
HAL Id: tel-01179584
https://pastel.hal.science/tel-01179584

Submitted on 23 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Physical security of elliptic curve cryptography
Cédric Murdica

To cite this version:
Cédric Murdica. Physical security of elliptic curve cryptography. Cryptography and Security [cs.CR].
Télécom ParisTech, 2014. English. �NNT : 2014ENST0008�. �tel-01179584�

https://pastel.hal.science/tel-01179584
https://hal.archives-ouvertes.fr

N°: 2009 ENAM XXXX

Télécom ParisTech
école de l’Institut Mines Télécom – membre de ParisTech

46, rue Barrault – 75634 Paris Cedex 13 – Tél. + 33 (0)1 45 81 77 77 – www.telecom-paristech.fr

XXN°: : : : : : : : : : : : : : : : : 2 2 2 2 2 2 2 2 2 2 2 2 2 2000000999999999999999999999999999999999999999 ENAM XX

2014-ENST-0008

 EDITE ED 130

 présentée et soutenue publiquement par

 Cédric MURDICA

 le 13 février 2014

 Sécurité Physique de la

 Cryptographie sur Courbes Elliptiques

 Doctorat ParisTech

 T H È S E

 pour obtenir le grade de docteur délivré par

 Télécom ParisTech

 Spécialité “ Électronique et Communications ”

Directeurs de thèse : Philippe HOOGVORST, David NACCACHE
Co-encadrement de la thèse : Jean-Luc DANGER

T

H

È

S

E

Jury
M. Pierre-Alain FOUQUE, Professeur, Université de Rennes I Président, Rapporteur

M. Jean-Sébastien CORON, Maître de Conférences, Université du Luxembourg Rapporteur

M. Jean-Jacques QUISQUATER, Professeur, Université Catholique de Louvain Examinateur

M. Philippe NGUYEN, Directeur Technique, Secure-IC Examinateur

M. Sylvain GUILLEY, Professeur Associé, Télécom ParisTech Invité

2

3

Abstract

Elliptic Curve Cryptography (ecc) has gained much importance in smart cards because of
its higher speed and lower memory needs compared with other asymmetric cryptosystems such
as rsa. ecc is believed to be unbreakable in the black box model, where the cryptanalyst has
access to inputs and outputs only. However, it is not enough if the cryptosystem is embedded on
a device that is physically accessible to potential attackers. In addition to inputs and outputs,
the attacker can study the physical behaviour of the device. This new kind of cryptanalysis is
called Physical Cryptanalysis where two main families arise: Side-Channel and Fault Attacks.
Side-Channel Attacks exploit information leaking during the execution of a cryptographic algo-
rithm embedded in a device. In a Fault Attack, the attacker forces the device into an abnormal
mode of operation. The attacker can potentially derive the secrets stored in the system from
the wrong results. This thesis focuses on physical cryptanalysis of ecc.

The first part gives the background on ecc. From the lowest to the highest level, ecc

involves a hierarchy of tools: Finite Field Arithmetic, Elliptic Curve Arithmetic, Elliptic Curve
Scalar Multiplication and Cryptographic Protocol. Depending on the physical attack, the crypt-
analyst must have a certain knowledge of the implementation to a certain level. Therefore, each
level of the hierarchy is described in detail in a chapter.

The second part exhibits a state-of-the-art of the different physical attacks and countermea-
sures on ecc. For each attack, the context on which it can be applied is given while, for each
countermeasure, we estimate the time and memory cost. We propose new attacks and new
countermeasures. Then, we give a clear synthesis of the attacks depending on the context. This
is useful during the task of selecting the countermeasures. Finally, we give a clear synthesis of
the efficiency of each countermeasure against the attacks.

4

Résumé

La Cryptographie sur les Courbes Elliptiques (abréviée ecc de l’anglais Elliptic Curve Cryp-
tography) est devenue très importante dans les cartes à puces car elle présente de meilleures
performances en temps et en mémoire comparée à d’autres cryptosystèmes asymétriques comme
rsa. ecc est présumé incassable dans le modèle dit “Bôıte Noire”, où le cryptanalyste a unique-
ment accès aux entrées et aux sorties. Cependant, ce n’est pas suffisant si le cryptosystème
est embarqué dans un appareil qui est physiquement accessible à de potentiels attaquants. En
plus des entrés et des sorties, l’attaquant peut étudier le comportement physique de l’appareil.
Ce nouveau type de cryptanalyse est appelé cryptanalyse physique, qui se distinguent en deux
grandes familles: attaques par canal auxiliaire et attaques en fautes. Les attaques par canal
auxiliaire exploitent l’information émanant de l’appareil pendant l’exécution d’un algorithme
cryptographique. Concernant les attaques en fautes, l’attaquant force l’appareil à effectuer
un mode d’opérations anormal. À partir des faux résultats, l’attaquant peut potentiellement
dériver les secrets stockés sur la carte. Cette thèse porte sur les attaques physiques sur ecc.

La première partie fournit les pré-requis sur ecc. Du niveau le plus bas au plus élevé, ecc
nécessite les outils suivants : l’arithmétique sur les corps finis, l’arithmétique sur courbes ellip-
tiques, la multiplication scalaire sur courbes elliptiques et enfin les protocoles cryptographiques.
Les attaques physiques nécessitent une certaine connaissance de l’implémentation visée jusqu’à
un certain niveau dans la hiérarchie. Ainsi, chaque niveau est décrit de façon détaillée dans un
chapitre.

La deuxième partie expose un état de l’art des différentes attaques physiques et con-
tremesures sur ecc. Pour chaque attaque, nous donnons le contexte dans lequel elle est ap-
plicable. Pour chaque contremesure, nous estimons son coût en temps et en mémoire. Nous
proposons de nouvelles attaques et de nouvelles contremesures. Ensuite, nous donnons une
synthèse claire des attaques suivant le contexte. Cette synthèse est utile pendant la tâche du
choix des contremesures. Enfin, une synthèse claire de l’efficacité de chaque contremesure sur
les attaques est donnée.

Remerciements

Trois années de thèse s’achèvent. C’est une expérience très enrichissante, mais aussi difficile. Il
est donc normal de remercier les gens qui m’ont aidé de près ou de loin, de quelque façon que
ce soit.

Tout d’abord je tiens à remercier Philippe Hoogvorst et David Naccache pour avoir
rempli le rôle de directeurs de thèse. Leurs conseils étaient toujours très utiles. Un grand merci
également à Jean-Luc Danger et Sylvain Guilley, ainsi qu’à tout le département COMELEC,
qui ont initié et encadré cette thèse.

Je remercie les fondateurs de Secure-IC : Hassan Triqui, Philippe Nguyen, Sylvain Guil-

ley, Jean-Luc Danger et Laurent Sauvage de m’avoir accepté au sein de l’entreprise. À mon
arrivée, la spin-off n’existait que depuis dix mois et comptait très peu d’employés. C’est un
honneur d’avoir intégré l’équipe à ses débuts.

J’ai eu la chance d’avoir un jury prestigieux: Jean-Sébastien Coron, Pierre-Alain Fouque,
Jean-Jacques Quisquater, Philippe Nguyen, Jean-Luc Danger et Sylvain Guilley. Je leur
remercie d’avoir accepter d’évaluer mes travaux.

Le corps administratif de Télécom ParisTech a été très efficace. Je cite notamment Bruno
Thedrez, Alain Sibille, Florence Besnard, Chantal Cadiat, Zouina Sahnoune et Fabienne
Lassausaie. Leur présence et leur gentillesse m’ont beaucoup facilité les choses.

Merci à tous mes co-auteurs qui ont permis de produire des articles de grande qualité: mes
encadrants Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, et David Naccache;
et aussi Diana Maimuţ et Mehdi Tibouchi qui ont largement contribué à l’article sur l’attaque
en faute.

Je tiens aussi à remercier tous mes collègues de Secure-IC, anciens et actuels. Ce sont
finalement les personnes que je côtoie le plus souvent. Par ordre de rencontre : Sébastien B,
Alexandre C, Matthieu L, Lionel T, Molka B, Karine L, Alejandro L, Thibault P, Anne-Sophie
D, Pierre V, Clément L, Romain H, Yann B, Olivier P, Robert N, Charles T, Olivier E, Brice
M, Chloé F, Théophile B, Janie Q, Rachid D, Youssef S, Cécile P, Valentin P et François R.

Ce fût trois années joyeuses notamment grâce aux nombreuses soirées au O’Connell, au
Comptoir ou au Frogs. C’est aussi grâce au Baby-foot qui anime la coupure du midi. Oui, nous
avons un Baby-foot à Secure-IC!

Enfin, et non le moins important, je remercie mes parents, mes frères, mes belles sœurs,
et ma nièce d’avoir toujours cru en moi. Leur soutien était indispensable. J’en profite pour

5

6 REMERCIEMENTS

remercier aussi tous mes amis. Ils ont aussi joué leur rôle dans cette thèse. Malgré des choix
professionnels complètement différents, leurs conseils et leur soutien se sont faits ressentir. Tout
s’est fait dans la joie et la bonne humeur, principalement au Belise, au Coq ou à la Duchesse
Anne.

Description des travaux

La cryptographie est une science qui permet de protéger des messages. Avant l’envoi d’un
message, il est d’abord transformé de façon à ce qu’il soit incompréhensible sauf pour le des-
tinataire du message : c’est le chiffrement. La confidentialité est alors assurée. La méthode
inverse est appelé le déchiffrement. En plus de la confidentialité, la cryptographie remplit
d’autres fonctionnalités telles que l’authentification et l’intégrité.

