K and its associated integral operator K
satisfy Hypothesis 3, then there exists a determinantal process µK,λ on E associated to K.
Moreover, for any compact subset Λ ⊆ E there exist constants c1(Λ), c2(Λ) > 0 such that
µK,λ(ξ(Λ) > k) ≤ c1(Λ)e

−c2(Λ)k for all k ≥ 1, and in this case the correlation functions
ρk(x1, . . . , xk) uniquely determine the law of the process. This is because of the fact that
for disjoint compact subsets B1, . . . , Bk ⊆ E, the random vector (ξ(B1), . . . , ξ(Bk)) has a
convergent Laplace transform in a neighborhood of zero if the tails of the distributions of
ξ(Λ) are exponential, cf. [35, Remark 1.2.4]. Another perhaps quicker way to prove the
uniqueness of the resulting point process is to use the general criterion originally derived
in [45] which ensures uniqueness:

∑

k≥0

( 1

k!

∫

Λk

ρk(x1, . . . , xk)λ(dx1) . . .λ(dxk)
)−1/k

= +∞,

for any Borel set Λ. To prove that the previous series diverges, one can use the classical
Fredholm formula (see [79]) which states

1

k!

∫

Λk

det(K(xi, xj))1≤i,j≤k λ(dx1) . . .λ(dxk) = Tr (∧k KΛ),

where we have defined ∧k T := T ⊗ · · ·⊗ T |As(L2(E,λ)⊗k), for any operator T on L2(E,λ),
and where As(H), for H a separable Hilbert space, is its anti-symmetric subspace. Then,
it suffices to use the estimate Tr (∧k KΛ) ≤

1
k!Tr (∧KΛ)

k which is proved eg. in [79]. This
yields

( 1

k!

∫

Λk

ρk(x1, . . . , xk)λ(dx1) . . .λ(dxj)
)−1/k

≥ (k!)1/kTr (∧KΛ)
−1 −−−→

k→∞
+∞,

which proves uniqueness.

For α ∈ M, existence and uniqueness (in law) of the α-determinantal processes is guar-
anteed under Hypothesis 3 by the results in [77] for α-determinantal point processes, see
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also [53] and [80] for the determinantal case. Essentially, existence and uniqueness is due
to a consistency condition verified by the Janossy densities. However, it was proved in [8]
that for α /∈M, the associated determinantal process does not exist. More precisely,

Theorem 3.3.1. For α /∈M, we do not have that for all real symmetric positive semidef-
inite A,

detαA ≥ 0,

and as a consequence, the correlation functions are not correctly defined for α /∈M.

From now on, we therefore consider α ∈ M, and assume that the integral operator K
satisfies Hypothesis 3. Let us now recall the following result from [77] that gives the
Laplace transform of µαK,λ.

Theorem 3.3.2. Let K be an operator satisfying assumption Hypothesis 3. Then, the
unique α-determinantal point process µαK,λ has Laplace transform:

LµαK,λ
(f) = Det (I+αKϕ)

−1/α ,

for each nonnegative f on E with compact support, where ϕ = 1 − e−f and Kϕ is the
trace-class integral operator with kernel

Kϕ(x, y) =
√

ϕ(x)K(x, y)
√

ϕ(y), x, y ∈ E.

Moreover, µαK,λ is necessarily simple.

As a consequence of the calculation of the Laplace transform, it is known that µαK,λ is

a superposition ofm+1 independent copies of a determinantal point process of kernel K
m+1 .

Let K be an operator satisfying assumption Hypothesis 3. We define the trace class integral
operator on L2(E,λ)

J [Λ] := (I+αKΛ)
−1KΛ,

where the compact subset Λ ⊆ E indexes the operators J [Λ]. J [Λ] is defined in order for
K and J [Λ] to be quasi-inverses in the sense that

(I+αKΛ) (I−αJ [Λ]) = I . (3.8)

The operator J [Λ] is called the local interaction operator and we emphasize the fact that
unlike KΛ, J [Λ] is not a projection operator, i.e. in general, J [Λ] #= PΛ(I+αK)

−1KPΛ.
However, J [Λ] does have some notable properties which are summarized in [28]. Let us give
a few of the ones that are the most useful to our purposes. First, it is easily seen that J [Λ]
exists as a bounded operator since ‖αK‖ < 1, and its spectrum is included in [0,+∞). J [Λ]
is again an integral operator, so let us denote by J [Λ] its kernel (in fact, one can even show
that J [Λ] is also a Carleman operator, cf. [28]). Moreover, since J [Λ] ≤ (1+ ‖αK‖)−1KΛ,
we have that J [Λ] is again a trace operator. For α = {x1, . . . , xk} ∈ XΛ, we denote by
detα J [Λ](α) (= detα J [Λ]({x1, . . . , xk})) the determinant detα (J [Λ](xi, xj))1≤i,j≤k. Note
that for all k ∈ N

∗, the function

(x1, . . . , xk) '→ detα J [Λ]({x1, . . . , xk})

is λ⊗k-a.e. nonnegative (thanks to Proposition 3.2.1) and symmetric in x1, . . . , xk (see
e.g. [28]), and we simply write detα J [Λ]({x1, . . . , xk}) = detα J [Λ](x1, . . . , xk). The local
interaction operator is particularly useful to the study of determinantal processes because
of the following proposition:
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Proposition 3.3.1 ( [77]). Assume that the kernel K satisfies Hypothesis 3. Then, the
determinantal process µαK,λ admits Janossy densities jn

Λ
, given for a compact subset Λ ⊆ E

and n ∈ N
∗ by

jnΛ(x1, . . . , xn) = Det(I+αKΛ)
−1/α detα J [Λ](x1, . . . , xn), (3.9)

for x1, . . . , xn ∈ Λ. We can also determine the void probability j0
Λ
(∅) = Det(I+αKΛ)

−1/α.
Here, Det stands for the Fredholm determinant as defined in (3.6).

Here, it should be noted that (3.9) still makes sense if ‖KΛ‖ = 1, since the zeros of
Det(I+αKΛ)

−1/α are of the same order of the poles of detα J [Λ](x1, . . . , xk), both of these
functions being analyzed as functions of λ1

Λ
, . . . ,λn

Λ
, . . . the eigenvalues of KΛ. This previ-

ous result is proved in detail in [77]. It is also possible to calculate the moment generation
function of α-determinantal processes.

Proposition 3.3.2 (Moment generating function of α-permanental processes). The mo-
ment generating function of the number of points in the compact set Λ ⊆ E is

M(u) = E[euξ(Λ)] = Det(I+α(1− eu)KΛ)
−1/α,

for u ∈ R.

Proof. Recall that for a measurable F : N→ R+,

∫

XΛ

F (ξ(Λ))µ(dξ) =
∞
∑

m=0

1

m!

∫

Λm

F (m)jΛ({x1, . . . , xm})λ
⊗m (dx1, . . . , dxm).

In this case, by formula (3.9), we have

M(u) = Det(I+αKΛ)
−1/α

∞
∑

m=0

1

m!

∫

Λm

det
α
(euJ [Λ](x1, . . . , xm))λ

⊗m (dx1, . . . , dxm).

Here, we recognize the expansion of Det(I−αeuJ [Λ])−1/α shown in formula (3.7), and get

M(u) = Det ((I+αKΛ)(I−αe
uJ [Λ]))−1/α .

We obtain the result by expanding the product, since by (3.8), we have

(I+αKΛ)(I−αe
uJ [Λ]) = I+(I+αKΛ) (αJ [Λ](1− eu)) = I+α(1− eu)KΛ.

Note that J [Λ] can be decomposed in the same basis of L2(Λ,λ) as KΛ. More precisely,
as a consequence of (3.4), we obtain

J [Λ](x, y) =
∑

n≥1

λn
Λ

1 + αλn
Λ

ϕnΛ(x)ϕ
n
Λ
(y), (3.10)

for x, y ∈ Λ.

Let us conclude by giving some properties linking the rank of K and the number of points
in the associated point process.
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Proposition 3.3.3 (Theorem 4 in [80], see also [35, 77]). Let K be an operator satisfying
Hypothesis 3, and consider the case α = −1, i.e. µK,λ is a determinantal process. We have
the following properties.

a) The probability of the event that the number of all particles is finite is either 0 or 1,
depending on whether Tr(K) is finite or infinite. As expected, the number of points in
a compact subset Λ ⊆ E is finite since Tr(KΛ) <∞.

b) The number of particles is less than or equal to n ∈ N
∗ with probability 1 if and only if

K is a finite rank operator satisfying Rank(K) ≤ n.

c) The number of particles is n ∈ N
∗ with probability 1 if and only if K is an orthogonal

projector satisfying Rank(K) = n.

We also need a simple condition on the kernels to ensure proper convergence of the asso-
ciated determinantal measure. This is provided by Proposition 3.10 in [77]:

Proposition 3.3.4. Let (K(n))n≥1 be integral operators with nonnegative continuous ker-
nels K(n)(x, y), x, y ∈ E. Assume that K(n) satisfy Hypothesis 3, n ≥ 1, and that K(n)

converges to a kernel K uniformly on each compact as n tends to infinity. Then, the
kernel K defines an integral operator K satisfying Hypothesis 3. Moreover, for α ∈ M,
the α-determinantal measure µα

K(n),λ
converges weakly to the measure µαK,λ as n tends to

infinity.

Let us conclude this section by mentioning the particular case of the determinantal pro-
jection process. We define a projection kernel (onto {ϕn, 0 ≤ n ≤ N} ⊂ L2(E,λ)) to
be

Tp(x, y) =

N
∑

n=0

ϕn(x)ϕn(y), ∀x, y ∈ C (3.11)

where N ∈ N, and (ϕn)n∈N is an orthonormal family of L2(E,λ). We call the associated
α-determinantal process an α-determinantal projection process (onto {ϕn, 0 ≤ n ≤ N} ⊂
L2(E,λ)).

3.4 Papangelou conditional intensity

3.4.1 Basic properties

Let us start by defining the so-called Campbell measures, and giving some of its basic
properties, as recalled in [28]. The interested reader may also find further details in [18,52].

Definition 4 (Campbell measures). The reduced Campbell measure of a point process µ
is the measure Cµ on the product space (E × X ,B ⊗ F) defined by

Cµ(A×B) =

∫

∑

x∈ξ

1A(x)1B(ξ \x)µ(dξ), (3.12)

where A ∈ B and B ∈ F . We define similarly the reduced compound Campbell measure of
a point process µ as the measure Ĉµ on the product space (X0 × X ,F0 ⊗ F) defined by

Ĉµ(A×B) =

∫

∑

α⊂ξ, α∈X0

1A(α)1B(ξ \α)µ(dξ),

where A ∈ F0 and B ∈ F .
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We now define the so-called condition (Σλ) initially introduced in [63] and [43] as
follows:

Hypothesis 4. We say that the point process µ satisfies condition (Σλ) if Cµ ≪ λ ⊗ µ.
Any Radon-Nikodym density c of Cµ relative to λ⊗µ is called a version of the Papangelou
intensity of µ.

The preceding assumption also implies that Ĉµ ≪ Lλ ⊗ µ and we thus similarly denote
any Radon-Nikodym density of Ĉµ relative to Lλ ⊗ µ by ĉ, and call ĉ the compound
Papangelou intensity of µ. One then has for any ξ ∈ X , ĉ(∅, ξ) = 1, as well as for all
x ∈ E, ĉ(x, ξ) = c(x, ξ). The Papangelou intensity c of µ is interpreted as the conditional
density given the configuration ξ. More precisely,

c(x, ξ)λ(dx)

is the probability of finding a particle in the vicinity of x ∈ E conditionally on the config-
uration ξ.

The compound Papangelou intensity verifies the following commutation relation:

∀η, ν ∈ X0, ∀ξ ∈ X , ĉ(ν, η ∪ ξ) ĉ(η, ξ) = ĉ(ν ∪ η, ξ). (3.13)

The recursive application of the previous relation also yields ∀x1, . . . , xn ∈ E, ∀ξ ∈ X ,

ĉ({x1, . . . , xn}, ξ) =
n
∏

k=1

c(xk, ξ ∪ x1 ∪ · · · ∪ xk−1),

where we have used the convention x0 := ∅.

Hypothesis 4, along with the definition of the reduced Campbell measure, allows us to
write the following important identity, known as the Georgii-Nguyen-Zessin identity:

∫

X

∑

y∈ξ

u(y, ξ \ y)µ(dξ) =

∫

X

∫

E
u(z, ξ) c(z, ξ)λ(dz)µ(dξ), (3.14)

for all Cµ-measurable nonnegative functions u : E × X → R. We also have a similar
identity for the compound Papangelou intensity:

∫

X

∑

α⊂ξ, α∈X0

u(α, ξ \α)µ(dξ) =

∫

X

∫

X0

u(α, ξ) ĉ(α, ξ)Lλ(dα)µ(dξ), (3.15)

for all Ĉµ-measurable nonnegative functions u : X0 × X → R. Combining relation (3.14)
and the definition of the correlation functions, we find

E[c(x, ξ)] = ρ1(x), (3.16)

for almost every x ∈ E. We also find more generally, using (3.15), that

E[ĉ(α, ξ)] = ρ(α), (3.17)

for almost every α ∈ X0.
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3.4.2 Papangelou intensity of determinantal point processes

In this section, we consider the case of α = −1 and recall some of the results of [28].
The first main result gives the Papangelou intensity of µΛ, the restriction of µ to a compact
subset Λ ⊆ E.

Theorem 3.4.1 (Theorem 3.1 of [28]). For each Λ ⊆ E, µΛ satisfies condition (ΣλΛ) (here,
λΛ is the restriction of λ to the compact set Λ). A version of its compound Papangelou
intensity ĉΛ is given by

ĉΛ(α, ξ) =
det J [Λ](α ∪ ξ)

det J [Λ](ξ)
, α ∈ X0, ξ ∈ X , (3.18)

where the ratio is defined to be zero when the denominator vanishes. This version also
satisfies the inequalities

ĉΛ(α, ξ) ≥ ĉΛ(α, η), and 0 ≤ ĉΛ(α, ξ) ≤ det J [Λ](α) ≤
∏

x∈α

J [Λ](x, x), (3.19)

whenever ξ ⊂ η ∈ XΛ and α ⊂ XΛ \ η.

Let us now define the operator
J := (I+αK)−1K, (3.20)

which can be thought of as a global interaction operator. As proved in [28], J satis-
fies the expected properties: it is a locally trace class, integral operator, and its kernel
(x, y) &→ J(x, y) can be chosen to satisfy Proposition 3.2.1. Then, we have that the deter-
minantal process is stochastically dominated by the Poisson point process with intensity
x &→ J(x, x)λ(dx), denoted by πJ . This is denoted by

µ ( πJ , (3.21)

and was proved in [28]. See also [29] for further results on stochastic domination. Recall
that for two point processes ν, ν ′, we say that ν ( ν ′ if

∫

f dν ≤

∫

f dν ′,

for all increasing measurable f . Here, we say that f is increasing if f(η) ≤ f(η′) whenever
η ⊂ η′ ∈ X .

For our purposes, it remains to recall the main theorem of [28]:

Theorem 3.4.2 (Theorem 3.6 in [28]). The determinantal point process µK,λ satisfies
condition (Σλ), and its compound Papangelou intensity is given by

ĉ(α, ξ) = lim
n→∞

ĉ∆n(α, ξ∆n), for LΛ ⊗ µ - almost every (α, ξ) , (3.22)

where (∆n)n∈N is any sequence of compacts included in E, that increase to the whole E.

It should be noted that in general, (3.22) does not give a closed form for the compound
Papangelou intensities. In order to write ĉ in closed form, additional hypotheses need to
be assumed, as seen in Proposition 3.9 of [28]. More precisely, we define
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Hypothesis 5. Suppose E = R
d, λ is Lebesgue measure and,

— J has a continuous integral kernel J .
— J has finite range R <∞, J(x, y) = 0 if |x− y| ≥ R.
— µK,λ does not percolate.

Under Hypothesis 5, the following holds

Theorem 3.4.3 (Proposition 3.9 in [28]). Assume that Hypothesis 5 holds. Then, the
determinantal point process µK,λ satisfies condition (Σλ), and its compound Papangelou
intensity is given by

ĉ(α, ξ) =
det J(ξW ∪ α)

det J(ξW )
1diamW (α,ξ)<∞, for L⊗ µK,λ - almost every (α, ξ) , (3.23)

where W (α, ξ) is the union of clusters of BR(α ∪ ξ) hitting α, and ξW := ξW (α,ξ) is the
restriction of ξ to W (α, ξ).
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Chapter 4

Simulation of α-determinantal point

processes

We proceed as follows. We start by recalling the algorithm from [34] as well as some
more advanced results from [44] in Section 4.1. Then, in Section 4.2, we present a new
method utilizing perfect simulation of point processes developed in [37,41]. In Section 4.3,
we present more specifically the Ginibre point process, and prove some probabilistic prop-
erties. We discuss the truncation, and the projection of the Ginibre kernel and gives the
basic ideas that will yield different simulation techniques.

4.1 Simulation of α-determinantal point processes by projec-

tion kernels

The main results of this section can be found in the seminal work of [34], along with
the precisions found in [35] and [44]. We recall the algorithm introduced there in order
to insist on its advantages and disadvantages compared to directly simulating according
to the densities. The idea of the algorithm presented in the previous papers is two-fold.
First, it yields a way to simulate the number of points n ∈ N of any determinantal process
in a given compact set Λ ⊂ E. Second, it explicits an efficient algorithm for the simulation
of the (unordered) density of the point process, conditionally on there being n points, i.e.
it yields an efficient algorithm to simulate according to the density jn

Λ
. Let us now discuss

in detail these two steps.

The central theorem of this section is proved in [34, Theorem 7]. We include the trivial
generalization to the case of an α-determinantal, when α = − 1

m ∈M.

Theorem 4.1.1. Let K be a trace-class integral operator satisfying Hypothesis 3 (we often
take KΛ, which is indeed trace-class) with kernel K given by

K(x, y) =
∑

n≥1

λnϕn(x)ϕn(y), x, y ∈ E. (4.1)

Then, define (Bi
n)n∈N a series (possibly infinite), indexed by i ∈ {1, . . . ,m + 1} of inde-

pendent Bernoulli random variables of mean E[Bi
n] =

λn
m , n ∈ N

∗. The Bernoulli random

variables are defined on a distinct probability space, say (Ω, F̃), and for i "= j, the fam-
ily (Bi

n)n∈N is independent of (Bj
n)n∈N. Then, define m + 1 random kernels defined for
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1 ≤ i ≤ m+ 1 by

Ki
B(x, y) =

∑

n≥1

Bi
nϕn(x)ϕn(y), x, y ∈ E.

We define the point process ηi on (X × Ω,F ⊗ F̃) as the point process obtained by first
drawing the Bernoulli random variables, and then the point process with kernel Ki

B, inde-
pendently of the other ηj, j #= i. We then define η on (X×Ω,F⊗F̃) as η := η1∪· · ·∪ηm+1.

Then, we have that in distribution, η is a determinantal process with kernel K.

For the remainder of this section, we consider a general kernel K of the form (4.1). We
wish to obtain a sample of the aforementioned point process.

4.1.1 Number of points

According to Theorem 4.1.1, the law of the number of points on E has the same law
as a sum of Bernoulli random variables. More precisely,

|ξ(E)| ∼
∑

n≥1

m+1
∑

i=1

Bi
n,

where Bi
n ∼ Be(λnm ), n ∈ N. Define T i := sup{n ∈ N∗ / B

i
n = 1}, for 1 ≤ i ≤ m+ 1. Since

∑

n≥1
λn
m =

∑

n≥1 P(B
i
n = 1) < ∞, by a direct application of the Borel-Cantelli lemma,

we have that T i < ∞ almost surely. Hence the method is to simulate a realization t of
T i, then conditionally on T i = t, simulate Bi

1, . . . , B
i
t−1 which are independent of T i (note

here that Bi
t = 1 almost surely).

The simulation of the random variable T i can be obtained by the inversion method, as we
know its cumulative distribution function explicitly. Indeed, for n ∈ N,

P(T i = n) =
λn

m

∞
∏

i=n+1

(1−
λi

m
),

hence

F (t) = P(T ≤ t) =
∑

n≤t

λn

m

∞
∏

i=n+1

(1−
λi

m
), ∀t ∈ N. (4.2)

While it is possible to simulate an approximation of the previous distribution function, this
requires a numerical approximation of the infinite product, as well as the pseudo-inverse
F−1(u) = inf{t ∈ N / F (t) ≥ u}. We also note that in many practical cases, as is the case
with the Ginibre point process, the numerical calculations of the previous functions may
well be tedious.

Now, assume that we have simulated Bi
1, . . . , B

i
t−1, B

i
t for 1 ≤ i ≤ m + 1. If we write

Ii := {1 ≤ j ≤ m : Bi
j = 1}, then Theorem 4.1.1 assures us that it remains to simulate

a determinantal point process with kernel
∑

i∈I1∪···∪Im+1 ϕi(x)ϕi(y), x, y ∈ Λ, which has
|I1|+ · · ·+ |Im+1| points almost surely. This is the aim of the next subsection.
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4.1.2 Simulation of the positions of the points

Assume we have simulated the number of points for each of the independent processes
|Ii| = ni ∈ N according to the previous subsection. For the clarity of the presentation, we
also assume that Bi

1 = 1, . . . , Bi
ni

= 1, where (Bi
n)n∈N are the Bernoulli random variables

defined previously. This assumption is equivalent to a simple reordering of the eigenvectors
(ϕin)n∈N (the reordering depends on i). Then, conditionally on there being ni points, we
have reduced the problem to that of simulating the vector (Xi

1, . . . , X
i
ni
) of joint density

p(x1, . . . , xn) =
1

n!
det

(

K̃i(xi, xj)
)

1≤i,j≤ni

,

where K̃i(x, y) =
∑ni

j=1 ψ
i
j(x)ψ

i
j(y), for x, y ∈ Λ, where here (ψij)j∈N is the reordering of

(ϕij)j∈N. The determinantal point process of kernel K̃i has ni points almost surely, which

means that it remains to simulate the unordered vector (Xi
1, . . . , X

i
ni
) of points of the

point process. The idea of the algorithm is to start by simulating Xi
ni
, then Xi

ni−1|X
i
ni
,

up until Xi
1|X

i
2, . . . , X

i
ni
. The key here is that in the determinantal case, the density of

these conditional probabilities takes a computable form. Let us start by observing, as is
used abundantly in [34], that

det
(

K̃i(xi, xj)
)

1≤i,j≤ni

= det
(

ψik(xl)
)

1≤k,l≤ni
det

(

ψil(xk)
)

1≤k,l≤ni

,

which allows us to visualize the way the algorithm functions. Indeed, the density of Xi
1 is,

for x1 ∈ Λ:

p1(x1) =

∫

. . .

∫

p(x1, . . . , xni
)λ(dx2) . . .λ(dxn)

=
1

ni!

∑

τ,σ∈Sni

sgn(τ)sgn(σ)ψi
τ(1)(x1)ψ

i
σ(1)(x1)

ni
∏

k=2

∫

ψi
τ(k)(xk)ψ

i
σ(k)(xk)λ(dxk)

=
1

ni!

∑

σ∈Sni

|ψi
σ(1)(x1)|

2

=
1

ni

ni
∑

k=1

|ψik(x1)|
2,

where Sn is the n-th symmetric group and sgn(σ) is the sign of the permutation σ ∈ Sn.
By the same type of calculations, we can calculate the law of Xi

2|X
i
1, whose density with

respect to λ is given by

p2|Xi
1
(x2) =

p2(X
i
1, x2)

p1(Xi
1)

=
1

(ni − 1)!
∑

|ψij(X
i
1)|

2

∑

σ∈Sni

(

|ψi
σ(1)(X

i
1)|

2|ψi
σ(2)(x2)|

2 − ψi
σ(1)(X

i
1)ψ

i
σ(2)(X

i
1)ψ

i
σ(2)(x2)ψ

i
σ(1)(x2)

)

=
1

ni − 1





ni
∑

i=1

|ψij(x2)|
2 − |

ni
∑

j=1

ψij(X
i
1)

√

∑

|ψij(X
i
1)|

2
ψij(x2)|

2



 .



60 4. Simulation of α-determinantal point processes

The previous formula can be generalized recursively, and has the advantage of giving a
natural interpretation of the conditional densities. Indeed, we can write the conditional
densities at each step in a way that makes the orthogonalization procedure appear. This is
presented in the final algorithm, which was explicitly obtained in [44] (see also [34] for the
proof). As in [44], we write vi(x) = (ψi1(x), . . . ,ψ

i
ni
(x))t, where t stands for the transpose.

Algorithm 2 Simulation of determinantal projection point process

sample Xi
ni

from the distribution with density pni
(x) = ‖vi(x)‖

2/ni, x ∈ Λ
e1 ← vi(X

i
ni
)/‖v(Xi

ni
)‖

for j = ni − 1→ 1 do
sample Xi

j from the distribution with density

pj(x) =
1

j

[

‖vi(x)‖
2 −

ni−j
∑

k=1

|e∗kvi(x)|
2
]

wj ← vi(Xj)−
∑ni−j

k=1

(

e∗kvi(X
i
j)
)

ek, eni−j+1 ← wj/‖wj‖

end for
return (Xi

1, . . . , X
i
ni
)

Then, Algorithm 2 yields a sample (Xi
1, . . . , X

i
ni
, ) which has a determinantal law with

kernel K̃i(x, y) =

ni
∑

j=1

ψij(x)ψ
i
j(y), x, y ∈ Λ.

Since µαK,λ is a superposition of m+1 independent copies of a determinantal point process
with kernel K/(m+1), it suffices to apply Algorithm 2 m+1 times. The concatenation of
the m + 1 outputs of the algorithm therefore follows an α-determinantal law with kernel
K.

4.2 Perfect simulation of determinantal point processes

The basic idea developed in this section 1 is to apply coupling theory to simulate a finite
state Markov chain which has a determinantal point process as equilibrium distribution.
Here, the bound (3.19) enables us to apply a very general theory for the perfect simulation
of point processes. The general framework and concepts have been developed in [70] (see
also [40] and [41] for applications to point processes). Let us give here a brief overview of
the concepts developed therein.

In the remainder of this section, we are given a compact set Λ ⊆ E, and turn our attention
to the simulation of a determinantal point process with trace-class kernel KΛ. The main
assumption to apply the algorithms of [37] and [41] is the following:

1. The ideas presented in this section are the result of a collaboration with L. Decreusefond and
K. C. Low. We refer to Appendix C for details.
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Hypothesis 6. We assume that Hypothesis 4 is verified. Assume moreover that the fol-
lowing bound is satisfied:

sup
x∈Λ

J(x, x) <∞,

where J is the kernel of the operator J defined in (3.20).

When Hypothesis 6 is verified, the following bound holds for the Papangelou conditional
intensity c:

cΛ(x, ξ) ≤ J [Λ](x, x) ≤ sup
x∈Λ

J [Λ](x, x) = sup
x∈Λ

J(x, x) := H,

where we have used the bound (3.19), and the fact that J [Λ](x, x) = J(x, x) for x ∈ Λ. In
that case, the following algorithms were obtained in [41]:

Algorithm 3 Simulation of determinantal point process

Sample D0 from PPP (H|Λ|)
n← 1/2;
while TRUE do
D ← BackwardExtend(D,n);
[L,U ]← Coupling(D);
if L0 == U0 then
return L0

else
n← n ∗ 2;

end if
end while

Algorithm 4 BackwardExtend(D,n)

j ← 0;
T (0)← n/2; {T (0)← 0 if n = 1/2}
D̃T (0) ← D−n/2; {D̃T (0) ← D0 if n = 1/2}
while T (j) ≤ n do
T (j + 1)← T (j)− log(Uniform(0, 1))/(H|Λ|+ |D̃T (j)|);

if Uniform(0, 1) ≤ (H|Λ|)/(H|Λ|+ |D̃T (j)|) then

x← uniform random point in Λ \ D̃T (j);

D̃T (j+1) ← D̃T (j) ∪ x;
else
x← uniform random point in D̃T (j);

D̃T (j+1) ← D̃T (j) \x;
end if
j ← j + 1;

end while
D−t ← D̃t for all t : n/2 < t ≤ n
return D
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Algorithm 5 Coupling(D)

L−n ← ∅;
U−n ← D−n;
for Ti ← each jump times T1 < T2 < · · · of D in ]− n : 0] do
if DTi ← DTi−1 ∪ x then
u←MT ;
[LTi , UTi ]← AddBirth(LTi−1 , UTi−1 , x, u);

else
x← DTi−1 \DTi ;
LTi ← LTi−1 \x;
UTi ← UTi−1 \x;

end if
end for
return [L,U ]

The output of Algorithm 10 is a perfect realization of the determinantal point process
of kernel KΛ. Then, our main contribution is given by the following bound on the running
time of the algorithm:

Proposition 4.2.1. Assume that Hypothesis 6 holds. Then the process Dt which we in-
troduced in Algorithm 10 is an M/M/∞ queue defined on a compact space Λ with ar-
rival rate a = H|Λ| and service rate s = 1. Moreover, Dt is initiated at t = t0, with
Dt0 = PPP(H|Λ|), where PPP(σ) is a Poisson point process with intensity σ. Then we
have

sup
−t0≤t≤T

|Dt| = O (max(x,H|Λ|)) ,

where T ∈ R and x := limW→∞
|DW

t0
|

W .

If we fixed x = H|Λ|, we have that the stopping time of the algorithm is upper bounded
by:

O(logH|Λ|),

and heuristically, we are well below this upper bound.

4.3 Definition of the Ginibre point process

The Ginibre process, denoted by µGin in the remainder of this paper, is defined as the
determinantal process on C with integral kernel

KGin(z1, z2) =
1

π
ez1z̄2e−

1
2
(|z1|2+|z2|2), z1, z2 ∈ C, (4.3)

with respect to λ := dℓ(z), the Lebesgue measure on C (i.e. dℓ(z) = dx dy, when z =
x+ iy). It can be naturally decomposed as:

KGin(z1, z2) =
∑

n≥0
φn(z1)φn(z2), z1, z2 ∈ C,

where φn(z) :=
1√
πn!

e−
1
2
|z|2zn, for n ∈ N and z ∈ C. It can be easily verified that (φn)n∈N

is an orthonormal family of L2(C, dℓ). In fact, (φn)n∈N is a dense subset of L2(C, dℓ). The
Ginibre process µ verifies the following basic properties:
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Proposition 4.3.1. The Ginibre process µGin, i.e. the determinantal process with kernel
KGin satisfies the following:

— µGin is ergodic with respect to the translations on the plane.
— µGin is isotropic.
— µGin(C) = +∞ almost surely, i.e. the Ginibre point process has an infinite number
of points almost surely.

Proof. For a ∈ C, note that KGin(z1 − a, z2 − a) = KGin(z1, z2)e
− 1

2
a(z̄2−z̄1)+

1
2
ā(z1−z2), for

z1, z2 ∈ C. Hence,

ρ(z1 − a, . . . , zn − a) = det(KGin(zi − a, zj − a))1≤i,j≤n = det(KGin(zi, zj))1≤i,j≤n,

which means that µGin is invariant with respect to translations. Ergodicity with respect
to translations follows from [80, Theorem 7].

Moreover, for θ ∈ R, we have KGin(z1e
iθ, z2e

iθ) = KGin(z1, z2), for z1, z2 ∈ C (here and in
the remainder of the paper, i :=

√
−1). Hence, isotropy follows directly by uniqueness of

the determinantal measure µGin.

We have that TrKGin = +∞, hence by a classical result (see e.g. Theorem 4 in [80]), the
number of points in µGin is almost surely infinite.

Since µGin has an infinite number of points almost surely, it is impossible to simulate it
directly. Therefore, in the remainder of this paper, we are interested in modifying the
kernel KGin in order to obtain versions of the Ginibre point process which we can simulate.

4.4 Efficient simulation of the Ginibre point process

4.4.1 Truncated Ginibre point process

The first idea is to consider the truncated Ginibre kernel, defined for N ∈ N∗ by

KN
Gin(z1, z2) =

N−1
∑

n=0

φn(z1)φn(z2), z1, z2 ∈ C, (4.4)

which is in fact a truncation of the sum in (4.3). Additionally, we call µNGin the associated
determinantal point process with intensity measure dℓ. We remark that µNGin tends to µGin

weakly, when N goes to infinity. As it is a projection kernel of type (3.11), we have seen
previously that µNGin has N points almost surely. µNGin is clearly not translation invariant
anymore; however, it remains isotropic for the same reason that µGin is. Physically, µNGin

is the distribution of N polarized electrons in a perpendicular magnetic field, filling the
N lowest Landau levels, as is remarked in [74]. As µNGin has N points almost surely, it
is entirely characterized by its joint distribution p which is calculated in the following
proposition.

Proposition 4.4.1. Let µNGin be the point process with kernel given by (4.4). Then, µNGin

has N points almost surely and its joint density p is given by

p(z1, . . . , zN ) =
1

πN

N
∏

p=0

1

p!
e−

∑N
p=1 |zp|

2 ∏

1≤p<q≤N

|zp − zq|
2, (4.5)

for z1, . . . , zN ∈ C.
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Proof.

p(z1, . . . , zN ) =
1

N !
det

(

KN
Gin (zi, zj)

)

1≤i,j≤N
, z1, . . . , zN ∈ C,

and in this case p can be explicitly calculated. Indeed, note that

p(z1, . . . , zN ) =
1

N !
AN (z1, . . . , zN )A

N (z1, . . . , zN )
∗,

where the matrix AN := (AN
ph)1≤p,h≤N is given by

AN
ph := φh−1(zp)

and AN (z1, . . . , zN )
∗ denotes the transpose conjugate of AN (z1, . . . , zN ). Hence,

p(z1, . . . , zN ) =
1

N !
|detAN (z1, . . . , zN )|

2.

We recognize a Vandermonde determinant

detAN (z1, . . . , zN ) =





N−1
∏

p=0

√

1

πp!



 e−
1
2

∑N
p=1 |zp|

2 ∏

1≤p<q≤N

(zp − zq),

which leads to the following joint density for the N points:

p(z1, . . . , zN ) =
1

πN

N
∏

p=0

1

p!
e−

∑N
p=1 |zp|

2 ∏

1≤p<q≤N

|zp − zq|
2, z1, . . . , zN ∈ C.

It is also known that the radii (in the complex plane) of the points of µNGin have the same
distribution as independent gamma random variables. More precisely, we can find in [42]
the following result:

Proposition 4.4.2. Let {X1, . . . , XN} be the N ∈ N∗ unordered points, distributed ac-
cording to µN . Then, {|X1|, . . . , |XN |} has the same distribution as {Y1, . . . , YN}, where
for 1 ≤ i ≤ N , Y 2

i ∼ gamma(i, 1), and the Yi are independent.

However, it should be noted that this does not yield a practical simulation technique, as
the angles of X1, . . . , XN are strongly correlated, and do not follow a known distribution.

We now move on to the problem of simulating a truncated Ginibre point process with
kernel given by (4.4). Since µNGin has N points almost surely, there is no need to simulate
the number of points. One only needs to simulate the positions of the N points. For
this specific case, there is in fact a more natural way of simulating the Ginibre process.
Indeed, it was proven in [30] that the eigenvalues of an N × N hermitian matrix with
complex gaussian entries are distributed according to µNGin. More precisely, consider a
matrix N := (Nnm)1≤n,m≤N , such that for 1 ≤ n,m ≤ N ,

Nnm =
1
√
2

(

N1
nm + iN2

nm

)

,
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where N1
nm, N

2
nm ∼ N (0, 1), 1 ≤ n,m ≤ N are independent centered gaussian random

variables. Then, the eigenvalues of N are distributed according to µNGin. This is by far the
most efficient way of simulating the truncated Ginibre process.

We also remark that we could have applied the simulation technique of Section 4.1 in or-
der to simulate the truncated Ginibre point process. However, the simulation procedure is
much slower than calculating the eigenvalues of an N×N matrix. We still show the results
of the algorithm of a realization of the resulting point process in the following. This allows
proper visualization of the associated densities. We choose a window of size a = 3 and
N = 8 in this example. We plot the densities pi as color gradients before the simulation of
the (N − i)-th point. The steps plotted in the following figure correspond to i = 7, i = 4,
and i = 1 respectively (Algorithm 2 is used and is run from i = N to i = 1). We also
mark by red points the previously simulated points. Therefore, the point process obtained
at the end of the algorithm consists of the red points in the third figure.

However, one runs into a practical problem when simulating the truncated Ginibre process:
the support of its law is the whole of CN . Recall that the joint law of µN is known to
be given by (4.5) which has support on C

N . Moreover, projecting onto a compact subset
randomizes the number of points in the point process. Therefore, this first method is only
useful in applications where the point process need not be in a fixed compact subset of E.

4.4.2 Ginibre point process on a compact subset

We now consider more specifically the projection of the Ginibre process onto BR, and
thus we consider the projection kernel KGin,R := PBR

KGinPBR
of the integral operator KGin

onto L2(BR, dℓ), where BR := B(0, R) is the closed ball of C of radius R ≥ 0 with center
0. In this specific case, the kernel of the operator KGin,R takes the form:

KGin,R(z1, z2) =
∑

n≥0

λRnφ
R
n (z1)φ

R
n (z2), (4.6)

where φRn (z) := Z−1R,nφn(z)1z∈BR
, n ∈ N, z ∈ C and Z−1R,n ∈ R is a constant depending only

on R and n. This result does not hold in general, but is due to the fact that (φRn (·))n≥0 is
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still an orthonormal family of L2(BR, dz). Indeed, for m,n ∈ N,

∫

BR

φRn (z)φ
R
m(z) dℓ(z) = Z−2

R,n

(

1
√
n!m!

∫ R

0
rn+m+1e−r

2
dr

)(

1

π

∫

π

−π

ei(n−m)θ dθ

)

= Z−2
R,n1n=m

(

2

n!

∫ R

0
r2n+1e−r

2
dr

)

= Z−2
R,n1n=m

γ(n+ 1, R2)

n!
,

where γ is the lower incomplete Gamma function defined as

γ(z, a) :=

∫ a

0
e−ttz−1 dt,

for z ∈ C and a ≥ 0. Hence, in the following, we shall take ZR,n :=

√

γ(n+1,R2)
n! . Therefore,

the associated eigenvalues are

λRn :=

∫

BR

|φn(z)|
2 dℓ(z) = Z2

R,n =
γ(n+ 1, R2)

n!
.

As is expected, 0 ≤ λRn ≤ 1 for any n ∈ N, R ≥ 0, and λRn −−−−→
R→∞

1 for any n ∈ N.

Now that we have specified the eigenvectors and associated eigenvalues, the simulation of
the Ginibre process on a compact is that of the determinantal point process with kernel
given by (4.6). Therefore, Algorithm 2 fully applies. The time-consuming step of the
algorithm is the simulation of the Bernoulli random variables. Recall that the cumulative
distribution function of T = sup{n ∈ N∗ / Bn = 1} is given by (4.2) which in our case is
equal to

F (m) =
∑

n≤m

γ(n+ 1, R2)

n!

∞
∏

i=n+1

Γ(i+ 1, R2)

i!
,

for m ∈ N∗.

