.. Le-comportement-de-la-combustion-en-proche-paroi, 45 2.4.1 L'interaction couche limite cinématique-amme, p.46

.. La-couche-limite-cinématique, 49 L'épaisseur de couche limite cinématique 49 Transition de la couche limite laminaire à turbulente, p.50

L. 'interaction-couche-limite-thermique-amme and .. , 53 Visualisations de champs de température en proche paroi, p.55

.. Le-modèle-À-deux-zones, 67 Chimie de la combustion, 68 Calcul des caractéristiques thermodynamiques . . . . . . . 69 Le modèle de pertes thermiques pariétales, p.71

B. Sabre, 0-Dimensional modeling of the combustion of alternative fuels in spark ignition engines, 2012.

N. Bordet, Modélisation 0D/1D de la combustion Diesel : du Mode Conventionnel au Mode Homogène, 2011.

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, pp.978-980, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00270731

N. Peters, Laminar amelet concepts in turbulent combustion, Twenty rst Symposium of Combustion, p.12311250, 1986.

L. Landry, Etude expérimentale des modes de combustion essence sous forte pression et forte dilution, 2009.

B. Galmiche, Caractérisation expérimentale des ammes laminaires et turbulentes en expansion, 2014.

V. S. Babkin, V. V-'yun, and L. S. Kozachenko, Determination of burning velocity from the pressure record in a constant-volume bomb, Combustion, Explosion, and Shock Waves, vol.3, issue.3, p.221225, 1967.
DOI : 10.1007/BF00791865

L. Ömer and . Gülder, Laminar burning velocities of ethanol, methanol and isooctane air mixtures. Nineteenth Symposium on Combustion /The Combustion institute, p.275281, 1982.

M. Metghalchi and J. C. Keck, Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature, Combustion and Flame, vol.48, 1982.
DOI : 10.1016/0010-2180(82)90127-4

M. Rivas, Développement d'une modélisation phénoménologique de chambre de combustion de moteurs à piston par réduction de modèle physique 3D dans la perspective d'une intégration dans un outil de simulation système, 2007.

J. H. Heywood, Internal Combustion Engine Fundamentals, 1988.

L. Ponty, Application de la diusion Rayleigh induite par laser à la caractérisation des fronts de amme laminaire de prémélange H2, 2011.

B. John, S. G. Heywood, and . Poulos, The eect of chamber geometry on spark ignition engine combustion, 1983.

U. Maas and S. B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combustion and Flame, vol.88, issue.3-4, p.239264, 1992.
DOI : 10.1016/0010-2180(92)90034-M

J. A. Von-oijen and L. P. De-goey, Modeling of premixed laminar ames using amelet-generated manifolds, Combustion Science and Technology, vol.161, p.113137, 2000.

S. B. Pope, Computationally ecient implementation of combustion chemistry using in situ adaptative tabulation. Combustion Theory and Modelling, p.4163, 1997.

R. Borghi and M. Destriau, La combustion et les ammes, 1995.

A. Thierry, R. M. Baritaud, and . Green, A 2-d ame visualisation technique applied to the i.c. engine. SAE Technical Paper No 860025, 1986.

W. P. Jones and B. E. Launder, The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer, vol.15, issue.2, p.301314, 1972.
DOI : 10.1016/0017-9310(72)90076-2

F. E. Marble and J. E. Broadwell, The coherent ame model for turbulent chemical reactions, 1977.

A. R. Kerstein, W. Ashurst, and T. A. Williams, Field equation for interface propagation in an unsteady homogeneous ow eld, Physical Revue, vol.37, p.27282731, 1988.

G. Bruneaux, Etude asymptotique, simulation numérique directe, et modélisation de l'intéraction amme turbulente prémélangée-paroi, 1996.

F. E. Corcione and G. Valentino, Analysis of in-cylinder ow-processes by lda, Combustion and Flame, vol.99, p.387394, 1994.

F. Foucher, Etude expérimentale de l'intéraction amme-paroi : application au moteur à allumage commandé, 2002.

B. Boust, Etude expérimentale et modélisation des pertes thermiques pariétales lors de l'intéraction amme-paroi instationnaire, 2006.

L. Muller, Etude expérimentale de l'intéraction amme-paroi instationnaire dans des conditions initiales non isothermes, 2006.

K. Y. Kang and J. H. Baek, Turbulence characteristics of tumble ow in four-valve engine. Experimental thermal and Fluid Science, p.231243, 1998.

M. J. Hall and F. V. Bracco, Cycle-resolved velocity and turbulence measurements near the cylinder wall of a ring s.i. engine, 1986.

R. P. Lucht and M. A. Maris, Cars measurements of temperature proles near a wall in an internal combustion engine, 1987.

W. M. Huang, S. R. Vosen, and R. Greif, Heat transfer during laminar ame quenching : eect of fuels. Twenty-rst Symposium on Combustion/The combustion Institute, p.18531860, 1986.

C. K. Westbrook, G. A. Lavoie, and A. Adamczyk, A numerical study of laminar ame wall quenching. Combustion and ame, p.8199, 1981.

J. H. Lu, O. Ezekoye, R. Greif, and R. F. Sawyer, Unsteady heat transfer during side wall quenching of a laminar ame, Twenty-third Symposium on Combustion/The combustion Institute, p.441446, 1990.