Par le principe de Kerckhoffs, la sécurité d’un cryptosystème doit uniquement reposer sur
une donnée secrète et non sur les méthodes utilisées pour chiffrer ou déchiffrer des messages.
Cette donnée secrète est appelée clé. Deux grandes familles de cryptosystèmes existent: la
cryptographie symétrique et asymétrique.

Dans un cryptosystème symétrique, la même clé est utilisée pour chiffrer et déchiffrer des
messages.

Dans un cryptosystème asymétrique, deux clés sont utilisées. Une clé est publiquement
diffusée et sert à effectuer des procédures publiques telles que le chiffrement de messages ou la
vérification de signatures. Cette clé est appelée clé publique. Lorsqu’un message est chiffré, per-
sonne n’est capable de le déchiffrer sauf le propriétaire de la seconde clé, appelée clé privée. Le
détenteur de cette clé privée est aussi le seul capable de signer des messages. La cryptographie
asymétrique apporte plus de fonctionnalités que la cryptographie symétrique mais elle nécessite
des calculs beaucoup plus importants que la cryptographie symétrique. Généralement, la cryp-
tographie asymétrique est utilisée au départ d’une communication entre deux entités pour
l’authentification et l’échange d’une clé symétrique. Une fois fait, les deux entités commu-
niquent en utilisant un cryptosystème symétrique avec la clé échangée que seules ces entités
connaissent. rsa fut le premier cryptosystème asymétrique, introduit par Rivest, Shamir et
Adleman en 1977. À la fin des années 1980, Koblitz et Miller ont présenté l’utilisation des
courbes elliptiques pour des applications cryptographiques. Cette thèse se focalise sur la Cryp-
tographie sur Courbes Elliptiques (abréviée ecc, de l’anglais Elliptic Curve Cryptography).

La sécurité d’un cryptosystème est assurée par de fortes preuves mathématiques dans le
modèle de la bôıte noire. Dans ce modèle, l’attaquant a uniquement accès aux entrées et aux
sorties.

La cryptographie est beaucoup utilisée dans les cartes à puces. Un nouveau type d’attaques
sur les cartes à puces a vu le jour à la fin des années 1990. Kocher a montré qu’une sim-
ple analyse du temps d’exécution était suffisante pour récupérer la clé utilisée dans la carte
ciblée. Depuis, de nombreuses attaques de ce type ont émergé. Elles se basent sur l’observation
du comportement de la cible pendant l’exécution d’un algorithme cryptographique. Ce type
d’attaques est appelé attaques physiques. Les preuves de sécurité dans le modèle de la bôıte
noire ne sont pas suffisantes dans ce cas. Bien sûr, de nombreuses méthodes existent pour
contrer ces attaques.

7

8 Description des travaux

Cette thèse s’adressent aux designers développant des applications cryptographiques à base
de courbes elliptiques embarquées sécurisées. La première partie donne les pré-requis de ecc.
La seconde partie se focalisent sur les attaques physiques et contremesures sur ecc. En plus d’un
état-de-l’art complet, nous introduisons de nouvelles attaques et de nouvelles contremesures.

Partie I : Cryptographie sur Courbes Elliptiques

Cette partie fournit les pré-requis sur ecc. Du niveau le plus bas au plus élevé, ecc nécessite
les outils suivants : l’arithmétique sur les corps finis, l’arithmétique sur courbes elliptiques,
la multiplication scalaire sur courbes elliptiques et enfin les protocoles cryptographiques. Les
attaques physiques nécessitent une certaine connaissance de l’implémentation visée jusqu’à un
certain niveau dans la hiérarchie. Ainsi, chaque niveau est décrit de façon détaillée dans un
chapitre.

Cette partie est en fait un état-de-l’art des différentes méthodes de calcul sur les courbes
elliptiques.

Chapitre 1 : Définition des Courbes Elliptiques

Ce chapitre décrit les courbes elliptiques et leurs propriétés. À savoir, une courbe elliptique
sur un corps K de caractéristique différente de deux et trois, est défini par son équation de
Weierstraß réduite :

E : y2 = x3 + ax+ b .

avec a, b ∈ K vérifiant 4a3 + 27b2 6= 0.

Dans ce chapitre, nous donnons également les propriétés principales des courbes elliptiques.
Parmi celles-ci, nous insistons sur leur structure de groupe car c’est ce qui fait des courbes
elliptiques de bons outils pour la cryptographie. Les points de la courbe elliptiques forment un
groupe abélien additif, en suivant la règle de la sécante tangente illustré ci-dessous sur R.

Figure 1: Addition et doublement de points sur la courbe y2 = x3 − 2x+ 1 sur R

Nous présentons également le système de coordonnées projectives. Dans ce système, les
points de la courbe sont définis avec trois coordonnées (X,Y, Z) au lieu de deux (x, y). Ce
système et ses variantes (tel que les coordonnées Jacobiennes) sont très utilisés car ils permettent
d’éviter d’effectuer de nombreuses inversions modulaires très coûteuses.

9

Chapitre 2 : Arithmétique sur les Corps Finis

Les courbes elliptiques les plus utilisées sont les courbes elliptiques définies sur un corps premier
de grande caractéristique. Ainsi, les opérations de bases sur les courbes elliptiques, mais aussi
sur rsa, sont les opérations sur le corps Fp avec p > 3. Ces opérations sont très importantes car
elles doivent être très performantes. Elles sont donc très étudiées tant au niveau algorithmique
qu’au niveau de l’implémentation logicielle ou matérielle.

Certaines attaques physiques se focalisent sur ce niveau le plus bas de la hiérarchie. Nous
décrivons donc en détails certaines implémentations pour une grande compréhension de ces
attaques. Nous décrivons notamment en détails la multiplication de Montgomery qui très
largement répandue.

Chapitre 3: Arithmétique sur les Courbes Elliptiques

De nombreuses formules existent pour calculer l’addition de deux points ou le doublement d’un
point. On trouve aussi d’autres formules plus exotiques telles que l’addition conjugué de deux
points P et Q qui calcule P +Q et P −Q au sein de la même formule.

Ce chapitre synthétise les différentes formules les plus utilisées. Une synthèse sur le coût
des formules en temps et en mémoire est fourni à la fin de ce chapitre.

Chapitre 4 : Multiplication Scalaire

La multiplication scalaire sur courbes elliptiques (ecsm de l’anglais Elliptic Curve Scalar Mul-
tiplication) est l’opération qui consiste à calculer

[k]P = P + · · ·+ P
︸ ︷︷ ︸

k fois

,

à partir d’un point P de la courbe donnée et d’un entier k.

Ce chapitre donne les algorithmes de multiplication scalaire les plus utilisés. Les multipli-
cations scalaires sont répertoriées en fonction de la régularité. Un ecsm est dit régulier si, à
chaque itération, les mêmes opérations sur la courbe sont effectués quel que soit la valeur du
scalaire.

Cette distinction est importante pour la sécurité physique puisqu’une multiplication scalaire
régulière est protégée face à l’une des premières attaques en canaux auxiliaires : l’attaque Simple
Side-Channel Analysis.

De même que pour les formules sur courbes elliptiques, une synthèse est donnée à la fin du
chapitre sur le coût des différents algorithmes de multiplication scalaire.

Chapitre 5 : Protocoles Cryptographiques

Ce chapitre décrit certains protocoles cryptographiques basés sur les courbes elliptiques. Le
protocole de signature ecdsa, le protocole d’échange de clés ecdh et le protocole de chiffrement
ec-elgamal sont décrits. Voici la procédure de signature ecdsa qui sera utile par la suite.

10 Description des travaux

Algorithm 1 ecdsa Signature

Entrée: clé privée d, un entier encodé m ∈ [0, p− 1] représentant un message
Sortie: Signature (r, s)

1: k
R←− {1, . . . , t− 1}

2: Q← [k]G
3: r ← xQ mod t
4: if r = 0 then
5: go to ligne 1

6: kinv ← k−1 mod t
7: s← kinv(dr +m) mod t
8: if s = 0 then
9: go to ligne 1

10: return (r, s)

Toutes les procédures privées de ces protocoles nécessitent le calcul d’une multiplication
scalaire [k]P avec k devant rester impérativement secret sinon la clé privée du système cryp-
tographique est retrouvée.

Chapitre 6 : Sécurité de ECC

La sécurité de ecc dans le modèle de la bôıte noire repose sur la difficulté du Logarithme
Discret sur Courbes Elliptiques (ecdlp de l’anglais Elliptic Curve Discrete Logarithm
Problem) ou de ses variantes. Le problème ecdlp consiste à retrouver k en ayant accès à P et
Q = [k]P .

Ce problème est considéré comme difficile. Actuellement, les meilleurs algorithmes permet-
tant de le résoudre sont l’algorithme rho de Pollard [Pol78] et l’algorithme Baby-step Giant-Step
[Sha71]. Ils ont tous les deux une complexité de O(

√
t) où t = ord(P). Lors d’une application

cryptographique, si l est le paramètre de sécurité (par exemple 128 ou 256), la courbe elliptique
est choisie de telle sorte qu’il existe un point P d’ordre ord(P) ≈ 22l.