We remark that we can not simulate the Ginibre point process restricted to a compact in
the same way as in the previous subsection. Indeed, taking a N ×N matrix with complex
gaussian entries, and conditioning on the points being in BR yields a determinantal point
process with kernel,

KGin,R(z1, z2) =
N−1
∑

n=0

λRnφ
R
n (z1)φ

R
n (z2),

which is not our target point process, as the sum is truncated at N . Therefore, the method
developed in the previous subsection does not apply here. Hence, the algorithm is twofold,
and the first step goes as follows:

Remark 3. The series
∏

i≥n
Γ(i+1,R2)

i! , for n ∈ N∗ converges since it is equal to
∏

i≥n(1−
λRi ) which is convergent. Indeed,

∑

i≥0 λ
R
i < ∞ since the considered operator is locally

trace-class.
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Algorithm 6 Simulation of the Ginibre process on a compact subset (Step 1)

evaluate numerically R ←
∏

i≥1
Γ(i+1,R2)

i! , for example by calculating

e
∑N

i=1 ln(
Γ(i+1,R2)

i!
), where N is chosen such that ln(Γ(N+1,R2)

N ! ) < ǫ, ǫ > 0 given by
the user.
sample U ← U([0, 1]) according to a uniform distribution on [0, 1].
m← 0
while U < R do
m← m+ 1
R← m!γ(m+1,R2)

γ(m,R2)Γ(m+1,R2)
R

end while
for i = 0→ m− 1 do
Bi ← Be(γ(i+1,R2)

i! ), where here Be(λ) is an independent drawing of a Bernoulli
random variable of parameter λ ∈ [0, 1]

end for
if m > 0 then
return {B0, . . . , Bm−1, 1}

end if
if m = 0 then
return {1}

end if

We write {B0, . . . , Bm−1, 1} for the value returned by the previous algorithm, with the
convention that {B0, . . . , Bm−1, 1} = {1} if m = 0. Then by Theorem 4.1.1, the law of the
Ginibre point process on a compact is the same as that of the determinantal point process
of kernel

KGin,R(z1, z2) =
N−1
∑

n=0

Bnφ
R
n (z1)φ

R
n (z2), z1, z2 ∈ C.



68 4. Simulation of α-determinantal point processes

Now, we move onto the second part of the algorithm, which is this time straightforward
as it suffices to follow Section 4.1 closely.

Algorithm 7 Simulation of the Ginibre process on a compact subset (Step 2)

define φk(z) :=
1

πγ(k+1,R2)
e−

1
2
|z|2zk, for z ∈ BR and 0 ≤ k ≤ m.

define v(z) := (φi0(z), . . . ,φik(z),φm(z)), for z ∈ BR, and where {i0, . . . , ik} = {0 ≤
i ≤ m− 1 : Bi = 1}
N ← k + 2
sample XN from the distribution with density pN (x) = ‖v(x)‖2/N , x ∈ Λ
e1 ← v(XN )/‖v(XN )‖
for i = N − 1→ 1 do
sample Xi from the distribution with density

pi(x) =
1

i

[

‖v(x)‖2 −
N−i
∑

j=1

|e∗jv(x)|
2
]

wi ← v(Xi)−
∑N−i

j=1

(

e∗jv(Xi)
)

ej , eN−i+1 ← wi/‖wi‖
end for
return (X1, . . . , XN )

We end this subsection by mentioning the difficulties arising in the simulation under the
density pi, 1 ≤ i ≤ N − 1. As is remarked in [44], in the general case, we have no choice
but to simulate by rejection sampling and the Ginibre point process is no different (except
in the case i = N − 1 where pi is the density of a gaussian random variable). Therefore
in practice, we draw a uniform random variable u on BR and choose pi(u)/ supy∈BR

pi(y).
Note that the authors in [44] give a closed form bound on pi which is given by

pi(x) ≤
1

i
min

i+1≤k≤N

(

KN
Gin(x, x)−

|KN
Gin(x,Xk)|

2

KN
Gin(Xk, Xk)

)

, (4.7)

where Xi+1, . . . , XN is the result of the simulation procedure up to step i. In practice
however, the error made in the previous inequality is not worth the gain made by not
evaluating supy∈Ba

pi(y). Therefore, in our simulations, we have chosen not to use (4.7).

4.4.3 Truncated Ginibre process on a compact subset

In this subsection, we begin by studying the truncated Ginibre point process on a
compact subset, and specifically discuss the optimal choice of the compact subset onto
which we project. We begin by studying the general projection of the truncated Ginibre
process onto a centered ball of radius R ≥ 0 which is again a determinantal point process
whose law can be obtained. To that end, we wish to study KN

R := PBR
KNPBR

of the
integral operator K onto L2(BR, dℓ). The associated kernel is given by

KN
Gin,R(z1, z2) =

N−1
∑

n=0

λRnφ
R
n (z1)φ

R
n (z2), (4.8)
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for z1, z2 ∈ BR. The question of the Janossy densities of the associated determinantal pro-
cess is not as trivial as the non-projected one. Indeed, µNGin,R, the associated determinantal
point process, does not have N points almost surely. However, it is known that it has less
than N points almost surely (see e.g. [80]). Therefore, it suffices to calculate the Janossy
densities j0R, . . . , j

N
R to characterize the law of µNGin,R. These are given by the following

proposition:

Proposition 4.4.3. The point process µNGin,R with kernel given by (4.8) has less than N
points almost surely, and its Janossy densities are given by

jkGin,R(z1, . . . , zk) =
1

πk

k−1
∏

p=0

1

p!
e−

∑k
p=1 |zp|

2 ∏

1≤i<j≤k

|zi − zj |
2

∑

{i1,...,ik}⊂{1,...,N}

|sλ(i1,...,ik)(z1, . . . , zk)|
2,

for 0 ≤ k ≤ N and z1, . . . , zk ∈ BR. Here, sλ is the Schur polynomial defined e.g. in [33].

Proof. By formula (3.10), the operator J N
Gin[BR] associated to µNGin has a kernel that can

be decomposed as:

JNGin[BR](z1, z2) =
N−1
∑

n=0

γ(n+ 1, R2)

Γ(n+ 1, R2)
φRn (z1)φ

R
n (z2), z1, z2 ∈ BR,

where Γ is the upper incomplete Gamma function defined as

Γ(z, a) :=

∫ ∞

a
e−ttz−1 dt,

for z ∈ C and a ≥ 0, which by definition verifies γ(·, a) + Γ(·, a) = Γ(·) for all a ≥ 0 (Γ(·)
is the usual Gamma function). Here, we note that jNGin,R can be calculated as previously
as the associated determinant is again a Vandermonde determinant. More precisely, we
obtain

det
(

JNGin[BR](zi, zj)
)

1≤i,j≤N
=

1

πN

N−1
∏

p=0

1

Γ(p+ 1, R2)
e−

∑N
p=1 |zp|

2 ∏

1≤p<q≤N

|zp − zq|
2,

for z1, . . . , zN ∈ BR. Moreover, the void probability, i.e. the probability of having no point
in BR, is equal to

Det
(

I−KN
Gin,R

)

=
N−1
∏

n=0

(1− λRn ) =
N−1
∏

n=0

Γ(n+ 1, R2)

n!
. (4.9)

Hence, we obtain the following expression for the N -th Janossy density:

jNGin,R(z1, . . . , zN ) =
1

πN

N−1
∏

p=0

1

p!
e−

∑N
p=1 |zp|

2 ∏

1≤p<q≤N

|zp − zq|
2,

for z1, . . . , zN ∈ BR. Now, if we take k < N , we have again

JNGin[BR](z1, . . . , zk) = AN (z1, . . . , zk)A
N (z1, . . . , zk)

∗,
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where this time, AN (z1, . . . , zk) is a rectangular k × N matrix. Hence, by application of
the Cauchy-Binet formula:

det JNGin[BR](z1, . . . , zk) =
∑

{i1,...,ik}⊂{1,...,N}

|detAi1,...,ik(z1, . . . , zk)|
2,

where we have for 1 ≤ p, h ≤ k,

Ai1,...,ik
ph (z1, . . . , zk) :=

√

γ(n+ 1, R2)

Γ(n+ 1, R2)
φRih(zp),

which is a square matrix. We now consider fixed {i1, . . . , ik} ⊂ {1, . . . , N} and wish to
evaluate |detAi1,...,ik(z1, . . . , zk)|

2. In fact, we observe that

|detAi1,...,ik(z1, . . . , zk)|
2 =

k−1
∏

p=0

1

πΓ(p+ 1, R2)
e−

∑k
p=1 |zp|

2

|Vi1,...,ik(z1, . . . , zk)|
2 ,

where

Vi1,...,ik(z1, . . . , zk) := det

(

(

z
ip
h

)

1≤p,h≤k

)

is known in the literature as the generalized Vandermonde determinant. Here,
V1,...,k(z1, . . . , zk) is the classical Vandermonde determinant, and in the general case, a
certain number of rows from the matrix have been deleted. The generalized Vandermonde
determinant is known to factorize into the classical Vandermonde determinant and what
is defined to be a Schur polynomial. To be more precise,

Vi1,...,ik(z1, . . . , zk) = V1,...,k(z1, . . . , zk)sλ(i1,...,ik)(z1, . . . , zk),

where λ(i1, . . . , ik) := (ik − k + 1, . . . , i2 − 1, i1), and sλ is the Schur polynomial, which is
known to be symmetric, and is a sum of monomials, see e.g. [33]. To summarize, we have

det JNGin[B](z1, . . . , zk) =





k−1
∏

p=0

1

πΓ(p+ 1, R2)



 e−
∑k

p=1 |zp|
2 ∏

1≤i<j≤k

|zi − zj |
2

∑

{i1,...,ik}⊂{1,...,N}

|sλ(i1,...,ik)(z1, . . . , zk)|
2.

Then, by (4.9), we find

jkGin,R(z1, . . . , zk) =
1

πk

k−1
∏

p=0

1

p!
e−

∑k
p=1 |zp|

2 ∏

1≤i<j≤k

|zi − zj |
2

∑

{i1,...,ik}⊂{1,...,N}

|sλ(i1,...,ik)(z1, . . . , zk)|
2, (4.10)

for z1, . . . , zk ∈ BR.

Next, we wish to determine the optimal R ≥ 0 onto which we project the truncated
Ginibre process. In regards to this question, we recall that the particle density ρ1 of the
general Ginibre process is constant, and

ρ1(z) = KGin(z, z) =
1

π
,
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for z ∈ C. However, the particle density of the truncated Ginibre process is not constant.
If we denote by ρNn the n-th correlation function of µNGin, then we have

ρN1 (z) =
1

π
e−|z|2

N−1
∑

k=0

|z|2k

k!
,

for z ∈ C. As can be checked easily, we have
∫

C
ρN1 (z) dz = N as well as

ρN1 (z) ≤
1

π
, ∀z ∈ C, (4.11)

and in fact it is known that ρN1 (
√
Nz) −−−−→

N→∞

1
π
1|z|≤1, which is known as the circular law

in stochastic matrix theory. It therefore appears that it is optimal to project onto B√N .
We wish to get more precise results on the error we are making by truncating the point
process to BR. To that end, we recall the following bounds on ρN1 which were obtained
in [30]. We recall their proof for convenience, as our bounds differ slightly from the ones
obtained there.

Proposition 4.4.4. For |z|2 < N + 1, we have

1

π
− ρN1 (z) ≤

1

π
e−|z|2 |z|

2N

N !

N + 1

N + 1− |z|2
.

For |z|2 ≥ N − 1, we have

ρN1 (z) ≤
1

π
e−|z|2 |z|2N

(N − 1)!

1

|z|2 −N + 1
.

Proof. By using (k+N)!
N ! ≥ (N + 1)k, for k,N ∈ N, we obtain for |z|2 < N + 1,

ρN1 (z) =
1

π
−

1

π
e−|z|2

∞
∑

k=N

|z|2k

k!
=

1

π
−

1

π
e−|z|

2 |z|2N

N !

∞
∑

k=0

|z|2kN !

(k +N)!

≥
1

π
−

1

π
e−|z|

2 |z|2N

N !

1

1− |z|2

N+1

.

The proof of the second inequality is along the same lines, except that we use N !
(N−k)! ≤ Nk,

for N ∈ N and 0 ≤ k ≤ N . Specifically, we have,

ρN1 (z) =
1

π
e−|z|

2
N−1
∑

k=0

|z|2(N−1−k)

(N − 1− k)!
=

1

π
e−|z|

2 |z|2(N−1)

(N − 1)!

N−1
∑

k=0

|z|−2k(N − 1)!

(N − 1− k)!

≤
1

π
e−|z|

2 |z|2N

(N − 1)!

1

|z|2 − (N − 1)
.

As was noticed in [30], if we set |z| =
√
N + u, for −1 ≤ u ≤ 1, both of the right hand

sides of the inequalities in Proposition 4.4.4 tend to

1

2
√
2uπ3/2

e−2u
2
,
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as N tends to infinity. This is obtained by standard calculations involving in particular the
Stirling formula. That is to say, for |z| ≤

√
N , and |z| =

√
N−u, we write ρN1 (z) := ρN1 (|z|)

and hence,

ρN1 (
√
N − u) ≥

1

π
−

1

2
√
2uπ3/2

e−2u2 , (4.12)

as well as for |z| ≥
√
N , and |z| =

√
N + u

ρN1 (
√
N + u) ≤

1

2
√
2uπ3/2

e−2u2 , (4.13)

as N tends to infinity. These bounds exhibit the sharp fall of the particle density around
|z| =

√
N .

Figure 4.1: ρN1 (|z|) for N = 600 and |z| around
√
N (blue). Upper and lower bounds

obtained in (4.12) and (4.13) (green).

Even though the kernel ought to be projected onto B√N , this projection randomizes the
number of points in the point process, as is seen in Figure 4.2.

Therefore, our additional idea is to condition the number of points on being equal to N .
Since the projection onto B√N of the truncated Ginibre process takes the determinantal
form (4.8), one can easily calculate the probability of all the points falling in B√N . Indeed,
we have that

PµN (ξBc
√

N
= ∅) =

N−1
∏

n=0

λNn =

N−1
∏

n=0

γ(n+ 1, N)

n!
. (4.14)

It can be shown that this probability tends to 0 as N tends to infinity. That is, if we are
required to simulate the Ginibre process on a compact conditionally on it having N points,



73

Figure 4.2: A realization of µN for N = 200 (blue circles) renormalized to fit in the circle
of radius 1 (in red)
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the conditioning requires more and more computation time as N tends to infinity.

However, we are not forced to simulate the conditioning on there being N points. Instead,
we introduce a new kernel, as well as the associated point process. We set

K̃N
Gin(z1, z2) =

N−1
∑

n=0

φNn (z1)φ
N
n (z2), z1, z2 ∈ BR, (4.15)

and where φNn corresponds to the function φn restricted to the compact B√N (after renor-

malization). We emphasize that µ̃NGin|B√

N
is in fact µNGin|B√

N
conditioned on there being

N points in the compact B√N , this result being due to Theorem 4.1.1. Moreover, the
determinantal point process associated with this kernel benefits from the efficient simula-
tions techniques developed in the previous subsection. Here, the fact that we can explicit
the projection kernel associated with the conditioning is what ensures the efficiency of the
simulation.

Let us start by proving that µ̃NGin, the associated determinantal process with kernel K̃N
Gin,

converges to µ weakly as N tends to infinity. This is a consequence of Proposition 3.3.4,
as is proved in the following:

Theorem 4.4.1. We have that K̃N
Gin converges uniformly on compact subsets to KGin as

N tends to infinity. As a consequence, the associated determinantal measures converge
weakly to the determinantal point process of kernel KGin.

Proof. Take a compact subset A of C, and write |A| := sup{|z|, z ∈ A}. Then, for
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z1, z2 ∈ A,

|KGin(z1, z2)− K̃N
Gin(z1, z2)| ≤

N−1
∑

n=0

1

π
|A|2n|

1

γ(n+ 1, N)
−

1

n!
|1{(z1,z2)∈(BN )2}

+
∞
∑

n=N

1

πn!
|A|2n +

N−1
∑

n=0

1

πn!
|A|2n1{(z1,z2)/∈(BN )2}.

The second term tends to zero as the remainder of a convergent series, and the third term
also tends to zero by dominated convergence. Concerning the first term, we need sightly
more precise arguments. Let us start by rewriting it as

∞
∑

n=0

1

π
|A|2n

1

γ(n+ 1, N)
1{(z1,z2)∈(BN )2}1{n≤N−1} −

N−1
∑

n=0

1

πn!
|A|2n1{(z1,z2)∈(BN )2}, (4.16)

and noticing that γ(n+1, N) → n! as N tends to infinity. Therefore, in order to conclude,
we wish to exhibit a summable bound. To this end, we write

1

γ(n+ 1, N)
1{n≤N−1} ≤

1

γ(n+ 1, n+ 1)

=
1

n!P(
∑n+1

k=1 Xk ≤ n+ 1)

∼n→∞
2

n!

where X1, . . . , Xn are independent exponential random variables of parameter 1. In the
previous calculations, we have used the fact that γ(a,R)

Γ(a) is the cumulative distribution

function of a Γ(a,R) random variable, a > 0, and R ≥ 0. The last line results from the
application of the central limit theorem to X1, . . . , Xn. Hence,

∞
∑

n=0

1

π
|A|2n

1

γ(n+ 1, N)
1{(z1,z2)∈(BN )2}1{n≤N−1} ≤

∞
∑

n=0

1

πγ(n+ 1, n+ 1)
|A|2n <∞,

which means that by Lebesgue’s dominated convergence theorem, (4.16) tends to zero as
N tends to infinity. Therefore, |KGin(z1, z2)− K̃

N
Gin(z1, z2)| −−−−→

N→∞
0 for z1, z2 ∈ A. Hence,

Proposition 3.3.4 allows us to conclude that µ̃NGin

weakly
−−−−→
N→∞

µGin.

We now return to the problem of simulating the determinantal point process with kernel
given by (4.15). As it is a projection process, it is efficiently simulated according to the
basic algorithm described in Section 4.1. On the other hand, the time-consuming step of
generating the Bernoulli random variables is not necessary anymore, as we are working
conditionally on there being N points. Lastly, the method described in this section yields
a determinantal point process on B√N . As before, in order to simulate on Ba, we need to
apply a homothetic transformation to the N points, which translates to a homothety on
the eigenvectors. To sum up, the simulation algorithm of the truncated Ginibre process
on a centered ball of radius a ≥ 0 is as follows:
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Algorithm 8 Simulation of the truncated Ginibre process on a compact

define φk(z) =
N

πa2γ(k+1,N)
e−

N

2a2
|z|2(Nz

a2
)k, for z ∈ BN and 0 ≤ k ≤ N − 1.

define v(z) := (φ0(z), . . . ,φN−1(z)), for z ∈ BN .
sample XN from the distribution with density pN (x) = ‖v(x)‖2/N , x ∈ Λ
set e1 = v(XN )/‖v(XN )‖
for i = N − 1→ 1 do
sample Xi from the distribution with density

pi(x) =
1

i

[

‖v(x)‖2 −

N−i
∑

j=1

|e∗jv(x)|
2
]

set wi = v(Xi)−
∑N−i

j=1

(

e∗jv(Xi)
)

ej , eN−i+1 = wi/‖wi‖

end for
return (X1, . . . , XN )

The resulting process is a determinantal point process of kernel (4.15). Its support is on
the compact Ba and has N points almost surely. We now give a brief example of the results
of the algorithm applied for a = 2 and N = 9 at steps i = 8, i = 5, and i = 2 respectively.
We have plotted the densities used for the simulation of the next point. We note here that
the density is now supported on Ba, whereas before the density was decreasing to zero
outside of Ba.

This determinantal point process presents the advantage of being easy to use in simulations,
as well as having N points almost surely. Moreover, Theorem 4.4.1 proves its convergence
to the Ginibre point process as N tends to infinity.

4.5 Summary

In this chapter, we have studied and discussed two very general simulation techniques,
the first one which traces back to [34] was detailed in Section 4.1. The second one, which
was presented in Section 4.2, uses a general simulation technique for point processes ap-
plied to the case of determinantal point processes.

These two simulation methods are conceptually quite different and are therefore difficult
to compare. To be more precise, in Section 4.1, there are two time-consuming steps: the
simulation of the Bernoulli random variables and the simulation under the density pi for
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which we are a priori required to proceed by rejection sampling. This requires an evalua-
tion of the supremum of pi on a grid which can be unboundedly big. On the other hand,
in Section 4.2, we avoid the previous problem by only evaluating elaborate functionals (in
our case, the Papangelou conditional intensity c) on a specific configuration, and not on
the whole grid. However, the time necessary to reach equilibrium can be quite long, which
is the main drawback of this algorithm.

In the future, we think comparing both approaches could provide quantitative answers to
the questions raised in the previous paragraph. We gave a first answer in Proposition 4.2.1,
but a comparison with the algorithm of Section 4.1 is quantitatively difficult since it seems
to intrinsically depend on the kernel K of the underlying determinantal point process.

Lastly, we studied more specifically the Ginibre point process, which is a specific determi-
nantal point process appearing in stochastic matrix theory. In this specific case, we realized
that the usual general algorithms were not adapted. Therefore, we modified slightly the
considered kernel in order to optimize execution time. This modification of the kernel
yields an interesting model which could be used in applications necessitating a point pro-
cess with repulsion. We have discussed in Section 4.3 the advantages of the Ginibre point
process with regards to applications.
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Chapter 5

Stochastic analysis on the

configuration space

In Section 5.1, we give the necessary background on Dirichlet form theory. The main
references for this section are [21, 27, 49], see also [90]. Then, in Section 5.2, we move
more specifically to the configuration space, and define a gradient which will be found to
satisfy an integration by parts. In Section 5.3, we move onto the specific case of determi-
nantal point processes, and prove the existence of associated diffusions. To conclude, in
Section 5.4, we generalize most results to any point process satisfying Hypothesis 4.

5.1 Introduction to Dirichlet forms

In this section, we are given an operator E defined on Dom(E) × Dom(E) and with
values in R. Here as usual X is the configuration space, and µ is a measure on (X ,F).
We call Dom(E) ⊂ L2(X , µ) the domain of E . Here, Dom(E) is a dense linear subset of
L2(X , µ). We also assume that E is a nonnegative definite symmetric bilinear form, i.e.
E(f, f) ≥ 0, for all f ∈ Dom(E).

5.1.1 Symmetric forms

For α > 0, define a new symmetric form on Dom(E)×Dom(E), by

Eα(u, v) = E(u, v) + α〈u, v〉L2(X ,µ).

We then define the norm associated to Eα by

‖u‖α :=
√

E(u, u) + α‖u‖2
L2(X ,µ)

,

for u ∈ Dom(E)∩L2(X , µ). We say that E is closed if Dom(E) is complete with respect to
the metric determined by Eα. In other words, E is closed if

(un)n∈N ∈ Dom(E)N, E1(un − um, un − um) −−−−−→
n,m→∞

0

=⇒ ∃u ∈ Dom(E), E1(un − u, un − u) −−−→
n→∞

0.
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We say that E is closable if

(un)n∈N ∈ Dom(E)N, E(un − um, un − um) −−−−−→
n,m→∞

0 and (un, un) −−−→
n→∞

0

=⇒ E(un, un) −−−→
n→∞

0. (5.1)

When E is closable, we denote by (E ,Dom(E)) the closure of (E ,Dom(E)) with respect to
‖ ·‖1. This definition is adequate since a necessary and sufficient condition for a symmetric
form to possess a closed extension is that the symmetric form is closable.

Definition 5 (Markovian form). We say that E is Markovian if

∀ǫ > 0, ∃φǫ : R→ R,

such that
{

∀t ∈ [0, 1], φǫ(t) = t, ∀t ∈ R, −ǫ ≤ φǫ(t) ≤ 1 + ǫ,
∀t < t′, 0 ≤ φǫ(t

′)− φǫ(t) ≤ t′ − t,

and

u ∈ Dom(E)⇒ φǫ(u) ∈ Dom(E), E(φǫ(u),φǫ(u)) ≤ E(u, u).

Remark 4. There are two equivalent definitions of a Markovian form when E is closed.
c.f. [27].

Now, we say that E is a Dirichlet form if it is a closed Markovian form. A core of E is
a subset of Dom(E) ∩ C0(X ) that is dense in Dom(E) with E1-norm and dense in C0(X )
with uniform norm. Here, C0(X ) is the space of continuous functions from X to R. E is
said to be regular if it possesses a core.
We say that E is local if ∀u, v ∈ Dom(E) such that Supp[u] and Supp[v] are disjoint compact
sets, we have,

E(u, v) = 0. (5.2)

Lastly, it is said that the form E admits a carré du champ if there exists a subspace H of
Dom(E) ∩ L∞, dense in Dom(E), such that

∀u ∈ H ∃ũ ∈ L1 ∀v ∈ Dom(E) ∩ L∞(X , µ), 2E(uv, u)− E(v, u2) =

∫

vũ dµ.

The carré du champ operator then satisfies the following property:

Proposition 5.1.1. Suppose that E is a local Dirichlet form admitting a carré du champ
Γ. Then,

∀u ∈ Dom[E ], E(u, u) =
1

2

∫

Γ(u) dµ.

5.1.2 Semigroups

Now, let (Pt)t∈R∗

+
be a semigroup of symmetric operators defined on L2(X , µ). That

is, (Pt)t∈R∗

+
is self-adjoint, and possesses the contraction and semigroup properties. The

semi-group is called strongly continuous if in addition,

∀u ∈ L2(X , µ), 〈Ptu− u, Ptu− u〉 −−→
t→0

0.
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Definition 6 (Resolvent of the semigroup). We say that a family of linear operators
(Gα)α∈R∗

+
defined on L2(X , µ) is a resolvent if

(R1) Each Gα is a self-adjoint operator defined on L2(X , µ) .

(R2) Gα −Gβ + (α− β)GαGβ = 0 .

(R3) ∀α > 0, ∀u ∈ L2(X , µ), 〈αGαu,αGαu〉 ≤ 〈u, u〉 .

The resolvent is called strongly continuous if in addition,

∀u ∈ L2(X , µ), 〈αGαu− u,αGαu− u〉 −−−→
α→∞

0.

Then we call resolvent of the semigroup (Pt)t∈R∗

+
the operator defined, for u in L2(X , µ),

by

Gαu =

∫ ∞

0
e−αtPtu dt.

Remark 5. A strongly continuous resolvent is invertible. Indeed, let u be such that Gαu =
0. Then from (R2) it follows that for any β, Gβu = 0. Then, since the resolvent is strongly
continuous, u = 0.

Definition 7 (Generator of a strongly continuous semigroup). The generator H of a
strongly continuous semigroup is defined by

Hu = lim
t→0

Ptu− u

t
,

provided this limit exists as a limit in the strong sense. The set of u ∈ L2(X , µ) such that
the limit exists is then denoted by Dom(H).

Definition 8 (Generator of a resolvent). The generator H of a resolvent is defined for all
u in L2(X , µ) by

Hu = αu−G−1α u.

This operator is well defined since Gα is invertible and the right hand side of Au does
not depend on α. A small calculation using (R2) yields

G−1α+h −G−1α = G−1α (I − hGα+h)
−1hGα+h.

Then, dividing by h and letting h→ 0 gives the desired result.

Theorem 5.1.1 (Theorem 1.3.1 [27]). There is a one to one correspondence between the
family of closed symmetric forms E on L2(X , µ) and the family of nonpositive definite
self-adjoint operators H on L2(X , µ). One way to put the correspondence is as follows:

{

Dom(H) ⊂ Dom(E),
∀u ∈ Dom(H), ∀v ∈ Dom[E ], E(u, v) = 〈−Hu, v〉.

5.1.3 Dirichlet forms and Markovian Semigroups

Theorem 5.1.2 (Theorem 1.4.1 [27]). Let E be a closed symmetric form on L2(X , µ). Let
(Pt) and (Gα) be the strongly continuous semigroup and the strongly continuous resolvent
on L2(X , µ) which are associated with E. Then the next five conditions are equivalent to
each other:
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(a) Pt is Markovian for each t > 0.

(b) αGα is Markovian for each α > 0.

(c) E is Markovian.

(d) The unit contraction operates on E.

(e) Every normal contraction operates on E.

Theorem 5.1.3 (Theorem 1.4.2 [27]). A Dirichlet form E on L2(X , µ) possesses the fol-
lowing properties:

(i) ∀u, v ∈ Dom(E), u ∨ v, u ∧ v, u ∧ 1 ∈ Dom(E) .

(ii) ∀u, v ∈ Dom(E)∩L∞(X , µ), u ·v ∈ Dom(E) and
√

E(u · v, u · v) ≤ ‖u‖∞
√

E(v, v)+
‖v‖∞

√

E(u, u) .

(iii) For u in Dom(E), define un = ((−n) ∨ u) ∧ n. Then, un ∈ Dom(E) and ‖un −
u‖E1 −−−→n→∞

0.

Theorem 5.1.4 (Theorem 2.1.1 [27]). Suppose E is a closable Markovian symmetric form
on L2(X , µ). Then its smallest closed extension Ē is again Markovian and hence a Dirichlet
form.

5.1.4 Markov processes and associated semigroups

The reference for this subsection is [24]. Let (Xt)t∈R∗

+
be a stochastic process defined

on a probability space (Ω,F ,P) with values in X . Let FX
t = σ(Xs, s ≤ t). Then X is a

Markov process if for all t, s > 0,

E[f(Xt+s)|F
X
t ] = E[f(Xt+s)|Xt],

for all measurable f : X → R. Henceforth, we consider (Xt)t∈R∗

+
a general Markov process.

Definition 9 (Time homogeneous transition function). A function P : [0,∞)×X×F → R

is a time homogeneous transition function if

(i) ∀(t, x) ∈ [0,∞)×X, P (t, x, ·) ∈ P(X ).

(ii) ∀x ∈ X , P (0, x, ·) = δx.

(iii) ∀Γ ∈ X , P (·, ·,Γ) ∈ B([0,∞)× X ).

(iv) ∀s, t > 0, ∀x ∈ X , ∀Γ ∈ F , P (t+ s, x,Γ) =
∫
P (s, y,Γ)P (t, x, dy).

Then, a transition function P is a transition function for the time homogeneous Markov
process X if

∀s, t > 0, ∀Γ ∈ F , E[f(Xt+s)|F
X
t ] =

∫
f(y)P (s,Xt, dy),

for all measurable f : X → R.
However, directly obtaining transition functions is not possible for a lot of processes. Thus,
we specify a Markov process using the semigroup that it generates. In the following, (Pt)t≥0
is defined by its action on an integrable f : X → R by

Ptf(x) =

∫
f(y)P (t, x, dy).
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5.1.5 Locality, quasi-regularity

As we will see in the next subsection, it is important for a Dirichlet form to be local
and quasi-regular. Hence, we define these notions rigorously here.

Definition 10 (Nest). An increasing sequence (Fn)n∈N of closed subsets of N (space of
positive integer-valued Radon measures on E) is called an E-nest if

⋃

n∈N

{F ∈ Dom(E) | F = 0 µ-a.e. on N \Fn}

is dense in Dom(E) with respect to the norm induced by E1.

A set N ⊂ N is called E-exceptional, if there exists an E-nest (Fn)n∈N such that N ⊂

N \
⋃

n∈N Fn. As usual, we say that a property of points in N holds E-quasi-everywhere
if it holds outside of some E-exceptional set. A function f : N → R is called E-quasi-
continuous if there exists an E-nest (Fn)n∈N such that f|Fn

is continuous for all n ∈ N.

Definition 11 (Quasi-regular Dirichlet form). A symmetric Dirichlet form (E ,Dom(E))
on L2(X , µ) is called quasi-regular if it satisfies the following:

(QR1) There exists an E-nest consisting of compact sets.

(QR2) There exists an ‖ ·‖1-dense subset of Dom(E) whose elements have E-continuous
µ-versions.

(QR3) There exists (un)n∈N ∈ Dom(E)N having E-continuous µ-versions (ũn)n∈N, and
an E-exceptional set N such that (ũn)n∈N separates points of X \N .

We now give a lemma allowing the verification of (QR2) and (QR3) in practice.

Lemma 5.1.1. Let (E ,Dom(E)) be a closable Dirichlet form and (E ,Dom(E)) its closure.
Assume that D is a core of continuous functions for (E ,Dom(E)). Assume in addition that
D separates points, i.e.

∀ξ, η ∈ X , ξ $= η, ∃f ∈ D / f(ξ) $= f(η).

Then, (QR2) and (QR3) are verified.

Proof. By definition, D is ‖ · ‖1-dense in Dom(E). Since the functions in D are assumed to
be continuous, (QR2) is verified. L2(X , µ) is a separable Banach space, and thus a strongly
Lindelöf space. Then, D is a strongly Lindelöf space (as a subspace of the previous space).
Define for ξ, η ∈ X :

Aξ,η = {f ∈ D / f(ξ) $= f(η)}.

Since D is strongly Lindelöf, then the subspace
⋃

ξ,η∈X Aξ,η is a Lindelöf space and can be
written as

⋃

ξ,η∈X

Aξ,η =
⋃

n∈N

⋃

m∈N

Aξn,ηm ,

where ξ1, . . . , η1, . . . ∈ X . Then, (QR3) is verified by taking un,m any element in Aξn,ηm .

Let us also recall a way to verify (QR1):



82 5. Stochastic analysis on the configuration space

Theorem 5.1.5 (Proposition 4.1 in [49]). Suppose there exists a bounded complete metric
ρ̄ on N generating the (separable) vague topology such that for all ξ ∈ N , ρ̄(·, ξ) ∈ Dom(E)
and Γ(ρ̄(·, ξ)) ≤ η µ-a.e. for some η ∈ L1(N , µ) (independent of ξ). Then, (QR1) holds.

And in practice, we will use the following theorem to verify quasi-regularity:

Theorem 5.1.6 (Corollary 4.9 in [49]). Assume that condition (Q), defined as follows, is
satisfied (recall that Γ is the carré du champ operator associated with the Dirichlet form).

(Q) There exist (ηj)j∈N in C∞0 (E); ηj ≥ 0 and fl,n : X → R continuous such that

(i) There exists a dense subset (yn)n∈N of X such that ∀n ∈ N, supl∈N fl,n =
ρ(·, yn) .

(ii) There exists C ∈ (0,∞) such that for all j, l, n ∈ N and all φ ∈ C∞b (R),

ηj ·(φ◦fl,n) ∈ C
∞
0 (X ) and Γ(ηj ·(φ◦fl,n)) ≤ C sup(‖φ′‖∞, ‖φ‖∞)2(ηj+Γ(ηj)

1/2)2.

(iii) ∀k ∈ N, ∃j ∈ N / ηj = 1 on X .

Then, (E ,Dom(E)) is quasi-regular.

As a notable consequence, we also have under (Q) that locality holds.

Proposition 5.1.2 (Proposition 4.12 in [49] ). Assume that condition (Q) holds. Then
(E ,Dom(E)) has the local property.

Lastly, another useful set of conditions that assure locality and quasi-regularity can be
found in [59]. Here Λ = B(0, r) and set jiB(0,r) = jir to denote the i-th Janossy density in

B(0, r). We introduce the following set of hypotheses:

Hypothesis 7. (A1) (E ,Dom(E)) is closable on L2(X , µ)

(A2) ∀i ∈ N, ∀r ≥ 0, jir ∈ L∞(X i
r , dx) ∀r ≥ 0,

∑∞
i=1 iµ(ξ(B(0, r) = i)) < ∞. Here,

X i
r := {ξ ∈ XB(0,r) : ξ(B(0, r)) = i}.

Then,

Theorem 5.1.7 (Theorem 1 in [59]). Suppose that (A1) and (A2) hold. Then (E ,Dom(E))
is a local, and quasi-regular form.

5.1.6 Diffusions associated with Dirichlet forms

To construct the diffusions associated with Dirichlet forms, we recall the results of [20],
see also [48]. Indeed, we start by recalling some notions, see Chapters IV and V in [48].
Given π in the set P(N ) of the probability measures on (N ,B(N )), we call a π-stochastic
process with state space N ,

Mπ = (Ω,G, (Gt)t≥0, (Mt)t≥0, (Pξ)ξ∈N ,Pπ)

where G :=
∨

t≥0 Gt is a σ-algebra on the set Ω, (Gt)t≥0 is the Pπ-completed filtration
generated by the process Mt : Ω −→ N of (G,B(N ))-measurable mappings, Pξ is a
probability measure on (Ω,G) for all ξ ∈ N , and Pπ is the probability measure on (Ω,G)
defined by

Pπ(A) :=

∫

N
Pξ(A)π(dξ), A ∈ G.
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A collection (Mπ, (θt)t≥0) is called a π-time homogeneous Markov process with state space
N if θt : Ω −→ Ω is a shift operator, i.e. Ms ◦ θt = Ms+t, s, t ≥ 0, the map ξ "→ Pξ(A) is
(B(N ),B(R))-measurable for all A ∈ G, and the time homogeneous Markov property

Pξ(Mt ∈ A | Gs) = PMs(Mt−s ∈ A), Pξ − a.s., A ∈ G, 0 ≤ s ≤ t, ξ ∈ N

holds. Recall that a π-time homogeneous Markov process (Mπ, (θt)t≥0) with state space N
is said to be π-tight on N if (Mt)t≥0 is right-continuous with left limits Pπ-almost surely;
Pξ(M0 = ξ) = 1 ∀ ξ ∈ N ; the filtration (Gt)t≥0 is right continuous; the following strong
Markov property holds:

Pπ′(Mt+τ ∈ A | Gτ ) = PMτ
(Mt ∈ A)

Pπ′-almost surely for all Gt-stopping time τ , π′ ∈ P(N ), A ∈ G and t ≥ 0, cf. Theorem
IV.1.15 in [48]. In addition, a π-tight process on N is said π-special standard process on
N if for any π′ ∈ P(N ) which is equivalent to π and all Gt-stopping times τ , (τn)n≥1 such
that τn ↑ τ then Mτn converges to Mτ , Pπ′-almost surely.

The following theorem holds, in which Eξ denotes the expectation under Pξ, ξ ∈ N .

Theorem 5.1.8. Assume that the Dirichlet form (E ,Dom(E)) is closable, and that its
closure (E ,Dom(E)) is quasi-local and regular. In the following, we call H the genera-
tor associated to the Dirichlet form. Then there exists a µ-tight special standard process
(Mµ, (θt)t≥0) on N with transition semigroup

ptf(ξ) := Eξ[f(Mt)], ξ ∈ N , f : N −→ R square integrable.

In addition, (Mµ, (θt)t≥0) is properly associated with the Dirichlet form (E ,Dom(E)) in the
sense that ptf is an E-a.c., µ-version of exp(tH)f for all square integrable f : N −→ R

and t > 0, and such that

Pξ({ω : t "→ Mt(ω) is continuous on [0,+∞)}) = 1, E-a.e., ξ ∈ N , (5.3)

i.e. (Mµ, (θt)t≥0) is quasi-continuous.

Proof. The Dirichlet form (E ,Dom(E)) is quasi-regular, hence by Theorem III.3.5 page 103
in [48], there exists a µ-tight special standard process on N , say (Mµ, (θt)t≥0), whose
transition semigroup (pt)t≥0 is such that, for any square integrable function f : N −→ R

and t > 0, ptf is a µ-version of exp(tH)f and ptf is E-a.c.. Since the form has the
local property, by Theorem V.1.5 page 150 in [48] the tight special standard process is a
µ-diffusion associated to the form, i.e. relation (B.5.1) holds for E-a.e. ξ ∈ N .

For the sake of completeness we remark that by applying Theorem 6.4 page 141 in [49],
one has that the µ-diffusion on N properly associated with the Dirichlet form (E ,Dom(E))
(defined in Theorem B.5.1) is unique up to µ-equivalence. We refer the reader to Definition
6.3 page 140 in [49] for the meaning of this notion.
Moreover, the Dirichlet form is associated with a Markov process with nice sample paths
(i.e. quasi-continuous) if and only if this form is quasi-regular. This means that quasi-
regularity is the correct notion in this context.

Another characterization of the diffusion is the following: (G̃ denotes a quasi-continuous
version of G, which exists since the form is quasi-regular.)
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Theorem 5.1.9 (Diffusion process as a solution of a martingale problem). (Mµ, (θt)t≥0)
from the previous theorem is the (up to µ−1,K-equivalence) unique diffusion process having
µ as an invariant measure and solving the following martingale problem: ∀G ∈ Dom(H),

∀t ≥ 0 G̃(Xt)− G̃(X0) +

∫ t

0
HG(Xs) ds

is an G-martingale under Pξ for E-q.e. ξ ∈ X . Here, H is the generator of the semigroup
pt (defined in Definition 7).