T. J. Poinsot, D. C. Haworth, and G. Bruneaux, Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion???, Combustion and Flame, vol.95, issue.1-2, pp.118-132, 1993.
DOI : 10.1016/0010-2180(93)90056-9

K. Huber, G. Woschni, and K. Zeilinger, Investigations on heat transfers in internal combustion engines under low load and motoring conditions, 1990.

H. Zhiyu and R. Reitz, A temperature wall function formulation for variabledensity turubulent ows with application yo engine convective heat transfer modeling, International Journal Heat Mass Transfer, vol.40, p.613625, 1997.

J. Yang and J. Martin, Approximate solution-one dimensional energy equation for transient, compressible, low mach number turbulent boundary layer ows, Journal of Heat Transfer ASME, p.111, 1989.
DOI : 10.1115/1.3250727

C. Caillol, Inuence de la composition du gaz naturel carburant sur la combustion turbulente en limite pauvre dans les moteurs à allumage commandé, 2003.

J. B. Heywood, Combustion and its modeling in spark ignition engines, International Symposium COMODIA, 1994.

S. Verhelst and C. G. Sheppard, Multi zone thermodynamic modelling of spark ignition engine combustion -an overview. Energy Conversion and management, pp.1326-1335, 2008.

. Cherian, G. L. Olikara, and . Borman, A computer program for calculating properties of equilibrium combustion products with some applications to i.c. engines. SAE Technical Paper No 750468, 1970.

C. Norman, J. C. Blizard, and . Keck, Experimental and theorical investigation of turbulent burning model for international combustion engines, 1974.

F. D. Mccuiston, G. A. Lavoie, and L. , Validation of turbulent ame propagation model for a spark ignition engine, 1974.

R. J. Tabaczynski, C. R. Ferguson, and K. Radhakrishnan, A Turbulent Entrainment Model for Spark-Ignition Engine Combustion, SAE Technical Paper Series, 1977.
DOI : 10.4271/770647

F. C. Gouldin, An application of fractals to modeling premixed turbulent ame, Combustion and Flame, vol.68, p.249266, 1987.

F. Ma, Y. Wang, M. Wang, H. Liu, J. Wang et al., Development and validation of a quasi-dimensional combustion model for SI engines fuelled by HCNG with variable hydrogen fractions, International Journal of Hydrogen Energy, vol.33, issue.18, p.48634875, 2008.
DOI : 10.1016/j.ijhydene.2008.06.068

F. Pereni, F. Paltrinieri, and E. Mattarelli, A quasi dimensional combustion model for performance and emissions of si engines running on hydrogenenmethane blends, Internation Journal of Hydrogenen Energy, vol.35, p.46874701, 2010.

F. Bozza and A. Gimelli, Validation of a fractal comvustion model through ame imaging. SAE Technical Paper No, 1120.

G. Mauviot, Développement d'une modélisation phénoménologique de chambre de combustion de moteurs à piston par réduction de modèle physique 3D dans la perspective d'une intégration dans un outil de simulation système, 2007.

E. G. Gro, An experimental evaluation of an entrainment-ame propagation model, Combustion and Flame, vol.67, p.153162, 1987.

A. Boiarciuc and A. Floch, Evaluation of a 0d phenomenological si combustion model. SAE Technical Paper, 1894.

F. C. Gouldin, S. M. Hilton, and T. Lamb, Experimental evaluations of the fractal geometry of amelets, 32 Symposium on Combustion/The Combustion Institute, p.541550, 1988.

O. L. Gülder, G. J. Smallwood, R. Wong, D. R. Snelling, B. M. Smith et al., Flame front surface characteristics in turbulence premixed propane/air combustion, Combustion and Flame, vol.120, p.407416, 2000.

O. L. Gülder and G. J. Smallwood, Inner cuto scale of ame surface wrinkling in turbulent premixed ames, Combustion and Flame, vol.103, p.107114, 1995.

C. D. Rakopoulos and C. N. Michos, Development and validation of a multi-zone combustion model for performance and nitric oxide formation in syngas fueled spark ignition engine. Energy conversion and management, p.29242938, 2008.

C. R. Stone, K. J. Mendis, and M. Daragheh, Measurements and modeling of a lean burn gas engine, Journal of Power and Energy, vol.10, p.449462, 1996.

T. Hatrell, C. G. Sheppard, A. A. Burluka, J. Neumeister, and A. Cairns, Burn rate implications of alternative knock reductions strategies for turbocharged si engine. SAE Technical Paper No, 1110.

R. R. Raine, C. R. Stone, and J. Gould, Modeling of nitric oxide formation in si engines with a multizone burned gas, Combustion and Flame, vol.102, p.241255, 1995.

G. Philippe, Modélisation du cyle moteur. moteurs à allumage commandé, 2005.

D. Bradley, R. A. Hicks, M. Lawes, C. G. Sheppard, and R. Woolley, The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-octane???Air and Iso-octane???n-Heptane???Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb, Combustion and Flame, vol.115, issue.1-2, p.128144, 1998.
DOI : 10.1016/S0010-2180(97)00349-0

D. E. Foster and P. O. Witze, Velocity Measurements in the Wall Boundary Layer of a Spark-Ignited Research Engine, SAE Technical Paper Series, 1987.
DOI : 10.4271/872105