Généralement, les attaques physiques visent à récupérer le scalaire k avec des méthodes
totalement différentes, sans résoudre le ecdlp. Heureusement, il existe aussi des méthodes
pour parer ces attaques. C’est le sujet de la seconde partie de la thèse.

Partie II : Attaques physiques et contremesures sur ECC

Cette partie décrit les différentes attaques physiques et contremesures sur ecc. Les attaques
et contremesures sont très nombreuses et doivent être décrites suivant une méthodologie. Le
chapitre 7 explique comment les différentes attaques seront décrites. Le chapitre 8 est le cœur
de la thèse car c’est dans ce chapitre qu’on liste toutes les attaques et contremesures. Nous
présentons également de nouvelles attaques et contremesures. Dans le chapitre 9, nous ex-
pliquons comment il est possible d’effectuer des attaques en faute différentielles sur ecdsa.
Enfin, les chapitres 10 et 11 sont des synthèses des attaques et des contremesures.

11

Chapitre 7 : Caractérisation

Étant donné le très grand nombre d’attaques physiques sur ecc, il est important de choisir des
termes précis pour les décrire. Les attaques sont classées en trois catégories :

• Attaques par canaux auxiliaires. L’attaquant observe le comportement de la cible
sans le perturber. Jusqu’à maintenant, les différents attaques par canaux auxiliaires sont:

– Attaques temporelles. L’attaquant déduit de l’information sur le secret en analysant
le temps d’exécution.

– Attaques par analyse simple. L’attaquant observe les différents motifs de la
consommation courant ou du rayonnement électromagnétique pendant l’exécution
d’un algorithme cryptographique.

– Attaques par templates. L’attaquant contrôle une carte (c’est à dire qu’il peut
choisir les données mais aussi les secrets) ayant exactement les mêmes caractéristiques
physiques que la carte ciblée. Il récupère la trace de consommation courant ou du
rayonnement électromagnétique de sa carte qu’il contrôle en faisant varier des sous-
parties de la clé. Cette phase constitue les templates. Il récupère ensuite la trace de
la cible et compare celle-ci avec les templates pour conclure quel secret est le plus
probable.

– Attaques en canaux auxiliaires verticales. Plusieurs ecsms sont exécutés et
l’attaquant récupère la trace de consommation à chaque fois. Un outil statistique
est appliqué sur les traces pour déduire les valeurs utilisées et donc le secret.

– Attaques en canaux auxiliaires horizontales. Une seule trace est disponible.
L’attaquant utilise des outils statistiques sur des segments de la trace.

• Attaques en faute. L’attaquant perturbe le système et les résultats éventuellement
incorrects peuvent déduire de l’information. Pour ecc, les différentes attaques en faute
sont :

– Attaques Safe-Error. L’attaquant injecte une faute sur une zone précise à un
moment précis de l’exécution. Le résultat final sera incorrect uniquement si le secret
vérifie certaines conditions.

– Attaques par courbes faibles. Une donnée est perturbée. L’ecsm est effectué
sur une courbe qui est plus faible que la courbe de départ.

– Attaques en fautes différentielles. Plusieurs ecsms sont exécutés. Á chaque
fois, une faute est introduite. Les résultats incorrectes sont comparés avec les bons
résultats ou entre eux pour déduire de l’information sur le secret.

• Attaques combinées. L’attaquant peut combiner deux attaques ou plus, éventuellement
une attaque par canaux auxiliaires et en faute.

Le contexte de chaque attaque sera aussi décrit. En effet, certaines attaques ne fonctionnent
que sur certaines implémentations, ou certaines courbes, ou si l’attaquant peut choisir le point
de base de l’ecsm. Pour chaque attaque, nous donnons les informations suivantes:

• Récupération de la clé. Une description de la procédure de récupération de la clé est
donnée.

• Particularité de la courbe elliptique. Nous indiquons si l’attaque fonctionne unique-
ment sur certaines courbes.

12 Description des travaux

• Particularité de l’implémentation. Nous indiquons si l’attaque fonctionne unique-
ment sur des implémentations particulières.

• Nombre d’exécutions. Le nombre d’exécutions nécessaire pour retrouver l’intégralité
du scalaire est donné.

• Accès au point de base. Nous indiquons si l’attaquant doit choisir le point de départ,
ou s’il doit le connâıtre ou s’il n’a aucune importance.

• Accès au résultat. Nous indiquons si l’attaquant doit connâıtre ou non le résultat de
l’ecsm.

• Modèle de faute. Pour les attaques en faute, nous indiquons la précision de la faute
nécessaire pour que l’attaque puisse fonctionner.

Chaque contremesure a un certain coût. Nous précisons le coût en utilisant les notations
suivantes :

• ecsml,n: temps d’exécution d’un ecsm avec un scalaire de l bits et un module de n bits,

• ecaddn, ecdbln,c-ecaddn: temps d’exécution d’une addition, d’un doublement et d’une
addition conjuguée respectivement avec un module de n bits,

• addn, sqrn,muln,divn: temps d’exécution d’une addition/soustraction, d’un carré, d’une
multiplication et d’une division respectivement, avec des entiers de n bits,

• maddn,msqrn,mmuln,minvn: temps d’exécution d’une addition/soustraction modu-
laire, d’un carré modulaire, d’une multiplication modulaire et d’une inversion modulaire
respectivement, avec des entiers de n bits,

• rngn: temps d’exécution de la génération d’un nombre aléatoire de n bits,

• rpgm: temps d’exécution de la génération d’une permutation aléatoire de m éléments,

• crcn: temps d’exécution d’un contrôle de redondance cyclique d’un entier de n bits,

• memn: bloc mémoire pour stocker un entier de n bits.

Chapitre 8 : Attaques et Contremesures

C’est le cœur de la thèse. Ce chapitre liste les attaques physiques et contremesures sur ecc,
avec une précision sur la description de chaque attaque et le coût de chaque contremesure en
utilisant les notations du chapitre précédent.

Quand les designers proposent des méthodes pour se prémunir contre une classe d’attaques
ou une attaque en particulier, les cryptanalystes proposent de nouvelles attaques pour con-
tourner ou rendre totalement inefficace certaines contremesures. C’est réellement un jeu du
chat et de la souris entre les attaques et les protections. Nous avons choisi de présenter les
attaques et les contremesures avec une structure d’arbre pour correspondre à cette idée.

Nous décrivons ci-dessous nos attaques et contremesures nouvelles qui ont été publiées ou
vont être publiées dans des conférences.

13

Same-Values Analysis sur la contremesure d’atomicité

La contremesure d’atomicité consiste à réécrire les formules d’addition et de doublement de
point en utilisant les mêmes patterns atomiques [CCJ04]. Un pattern atomique est une séquence
d’opérations dans le corps de base.

Cette contremesure contrecarre l’attaque par analyse de courant simple classique introduite
dans [Cor99] car l’attaquant n’est pas capable de différencier une addition d’un doublement.
Cette contremesure a été améliorée dans [GV10].

Notre proposition d’attaque est d’identifier les paires de multiplications où il y a un opérande
en commun au sein de trois patterns atomiques seulement si ces trois patterns correspondent à
une addition suivi d’un doublement. Cette suite d’opérations est effectuée si le bit courant du
scalaire est différent de 0 lors de l’exécution de l’ecsm. Les opérandes en commun sont illustrés
dans la Figure 2 avec des bôıtes numérotées. Les opérandes en commun ont le même numéro.
Seize paires de multiplications peuvent être analysées.

ecadd - part 1 ecadd - part 2 modecdbl

1. T1 ←
✞

✝

☎

✆
Z2

2

1,2,14
T1 ←

✞

✝

☎

✆
T6

2

9,10
T1 ←

✞

✝

☎

✆
X1

2

12

2. ⋆ ⋆ T2 ← Y1 + Y1

3. T2 ← Y1 ×
✞

✝

☎

✆
Z2

1,3,15
T4 ← T5 × T1 Z3 ← T2 ×

✞

✝

☎

✆
Z1

14,15,16

4. ⋆ ⋆ T4 ← T1 + T1

5. T5 ← Y2 ×
✞

✝

☎

✆
Z1

4,5
T5 ← T1 ×

✞

✝

☎

✆
T6

9,11
T3 ← T2 × Y1

6. ⋆ ⋆ T6 ← T3 + T3

7. T3 ←
✞

✝

☎

✆
T1

7
× T2 T1 ←

✞

✝

☎

✆
Z1

5,6
×

✞

✝

☎

✆
T6

10,11
T2 ← T6 × T3

8. ⋆ ⋆ T1 ← T4 + T1

9. ⋆ ⋆ T1 ← T1 +W1

10. T4 ←
✞

✝

☎

✆
Z1

2

4,6
T6 ← T 2

2 T3 ← T 2
1

11. T5 ← T5 ×
✞

✝

☎

✆
T4

8
Z3 ← T1 ×

✞

✝

☎

✆
Z2

2,3,16
T4 ← T6 ×

✞

✝

☎

✆
X1

13

12. ⋆ T1 ← T4 + T4 T5 ←W1 +W1

13. T2 ← T2 − T3 T6 ← T6 − T1 T3 ← T3 − T4

14. T5 ←
✞

✝

☎

✆
T1

7
×X1 T1 ← T5 × T3 W3 ← T2 × T5

15. ⋆ X3 ← T6 − T5 X3 ← T3 − T4

16. ⋆ T4 ← T4 −X3 T6 ← T4 −X3

17. T6 ←
✞

✝

☎

✆
X2

12,13
×

✞

✝

☎

✆
T4

8
T3 ← T4 × T2 T4 ← T6 × T1

18. T6 ← T6 − T5 Y3 ← T3 − T1 Y2 ← T4 − T2

Figure 2: Opérandes en commun dans seulement si les patterns correspondent à une addition
de points (deux premières colonnes) suivi d’un doublement (troisième colonne)

Pour distinguer les opérandes en commun, nous proposons deux méthodes différentes. La
première méthode fournit une attaque verticale, la seconde fournit une attaque horizontale plus
puissante.