To summarize, once we prove that a Dirichlet form is local, and quasi-regular, we know
that there exists an associated Markov process which has interesting properties. Indeed, it
is right-continuous, and satisfies the martingale problem (which leads to a characterization
in terms of a Stochastic Differential Equation).

5.1.7 Capacity

Let us introduce a notion of capacity of the Dirichlet space (E ,Dom(E)). Recall that we
have denoted by O(X ) the set consisting of all non-empty open sets in X . For O ∈ O(X ),
define

LO = {F ∈ Dom(E) / F ≥ 1 µ - a.e. on O}.

Then we define the capacity of O as (c.f. [27])

Cap(O) =

{

infF∈LO
E1(F, F ) LO #= ∅,

∞ LO = ∅,

where we have used the notation E1(F, F ) := E(F, F ) + 〈F, F 〉L2(X ,µ). Then, for an arbi-
trary set X ⊂ X , we also set Cap(X) = infX⊂O∈O(X )Cap(O). It should be noted that
the notion of capacity is dependent on the underlying Dirichlet form. Hence, we shall call
Cap the 1-capacity of the (pre-) Dirichlet space (E ,Dom(E)). We also sometimes write
CapE(X) to insist on the fact that the capacity is the one induced by (E ,Dom(E)).

We now recall a few basic properties of the previously defined capacity, which can be found
in [27].

Proposition 5.1.3. For each A ∈ O(X ), there exists a unique element eA ∈ LA such that

(i) E1(eA, eA) = Cap(A).

(ii) 0 ≤ eA ≤ 1 µ-a.e. and eA = 1 µ-a.e. on A.

(iii) eA is the unique element of Dom(E) satisfying eA = 1 P -a.e. on A and ∀v ∈ Dom(E)
such that v ≥ 0 µ-a.e. on A, E1(eA, v) ≥ 0.

(iv) ∀v ∈ Dom(E), v = 1 µ-a.e. on A ⇒ E1(eA, v) = Cap(A).

(v) ∀A,B ∈ O(X ), A ⊂ B ⇒ eA ≤ eB µ-a.e.

Then, the capacity defined as above is a Choquet capacity, in the sense that:

Proposition 5.1.4. (i) ∀A,B ∈ O(X ), A ⊂ B ⇒ Cap(A) ≤ Cap(B) .

(ii) ∀(An)n∈N ∈ O(X )N such that (An) is increasing, Cap(
⋃

nAn) = supnCap(An).

(iii) ∀(An)n∈N ∈ O(X )N such that (An) is a decreasing sequence of compacts, Cap(
⋂

nAn) =
infnCap(An).
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An important result that links exceptional sets and capacity is given by Theorem 4.3.1
in [27].

Proposition 5.1.5. A set N ⊂ X is (E−)exceptional if and only if Cap(N) = 0.

In particular, the Markov process associated with a Dirichlet form hits a set N ⊂ X if and
only if Cap(N) != 0.

5.1.8 Convergence of Dirichlet forms

In this subsection, we study which properties transfer from a smaller Dirichlet form to
a larger one, and vice versa. Let us begin with a characterization of E-nests.

Proposition 5.1.6 (Theorem 2.14 in [47]). An increasing sequence (Fn)n∈N of closed sets
is an E-nest if and only if

CapE(F
c
n) −−−→n→∞

0,

where Ac is the complement set of A ∈ X .

We move on to prove that quasi-regularity transfers itself to the larger form.

Proposition 5.1.7. Let (E1, D1) and (E2, D2) be two Dirichlet forms such that (E2, D2)
extends (E1, D1). Assume that (E1, D1) is quasi-regular. Then (E2, D2) is also quasi-regular.

Proof. It is immediate that for any X ∈ X , CapE1(X) ≥ CapE2(X). Then, Proposi-
tion 5.1.5 implies that (E2, D2) verifies (QR1). The two other properties follow directly
from the definition.

Remark 6. In particular, this means that the study of the properties of a Dirichlet form
with a smaller domain generalize to bigger domains. Indeed, there are more exceptional
sets in the first setting, meaning that the proofs are harder.

Next, we give two convergence results that ensure the conservation of the closability of
the Dirichlet forms. For two Dirichlet forms (E1, D1) and (E2, D2), we say that E1 ≤ E2 if

D2 ⊂ D1 and ∀F ∈ D2, E1(F ) ≤ E2(F ). (5.4)

We say that a sequence (En,Dn)n∈N of Dirichlet forms is increasing if En ≥ Em when
n > m.

Lemma 5.1.2 (Prop I.3.7, (i) in [48]). Suppose (En,Dn)n∈N is an increasing sequence of
positive definite symmetric bilinear forms on L2(X , µ). Moreover, assume (En,Dn)n∈N are
closable. Define

{

E∞(f, f) = limn→∞ E
n(f, f),

Dom(E∞) = D∞ = {f ∈ ∩n∈NDn : sup En(f, f) <∞}.

Then, (E∞,D∞) is closable.

Lemma 5.1.3 (Prop I.3.7 [48]). Suppose (En,Dn)n∈N is an increasing sequence of positive
definite symmetric bilinear forms on L2(X , µ). Moreover, assume (En,Dn)n∈N are closed.
Define

{

E∞(f, f) = limn→∞ E
n(f, f),

Dom(E∞) = D∞ = {f ∈ ∩n∈NDn : sup En(f, f) <∞}.

Then, (E∞,D∞) is closed and the resolvent Gn
α converge to G∞α strongly in L2(X , µ) for

all α > 0.
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5.2 Differential gradient

We use here some of the notations of [88], even though these notations are quite
widespread. Let V(E) be the set of C∞ vector fields on E. Let V0(E) be the set of
C∞ vector fields on E with compact support. Define (φvt )T≥0 as the solution of

{

d
dtφ

v
t (x) = v(φvt (x)),

φv0(x) = x.

For any ξ ∈ X , we still denote by φvt the map from X into X . For a function F : X −→ R,
the directional derivative at ξ ∈ X along the vector field v ∈ V0(E) is defined by

∇vF (ξ) =
d

dt
F (φvt (ξ))

∣

∣

∣

t=0
.

A function F : X → R is said to be differentiable at ξ ∈ X if for any vector field v ∈ V0(E),
the directional derivative along the vector field v is well defined.

The intrinsic gradient of F is the mapping

ξ #−→ (∇·F )(ξ),

such that, for any v ∈ V0(E),

∇vF (ξ) =

∫

〈∇xF (ξ), v(x)〉E ξ(dx).

In practice, we know how to calculate the directional derivative in the case of cylindrical
functions. We use the notations from [3]. That is, we say that a function F : X → R is in
FC∞b (C∞(E),X ) if F is of the form

F : ξ #−→ f(

∫

h1 dξ, . . . ,

∫

hN dξ),

for some N ∈ N, h1, . . . , hN ∈ D = C∞(E), f ∈ C∞b (RN ).

Proposition 5.2.1. The class FC∞b (C∞(E),X ) is dense in L2(X , µ).

Proof. The proof essentially uses the Hahn-Banach theorem, see [75].

We can then evaluate the directional derivative for a function F that is of such form.
For any v ∈ V0(E),

F (φvt (ξ)) = f(
∑

x∈φv
t (ξ)

h1(x), . . . ,
∑

x∈φv
t (ξ)

hN (x))

= f(
∑

x∈ξ

h1(φ
v
t (x)), . . . ,

∑

x∈ξ

hN (φ
v
t (x))

= f(

∫

h1 ◦ φ
v
t dξ, . . . ,

∫

hN ◦ φ
v
t dξ).

In that case, we have a simple expression of the directional gradient:

∇vF (ξ) =

N
∑

i=1

∂if(

∫

h1 dξ, . . . ,

∫

hN dξ)

∫

∇E
v hi dξ.
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Note that we can write
∫

∇Ev hi dξ =

∫

〈∇Ehi, v〉E dξ,

so the intrinsic gradient of F at ξ ∈ X is

∇xF (ξ) =
N
∑

i=1

∂if(

∫

h1 dξ, . . . ,

∫

hN dξ)∇Ehi(x).

We also introduce the set of test functions used in [20].

Definition 12. A function F : X → R is in S if

F (ξ) = f01{ξ(E)=0} +
n
∑

k=1

1{ξ(E)=k}fk(X1, . . . , Xk), (5.5)

where n ≥ 1 is an integer, for any k = 1, . . . , n, fk ∈ C∞(Ek) is a symmetric function and
f0 ∈ R is a constant. Similarly, when F : XΛ → R is of the form (5.5), then we say that
F is in SΛ.

Remark 7. Conditionally on the number of points in ξ being less than n, a function in S
is also in FC∞b (C∞(E),X ).

However, both of the functional sets are dense in L2(X , µ), as the following lemma shows:

Lemma 5.2.1. S is dense in L2(X , µ).

Proof. See [20].

Lastly, we define the Dirichlet form associated with a point process µ on (X ,F).

Definition 13 (Pre-Dirichlet form). For F,G ∈ FC∞b (C∞(E),X ), we introduce the fol-
lowing positive definite symmetric form

E(F,G) =
1

2

∫

X

∫

〈∇xF (ξ),∇xG(ξ)〉 ξ(dx)µ(dξ), (5.6)

with domain FC∞b (C∞(E),X ) ⊂ L2(X , µ).

Proposition 5.2.2. Assume that µ has finite moments, i.e. for all ϕ bounded, compactly
supported function, and for all n ∈ N,

E[
( ∫

ϕ(y) ξ(dy)
)n
] < ∞. (5.7)

Then, the form (E ,FC∞b (C∞(E),X )) is well-defined.

Proof. For F ∈ FC∞b (C∞(E),X ), for ξ ∈ X ,

∫

X

∫

〈∇xF,∇xG〉 ξ(dx) =
n
∑

i,j=1

∂i,jf(

∫

h1dξ, . . . ,

∫

hNdξ)

∫

E
〈∇Ehi(x),∇

Ehj(x)〉E ξ(dx),

so if we note φi,j : x '→ 〈∇Ehi(x),∇
Ehj(x)〉E ,

|

∫

X

∫

〈∇xF,∇xG〉 ξ(dx)| ≤ C
n
∑

i,j=1

∫

X
|〈φi,j , ξ〉|µ(dξ).

Since φi,j is compactly supported, the right hand side of the previous inequality is finite
when µ verifies (5.7).
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Lastly, we also define the Dirichlet form associated to the measure µΛ, i.e. µ restricted
to a compact subset Λ ⊆ E.

Definition 14 (Pre-Dirichlet form on a compact set). For F,G ∈ FC∞b (C∞(Λ),XΛ), we
introduce the following positive definite symmetric form

EΛ(F,G) =
1

2

∫

XΛ

∫

〈∇xF,∇xG〉 ξ(dx)µΛ(dξ),

with domain FC∞b (C∞(Λ),XΛ) ⊂ L2(X , µΛ). The Dirichlet form thus defined is well-
defined in the sense that EΛ(FC

∞

b (C∞(Λ),XΛ),FC
∞

b (C∞(Λ),XΛ)) ⊂ R, by the same ar-
guments as in Proposition 5.2.2 and no additional hypothesis on µ .

5.3 Determinantal point process

In this section 1, we study the case of the determinantal point process, i.e. the α-
determinantal point process with α = −1. Throughout this section, we assume that
Hypothesis 3 is verified.

5.3.1 Quasi-Invariance

In this section, we recall some results from [14] and make some of the proofs more
precise. Let Diff0(E) be the set of all diffeomorphisms from E into itself with compact
support, i.e., for any φ ∈ Diff0(E), there exists a compact outside of which φ is the
identity map. In particular, note that for a compact subset Λ ⊆ E, Diff0(Λ) is the set
of diffeomorphisms from Λ into itself. For any reference measure λ on E, λφ denotes the
image measure of λ by φ. For φ ∈ Diff0(E) whose support is included in Λ, we introduce
the isometry Tφ,

Tφ : L2(Λ,λφ) −→ L2(Λ,λ)

f '−→ f ◦ φ.

Its inverse, which exists since φ is a diffeomorphism, is trivially defined by f '→ f ◦ φ−1

and denoted by T −1φ . Note that Tφ and T −1φ are isometries, i.e.,

< Tφψ1, Tφψ2 >L2(Λ,λ)=< ψ1, ψ2 >L2(Λ,λφ),

for any ψ1 and ψ2 belonging to L2(Λ,λφ). We also set:

Kφ
Λ
= T −1φ KΛTφ and J φ[Λ] = T −1φ J [Λ]Tφ.

Lastly, for any α = {xn}1≤n≤α(E) ∈ X , we denote by Φ the map:

Φ : X −→ X

{xn}1≤n≤α(E) '−→ {φ(xn)}1≤n≤α(E).

1. I present here my approach to the proof of the existence of diffusions associated with determinantal
point processes. The steps detailed in this section were obtained during the first year of my PhD study.
During that time, it came to our attention that N. Privault and G. L. Torrisi had independently obtained
similar results. After fruitful discussions, we agreed to cosign the paper [20]. In this section, I emphasize
my own contributions to the paper, and present the results in a personal way. The approach of this section
is therefore sometimes different than that of [20] which is why I have also chosen to put in Appendix B
the theorems and proofs as they were given in [20].
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With the previous definitions in mind, we can give the following result from [14]:

Lemma 5.3.1. Let K be an operator satisfying Hypothesis 3, and J [Λ] the associated local
interaction operator. We have the following properties.

a) Kφ
Λ

and J φ[Λ] are continuous operators from L2(Λ,λφ) into L2(Λ,λφ).

b) Kφ
Λ

is of trace class and Tr(Kφ
Λ
) = Tr(KΛ).

c) Det(I−Kφ
Λ
) = Det(I−KΛ). This translates into the fact that P (ξ(Λ) = 0) = P (Φ(ξ)(Λ) =

0) which is expected since φ is a diffeomorphism.

d) Kφ
Λ

is again an integral operator on L2(Λ,λφ) whose kernel is given by

(x, y)  → KΛ
(

φ−1(x),φ−1(y)
)

.

An analog formula also holds for the operator J φ[Λ], i.e. its kernel Jφ[Λ] is given by
(x, y)  → J [Λ]

(

φ−1(x),φ−1(y)
)

.

e) J φ[Λ] is correctly defined as the local interaction operator associated with Kφ
Λ
, i.e.

(I−Kφ
Λ
)−1Kφ

Λ
= J φ[Λ].

Proof. The proof can be found in [14], except for point e), which we now prove. We have
by definition

(I−Kφ
Λ
)−1Kφ

Λ
= (I−T −1

φ KΛTφ)
−1T −1

φ Kφ
Λ
Tφ

= T −1
φ (I−KΛ)

−1KΛTφ

= J φ[Λ],

which is the aforementioned result.

Then, it is known how the map φ transforms a determinantal process. More precisely,

Lemma 5.3.2 (Theorem 7 in [14]). Let KΛ be an operator satisfying Hypothesis 3, and µ

be the associated determinantal process. Then, Φ∗µ is again determinantal with kernel Kφ
Λ

with respect to the measure λφ on E.

To prove the quasi-invariance of the determinantal measure restricted to a compact subset
Λ ⊆ E with respect to the group of diffeomorphisms on E, we still need one last result:

Lemma 5.3.3. Let K be an operator satisfying Hypothesis 3, and J [Λ] the associated
local interaction operator, with kernel J [Λ]. Assume that ‖KΛ‖ < 1. Then, we have that
det J [Λ](ξ) > 0, for µΛ-a.e. ξ ∈ X . However, we do not in general have det J [Λ](α) > 0,
for Lλ

Λ
-a.e. α ∈ X , where Lλ

Λ
is the sample measure defined in (3.1).

Proof. Recall that for a determinantal process with kernel K satisfying Hypothesis 3, we

have µΛ ≪ Lλ
Λ

and jΛ =
dµΛ

dLλ
Λ

. Moreover, it is known in the determinantal case that (3.9)

holds, i.e.,
jΛ(α) = Det(I−KΛ) det J [Λ](α),

for α ∈ XΛ. Since jΛ is a density, we obviously have that jΛ(α) > 0, for µΛ-a.e. α ∈ XΛ.
Hence, since ‖KΛ‖ < 1, we have det J [Λ](α) > 0, for µΛ-a.e. α ∈ XΛ. As to the concluding
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part of the lemma, we notice that in general, one does not have µΛ ∼ Lλ
Λ
. Indeed, consider

for example the case where Rank(K∗) ≤ N ∈ N
∗. Then, jN+1

Λ
(x1, . . . , xN+1) = 0, for

µ⊗(N+1)-a.e. (x1, . . . , xN+1) ∈ Λ
N+1 (since µΛ has less than N points almost surely, see

Proposition 3.3.3). It suffices to define the set

A := {B ⊆ Λ : |B| = N + 1},

which verifies µΛ(A) = 0 but Lλ
Λ
(A) = 1

n!λ(Λ).

Remark 8. If we suppose that, for any n ≥ 1, the function

(x1, . . . , xn) #−→ det J [Λ](x1, . . . , xn)

is strictly positive λ⊗n-a.e. on Λn, then we have µΛ ∼ Lλ
Λ

and therefore det J [Λ](α) > 0,
for Lλ

Λ
-a.a. α ∈ XΛ.

We are now ready to give the main result of this section. We emphasize that despite the
result being the same as the one in [14], the proof given there implicitly uses the fact that
det J [Λ](α) > 0, for Lλ

Λ
-a.a. α ∈ XΛ, which is known not to be true in general. Henceforth,

we shall also assume the following technical condition which ensures that there exists an
integration by parts formula on the underlying space E.

Hypothesis 8. The Radon measure λ is absolutely continuous w.r.t. the Lebesgue measure
ℓ on E, with Radon-Nikodym derivative ρ = dλ

dℓ which is strictly positive and continuously
differentiable on E.

Then for any φ ∈ Diff0(E), λφ is absolutely continuous with respect to λ with density
given by

pλφ(x) =
dλφ(x)

dλ(x)
=

ρ(φ−1(x))

ρ(x)
Jac(φ−1)(x), (5.8)

where Jac(φ−1)(x) is the Jacobian of φ−1 at point x ∈ E. We draw attention to the fact
that it is indeed Jac(φ−1)(x) that appears in (5.8), which contradicts equation (2.11) of [2].
We can now state the main result of this section:

Proposition 5.3.1. Let KΛ be a restriction operator satisfying Hypothesis 3. Assume that
Hypothesis 8 is verified. Then, for any measurable nonnegative f on Λ:

E

[

e
−

∑
x∈ξΛ

f◦φ(x)
]

= E

[

e
−

∑
x∈ξΛ

f(x)
e
∑

x∈ξΛ
ln(pλ

φ
(x)) det Jφ[Λ](ξΛ)

det J [Λ](ξΛ)

]

. (5.9)

Remark 9. The right-hand side of (5.9) is well defined thanks to lemma 5.3.3.

Remark 10. Interpretations and additional remarks can be found in [14, Theorem 8].
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Proof. For any measurable nonnegative f on Λ, we have since det J [Λ] > 0 µΛ-a.e.:

E

[

e
−

∑
x∈ξΛ

f(x)
e
∑

x∈ξΛ
ln(pλ

φ
(x)) det Jφ[Λ](ξΛ)

det J [Λ](ξΛ)

]

= E

[

e
−

∑
x∈ξΛ

f(x)
e
∑

x∈ξΛ
ln(pλ

φ
(x)) det Jφ[Λ](ξΛ)

det J [Λ](ξΛ)
1{det J [Λ]>0}

]

=
∑

n≥0

1

n!

∫

Λn

e−
∑n

k=1 f(xk)
n
∏

k=1

pλφ(xk)

det Jφ[Λ](x1, . . . , xn)

det J [Λ](x1, . . . , xn)
jΛ (x1, · · · , xn)1{jΛ(x1,··· ,xn)>0} λ(dx1) . . .λ(dxn)

=
∑

n≥0

1

n!

∫

Λn

e−
∑n

k=1 f(xk)
n
∏

k=1

pλφ(xk) det J
φ[Λ](x1, . . . , xn)Det(I−KΛ)λ(dx1) . . .λ(dxn)

=
∑

n≥0

1

n!

∫

Λn

e−
∑n

k=1 f(xk)Det(I−Kφ
Λ
) det Jφ[Λ](x1, . . . , xn)λφ(dx1) . . .λφ(dxn),

where we have used (3.9), (5.8) and Lemma 5.3.1, c). Then, we conclude by Lemma 5.3.2.

Indeed, Det(I−Kφ
Λ
) det Jφ[Λ](x1, . . . , xn) is the Janossy density of Φ∗µ with respect to

L
λφ
Λ

(see lemma 5.3.1, e)), which yields (5.9).

5.3.2 Integration by parts

In this subsection, we recall the main result from [14] which was proved by taking a
different approach in [20]. Here, we restrict our attention to a compact set Λ ⊆ E, and
obtain an integration by parts formula for the point process µΛ on (XΛ,FΛ).
We start by defining U [Λ] := ξ !→ −ln det J [Λ](ξ). Note that by Lemma 5.3.3, U is
well-defined for µΛ-almost every ξ ∈ XΛ. We consider the additional hypothesis on J [Λ]:

Hypothesis 9. Assume that for all compact sets Λ ⊆ E, the kernel J [Λ](·, ·) is continu-
ously differentiable on Λ× Λ.

The previous condition implies in particular that U [Λ] is itself continuously differentiable,
by differentiability of the determinant.
There are considerable changes depending on the measure we choose on E. More pre-
cisely, let as previously ℓ be the Lebesgue measure on E, and assume that λ is absolutely
continuous with respect to ℓ. Note

ρ =
dλ

dℓ
,

and assume that ρ satisfies Hypothesis 8. Then, let us note βλ the logarithmic derivative
of λ, given by:

∀x ∈ E, βλ(x) =
{

∇ρ(x)
ρ(x) on {ρ(x) > 0},

0 on {ρ(x) = 0}.

Then, for any φ1,φ2 in D (the domain on which the gradient ∇E is defined on E), we have
the integration by parts formula on E
∫

E
∇E
v φ1(x)φ2(x)λ(dx) = −

∫

E
φ1(x)∇E

v φ2(x)λ(dx)−
∫

E
φ1(x)φ2(x)β

λ
v (x)λ(dx), (5.10)
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where
βλ
v = 〈βλ(x), v(x)〉E + div v(x).

Here div is to be understood as the divergence with respect to the Lebesgue measure ℓ on
E. On the other hand, taking φ2 = 1 in the integration by parts formula, we get

divλ v = βλ
v .

So we obtain the expression

divλ v = div v + 〈βλ, v〉E .

Lastly, as in [2, 3] we define for any v ∈ V0(E),

Bλ
v (ξ) :=

∫

〈βλ(x), v(x)〉E + div v(x) ξ(dx). (5.11)

Let us now recall the important result from [14], see also [20].

Theorem 5.3.1 (Integration by parts on compacts for determinantal processes). Assume
K,λ satisfy Hypothesis 3, Hypothesis 8, and Hypothesis 9. Let F and G be two cylindrical
functions of FC∞b (C∞(Λ),XΛ). Then, for any compact set Λ ⊂ E, we have

∫

XΛ

∇vF (ξ)G(ξ)µKΛ,λ(dξ) = −

∫

XΛ

F (ξ)∇vG(ξ)µKΛ,λ(dξ)

+

∫

XΛ

F (ξ)G(ξ)(Bλ
v (ξ) + ∇vU [Λ](ξ))µKΛ,λ(dξ), (5.12)

where Bλ
v is defined in (5.11).

Proof. See [20].

Remark 11. We remark that there is a sign change in (B.3.6), as compared to the results
of [14], which is justified by the corrected formula for (5.8). This corrected version is also
more in line with the corresponding integration by parts for the Poisson point process.

In the following, we define the divergence of ∇ with respect to the determinantal
measure:

divK,λv G(ξ) := −∇vG(ξ) +G(ξ)
(

−βλ
v (ξ) + ∇vU [Λ](ξ)

)

,

for ξ ∈ XΛ, and v ∈ V0(Λ).

Next, we extend the operators ∇ and divK,λ by closability. This is given by the following
theorem:

Theorem 5.3.2. Assume that E := R
d and that the hypotheses of Theorem 5.3.1 hold, as

well as the following condition:

∫

Λn

∣∣∣∣∣∣

∂
x
(h)
i

det J [Λ](x1, . . . , xn)∂x(k)j

det J [Λ](x1, . . . , xn)

det J [Λ](x1, . . . , xn)

∣∣∣∣∣∣

1{det J [Λ](x1,...,xn)>0} λ(dx1) . . .λ(dxn) < ∞ (5.13)

for any n ≥ 1, 1 ≤ i, j ≤ n and 1 ≤ h, k ≤ d. Then
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(i) the linear operators ∇v and divK,λv are well-defined and closable for any vector field
v ∈ V0(Λ). In particular, we have

∇v(SΛ) ⊂ L2(Λ,λ) and divK,λv (SΛ) ⊂ L2(Λ,λ);

(ii) for any vector field v ∈ V0(Λ), we have

E
[

G∇vF
]

= E

[

FdivK,λv G
]

for all F ∈ Dom
(

∇v
)

, G ∈ Dom
(

divK,λv

)

in the domains of the minimal closed

extensions of ∇v and divµv . Here, (∇v,Dom(∇v)) and (divK,λv ,Dom(divK,λv )) are the
closed extensions of the respective closable operators ∇v and divK,λv in the sense of
(5.1).

Proof. Essentially, ∇v(SΛ) ⊂ L2(Λ,λ) is a consequence of the finiteness of the moments of
functionals of determinantal point processes. To ensure divK,λv (SΛ) ⊂ L2(Λ,λ), we require
the additional hypothesis (5.13). Lastly, closability is a consequence of the integration by
parts Theorem 5.3.1. Details of the proof can be found in [20].

5.3.3 Associated diffusions

In this subsection, we construct the diffusions associated with a determinantal point
process satisfying the conditions of Theorem 5.3.2. The interested reader may also see
[59, 61, 62] and [38, 39] for constructions of such diffusions by using a similar method.
We also refer to [4] for the link between stochastic differential equations and the Dirichlet
forms at hand. We begin by studying the Dirichlet form HΛ defined in (14). First, we show
that the integration by parts formula (5.12) leads to the following form for the generator
associated to EΛ:

Proposition 5.3.2. Denote by HΛ the generator associated to (EΛ,FC
∞
b (C∞(Λ),XΛ)) in

the sense of Theorem 5.1.1. Then, for F ∈ FC∞b (C∞(Λ),XΛ), and ξ ∈ XΛ,

HΛF (ξ) = −∆F (ξ) − 〈divλ∇F (ξ), ξ〉 −

∫

〈∇xU [Λ],∇xF 〉E ξ(dx). (5.14)

Moreover, HΛ is well-defined in such a way as an operator from L2(X , µ) into itself, i.e.

HΛ(FC
∞
b (C∞(Λ),XΛ)) ⊂ L2(X , µ). (5.15)

Proof. Let F be a function in FC∞b (C∞(Λ),XΛ). Then recall that

∇F (ξ) =

N
∑

i=1

∂if(

∫

h1dξ, . . . ,

∫

hNdξ)

∫

E
∇Ehi(x) ξ(dx).

So,

divµ(∇F )(ξ) =

N
∑

i,j=1

∂i∂jf(

∫

h1dξ, . . . ,

∫

hNdξ)

∫

〈∇Ehi,∇
E
x hj(x)〉E ξ(dx)

+
N
∑

i=1

∂if(

∫

h1dξ, . . . ,

∫

hNdξ)〈divλ∇
Ehi + 〈∇U [Λ](ξ),∇Ehi〉E , ξ〉. (5.16)
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Then, define

∆F (ξ) = Tr(∇∇F )(ξ) =
N
∑

i,j=1

∂i∂jf(

∫

h1dξ, . . . ,

∫

hNdξ)

∫

〈∇E
x hi,∇

E
x hj〉E ξ(dx),

and the identification is complete, once we apply Theorem 5.3.1.

For the proof of (5.15), we refer to the proof of point (i) of Theorem 4.1 in [20].

Now, having constructed the generator HΛ correctly associated to EΛ, Theorem 5.1.1
allows us to conclude to the closability of EΛ. Specifically, we obtain in the same fashion
as [2, 3]:

Theorem 5.3.3. One can define HΛ which is correctly associated with the pre-Dirichlet
form EΛ. As such, the form (EΛ,FC

∞
b (C∞(Λ),XΛ)) is closable in L2(XΛ, µΛ). Its closure

is associated with a positive definite self-adjoint operator (Friedrichs extension of HΛ) which
is still noted HΛ. It is defined on the extended domain Dom(EΛ).

Proof. This is a consequence of Theorem 5.1.1, see also Theorem 4.1 in [20] for details.

Recall that EΛ is associated with a diffusion with (quasi-)continuous sample paths if
EΛ is local and quasi-regular. Therefore, we now wish to verify these conditions. First of
all, let us begin by recalling a partial result obtained in [88].

Theorem 5.3.4 (Quasi-regularity and locality, partial result). Assume that µ is translation-
invariant, i.e. J(x, y) = J(x−y), and J is of finite range, i.e. J(r) = 0 for r ≥ R, R ≥ 0.
Then, (EΛ,Dom(EΛ)) is a local, and quasi-regular form.

Proof. This was proved in [88].

We note that the results obtained in [88] do not strictly extend to our setting since
their domain is larger than ours. In the general case, it is possible to verify it by hand (as
in [88] or as we have done in [20]).
However, the results in [72] generalize most known results (in particular the ones of [59]).
These results are sufficient in our case, and it is known that E quasi-regular. We obtain:

Proposition 5.3.3. The Dirichlet form (EΛ,Dom((EΛ)) is quasi-regular, in the sense of
Definition 11.

Proof. See our proof in [20]. A shorter proof can be obtained by using Theorem 3.4 in [72]
(see also the considerations in Section 4 therein).

Next, it remains to show that the Dirichlet form is local.

Proposition 5.3.4. The Dirichlet form (EΛ,Dom((EΛ)) is local, in the sense of (5.2).

Proof. The proof can be found in [20].

At this point, we know by Theorem B.5.1 that there exists a diffusion correctly associ-
ated with EΛ. Before writing our main result, we obtain further results on the properties
of the diffusion. We start by recalling some results from [60]. The Dirichlet form defined
there is unchanged, however the domain is D∞ = {f ∈ Dloc

∞ ∩ L2(X , µ) : E(f, f) < ∞},
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where Dloc
∞ is the set of functionals such that the restriction of f to configurations of finite

size is smooth. We define the set Ξ as follows:

Ξ = {ξ ∈ N : ∃x ∈ E; ξ({x}) ≥ 2},

i.e. Ξ is the set of configurations with collisions. In particular, it is known that µ(Ξ) = 0
for any determinantal process µ, since ξ is a.s. a simple point process. The question is
whether or not this also holds for the E-capacity of Ξ. The answer is positive:

Proposition 5.3.5 ( [60]). Let µ be a determinantal random point field with kernel K which
verifies Hypothesis 3. Assume moreover that K is locally Lipschitz continuous. Then

CapOsada(Ξ) = 0,

where CapOsada is the capacity associated with the pre-Dirichlet space (E ,D∞).

In particular, the associated diffusion, constructed on NΛ has no collisions:

Proposition 5.3.6 ( [60]). Let µ be a determinantal random point field with kernel K which
verifies Hypothesis 3. Assume moreover that K is locally Lipschitz continuous. Then the
diffusion (MµΛ

, (θt)t≥0) associated with (E ,D∞) satisfies

Pη(σΞ = ∞) = 1 for q.e. η ∈ Ẍ ,

where σΞ = inf{t > 0 / Mt ∈ Ξ}.

It should be noted that the Dirichlet form defined there is the same as E but their domain
D∞ is actually larger than ours. This means that their results do not extend to our setting
since 0 = CapOsada(Ξ) ≤ Cap(Ξ).
In order to prove the results in our setting, we start by recalling the following lemma,
which is borrowed from [73].

Lemma 5.3.4. Assume the hypotheses of Theorem 5.3.2 and let (MµΛ
, (θt)t≥0) be the

µΛ-tight special standard process properly associated with the Dirichlet form (E ,Dom(E)).
Let un(ξΛ) ∈ SΛ, n ≥ 1, be such that: un : XΛ → R is continuous, un → u point-wise,
u ∈ L2(Λ,λ) and

sup
n≥1

E(un(ξΛ), un(ξΛ)) <∞.

Then u is E-a.c. and, in particular,

Pξ({ω : t %→ u(Mt)(ω) is continuous on [0,+∞)}) = 1, µΛ-a.e. ξ ∈ XΛ.

Next theorem provides the non-collision property of (MµΛ
, (θt)t≥0).

Theorem 5.3.5. Assume here that E = R
d, and d ≥ 2. Assume moreover that J is

continuous on Λ, and that the hypotheses of Theorem 5.3.2 hold. Then (MµΛ
, (θt)t≥0)

takes values on XΛ, i.e.

Pξ({ω : Mt(ω) ∈ XΛ ∀ 0 ≤ t <∞}) = 1, µΛ-a.e. ξ ∈ XΛ.

In other words, we have Cap(Ξ) = 0.
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Proof. Since the proof is similar to the proof of Proposition 1 in [73] we skip some details.
For every positive integer a, define u := 1N , where

N := {ξ ∈ XΛ : sup
x∈[−a,a]d

ξ({x}) ≥ 2}.

The claim follows if we prove that u is E-a.c.. For this we are going to apply Lemma 5.3.4.
Define

un(ξ) = Ψ

(

sup
i∈An

∑

x∈x

φi(x)

)

, n ≥ 1

where An := Z
d ∩ [−na, na]d and Ψ and φ are chosen as in the proof of Proposition 1

in [73]. Then un : SΛ → R is continuous and un → u point-wise. It remains to prove that
supn≥1 E(un(ξΛ), un(ξΛ)) < ∞. For i = (i1, . . . , id) ∈ Z

d, we denote by Ii the function
defined by

Ii(x) =
d
∏

k=1

1[−1/2,3/2](nxk − ik), x = (x1, . . . , xd) ∈ Λ.

The following upper bound holds:

E(un(ξΛ), un(ξΛ)) ≤ Cn2
∑

i∈An

E



1{∑
x∈ξΛ

Ii(x)≥2
}

∑

x∈ξΛ

Ii(x)



 , for some C > 0.

Since µ is stochastically dominated by a Poisson process πJ with intensity measure
J(x, x)λ(dx) and, for any i ∈ An, the mapping α &→ 1{

∑

x∈α Ii(x)≥2}
∑

x∈α Ii(x) is "in-

creasing", by (3.21) we have

E(un(ξΛ), un(ξΛ)) ≤ Cn2
∑

i∈An

EπJ



1{∑
y∈ξΛ

Ii(y)≥2
}

∑

y∈ξΛ

Ii(y)



 , (5.17)

where EπJ is the expectation under the Poisson point measure of intensity J(x, x)λ(dx).
By the properties of the Poisson process, the right hand side of (5.17) is equal to

C n2
∑

i∈An

(

1− e−
∫

Λ
Ii(x)J(x,x)λ(dx)

)

∫

Λ

Ii(x)J(x, x)λ(dx),

which is bounded above by

C n2
∑

i∈An

(∫

Λ

Ii(x)J(x, x)ρ(x) dx

)2

.

By using the Cauchy-Schwarz inequality, this term is further bounded by

C n2
∑

i∈An

(∫

Λ

Ii(x) dx

)(∫

Λ

Ii(x)J(x, x)
2ρ(x)2 dx

)

. (5.18)

We have on the one hand that
∫

Rd

Ii(x) dx = (2/n)d
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and on the other hand, since J and ρ are continuous on the compact set Λ,

∫

Λ

Ii(x)J(x, x)
2ρ(x)2 dx ≤

(

sup
x∈Λ

J(x, x)2ρ(x)2
)

(2/n)d

Moreover, |An| ≤ (2an)d. Consequently, the quantity (5.18) is in turn bounded by

Cd,a n
2−d, for some constant Cd,a > 0 which depends only on d and a.

The claim follows by the assumption d ≥ 2.

To conclude this subsection, we now give our main result. Here, Eξ again denotes the
expectation under Pξ, ξ ∈ XΛ.

Theorem 5.3.6. Let µKΛ,λΛ be a determinantal point process on a compact set Λ ⊆ E
satisfying the conditions of Theorem 5.3.2. Assume moreover that E = R

d, d ≥ 2. Then
there exists a µKΛ,λΛ-tight special standard process (MKΛ,λΛ , (θt)t≥0) (we write MΛ for
short) on XΛ with transition semigroup

ptf(ξ) := Eξ[f(M
Λ

t )], ξ ∈ XΛ, f : XΛ −→ R square integrable.

In addition, (MKΛ,λΛ , (θt)t≥0) is properly associated with the Dirichlet form (EΛ,Dom(EΛ))
in the sense that ptf is an EΛ-a.c., µKΛ,λΛ-version of exp(tHΛ)f for all square integrable
f : X −→ R and t > 0, and such that

Pξ({ω : t %→ MΛ

t (ω) is continuous on [0,+∞)}) = 1, EΛ-a.e., ξ ∈ XΛ, (5.19)

i.e. (MKΛ,λΛ , (θt)t≥0) is quasi-continuous.

Proof. The proof is essentially a corollary of Theorem 5.3.5 and Theorem B.5.1, since
closability, quasi-regularity and locality were proved previously in this subsection.

5.3.4 Examples of diffusions

5.3.4.1 Bergman kernel

Let Λ := B(0, R) ⊂ R
2 be the closed ball centered at the origin with radius R ∈ (0, 1), let

{ϕ
(R)
k }1≤k≤N , N ≥ 1, denote the orthonormal subset of L2(B(0, R), ℓ) defined by

ϕ
(R)
k (x) :=

1

R

√

k + 1

π

(

x(1)

R
+ i

x(2)

R

)k

, x = (x(1), x(2)) ∈ B(0, R),

where λ = ℓ is the Lebesgue measure on R
2 and i :=

√
−1 denotes the complex unit.

We consider the modified Bergman operator KBe : B(0, R)2 → C with associated kernel
defined by

KBe(x, y) :=
N
∑

k=1

R2(k+1)ϕ
(R)
k (x)ϕ

(R)
k (y), x, y ∈ B(0, R), N ∈ N

∗

and denote by KBe the associated integral operator, which is easily seen to be Hermitian
and locally of trace class with non-zero eigenvalues κk := R2(k+1), k = 1, . . . , N . As
a consequence, the spectrum of KBe is contained in [0, 1) and the triplet (KBe,KBe, ℓ)
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satisfies assumption (H1). In addition, Condition (H3) is trivially satisfied since λ = ℓ is
the Lebesgue measure. We note that KBe is in fact a restriction operator:

KBe = PB(0,R)K
′
BePB(0,R),

where K′
Be has kernel

K ′
Be(x, y) :=

N
∑

k=1

ϕ
(1)
k (x)ϕ

(1)
k (y), x, y ∈ B(0, 1), N ∈ N

∗.

Denoting by µ the determinantal process associated to the triplet (K′
Be,K

′
Be, ℓ), the Janossy

densities of µ on Λ = B(0, R) defined in (3.2) are given by

j
(k)
Λ

(x1, . . . , xk) = Det(I−KBe) det J [Λ](x1, . . . , xk), k = 1, . . . , N, (x1, . . . , xk) ∈ Λ
k,

where the kernel J [Λ] of J [Λ] is given by

J [Λ](x, y) :=
N
∑

h=1

R2(h+1)

1−R2(h+1)
ϕ
(R)
h (x)ϕ

(R)
h (y),

cf. (3.10). Moreover, ξΛ has at most N points according to Proposition 3.3.3, which means
that jk

Λ
= 0, for k ≥ N+1. To prove condition (H4) it suffices to remark that the function

(x1, . . . , xk)→ det(J [Λ](xp, xq))1≤p,q≤k

is continuously differentiable on Λk, for k ≤ N . To show that Condition (5.13) is verified,
we first consider the case of jN

Λ
. To that end, note that

J [Λ](x1, . . . , xN ) = AN (x1, . . . , xN )A
N (x1, . . . , xN )

∗,

where the matrix AN := (AN
ph)1≤p,h≤N is given by

AN
ph :=

Rh+1

√

1−R2(h+1)
ϕ
(R)
h (xp)

and AN (x1, . . . , xN )
∗ denotes the transpose conjugate of AN (x1, . . . , xN ). Hence,

det J [Λ](x1, . . . , xN ) = |detA
N (x1, . . . , xN )|

2,

and since the previous determinant is a Vandermonde determinant, we have

detAN =

N
∏

p=1

√

1 + p

π(1−R2(p+1))





N
∏

p=1

(x(1)p + ix(2)p )





∏

1≤p<q≤N

((x(1)p − x(1)q ) + i(x(2)p − x(2)q )).