La première méthode consiste à analyser plusieurs traces correspondant à plusieurs ecsms.
Une paire de multiplication parmi les seize est choisie arbitrairement. Ensuite, deux variables

14 Description des travaux

aléatoires sont construits à partir des traces. La variable X est construite à l’endroit temporelle
correspondant à la première multiplication et la variable Y correspondant à la deuxième mul-
tiplication de la paire comme illustrée dans la Figure 3. Le coefficient de corrélation est calculé
entre ces deux variables. Ce coefficient est élevé si pour chaque paire de multiplication, on a
effectivement un opérande en commun.

Figure 3: Construction des variables aléatoires pour une détection de même valeurs

Dans la deuxième méthode, nous utilisons une technique décrite dans l’attaque Big Mac
[Wal01]. Soient T1, T2 les traces durant le calcul de respectivement deux multiplications A ×
B mod P , C × D mod P , avec A 6= C. À partir de T1, T2, la méthode Big Mac consiste à
affirmer si C = D. Le succès de cette attaque dépend de la taille des entiers manipulés. Plus
les entiers sont grands, plus les chances de succès de la distinction sont élevées. Ainsi, cette
attaque fonctionne très bien sur rsa mais pas sur ecc car les entiers manipulés sont beaucoup
plus petits (256 bits pour ecc face à 2048 pour rsa pour atteindre le même niveau de sécurité).

Nous avons étendu cette méthode pour attaquer la contremesure d’atomicité. En effet,
comme indiqué précédemment, on peut comparer non pas une seule paire de multiplications
mais seize. Le grand nombre de paires de multiplication que nous pouvons comparer permet
de compenser la petite taille des entiers.

Nous avons testé cette attaque expérimentalement et nous avons obtenu de très bons
résultats.

Décalage de la Courbe par Isomorphisme

Nous présentons notre contremesure contre l’attaque Refined Side-Channel Analysis (RSCA)
[Gou03]. Cette attaque prend avantage de points particuliers de la forme P0 = (0, y). Ce point
va apparâıtre durant le calcul de l’ecsm uniquement sous certaines conditions du scalaire secret.

Notre contremesure, publiée à [DGH+12], consiste à changer de courbe de départ par isomor-
phisme. L’isomorphisme ϕ est choisi de telle sorte que l’image du point de départ P = (xP , yP)
vaut ϕ(P) = P ′ = (0, yP).

Les courbes E and E′ d’équations

E : y2 = x3 + a4x+ a6,
E′ : y2 = x3 + a′2x

2 + a′4x+ a′6

15

sont isomorphiques sur Fp si et seulement s’ils existent u ∈ F
∗
p et r ∈ Fp tels que le changement

de variables

(x, y)→ (u−2(x− r), u−3y)

transforme équation E en l’équation E′ avec :

u2a′2 = 3r
u4a′4 = a4 + 3r2

u6a′6 = a6 + ra4 + r3 .

Si P = (xP , yP) est le point de base, il suffit de choisir u = 1 et r = xP pour obtenir le résultat
attendu. Cet isomorphisme est illustré à la Figure 4.

Figure 4: Décalage par isomorphisme avec E : y2 = x3− 3x+3 et E′ : y2 = x3− 6x2+9x+1 .

Malheureusement, E′ n’est pas sous sa forme d’équation de Weierstraß réduite. Les for-
mules classiques ne s’appliquent pas. Il faut les modifier et elles ont un surcoût. Cependant, ce
surcoût est compensé par le fait que le point de base est P ′ = (0, yP). Nous pouvons simplifier
les formules lorsqu’on additionne un point avec P ′ ou −P ′. Pour certains ecsms, il est même
avantageux d’appliquer la contremesure.

La sécurité contre l’attaque RSCA est assurée par des théorèmes que nous détaillons dans
le mémoire. L’idée est que P ′ et −P ′ sont les seules points ayant une coordonnée x à zéro. Le
point P ′ est le point de base de l’ecsm, ainsi ce point ne peut apparâıtre en tant que point
intermédiaire en faveur de l’attaquant.

Same-Values Analysis classique

Nous décrivons notre attaque publiée à [MGD+12]. L’idée de l’attaque est de profiter de points
spéciaux. Ces points ont la particularité suivante. Pendant leur doublement, deux variables
intermédiaires ont la même valeur.

L’attaquant identifie un point particulier PSVA. Il choisit le point de base de l’ecsm de telle
sorte PSVA apparaisse pendant l’ecsm seulement si le bit courant visé est égal à 1. L’attaquant
déduit ainsi le scalaire secret de façon récursive.

16 Description des travaux

Pour détecter si le point particulier est effectivement apparu durant le calcul de l’ecsm,
nous proposons deux méthodes différentes.

La première correspond à une attaque verticale car plusieurs traces sont nécessaires. Cette
méthode est similaire à l’attaque verticale contre la contremesure de l’atomicité et est illustré
à la Figure 3.

Pour la seconde méthode, il nous faut décrire des points ayant des conditions plus fortes
que précédemment. En plus de faire intervenir deux mêmes valeurs durant le doublement, ces
valeurs sont ensuite utilisées de la même façon. Typiquement, ces valeurs seront mises au carré.
La différence des traces correspondant au calcul du carré modulaires des deux valeurs permet
de révéler si les valeurs sont justement identiques.

Attaque sur la conversion de coordonnées projectives en coordonnées affines

Cette attaque a été présentée à [MMNT13]. Les coordonnées projectives ou Jacobiennes per-
mettent d’accélérer les calculs durant l’ecsm. À la fin du calcul, le résultat est converti en coor-
données affines. Notre attaque consiste à injecter une faute pendant la conversion et récupérer
les coordonnées projectives ou Jacobiennes du point Q = [k]P . Naccache, Smart et Stern ont
montré que lorsque le résultat de l’ecsm était fourni en coordonnées projectives ou Jacobiennes,
l’attaquant peut retrouver quelques bits de k [NSS04].

La procédure suivante convertit le point en coordonnées Jacobiennes P = (X,Y, Z) =
(xZ2, yZ3, Z) en coordonnées affines (x, y).

convert(X,Y, Z) =

r ← Z−1

s ← r2

x ← X · s
t ← Y · s
y ← t · r return(x, y)

Notre attaque consiste à injecter une faute juste après l’étape s← r2. La valeur corrompue
s+ ǫ donne les équations suivantes :

x̃ = X(s+ ǫ)⇒ x̃ = x+ xZ2ǫ,

ỹ = Y (s+ ǫ)r ⇒ ỹ = y + yZ2ǫ .

Ensuite, nous proposons différentes méthodes pour récupérer la valeur de Z manquante à
partir de un ou plusieurs résultats incorrects x̃, ỹ. Les méthodes proposées dépendent de la
taille de la faute.

Notre attaque permet de récupérer les coordonnées projectives ou Jacobiennes du résultat
de l’ecsm et ainsi appliquer l’attaque de [NSS04].

Chapitre 9: Attaques en Faute Différentielles sur ECDSA

Certaines attaques en faute différentielles nécessitent de comparer un résultat corrompu avec
le résultat correct d’un ecsm pour déduire quelques bits du scalaire.

Lors d’une signature ecdsa (Algorithme 1), le scalaire est choisi aléatoirement pour chaque
nouvelle signature. Ainsi, la comparaison entre un résultat de ecsm corrompu et le bon résultat
semble infaisable.

17

Nous avons remarqué que c’est en fait possible. Grâce à un résultat de ecsm corrompu,
fourni avec la signature corrompue, il est possible de récupérer le bon résultat de l’ecsm. Voici
la méthode utilisée.

Nous supposons que, durant la procédure de signature, une faute est introduite pendant le
calcul de Q = [k]G = (xQ, yQ), ce qui donne le mauvais résultat Q̃ = (xQ̃, yQ̃). La signature
incorrecte (r̃, s̃) vérifie:

r̃ = xQ̃ mod t

s̃ = kinv(dr̃ +m) mod t

À partir de (r̃, s̃), l’attaquant peut calculer :

w̃ = s̃−1 mod t
ũ1 = w̃ ·m mod t
ũ2 = w̃ · r̃ mod t

R = [ũ1]G+ [ũ2]P =
[

km
dr̃+m

]

G+
[

kr̃
dr̃+m

]

P =
[

km
dr̃+m

]

G+
[

dkr̃
dr̃+m

]

G

=
[

k · dr̃+m
dr̃+m

]

G = [k]G

Le point R est en fait la bonne valeur de Q = (xQ, yQ) = [k]G qui était censée être calculée au
départ. L’attaquant retrouve xQ, yQ et xQ̃ mod t. Il peut ainsi appliquer certains attaques en
faute différentielles car il peut comparer le bon et le mauvais résultat.