(5.20)

Finally, in order to show that Condition (5.13) is satisfied it suffices to check that

∫

B(0,R)N

∣

∣

∣

∣

∣

∣

∂
x
(p)
i

|detAN (x1, . . . , xN )|
2∂

x
(q)
j

|detAN (x1, . . . , xN )|
2

|detAN (x1, . . . , xN )|2

∣

∣

∣

∣

∣

∣

dx1 . . . dxN <∞,
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for all 1 ≤ i, j ≤ N and 1 ≤ p, q ≤ 2, or simply

∫

B(0,R)N

∣

∣

∣

∣

∣

∣

∂
x
(1)
1

|detAN (x1, . . . , xN )|
2

|detAN (x1, . . . , xN )|2

∣

∣

∣

∣

∣

∣

dx1 . . . dxN <∞. (5.21)

Now, in order to evaluate the previous quantity, we continue the calculations initiated in
(5.20), and obtain

ln |detAN |2 = lnCN+
N
∑

p=1

ln
(

(x(1)p )2+(x(2)p )2
)

+
∑

1≤p<q≤N

ln
(

(x(1)p −x(1)q )2+(x(2)p −x(2)q )2
)

,

where CN :=
∏N

p=1

√

1+p
π(1−R2(p+1))

. Hence, the left-hand side of (5.21) reduces to

∫

B(0,R)N

∣

∣

∣

∣

∣

∣

2x
(1)
1

(x
(1)
1 )2 + (x

(2)
1 )2

+ 2
N
∑

j=2

x
(1)
1 − x

(1)
j

(x
(1)
1 − x

(1)
j )2 + (x

(2)
1 − x

(2)
j )2

∣

∣

∣

∣

∣

∣

dx1 . . . dxN ,

which is indeed finite. This proves that Condition (5.13) is verified for k ≥ N , since it is
trivially satisfied for k > N . Now, if we take k < N , we have again

J [Λ](x1, . . . , xk) = AN (x1, . . . , xk)A
N (x1, . . . , xk)

∗,

where this time, AN (x1, . . . , xk) is a rectangular k × N matrix. Hence, by application of
the Cauchy-Binet formula:

det J [Λ](x1, . . . , xk) =
∑

1≤i1<i2<···<ik≤N

|detAi1,...,ik(x1, . . . , xk)|
2,

where we have for 1 ≤ p, h ≤ k,

Ai1,...,ik
ph :=

Rih+1

√

1−R2(ih+1)
ϕ
(R)
ih

(xp),

which is a square matrix. We now consider fixed 1 ≤ i1 < i2 < · · · < ik ≤ N and wish to
evaluate |detAi1,...,ik(x1, . . . , xk)|

2. In fact, we observe that

|detAi1,...,ik(x1, . . . , xk)|
2 =

k
∏

p=1

1 + ip

π(1−R2(ip+1))
|Vi1,...,ik(x1, . . . , xk)|

2 ,

where

Vi1,...,ik(x1, . . . , xk) := det

(

(

x
ip
h

)

1≤p,h≤k

)

is known in the literature as the generalized Vandermonde determinant. Here,
V1,...,k(x1, . . . , xk) is the classical Vandermonde determinant, and in the general case, we
have deleted a certain number of rows from the matrix. The generalized Vandermonde
determinant is known to factorize into the classical Vandermonde determinant and what
is defined to be a Schur polynomial. To be more precise,

Vi1,...,ik(x1, . . . , xk) = V1,...,k(x1, . . . , xk)sλ(i1,...,ik)(x1, . . . , xk),
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where λ(i1, . . . , ik) := (ik − k + 1, . . . , i2 − 1, i1), and sλ is the Schur polynomial, which is
known to be symmetric, and is a sum of monomials, see e.g. [33]. To summarize, we have

det J [Λ](x1, . . . , xk) = |V1,...,k(x1, . . . , xk)|
2

∑

1≤i1<i2<···<ik≤N





k
∏

p=1

1 + ip

π(1−R2(ip+1))



 |sλ(i1,...,ik)(x1, . . . , xk)|
2. (5.22)

The previous function of x1, . . . , xk is of class C1, therefore condition (H4) is verified for
k < N . Condition (5.13) is verified thanks to the form that sλ takes, and in particular the
fact that |sλ(x1, . . . , xk)|

2 = 0 if and only if x1 = · · · = xk = 0.

We now study the associated diffusion in a simple visual case. Assume that we have N = 2,
i.e.

KBe(x, y) =
2

π
(xȳ) +

3

π
(xȳ)2,

for x, y ∈ B(0, R). Then, the associated determinantal point process has less than 2 points
a.s. and:

∇x1U({x1, x2}) = −2
[

x1
|x1|2

+
x1 − x2
|x1 − x2|2

]

,

for x1, x2 ∈ R
2. Therefore, the diffusion associated with the previous determinantal process

starting from (x1, x2) ∈ C
2 is a (weak) solution of the following pair of S.D.E. on C:























dX
(1)
t =

√
2 dB1

t + 2

[

X
(1)
t

|X
(1)
t |2

+
X

(1)
t −X

(2)
t

|X
(1)
t −X

(2)
t |2

]

dt,

dX
(2)
t =

√
2 dB2

t + 2

[

X
(2)
t

|X
(2)
t |2

+
X

(2)
t −X

(1)
t

|X
(2)
t −X

(1)
t |2

]

dt,

X
(1)
0 = x1, X

(2)
0 = x2,

where B1 and B2 are two independent complex brownian motions. Moreover, since
sλ(i)(x) = xi, for i ∈ N and x ∈ C, we have by (5.22)

U({x}) = −ln
(

2

π(1−R4)
|x|2 +

3

π(1−R6)
|x|4
)

.

Therefore, if we set C1 := 2
π(1−R4)

and C2 := 3
π(1−R6)

, then the diffusion starting from

x1 ∈ C is a solution of the following S.D.E.:
{

dXt =
√
2 dBt +

2C1Xt+4C2(Xt)3

C1|Xt|2+C2|Xt|4
dt,

X0 = x1,

where B is a complex brownian motion.

Sine kernel on the circle

Fix N ∈ N
∗ and let Λ := [−N

2 ,
N
2 ] ⊂ R. Let {ϕ

(N)
k }0≤k≤N−1, denote the orthonormal

subset of L2([−N
2 ,

N
2 ], ℓ) defined by

ϕ
(N)
k (θ) := 1[−N

2
,N
2
](θ)

1√
N
e2iπkθ/N ,
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where i :=
√
−1 denotes the complex unit. We consider the Dyson model on the circle

KNDy : [−N
2 ,

N
2 ]

2 → C with associated kernel defined by

KN
Dy(θ1, θ2) :=

N−1
∑

k=0

ϕ
(N)
k (θ1)ϕ

(N)
k (θ2), θ1, θ2 ∈ [−N

2
,
N

2
],

i.e. KN
Dy is a projection kernel onto the subspace generated by the family {ϕ

(N)
k }0≤k≤N−1.

Then, by standard calculations, one can rewrite the previous kernel as

KN
Dy(θ1, θ2) = 1[−N

2
,N
2
](θ1)

sin(π(θ1 − θ2))

N sin(π(θ1−θ2)
N )

1[−N
2
,N
2
](θ2), θ1, θ2 ∈ [−N

2
,
N

2
],

and we observe that

KN
Dy(θ1, θ2) −−−−→

N→∞
sinc (π(θ1 − θ2)) ,

uniformly on compact subsets, and where we have written sinc := x "→ sin(x)
x . Therefore by

Proposition 3.10 in [77], there is also weak convergence of the determinantal point process
with kernel KN

Dy to the one with the sine kernel.

Again, when evaluating the determinant of the matrix
(

KN
Dy(θi, θj)

)

1≤i,j≤N
, for θ1, . . . , θN ∈

[−N
2 ,

N
2 ], we notice that it is nothing but a Vandermonde determinant, which can be ex-

plicitly calculated:

det (KDy(θi, θj))1≤i,j≤N =
1

NN

∏

1≤i<j≤N

|e2iπθj/N − e2iπθi/N |2

=
2N(N−1)

NN

∏

1≤i<j≤N

sin(π
θj − θi

N
)2. (5.23)

Now, even though the operator J is not properly defined, the Janossy density is still
well-defined, as was proved in [77]. More precisely, if α = {θ1, . . . , θN},

j
(N)

[−N
2
,N
2
]
(α) = det (KDy(θi, θj))1≤i,j≤N ,

and if |α| #= N , then j[−N
2
,N
2
](α) = 0. As before, condition (H4) is satisfied as the previous

function is continuously differentiable on [−N
2 ,

N
2 ]. Moreover, thanks to (5.23), we obtain

∣∣∣∣∣∣

∂θij
(N)

[−N
2
,N
2
]
(θ1, . . . , θn)∂θj j

(N)

[−N
2
,N
2
]
(θ1, . . . , θn)

j
(N)

[−N
2
,N
2
]
(θ1, . . . , θn)

∣∣∣∣∣∣

= C
∏

k<k′

sin

(

π
θk − θk′

N

)2
∣∣∣∣∣∣

∑

k #=i,k′ #=j

cotan

(
π
θi − θk

N

)
cotan

(
π
θj − θk′

N

)∣∣∣∣∣∣
,

for i, j = 1, . . . , N , and θ1, . . . , θN ∈ [−N
2 ,

N
2 ]. The previous equation being continuous in

θ1, . . . , θN , it is integrable on a compact, and therefore Condition (5.13) is verified.
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Therefore, the diffusion associated with the previous determinantal process starting from
(θ1, . . . , θN ) ∈ [−N

2 ,
N
2 ]
N is a (weak) solution of the following system of S.D.E. on R:



























dθ
(1)
t =

√
2 dB1

t +
∑

1≤j≤N j  =i
2π
N cot(

π(θ
(j)
t −θ

(1)
t )

N ) dt,
...

dθ
(N)
t =

√
2 dBN

t +
∑

1≤j≤N j  =i
2π
N cot(

π(θ
(j)
t −θ

(N)
t )

N ) dt,

θ
(1)
0 = θ1, . . . , θ

(N)
0 = θN ,

(5.24)

where B1, . . . , BN are N independent brownian motions on R. It can be noted that the
S.D.E. (5.24) was solved in the strong sense in [15].

5.3.5 Generalization of the integration by parts formula to the whole

space

In this subsection, we generalize Theorem 5.3.2 to the whole space. We begin by
introducing an increasing series of compact sets (Λn)n∈N, such that ∪n∈NΛ

n = E. For such
(Λn)n∈N, we denote by

En(F,G) := EΛn(F,G),

for F,G ∈ FC∞
b (C∞(Λn),XΛn) := Dom(En). We recall that in Subsection 5.3.3, we showed

that (En,Dom(En)) is a closable quasi-regular local Dirichlet form, which is associated with
Hn := HΛn . Then, we obtain

Theorem 5.3.7 (Dirichlet form on E). Let µK,λ be a determinantal point process satisfying
the hypotheses of Theorem 5.3.2. Assume moreover that the operator J associated with
the determinantal point process is continuous. Define (E ,Dom(E)) as in (5.6). Then,
(E ,Dom(E)) is a closable, quasi-regular, and local Dirichlet form.

Proof. We begin by remarking that (E ,Dom(E)) is a densely defined (since it contains at
least FC∞

b (C∞(E),X )) positive definite symmetric bilinear form. It is well-defined by
Proposition 5.2.2, since µK,λ has finite moments.
We remark that (En,Dom(En)) are increasing in the sense of (5.4). Therefore, by applying
Lemma 5.1.2, we obtain that E is closable as it is the increasing limit of (En,Dom(En)).
Its domain is defined in Lemma 5.1.2 as Dom(E) := D∞ := {f ∈ ∩n∈NDom(En) :
supn En(f, f) <∞}. In the following, we write (E ,D∞) for its closure.
The Dirichlet property follows by using the arguments in [20]. It is in fact an intrin-
sic property of the gradient ∇ on cylindrical functions of FC∞

b (C∞(E),X ). Lastly, in
order to verify that (E ,Dom(E)) is quasi-regular and local, it suffices to apply Theo-
rem 5.1.7. Indeed, we have already proved (A1) and (A2) follows since by the results
of [28], jir(x1, . . . , xi) ≤ J(x1, x1) . . . J(xi, xi) for λ-a.e. x1, . . . , xi ∈ XB(0,r). We conclude
that jir(x1, . . . , xi) ∈ L∞(X i

r , dλ) by continuity of J . The last part of (A2) follows directly
by the fact that K is locally trace-class. Hence, (E ,Dom(E)) is a closable quasi-regular
local Dirichlet form.

As a corollary, we obtain

Corollary 5.3.1. Assume that the hypotheses of Theorem 5.3.7 hold. Then, there exists
a nonpositive definite self-adjoint operator, denoted by −H such that

E[(−HF )G] = E[

∫

〈∇xF (ξ),∇xG(ξ)〉E ξ(dx)], (5.25)
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for F,G ∈ Dom(E).

Proof. This is a direct consequence of Theorem 5.3.7 and Theorem 5.1.1

Remark 12. When we take a function F in FC∞b (C∞(E),X ), we remark that (5.25) is
an equivalent formulation of Theorem 5.3.2 for µ.

And lastly, there exists a quasi-continuous diffusion correctly associated with the determi-
nantal point process on X .

Theorem 5.3.8. Let µK,λ be a determinantal point process satisfying the conditions of
Theorem 5.3.2. We assume moreover that d ≥ 2 and ρ(·)J(·, ·) ∈ L2

loc. Then there exists a
µK,λ-tight special standard process (MK,λ, (θt)t≥0) on X with transition semigroup

ptf(ξ) := Eξ[f(Mt)], ξ ∈ X , f : X −→ R square integrable.

In addition, (MK,λ, (θt)t≥0) is properly associated with the Dirichlet form (E ,Dom(E)) in
the sense that ptf is an E-a.c., µK,λ-version of exp(tH)f for all square integrable f : X −→
R and t > 0, and such that

Pξ({ω : t #→ Mt(ω) is continuous on [0,+∞)}) = 1, E-a.e., ξ ∈ X , (5.26)

i.e. (MK,λ, (θt)t≥0) is quasi-continuous. Moreover, such M is up to µK,λ-equivalence
unique (in the sense of [49]) and hence µK,λ is reversible with respect to (MK,λ, (θt)t≥0).

Proof. The first part is a consequence of Theorem 5.3.7. A finer study of the proof of The-
orem 5.3.5 shows moreover that the associated diffusion (MK,λ, (θt)t≥0) has no collisions
by adding the hypothesis d ≥ 2 and ρ(·)J(·, ·) ∈ L2

loc. Lastly, reversibility of µK,λ follows
from Theorem 6.4 page 141 in [49].

5.4 General point process

The ideas developed in this section are inspired from the work of [46]. Here, we go
one step further than what is done there, and give sufficient conditions for the existence of
an integration by parts formula for a general point processes satisfying Hypothesis 4 (Σλ)
(i.e. Cµ ≪ λ⊗µ). These conditions are in particular satisfied for all known integration by
parts formulae, which leads us to believe that it is indeed a relevant condition.

Assuming that an integration by parts formula of the type (5.10) holds on E, we exhibit
conditions ensuring an integration by parts on X in the following theorem:

Theorem 5.4.1. Assume that a given point process µ satisfies Hypothesis 4. Assume that√
ρ ∈ H1,2

loc (this is a weaker version of Hypothesis 8). Assume moreover that its Papangelou

intensity c satisfies, for µ-almost all ξ ∈ X ,
√

c(·, ξ) ∈ H1,2
loc . Here, H1,2

loc denotes the local
Sobolev space of order 1 on (E,λ), i.e. the space

{u : E → R : ∀A ⊆ E,

∫

A
u(x)2 λ(dx) <∞ and

∫

A
‖∇xu(x)‖2 λ(dx) <∞}. (5.27)

Then µ satisfies an integration by parts formula for all F,G ∈ FC∞b (C∞(E),X ), for all
v ∈ V0(E),

∫

F∇vG dµ = −

∫

G∇vF dµ−

∫

GFBc
v dµ,



104 5. Stochastic analysis on the configuration space

where

Bc
v : ξ �→

∫

(〈
∇Ec

c
(x, ξ \x), v(x)〉E + 〈∇

Eρ

ρ
(x), v(x)〉E + div v(x)) ξ(dx).

Proof. Let us recall that for φ,ψ ∈ C∞0 (E), for a measure λ on (E,B) with density dλ =
ρ dℓ satisfying

√
ρ ∈ H1,2

loc , as seen in (5.10), the following integration by parts holds

∫

φ∇E
v ψ dλ = −

∫

ψ∇E
v φ dλ−

∫

φψβλ
v dλ,

for compactly supported vector fields v ∈ V0(E), and where

βλ
v : x �→ 〈∇

Eρ

ρ
(x), v(x)〉E + div v(x).

Here, div is the divergence with respect to the Lebesgue measure ℓ on E. For details on
this as well as why we choose

√
ρ ∈ H1,2

loc , see [7]. Then, for F,G ∈ FC∞b (C∞(E),X ),

∫

F∇vG dµ =

∫ ∫

F (ξ)〈∇xG(ξ), v(x)〉E ξ(dx)µ(dξ)

=

∫ ∫

F (ξ)〈∇EDxG(ξ \x), v(x)〉E ξ(dx)µ(dξ)

=

∫ ∫

F (ξ ∪ x)〈∇EDxG(ξ), v(x)〉E c(x, ξ) ρ(x) ℓ(dx)µ(dξ)

= −
∫ ∫

G(ξ ∪ x)〈∇EDxF (ξ), v(x)〉E ℓ(dx)µ(dξ)

−
∫ ∫

F (ξ ∪ x)G(ξ ∪ x)βcv(x, ξ) ℓ(dx)µ(dξ),

where we have used the relation between ∇E and ∇x which traces back to [65] to the
best of our knowledge. Here, βcv is the logarithmic derivative associated with the measure
c(x, ξ)ρ(x)ℓ(dx). More precisely,

βcv : (x, ξ) �→ 〈∇
Ec

c
(x, ξ), v(x)〉E + 〈∇

Eρ

ρ
(x), v(x)〉E + div v(x),

which leads to the integration by parts on X :
∫

F∇vG dµ = −
∫

G∇vF dµ−
∫

F (ξ)G(ξ)

∫

βcv(x, ξ \x) ξ(dx)µ(dξ).

Example 1. The Poisson measure corresponds to c(x, ξ) = z(x), x ∈ E, ξ ∈ X .

Example 2. Let us consider the integration by parts formula for the determinantal process
on compact sets. Thus, consider µΛ with Papangelou intensity cΛ(x, ξ) :=

det J [Λ](ξ∪x)
det J [Λ](ξ) , as

seen in (3.18). Then, under the assumptions of [14],

∇EcΛ
cΛ

(x, ξ \x) = −∇EDxU [Λ](ξ \x) = −∇xU [Λ](ξ), (5.28)

and hence, if the integration by parts holds, it is necessarily the same as the one in [14,20].
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In the next theorem, we prove that the integrability condition holds, and therefore the
integration by parts formula for determinantal point processes is obtained as a corollary
of Theorem 5.4.1.

Theorem 5.4.2. Let Λ be a compact set of E := R
d. Consider the measure µΛ and

its associated Papangelou intensity cΛ(x, ξ) = det J [Λ](ξ∪x)
det J [Λ](ξ) (obtained in (3.18)). Assume

that J [Λ] is once differentiable with continuous gradient. Assume moreover that (5.13) is
satisfied. Then, for µ-almost all ξ ∈ X ,

√

cΛ(·, ξ) ∈ H
1,2
loc .

Proof. Consider a compact set A ⊆ E, then

E[

∫

A
|cΛ(x, ξ)| dx] ≤ E[

∫

A
J [Λ](x, x) dx] <∞,

by (3.19) and since the operator J [Λ] is trace-class. To verify the second condition of
(5.27), we remark that by (5.13), we have that

E[

∫

A
‖∇xU [Λ](ξ)‖2 ξ(dx)] <∞.

Then, by (5.28), we have

E[

∫

A
‖∇xU [Λ](ξ)‖2 ξ(dx)] = E[

∫

A
‖∇E

x ln cΛ(x, ξ \x)‖
2 ξ(dx)]

=

∫

A×X
‖∇E

x ln cΛ(x, ξ)‖
2CµΛ

(dx, dξ),

where CµΛ
is the Campbell measure of µΛ defined in (3.12). Now, remark that by the same

arguments as those of Lemma 5.3.3, we have

CµΛ
({cΛ(x, ξ) = 0}) =

∫

Λ×X
1{cΛ(x,ξ)=0}cΛ(x, ξ)λ(dx)µ(dξ) = 0,

since cΛ is the density of CµΛ
with respect to λ⊗ µΛ. Hence,

E[

∫

A
‖∇xU [Λ](ξ)‖2 ξ(dx)] =

∫

A×X
‖∇E

x ln cΛ(x, ξ)‖
21{cΛ(x,ξ)>0}CµΛ

(dx, dξ)

=

∫

A×X
‖∇E

x ln cΛ(x, ξ)‖
21{cΛ(x,ξ)>0}CµΛ

(dx, dξ)

=

∫

A×X
‖∇E

x ln cΛ(x, ξ)‖
21{cΛ(x,ξ)>0}cΛ(x, ξ)λ(dx)µ(dξ)

=

∫

A×X

1

cΛ(x, ξ)
‖∇E

x cΛ(x, ξ)‖
21{cΛ(x,ξ)>0} λ(dx)µ(dξ)

=

∫

A×X
4‖∇E

x

√

cΛ(x, ξ)‖
21{cΛ(x,ξ)>0} λ(dx)µ(dξ),

and we conclude by noticing that a finer study of the integration by parts on E shows that
it suffices to show that

√

cΛ(·, ξ)1{cΛ(·,ξ)>0} ∈ H
1,2
loc .

The previous approach presents the advantage of relying only on properties of the Papan-
gelou intensity in order to obtain an integration by parts formula. Hence, we are able to
fully incorporate the deeper results of [28] which were recalled in Theorem 3.4.3. More
specifically, we obtain this generalized version of Theorem 5.3.2:
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Theorem 5.4.3. Consider the measure µK,λ which verifies Hypothesis 3 and its associated
Papangelou intensity defined for almost all (x, ξ) ∈ E × X by c(x, ξ) = limn cΛn(x, ξΛn).
Assume that Hypothesis 5 holds and that (5.13) is satisfied for the operator J instead of
J [Λ] . Then, for almost all ξ ∈ X ,

√

c(·, ξ) ∈ H1,2
loc . In that case, the following integration

by parts holds, for all F,G ∈ FC∞b (C∞(E),X ), for all v ∈ V (E),

∫

F∇vG dµ = −

∫

G∇vF dµ−

∫

FG (∇vU(ξ) + 〈divλv, ξ〉) µ(dξ), (5.29)

where we have defined the operator U(ξ) := − ln det J(ξ), for ξ ∈ X .

Proof. Here, we know from equation (3.9) in [28] that c(x, ξ) = limn
det J(x∪ξΛn )
det J(ξΛn ) , for any

sequence of compact sets (Λn)n∈N increasing to E. Moreover, given the previous con-
ditions, the previous sequence is stationary λ ⊗ µ-everywhere. More precisely, if we note

W (x, ξ) the union of clusters hitting x, we have c(x, ξ) =
det J(x∪ξW (x,ξ))

det J(ξW (x,ξ))
1diamW (x,ξ)<∞, and

µ(diamW (x, ξ) < ∞) = 1 by Hypothesis 5. Then, we proceed as previously, and consider
a compact set A ⊆ E, and obtain

E[

∫

A
|c(x, ξ)| dx] ≤ E[

∫

A
J(x, x) dx] < ∞,

by (3.19) and since the operator J is locally trace-class. To verify the second condition of
(5.27), we remark that by (5.13), we have that

E[

∫

A
‖∇xU(ξ)‖2 ξ(dx)] <∞.

Then, by (5.28), we have

E[

∫

A
‖∇xU(ξ)‖2 ξ(dx)] = E[

∫

A
‖∇E

x ln c(x, ξ \x)‖2 ξ(dx)]

=

∫

A×X
‖∇E

x ln c(x, ξ)‖2Cµ(dx, dξ),

where Cµ is the Campbell measure of µ defined in (3.12). Now, as before,

Cµ({c(x, ξ) = 0}) = 0.

Hence, the calculations are precisely the same as those of the previous theorem:

E[

∫

A
‖∇xU(ξ)‖2 ξ(dx)] =

∫

A×X
4‖∇E

x

√

c(x, ξ)‖21{c(x,ξ)>0} λ(dx)µ(dξ),

and we conclude that
√

c(·, ξ) ∈ H1,2
loc . Hence, by applying Theorem 5.4.1, we obtain

(5.29).

We remark that once we obtain Theorem 5.4.3, we can also generalize the domain of F,G
to the extended domain of ∇. It is also possible to show closability of the associated
Dirichlet operator, and the existence of diffusions.

More specifically, we prove the previous consideration in a general setting satisfied in
particular in Theorem 5.4.3. The main additional hypothesis is the following:
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Hypothesis 10. We assume that µ satisfies Hypothesis 4 (Σλ). Moreover, its Papangelou
intensity c is differentiable in its first variable and satisfies for all compact sets A ⊆ E,

∫

A×X
(1 + ξ(A))‖∇E ln c(x, ξ)‖2Cµ(dx, dξ) < ∞.

We remark that Hypothesis 10 is stronger than
√

c(·, ξ) ∈ H1,2
loc for µ-a.e. ξ ∈ X . Indeed,

it implies that
∫

A×X ‖∇E
x ln c(x, ξ)‖2Cµ(dx, dξ) < ∞ and moreover,

∫

A×X
‖∇E

x ln c(x, ξ)‖2Cµ(dx, dξ) =

∫

A×X
‖∇E

x ln c(x, ξ)‖2Cµ(dx, dξ)

=

∫

A×X
‖∇E

x ln c(x, ξ)‖2c(x, ξ)λ(dx)µ(dξ)

=

∫

A×X

1

c(x, ξ)
‖∇E

x c(x, ξ)‖
2 λ(dx)µ(dξ)

=

∫

A×X
4‖∇E

x

√

c(x, ξ)‖2 λ(dx)µ(dξ),

which implies that ∇E
√

c(·, ξ) ∈ L2
loc(E,λ) for µ-a.e. ξ ∈ X . Moreover, the first part of

(5.27) always holds, since for a compact set A ⊆ E, we have by (3.16):

E[

∫

A
c(x, ξ)λ(dx)] =

∫

A
ρ(x)λ(dx) = E[ξ(A)] <∞.

Then, under Hypothesis 10, by a straightforward application of Theorem 5.4.1, µ satisfies
an integration by parts formula for all F,G ∈ FC∞b (C∞(E),X ), for all v ∈ V0(E),

∫

F∇vG dµ = −

∫

G∇vF dµ−

∫

FGBc
v dµ,

where

Bc
v : ξ $→

∫

(〈
∇Ec

c
(x, ξ \x), v(x)〉E + div v(x)) ξ(dx).

Therefore, we are now able to proceed exactly as in [20] and as we did in this manuscript
in Section 5.3. In order to conserve similar notations, we can simply set

divµvF (ξ) := −∇vF (ξ)− F (ξ)Bc
v(ξ), ∀ξ ∈ X ,

and obtain the following analogue of Theorem 5.3.2.

Theorem 5.4.4. Assume that E := R
d and that the hypotheses of Theorem 5.4.1 hold, as

well as Hypothesis 10. Then

(i) the linear operators ∇v and divµv are well-defined and closable for any vector field
v ∈ V0(E). In particular, we have

∇v(FC
∞
b (C∞(E),X )) ⊂ L2(X , µ) and divµv (FC

∞
b (C∞(E),X )) ⊂ L2(X , µ),

(ii) for any vector field v ∈ V0(E), we have

E
[

G∇vF
]

= E

[

FdivµvG
]

for all F ∈ Dom
(

∇v

)

, G ∈ Dom
(

divµv

)

in the domains of the minimal closed

extensions of ∇v and divµv . Here, (∇v,Dom(∇v)) and (divµv ,Dom(divµv )) are the
closed extensions of the respective closable operators ∇v and divµv in the sense of
(5.1).
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Proof. (i) The operator ∇v is not dependent on the underlying measure µ. Hence, ∇v

is still well-defined and closable. We now wish to prove that divµv is well-defined
(closability follows in exactly the same way as in [20]). Recall that

divµvF (ξ) := −∇vF (ξ)− F (ξ)

∫

(〈∇
Ec

c
(x, ξ \x), v(x)〉E + div v(x)) ξ(dx),

for ξ ∈ X . Since for F ∈ FC∞b (C∞(E),X ), ∇vF (ξ) ∈ L2(X , µ), and since v is
compactly supported, it remains to prove that

∫

〈∇
Ec

c
(x, ξ \x), v(x)〉E ξ(dx) ∈ L2(X , µ).

This follows easily from Hypothesis 10:

E[(

∫

〈∇
Ec

c
(x, ξ \x), v(x)〉E ξ(dx))2]

≤ E[ξ(A)

∫

〈∇
Ec

c
(x, ξ \x), v(x)〉2E ξ(dx)]

=

∫

A×X
(1 + ξ(A))〈∇

Ec

c
(x, ξ), v(x)〉2ECµ(dx, dξ)

≤ sup
x∈A

‖v(x)‖2
∫

A×X
(1 + ξ(A))‖∇

Ec

c
(x, ξ)‖2Cµ(dx, dξ)

<∞,

where A is the support of v.

(ii) The proof of (ii) does not depend on specific properties of divµv , therefore the proof
is as in [20].

As before, we define for F,G ∈ FC∞b (C∞(E),X ), the following positive definite symmetric
form

E(F,G) =
1

2

∫

X

∫

〈∇xF,∇xG〉 ξ(dx)µ(dξ), (5.30)

with domain FC∞b (C∞(E),X ) ⊂ L2(X , µ). We note in particular that E is well-defined

since
√
c(·, ξ) ∈ H1,2

loc implies in particular that µ has finite moments, and therefore Propo-
sition 5.2.2 can be applied. We now study the generator H associated with the Dirichlet
form E .

Proposition 5.4.1. Denote by H the generator associated to (E ,FC∞b (C∞(Λ),XΛ)) in
the sense of Theorem 5.1.1. Then, for F ∈ FC∞b (C∞(E),X ), and ξ ∈ X ,

HF (ξ) = −divµ∇F (ξ) = −∆F (ξ)− 〈divµ∇F (ξ), ξ〉 −
∫

〈∇E ln c(x, ξ \x),∇F 〉E ξ(dx).
(5.31)

Moreover, H is well-defined in such a way as an operator from L2(X , µ) into itself, i.e.

H(FC∞b (C∞(E),X )) ⊂ L2(X , µ). (5.32)
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Proof. Let F be a function in FC∞b (C∞(Λ),XΛ). We recall that

∇F (ξ) =

N
∑

i=1

∂if(

∫

h1 dξ, . . . ,

∫

hN dξ)

∫

∇Ehi(x) dξ(x).

On the other hand, we can evaluate

divµ∇F (ξ) =

N
∑

i=1

∇∇hi∂if(

∫

h1 dξ, . . . ,

∫

hN dξ) +
N
∑

i=1

∂if(

∫

h1 dξ, . . . ,

∫

hN dξ)Bc
∇hi

=
N
∑

i=1

N
∑

j=1

∂i∂jf(

∫

h1 dξ, . . . ,

∫

hN dξ)

∫

〈∇E
x hi,∇

E
x hj〉E ξ(dx)

N
∑

i=1

∂if(

∫

h1 dξ, . . . ,

∫

hN dξ)

∫

divµ∇Ehi(x) ξ(dx)

+

N
∑

i=1

∂if(

∫

h1 dξ, . . . ,

∫

hN dξ)

∫

〈∇E ln c(x, ξ \x),∇Ehi(x)〉E ξ(dx).

and the identification is complete, once we apply Theorem 5.4.3. Moreover, H is well-
defined as an operator on L2(X , µ) by Hypothesis 10, as was shown in the proof of Theo-
rem 5.4.4.

Now, having constructed the generator H correctly associated to E , Theorem 5.1.1
allows us to conclude to the closability of E . Specifically, we obtain in the same fashion
as [2, 3]:

Theorem 5.4.5. One can define H which is correctly associated with the pre-Dirichlet
form E. As such, the form (E ,FC∞b (C∞(Λ),XΛ)) is closable in L2(X , µ). Its closure is
associated with a positive definite self-adjoint operator (Friedrichs extension of H) which
is still noted H. It is defined on the extended domain Dom(E).

Proof. This is a consequence of Theorem 5.1.1.

Lastly, we also obtain the existence of a quasi-continuous diffusion correctly associated
with E , as is given by the following theorem:

Theorem 5.4.6. Let µ be a point process satisfying the conditions of Theorem 5.4.4.Then
there exists a µ-tight special standard process (Mµ, (θt)t≥0) on N with transition semigroup

ptf(ξ) := Eξ[f(Mt)], ξ ∈ N , f : N −→ R square integrable.

In addition, (Mµ, (θt)t≥0) is properly associated with the Dirichlet form (E ,Dom(E)) in the
sense that ptf is an E-a.c., µ-version of exp(tH)f for all square integrable f : N −→ R

and t > 0, and such that

Pξ({ω : t "→Mt(ω) is continuous on [0,+∞)}) = 1, E-a.e., ξ ∈ N , (5.33)

i.e. (Mµ, (θt)t≥0) is quasi-continuous.
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Remark 13. In order to ensure that (Mµ, (θt)t≥0) takes its values in X rather than N ,
we have to add the additional hypothesis:

c(x, η) ≤ c(x, ξ), ∀x ∈ E, ∀ξ ⊆ η

i.e. the point process has a repulsive nature. In that case, Theorem 5.3.5 still holds, as
seen by a careful study of its proof.

Proof. One can apply Theorem 3.4 in [72] (see also the considerations in Section 4 therein)
to obtain quasi-regularity of E . Moreover, the proof of locality follows by the same argu-
ments raised in [72]. Therefore, the proof is a direct corollary of the closability of E .

5.5 Summary

In this chapter, we defined the gradient on the configuration space known as the dif-
ferential gradient. This gradient was extensively studied in [2, 3] and subsequent papers.
We chose as test functions the set of cylindrical functions in order to stay in line with
the aforementioned references. The study which was confined to the case of Poisson and
Gibbs point processes in [2, 3] is generalized in this chapter to a fully general case, which
also includes the determinantal point process which is of specific interest in our manuscript.

The tools developed in this chapter allow us to exhibit the adjoint of the differential gra-
dient ∇ in L2(X , µ) with respect to a point process µ satisfying only Hypothesis 4. The
adjoint generates a diffusion which is shown to be quasi-continuous under an additional
hypothesis. These results generalize all known results, and in particular applied to deter-
minantal point processes which was our case at hand. The diffusions obtained in that case
were of specific interest since they are known to appear in physics, see e.g. [59, 60].

We strongly suspect the specified integration by parts to hold if and only if the underlying
measure in the one with Papangelou intensity c. Unicity of such measure verifying the
integration by parts would yield ergodicity of the associated diffusions. Further work in
this direction should yield log-Sobolev inequalities in a general setting which is also of
further interest.



111

Chapter 6

Moment formulae

In Section 6.1, we give the main result of the paper, as well as the most interesting
consequences. In Section 6.2, we show analogue formulae for E[δ(u)n], where δ is the
divergence, which will be rigorously defined in the case of a general point process. To
conclude, Section 6.3 will deal with the study of a random transformation of the measure
µ.

6.1 Derivation of moment formulae

Let us start by proving a combinatorial lemma.

Lemma 6.1.1. Let F be a function from the power set P(N) to R. Then for n ∈ N
∗,

n+1
∑

k=1

∑

P∈T k
n+1

F (P) =
n
∑

k=1

∑

P={P1,...,Pk}∈T k
n

F
(

P ∪
{

{n+ 1}
})

+
n

∑

k=1

∑

P={P1,...,Pk}∈T k
n

k
∑

l=1

F
(

P1, . . . , Pl−1, Pl ∪ {n+ 1}, Pl+1, . . . , Pk
)

,

where T k
n is the set of all partitions of {1, . . . , n} into k subsets.

Proof. Let us consider the functions (Ξk)1≤k≤n+1 defined as follows:

Ξk : T k
n+1 −→ T k

n ∪ T
k−1
n ,

{P1, . . . , Pk} #−→ {P1, . . . , Pl−1, Pl \ {n+ 1}, Pl+1, . . . , Pk},

where 1 ≤ l ≤ k is such that {n+ 1} ∈ Pl. Moreover, let us define the function Ξ as

Ξ : Tn+1 −→ Tn,
P #−→ Ξ|P|(P),

where Tn is the set of all partitions of {1, . . . , n}. Then, Ξ is surjective from Tn+1 into Tn
and moreover, for P = {P1, . . . , P|P|} ∈ Tn, we have that

Ξ
−1(P) =

{

P ∪
{

{n+ 1}
}}

∪

|P|
⋃

l=1

{

P1, . . . , Pl ∪ {n+ 1}, . . . , P|P|

}

.
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Then, using the preceding observations, we obtain

n+1
∑

k=1

∑

P∈T k
n+1

F (P) =
∑

P∈Tn+1

F (P)

=
∑

P∈Tn
P={P1,...,P|P|}

F (P ∪ {n+ 1}) +

|P|
∑

l=1

F (
{

P1, . . . , Pl ∪ {n+ 1}, . . . , P|P|

}

),

which is the desired result once we sum on the different lengths possible for elements of
Tn.

We can now give the first important result of this paper, which will yield many cases
of particular interest.

Theorem 6.1.1. For any n ∈ N, any measurable nonnegative functions uk : E × X → R,
k = 1, . . . , n, and any bounded function F on X , we have

E[F (ξ)

n
∏

k=1

∫

uk(y, ξ) ξ(dy)] =
n
∑

k=1

∑

P∈T k
n

E

[

∫

Ek

F (ξ ∪ x)uP(x, ξ ∪ x)ĉ(x, ξ)λk(dx)
]

,

where again, T k
n denotes the set of all partitions of {1, . . . , n} into k subsets. Here, for

P = {P1, . . . , Pk} ∈ T k
n , we have used the compact notation x := (x1, . . . , xk), as well as

λk(dx) := λ(dx1) . . .λ(dxk)

and

uP(x, ξ) :=
k
∏

l=1

∏

i∈Pl

ui(xl, ξ).

Proof. We prove this result by induction on n. Let u : E × X → R be a measurable
nonnegative function. First note that by the Georgii-Nguyen-Zessin identity (3.14), we
have

E[F (ξ)

∫

u(y, ξ) ξ(dy)] = E[

∫

F (ξ ∪ z)u(z, ξ ∪ z) c(z, ξ)λ(dz)].

Now, for n ∈ N
∗, let u1, . . . , un+1 be nonnegative measurable functions on E×X . We have

by induction:

E[F (ξ)
n+1
∏

k=1

∫

uk(y, ξ) ξ(dy)]

= E[F (ξ)
n
∏

k=1

∫

uk(z, ξ)
(

∫

un+1(y, ξ) ξ(dy)
)1/n

ξ(dz)]

=
n
∑

k=1

∑

P∈T k
n

E

[

∫

Ek

F (ξ ∪ x)uP(x, ξ ∪ x)ĉ(x, ξ)

∫

un+1(z, ξ ∪ x){ξ ∪ x}(dz)λk(dx)
]

.

Here, the last part can be rewritten

∫

un+1(z, ξ ∪ x){ξ ∪ x}(dz) =

∫

un+1(z, ξ ∪ x) ξ(dz) +
k
∑

l=1

un+1(xl, ξ ∪ x).
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Hence, after regrouping the terms, we find

E[F (ξ)

n+1
∏

k=1

∫

uk(y, ξ) ξ(dy)]

=
n
∑

k=1

∑

P∈T k
n

k
∑

l=1

E

[

∫

Ek

F (ξ ∪ x)uP(x, ξ ∪ x)un+1(xl, ξ ∪ x) ĉ(x, ξ)λk(dx)
]

+
n
∑

k=1

∑

P∈T k
n

E

[

∫

Ek

F (ξ ∪ x)uP(x, ξ ∪ x)
(

∫

un+1(z, ξ ∪ x) ξ(dz)
)

ĉ(x, ξ)λk(dx)
]

.

Then, by Fubini’s theorem, and the Georgii-Nguyen-Zessin formula (3.14), the expectation
in the second sum is equal to

E

[

∫

Ek

F (ξ ∪ x)uP(x, ξ ∪ x)
(

∫

un+1(z, ξ ∪ x) ξ(dz)
)

ĉ(x, ξ)λk(dx)
]

=E

[

∫

Ek+1

F (ξ ∪ x ∪ z)uP(x, ξ ∪ x ∪ z)un+1(z, ξ ∪ x ∪ z)ĉ(x, ξ ∪ z)c(z, ξ)λk(dx)λ(dz)
]

= E

[

∫

Ek+1

F (ξ ∪ x ∪ z)uP(x, ξ ∪ x ∪ z)un+1(z, ξ ∪ x ∪ z) ĉ(x ∪ z, ξ)λk(dx)λ(dz)
]

= E

[

∫

Ek+1

F (ξ ∪ x)uP∪{n+1}(x, ξ ∪ x) ĉ(x, ξ)λk+1(dx)
]

,

since by (3.13), we know that ĉ({x1, . . . , xk}, ξ ∪ y) c(y, ξ) = ĉ({x1, . . . , xk, y}, ξ). To sum-
marize, we have found

E[F (ξ)
n+1
∏

k=1

∫

uk(y, ξ) ξ(dy)]

=
n
∑

k=1

∑

P∈T k
n

(

k
∑

l=1

E

[

∫

Ek

F (ξ ∪ x)uP(x, ξ ∪ x)un+1(xl, ξ ∪ x) ĉ(x, ξ)λk(dx)
]

+ E

[

∫

Ek+1

F (ξ ∪ x)uP∪{n+1}(x, ξ ∪ x) ĉ(x, ξ)λk+1(dx)
])

,

and we obtain the desired result by applying lemma 6.1.1.

The previous quite general property includes many interesting cases. In particular, if
all uk, k = 1, . . . , n are equal, one generalizes the results in [67] and obtains the moments
of
∫

ux(ξ) ξ(dx):

Corollary 6.1.1. For any n ∈ N, any measurable nonnegative function u : E × X → R,
and any bounded function F on X , we have

E[F (ξ)
(

∫

u(y, ξ) ξ(dy)
)n
] =

n
∑

k=1

∑

{P1,...,Pk}∈T k
n

E

[

∫

Ek

F (ξ ∪ x1 ∪ · · · ∪ xk)

k
∏

l=1

u|Pl|(xl, ξ ∪ x1 ∪ · · · ∪ xk)ĉ({x1, . . . , xk}, ξ)λ(dx1) . . .λ(dxk)
]

,
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where |Pi| is the cardinality of Pi, i = 1, . . . , k.

This result includes the case where u(x, ξ) = v(x) is a deterministic function:

Corollary 6.1.2. For any n ∈ N, and any measurable nonnegative function v on E, we
have

E[F (ξ)
(

∫

v(y) ξ(dy)
)n
] =

n
∑

k=1

∑

{P1,...,Pk}∈T k
n

∫

Ek

v(x1)
|P1| . . . v(xk)

|Pk|

E[F (ξ ∪ x1 ∪ · · · ∪ xk)ĉ({x1, . . . , xk}, ξ)]λ(dx1) . . .λ(dxk).

Corollary 6.1.2 yields

Cov
(

F, (

∫

v(x) ξ(dx))n
)

=
n

∑

k=1

∑

{P1,...,Pk}∈T k
n

∫

Ek

v(x1)
|P1| . . . v(xk)

|Pk|

E[(F (ξ ∪ x1 ∪ · · · ∪ xk)− E[F (ξ)])ĉ({x1, . . . , xk}, ξ)]λ(dx1) . . .λ(dxk).

The case F = 1 is also of particular interest:

Corollary 6.1.3. For any n ∈ N, any measurable nonnegative non-random functions
vk : E → R, k = 1, . . . , n, we have

E[
n
∏

k=1

∫

vk(y) ξ(dy)] =
n
∑

k=1

∑

{P1,...,Pk}∈T k
n

∫

Ek

∏

i∈P1

vi(x1) . . .
∏

i∈Pk

vi(xk)

ρ({x1, . . . , xk})λ(dx1) . . .λ(dxk).

Proof. Here, it suffices to apply Theorem 6.1.1 to the case of deterministic vk, k = 1, . . . , n,
and use identity (3.16).

Note that we recover here a classical formula, which reads for n = 1, 2, 3:

E[

∫

v(y) ξ(dy)] =

∫

E
v(z)ρ({z})λ(dz),

E[
(

∫

v(y) ξ(dy)
)2
] =

∫

E
v(z)2ρ({z})λ(dz) +

∫

E2

v(z)v(y)ρ({y, z})λ(dy)λ(dz),

E[
(

∫

v(y) ξ(dy)
)3
] =

∫

E
v(z)3ρ({z})λ(dz) + 3

∫

E2

v(z)2v(y)ρ({y, z})λ(dy)λ(dz)

+

∫

E3

v(x)v(y)v(z)ρ({x, y, z})λ(dx)λ(dy)λ(dz).

Moreover, taking vk(·) := 1Ak
, where A1, . . . , An are Borel subsets of E, we obtain the

classical formula linking the cumulant measure associated to µ on the left-hand side with
the moment measure on the right-hand side (see e.g. [17]). Corollary 6.1.2 is interesting
in itself because it is in fact an equivalent characterization of the existence of correlation
functions. More precisely, we have the following result:
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Proposition 6.1.1. Let (ρk)k∈N be a family of symmetrical, measurable functions, and
ρk : Ek → R for k ∈ N. Assume moreover that the measure µ is simple, in the sense that
P(ξ(x) ≤ 1) for all x ∈ E. Then, the measure µ possesses correlation functions (ρk)k∈N
(with respect to λ) if and only if, for any n ∈ N, and any measurable nonnegative functions
vk : E → R, k = 1, . . . , n, we have

E[

n
∏

k=1

∫

vk(x) ξ(dx)] =
n
∑

k=1

∑

{P1,...,Pk}∈T k
n

∫

Ek

∏

i∈P1

vi(x1) . . .
∏

i∈Pk

vi(xk)

ρk(x1, . . . , xk)λ(dx1) . . .λ(dxk).

Proof. Assume that we have

∫

X

∑

α⊂ξ, α∈X0

f(α)µ(dξ) =

∫

X0

f(α) ρ(α)L(dα),

where f is any measurable nonnegative function on X0. Then, for k ∈ N,

∫

X

∑

α⊂ξ, |α|=k

f(α)µ(dξ) =
1

k!

∫

Ek

f({x1, . . . , xk}) ρk(x1, . . . , xk)λ(dx1) . . .λ(dxk).

Now, we can write for n ∈ N and ξ ∈ X ,

∑

x1,...,xn∈ξ

v1(x1) . . . vn(xn) = n!

n
∑

k=1

∑

{P1,...,Pk}∈T k
n

∑

α⊂ξ, |α|=k
α={x1,...,xk}

∏

i∈P1

vi(x1) . . .
∏

i∈Pk

vi(xk),

where the n! appears since when we write {x1, . . . , xk} ⊂ ξ, we only choose ordered subsets
of ξ. Then, we find the desired result by taking the expectation of the previous equality.
Indeed, we have by definition

E
[

∑

α⊂ξ, |α|=k
α={x1,...,xk}

∏

i∈P1

vi(x1) . . .
∏

i∈Pk

vi(xk)
]

=
1

n!
E
[

∫

Ek

∏

i∈P1

vi(x1) . . .
∏

i∈Pk

vi(xk)ĉ({x1, . . . , xk}, ξ)λ(dx1) . . .λ(dxk)
]

,

and we conclude by using (3.17).
On the other hand, assume that there exist some symmetrical measurable functions (ρk)k∈N,
such that for any n ∈ N, and any measurable nonnegative functions vk : E → R,
k = 1, . . . , n, we have

E[
n
∏

k=1

∫

vk(y) ξ(dy)] =
n
∑

k=1

∑

{P1,...,Pk}∈T k
n

∫

Ek

∏

i∈P1

vi(x1) . . .
∏

i∈Pk

vi(xk)

ρk(x1, . . . , xk)λ(dx1) . . .λ(dxk).
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Let A1, . . . , An be n disjoint Borel subsets of E. Take vk = 1Ak
, k = 1, . . . , n. Then, the

different terms of the right-hand side sum are all equal to 0, except for the subdivision
consisting only of singletons. Hence,

E[

n
∏

k=1

ξ(Ak)] =

∫

A1×···×An

ρk(x1, . . . , xn)λ(dx1) . . .λ(dxn),

which means that µ has correlation functions (ρk)k∈N since µ is a simple point process.

6.2 Extended moment formulae for the divergence

The aim of this section is to obtain analogue formulae involving the divergence of a
general operator. Let us now start by defining a new signed random measure ν by the
formula

∫

f(y, ξ) ν(dy) =

∫

f(y, ξ) ξ(dy)−
∫

f(y, ξ)c(y, ξ)λ(dy),

for f on E × X such that E[
∫

E |f(y, ξ)|c(y, ξ)λ(dy)] < ∞. We remark that the (signed)
measure ν is not defined on the whole Borel σ-algebra, and hence we need to make another
assumption on µ which is assumed to hold henceforth.

Hypothesis 11. We assume that ∀i ∈ N, ∀k ∈ N
∗,

E[ξ(Λ)k
(

∫

Λ

c(z, ξ)λ(dz)
)i
] <∞,

for all compact sets Λ ⊂ E.

We can remark that the previous condition implies that the moments of the point
process µ are all finite as defined in (5.7), i.e. that for all ϕ bounded, compactly supported
function, and for all n ∈ N,

E[
(

∫

ϕ(y) ξ(dy)
)n
] <∞. (6.1)

We now give some adequate conditions implying the previous hypothesis.

Proposition 6.2.1. Assume (6.1), i.e. that the point process µ admits finite moments.
Moreover, assume that one of the following conditions is verified.

(i) There exist a locally integrable function f on E and a bounded function F on X
such that ∀x ∈ E, ∀ξ ∈ X , c(x, ξ) ≤ f(x)F (ξ).

(ii) The point process µ is repulsive, in the sense that ∀ξ, η ∈ X , ξ ⊂ η, we have
c(x, ξ) ≥ c(x, η).

(iii) The point process µ is attractive, in the sense that ∀ξ, η ∈ X , ξ ⊂ η, we have
c(x, ξ) ≤ c(x, η).

Then, Hypothesis 11 is satisfied.

Proof. The case (i) is trivial. Assume that (ii) is verified. Then, for all x ∈ Λ, ξ ∈ X ,

c(x, ξ) ≤ c(x, ∅) = jΛ(x)
jΛ(∅)

, where jΛ is the Janossy density of µ. Then, we have for all f on
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E,
∫

Λ

f(z)c(z, ∅)λ(dz) = E[

∫

Λ

f(z)c(z, ξ)1{ξ=∅} λ(dz)]

= E[

∫

Λ

f(z)1{ξ \ z=∅} ξ(dz)]

= E[f(ξ)1|ξΛ|=1]

=

∫

f(z)jΛ(z)λ(dz).

Hence,

E[ξ(Λ)k
(

∫

Λ

c(z, ξ)λ(dz)
)i
] ≤

1

jΛ(∅)i
E[ξ(Λ)k](

∫

Λ

jΛ(z)λ(dz))
i <∞.

To conclude the proof, assume that (iii) is verified. Then, ∀x, y ∈ Λ, ξ ∈ X , we have
c(x, ξ) ≤ c(x, ξ ∪ y). Hence,

i
∏

k=1

c(xk, ξ) ≤ c(x1, ξ)c(x2, ξ ∪ x1) . . . c(xi, ξ ∪ x1 ∪ · · · ∪ xi−1) = ĉ({x1, . . . , xi}, ξ).

Therefore, by applying (3.15) to u(α, ξ) = 1{|α|=i}ξ(Λ)
k, we obtain

E[ξ(Λ)k
(

∫

Λ

c(z, ξ)λ(dz)
)i
] ≤ E

[

max(ξ(Λ)− i, 0)k
ξ(Λ)!

(ξ(Λ)− i)!

]

< ∞.

Then, we prove the following:

Proposition 6.2.2. We assume that Hypothesis 11 is verified. Then, for any n ∈ N, any
bounded process u : E × X → R with compact support on E, and any bounded function F
on X , we have

E[F (ξ)
(

∫

u(y, ξ) ν(dy)
)n
] =

n
∑

i=0

(−1)i
(

n

i

) n−i
∑

k=1

∑

{P1,...,Pk}∈T
k
n−i

E

[

∫

Ek

ĉ(x, ξ)F (ξ∪x)

k
∏

l=1

u(xl, ξ∪x)
|Pl|

(

∫

u(z, ξ∪x)c(z, ξ∪x)λ(dz)
)i
λk(dx)

]

. (6.2)

Proof. This is a direct consequence of the binomial formula

E[F (ξ)
(

∫

u(y, ξ) ν(dy)
)n
]

=
n

∑

i=0

(−1)i
(

n

i

)

E

[

F (ξ)
(

∫

u(y, ξ) ξ(dy)
)n−i(

∫

u(y, ξ)c(y, ξ)λ(dy)
)i
]

,

and thus we obtain the desired result by applying Theorem 6.1.1. It remains to show that
the right-hand side of (6.2) is well-defined. Taking into account the conditions on u and
F , each of the terms in the (finite) sum is smaller in absolute value than

C E[

∫

Λk

ĉ(x, ξ)
(

∫

Λ

c(z, ξ ∪ x)λ(dz)
)i
λk(dx)] = C E[

|ξΛ|!

(|ξΛ|− k)!

(

∫

Λ

c(z, ξ ∪ x)λ(dz)
)i
]

< ∞,
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where Λ is the support of u, C is a nonnegative constant, and we have used (3.15) with

u(α, ξ) = 1{|α|=k}
( ∫

c(z, ξ ∪ α)λ(dz)
)i
.

Recall that the associated formula for πλ (the Poisson process of intensity λ), as ob-
tained in [67], is

E
πλ [F (ξ)

(

∫

u(y, ξ) ν(dy)
)n
]=

n
∑

i=0

(−1)i
(

n

i

)n−i
∑

k=1

∑

{P1,...,Pk}∈T
k
n−i

E
πλ

[

∫

Ei+k

F (ξ ∪ {x1 ∪ · · · ∪ xk})

k
∏

l=1

u|Pl|(xl, ξ ∪ x1 ∪ · · · ∪ xk)
i+k
∏

l=k+1

u(xl, ξ ∪ x1 ∪ · · · ∪ xk)λ(dx1) . . .λ(dxi+k)
]

.

Here, by comparison, the general formula can be written as

E[F (ξ)
(

∫

u(y, ξ) ν(dy)
)n
]

=
n

∑

i=0

(−1)i
(

n

i

) n−i
∑

k=1

∑

{P1,...,Pk}∈T
k
n−i

E

[

∫

Ei+k

F (ξ ∪ {x1 ∪ · · · ∪ xk})Gk({x1, . . . , xi+k}, ξ)

k
∏

l=1

u|Pl|(xl, ξ ∪ x1 ∪ · · · ∪ xk)
i+k
∏

l=k+1

u(xl, ξ ∪ x1 ∪ · · · ∪ xk)λ(dx1) . . .λ(dxi+k)
]

,

where

Gk({x1, . . . , xi+k}, ξ)

= ĉ({x1, . . . , xk}, ξ)c(xi+1, ξ ∪ x1 ∪ · · · ∪ xk) . . . c(xi+k, ξ ∪ x1 ∪ · · · ∪ xk)

=

k
∏

l=1

c(xl, ξ ∪ x1 ∪ · · · ∪ xl−1)

i+k
∏

l=i+1

c(xl, ξ ∪ x1 ∪ · · · ∪ xk).

Let us now introduce the so-called divergence operator δ.

Definition 15 (Divergence operator). For any measurable u : E × X → R such that
E[

∫

|u(y, ξ)| c(y, ξ)λ(dy)] <∞, we define δ(u) as

δ(u) =

∫

u(y, ξ \ y) ν(dy) =

∫

u(y, ξ \ y) ξ(dy)−

∫

u(y, ξ) c(y, ξ)λ(dy). (6.3)

Note that what we call divergence in this paper is also called residual process, or innovation
process, see e.g. [18]. We can notice that the divergence of a bounded process u, which has
support Λ× X , is correctly defined since for such a process,

E[

∫

|u(y, ξ)| c(y, ξ)λ(dy)] ≤M E[

∫

Λ

c(y, ξ)λ(dy)] = M

∫

Λ

ρ1(x)λ(dx) <∞,

where for almost every (x, ξ) ∈ Λ× X , u(x, ξ) ≤M .
The next proposition gives a moment formula for this newly introduced operator.
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Proposition 6.2.3. For any n ∈ N, any bounded process u : E × X → R, with compact
support on E, and any bounded function F on X , we have

E[F (ξ)
(

δ(u)
)n
]

=
n

∑

i=0

(−1)i
(

n

i

) n−i
∑

k=1

∑

{P1,...,Pk}∈T
k
n−i

E

[

∫

Ei+k

F (ξ ∪ {x1, . . . , xk})Gk({x1, . . . , xi+k}, ξ)

i+k
∏

l=k+1

u(xl, ξ ∪ {x1, . . . , xk})
k

∏

l=1

u|Pl|(xl, ξ ∪ {x1, . . . , x̃l, . . . , xk})λ(dx1) . . .λ(dxi+k)
]

,

where, Gk is the function defined in the previous paragraph. The notation
{x1, . . . , x̃l, . . . , xk} stands for {x1, . . . , xl−1, xl+1, . . . , xk}.

Proof. Recall that by definition,

E[F (ξ)
(

δ(u)
)n
] = E[F (ξ)

(

∫

v(y, ξ) ν(dy)
)n
],

where v(y, ξ) = u(y, ξ \ y), for (y, ξ) ∈ E × X . Therefore, we can apply Proposition 6.2.2,
and we obtain the desired result.

The previous definition of the operator δ is justified by the duality formula with respect
to the difference gradient, defined below.

Definition 16 (Difference operator). For F : X → R, we define DF , the difference
operator applied to F , as follows:

DF : E × X −→ R

(x, ξ) $−→ DxF (ξ) = F (ξ ∪ x)− F (ξ \x).

Remark 14. The difference operator is equal to DxF (ξ) = F (ξ ∪ x)− F (ξ), (λ⊗ µ)-a.s..
However, we wish to study DF as a stochastic process under the measure Cµ and therefore
the previous definition is the relevant one.

Then, the previous definition of δ is an operator satisfying the following corollary of Propo-
sition 6.2.3.

Corollary 6.2.1 (Duality relation). For any bounded function F on X , and a process
u : (x, ξ) $→ u(x, ξ), Cµ-integrable, and in Dom(δ), we have

E[F (ξ)δ(u)] = E[

∫

E
DzF (ξ)u(z, ξ)c(z, ξ)λ(dz)]. (6.4)

Here, we say that a process u : (x, ξ) $→ u(x, ξ) belongs to Dom(δ) whenever there exists
a constant c such that for any F ∈ L2(X , µ),

∣

∣

∣

∫

X

∫

E
DzF (ξ)u(z, ξ)Cµ(dz, dξ)

∣

∣

∣
≤ c‖F‖L2(X ,µ).

Recall that in the Poisson case, Cµ = λ⊗µ and we recover the classical duality relationship.
One also finds an extended Skohorod isometry in the case of a more general point process
(see [18]):
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Corollary 6.2.2. For a process u : (x, ξ) �→ u(x, ξ), Cµ-integrable, and in Dom(δ), we
have

E[δ(u)2] = E[

∫

u(y, ξ)2c(y, ξ)λ(dy)]

+ E[

∫

Dzu(y, ξ)Dyu(z, ξ)ĉ({x, y}, ξ)λ(dy)λ(dz)]

− E[

∫ ∫

u(z, ξ)u(y, ξ)c(z, ξ)Dzc(y, ξ)λ(dy)λ(dz)].

This particular way of writing the formula is useful since if we assume that u verifies
Dzu(y, ξ)Dyu(z, ξ) = 0 for a.e. x, y ∈ E and ξ ∈ X , then the second term is zero. This
assumption is equivalent to adaptedness when E = R, see [67] for example. Moreover, one
would have the expected Skorohod isometry E[δ(u)2] = E[

∫

u(y, ξ)2c(y, ξ)λ(dy)] if and only
if c(y, ξ) = c(y, ξ ∪ z) for a.e. (y, z) ∈ E2 and a.e. ξ ∈ X , i.e. if c does not depend on the
configuration ξ. Hence, µ would therefore necessarily be a PPP in this case (see [53]).

Let us conclude this section by giving an example of point processes satisfying Hypoth-
esis 11.
We return to the case of determinantal point processes defined previously. We further
define the operator J , called the global interaction operator, as J := K(I −K)−1. Since
we assumed that ||K|| < 1, J is properly defined as a bounded operator. We also define
J[Λ] := KΛ(I−KΛ)−1, where we are wary of the fact that J[Λ] is not the restriction of J to Λ,
but rather J applied to the operator KΛ. Then, it was proved in [28] that µK,Λ (restriction

of µ to Λ) admits Papangelou intensities given by cK,Λ(x, ξ) =
det J[Λ](ξ∪x)

det J[Λ](ξ)
, x ∈ E, ξ ∈ X .

Here, the notation J[Λ](ξ) stands for
(

J[Λ](xi, xj)
)

1≤i,j≤n
where ξ = {x1, . . . , xn} ∈ XΛ.

However, the main result of [28] is as follows:

Theorem 6.2.1 (c.f. Theorem 3.6 of [28]). (µK ,λ) also satisfies condition (Σλ) and its
Papangelou intensity cK is given by

cK(x, ξ) = lim
n→∞

cK,Λn(x, ξΛn),

where (Λn)n∈N is a sequence of compact sets of E that increases to E. Moreover, (µK ,λ)
is repulsive in the sense that

c(x, ξ) ≥ c(x, η),

for almost every x ∈ E and ξ, η ∈ X , ξ ⊂ η.

Hence, taking into consideration the previous results, (µK ,λ) satisfies Proposition 6.2.1
(ii) and therefore, (µK ,λ) satisfies Hypothesis 11.

6.3 Random transformation of the point process

The goal of this section is to give an application of the previous moment formulae. As
was explained in the introduction, we wish to study a random transformation of the point
process measure µ. Hereafter, we consider the following condition.

Hypothesis 12. For u : E × X → R, we assume that u satisfies

Dx1 . . . Dxku(x1, ξ) . . . u(xk, ξ) = 0, for Cµ-a.e. (x, ξ) ∈ E × X

for all k ≥ 1.
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Before the proof of the main result, we give a few mostly combinatorial results that will
be useful in the following. To this end, let us define, for x1, . . . , xn ∈ E and Θ = {1, . . . , k},
k ∈ N

∗,
DΘ = Dx1 ◦ · · · ◦Dxk ,

where D is the difference operator. Moreover, recall that D satisfies the following property:

D(FG) = GDF + FDG+ (DF )(DG), (6.5)

for any random variables F,G : X → R. Additionally, the previous equation can be
generalized to the case of F1, . . . , Fn : X → R in the following way:

DΘF1 . . . Fn =
∑

I1,...,In⊆Θ

I1∪···∪In=Θ

= (DI1F1) . . . (DInFn),

where n ∈ N
∗ and Θ ⊂ {1, . . . , n}. Then, we prove the following factorization property of

the difference operator:

Lemma 6.3.1. For any n ∈ N
∗, we take Θ ⊆ {1, . . . , n}. Then, for any u : E × X → R,

assume that Hypothesis 12 is verified. Then, we have that

DΘu(x1, ξ) . . . u(xn, ξ) =
∑

M⊆Θ ; M "=∅

(−1)1+|M |
∏

i∈I

u(xi, ξ)DΘ

∏

i∈{1,...,n} \M

u(xi, ξ),

for Cµ-a.e. (x, ξ) ∈ E × X .

Proof. The proof of this lemma is mostly combinatorial. Take Θ ⊆ {1, . . . , n}, then for
Cµ-a.e. (x, ξ) ∈ E × X , we have

DΘu(x1, ξ) . . . u(xn, ξ)

=
∑

I1,...,I|Θ|,I|Θ|+1

I1∪···∪I|Θ|+1=Θ

(

∏

k∈Θ

DIku(xk, ξ)

)

DI|Θ|+1

∏

i∈{1,...,n} \Θ

u(xi, ξ)

=
∑

K⊆Θ

K "=∅

∑

I1,...,I|Θ|−|K|,I|Θ|−|K|+1⊆Θ

I1 "=∅,...,I|Θ|−|K|+1 "=∅,I1∪···∪I|Θ|−|K|+1=Θ

∏

i∈K

u(xi, ξ)





∏

i∈Θ \K

DIiu(xi, ξ)



DI|Θ|−|K|+1

∏

i∈{1,...,n} \Θ

u(xi, ξ)

=
∑

K⊆Θ

K "=∅

∑

L⊆Θ \K

(−1)|L|
∏

i∈K∪L

u(xi, ξ)DΘ

∏

i∈{1,...,n} \K \L

u(xi, ξ)

=
∑

M⊆Θ

M "=∅

∏

i∈M

u(xi, ξ)DΘ

∏

i∈{1,...,n} \M

u(xi, ξ)
∑

J⊆M

(−1)|J |

=
∑

M⊆Θ

M "=∅

(−1)|M |+1
∏

i∈M

u(xi, ξ)DΘ

∏

i∈{1,...,n} \M

u(xi, ξ),

where in the previous equalities, K,M &= ∅ because of Hypothesis 12.
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Lemma 6.3.2. Let δ be the divergence operator defined in (6.3). Then, for any integrable
u : E × X → R, we have that

δ (ĉ({x1, . . . , xn}, ξ ∪ ·)u(·, ξ))

= ĉ({x1, . . . , xn}, ξ)

(

δ(u) +

∫

u(z, ξ)(c(z, ξ)− c(z, ξ ∪ {x1, . . . , xn}))λ(dz)

)

,

for x1, . . . , xn ∈ E and ξ ∈ X .

Proof. The proof follows from the definition (6.3), and the fact that

c(z, ξ)ĉ({x1, . . . , xn}, ξ ∪ z)c(z, ξ) = ĉ({x1, . . . , xn, z}, ξ)

= ĉ({x1, . . . , xn}, ξ)c(z, ξ ∪ {x1, . . . , xn}),

which follows from (3.13).

Now, let us consider a random shifting τ : E ×X → E. For ξ ∈ X , consider the image
measure of ξ by τ , denoted by τ∗(ξ), and defined as

τ∗(ξ) =
∑

x∈ξ

δτ(x,ξ),

and thus τ∗ shifts each point of the configuration in the direction τ . Now, we wish to study
the effect of the the transformation on the underlying measure µ under sufficiently strong
conditions on τ . The following hypotheses will be considered:

(HT1) The random transformation τ∗ satisfies Hypothesis 12, in the sense that for any
u : X → R, u ◦ τ∗ verifies Hypothesis 12.

(HT2) For a.e. ξ ∈ X , τ(·, ξ) is invertible, and we denote its inverse by τ−1(x, ξ), x ∈
E, ξ ∈ X . We also denote by τ−1

∗ (ξ) the image measure of ξ by τ−1.

We are now in a position to prove the main theorem of this section.

Theorem 6.3.1. Let τ : E × X → E be a random shifting as defined previously, and
satisfying (HT1) and (HT2). Let us assume that τ maps λ to σ, i.e. τ(·, ξ)λ = σ, ξ ∈ X ,
where σ is a fixed measure on (E,B). Then, τ∗µ has correlation functions with respect to
σ that are given by

ρτ (x1, . . . , xk) = E
[

ĉ({τ−1(x1, ξ), . . . , τ
−1(xk, ξ)}, ξ)

]

, x1, . . . , xk ∈ E. (6.6)

Proof. Our aim for the proof is to use Proposition 6.1.1 (characterization of correlation
functions). By Theorem 6.1.1, we have for any n ∈ N, any measurable nonnegative (non-
random) functions vk : E → R, k = 1, . . . , n,

Eτ∗µ[

n
∏

k=1

∫

vk(y) ξ(dy)] =
n

∑

k=1

∑

{P1,...,Pk}∈T k
n

Eµ

[

∫

Ek

ĉ({x1, . . . , xk}, ξ)
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k
∏

l=1

∏

i∈Pl

vi(τ(xl, ξ ∪ x1 ∪ · · · ∪ xk))λ(dx1) . . .λ(dxk)
]

=
n
∑

k=1

∑

{P1,...,Pk}∈T k
n

Eµ

[

∫

Ek

ĉ({x1, . . . , xk}, ξ)

∑

Θ⊂{1,...,k}

DΘ

k
∏

l=1

∏

i∈Pl

vi(τ(xl, ξ))λ(dx1) . . .λ(dxk)
]

=

n
∑

k=1

∑

{P1,...,Pk}∈T k
n

∑

Θ⊆{1,...,k}

∑

M⊆Θ, M "=∅

(−1)|M |+1
Eµ

[

∫

Ek

ĉ({x1, . . . , xk}, ξ)

∏

l∈M

∏

i∈Pl

vi(τ(xl, ξ))DΘ

∏

l /∈M

∏

i∈Pl

vi(τ(xl, ξ))λ(dx1) . . .λ(dxk)
]

where the first equality follows from Theorem 6.1.1, the second equality follows from

k
∏

i=1

(I+Dxk) =
∑

Θ⊂{1,...,k}

DΘ

as an operator equality, and the third equality follows from Lemma 6.3.1. Then, we proceed
by doing |Θ| integration by parts according to (6.4) in order to be able to do a change
of variable in the previous equation. Indeed, take k ∈ {1, . . . , n}, {P1, . . . , Pk} ∈ T

k
n , and

Θ ⊂ {1, . . . , k}, Θ != ∅. Assume for example that Θ = {1, . . . , p}, where p := |Θ| ≤ k.
Then,

Eµ

[

∫

Ek

ĉ({x1, . . . , xk}, ξ)

∏

l∈Θ

∏

i∈Pl

vi(τ(xl, ξ))DΘ

∏

l /∈Θ

∏

i∈Pl

vi(τ(xl, ξ))λ(dx1) . . .λ(dxk)
]

= Eµ

[

∫

Ek

c(x1, ξ)ĉ({x2, . . . , xk}, ξ ∪ x1)

∏

l∈Θ

∏

i∈Pl

vi(τ(xl, ξ))DΘ

∏

l /∈Θ

∏

i∈Pl

vi(τ(xl, ξ))λ(dx1) . . .λ(dxk)
]

= Eµ

[

∫

Ek

δ
(

ĉ({x2, . . . , xk}, ξ ∪ ·)
∏

i∈P1

vi(τ(·, ξ))
∏

l∈Θ \ {1}

∏

i∈Pl

vi(τ(xl, ξ))
)

DΘ \ {1}

∏

l /∈Θ

∏

i∈Pl

vi(τ(xl, ξ))λ(dx2) . . .λ(dxk)
]

= Eµ

[

∫

Ek

ĉ({x2, . . . , xk}, ξ)
(

δ(
∏

i∈P1

vi(τ(·, ξ))
∏

l∈Θ \ {1}

∏

i∈Pl

vi(τ(xl, ξ)))

+

∫

∏

i∈P1

vi(τ(z, ξ))
∏

l∈Θ \ {1}

∏

i∈Pl

vi(τ(xl, ξ))(c(z, ξ)− c(z, ξ ∪ {x1, . . . , xn})λ(dz)
)

DΘ \ {1}

∏

l /∈Θ

∏

i∈Pl

vi(τ(xl, ξ))λ(dx2) . . .λ(dxk)
]

,
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where the last line results from Lemma 6.3.2. By iterating these integration by parts p
times, and recombining the different parts, we obtain

Eτ∗µ[
n
∏

k=1

∫

vk(y) ξ(dy)] =
n
∑

k=1

∑

{P1,...,Pk}∈T k
n

Eµ

[

∫

Ek

ĉ({x1, . . . , xk}, ξ)

k
∏

l=1

∏

i∈Pl

vi(τ(xl, ξ))λ(dx1) . . .λ(dxk)
]

,

and it suffices to do a change of variables on E. Then, we conclude by Proposition 6.1.1,
that τ∗µ has correlation functions (with respect to σ), which are given by

ρτ (x1, . . . , xk) = E
[

ĉ({τ−1(x1, ξ), . . . , τ
−1(xk, ξ)}, ξ)

]

, x1, . . . , xk ∈ E,

since the previous functions are obviously symmetrical (by symmetry of ĉ(·, ξ) as a function
on En), and since an invertible transformation of a simple point process µ yields another
simple process (allowing us to apply Proposition 6.1.1).

This theorem directly generalizes all known results. Let us start by considering the
following corollary, which was obtained in [67].

Corollary 6.3.1. Let µ = πdλ be the Poisson measure with intensity λ. Let τ : E×X → E
be a random transformation satisfying (HT1) and (HT2). Let us assume that τ maps λ

to σ, i.e. τ(·, ξ)λ = σ, ξ ∈ X . Then, τ maps πdλ to πdσ.

Proof. The corollary follows directly from the theorem, since πdλ has a Papangelou inten-
sity of 1. Therefore, τ∗π

dλ has intensity σ and its correlation functions, given by (6.6), are
also equal to 1.

We can also apply these results to the case of the determinantal point process. In order
to ensure a closed form of the Papangelou intensities, we recall that Hypothesis 5 needs to
hold. More precisely, it was shown that under Hypothesis 5, the determinantal process with
global interaction operator J satisfies condition (Σλ), i.e. it admits Papangelou intensities
cK . Moreover, under condition Hypothesis 5, cK is explicitly given by (3.23) which we
recall here:

cK(x, ξ) =
det J(ξW ∪ x)

det J(ξW )
1diam W (x,ξ)<∞,

where W (x, ξ) is the union of the clusters of BR(x ∪ ξ) hitting x and ξW := ξW (x,ξ).
Therefore, we obtain the following corollary of Theorem 6.3.1:

Corollary 6.3.2. Let µK be the determinantal measure with intensity λ and kernel K.
Assume that the associated operator J satisfies Hypothesis 5. Let τ : E × X → E be
a transformation satisfying (HT1) and (HT2). Let us assume that τ maps λ to σ, i.e.
τ(·, ξ)λ = σ, ξ ∈ X . Then, τ∗µK has correlation functions given by

ρτ (x1, . . . , xk) = E
[det J(ξW ∪ {τ−1(x1, ξ), . . . , τ

−1(xk, ξ)})

det J(ξW )

]

, x1, . . . , xk ∈ E, (6.7)
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and where W is the union of the clusters of BR({τ
−1(x1, ξ), . . . , τ

−1(xk, ξ)} ∪ ξ) hitting
{τ−1(x1, ξ), . . . , τ

−1(xk, ξ)}. Moreover, if we further assume that τ is a non-random, in-
vertible transformation, and define

T : L2(E,σ) −→ L2(E,λ),
f "−→ f ◦ τ.

Then, τ maps (µK ,λ) to (µKτ ,σ), where Kτ = T−1KT .

Proof. The first part of the corollary is a direct consequence of Theorem 6.3.1. If we further
assume that τ is non-random, then by (3.17), we have

ρτ (x1, . . . , xk) = ρ(τ−1(x1), . . . , τ
−1(xn)) = det

(

K(τ−1(xi), τ
−1(xj))

)

1≤i,j≤n
.

It then remains to notice that the kernel Kτ = T−1KT is again an integral operator with
kernel Kτ (x, y) = K(τ−1(x), τ−1(y)), x, y ∈ E.

Remark 15. If we do not assume that τ is non-random, then there is no reason for ρτ
to be given by the determinant of a Hilbert-Schmidt operator K ′. Therefore, τ∗µK is not
necessarily determinantal in the general case of a random shift τ .

We can note that the last part of the corollary is another formulation of the quasi-
invariance results obtained in [14]. The study in the aforementioned paper was limited to
determinantal processes on a compact set Λ. On such a compact set, (H3) is obviously
satisfied and we therefore have the existence of Papangelou intensities in the form given
above.

6.4 Summary

In this chapter, we defined a stochastic integral on the configuration space. We con-
sider the most general case of an integrand depending not only on the underlying space,
but also on the whole configuration ξ ∈ X . This general case is to be compared with the
anticipative case which is studied extensively in the brownian motion case.

Here, we proceed along the same lines as in [67] in that we obtain moment formulae for
any moment of the stochastic integral. However, on the contrary of [67] which restricts
itself to the Poisson point process, we obtain general results valid for any point process
satisfying Hypothesis 4. We emphasize that in the general case, the proofs cannot be based
on Malliavin calculus as in [67]. Therefore, our proofs are mainly based on the Georgii-
Nguyen-Zessin identity which characterizes the Papangelou conditional intensity.

Perhaps more interestingly, we obtain as a corollary the proper definition of the divergence
operator, that is the adjoint in L2(X , µ) of the difference operatorDxF (ξ) = F (ξ∪x)−F (ξ).
In the following, we also obtain an analogue of the Skohorod isometry which is well known
for the Poisson point process, and which we generalize to a general point process.

Lastly, we study a random transformation of the point process, and calculate its correla-
tion functions. The way we proceed is that we characterize the correlation functions as the
unique functionals which verify our moment formulae, i.e. if the point process verifies a
certain type of moment formula, we show that it necessarily has the correlation functions
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that appear in the formula.

To conclude, we mention that the condition for the random transformation to correctly
define a quasi-continuous point process that initially appeared in our calculations was the
cyclicity condition mentioned in [67]. However, after discussions with J.-C. Breton and
N. Privault, it came to our attention that this condition did not actually verify certain
properties which were believed to be true. Therefore, we had to modify our approach in
order to prove Theorem 6.3.1. Our proof is original and is largely based on the integration
by parts formula for the difference operator. Since then, the previously mentioned authors
have published the paper [10] which use novel proofs to prove some of the results of this
chapter, as well as some new ones. The interested reader can thus find further results in
this direction therein.
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Appendix A

Disaster recovery algorithm

A.1 Introduction

In this first appendix, we present a homology based algorithm for disaster recovery of
wireless networks. We represent wireless networks with C̆ech simplicial complexes charac-
terizing their coverage. Given a set of vertices and their coverage radius, our algorithm first
adds supernumerary vertices in order to patch every existing coverage hole and connect ev-
ery components, then runs an improved version of the reduction algorithm presented in [86]
in order to reach an optimal result with a minimum number of added vertices. At the end,
we obtain the locations in which to put new nodes. For the addition of new vertices, we
first compared three usual methods presenting low complexity: grid positioning, uniform
positioning and the use of the Sobol sequence, a statistical tool built to provide uniform
coverage of the unit square. Then, we propose the use of a determinantal point process:
the Ginibre point process. This process has the ability to create repulsion between vertices,
and therefore has the inherent ability to locate areas with low density of vertices: namely
coverage holes. Therefore using this process, we will optimally patch the damaged wireless
network. The use and simulation of determinantal point processes in wireless networks is
new, and it provides tremendous results compared to classic methods. We finally com-
pared our whole disaster recovery algorithm performance to the classic recovery algorithm
performance: the greedy algorithm for the set cover problem.