Chapitre 10: Résumé des Attaques de Façon Contextuel

Dans le chapitre précédent, pour chaque attaque décrite, nous fournissons le contexte de
l’attaque. Dans ce chapitre-ci, une synthèse des attaques au niveau contextuelle est donnée.
Cette synthèse est très utile pour un designer car il peut vérifier très rapidement si des attaques
sont faisables suivant l’application qu’il est censé développer. Si certaines attaques ne sont pas
faisables, une protection n’est pas nécessaire et l’application peut ainsi être plus rapide.

Chapitre 11: Synthèse des Attaques et des Contremesures

Ce chapitre donne une synthèse de l’efficacité de chaque contremesure contre chaque attaque.
Toutes les attaques et contremesures de cette thèse sont répertoriées sous forme d’un tableau
pour un affichage clair de l’interaction entre les attaques et les contremesures.

Conclusion et Perspectives

Dans cette thèse, nous avons étudié les attaques physiques sur ecc. Pour chaque attaque, nous
détaillons le contexte dans lequel l’attaque est faisable. Aussi, pour chaque contremesure, nous
détaillons son coût. Nous avons choisi de présenter les attaques et les contremesures suivant
une structure d’arborescence pour clairement indiquer si une attaque a été présentée contre une
contremesure en particulier ou si elle est plus générale. De la même façon, nous pouvons voir
si une contremesure couvre une attaque en particulier ou si elle est plus générale.

Nous introduisons de nouvelles attaques appelées Same-Values Analysis. Les attaques sont
nommées ainsi car elles se basent sur des mêmes valeurs qui sont répétées au sein d’un ecsm.
Elles différent sur l’implémentation visée ou sur la méthode de détection de l’apparition des
mêmes valeurs.

18 Description des travaux

Nous introduisons également une nouvelle attaque en faute différentielle. À la différence des
autres attaques en faute, où la faute est introduite avant ou pendant l’ecsm, une faute est ici
introduite pendant la conversion de coordonnées projectives à affines à la fin du calcul.

Nous présentons également une contremesure contre l’attaque Refined Side-Channel Anal-
ysis (RSCA). L’attaque RSCA repose sur l’apparition d’un point particulier de la forme (0, y).
Nous proposons d’utiliser un isomorphisme entre les courbes elliptiques pour contrôler le point
particulier gênant. Son apparition ne révèle rien sur le scalaire secret.

Enfin, nous montrons que les attaques en faute différentielles peuvent s’appliquer sur ecdsa,
qui est un protocole de signature probabiliste.

Dans cette thèse, nous fournissons un état-de-l’art complet sur les attaques physiques sur
ecc. À l’avenir, de nouvelles attaques vont inévitablement survenir. De même, de nouvelles
contremesures émergeront. Elles peuvent être intégrées au fur et à mesure dans l’état-de-l’art
en suivant la même méthodologie.

Il serait intéressant d’étendre ce travail à d’autres cryptosystèmes asymétriques tels que rsa
ou ceux basés sur le couplage. Une autre idée serait de présenter un état-de-l’art commun entre
ces cryptosystèmes d’une certaine façon. En effet, de nombreuses similarités subsistent entre ces
cryptosystèmes. D’abord, le même module d’arithmétique modulaire est généralement utilisé
pour rsa, ecc et la cryptographie à base de couplage. Ensuite, les méthodes de multiplication
scalaire pour ecc et le couplage sont similaires aux méthodes d’exponentiations pour rsa.
Ainsi, des attaques et contremesures sont également similaires.

Table of Contents

List of Acronyms 23

Introduction 25

I Elliptic Curve Cryptography 27

1 General Definition 31
1.1 Elliptic Curves in Affine Coordinates . 31
1.2 Group Structure . 31
1.3 Short Weierstraß Equation . 32
1.4 Elliptic Curves in Projective Coordinates . 33

2 Finite Field Arithmetic 35
2.1 Field Element Representation . 35
2.2 Main Module . 35
2.3 Modular Addition and Subtraction . 36
2.4 Modular Multiplication . 38
2.5 Modular Inversion . 41
2.6 Cost of Arithmetic Operations . 42

3 Elliptic Curve Arithmetic 43
3.1 Elliptic Curve Formulæ . 43

3.1.1 Classical Formulæ . 44
3.1.2 Co-Z Formulæ . 44

3.2 Cost Summary . 46

4 Elliptic Curve Scalar Multiplication 47
4.1 Unregular ECSMs . 48
4.2 Regular ECSMs . 51
4.3 Cost Summary . 53

5 Cryptographic Protocol 55
5.1 Elliptic Curve Digital Signature Algorithm . 55
5.2 Elliptic Curve Diffie Hellman . 56
5.3 Elliptic Curve ElGamal . 56

6 ECC Security 59

19

20 TABLE OF CONTENTS

II Physical Attacks and Countermeasures on ECC 61

7 Characterisation 65
7.1 Categories of the Attacks . 65
7.2 Attack Context . 67
7.3 Test Platform . 67
7.4 Quantifying the Cost of the Countermeasures . 68

8 Attacks and Countermeasures 69
8.1 Classical Timing Attack . 69

8.1.1 Constant Time of Field Operations . 70
8.2 Simple Side-Channel Analysis . 71

8.2.1 Regular ECSM . 71
8.2.1.1 C Safe-Error . 72

8.2.2 Unified Formulæ . 72
8.2.2.1 SSCA on Unified Formulæ . 73
8.2.2.2 Horizontal SVA on Unified Formulæ 74

8.2.3 Side-Channel Atomicity . 75
8.2.3.1 SVA on the Atomicity Countermeasure 76
8.2.3.2 Horizontal SVA on the Atomicity Countermeasure 79

8.3 Correlation Side-Channel Analysis . 83
8.3.1 Group Scalar Randomization . 84

8.3.1.1 Carry Leakage Attack . 84
8.3.2 Additive Splitting . 85

8.3.2.1 Carry Leakage Attack . 85
8.3.2.2 Combined Attacks against Additive Splitting 85

8.3.3 Multiplicative Splitting . 86
8.3.4 Euclidean Splitting . 86
8.3.5 Point Blinding . 87
8.3.6 Random Projective Coordinates . 87
8.3.7 Random Curve Isomorphism . 87

8.4 M Safe-Error . 88
8.5 Invalid Point Attack . 88

8.5.1 Output Point Validity . 89
8.6 Classical Differential Fault Attack . 89

8.6.1 Output Point Validity . 90
8.7 Big Mac Attack . 90

8.7.1 Multiplication with Random Permutation 91
8.8 Horizontal Correlation Side-Channel Analysis . 92

8.8.1 Multiplication with Random Permutation 93
8.9 Address-bit DSCA . 93

8.9.1 Random Register Address . 94
8.10 Doubling Attack . 94
8.11 Refined Side-Channel Analysis . 95

8.11.1 Isomorphism Shifting . 96
8.12 Zero Side-Channel Analysis . 101
8.13 Classical Same Values Side-Channel Analysis . 102
8.14 Horizontal SVA . 107
8.15 Particular Point Timing Attack . 108
8.16 Invalid Curve Attack . 109

TABLE OF CONTENTS 21

8.16.1 Curve Integrity Check . 110
8.17 Sign Change Fault Attack . 110
8.18 Coherence Check . 111
8.19 Zero Word and SSCA . 111
8.20 Template Attack . 112
8.21 Twist Curve Attack . 113
8.22 Invalid Point Attack and SSCA . 114

8.22.1 Input Point Validity after a Randomization 115
8.23 Fault Attack on Coordinates Conversion . 115

9 Differential Fault Attacks on ECDSA 121
9.1 Principle of the Method . 121
9.2 Attacking ECDSA with the Classical Differential Fault Attack 122
9.3 Attacking ECDSA with the Sign Change Fault Attack 122
9.4 Attacking ECDSA with the Fault on the Coordinates Conversion 122
9.5 Synthesis . 122

10 Summary of the Context of the Attacks 123
10.1 Key Recovery . 123
10.2 Elliptic Curve Specificity . 123
10.3 Implementation Access . 125
10.4 Implementation Specificity . 125
10.5 Number of Executions Needed . 125
10.6 Input Access . 125
10.7 Output Access . 125
10.8 Fault Model . 125

11 Synthesis 133

Conclusion and Perspectives 137

Bibliography 139

Appendix 145

22 TABLE OF CONTENTS

List of Acronyms

AES Advanced Encryption Standard

CSCA Correlation Side-Channel Analysis

CRC Cyclic Redundancy Check

CRT Chinese Remainder Theorem

DES Data Encryption Standard

DFA Differential Fault Attack

DSCA Differential Side-Channel Analysis

ECADD Elliptic Curve Addition

ECC Elliptic Curve Cryptography

ECDBL Elliptic Curve Doubling

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

ECSM Elliptic Curve Scalar Multiplication

NAF Non-Adjacent Form

RNG Random Number Generation

RPG Random Permutation Generation

23

24 LIST OF ACRONYMS

RSCA Refined Side-Channel Analysis

SCA Side-Channel Analysis

SSCA Simple Side-Channel Analysis

SVA Same-Values Analysis

ZADDC Conjugate co-Z Addition

ZADDC’ (X,Y)-only Conjugate co-Z Addition

ZADDU co-Z Addition and Update

ZADDU’ (X,Y)-only co-Z Addition and Update

ZSCA Zero Side-Channel Analysis

Introduction

Cryptography formerly referred to the art of protecting messages. Before sending a message,
it is first encoded in a way that makes it seem nonsensical. This process is called encryption.
Only the intended receiver can read it by applying the inverse process, the decryption. The
processes are known by the sender and the receiver only. Confidentiality of the message is then
ensured.