This is the first algorithm that we know of that adds too many vertices then remove
them to reach an optimal result instead of adding the exact needed number of vertices.
This, first, allows flexibility in the choice of the new vertices positions, which can be useful
when running the algorithm in a real life scenario. Indeed, in case of a disaster, every
locations are not always available for installing new nodes and preferring some areas or
locations can be done with our algorithm. The originality of our work lies also in the
choice of the vertices addition method we suggest. On top of flexibility, our algorithm
provides a more reliable repaired wireless network than other algorithms. Indeed, adding
the exact needed number of vertices can be optimal mathematically speaking but it is very
sensitive to the adherence of the nodes positions chosen by the algorithm. To compare
our work to literature, we can see that the disaster recovery problem can be viewed as
a set cover problem. It suffices to define the universe as the area to be covered and the
subsets as the balls of radii the coverage radii. Then the question is to find the optimal
set of subsets that cover the universe, considering there are already balls centered on the
existing vertices. A greedy algorithm can solve this problem as explained in [16]. We can
see in [32] that ǫ-nets also provide an algorithm for the set cover problem via a sampling of
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the universe. We can also cite landmark-based routing, seen in [25] and [6], which, using
furthest point sampling, provides a set of nodes for optimal routing that we can interpret
as a minimal set of vertices to cover an area.

The remainder of this chapter is structured as follows: after a section on related work
we present the main idea of our disaster recovery algorithm in Section A.3. Then in
Section A.4, we compare usual vertices addition methods. In Section A.5, we expose the
determinantal method for new vertices addition. Finally in Section A.6 we compare the
performance of the whole disaster recovery algorithm with the greedy algorithm for the set
cover problem.

A.2 Recovery in future cellular networks

The first step of recovery in cellular networks is the detection of failures. The detec-
tion of the failure of a cell occurs when its performance is considerably and abnormally
reduced. In [57], the authors distinguish three stages of cell outage: degraded, crippled
and catatonic. This last stage matches with the event of a disaster when there is com-
plete outage of the damaged cells. After detection, compensation from other nodes can
occur through relay assisted handover for ongoing calls, adjustments of neighboring cell
sizes via power compensation or antenna tilt. In [5], the authors not only propose a cell
outage management description but also describe compensation schemes. These steps of
monitoring and detection, then compensation of nodes failures are comprised under the
self-healing functions of future cellular networks described in [1].

In this work, we are interested in what happens when self-healing is not sufficient. In
case of serious disasters, the compensation from remaining nodes and traffic rerouting might
not be sufficient to provide service everywhere. In this case, the cellular network needs a
manual intervention: the adding of new nodes to compensate the failures of former nodes.
However a traditional restoration with brick-and-mortar base stations could take a long
time, when efficient communication is particularly needed. In these cases, a recovery trailer
fleet of base stations can be deployed by operators [56], it has been for example used by
AT&T after 9/11 events. But a question remains: where to place the trailers carrying the
recovery base stations. An ideal location would be adjacent to the failed node. However,
these locations are not always available because of the disaster, and the recovery base
stations may not have the same coverage radii than the former ones. Therefore a new
deployment for the recovery base stations has to be decided, in which one of the main goal
is complete coverage of damaged area. This becomes a mathematical set cover problem. It
can been solved by a greedy algorithm [16], ǫ-nets [32], or furthest point sampling [6, 25].
But these mathematical solutions provide an optimal mathematical result that do not
consider any flexibility at all in the choosing of the new nodes positions, and that can be
really sensitive to imprecisions in the nodes positions.

A.3 Main idea

We consider a damaged wireless network presenting coverage holes with a fixed bound-
ary, in order to know the domain to cover, of which we can see an example in Figure A.1.

We consider as inputs the set of existing vertices: the nodes of a damaged wireless
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Figure A.1: A damaged wireless network with a fixed boundary.

network, and their coverage radii. We also need a list of boundary nodes, these nodes can
be fictional, but we need to know the whole area that is to be covered. Then we build
the C̆ech complex characterizing the coverage of the wireless network, the Betti number
β1 of the C̆ech complex counting the number of coverage holes of the wireless network.
We restrict ourselves to wireless networks with a fixed communication radius r, but it is
possible to build the C̆ech complex of a wireless networks with different coverage radii
using the intersection of different size coverage balls.

The algorithm begins by adding new vertices in addition to the set of existing vertices
presenting coverage holes. We suggest here the use of three usual methods, and the new
determinantal addition method. As we can see in Section A.4, it is possible to consider
any vertices addition methods must they be deterministic or random based: flexibility is
one of the greatest advantage of our algorithm. In particular, it is possible to consider a
method with pre-defined positions for some of the vertices in real-life scenarii.

For any non-deterministic method, we choose that the number of added vertices, that
we denote by Na, is determined as follows. First, it is set to be the minimum number of
vertices needed to cover the whole area minus the number of existing vertices. This way,
we take into account the number of existing vertices, that we denote by Ni. Then the
Betti numbers β0 and β1 are computed via linear algebra thanks to the simplicial complex
representation. If there is still more than one connected component, and coverage holes,
then the number of added vertices Na is incremented with a random variable u following
an exponential growth:

— Na := ⌈ a2

πr2
⌉ −Ni.

— After adding the Na vertices, if β0 "= 1 or β1 "= 0,
Then, Na = Na + u, and u = 2 ∗ u.

The next step of our approach is to run the coverage reduction algorithm from [86]
which maintains the topology of the wireless network: the algorithm removes vertices from
the simplicial complex without modifying its Betti numbers. At this step, we remove some
of the supernumerary vertices we just added in order to achieve an optimal result with a
minimum number of added vertices.

We give in Algorithm 9 the outline of the algorithm. The algorithm requires the set
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of initial vertices ωi, the fixed coverage radius r, as well as the list of boundary vertices
Lb. It is important to note that only connectivity information is needed to build the C̆ech
complex.

Algorithm 9 Disaster recovery algorithm

Require: Set of vertices ωi, radius r, boundary vertices Lb
Computation of the C̆ech complex X = Cr(ωi)

Na = ⌈ a2

πr2
⌉ −Ni

Addition of Na vertices to X following chosen method
Computation of β0(X) and β1(X)
u = 1
while β0 "= 1 or β1 "= 0 do
Na = Na + u
u = 2 ∗ u
Addition of Na vertices to X following chosen method
Computation of β0(X) and β1(X)

end while
Coverage reduction algorithm on X
return List La of kept added vertices.

A.4 Vertices addition methods

In this section, we propose three vertices addition methods. The aim of this part of
the algorithm is to add enough vertices to patch the coverage of the simplicial complex,
but the less vertices the better since the results will be closer to the optimal solution. We
consider grid and uniform positioning which require minimum simulation capacities and
are well known in wireless networks management. Then we propose the use of the Sobol
sequence, which is a statistical tool built to provide uniform coverage of the unit square.
The grid method is deterministic, so the number of added vertices as well as their position
are set. The uniform method is random, the number of added vertices is then computed
as presented in Section A.3.

A.4.1 Grid

The first method we suggest ensures perfect coverage: the new vertices are positioned
along a square grid in a lattice graph where the distance between two neighboring vertices
is

√
2r. The number of vertices is set. Therefore this method is completely independent

from the initial configuration. We can see an example of the grid vertices addition method
on the damaged network of Figure A.1 in Figure A.2. Existing vertices are black circles
while added vertices are red plusses.
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Figure A.2: With the grid addition method.

A.4.2 Uniform

Here, the number of added verticesNa is computed accordingly to the method presented
in Section A.3, taking into account the number of existing vertices Ni. Then the Na vertices
are sampled following a uniform law on the entire domain. An obtained configuration with
this method on the network of Figure A.1 is shown in Figure A.3.
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Figure A.3: With the uniform addition method.

A.4.3 Sobol sequence

Thanks to this method, we are able to take into account the positions of the new added
vertices. The Sobol sequence is a statistical tool used to provide uniform coverage of the
unit square. Thus, vertices positioned with the Sobol sequences reach complete cover-
age faster than uniform positioning because the aggregation phenomenon is statistically
avoided. The Sobol initialization set is known, for instance on a square the first position
is the middle of the square, then come the middles of the four squares included in the big
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square, etc. To randomize the positions drawn, the points are scrambled. Therefore the
complexity of the simulation of this method is really low.
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Figure A.4: With the Sobol sequence addition method.

For our simulation, we used the set of initialization numbers provided by Bratley and
Fox in [9]. Then we scrambled the points produced with the random method described
in [51]. An example of this method is given in Figure A.4.

A.4.4 Comparison

We can compare the vertices addition method presented here along two variables: their
complexity and their efficiency. First, we compare the complexities of the two methods.
They all are of complexity O(Na): computations of Na positions, and the Sobol method
scramble Na positions already known by most simulation tools. For the random methods
we have to add the complexity of computing the coverage via the Betti numbers, which is
of the order of the number of triangles times the number of edges that is O((Na+Ni)

5( ra)
6)

for a square of side a according to [19].

To compare the methods efficiency we count the number of vertices each have to add
on average to reach complete coverage. The grid method being determinist, the number of
added vertices is constant: Na = (⌊ a√

2r
⌋+1)2 for a C̆ech complex or Na = (⌊ a

2r⌋+1)2 for a

Vietoris-Rips complex which is an approximation of the C̆ech complex easier to simulate.
We can see in Table A.1 the mean number of added vertices on 1000 simulations for each
method in different scenarii on a square of side a = 1 with coverage radius r = 0.25, and a
Vietoris-Rips complex. Scenarii are defined by the mean percentage of area covered before
running the recovery algorithm: if there are many or few existing vertices, and thus few or
many vertices to add. We need to note that number of added vertices is computed following
our incrementation method presented in Section A.3 and these results only concern the
vertices addition methods before the reduction algorithm runs.

We can observe that the Sobol sequence method gives better results than the uniform
method except for a 60% of covered area. Since the Sobol sequence partitions uniformly
the area, it takes advantages that there are not too many existing vertices in the scenarii
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Percentage of area initially covered 20% 40% 60% 80%

Grid method 9.00 9.00 9.00 9.00

Uniform method 32.76 29.18 23.71 16.46

Sobol sequence method 29.80 29.04 24.16 15.98

Table A.1: Mean number of added vertices ENa

with small percentage of covered area. The grid method is mathematically optimal for the
number of added vertices to cover the whole area, however it is not optimal in a real life
scenario where positions can not be defined with such precision, and any imprecision leads
to a coverage hole. This method fares even or better both in complexity and in number of
added vertices.

A.5 Determinantal addition method

In this section, we present the determinantal method and compare it to the three
methods presented in Section A.4.

A.5.1 Definitions

The most common point process in wireless network representation is the Poisson point
process. However in this process, conditionally to the number of vertices, their positions are
independent from each other (as in the uniform positioning method presented in Section
A.4). This independence creates some aggregations of vertices, that is not convenient for
our application. That is why we introduce the use of determinantal point processes, in
which the vertices positions are not independent anymore. We can see in Figure A.5 the
differences between points sampled uniformly and sampled with repulsion on the unit disk.
We can see that the independence of vertices positions of the Poisson point process creates
some clusters, while determinantal processes provide a more uniform coverage.
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Figure A.5: Uniform vs determinantal sampling.

General point processes can be characterized by their so-called Papangelou intensity.
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Informally speaking, for x a location, and ω a realization of a given point process, that is a
set of vertices, c(x,ω) is the probability to have a vertex in an infinitesimal region around
x knowing the set of vertices ω. For Poisson process, c(x,ω) = 1 for any x and any ω.
A point process is said to be repulsive (respectively attractive) whenever c(x,ω) ≥ c(x, ζ)
(resp. c(x,ω) ≤ c(x, ζ)) as soon as ω ⊂ ζ. For repulsive point process, that means that
the greater the set of vertices, the smaller the probability to have an other vertex.

Among repulsive point processes, we are in particular interested in determinantal pro-
cesses:

Definition 17 (Determinantal point process). Given X a Polish space equipped with the
Radon measure µ, and K a measurable complex function on X2, we say that N is a
determinantal point process on X with kernel K if it is a point process on X with correlation
functions ρn(x1, . . . , xn) = det(K(xi, xj)1≤i,j≤n) for every n ≥ 1 and x1, . . . , xn ∈ X.

We can see that when two vertices xi and xj tends to be close to each other for i #= j,
the determinant tends to zero, and so does the correlation function. That means that
the vertices of N repel each other. There exist as many determinantal point processes as
functions K. We are interested in the following:

Definition 18 (Ginibre point process). The Ginibre point process is the determinantal
point process with kernel K(x, y) =

∑∞
k=1Bkφk(x)φk(y), where Bk, k = 1, 2, . . . , are k

independent Bernoulli variables and φk(x) =
1√
πk!

e
−|x|2

2 xk for x ∈ C and k ∈ N.

The Ginibre point process is invariant with respect to translations and rotations, mak-
ing it relatively easy to simulate on a compact set. Moreover, the repulsion induced by a
Ginibre point process is of electrostatic type. The principle behind the repulsion lies in the
probability density used to draw vertices positions. The probability to draw a vertex at
the exact same position of an already drawn vertex is zero. Then, the probability increases
with increasing distance from every existing vertices. Therefore the probability to draw
a vertex is greater in areas the furthest away from every existing vertices, that is to say
in coverage holes. Therefore, added vertices are almost automatically located in coverage
holes thus reducing the number of superfluous vertices.

A.5.2 Simulation

Using determinantal point processes allows us to not only take into account the number
of existing vertices, via the computation of Na, but we also take into account the existing
vertices positions, then every new vertex position as it is added. It suffices to consider
the Ni existing vertices as the Ni first vertices sampled in the process, then each vertex is
taken into account as it is drawn. The Ginibre process is usually defined on the whole plane
thus we needed to construct a process with the same repulsive characteristics but which
could be restricted to a compact set. Moreover, we needed to be able to set the number
of vertices to draw. Due to space limitations, we will not delve into these technicalities
but they are developed in Chapter 4. We can see a realization of our simulation for the
recovery of the wireless network of Figure A.1 in Figure A.6.
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Figure A.6: With the determinantal addition method with a Ginibre basis.

A.5.3 Comparison

We now compare the determinantal vertices addition method to the methods presented
in Section A.4.

As for the complexity, since the determinantal method takes into account the position
of both existing vertices and randomly added vertices, it is the more complex. First taking
into account the existing vertices positions is of complexity O(N2

i ), then the position
drawing with the rejection sampling is of complexity O(Na(Na + Ni)) at most. Thus we
have a final complexity of O(N2

i + N2
a + NaNi)). To which we add the Betti numbers

computation complexity: O((Na +Ni)
5( ra)

6).

We give in Table A.2 the comparison between the mean number of added vertices
for the three methods. The simulation parameters being the same as Section A.4. The
determinantal method provides the best results in all scenarii among the random methods
by far. And it is the best method among all for the most covered scenario.

Percentage of area initially covered 20% 40% 60% 80%

Grid method 9.00 9.00 9.00 9.00

Uniform method 32.76 29.18 23.71 16.46

Sobol sequence method 29.80 29.04 24.16 15.98

Determinantal method 14.07 12.52 9.67 5.73

Table A.2: Mean number of added vertices ENa

A.6 Performance comparisons

After adding the new vertices, according to Algorithm 9, we run the coverage reduction
algorithm described in [86]. Therefore, from the Na added vertices we keep only what we
call the final number of added vertices Nf < Na. We can see in Figure A.7 an execution of
the reduction algorithm on the intermediate configuration of Figure A.6. Removed vertices



136 A. Disaster recovery algorithm

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure A.7: The coverage reduction algorithm run on the determinantal method example.

are represented by blue diamonds. We now compare the performance results of the whole
disaster recovery algorithm to the most known coverage recovery algorithm: the greedy
algorithm for the set cover problem.

A.6.1 Complexity

The greedy algorithm method lays a square grid of parameter
√
2r for the C̆ech complex

of potential new vertices. Then the first added vertex is the furthest from all existing
vertices. The algorithm goes on adding the furthest potential vertex of the grid from all
vertices (existing+added). It stops when the furthest vertex is in the coverage ball of an
existing or added vertex. Then for the (i + 1)-th vertex addition, the greedy algorithm
computes the distances from all Ni + i existing vertices to all (⌊ a√

2r
⌋ + 1)2 − i potential

vertices. Therefore the complexity of the greedy algorithm is in O((Ni+Na)(⌊
a√
2r
⌋+1)2)).

For the complexity of our algorithm, we consider first the complexity of building the
simplicial complex associated with the network which is in O((Ni+Na)

C), where C is the
clique number. This complexity seems really high since C can only be upper bounded by
Ni +Na in the general case but it is the only way to compute the coverage when vertices
position are not defined along a grid. Then the complexity of the coverage reduction
algorithm is of the order of O((1 + ( ra)

2)Ni+Na). So the greedy algorithm appears less
complex than ours in the general case. However when r is small with respect to a or when
the dimension is greater than 2, then the power factor becomes d > 2 and C is a finite
integer, so the trend is reversed.

A.6.2 Mean final number of added vertices

We compare here the mean number of added vertices between our homology algorithm
with the determinantal addition method, and the greedy algorithm.

Results presented in Table A.3 are simulated in the same conditions as in Section A.4
and given in mean over 1000 simulations. They concern the final number of added vertices:
the number of added vertices kept after the reduction algorithm, or added with the greedy
algorithm. It is important to note that our algorithm with the grid method gives the exact
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same result as the greedy algorithm, number of added vertices and their positions being
exactly the same.

Percentage of area initially covered 20% 40% 60% 80%

Greedy algorithm 3.69 3.30 2.84 1.83

Homology algorithm 4.42 3.87 2.97 1.78

Table A.3: Mean final number of added vertices ENf

The numbers of vertices added in the final state both with our recovery algorithm and
the greedy algorithm are roughly the same. They both tend to the minimum number
of vertices required to cover the uncovered area depending on the initial configuration.
Nonetheless, we can see that our algorithm performs a little bit worse than the greedy
algorithm in the less covered area scenarii because the vertices are not optimally positioned
and it can be seen when just a small percentage of area is covered, and whole parts of the
grid from the greedy algorithm are used, instead of isolated vertices. In compensation, our
homology algorithm performs better in more covered scenarii.

A.6.3 Smoothed robustness

To show the advantages of our disaster recovery algorithm we choose to evaluate the
robustness of the algorithm when the added vertices positions are slightly moved, i.e.
when the nodes positioning does not strictly follow the theoretical positioning. In order
to do this, we apply a Gaussian perturbation to each of the added vertices position. The
covariance matrix of the perturbation is given by Σ = σ2 I with σ2 = 0.01, which means
that the standard deviation for each vertex is of σ = 0.1. Other simulations parameters are
unchanged, results in Table A.4 and A.5 are given in mean over 1000 simulations. First,
we compute the average number of holes β1 created by the Gaussian perturbation in Table
A.4. Then in Table A.5, we counted the percentage of simulations in which the number of
holes is still zero after the Gaussian perturbation on the new vertices positions.

Percentage of area initially covered 20% 40% 60% 80%

Greedy algorithm 0.68 0.65 0.45 0.35

Homology algorithm 0.62 0.53 0.37 0.26

Table A.4: Mean number of holes Eβ1 after the Gaussian perturbation

Percentage of area initially covered 20% 40% 60% 80%

Greedy algorithm 40.8% 47.7% 61.0% 69.3%

Homology algorithm 50.9% 58.1% 67.9% 75.3%

Table A.5: Probability that there is no hole P(β1 = 0) after the Gaussian perturbation

We can see that the perturbation on the number of holes decreases with the percentage
of area initially covered, since the initial vertices are not perturbed. Our homology algo-
rithm clearly performs better, even in the least covered scenarii, there are less than 50%
of simulations that create coverage holes, which is not the case for the greedy algorithm.
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The greedy algorithm also always create more coverage holes in mean than our disaster
recovery algorithm for the same vertices positions perturbation. Therefore our algorithm
seems more fitted to the disaster recovery case when a recovery network is deployed in
emergency both indoor, via Femtocells, and outdoor, via a trailer fleet, where exact GPS
locations are not always available, and exact theoretical positioning is not always followed.
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Appendix B

Stochastic dynamics of determinantal

processes by integration by parts

B.1 Introduction

Determinantal processes are point processes that exhibit a repulsion property, and
were introduced to represent the configuration of fermions, cf. [50], [78] and [82]. They are
known to be connected with the zeros of analytic functions, cf. [35] and references therein.

In this paper we construct Dirichlet forms related to determinantal processes, and we apply
them to derive the existence of the associated interacting diffusion processes. For this we
provide an integration by parts formula for functionals of determinantal processes which
is based on a quasi-invariance result proved in [14]. This integration by parts formula is
extended to closed gradient and divergence operators thanks to the use of a set of test
functionals different from the one considered in [14], cf. (5.5) and Theorem 5.3.2-(i) and
(ii). Our approach follows the lines of [2] and our construction differs from the one consid-
ered in [83] which is based on sample-path identities. Such a construction can be applied
to derive formulas for density estimation and sensitivity analysis for functionals of deter-
minantal processes along the lines of [69].

Our main result, Theorem B.4.1, provides the symmetric Dirichlet form associated to a
determinantal process. An application to the associated stochastic dynamics follows in
Theorem B.5.1, in which we prove the existence of the diffusion process associated to a
determinantal process satisfying the assumptions of Theorem 5.3.2.

We proceed as follows. In Section 5.2 we recall the definitions of point processes and
determinantal process, based on [17], [18], [55] and [85] for point processes, and on [35] for
determinantal processes. We also refer to [11], [21] and [79] for the required background
on functional analysis.

B.2 Preliminaries

B.2.1 Locally finite point processes

Let (S, dS) be a locally compact Polish space, and denote by BS the associated Borel
σ-algebra. For any subset B ⊆ S, let ♯B denote the cardinality of B, setting ♯B =∞ if B
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is not finite. We denote by Nlf the set of locally finite point configurations on S:

Nlf :={B ⊆ S: ♯(B ∩D) <∞, for any compact D ⊆ S},

equipped with the σ-field

Nlf :=σ({B ∈ Nlf : ♯(B ∩D) = m}, m ≥ 0, D ⊆ S compact).

We define similarly Nf the set of finite point configurations on S:

Nf :={B ⊆ S: ♯B <∞},

Nf is naturally equipped with the trace σ-field Nf = Nlf |Nf
. Lastly, for any compact

D ⊆ S, let ND
f be the space of finite configurations on D, and ND

f the associated σ-field.
As in [28], we define for any Radon measure µ on (S,BS) the µ-sample measure Lµ on
(Nf ,Nf ) by

∫

Nf

f(α)Lµ(dα) :=
∑

n≥0

1

n!

∫

Sn

f({x1, . . . , xn})µ(dx1) . . . µ(dxn), (B.2.1)

for any measurable f : Nf → R.
Let X be a locally finite point process on S, i.e. a measurable mapping defined on some
probability space (Ω,F , P ) and taking values on (Nlf ,Nlf ). We will scarcely denote by X

an element of Nlf , omitting the fact that X is in fact a mapping. Moreover, we assume
that X is simple, i.e. X({x}) ∈ {0, 1} almost surely (a.s.), for all x ∈ S, where X(B)
denotes the number of points of X on B ⊆ S, i.e. X(B) := ♯(X ∩B). We also denote by

XD = X ∩D = {X1, . . . , XX(D)}

the restriction to D of the point process X ≡ {Xn}1≤n≤X(S), where the previous notation
includes the case X(S) = ∞. In the following, we will denote by P the law of X and by
PD the law of XD.

The correlation functions of X, with respect to (w.r.t.) a Radon measure µ on (S,BS), are
(if they exist) measurable functions ρk : Sk −→ [0,∞) such that

E

[

k
∏

i=1

X(Bi)

]

=

∫

B1×...×Bk

ρk(x1, . . . , xk)µ(dx1) . . . µ(dxk),

for any family of mutually disjoint subsets B1, . . . , Bk of S, k ≥ 1. We require in addition
that ρk(x1, . . . , xk) = 0 whenever xi = xj for some 1 ≤ i (= j ≤ k. When ρ1 exists, the
measure ρ1(x)µ(dx) is known as the intensity measure of X.

For any compact subset D ⊆ S, the Janossy densities of X, w.r.t. µ are (if they exist)
measurable functions jnD : Dn → R satisfying, for all measurable functions f : ND

f → R,

E
[

f(XD)
]

=
∑

n≥0

1

n!

∫

Dn

f({x1, . . . , xn}) j
n
D (x1, · · · , xn) µ(dx1) . . . µ(dxn), (B.2.2)

i.e. jD is the density of PD with respect to LµD (the restriction to Nf
D of Lµ), when

PD ≪ LµD. We remark that we shall sometimes use the simplified notation jD(x) :=

j
x(D)
D (x1, . . . , xx(D)).
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B.2.2 Kernels and integral operators

Let µ be a Radon measure on (S,BS). For any compact set D ⊆ S, we denote by
L2(D,µ) the Hilbert space of complex-valued square integrable functions w.r.t. the re-
striction of the Radon measure µ on D, equipped with the inner product

〈f, g〉L2(D,µ) :=

∫

D
f(x)g(x)µ(dx), f, g ∈ L2(D,µ)

where z denotes the complex conjugate of z ∈ C. By definition, a kernel K is a measurable
function from S2 to C. We say that K is locally square integrable if, for any compact
D ⊆ S, we have

∫

D2

|K(x, y)|2µ(dx)µ(dy) <∞. (B.2.3)

To any locally square integrable kernelK, we associate the integral operatorKD : L2(D,µ) −→
L2(D,µ), where D is a compact subset of S, defined for f ∈ L2(D,µ) by

KDf(x) :=

∫

D
K(x, y)f(y)µ(dy), for µ-almost all x ∈ D.

A straightforward application of the Cauchy-Schwarz inequality shows that the operator
KD is bounded. In fact, it can be shown that KD is a compact operator.

To any locally square integrable kernel K, we associate the integral operator K defined by

Kf(x) :=

∫

S
K(x, y)f(y)µ(dy), for µ-almost all x ∈ S

for functions f ∈ L2(S, µ) that vanish outside a compact subset of S. Letting PD denote
the projection operator from L2(S, µ) onto L2(D,µ), we have KD = PDKPD and set
KD(x, y) := 1D(x)K(x, y)1D(y), for x, y ∈ S. The operator K is said to be Hermitian or
self-adjoint if

K(x, y) = K(y, x), for µ⊗2-almost all (x, y) ∈ S2. (B.2.4)

Equivalently, this means that the integral operators KD are self-adjoint for any compact
D ⊆ S. If KD is self-adjoint, by the spectral theorem for self-adjoint and compact operators
we have that L2(D,µ) has an orthonormal basis {ϕDj }j≥1 of eigenfunctions of KD. The

corresponding eigenvalues {λDj }j≥1 have finite multiplicity (except possibly the zero eigen-
value) and the only possible accumulation point of the eigenvalues is the zero eigenvalue.
Then, the kernel KD of KD can be written as

KD(x, y) =
∑

j≥1

λDj ϕ
D
j (x)ϕ

D
j (y), (B.2.5)

for x, y ∈ D. We say that an operator K is positive (respectively non-negative) if its spec-
trum is included in (0,+∞) (respectively [0,+∞)). For two operators K and I, we will say
that K > I (respectively K ≥ I) in the operator ordering if K − I is a positive operator
(respectively non-negative operator).

We say that a self-adjoint integral operator KD is of trace class if
∑

j≥1

|λDj | <∞.
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We will then define the trace of the operator KD as TrKD =
∑

j≥1 λ
D
j . If KD is of trace

class for every compact subset D ⊆ S, then we say that K is locally of trace class. It is
easily seen that Kn is of trace class, for all n ≥ 2, if K is of trace class. We also have
the inequality Tr(Kn) ≤ ‖K‖n−1Tr(K), where ‖ · ‖ denotes the operator norm. Finally, we
define the Fredholm determinant of Id+K, where ‖K‖ < 1, as

Det(Id+K) = exp





∑

n≥1

(−1)n−1

n
Tr(Kn)



 . (B.2.6)

Here, Id denotes the identity operator on L2(S, µ).

B.2.3 Determinantal point processes on (S, dS)

Throughout this paper we shall work under the following hypothesis:
(H1): The operator K is locally of trace class, satisfies (3.3), and its spectrum is contained
in [0, 1), i.e. 0 ≤ K ≤ Id and ‖K‖ < 1.

Suppose that K satisfies (H1). A locally finite and simple point process X ≡ {Xn}1≤n≤X(S)

on S is called a determinantal process if its correlation functions w.r.t. the Radon measure
µ on S exist and satisfy

ρk(x1, . . . , xk) = det(K(xi, xj))1≤i,j≤k,

for any k ≥ 1 and x1, . . . , xk ∈ S. It is worth noting that, under (H1), we can choose a
proper kernel for K, in the sense of Lemma A.4 in [28], and we have ρk(x1, . . . , xk) ≥ 0 for
µ⊗k -a.e. (x1, . . . , xk) ∈ Sk.

Existence and uniqueness (in law) of determinantal processes is guaranteed under (H1)
by the results in [50], [78] and [80]. See also Lemma 4.2.6 and Theorem 4.5.5 in [35]. More
precisely, if a kernel K and its associated integral operator K satisfy (H1), then there
exists a determinantal process X on S with kernel K. Moreover, for any compact D ⊆ S
there exist constants c1(D), c2(D) > 0 such that P (X(D) > k) ≤ c1(D)e−c2(D)k for all
k ≥ 1, and in this case the correlation functions ρk(x1, . . . , xk) uniquely determine the law
of the process. This is because of the fact that for disjoint compacts D1, . . . , Dk ⊆ S, the
random vector (X(D1), . . . ,X(Dk)) has a convergent Laplace transform in a neighborhood
of zero, cf. [35] Remark 1.2.4.

Let K be an operator satisfying the assumption (H1). We define the operator J [D] on
L2(D,µ) by

J [D] := (Id−KD)
−1KD.

The operator J [D] is called the local interaction operator and we emphasize the fact that
unlike KD, J [D] is not a projection operator i.e., in general, J [D] &= PD(I − K)

−1KPD.
However, J [D] has some notable properties which are summarized in [28]. Let us state
the ones that are useful to our purposes. First, J [D] is a bounded integral operator and,
letting J [D] denote its kernel, as a consequence of (3.4), we have

J [D](x, y) =
∑

j≥0

λDj

1− λDj
ϕDj (x)ϕ

D
j (y), (B.2.7)
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for x, y ∈ D. Second, since J [D] ≤ (1 − ‖K‖)−1KD, we have that J [D] is a trace class
operator. For x = {x1, . . . , xn} ∈ ND

f , we denote by det J [D](x) = det J [D]({x1, . . . , xn})
the determinant det (J [D](xi, xj))1≤i,j≤n. Note that the function

(x1, . . . , xn) #→ det J [D]({x1, . . . , xn})

is µ⊗n-a.e. non-negative (thanks to Lemma A.4 in [28] for example) and symmetric in
x1, . . . , xn (see e.g. [28]), and we simply write det J [D]({x1, . . . , xn}) = det J [D](x1, . . . , xn).
The local interaction operator is related to the Janossy density of a determinantal process,
due to the following proposition:

Proposition B.2.1 ([78]). Assume that the kernel K satisfies (H1). Then, given a com-
pact D ⊆ S and n ∈ N

∗, the determinantal process X admits Janossy densities

jnD(x) = Det(Id−KD) det J [D](x), (B.2.8)

where x = {x1, . . . , xn} ∈ ND
f . Moreover, it holds the following identity for the hole

probability: j0D(∅) = Det(Id−KD).

Let us now define the operator J := (Id − K)−1K which can be thought of as a global
interaction operator. As proved in [28], J satisfies the expected properties: it is a bounded
integral operator, locally trace class and its kernel J(x, y) can be chosen as in Lemma A.4
of [28]. Furthermore, the determinantal process X is stochastically dominated by a Poisson
process Y with intensity measure J(x, x)µ(dx) (defined previously), i.e

E[f(X)] ≤ E[f(Y)] (B.2.9)

for any measurable function f : Nlf → R such that the expectations exist and f(x) ≤ f(y)
whenever x ⊂ y.

B.3 Differential calculus and integration by parts

Hereafter we assume that S is a domain of Rd, dS is the Euclidean distance and D ⊂ S
is a fixed compact. We denote by ‖ · ‖ the Euclidean norm on R

d and by x(i) the i-th
component of x ∈ R

d.

B.3.1 Differential calculus

We denote by C∞(D,Rd) the set of all C∞-vector fields v : D −→ R
d and by C∞(Dk)

the set of all C∞-functions on Dk.

Definition 1. A random variable (r.v.) F (XD) is said to be in SD if

F (XD) = f01{X(D)=0} +
n
∑

k=1

1{X(D)=k}fk(X1, . . . , Xk), (B.3.1)

where n ≥ 1 is an integer, for any k = 1, . . . , n, fk ∈ C
∞(Dk) is a symmetric function and

f0 ∈ R is a constant.

Then, the following lemma holds:
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Lemma B.3.1. SD is dense in L2
D = L2(ND

f , PD).

Proof. Let V ∈ L2
D and assume that E[G(XD)V ] = 0 for all G(XD) ∈ SD. We need to

show that V = 0 a.s.. Since V isND
f -measurable we have that V = u(X(D), X1, . . . , XX(D)),

for some measurable function u. Therefore, for all integers n ≥ 1 and G(XD) ∈ SD, with
a little abuse of notation, we get

G(∅)u(0, ∅)P (X(D) = 0) = 0 and E[G(X1, . . . , Xn)u(n,X1, . . . , Xn) |X(D) = n] = 0.
(B.3.2)

The first equality above yields u(0, ∅) = 0. We now prove that, for any n ≥ 1,

u(n, x1, . . . , xn) = 0 a.s. w.r.t. the probability measure, say π
(n)
D , with density

j
(n)
D (x1, . . . , xn)µ(dx1) . . . µ(dxn)

(here, j
(n)
D are the Janossy densities of XD divided by P (X(D) = n).)

Denote by u+n and u−
n the positive and the negative part of u(n, ·), respectively. Clearly

(take G ≡ 1 in the second equality in (B.3.2)) we have

En := E[u+n (X1, . . . , Xn) |X(D) = n] = E[u−
n (X1, . . . , Xn) |X(D) = n].

If En = 0 then u+n = u−
n = 0 π

(n)
D -a.s., hence un = 0 π

(n)
D -a.s.. If En > 0, then consider the

probability measures on Dn:

π
(n)±
D (dx1 . . . dxn) := û±n (x1, . . . , xn)π

(n)
D (dx1, . . . , dxn),

where

û±n (x1, . . . , xn) :=
1

En
u±n (x1, . . . , xn).

Let R be a rectangular cell in R
dn and take G(x1, . . . , xn) = ϕl(x1, . . . , xn) where ϕl is

a sequence in C∞c (Rdn) such that ϕl(x1, . . . , xn) converges to 1{(x1,...,xn)∈R} as l goes to
infinity, for all x1, . . . , xn. Combining the second equality in (B.3.2) with the dominated

convergence theorem, we have π
(n)+
D (R ∩Dn) = π

(n)−
D (R ∩Dn). Therefore, π

(n)+
D ≡ π

(n)−
D

on the Borel σ-field B(Dn). So u+n (x1, . . . , xn) = u−
n (x1, . . . , un) π

(n)
D -a.s., and the claim

follows. �

The gradient of F (XD) ∈ SD as in (5.5) is defined by

∇
Nlf
x F (XD) :=

n∑

k=1

1{X(D)=k}

k∑

i=1

1{Xi}(x)∇xfk(X1, . . . , Xk), x ∈ D, (B.3.3)

where ∇x denotes the usual gradient on R
d with respect to the variable x ∈ D. For

v ∈ C∞(D,Rd), we also let

∇
Nlf
v F (XD) :=

X(D)∑

k=1

∇
Nlf

Xk
F (XD) · v(Xk) =

n∑

k=1

1{X(D)=k}

k∑

i=1

∇Xi
fk(X1, . . . , Xk) · v(Xi),

(B.3.4)
where · denotes the inner product on R

d.
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B.3.2 Integration by parts and closability

In this section we give an integration by parts formula for determinantal processes,
based on closed gradient and divergence operators. The proof relies on an integration by
parts formula on the set of test functionals SD introduced in (5.5), extending and making
more precise the arguments of Theorem 10 page 289 of [14] and its proof.

(H3) : We suppose that, for any n ≥ 1, the function

(x1, . . . , xn)  −→ det J [D](x1, . . . , xn)

is continuously differentiable on the whole Dn.

Assuming that (H1) and (H3) hold, the potential energy is the function U : ND
f −→ R

defined by
U [D](x) := − log det J [D](x).

We insist that since det J [D](x) > 0 for P -a.e. x ∈ ND
f , U is well defined for P -a.e.

x ∈ ND
f .

We set

∇
Nlf
v U [D](XD) := −

∞
∑

k=1

1{X(D)=k}

k
∑

i=1

∇xidet J [D](X1, . . . , Xk)

det J [D](X1, . . . , Xk)
· v(Xi)

=
∞
∑

k=1

1{X(D)=k}

k
∑

i=1

Ui,k(X1, . . . , Xk) · v(Xi), (B.3.5)

for any vector field v ∈ C∞(D,Rd).

Under Conditions (H1) and (H2) we define the vector field

βµ(x) :=
∇ρ(x)

ρ(x)
,

as well as the random variable

Bµ
v (X

D) :=

X(D)
∑

k=1

(−βµ(Xk) · v(Xk) + divv(Xk)), v ∈ C∞(D,Rd),

where div denotes the adjoint of the gradient ∇ on D, i.e.
∫

D
g(x) div∇f(x) dx =

∫

D
∇f(x) ·∇g(x) dx, f, g ∈ C∞(D).

Lemma B.3.2. Assume that (H1), (H2) and (H3) hold. Then, for any F (XD), G(XD) ∈
SD and vector field v ∈ C∞(D,Rd), we have

E[G(XD)∇
Nlf
v F (XD)] = E[F (XD)∇

Nlf∗
v G(XD)], (B.3.6)

where

∇
Nlf∗
v G(XD) := −∇

Nlf
v G(XD) +G(XD)

(
−Bµ

v (X
D) +∇

Nlf
v U [D](XD)

)
.
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Proof. For any vector field v ∈ C∞(D,Rd), consider the flow φvt : D −→ D, t ∈ R, where
for a fixed x ∈ D, the curve t "→ φvt (x) is defined as the solution to the Cauchy problem

d

dt
φvt (x) = v(φvt (x)), φv0(x) = x.

For a given family of flows {φvt : t ∈ R, v ∈ C∞(D,Rd)}, we define the mapping Φ
v
t :

ND
f −→ ND

f by

Φ
v
t (x) := {φ

v
t (x) : x ∈ x}.

Following [2], for a functional R(XD) of the determinantal process, we define the gradient

∇
Nlf
v R(XD) as the directional derivative along v, i.e.

∇
Nlf
v R(XD) :=

d

dt
R(Φv

t (X
D))
∣

∣

∣

t=0
,

provided the derivative exists. It is easy to check that formulas (B.3.4) and (B.3.5) are
consistent with this definition. Note that as observed previously, the image measure µ◦φv−t
is absolutely continuous with respect to µ on D, with Radon-Nikodym derivative

ρ(φv−t(x))

ρ(x)
Jacφ

v
−t(x),

where Jacφ
v
−t denotes the Jacobian of φv−t. Note also that

Jacφ
v
t (x) = exp

(

−
∫ t

0
div v(φvz(x)) dz

)

(B.3.7)

and therefore

d

dt

(

ρ(φv−t(x))

ρ(x)
Jacφ

v
−t(x)

)

=− exp

(

−
∫ t

0
div v(φvz(x)) dz

)

[

∇ρ(φv−t(x))

ρ(x)
· v(φv−t(x))

+
ρ(φv−t(x))

ρ(x)
div v(φvt (x))

]

. (B.3.8)

Using the quasi-invariance property of determinantal processes discussed in the previous
section, for any t ∈ R and F (XD), G(XD) ∈ SD, we have

E[F (Φv
t (X

D))G(XD)] (B.3.9)

= E
[

F (XD)G(Φv
−t(X

D))





X(D)
∏

k=1

ρ(φv−t(Xk))

ρ(Xk)
Jacφ

v
−t(Xk)



 (B.3.10)

det J [D](φv−t(X1), . . . ,φ
v
−t(XX(D)))

det J [D](X1, . . . , XX(D))

]

.

We start by exchanging the derivative d/dt with the expectation sign E in the above
relation, for all t ∈ I0 a neighborhood of zero. This interchange will be justified by
integrability after (B.3.14) below. In this case we have

E

[

G(XD)
d

dt
F (Φv

t (X
D))

]
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= E
[

(

d

dt
G(Φv

−t(X
D))

)

F (XD)





X(D)
∏

k=1

ρ(φv−t(Xk))

ρ(Xk)
Jacφ

v
−t(Xk)



 (B.3.11)

det J [D](φv−t(X1), . . . ,φ
v
−t(XX(D)))

det J [D](X1, . . . , XX(D))

]

+ E
[





d

dt

X(D)
∏

k=1

ρ(φv−t(Xk))

ρ(Xk)
Jacφ

v
−t(Xk)



F (XD)G(Φv
−t(X

D)) (B.3.12)

det J [D](φv−t(X1), . . . ,φ
v
−t(XX(D)))

det J [D](X1, . . . , XX(D))

]

+ E
[

(

d

dt

det J [D](φv−t(X1), . . . ,φ
v
−t(XX(D)))

det J [D](X1, . . . , XX(D))

)

F (XD)G(Φv
−t(X

D)) (B.3.13)

X(D)
∏

k=1

ρ(φv−t(Xk))

ρ(Xk)
Jacφ

v
t (Xk)

]

.

The claimed integration by parts formula follows by evaluating the above relation at t = 0.
In particular, we use (B.3.8) to evaluate the second term inside the expectation in the
right-hand side of the above equality, and we use the relation

d

dt

det J [D](φv−t(X1), . . . ,φ
v
−t(XX(D)))

det J [D](X1, . . . , XX(D))

= −
X(D)
∑

i=1

∇xidet J [D](φv−t(X1), . . . ,φ
v
−t(XX(D)))

det J [D](X1, . . . , XX(D))
· v(φv−t(Xi)) (B.3.14)

to evaluate the third term inside the expectation in the right-hand side of the above
equality. Equality (B.3.14) holds P -a.e. which is enough for our purposes. Using the
definition of functionals in SD, one checks that the r.v.

G(XD)
d

dt
F (Φv

t (X
D))

is uniformly bounded in t ∈ I0 by a positive constant. By the assumptions (H2) and (H3)
and the form (5.5) of the functionals in SD, one may easily check that all the terms inside
the expectations in the right-hand side of the above equality can be uniformly bounded in
t ∈ I0 by integrable r.v.’s and this justifies the exchange of expectation and derivative in
(B.3.9). We check this fact only for the latter term. Take

F (XD) = f01{X(D)=0} +
n
∑

k=1

1{X(D)=k}fk(X1, . . . , Xk)

of the form (5.5). By (B.3.14) we easily see that the modulus of the r.v.

(

d

dt

det J [D](φv−t(X1), . . . ,φ
v
−t(XX(D)))

det J [D](X1, . . . , XX(D))

)

F (XD)G(Φv
−t(X

D))

X(D)
∏

k=1

ρ(φv−t(Xk))

ρ(Xk)
Jacφ

v
−t(Xk)

up to a positive constant is bounded above P -a.e. by



148
B. Stochastic dynamics of determinantal processes by integration by

parts

n
∑

k=1

1{X(D)=k}

(

k
∏

i=1

ρ(φv−t(Xi))

ρ(Xi)
Jacφ

v
−t(Xi)

)

k
∑

i=1

∣

∣

∣

∇xidet J [D](φv−t(X1), . . . ,φ
v
−t(Xk))

det J [D](X1, . . . , Xk)
· v(φv−t(Xi))

∣

∣

∣
. (B.3.15)

Since ρ is continuous on D, for any n ≥ 1, the map

(x1, . . . , xn) !−→ det J [D](x1, . . . , xn)

is continuously differentiable on Dn, and the Jacobian is given by (B.3.7), up to a positive
constant. The term in (B.3.15) is bounded above P -a.e., uniformly in t ∈ I0, by

n
∑

k=1

1{X(D)=k}
ρ(X1)

−1 · · · ρ(Xk)
−1

det J [D](X1, . . . , Xk)
.

To conclude the proof, we only need to check that the mean of this r.v. is finite. We have
by definition of the Janossy densities, and since det J [D](x) > 0, for PD-a.e. x ∈ ND

f :

E

[

1{X(D)=k}
ρ(X1)

−1 · · · ρ(Xk)
−1

det J [D](X1, . . . , Xk)

]

(B.3.16)

=
1

k!

∫

Dk

jkD(x1, . . . , xk)

det J [D](x1, . . . , xk)
1{jk

D
(x1,...,xk)>0}

1

ρ(x1)
λ(dx1) . . .

1

ρ(xk)
λ(dxk)

=
1

k!

∫

Dk

jkD(x1, . . . , xk)

det J [D](x1, . . . , xk)
1{jk

D
(x1,...,xk)>0} ℓ(dx1) . . . ℓ(dxk)

=
Det(Id−KD)

k!
ℓ(Dk) <∞,

where ℓ denotes the Lebesgue measure, and we have used the fact that ρ = dλ
dℓ . �

Remark B.3.3. We remark that there is a sign change in (B.3.6), as compared to the
results of [14], which is justified by the corrected formula for (5.8). This corrected version
is also more in line with the corresponding integration by parts for the Poisson point process.

Next, we extend the integration by parts formula by closability to a larger class of func-

tionals. For v ∈ C∞(D,Rd), we consider the closability of the linear operators ∇
Nlf
v :

SD −→ L2
D and ∇

Nlf∗
v : SD −→ L2

D defined, respectively, by F (XD) !→ ∇
Nlf
v F (XD) and

F (XD) !→ ∇
Nlf∗
v F (XD). In addition we state our extension of the integration by parts for-

mula (B.3.6) by closability. In the following, we denote by A the minimal closed extension
of a closable linear operator A, and by Dom(A) the domain of A.

Theorem B.3.4. Assume that (H1), (H2) and (H3) hold, and that

∫

Dn

∣

∣

∣

∣

∣

∣

∂
x
(h)
i

det J [D](x1, . . . , xn)∂x(k)j

det J [D](x1, . . . , xn)

det J [D](x1, . . . , xn)

∣

∣

∣

∣

∣

∣

1{det J [D](x1,...,xn)>0} µ(dx1) . . . µ(dxn) <∞ (B.3.17)

for any n ≥ 1, 1 ≤ i, j ≤ n and 1 ≤ h, k ≤ d. Then
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(i) the linear operators ∇
Nlf
v and ∇

Nlf∗

v are well-defined and closable for any vector field
v ∈ C∞(D,Rd). In particular, we have

∇
Nlf
v (SD) ⊂ L2

D and ∇
Nlf∗

v (SD) ⊂ L2
D;

(ii) for any vector field v ∈ C∞(D,Rd), we have

E

[

G∇
Nlf
v F

]

= E

[

F∇
Nlf∗

v G

]

for all F ∈ Dom

(

∇
Nlf
v

)

, G ∈ Dom

(

∇
Nlf∗

v

)

in the domains of the minimal closed

extensions of ∇
Nlf
v and ∇

Nlf∗

v .

Note that under the assumptions (H1), (H2) and (H3), condition (B.3.17) is satisfied if,
for any n ≥ 1, the function

(x1, . . . , xn) #−→ det J [D](x1, . . . , xn)

is strictly positive on the compact Dn.

Proof of Theorem 5.3.2. (i) Let v ∈ C∞c (D,Rd) and F (XD) ∈ SD. For ease of notation,

throughout this proof we write ∇v in place of ∇
Nlf
v and ∇∗v in place of ∇

Nlf∗

v . We clearly
have

|∇vF (XD)| ≤ C

for some constant C > 0, almost surely, and therefore ∇v(SD) ⊂ L2
D. The claim ∇∗v(SD) ⊂

L2
D follows if we check that ‖G(XD)∇vU [D](XD)‖L2

D
< ∞ and ‖G(XD)Bµ

v (XD)‖L2
D
< ∞

for any G(XD) ∈ SD. The latter relation easily follows noticing that

|G(XD)Bµ
v (X

D)| ≤ C

for some constant C > 0, almost surely. Taking

G(XD) = g01{X(D)=0} +

m
∑

k=1

1{X(D)=k}gk(X1, . . . , Xk)

of the form (5.5), by (B.3.5) we have

G(XD)∇vU [D](XD) = −
m
∑

k=1

1{X(D)=k}gk(X1, . . . , Xk)

k
∑

i=1

∇xidet J [D](X1, . . . , Xk)

det J [D](X1, . . . , Xk)
· v(Xi),

and for some positive constant C > 0,

‖G(XD)∇vU [D](XD)‖2L2
D

=
m
∑

k=1

1

k!

∫

Dk

g2k(x1, . . . , xk)1{det J [D](x1,...,xk)>0}
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(

k
∑

i=1

∇xidet J [D](x1, . . . , xk)

det J [D](x1, . . . , xk)
· v(xi)

)2

jkD(x1, . . . , xk)µ(dx1) · · ·µ(dxk)

= Det(Id−KD)
m
∑

k=1

1

k!

∫

Dk

g2k(x1, . . . , xk)

det J [D](x1, . . . , xk)

1{det J [D](x1,...,xk)>0}

(

k
∑

i=1

∇xidet J [D](x1, . . . , xk) · v(xi)

)2

µ(dx1) · · ·µ(dxk)

≤ C Det(Id−KD)
m
∑

k=1

1

k!

∑

1≤i,j≤k

∫

Dk

1{det J [D](x1,...,xk)>0}

∇xidet J [D](x1, . . . , xk) · v(xi)∇xjdet J [D](x1, . . . , xk) · v(xj)

det J [D](x1, . . . , xk)
µ(dx1) · · ·µ(dxk)

< ∞,

where the latter integral is finite by assumption (5.13).

To conclude, we only need to show that ∇v is closable (the closability of ∇∗
v can be proved

similarly). Let (Fn(X
D))n≥1 be a sequence in SD converging to 0 in L2

D and such that
∇vFn(X

D) converges to V in L2
D as n goes to infinity. We need to show that V = 0 a.s.

We have

|E[G(XD)V ]| = lim
n→∞

|E[G(XD)∇vFn(X
D)]| = lim

n→∞
|E[Fn(X

D)∇∗
vG(XD)]| (B.3.18)

≤ ‖∇∗
vG(XD)‖L2

D
lim
n→∞

‖Fn(X
D)‖L2

D
= 0, G ∈ SD.

Here, the second equality in (B.3.18) follows by the integration by parts formula (B.3.6)
of Lemma B.3.2. The fact that E[G(XD)V ] = 0 for all G(XD) ∈ SD implies V = 0 a.s. is
a consequence of the density Lemma 5.2.1.

(ii) By (i), both operators ∇v and ∇∗
v are closable. Take F ∈ Dom(∇v), G ∈ Dom(∇∗

v)
and let (Fn(X

D))n≥1, (Gn(X
D))n≥1 be sequences in SD such that Fn(X

D) converges to
F, Gn(X

D) converges to G, ∇vFn(X
D) converges to ∇vF and ∇∗

vGn(X
D) converges to

∇∗
vG in L2

D as n goes to infinity. By Lemma B.3.2 the integration by parts formula applies
to r.v.’s in SD, therefore we have E[Gn(X

D)∇vFn(X
D)] = E[Fn(X

D)∇∗
vGn(X

D)] for all
n ≥ 1. The claim follows if we prove that

lim
n→∞

E[Gn(X
D)∇vFn(X

D)] = E[G∇vF]

and
lim
n→∞

E[Fn(X
D)∇∗

vGn(X
D)] = E[F∇∗

vG].

We only show the first limit above; the second limit being proved similarly. We have

|E[Gn(X
D)∇vFn(X

D)]− E[G∇vF]|

= |E[Gn(X
D)∇vFn(X

D)]− E[Gn(X
D)∇vF] + E[Gn(X

D)∇vF]− E[G∇vF]|

≤ |E[Gn(X
D)(∇vFn(X

D)−∇vF)]|+ |E[(Gn(X
D)−G)∇vF]|

≤ ‖Gn(X
D)‖L2

D
‖∇vFn(X

D)−∇vF‖L2
D
+ ‖Gn(X

D)−G‖L2
D
‖∇vF‖L2

D
,

which tends to 0 as n goes to infinity. �
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B.4 Dirichlet forms

In this section we construct the symmetric Dirichlet form associated to a determinantal
process (see Theorem B.4.1 below.)

We start by recalling some definitions related to bilinear forms (see [48] for details). Let
H be a Hilbert space with inner product 〈·, ·〉 and A : Dom(A)×Dom(A) −→ R a bilinear
form defined on a dense subspace Dom(A) of H, the domain of A. The form A is said
to be symmetric if A(x, y) = A(y, x), for any x, y ∈ Dom(A), and non-negative definite if
A(x, x) ≥ 0, for any x ∈ Dom(A). Let A be symmetric and non-negative definite, A is
said closed if Dom(A) equipped with the norm

‖x‖A :=
√

A(x, x) + 〈x, x〉, x ∈ Dom(A),

is a Hilbert space. A symmetric and non-negative definite bilinear form A is said closable
if, for any sequence (xn)n≥1 ⊂ Dom(A) such that xn goes to 0 in H and (xn)n≥1 is Cauchy
w.r.t. ‖ · ‖A it holds that A(xn, xn) converges to 0 in R as n goes to infinity. Let A be
closable and denote by Dom(A) the completion of Dom(A) w.r.t. the norm ‖ ·‖A. It turns
out that A is uniquely extended to Dom(A) by the closed, symmetric and non-negative
definite bilinear form

A(x, y) = lim
n→∞

A(xn, yn), (x, y) ∈ Dom(A)×Dom(A),

where {(xn, yn)}n≥1 is any sequence in Dom(A) × Dom(A) such that such that (xn, yn)
converges to (x, y) ∈ Dom(A) × Dom(A) w.r.t. the norm ‖ · ‖A + ‖ · ‖A. A symmetric,
non-negative definite and closed bilinear form A is said symmetric coercive closed form if
the following weak sector condition is satisfied:

∃ a constant c > 0 such that |A1(x, y)| ≤ cA1(x, x)
1/2A1(y, y)

1/2, x, y ∈ Dom(A),
(B.4.1)

where
A1(x, y) := A(x, y) + 〈x, y〉.

Suppose H = L2(B,B,β) where (B,B,β) is a measure space. In such a case a symmetric
coercive closed form A is said to be a symmetric Dirichlet form if

A(f+ ∧ 1, f+ ∧ 1) ≤ A(f, f),A(f+ ∧ 1, f+ ∧ 1) ≤ A(f, f), f ∈ Dom(A),

where f+ denotes the positive part of f . Suppose that B is a Hausdorff topological space
and let A be a symmetric Dirichlet form. An A-nest is an increasing sequence (Cn)n≥1 of
closed subsets of B such that

⋃

n≥1

{f ∈ Dom(A): f = 0 β-a.e. on B \ Cn}

is dense in Dom(A) w.r.t. the norm ‖ · ‖A. We say that a subset B′ ⊂ B is A-exceptional
if there exists an A-nest (Cn)n≥1 with B′ ⊂ B \

⋃

n≥1Cn. Throughout this paper we say
that a property holds A-almost everywhere (A-a.e.) if it holds up to an A-exceptional set.
Moreover, a function f : B → R is called A-almost continuous (A-a.c.) if there exists an
A-nest (Cn)n≥1 such that the restriction f|Cn

of f to Cn is continuous for each n ≥ 1.
Let B again a Hausdorff topological space. A symmetric Dirichlet form A on the

Hilbert space L2(B,B(B),β) is called quasi-regular if:
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(i) There exists an A-nest (Cn)n≥1 consisting of compact sets.
(ii) There exists a ‖ · ‖A-dense subset of Dom(A) whose elements have A-a.c. β-versions.
(iii) There exist fk ∈ Dom(A), k ≥ 1, having A-a.c. β-versions f̃k, k ≥ 1, such that
(f̃k)k≥1 is a separating set for B \N (i.e. for any x, y ∈ B \N , x "= y, there exists f̃k∗ such
that f̃k∗(x) "= f̃k∗(y)), where N is a subset of B which is A-exceptional.

We denote by N̈D
f the set of non-negative integer-valued finite measures on D, equipped

with the vague topology (recall that this topology is metrized by the so-called "d-hash"
metric, see e.g. Appendix A2 pages 402-405 in [17]). For technical reasons, in this section
and Section B.5 we shall see ND

f as a subspace of N̈D
f , via the identification

x ≡
∑

x∈x

δx, x ∈ ND
f ,

where δx denotes the Dirac measure at x ∈ D. We shall denote by B(N̈D
f ) the corresponding

Borel σ-field. Letting X denote a determinantal point process with kernel K, using obvious
notation, we shall identify L2

D with L2(N̈D
f , PD).

We consider the bilinear map E defined on SD × SD by

E(F (XD), G(XD)) := E





X(D)
∑

i=1

∇
Nlf

Xi
F (XD) ·∇

Nlf

Xi
G(XD)



 .

For F (XD) ∈ SD of the form (5.5), i.e.

F (XD) = f01{X(D)=0} +
n
∑

k=1

1{X(D)=k}fk(X1, . . . , Xk),

we also define the linear Laplace operator H by

HF (XD) =
n
∑

k=1

1{X(D)=k}

k
∑

i=1

(

− βµ(Xi) ·∇xifk(X1, . . . , Xk)

−∆xifk(X1, . . . , Xk) + Ui,k(X1, . . . , Xk) ·∇xifk(X1, . . . , Xk)
)

,

where ∆ = −div∇ denotes the Laplacian.
In the following, we consider the subspace S̃D of SD made of r.v.’s F (XD) ∈ SD of the

form

F (XD) = f





X(D)
∑

k=1

ϕ1(Xk), . . . ,

X(D)
∑

k=1

ϕM (Xk)



1{X(D)≤K},

for some integers M,K ≥ 1, ϕ1, . . . ,ϕM ∈ C∞(D), f ∈ C∞b (RM ). Note that S̃D is dense
in L2

D (see e.g. [48] p. 54).

The next Theorem B.4.1 provides the Dirichlet form associated to a determinantal process.

Theorem B.4.1. Under the assumptions of Theorem 5.3.2, we have:
(i) The linear operator H : S̃D −→ L2

D is symmetric, non-negative definite and well-defined,
i.e. H(S̃D) ⊂ L2

D. In particular the operator square root H1/2 of H exists.
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(ii) The bilinear form E : S̃D × S̃D −→ R is symmetric, non-negative definite and well-
defined, i.e. E(S̃D × S̃D) ⊂ R.
(iii) H1/2 and E are closable and the following relation holds:

E(F,G) = E[H1/2FH1/2G], ∀ F,G ∈ Dom(H1/2). (B.4.2)

(iv) The bilinear form (E ,Dom(H1/2)) is a symmetric Dirichlet form.

Proof. The proof of this theorem is based on Lemma B.4.2 below.
(i) By Relation (B.4.4) in Lemma B.4.2 we easily deduce that, for any F (XD), G(XD) ∈ S̃D
we have

E[G(XD)HF (XD)] = E[F (XD)HG(XD)] and E[F (XD)HF (XD)] ≥ 0.

Therefore, H is symmetric and non-negative definite. It remains to check that, under the
foregoing assumptions, H is well-defined. Let F (XD) ∈ S̃D be of the form

F (XD) =
n
∑

k=1

1{X(D)=k}h

(

k
∑

i=1

ϕ1(Xi), . . . ,
k
∑

i=1

ϕm(Xi)

)

=
n
∑

k=1

1{X(D)=k}hk(X1, . . . , Xk)

for some integers m,n ≥ 1, ϕ1, . . . ,ϕm ∈ C∞(D), h ∈ C∞b (Rm). By the definition of H,
for the well-definiteness of H we only need to check that ‖1{X(D)=k}B

µ
∇xi

hk
(XD)‖L2

D
<∞

and ‖1{X(D)=k}∇
Nlf

∇xi
hk
U [D](XD)‖L2

D
<∞. The assumptions guarantee these relations, cf.

the proof of Theorem 5.3.2.
(ii) The symmetry and non-negative definiteness of E follow from Lemma B.4.2 below. It
remains to check that, under the foregoing assumptions, E is well-defined. By Step (i),
for any F (XD) ∈ S̃D, we have HF (XD) ∈ L2

D. We conclude the proof by noting that, by
Lemma B.4.2, for any F (XD), G(XD) ∈ S̃D and some positive constant c > 0, we have

|E(F (XD), G(XD))| = |E[G(XD)HF (XD)]| ≤ c‖HF (XD)‖L2
D
<∞.

(iii) We first show that E is closable. We apply Lemma 3.4 page 29 in [48]. We start
checking that E satisfies the weak sector condition (B.4.1). By Relation (B.4.5) in Lemma
B.4.2 we have, for any F (XD), G(XD) ∈ S̃D,

|E1(F (XD), G(XD))| = |E[H1/2F (XD)H1/2G(XD)] + E[G(XD)F (XD)]|

≤ ‖H1/2F (XD)‖L2
D
‖H1/2G(XD)‖L2

D
+ ‖F (XD)‖L2

D
‖G(XD)‖L2

D

≤ 2E1(F (XD), F (XD))1/2E1(G(XD), G(XD))1/2.

It remains to check that if (Fn(X
D))n≥1 ⊂ S̃D is such that Fn(X

D) converges to 0 in
L2
D, then E(G(XD), Fn(X

D)) converges to 0, for any G(XD) ∈ S̃D. This easily follows
by Lemma B.4.2, the Cauchy-Schwarz inequality and the fact that HG(XD) is square
integrable (see the proof of Step (i)). The closability of H1/2 follows by the closability
of E , Relation (B.4.5) in Lemma B.4.2 and Remark 3.2 (i) page 29 in [48]. Finally, we

prove Relation (B.4.2). Take F,G ∈ Dom(H1/2) and let (Fn(X
D))n≥1, (Gn(X

D))n≥1 be
sequences in S̃D such that Fn(X

D) converges to F, Gn(X
D) converges to G, H1/2Fn(X

D)
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converges to H1/2F, and H1/2Gn(X
D) converges to H1/2G in L2

D as n goes to infinity.
By Lemma B.4.2 we have

E(Fn(X
D), Gn(X

D)) = E[H1/2Fn(X
D)H1/2Gn(X

D)], for all n ≥ 1.

The claim follows if we prove

lim
n→∞

E[H1/2Fn(X
D)H1/2Gn(X

D)] = E[H1/2FH1/2G].

We have:

|E[H1/2Gn(X
D)H1/2Fn(X

D)]− E[H1/2GH1/2F]|

= |E[H1/2Gn(X
D)H1/2Fn(X

D)]− E[H1/2Gn(X
D)H1/2F]

+ E[H1/2Gn(X
D)H1/2F]− E[H1/2GH1/2F]|

≤ |E[H1/2Gn(X
D)(H1/2Fn(X

D)−H1/2F)]|+ |E[(H1/2Gn(X
D)−H1/2G)H1/2F]|

≤ ‖H1/2Gn(X
D)‖L2

D
‖H1/2Fn(X

D)−H1/2F‖L2
D

+ ‖H1/2Gn(X
D)−H1/2G‖L2

D
‖H1/2F‖L2

D
→ 0, as n→∞.

(iv) The bilinear form (E ,Dom(H1/2)) defined by (B.4.2) is clearly symmetric, non-negative
definite, and closed. Using the Cauchy-Schwarz inequality and equality (B.4.2) (i.e. rea-
soning similarly as the first part of Step (iii)) it is easily checked that the weak sector

condition (B.4.1) holds. So by Definition 2.4 page 16 in [48] we have that (E ,Dom(H1/2))
is a symmetric coercive closed form. We conclude the proof by applying Proposition 4.10

page 35 in [48]. First note that S̃D is dense in Dom(H1/2) (w.r.t. the norm E
1/2
1 ). By

Exercise 2.7 page 47 in [48], for any ε > 0 there exists an infinitely differentiable function
ϕε : R −→ [−ε, 1 + ε] (which has not to be confused with the functions ϕ1, . . . ,ϕM in-
volved in the definition of the r.v. F (XD) below) such that ϕε(t) = t for any t ∈ [0, 1],
0 ≤ ϕε(t) − ϕε(s) ≤ t − s for all t, s ∈ R, t ≥ s, ϕε(t) = 1 + ε for t ∈ [1 + 2ε,∞) and
ϕε(t) = −ε for t ∈ (−∞,−2ε]. Note that |ϕ′

ε(t)|
2 ≤ 1 for any ε > 0, t ∈ R and ϕε is in

C∞b , for any ε > 0. Consider the r.v.

F (XD) = f





X(D)∑

k=1

ϕ1(Xk), . . . ,

X(D)∑

k=1

ϕM (Xk)



1{X(D)≤K},

for some integers M,K ≥ 1, ϕ1, . . . ,ϕM ∈ C∞(D), f ∈ C∞b (RM ). Note that F (XD),ϕε ◦

F (XD) ∈ S̃D. Indeed

ϕε ◦ F (XD) = ϕε



f





X(D)
∑

k=1

ϕ1(Xk), . . . ,

X(D)
∑

k=1

ϕM (Xk)



1{X(D)≤K}





= ϕε



f





X(D)
∑

k=1

ϕ1(Xk), . . . ,

X(D)
∑

k=1

ϕM (Xk)







1{X(D)≤K},

because ϕε(0) = 0. By Lemma B.4.2 we have

E(ϕε ◦ F (XD),ϕε ◦ F (XD)) = E





X(D)
∑

i=1

∇
Nlf

Xi
ϕε ◦ F (XD) ·∇

Nlf

Xi
ϕε ◦ F (XD)




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= E





X(D)
∑

i=1

‖∇
Nlf

Xi
ϕε ◦ F (XD)‖2





= E

[

K
∑

k=1

1{X(D)=k}

k
∑

i=1

‖∇
Nlf

Xi
ϕε ◦ F (XD)‖2

]

= E

[

K
∑

k=1

1{X(D)=k}

k
∑

i=1

∥

∥

∥

M
∑

m=1

ϕ′
ε ◦ f

(

k
∑

l=1

ϕ1(Xl), . . . ,
k
∑

l=1

ϕM (Xl)

)

× ∂mf

(

k
∑

l=1

ϕ1(Xl), . . . ,

k
∑

l=1

ϕM (Xl)

)

∇ϕm(Xi)
∥

∥

∥

2
]

≤ E

[

K
∑

k=1

1{X(D)=k}

k
∑

i=1

∥

∥

∥

M
∑

m=1

∂mf

(

k
∑

l=1

ϕ1(Xl), . . . ,

k
∑

l=1

ϕM (Xl)

)

∇ϕm(Xi)
∥

∥

∥

2
]

(B.4.3)

= E(F (XD), F (XD)),

where in (B.4.3) we used the fact that |ϕ′
ε(t)|

2 ≤ 1, t ∈ R. By this inequality we easily
have, for any F (XD) ∈ S̃D,

lim inf
ε→0

E(F (XD)± ϕε ◦ F (XD), F (XD)∓ ϕε ◦ F (XD)) ≥ 0

and the proof is completed (since, as required by Proposition 4.10 page 35 in [48], we
checked condition (4.6) page 34 in [48]). Indeed, for any ε > 0, by the above inequality
and the symmetry of E and H, we have

E(F (XD) + ϕε ◦ F (XD), F (XD)− ϕε ◦ F (XD))

= E(F (XD)− ϕε ◦ F (XD), F (XD) + ϕε ◦ F (XD))

= E[(F (XD)− ϕε ◦ F (XD))H(F (XD) + ϕε ◦ F (XD))]

= E[F (XD)HF (XD) + F (XD)Hϕε ◦ F (XD)

− ϕε ◦ F (XD)HF (XD)− ϕε ◦ F (XD)Hϕε ◦ F (XD)]

≥ E[F (XD)Hϕε ◦ F (XD)− ϕε ◦ F (XD)HF (XD)]

= 0.

�

Lemma B.4.2. Under the assumptions of Theorem 5.3.2, for any F (XD), G(XD) ∈ S̃D,
we have

E





X(D)
∑

i=1

∇
Nlf

Xi
F (XD) ·∇

Nlf

Xi
G(XD)



 = E[G(XD)HF (XD)] (B.4.4)

= E[H1/2F (XD)H1/2G(XD)]. (B.4.5)

Proof. Let F (XD), G(XD) ∈ S̃D be, respectively, of the form

F (XD) = f





X(D)
∑

k=1

ϕ1(Xk), . . . ,

X(D)
∑

k=1

ϕM1(Xk)



1{X(D)≤K1},



156
B. Stochastic dynamics of determinantal processes by integration by

parts

G(XD) = g





X(D)
∑

k=1

γ1(Xk), . . . ,

X(D)
∑

k=1

γM2(Xk)



1{X(D)≤K2},

for some integers M1,M2,K1,K2 ≥ 1, ϕ1, . . . ,ϕM1 , γ1, . . . , γM2 ∈ C
∞(D), f ∈ C∞b (RM1),

g ∈ C∞b (RM2). Define

Fi(X
D) = ∂if





X(D)
∑

k=1

ϕ1(Xk), . . . ,

X(D)
∑

k=1

ϕM1(Xk)



1{X(D)≤K1},

and
vi(x) = ∇ϕi(x), x ∈ D.

By direct computation we find

HF (XD) = −1{X(D)≤K1}

M1
∑

i=1

X(D)
∑

k=1

βµ(Xk) · vi(Xk)∂if





X(D)
∑

k=1

ϕ1(Xk), . . . ,

X(D)
∑

k=1

ϕM1(Xk)





−1{X(D)≤K1}

M1
∑

i,j=1

X(D)
∑

k=1

vi(Xk)

X(D)
∑

l=1

vj(Xl)∂i∂jf





X(D)
∑

k=1

ϕ1(Xk), . . . ,

X(D)
∑

k=1

ϕM1(Xk)





+1{X(D)≤K1}

M1
∑

i=1

X(D)
∑

k=1

divvi(Xk)∂if





X(D)
∑

k=1

ϕ1(Xk), . . . ,

X(D)
∑

k=1

ϕM1(Xk)





+1{X(D)≤K1}

M1
∑

i=1

X(D)
∑

k=1

Uk,X(D)(X1, . . . , XX(D)) · vi(Xk)

∂if





X(D)
∑

k=1

ϕ1(Xk), . . . ,

X(D)
∑

k=1

ϕM1(Xk)





= −

M1
∑

i=1

Fi(X
D)

X(D)
∑

k=1

βµ(Xk) · vi(Xk)

−1{X(D)≤K1}

M1
∑

i,j=1

X(D)
∑

k=1

vi(Xk)

X(D)
∑

l=1

vj(Xl)∂i∂jf





X(D)
∑

k=1

ϕ1(Xk), . . . ,

X(D)
∑

k=1

ϕM1(Xk)





+

M1
∑

i=1

Fi(X
D)

X(D)
∑

k=1

divvi(Xk)

+

M1
∑

i=1

Fi(X
D)∇

Nlf
vi U [D](XD),

which yields

HF (XD) =

M1
∑

i=1

(
−∇

Nlf
vi Fi(X

D) + (Bµ
vi(X

D) +∇
Nlf
vi U [D](XD))Fi(X

D)
)

=

M1∑

i=1

∇
Nlf∗
vi Fi(X

D).
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So, by Lemma B.3.2 and since S̃D ⊂ SD, using obvious notation we have

E[G(XD)HF (XD)] =

M1
∑

i=1

E
[

G(XD)∇
Nlf∗

vi Fi(X
D)
]

=

M1
∑

i=1

E
[

Fi(X
D)∇

Nlf
vi G(XD)

]

=

M1
∑

i=1

E



Fi(X
D)

X(D)
∑

l=1

M2
∑

j=1

∂jg





X(D)
∑

m=1

γ1(Xm), . . . ,

X(D)
∑

m=1

γM2(Xm)



∇γj(Xl) ·∇ϕi(Xl)





= E





X(D)
∑

l=1

M1
∑

i=1

Fi(X
D)∇ϕi(Xl) ·

M2
∑

j=1

Gj(X
D)∇γj(Xl)





= E





X(D)
∑

i=1

∇
Nlf

Xi
F (XD) ·∇

Nlf

Xi
G(XD)



 .

Here, we have written

Gj(X
D) := ∂jg





X(D)
∑

k=1

γ1(Xk), . . . ,

X(D)
∑

k=1

γM2(Xk)



1{X(D)≤K2}.

Finally, since H is symmetric and non-negative definite the square root operator H1/2 is
well-defined. Relation (B.4.5) follows by the properties of H1/2. �

We conclude this section with the following remark which provides the semigroup of the
Dirichlet form (E ,Dom(H1/2)). The connection between such semigroup and the transition
semigroup of the diffusion associated to the determinantal process will be specified in
Theorem B.5.1 below.

Remark B.4.3. Assume the hypotheses of Theorem 5.3.2. Then (E ,Dom(H1/2)) is a
symmetric Dirichlet form. Its generator is by definition the linear operator HgenF = G,
where G is determined by the domain of the operator:

Dom(Hgen)

:=

{

F ∈ Dom(H1/2) : ∃G ∈ L2
D ∀Z ∈ Dom(H1/2) E(F,Z) = −E[GZ]

}

.

One may easily see that the operator (−Hgen,Dom(Hgen)) is symmetric, non-negative def-
inite and extends (H, S̃D). Moreover

Dom(H1/2) = Dom
(

(−Hgen)
1/2
)

and

E(F,G) = E[(−Hgen)
1/2F(−Hgen)

1/2G], ∀ F,G ∈ Dom(H1/2).

By definition, the symmetric semi-group of (E ,Dom(H1/2)) is the linear operator TtF :=
exp(tHgen)F, t > 0, F ∈ L2

D (which is defined by the spectral theory for symmetric operators
on a Hilbert space).
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B.5 Stochastic dynamics and quasi-regularity

In this section we establish the existence of diffusions corresponding to determinantal
point processes associated to the Dirichlet form (E ,Dom(H1/2)), cf. Theorem B.5.1 below.

B.5.1 Associated diffusion process

We start recalling some notions, see Chapters IV and V in [48]. Given π in the set
P(N̈D

f ) of the probability measures on (N̈D
f ,B(N̈

D
f )), we call a π-stochastic process with

state space N̈D
f the collection

MD,π = (Ω,F , (Ft)t≥0, (Mt)t≥0, (Px)x∈N̈D
f
,Pπ)

where F :=
∨

t≥0Ft is a σ-field on the set Ω, (Ft)t≥0 is the Pπ-completed filtration

generated by the process Mt : Ω −→ N̈D
f of (F ,B(N̈D

f ))-measurable mappings, Px is a

probability measure on (Ω,F) for all x ∈ N̈D
f , and Pπ is the probability measure on (Ω,F)

defined by

Pπ(A) :=

∫

N̈D
f

Px(A)π(dx), A ∈ F .

A collection (MD,π, (θt)t≥0) is called a π-time homogeneous Markov process with state
space N̈D

f if θt : Ω −→ Ω is a shift operator, i.e. Ms ◦ θt = Ms+t, s, t ≥ 0, the map

x #→ Px(A) is (B(N̈
D
f ),B(R))-measurable for all A ∈ F , and the time homogeneous Markov

property

Px(Mt ∈ A | Fs) = PMs(Mt−s ∈ A), Px − a.s., A ∈ F , 0 ≤ s ≤ t, x ∈ N̈D
f

holds. Recall that a π-time homogeneous Markov process (MD,π, (θt)t≥0) with state space
N̈D
f is said to be π-tight on N̈D

f if (Mt)t≥0 is right-continuous with left limits Pπ-almost

surely; Px(M0 = x) = 1 ∀ x ∈ N̈D
f ; the filtration (Ft)t≥0 is right continuous; the following

strong Markov property holds:

Pπ′(Mt+τ ∈ A | Fτ ) = PMτ
(Mt ∈ A)

Pπ′-almost surely for all Ft-stopping time τ , π′ ∈ P(N̈D
f ), A ∈ F and t ≥ 0, cf. Theorem

IV.1.15 in [48]. In addition, a π-tight process on N̈D
f is said π-special standard process on

N̈D
f if for any π′ ∈ P(N̈D

f ) which is equivalent to π and all Ft-stopping times τ , (τn)n≥1
such that τn ↑ τ then Mτn converges to Mτ , Pπ′-almost surely.

The following theorem holds, in which Ex denotes the expectation under Px, x ∈ N̈D
f .

Theorem B.5.1. Assume the hypotheses of Theorem 5.3.2. Then there exists a PD-tight
special standard process (MD,PD

, (θt)t≥0) on N̈D
f with transition semigroup

ptf(x) := Ex[f(Mt)], x ∈ N̈D
f , f : N̈D

f −→ R square integrable.

In addition, (MD,PD
, (θt)t≥0) is properly associated with the Dirichlet form (E ,Dom(H1/2))

in the sense that ptf is an E-a.c., PD-version of exp(tHgen)f for all square integrable
f : N̈D

f −→ R and t > 0, and such that

Px({ω : t #→Mt(ω) is continuous on [0,+∞)}) = 1, E-a.e., x ∈ N̈D
f . (B.5.1)
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Proof. By Lemma B.5.2 below the Dirichlet form (E ,Dom(H1/2)) is quasi-regular, hence
by Theorem III.3.5 page 103 in [48], there exists a PD-tight special standard process on
N̈D
f , say (MD,PD

, (θt)t≥0), whose transition semigroup (pt)t≥0 is such that, for any square

integrable function f : N̈D
f −→ R and t > 0, ptf is a PD-version of exp(tHgen)f and ptf is

E-a.c.. Since the form has clearly the local property (see the definition in [48]), by Theorem
V.1.5 page 150 in [48] the tight special standard process is a PD-diffusion associated to the
form, i.e. relation (B.5.1) holds for E-a.e. x ∈ N̈D

f . �

For the sake of completeness we remark that by applying Theorem 6.4 page 141 in
[48], one has that the PD-diffusion on N̈D

f properly associated with the Dirichlet form

(E ,Dom(H1/2)) (defined in Theorem B.5.1) is unique up to PD-equivalence. We refer the
reader to Definition 6.3 page 140 in [48] for the meaning of this notion.

B.5.2 Quasi-regularity

The following lemma holds.

Lemma B.5.2. Assume the hypotheses of Theorem 5.3.2. Then the form (E ,Dom(H1/2))
is quasi-regular.

Proof. As in [88] and [89], we apply Theorem 3.4 of [72]. For this purpose, we have to
show that, for some countable dense set (x̃i)i≥1 in N̈D

f , there exists a countable collection

(Fij(X
D))i,j≥1 of random variables such that:

(i) For some bounded metric ̺ on N̈D
f , which is uniformly equivalent to the "d-hash"

metric, we have ̺(x, x̃i) = supj Fij(x), E-a.e. x ∈ N̈D
f , for any i ≥ 1.