Following the evolution of telecommunications, cryptography also changed. Modern cryp-
tography, highly influenced by the Data Encryption Standard (des) in the 1970s, is no more an
art but a science. Today, in addition to confidentiality, cryptography brings new functionalities
such as authentication, i.e. the confirmation of an entity’s identity, and integrity, i.e. the con-
firmation that messages received have not been modified by an unauthorized entity, and many
others.

By Kerckhoffs’s principle, the security of a cryptosystem should rely on secret data only,
rather than on the very methods used for encoding and decoding messages. These methods will
necessarily be discovered somehow. Such a secret is called a key. Two families of cryptosystems
arise: symmetric and asymmetric cryptosystems.

In a symmetric cryptosystem, the same key is used for both encryption and decryption.
It must be kept secret by the entities who want to communicate. Nowadays, encryption and
decryption are very fast and are suitable for confidentiality. The des is in fact a symmetric
cryptosystem.

In an asymmetric cryptosystem, two keys are used. One key is broadcast. It is used for pub-
lic processes such as encryption or verification of signatures. This key is called the public key.
When a message is encrypted, no one can decrypt it, except the owner of the second key called
the private key. The owner of the private key is also the only one who can sign messages. Asym-
metric cryptosystems are interesting because they are suitable for authentication. However, the
computations they involve are a lot slower than those involved by symmetric cryptosystems.
This is because they rely on computationally costly mathematical tools such as arithmetic on
very large integers. rsa is the first asymmetric cryptosystem, introduced by Rivest, Shamir
and Adleman in 1977. Koblitz and Miller independently introduced the use of elliptic curves
for cryptographic applications in the late 1980s. The class of asymmetric cryptosystems based
on elliptic curves is called Elliptic Curve Cryptography (ecc). This thesis focuses on ecc only.

Nowadays, the security of a cryptosystem is generally based on the difficulty of solving a
mathematical problem, such as integer factorization or the Elliptic Discrete Logarithm Problem
in the case of ecc. Proofs based on assertions such as “this cryptosystem C is unbreakable if no
one can solve problem P” arise. These proofs go with a cryptosystem and ensure its security.

25

26 INTRODUCTION

Cryptography is naturally used in smart cards. Many different examples such as bank
cards, telephony, or electronic passports, obviously need cryptography to ensure confidentiality,
authentication or integrity. A new kind of attacks in smart cards arose in the late 1990s.
Kocher showed that analysing the execution timing of a device to execute a cryptographic
algorithm can be enough to recover the secret key. No need to solve the difficult underlying
mathematical problem. Other attacks of this kind have emerged since then. They are based
on the observation of the device’s behaviour when a cryptographic algorithm is being executed.
This kind of attacks is called physical attacks. The security proofs of a cryptosystem are no
longer enough when physical attacks are taken into account. Of course, many methods have
also emerged to prevent these attacks.

Provable security against physical attacks is still a research topic. Until a clear methodol-
ogy of provable security on ecc in smart cards is accepted by the cryptographic community,
attacks and countermeasures will be a cat-and-mouse game. So, to date, a designer who wants
to prove the security of his implementation, has no choice but to argue that his implementation
is protected against all existing physical attacks by an exhaustive method.

This thesis is intended to help the designer implementing a secure embedded ecc. The first
part gives a detailed background on ecc, useful to understand the physical attacks and coun-
termeasures. In the second part, the physical attacks and countermeasures are displayed with a
tree structure. This follows the idea of the cat-and-mouse game of attacks and countermeasures.
In addition to the complete and accurate state-of-the art, we introduce new attacks. Some of
these attacks are powerful since they need only one execution of the cryptographic algorithm.
Moreover the knowledge of the inputs is not necessary. Also, a new countermeasure against an
attack, the Refined Power Analysis is proposed. Surprisingly, under some assumptions that we
detail, it turns out that applying the countermeasure is in fact more efficient. In addition to
security, this is an improvement for ecc implementations.

Part I

Elliptic Curve Cryptography

27

Introduction

The use of elliptic curves for cryptographic applications has been independently introduced by
Koblitz [Kob87] and Miller [Mil85]. With the same security level, Elliptic Curve Cryptography
(ecc) involves smaller key lengths compared with other asymmetric cryptosystems such as rsa
or systems based on the multiplicative group of a finite field. In most architectures, the com-
plexity in time of the modular multiplication, which is the most frequently used operation in
both ecc and rsa, is quadratic in the size of the operands. For example, for a security require-
ment of 128 bits, the minimal size of the key in ecc is 256 bits, as opposed to rsa in which
the public modulus is at least a 3072-bit integer. For this reason, the use of elliptic curves in
cryptographic applications has increased these last years, especially in embedded systems with
limited resources.

The elliptic curves used for ecc are generally defined over prime fields Fp, p > 3 or binary
fields F2n . The latter can bring better performance because arithmetic operations in such fields
are carry-free. However, elliptic curves over prime fields are more often used because of the
following main reasons. First, elliptic curves over binary fields are restricted by several patents.
The second reason is that, recently, Faugères, Perret, Petit and Renault improved the index
calculus to solve the Elliptic Curve Discrete Logarithm Problem (ecdlp) on elliptic curves over
binary fields [FPPR12]. They did not break ecc over binary fields but it is a strong basis
towards future results to reduce the complexity of the ecdlp. Consequently, we only focus on
ecc over Fp, p > 3.

This part exposes the background on ecc. Chapter 1 gives the general definition of elliptic
curves. The different levels of ecc’s hierarchy are described in the next chapters. The arithmetic
in Fp is described in Chapter 2. The most efficient elliptic curve formulæ can be found in
Chapter 3. The most frequently used elliptic curve scalar multiplications are given in Chapter 4.
Some examples of cryptographic protocols, including a signature, a cipher and a key agreement
schemes, based on elliptic curves can be found in Chapter 5. Finally, the security of ecc in the
black box model is discussed in Chapter 6.

29

30

Chapter 1

General Definition

This chapter gives the background on elliptic curves used for cryptographic applications. The
following definitions and properties can be found in [BSS99, CFA+06].

1.1 Elliptic Curves in Affine Coordinates

Definition 1.1. In a field K, an elliptic curve is defined by its Weierstraß equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 . (1.1)

with a1, a2, a3, a4, a6 ∈ K and ∆ 6= 0 where ∆ is defined as follows:

d2 = a21 + 4a2
d4 = 2a4 + a1a3
d6 = a23 + 4a6
d8 = a21a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a24

∆ = −d22d8 − 8d34 − 27d26 + 9d2d4d6 .

We denote by E(K) the set of points (x, y) ∈ K
2 satisfying Equation (1.1), together with a

“point at infinity” O. ∆ is called the discriminant of the curve. The coordinates x, y are called
the affine coordinates.

Remark 1.2. If the field is implicit, the set of points is denoted by E.

1.2 Group Structure

E(K) is an additive Abelian group defined by the following addition law. Let P = (x1, y1) 6= O
and Q = (x2, y2) 6∈ {O,−P} be two points on E(K). The point R = (x3, y3) = P +Q is defined
by the formula:

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = λ(x1 − x3)− y1 − a1x3 − a3
where λ =

{
y1−y2

x1−x2
if P 6= Q,

3x2
1+2a2x1+a4−a1y1

2y1+a1x1+a3
if P = Q.

The inverse element of the point P is −P = (x1,−y1− a1x1− a3). O is the neutral element, in
that P +O = O + P = P .

31

32 CHAPTER 1. GENERAL DEFINITION

Geometrically, we draw the line passing through P,Q (or the tangent of P if P = Q). λ is
the slope of this line. The line intersects the curve in a third point, counting with multiplicity.
We call it S = (x3, y4). x3, y4 are found by solving the equations system

{

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

y = λx+ y1 − λx1

This leads to the equation in x:

(λx+ y1 − λx1)
2 + a1x(λx+ y1 − λx1) + a3y = x3 + a2x

2 + a4x+ a6 .

We can simplify the equation since x1, x2 are solutions. This gives the formula of x3 above. x3

yields y4. We take −S = R = (x3, y3 = −y4− a1x3− a3) as the result of the addition. R is the
intersection between the curve and the line passing through O and S.

Remark 1.3. We take R = −S as the result of the addition to respect the group axioms.

If K is a finite field of q elements, the number of points on E(K) is denoted by #E(K) (or
simply #E if the field is implicit). By Hasse’s theorem [Has36], #E(K) satisfies

|#E(K)− q − 1| ≤ 2
√
q .

#E(K) and q have the same magnitude. In cryptographic applications, recommended elliptic
curves satisfy #E(K) = ht with t a large prime and h a very small number (1, 2 or 4). h is
called the cofactor. Only points of order t are considered in cryptographic applications.

1.3 Short Weierstraß Equation

Five parameters define an elliptic curve in its Weiertraß equation. The group law requires many
field operations. Using isomorphisms between elliptic curves simplify the curve equation and
thus the group law.

Definition 1.4. Two elliptic curves E,E′ defined by their Weierstraß equations:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

E′ : y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6,

are said to be isomorphic over K if there exist r, s, t ∈ K, u ∈ K
∗, such that the change of

variables

x′ = u−2(x− r), y′ = u−3(y − sx− sr − t) (1.2)

preserving O, transforms equation E into equation E′. The transformation (1.2) is called an
admissible change of variables. Furthermore, the elliptic curves parameters are linked by

ua′1 = a1 + 2s
u2a′2 = a2 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t
u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st
u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1 .

1.4. ELLIPTIC CURVES IN PROJECTIVE COORDINATES 33

Let the curve E : y2+a1xy+a3y = x3+a2x
2+a4x+a6 defined over a field K of characteristic

different from 2 and 3 (which makes division by 2 and 3 possible). Choosing

u = 1

r = −a2
1+4a2

12
s = −a1

2

t =
a3
1+4a1a2−12a3

24

transforms the curve E into
E′ : y2 = x3 + ax+ b . (1.3)

for some a, b ∈ K. Equation (1.3) is called the short Weierstraß equation. Its discriminant is
∆ = −16(4a3 + 27b2).

Let P = (x1, y1) 6= O and Q = (x2, y2) 6∈ {O,−P} be two points on E′(K). Points addition
R = (x3, y3) = P +Q is given by the formula:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1
where λ =

{
y1−y2

x1−x2
if P 6= Q,

3x2
1+a
2y1

if P = Q.

The inverse element of P is −P = (x1,−y1). The group law of elliptic curves in the short
Weierstraß equation is illustrated in Figure 1.1 over the real elements.

Figure 1.1: Addition and doubling of points on the curve y2 = x3 − 2x+ 1 over R

1.4 Elliptic Curves in Projective Coordinates

To avoid costly inversions when computing λ, elliptic curves can also be defined in the projective
plane.

Definition 1.5. The projective plan P
2(K) over the field K is:

P
2(K) =

{(X,Y, Z) ∈ K
3 \ (0, 0, 0)}

∼
with ∼ being the following equivalence relation:

(X1, Y1, Z1) ∼ (X2, Y2, Z2) if ∃ r ∈ K
∗ such that (X1, Y1, Z1) = (rX2, rY2, rZ2)

34 CHAPTER 1. GENERAL DEFINITION

The coordinates are called homogeneous or projective coordinates. The equivalences classes,
denoted by (X : Y : Z) with (X,Y, Z) ∈ K

3 \ (0, 0, 0), are called projective points. We denote
by (X,Y, Z) a representative of the projective point (X : Y : Z).

If K is finite of cardinality #K, the projective point (X : Y : Z) have #K−1 representatives.
If Z 6= 0, (X : Y : Z) corresponds to the unique affine point (X/Z, Y/Z).

Remark 1.6. In the rest of this thesis, by abuse of notation, we will call a “point” on the curve
which is in fact a “representative” of a projective point. Unless otherwise specified (explicitly
stated or using the notation (X : Y : Z)), a point will refer to a representative of a projective
point.

The equation of an elliptic curve in the homogeneous coordinates system in the reduced
Weierstraß form is:

EP : Y 2Z = X3 + aXZ2 + bZ3 .

The point at infinity O, which is not explicit in affine coordinates, is the projective point
O = (0 : 1 : 0). In fact, O is the only projective point on the curve with a zero Z coordinate.

The coordinates were generalized using different equivalence relations. The Jacobian coor-
dinates is often used for efficiency reason. The equation of an elliptic curve in the Jacobian
projective coordinates system in the reduced Weierstraß form is:

EJ : Y 2 = X3 + aXZ4 + bZ6 .

The point at infinity is O = (1 : 1 : 0). The projective point (X : Y : Z), with Z 6= 0,
corresponds to the unique affine point (X/Z2, Y/Z3). The equivalence relation is:

(X1, Y1, Z1) ∼ (X2, Y2, Z2) if ∃ r ∈ K
∗ such that (X1, Y1, Z1) = (r2X2, r

3Y2, rZ2)

Remark 1.7. We omit the notation J or P when the coordinates system is obvious in the
context.

Let P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) be two points on EJ (K) with P1 6= O, ord(P1) > 2
and P2 6∈ {O,−P1}. Point doubling and points addition are defined by the following formulæ:

• . P3 = (X3, Y3, Z3) = 2P1 can be computed as:
X3 = T, Y3 = −8Y 4

1 +M(S − T), Z3 = 2Y1Z1,
S = 4X1Y

2
1 , M = 3X2

1 + aZ4
1 , T = −2S +M2

• . P3 = (X3, Y3, Z3) = P1 + P2 can be computed as:
X3 = −H3 − 2U1H

2 +R2, Y3 = −S1H
3 +R(U1H

2 −X3), Z3 = Z1Z2H,
U1 = X1Z

2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2 − U1, R = S2 − S1

There is a certain hierarchy of calculation in ecc applications. The different levels, from the
lowest to the highest, are finite field arithmetic, elliptic curve arithmetic, elliptic curve scalar
multiplication (ecsm) and cryptographic protocol. These different levels are detailed in the
next chapters.

Chapter 2

Finite Field Arithmetic

Finite field arithmetic finds its application in asymmetric cryptography. Therefore, it is a
subject under intensive study, and many different algorithms and implementations are proposed
to perform fast operations in the field Fp. A description of certain methods is required to
understand some side-channel attacks targeting this level in ecc’s hierarchy. This chapter
details these methods.

2.1 Field Element Representation

The elements of Fp are integers in [0, p−1]. The algorithms to perform field operations generally
operate word by word. Denote w the size of the words1.

Denote n = ⌈log2 p⌉ the bit length of p and m = ⌈n/w⌉. The integers in [0, p − 1] are
manipulated as arrays of m elements, as illustrated in Figure 2.1.

a[m− 1] . . . a[1] a[0]

Figure 2.1: Representation of A = 2(m−1)wa[m−1]+ · · ·+2wa[1]+a[0] as an array of m words.

In the rest of this chapter, capital letters will denote long integers and lower cases will denote
words of w bits.

2.2 Main Module

In the algorithms exposed in the rest of this chapter, we suppose there is a module performing
the following operation:

(u, v)← a× b+ e+ c (2.1)

with e, a, b, c, u, v being w-bit words. v is the low word of the result and u is the high word (called
the carry). No overflow occurs because a, b, c, e ∈ [0, 2w[⇒ a×b+e+c ≤ (2w−1)2+2×2w−2 =
22w − 1 ⇒ u < 2w. Thus, a× b+ e+ c = 2wu+ v. We use the notation (u, ·) ← a× b+ e+ c
when only the carry is updated; the low result is thrown out. In most architectures, the same
module supports the two’s complement of integers:

(u, v)← a× b+ ē+ c (2.2)

1w = 32 or w = 64 in common architectures, even in smart cards where there are hardware accelerators.

35

36 CHAPTER 2. FINITE FIELD ARITHMETIC

The two’s complement of e is ē = 2w−1−e. Subtracting two words a, e with a ≥ e can be done
using the module illustrated in Equation (2.2) by replacing b by 1 and c by 1. v will contain
a− e and u will be equal to 1 which is ignored.

2.3 Modular Addition and Subtraction

We give the schoolbook algorithms for addition and subtraction of long integers.

Algorithm 2 Schoolbook long integer addition (add)

Input: A = (a[m− 1], . . . , a[0]), B = (b[m− 1], . . . , b[0]),m.
Output: (c, R) with R = A+B if c = 0 and R = A+B − 2wm if c = 1
1: c← 0
2: for i = 0 to m− 1 do
3: (c, r[i])← a[i] + b[i] + c ⊲ c ∈ {0, 1} because a[i] + b[i] + c ≤ 2w+1 − 1

4: return (c, R)

The operation of line 3 can be done using the module illustrated in Equation (2.1) by
replacing b by 1 and e by b.

Algorithm 3 Two’s complement schoolbook long integer subtraction (sub)

Input: A = (a[m− 1], . . . , a[0]), B = (b[m− 1], . . . , b[0]),m.
Output: (c, R) with R = A−B if c = 0 and R = A−B + 2wm if c = 1
1: c← 1 ⊲ e is set to 1 because we will compute (A+ B̄ + 1) = A−B + 2mw

2: for i = 0 to m− 1 do
3: (c, r[i])← a[i] + ¯b[i] + c ⊲ c ∈ {0, 1}

4: c← c⊕ 1
5: return (c, R)

With those two basic procedures, we can give modular addition and subtraction.

Algorithm 4 Modular Addition

Input: A,B, P,m such that A < P,B < P .
Output: A+B mod P

(c, R)← add(A,B,m)
if c = 1 then

(d, S)← sub(R,P,m)
return S

else
if R ≥ P then

(d, S)← sub(R,P,m)
return S

else
return R

2.3. MODULAR ADDITION AND SUBTRACTION 37

Algorithm 5 Modular Subtraction

Input: A,B, P,m such that A < P,B < P .
Output: A−B mod P

(c, R)← sub(A,B,m)
if c = 1 then

(d, S)← add(R,P,m) ⊲ in this case, c = d = 1 and the carry cancels the borrow
return S

else
return R

The conditional subtraction or addition of the previous algorithms can be inconvenient.
First, an operator comparing long integers is required for the modular addition. Secondly, we
will see in Sections 8.1 and 8.2.2.1 that some physical attacks take advantage of this step. We
can remove the conditional step by introducing a dummy operation, as described below. We
present the following methods to properly handle the carry and the borrow.