(ii) Fij : Nlf −→ R is of the form

Fij(x) = fij

(
∑

x∈x

h1(x), . . . ,
∑

x∈x

hN (x)

)
, x ∈ Nlf

for some integerN ≥ 1, h1, . . . , hN ∈ C∞c (S) and fij weakly differentiable; (Fij(X
D))i,j≥1 ⊂

Dom(H1/2) and, setting Fij = Fij(X
D),

E(Fij ,Fij) = E



X(D)∑

k=1

‖∇
Nlf

Xk
Fij(X

D)‖2


 , (B.5.2)

where∇
Nlf
x Fij(x) is defined as in (B.3.3) with n =∞ and the symbol∇x being the gradient

w.r.t. the weak partial derivatives.

(iii) supi,j
∑X(D)

k=1 ‖∇
Nlf

Xk
Fij(X

D)‖2 ∈ L1
D.

Proof of (i). Such a metric ̺ is defined as the restriction on N̈D
f of the following metric on

N̈lf (which we continue to denote by ̺) constructed in [89] as follows. Here N̈lf denotes the
set of non-negative integer-valued locally finite measures on S, equipped with the vague
topology. Let Tb be a countable open base in S and, for every O ∈ Tb, take a sequence
ℓO1 , ℓO2 , . . . ∈ C

∞
c (S) such that ℓOn(x) ↑ 1{x∈O}, ∀ x ∈ S. For ease of notation set ℓn = ℓOn

and assume that this enumeration satisfies

j⋃

k=1

supp(ℓk) ⊆ {x ∈ S : ‖x‖ ≤ j}, j = 1, 2, . . ..
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The desired metric is defined by

̺(x,y) := sup
j

2−j







1− exp



−

∣∣∣
∑

x∈x ℓj(x)−
∑

y∈y ℓj(y)
∣∣∣

ℓj











, x,y ∈ N̈lf

where, for x ∈ R
d,

ℓj := sup

{∣∣∣
∂ℓj(x)

∂x(q)

∣∣∣ : x ∈ S, q = 1, . . . , d

}
> 0.

Let (x̃i)i≥1 be a countable dense set in N̈D
f and define

Fij(x) := 2−j







1− exp



−

∣∣∣
∑

x∈x ℓj(x)−
∑

x̃i∈x̃i
ℓj(x̃i)

∣

∣

∣

ℓj











, x ∈ N̈lf .

Then (i) follows.

Proof of (ii). Clearly Fij has the claimed form. We now check that Fij ∈ Dom(H1/2), i.e.

there exists a sequence (F
(n)
ij (XD))n≥1 ⊂ S̃D such that, as n goes to infinity, F

(n)
ij (XD)

converges to Fij in L2
D and (H1/2F

(n)
ij (XD))n≥1 converges in L2

D. Define the function

f ij(x) :=
∣

∣

∣
x−

∑

x̃i∈x̃i

ℓj(x̃i)
∣

∣

∣
, x ∈ R

and consider the classical sequence of mollifiers defined by ηn(x) := Cnη(nx), n ≥ 1, where

η(x) := 1{|x|<1}e
−1/(1−x2), x ∈ R

and C :=
(

∫ 1
−1 η(x) dx

)−1
. Define the functions

f
(n)
ij (x) := 2−j

{

1− exp

(

−
ηn ∗ f ij(x)

ℓj

)}

, x ∈ R

where ∗ denotes the convolution product, and set F
(n)
ij (x) := f

(n)
ij

(
∑

x∈x ℓj(x)
)

1{♯(x)≤n},

x ∈ ND
f , where the symbol ♯(x) denotes the number of points in the configuration x.

Since ηn ∈ C∞c (R) and f ij is locally integrable on R, we have ηn ∗ f ij ∈ C∞(R) (see

e.g. Proposition IV.20 in [11]). Therefore f
(n)
ij ∈ C∞b (R) and so F

(n)
ij (XD) ∈ S̃D. Since

f ij ∈ C(R), we deduce that ηn ∗ f ij converges to f ij uniformly on the compacts of R (see

e.g. Proposition IV.21 in [11]), and so F
(n)
ij (XD) converges to Fij in L2

D, as n goes to

infinity. It remains to show that the sequence (H1/2F
(n)
ij (XD))n≥1 converges in L2

D. For
this we are going to prove that it is a Cauchy sequence. We start by noting that since ηn
is integrable on R and f ij is weakly differentiable we have (see e.g. Lemma VIII.4 in [11])

(ηn ∗ f ij)′(x) :=
d

dx
ηn ∗ f ij(x) = ηn ∗ d

dx
f ij(x)

where
d

dx
f ij(x) = 1{∑

x̃i∈x̃i
ℓj(x̃i)∈(x,∞)

} − 1{∑
x̃i∈x̃i

ℓj(x̃i)∈(−∞,x)
}.
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Thus |(ηn∗f ij)
′| ≤ 1, for any n ≥ 1. Moreover, (ηn∗f ij)

′(x) converges to f
′

ij(x) point-wise,
as n goes to infinity. We also note that for any n ≥ 1 and x ∈ D we have

∇
Nlf
x F

(n)
ij (XD) =

n
∑

k=1

1{X(D)=k}

k
∑

h=1

1{Xh}(x)∇xhf
(n)
ij





k
∑

q=1

ℓj(Xq)





= 1{X(D)≤n}

X(D)
∑

h=1

1{Xh}(x)∇xhf
(n)
ij





X(D)
∑

q=1

ℓj(Xq)





where, for any x ∈ ND
f ,

∇xf
(n)
ij

(

∑

x∈x

ℓj(x)

)

= (2−j/ℓj)(ηn∗f ij)
′

(

∑

x∈x

ℓj(x)

)

exp

(

−ηn ∗ f ij

(

∑

x∈x

ℓj(x)

)

/ℓj

)

∇ℓj(x).

So, for any n ≥ 1, i, j and k = 1, . . . ,X(D), we have

‖∇
Nlf

Xk
F

(n)
ij (XD)‖2 ≤ d4−j , a.s.. (B.5.3)

For any n,m ≥ 1, we deduce

‖H1/2F
(n)
ij (XD)−H1/2F

(m)
ij (XD)‖2L2

D
= E[|H1/2(F

(n)
ij (XD)− F

(m)
ij (XD))|2]

= E





X(D)
∑

k=1

‖∇
Nlf

Xk
[F

(n)
ij (XD)− F

(m)
ij (XD)]‖2





≤ d 4−jE

[(

1{X(D)≤n}(ηn ∗ f ij)
′





X(D)
∑

k=1

ℓj(Xk)



 exp



−ηn ∗ f ij





X(D)
∑

k=1

ℓj(Xk)



 /ℓj





− 1{X(D)≤m}(ηm ∗ f ij)
′





X(D)
∑

k=1

ℓj(Xk)



 exp



−ηm ∗ f ij





X(D)
∑

k=1

ℓj(Xk)



 /ℓj





)2

X(D)

]

.

Due to the above remarks, applying Lebesgue’s dominated convergence theorem (recall
that X(D) has a finite mean since it has exponential tails) one has that this quantity
goes to zero as n,m go to infinity, and the claim follows. It remains to check (B.5.2). By
Lemma B.4.2 we have

E





X(D)
∑

k=1

‖∇
Nlf

Xk
F

(n)
ij (XD)‖2



 = E[(H1/2F
(n)
ij (XD))2].

Clearly

lim
n→∞

E[(H1/2F
(n)
ij (XD))2] = E[(H1/2Fij)

2] = E(Fij ,Fij),

and so we only need to check

lim
n→∞

E





X(D)
∑

k=1

‖∇
Nlf

Xk
F

(n)
ij (XD)‖2



 = E





X(D)
∑

k=1

‖∇
Nlf

Xk
Fij(X

D)‖2



 .
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B. Stochastic dynamics of determinantal processes by integration by

parts

This easily follows by Lebesgue’s dominated convergence theorem. Indeed, by (B.5.3), for
any i, j, n,

X(D)
∑

k=1

‖∇
Nlf

Xk
F

(n)
ij (XD)‖2 ≤ 4−jdX(D), a.s. (B.5.4)

and

lim
n→∞

X(D)
∑

k=1

‖∇
Nlf

Xk
F

(n)
ij (XD)‖2 =

X(D)
∑

k=1

‖∇
Nlf

Xk
Fij(X

D)‖2, a.s..

Proof of (iii). It suffices to note that by (B.5.4) we have

sup
i,j

X(D)
∑

k=1

‖∇
Nlf

Xk
Fij(X

D)‖2 ≤
d

4
X(D), a.s..

�
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Appendix C

Perfect simulation of determinantal

point processes

C.1 Introduction

Determinantal point process stems back from 1975 when O. Maachi introduce it as the
‘fermion’ process with repulsive feature on its points. It is only in the last two decades that
Soshnikov(2000) [80] and Shirai and Takahashi(2003) [78] studied further on the mathe-
matical properties of the process structure. Classical modeling of repulsive point processes
are in essence through Gibbs point processes. Since their introduction, DPP have found
many applications in random matrix theory and quantum physics.

Simulations of determinantal point processes are mostly based on the idea of Hough et
al. in [34] and further discussed in details in [44]. The main drawback of the idea is due
to its large rejections in the sampling. On the other hand, in a Markov chain Monte Carlo
method, many of the simulation algorithms are based on the long-running constructions
of Markov chain that converges to an equilibrium distribution. The difficulties was in
determining the number of steps needed to have such a convergence. Thanks to Propp and
Wilson [70], which suggest with the application of coupling theory, we are able to ‘exactly’
simulate a finite state Markov chain with the desired equilibrium distribution. Although
perfect simulation is obviously appealing but we share a common drawback with [34]
idea: given a DPP kernel with no explicitly known spectral representation, the statistics
(Papangelou conditional intensity) involve in the configurations, it is not simple to extract
them from. In general numerical techniques such as Fourier expansion are required because
of the limitation of analytical results.

This paper serves as the continuation of work on [34] and [44] in simulating DPP;
in [40] uses the CFTP perfect simulation approach on spatial point processes, while here
we analyze the application of CFTP simulation on determinantal point processes and we
provide some results on the lower and upper bounds for the coalescence time in general
case.

This paper is organized as follows. We start in Section C.2 by summarizing the basic
notation and recall the definition of a point process, including determinantal point process
and its Papangelou conditional intensity. Section C.3 is devoted to details of perfect
simulation of DPP via dominated coupling of Markov chains, i.e. CFTP. In Section C.4, we
discuss the asymptotic behavior of the running time of CFTP simulation. Lastly in Section
C.5, we apply CFTP algorithm to three stationary DPP models defined by the commonly
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used covariance functions in multivariate statistical analysis, i.e. Gaussian model, Matérn
model and the Cauchy model.

The statistical analysis conducted in this paper are with R (spatstat library by Brad-
deley and Turner).

C.2 Preliminaries

For (E,B, ν) a measure space endowed with a Polish space E and a Radon measure ν

on E. We denote by X the set of locally finite point configurations in E:

X := {ξ ⊂ E : |ξ ∩ Λ| <∞, ∀ compact Λ ⊆ E}

equipped with the σ-field

F := σ({ξ ∈ X : |ξ ∩ Λ| = i}, i ≥ 0, ∀ compact Λ ⊆ E)

where |X| denotes the cardinality of a set X.

A point process X on E is then a random point configuration, i.e. a random integer-
valued Radon measure on E and X(Λ) represents the number of points that fall in Λ. If
X({x}) ∈ {0, 1} a.s. for all x ∈ E, then X is called simple.

The joint intensities ρk of a simple point process X is the intensity measure of the
set of ordered k-tuples of distinct points of X, X∧k. More precisely, for any family of
mutually disjoint subsets Λi ⊆ E, a simple point process X w.r.t. the measure ν, denote
ρk : Ek → [0,∞) for k ≥ 1:

E

[

k
∏

i=1

X(Λi)

]

=

∫

∏
i Λi

ρk(x1, . . . , xk)dν(x1) . . . dν(xk).

We assume that ρk(x1, . . . , xk) vanish if xi = xj for some i �= j, see [35]. Let K(x, y) :
E2 → C be a measurable function, locally square integrable on E2.

Definition 2. Determinantal (fermion) point process with kernel K is defined to be a
simple point process X on E which satisfies:

ρk(x1, . . . , xk) = det(K(xi, xj))1≤i,j≤k,

∀k ≥ 1 and x1, . . . , xk ∈ E, ρk w.r.t the measure ν

Definition 3. For a function f ∈ L2 defined on a compact support Λ, an integral operator
K : L2(E, ν)→ L2(E, ν) corresponding to K is defined such that:

Kf(x) =

∫

E
K(x, y)f(y)dν(y), for a.e. x ∈ E

and the associated bounded linear operator KΛ on L2(Λ, ν) as:

KΛf(x) =

∫

Λ

K(x, y)f(y)dν(y), for a.e. x ∈ Λ.
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By spectral theorem, for a compact and self-adjoint operator KΛ, there is an orthonor-
mal basis {ϕΛi }i≥1 of eigenfunctions for KΛ on L2(Λ, ν). Consequently, the kernel K has a
spectral representation:

KΛ(x, y) =
∑

i≥1

λΛi ϕ
Λ

i (x)ϕ
Λ
i (y) for x, y ∈ Λ (C.2.1)

Definition 4. A bounded linear operator KΛ is said to be of trace class whenever for a
complete orthonormal basis {ϕΛi }i≥1 of L2(Λ, ν),

KΛ(x, y) =
∑

i≥1

λΛi ϕ
Λ

i (x)ϕ
Λ
i (y) for x, y ∈ Λ

and
∑

i≥1

|λΛi | < ∞.

Further we define:

Tr KΛ :=
∑

i≥1

λΛi

Throughout this paper, we assume that the integral operator of a determinantal point
process satisfies the following hypothesis:

Hypothesis (H1): K is self-adjoint and of trace class, and its spectrum is contained
in [0, 1[ , i.e. 0 ≤ K ≤ Id in the operator ordering, and ‖K‖ < 1, where Id denotes the
identity operator on L2(E, ν).

Suppose that a DPP X defined on E with its kernel K(x, y) =
∑

i≥1 λiϕi(x)ϕi(y),
then it has a pleasant property that the size of its configuration is an infinite sum of
independent Bernoulli random variables with parameters equal to the eigenvalues, see [34].
Consequently we have:

E[|X|] =
∞
∑

i=1

λi Var[|X|] =
∞
∑

i=1

λi(1− λi) (C.2.2)

Definition 5. For a trace-class operator K, the Fredholm determinant is defined by:

Det(I −K) = exp

(

∞
∑

n=1

(−1)n−1

n
Tr(Kn)

)

.

From [80], given an arbitrary compact set Λ ⊆ E, the Janossy density jΛ(·) of a DPP
configuration ξ in Λ is given by:

jΛ(ξ) = Det(I −KΛ)detJΛ(ξ), (C.2.3)

where we define JΛ : Λ2 → C by

JΛ(x, y) =
∑

i≥1

λΛi

1− λΛi
ϕΛi (x)ϕ

Λ
i (y) for x, y ∈ Λ, (C.2.4)

and given a configuration ξ = {x1, x2, . . . , xn}, JΛ(ξ) is a n× n matrix with

JΛ(ξ)(i,j) = JΛ(xi, xj), ∀ 0 < i, j ≤ n.

We define detJΛ(∅, ∅) = 1. For details on Janossy density, see [17].
In the following, we summarize some facts concerning DPP Papangelou (conditional)

intensity which characterize the local dependence of particles. See [18] [63] for details on
Papangelou intensity.
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Definition 6. Given a compact set Λ ⊆ E and a simple finite point process X defined on
E with its Janossy density jΛ, the Papangelou intensity of X in Λ defined as:

cΛ(ξ, x) =
jΛ(ξ ∪ x)

jΛ(ξ)
, where ξ ∈ X , x ∈ Λ\ξ.

If jΛ(ξ) = 0 then c(ξ, x) = 0.

For a Poisson point process with intensity function ρ, c(ξ, x) is independent of ξ, i.e.
c(ξ, x) = ρ(x). In general, X is characterized as:

attractive if : c(ξ, x) ≤ c(η, x) whenever x /∈ ξ ⊆ η

repulsive if : c(ξ, x) ≥ c(η, x) whenever x /∈ ξ ⊆ η

Definition 7 ( [18]). For any simple point process X defined on E, where ψ ∈ B, ζ ∈ F
and µ is the distribution of X on X , its modified Campbell measure Cµ on the product
space (X × E,F ⊗ B):

Cµ(ζ × ψ) =

∫

ψ

∑

x∈X

δ{(X\x,x)∈(ζ×ψ)} µ(dX),

where δ is the Dirac measure.

Now, we make an additional assumption that Cµ ≪ ν ⊗ µ. From the Definition 6 and
(C.2.3), the Papangelou intensity of DPP then follow from the following proposition which
we borrow from [28].

Proposition C.2.1. Given Cµ ≪ ν⊗µ, ∀ compact Λ ⊆ E, DPP Papangelou intenstity is
given by:

cΛ(ξ, x) =
detJΛ(ξ ∪ x)

detJΛ(ξ)
, where ξ ∈ X and x ∈ Λ\ξ.

If detJΛ(ξ) = 0, define cΛ(ξ, x) = 0.

Since JΛ(·, ·) is a positive semi-definite matrix, which can be written in the form of:

JΛ(ξx, ξx) =

(

Aξ,ξ Aξ,x

Ax,ξ Ax,x

)

, where Ax,ξ = A†
ξ,x.

Suppose that detAξ,ξ (= 0, then

(

Aξ,ξ Aξ,x

Ax,ξ Ax,x

)

=

(

Aξ,ξ 0
Ax,ξ I

)(

I (Aξ,ξ)
−1Aξ,x

0 Ax,x −Ax,ξ(Aξ,ξ)
−1Aξ,x

)

and

det(JΛ(ξx, ξx)) = det(Aξ,ξ)det(Ax,x −Ax,ξ(Aξ,ξ)
−1Aξ,x).

From Hypothesis (H1), we know:

det(A†
ξ,x(Aξ,ξ)

−1Aξ,x) ≥ 0

and the following Lemma C.2.2 follows.
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Lemma C.2.2. Papangelou intensity of a DPP is upper bounded:

max
ξ∈X ,x∈Λ

cΛ(ξ, x) = max
ξ∈X ,x∈Λ

det(JΛ(ξ ∪ x))

det(Aξ,ξ)
≤ max

x∈Λ
JΛ(x, x), (C.2.5)

and for a stationary model DPP:

max
ξ∈X ,x∈Λ

cΛ(ξ, x) ≤ H.

where a stationary model DPP is a DPP with kernel of the form: K(x, y) = K0(x − y).
Thus, its JΛ(x, x) is equal to a constant H, for all x ∈ Λ.

Remark C.2.3. From the above lemma, we have also shown that a DPP is a repulsive
point process where its Papangelou intensity: c(ξ, x) ≤ c(η, x) for x /∈ η ⊆ ξ.

C.3 Simulation

C.3.1 Perfect Simulation via Dominating CFTP

In this section, we describe the idea of using spatial birth and death process to couple
from the past of a continuous time Markov chain X := {Xt : t ≥ 0} defined on X . From
here, we restrict all the following point processes to be defined on a Polish space E.

A birth and death process (Xt)t≥0 with birth rate b and death rate d is a homogenous
Markovian process defined on X . Birth rate b and death rate d are non-negative functions
defined on X × E. The process Xt is right-continuous and piecewise constant except at
jump times T1 < T2 < . . . , where we define the parameters:

B(ξ) :=

∫

E
b(ξ, x)dν(x), δ(ξ) :=

{ ∑

x∈ξ d(ξ\x, x) if ξ &= ∅
0 if ξ = ∅

and we have:
Tm+1 − Tm ∼ Exponential(B(ξ) + δ(ξ))

By conditioning on Tm+1, a birth occurs with probability:

B(ξ)

B(ξ) + δ(ξ)

and a death with probability:
δ(ξ)

B(ξ) + δ(ξ)
.

We denote the size of the birth and death process as (Zt)t∈R := (|Xt|)t∈R, where Zt is
a M/M/∞ queue defined on N ∪ {0}. Its arrival rate is defined: λ :=

∫
E b(ξ, x)dν(x) and

service rate is defined: µ := d. We denote this process as M/M/∞ (λ, µ). As the total
service rate of a M/M/∞ queue is proportional to its size, the process is always stable.

A Markov Chain Monte Carlo method is to let the birth rate b equals to the Papangelou
intensity of the desired point process X and the death rate d = 1, then the Markov chain
X̂ = {X̂t : t ∈ R} constructed converges to the distribution of X. To obtain a perfect
simulation, Kendall and Møller [41] introduce the dominating process (Dt)t∈R as a birth
and death process with birth rate b = H and death rate d = 1 defined on X , where H is
the upper bound of the Papangelou intensity of the desired point process X. The intuition
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is to introduce a coupling (pairs of Markov chains, LTi and UTi) from the past, deriving
from Dt that respect a partial ordering on the state space X corresponding to X̂t under
time-evolution, i.e.:

Lt ⊆ X̂t ⊆ Ut ⊆ Dt ∀s ≤ t ≤ 0, (C.3.1)

Lt = Ut if Ls = Us ∀s ≤ t ≤ 0, (C.3.2)

Next, we define a marking process (Mt)t∈R which is independent from Dt and such that
we can adaptively contruct X̂, L and U as functionals of (D,M) . We denote the process
X̂n as the constructed Markov chain that begun at time −n < 0. Suppose that we have
coalescence between Ln and Un during the progression from time −n to 0, then the exact
equilibrium is attained by X̂n at time 0, where we have Ln0 = X̂n

0 = Un
0 .

Remark C.3.1. Technically, we have to progressively increase n if coalescence failed at
time 0, however, in [70] suggested that it is efficient to iteratively doubling n, and we let
n ∈ {12 , 1, 2, 4, · · · }. In later section Section C.4, we will show that the running time is
bounded in asymptotic sense. Note that, D is extended for each doubling of n, i.e. D[−2n,0]

is computed from extension of D[−n,0].

Following are the configuration of a perfect simulation. For each jump times {T1 <
T2 < . . .} in the dominating process D:
if there is a birth of point x ∈ Λ\DTi−1 at time Ti, we set:

UTi := UTi−1 ∪ {x} if MTi ≤
c(LTi−1

,x)

H ,
UTi := UTi−1 otherwise.

LTi := LTi−1 ∪ {x} if MTi ≤
c(UTi−1

,x)

H ,
LTi := LTi−1 otherwise.

(C.3.3)

From Remark C.2.3, we know that c(LTi−1 , x) ≥ c(UTi−1 , x).
On the other hand, if there is a death of point x ∈ DTi−1 at time Ti, we configure:
UTi := UTi−1\{x} and LTi := LTi−1\{x} respectively.

Suppose that the process (D,M) is stationary in time and X̂n, Ln and Un for {n =
1, 2, 4, . . .} are derived adaptively from (D,M) satisfying (C.3.1) and (C.3.2), then the
following proposition follows immediately from the dominated convergence theorem, see
[41].

Proposition C.3.2. Let N = inf{n ∈ {12 , 1, 2, · · · } : Ln0 = Un
0 }, and set Ln−n = ∅ and

Un
−n = D−n. If as t tends to infinity, X̂t converges weakly to an equilibrium distribution

π and the probability of D visiting ∅ in the time interval [0, t] converges to 1, then almost
surely N <∞ and LN0 = UN

0 follows the equilibrium distribution π.

C.3.2 Simulation of determinantal point processes

In this subsection, we generalize the idea of Kendall and Møller [41] by relaxing the
condition of compactness. As defined above, we denote a birth and death process with
parameters B and d as BDP(B, d).
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(a) at time T0 (b) at time T25 (c) at time T50

Figure C.1: CFTP simulations for Gaussian model DPP with ρ = 50 and α = 0.04,
respectively at time Ti, the i-th jump time from time t = −n. Notations: “ · ” := Dt,
“∇” := Ut and “∆”(red) := Lt

Theorem C.3.3. Given a DPP X defined on a Polish space E w.r.t. a Radon measure ν.
Suppose that the dominating process D is BDP(

∫
E J(x, x)dν(x), 1) initiated with a Poisson

point process (PPP) with intensity measure:

∫

E
J(x, x)dν(x) <∞ (C.3.4)

Suppose further, the marking process MTi ∼ Unif (0, 1), i.i.d. for each i and independent of
D. Then the process (D,M) is stationary in time and almost surely N <∞ and LN0 = UN

0

follows the distribution of DPP X.

Proof. Stationarity of the process (D,M) follows immediately as the process D started
with its equilibrium distribution, i.e. a PPP(J(x, x)dν(x)).

Following, the probability of D visiting ∅ in the time interval [0, t] converges to 1 as
t tends to infinity. Consequently, from Proposition C.3.2 we have LN0 = UN

0 follows the
distribution of DPP X.

Algorithm 10 Simulation of determinantal point process

Sample D0 from PPP (
∫
E J(x, x)dν(x))

n← 1/2;
while TRUE do
D ← BackwardExtend(D,n);
[L,U ]← Coupling(D);
if L0 == U0 then
return L0

else
n← n ∗ 2;

end if
end while
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Algorithm 11 BackwardExtend(D,n)

j ← 0;
T (0)← n/2; {T (0)← 0 if n = 1/2}
D̃T (0) ← D−n/2; {D̃T (0) ← D0 if n = 1/2}
while T (j) ≤ n do
T (j + 1)← T (j)− log(Uniform(0, 1))/(

∫
E J(x, x)dν(x) + |D̃T (j)|);

if Uniform(0, 1) ≤ (
∫
E J(x, x)dν(x))/(

∫
E J(x, x)dν(x) + |D̃T (j)|) then

x← uniform random point in Λ\D̃T (j);

D̃T (j+1) ← D̃T (j) ∪ x;
else
x← uniform random point in D̃T (j);

D̃T (j+1) ← D̃T (j)\x;
end if
j ← j + 1;

end while
D−t ← D̃t for all t : n/2 < t ≤ n
return D

Algorithm 12 [41] Coupling(D)

L−n ← ∅;
U−n ← D−n;
for Ti ← each jump times T1 < T2 < · · · of D in ]− n : 0] do
if DTi ← DTi−1 ∪ x then
u←MT ;
[LTi , UTi ]← AddBirth(LTi−1 , UTi−1 , x, u);

else
x← DTi−1\DTi ;
LTi ← LTi−1\x;
UTi ← UTi−1\x;

end if
end for
return [L,U ]
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In the pseudocode, we begin with setting n = 1/2 (in later Section C.4, we will
show that we can replace n = 1/2 with log

∫
E J(x, x)dν(x)) and construct D back-

wards in time to −n . Instead of reversing the birth and death rate, the process D
is a Glauber process with equilibrium measure

∫
E J(x, x)dν(x) and hence we can sim-

ulate D̃n as BDP(
∫
E J(x, x)dν(x), 1) forwards in time to time n, initiated with state

D̃0 = D0 = PPP (J(x, x)dν(x)). Let D−t = D̃t for all t : 0 ≤ t ≤ n. We initiate the
processes L and U from time −n with L−n = ∅ and U−n = D−n respectively, such that
(C.3.1) is satisfied. The implementation of AddBirth(LTi−1 , UTi−1 , x, u) in Algorithm 12
follows directly from: if there is a birth of point x ∈ Λ\DTi−1 at time Ti, we set:

UTi := UTi−1 ∪ {x} if MTi ≤

∫
E
c(LTi−1

,x)dν(x)
∫
E
J(x,x)dν(x)

,

UTi := UTi−1 otherwise.

LTi := LTi−1 ∪ {x} if MTi ≤

∫
E
c(UTi−1

,x)dν(x)
∫
E
J(x,x)dν(x)

,

LTi := LTi−1 otherwise.

(C.3.5)

and if there is a death of point x ∈ DTi−1 at time Ti, we configure: UTi := UTi−1\{x} and
LTi := LTi−1\{x} respectively. In the algorithm, the coalescence of processes Lt and Ut,
and their convergence to the target distribution is assured by Theorem C.3.3.

C.4 Running time

In the previous sections, we have been concerned with the simulation of a DPP defined
on a Polish space E. Following, we will provide a bound for the running time of the
algorithm through the asymptotic behavior of a M/M/∞ queue. We defined the process
Gt := |Ut\Lt| for all t ∈ R.

The coalescence time of L and U (equivalently the running time of the algorithm) is
equal to the hitting time of Gt to 0. From (C.3.3), a birth occur in Gt if and only if there
is a birth in Ut but not in Lt and a death occur in Gt if and only if a death occur in Dt

and the dead point x is in Ut but not in Lt. We obtain the arrival rate, λG and service
rate, µG of Gt as following:

λG =
∫
E c(Lt, x)− c(Ut, x)dν(x) (C.4.1)

µGt = |Gt|
|Ut|

(C.4.2)

By definition of Gt, |Dt| is an upper bound for Gt for all t. Denote Zt := |Dt|, and
suppose that the process Zt initiated at time t = t0 and we have a sufficiently large
|Dt0 | = z, then after an exponential time, the process goes to size z + 1 with probability
λ

λ+zµ and z − 1 with probability zµ
λ+zµ . Hence, the next jump is very likely to be a death.

We can roughly approximate the order of hitting time by

z
∑

i=1

1

λ+ iµ
∼ log z

µ

A rigorous approach is provided in [71], as the following Proposition C.4.1.

Proposition C.4.1. Given a M/M/∞ queue Zt with arrival rate λ and service rate µ
(initiated at t0, with Zt0 = z), the hitting time TD0 of 0 is of the order log z. Precisely:

lim
z→∞

Pr

(∣∣∣∣
TD0
log z

− 1

µ

∣∣∣∣ ≥ ε

)

= 0.
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On the other hand, the hitting time of Gt to 0 is at least lower bounded by the time
where all the initial points in Ut0\Lt0 perished, accordingly we have the following Propo-
sition.

Proposition C.4.2. Given a M/M/∞ queue Gt with arrival rate λG and service rate µGt
(initiated at t0, with Gt0 = z and µGt0 = 1), the expected hitting time E[T0] of 0 is lower
bounded:

log z ≤

z
∑

i=1

1

i
= E[T0] (C.4.3)

Proof. Given µGt0 = 1, each of the initial point in the configuration Ut0\Lt0 have living
period i.i.d. Exponential(1). It is not difficult to show that the expected value of the
maximum of z exponential random variable, xi with parameter 1 is:

E[max(xi)] =

z
∑

i=1

1

i
(harmonic series).

Hence, (C.4.3) is proved.

From Propositions C.4.1 and C.4.2, given N = inf{n ∈ {12 , 1, 2, · · · } : Ln0 = Un
0 } and

the size of the initial configuration of the process GN
−N equal to z, we have the following:

— the expected coalescence time, E[T0] is lower bounded by log z.
— the upper bound of the coalescence time, TD0 converges in probability to log z as z

tends to infinity.

Consequently, we have the following theorem.

Theorem C.4.3. The coalescence time, T0 is asymptotically of the order log z, i.e.

lim
z→∞

Pr

(∣

∣

∣

∣

T0
log z

−
1

µ

∣

∣

∣

∣

≥ ε

)

= 0.

Proof. We define a lower process M/M/∞ queue with initial size z, arrival rate 0 and
service rate 1. By Proposition C.4.1, as z tends to infinity, the hitting time TL0 is of the
order log z. Given any constant c ≥ 0, we know that Pr(TL0 < c) ≥ Pr(T0 < c).

By the definition of Gt, we have T0 ≤ TD0 almost surely. Hence, for all ǫ > 0,

lim
z→∞

Pr

(
∣

∣

∣

∣

T0
log z

− 1

∣

∣

∣

∣

≥ ǫ

)

= lim
z→∞

(

Pr

(

T0
log z

≥ 1− ǫ

)

+ Pr

(

T0
log z

≤ 1 + ǫ

))

≤ lim
z→∞

(

Pr

(

TD0
log z

≥ 1− ǫ

)

+ Pr

(

TL0
log z

≤ 1 + ǫ

))

= 0

Heuristically, we shall see that the running time of the algorithm is of the order
O(log

∫

E J(x, x)dν(x)) in Section C.5.
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(a) Gaussian Model (b) Matérn Model (ν = 5) (c) Cauchy model (ν = 5)

Figure C.2: Configurations of stationary DPPs simulated from CFTP algorithm. ρ = 50
and α = αmax/2 for all the 3 models.

C.5 Application to examples in stationary models

Point processes and random measures that are invariant under shifts in a d-dimensional
Euclidean space Rd play a vital role in applications and development of the general theories.
Accordingly in this section, we will be focusing on stationary DPP models defined on a
compact set Λ = [−1/2, 1/2]2 in R

2, where we denote l ∈ ∆ := {x− y : x, y ∈ Λ} and

K0(l) := K(x, y).

Suppose we are given a DPP kernel, it would be ideal if we could explicitly compute the
Papangelou intensity (upper bound) in Lemma C.2.2, however (see [28] and [44]) there are
only known in a few simple models where the Papangelou intensity can be computed from
the spectral representation. In the sequel, we will approximate the kernel in (C.2.1) by
applying Fourier expansion to obtain the Papangelou intensity.

Consider the following orthonormal Fourier basis in L2(∆):

ϕ∆k (l) = e2πik·(l), k ∈ Z
2, l ∈ ∆ (C.5.1)

where k · l is the dot product of the vectors. We have the Fourier expansion of K0(l) as:

K0(l) =
∑

k∈Z2

λ∆k ϕ
∆

k (l).

equivalently:

K(x, y) =
∑

k∈Z2

λ∆k ϕ
∆

k (x)ϕ
∆

k (y),

where the Fourier coefficients:

λ∆k =

∫

∆

K0(l)e
−2πik·rdl

≈

∫

R2

K0(r)e
−2πik·rdr =: λk

As K0(l) ≈ 0 when |l| > 1, we have Fourier transform as an approximation for the Fourier
coefficient.
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Corresponding to [44], let ρ defined the intensity of the DPP and we apply the CFTP
simulations on the following three stationary models and their Fourier transform respec-
tively:

1. Gaussian model: for ρ ≥ 0 and 0 < α ≤
√

1
πρ

K(x, y) = ρ exp

(

−
1

α2
‖x− y‖2

)

(C.5.2)

λk = πα2ρe−π
2α2‖k‖2 (C.5.3)

2. Matérn model: for ρ ≥ 0, ν > 0 and 0 < α ≤
√

1
4πνρ

K(x, y) = ρ
21−ν

Γ(ν)αν
‖x− y‖νKν(

1

α
‖x− y‖) (C.5.4)

λk = 4πα2ρ
ν

(1 + 4π2α2‖k‖2)1+ν
(C.5.5)

3. Cauchy model (generalized): for ρ ≥ 0, ν > 0 and 0 < α ≤
√

ν

πρ

K(x, y) =
ρ

(1 + 1
α2 ‖x− y‖2)1+ν

(C.5.6)

λk =
21−νπα2ρ

Γ(1 + ν)
‖2παk‖νKν(‖2παk‖) (C.5.7)

where Kν is the modified Bessel function of the second kind. The integral representation
of the function is:

Kν(z) =

(

z
2

)

ν
Γ(12)

Γ(ν + 1
2)

∫ ∞

1
e−zt(t2 − 1)ν−

1
2dt

As z tends to 0, we have Kν(z) tends to infinity and limz→0 z
νKν(z) =

Γ(ν)
21−ν

. In Matérn

model, we have K(x, x) = ρ, and in Cauchy model, we have λ0 = πα
2
ρ

ν
. See other repre-

sentations of Kν(z) in [36].
From Lemma C.2.2 and (C.2.4), we set the upper bound of the Papangelou intensity:

H = JΛ(x, x) =
∑

k∈Z2

λk

1− λk
(C.5.8)

In practice we are unable to compute the infinite sum of the Fourier expansions. From
(C.2.2), a rule of thumb will be choosing a constant N large enough such that that:

∑

−N≤i,j≤N

λ∆i,j ≈ ρ (C.5.9)

For the given models, we compute their pair correlation function g(r) to investigate
the reliability of the simulations, where r := ‖x − y‖2. Given any 2 points x and y in a
configuration, their pair correlation function is given as:

g(r) :=
ρ2(x, y)

ρ1(x)ρ1(y)
= 1−

K(x, y)K(y, x)

K(x, x)K(y, y)

and respectively for:



175

1. Gaussian model:

g(r) = 1− e−2(r/α)2 , (C.5.10)

2. Matérn model:

g(r) = 1− [21−ν(
r

α
)νKν

( r

α

)

/Γ(ν)]2, (C.5.11)

3. Cauchy model:

g(r) = 1− (1 + (r/α)2)−2ν−2. (C.5.12)

In this paper, we fixed N such that the sum is at least 99.9% of ρ. In Figure C.3, we
compare the distribution of the size of DPP simulated with its actual distribution given by
a Poisson-binomial distribution, see [34]. Here, we use the term actual for the truncated
Fourier expansion to approximate the kernel. From [26], the probability mass function
(PMF) of the Poisson-binomial distribution can be written in the form of discrete Fourier
transform as:

Pr(|X| = n) =
1

N + 1

N
∑

k=0

e
−2πikn
N+1

N
∏

m=1

(

pme
2πik
N+1 + (1− pm)

)

Figure C.3: PMF of 500 Gaussian models with ρ = 50 and α = 0.04.

Figure C.4 is a comparison of the theoretical pair correlation function g(r) with the
simulated DPP results for ρ = 50 and α is fixed to be αmax/2. For both Matérn Model
and Cauchy Model, ν = 5. With regards to the the error in g(r) when r tends to 0, we lost
some ‘harmonic’ in the Fourier approximations when computing the Papangelou intensity.

Figure C.5(a) and Figure C.5(b) show the distributions of the coalescence time of Lt
and Ut and the stopping time of the algorithm for 500 Gaussian model DPP simulations
with ρ = 50. The stopping time refer to the time −n required to simulate backwards such
that coalescence of Lt and Ut occur at time t = 0. Heuristically, we have shown that the
stopping time is of order O(logH|Λ|), (H ≈ 57.5).
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(a) Gaussian Model (b) Matérn Model

(c) Cauchy model

Figure C.4: Pair Correlation Function.

(a) Coalescence time of Lt and Ut (b) Stopping time

Figure C.5: Histograms of coalescence time of Lt and Ut and the stopping time on 500
Gaussian models with ρ = 50 and α = 0.04.
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Analyse stochastique de processus ponctuels : Au-delà du
processus de Poisson

Ian FLINT

RESUME : Les processus déterminantaux ont généré de l’intérêt dans des domaines très divers, tels

que les matrices aléatoires, la théorie des processus ponctuels, ou les réseaux. Dans ce manuscrit, nous les

considérons comme un type de processus ponctuel, c’est-à-dire comme un groupement de points aléatoires

dans un espace très général. Ainsi, nous avons accès à une grande variété d’outils provenant de la théorie

des processus ponctuels, ce qui permet une analyse précise d’un grand nombre de leur propriétés.

Nous commençons par poser les bases probabilistes selon lesquelles nous allons travailler dans ce ma-

nuscrit. Nous insistons tout particulièrement sur les propriétés plus subtiles de l’intensité de Papangelou, qui

sera centrale dans de nombreux chapitres.

Puis, nous passons à une analyse des processus déterminantaux d’un point de vue applicatif. Nous

proposons ainsi différentes méthodes pour leur simulation dans un cadre général. Nous présentons une

série de modèles dérivés du processus de Ginibre, et qui se trouvent être très utiles dans les applications.

Troisièmement, nous introduisons un gradient différentiel sur l’espace des processus ponctuels. Grâce à

des outils puissants de la théorie générale des formes de Dirichlet, nous montrons une formule d’intégration

par parties pour un processus ponctuel général, et prouvons l’existence de diffusions correctement associées

à ces processus. Nous sommes en mesure d’appliquer ces résultats aux processus déterminantaux, ce qui

mènera à une caractérisation de ces diffusions en termes d’équations différentielles stochastiques.

Enfin, nous nous intéressons au gradient différence. Dans un certain sens, nous définissons alors une

intégrale de Skohorod qui satisfait une formule d’intégration par parties, c’est-à-dire que son adjoint est le

gradient différence. Une application à l’étude d’une transformation aléatoire du processus ponctuel est pré-

sentée, dans laquelle nous caractérisons la distribution du processus ponctuel transformé sous certaines

conditions.