Algorithm 6 Constant Time Modular Addition (madd)

Input: A,B, P,m such that A < P,B < P .
Output: A+B mod P
1: (c, R)← add(A,B,m)
2: (d, S)← sub(R,P,m)
3: if c⊕ d = 0 then
4: return S
5: else
6: return R

The correctness of Algorithm 6 is proved below.
Since 0 ≤ A < P, 0 ≤ B < P , we must consider the three following cases:

• A+B < P < 2wm.
In this case, R = A+B.
Since A + B < P , =⇒ c = 0 and d = 1. R is therefore the correct result because it
satisfies 0 ≤ R = A+B < P .

• P < A+B < 2wn.
In this case, R = A+B and S = A+B − P .
Since P < A + B < 2wn =⇒ c = 0 and d = 0. Moreover, P ≤ A + B < 2P =⇒ 0 ≤
A+B − P < P . S is the only integer in [0, P [satisfying S = A+B mod P .

• 2wn < A+B < 2P .
In this case, R = A+B − 2wn.
Since 2wn < A+B =⇒ c = 0. Moreover, A+B < 2P =⇒ A+B− 2wn < 2P − 2wn < P .
Therefore, d = 1 and S = R − P + 2wn = A + B − P . S is the only integer in [0, P [
satisfying S = A+B mod P .

Remark 2.1. The condition c = 1, d = 0, never occurs.

38 CHAPTER 2. FINITE FIELD ARITHMETIC

Algorithm 7 Constant Time Modular Subtraction (msub)

Input: A,B, P,m such that A < P,B < P .
Output: A−B mod P

(c, R)← sub(A,B,m)
(d, S)← add(R,P,m)
if c = 0 then

return R
else ⊲ in this case, c = d = 1 and the carry cancels the borrow

return S

The correctness of Algorithm 7 is trivial considering Algorithm 5.

2.4 Modular Multiplication

Field inversions are costly compared with the other field operations. In Section 1.4, we ex-
plained how the Projective or Jacobian coordinates enables the substitution of inversions for
multiplications. Hence, modular multiplications become the most numerous expensive opera-
tions involved in ecc. Great care should be taken for implementing the modular multiplication
operator.

Many methods exist to efficiently perform modular multiplications. For instance:

• the Montgomery multiplication [Mon85],

• the Barrett multiplication [Bar86],

• the Quisquater’s multiplication [Qui90, Qui91] and

• the Montgomery multiplication in the Residue Number System [Baj98].

In addition, some standardized elliptic curves, such as the ones proposed in the Digital
Signature Standard [FIPS186-3], are based over prime fields enabling fast modular reduction.
Due to the particular form of the prime p, modular reductions can be performed with only
shifts, additions and subtractions. However, this optimization is not always considered because
of the lack of genericity: each curve has its own modular multiplication module. The need of a
generic modular multiplication module is required anyway for some ecc protocols. Moreover,
a common module is generally implemented for all asymmetric cryptosystems.

We choose to detail the Montgomery multiplication (Algorithm 8), because it is quite com-
mon and many side-channel attacks are described with this example.

The algorithm, called the Coarsely Integrated Operand Scanning, alternates the multipli-
cation and the reduction loops. This permits to avoid the extra memory required if a naive
modular multiplication is performed: first compute the entire product, then reduce. This algo-
rithm is from [KA96], where we added the final conditional subtraction step.

2.4. MODULAR MULTIPLICATION 39

Algorithm 8 Montgomery Modular Multiplication (montmul)

Input: A = (a[m − 1], . . . , a[0]), B = (b[m − 1], . . . , b[0]), P = (p[m − 1], . . . , p[0]), p̃,m such
that A < P,B < P, p̃ = −p[0] mod 2w.

Output: A×B × 2−wm mod P
1: R← 0
2: s← 0 ⊲ s will hold the (m+ 1)th word of the temporary result R
3:

4: ⊲ Main loop
5: for i = 0 to m− 1 do
6: ⊲ Step R← R+ a[i]B
7: c← 0
8: for j = 0 to m− 1 do
9: (c, r[j])← a[i]× b[j] + r[j] + c

10: end for
11: (c, s)← s+ c
12: t← c ⊲ t will hold the (m+ 2)th word of the temporary result R
13: ⊲ End Step R← R+ a[i]B
14: c← 0
15: (c, q)← r[0]× p̃+ c ⊲ q = −RP−1 mod 2w

16:

17: ⊲ Step R← R+qP
2w

18: c← 0
19: (c, ·)← q × p[0] + r[0] + c
20: for j = 1 to m− 1 do
21: (c, r[j − 1])← q × p[j] + r[j] + c

22: end for
23: (c, r[m− 1])← s+ c
24: s← t
25: ⊲ End Step R← R+qP

2w

26: ⊲ Invariant: R2(i+1)w = (a[i]2iw + · · ·+ a[0])B mod P
27: ⊲ Invariant: R < P +B

28: end for
29:

30: ⊲ End Main Loop
31: ⊲ Reduction step
32: if s = 1 then
33: (c, S)← sub(R,P,m)
34: return S
35: else
36: if R ≥ P then
37: (c, S)← sub(R,P,m)
38: return S
39: else
40: return R
41: end if
42: end if

When P, p̃,m are implicit, we simply denote montmul(A,B) the Montgomery multiplica-
tion of A,B.

40 CHAPTER 2. FINITE FIELD ARITHMETIC

Like the modular addition, there is a conditional step depending on the value at the end.
By adding extra words to the manipulated integers, the final subtraction condition can be
avoided [Wal99, HQ00]. However, this solution is costly. For a constant time Montgomery
multiplication, one can perform a subtraction whatever the value after the main loop, as for
the modular addition. This can be done by replacing the reduction step by:

c← s
(d, S)← sub(R,P,m)
if d⊕ c = 0 then

return S
else

return R

The justification of the correctness of the reduction step is the same as the modular addition
(Algorithm 6).

To avoid the resetting data of line 1, the first iteration (i = 0), line 9 can be replaced by
(c, r[j])← a[j]× b[j] + c. Also, it is possible to improve the algorithm if A = B (montsqr).

Denote C = A × B mod P the product of two integers A,B modulo P . The Montgomery
multiplication of A,B returns C × 2−wm mod P . Let A′ = A2wm mod P and B′ = B2wm mod
P . The Montgomery multiplication of A′, B′ returns

montmul(A′, B′) = A2wm ×B2wm × 2−wm mod P
= C2wm mod P

Denote C ′ = C2wm mod P . A′, B′, C ′ are called the Montgomery representations of A,B,C
respectively. The Montgomery multiplication of integers in their Montgomery representations
returns the Montgomery representation of the product. At the beginning of ecc applica-
tions, Montgomery representations of the manipulated integers are pre-computed. Trivially,
the modular addition of integers in their Montgomery representation returns the Montgomery
representation of the sum:

A′ +B′ = A2wm +B2wm mod P
= (A+B)2wm mod P

Obviously, the same holds for modular subtraction. Integers in their Montgomery represen-
tation are then manipulated in a transparent manner, as if they were in the regular form. At the
end of an ecc application, the correct values are easily recovered using A = montmul(A′, 1).
Algorithm 8 can be optimized if one of the operand is 1.

The pre-computations of the Montgomery representation of the integers is the main draw-
back of the Montgomery multiplication. The pre-computation of the Montgomery representa-
tion of A can be done by computing A′ = montmul(A,R) with R = 22wm mod P . One way to
compute R is to perform:

2.5. MODULAR INVERSION 41

R← montmul(1, 1) ⊲ R = 2−wm

R← montmul(R, 1) ⊲ R = 2−2wm

R← minv(R,P,m) ⊲ R = 22wm (modular inversion described below)

2.5 Modular Inversion

Modular inversions are costly and are avoided as much as possible, using projective or Jacobian
coordinates. It is estimated that the cost of a modular inversion is approximatively 100 times
the cost of a modular multiplication [Ver12, §1.1.1.6], which is the case for our implementation.
Modular inversion is however required at the end of the ecsm for the conversion from projective
to affine coordinates, for some cryptographic protocols or for some countermeasures. We give
the unsigned version of the binary inversion algorithm of [HMV03, Algorithm 2.22].

Algorithm 9 Euclidean Modular Inversion (minv)

Input: A,P,m such that gcd(A,P) = 1, P is odd and A < 2wm, P < 2wm

Output: A−1 mod P
U ← A
V ← P
X ← 1
Y ← 0

while U 6= 1 and V 6= 1 do
while U is even do

c← 0
U ← (U >> 1) ⊲ right shift
if X is odd then ⊲ perform X ← (X + P)/2 with the following

(c,X)← add(X,P,m)
X ← (X >> 1)
if c = 1 then X ← X + 2wm−1 ⊲ set the most significant bit to 1

while V is even do
c← 0
V ← (V >> 1)
if Y is odd then

(c, Y)← add(Y, P,m)
Y ← (Y >> 1)
if c = 1 then Y ← Y + 2wm−1 ⊲ set the most significant bit to 1

if U ≥ V then
(c, U)← sub(U, V,m)
X ← msub(X,Y, P,m)

else
(c, V)← sub(V, U,m)
Y ← msub(Y,X, P,m)

if U = 1 then
return X

else
return Y

42 CHAPTER 2. FINITE FIELD ARITHMETIC

2.6 Cost of Arithmetic Operations

In Part II, we are interested on the theoretical cost of the countermeasures against physical
attacks. For some applications or countermeasures, it is also necessary to have an access to long
integer arithmetic such as addition, subtraction, multiplication, square and Euclidean division
with remainder. Since the real cost depends on the architecture and on the size of the integers,
we choose the following notation:

• addn: execution time of an addition or a subtraction2 of n-bit integers,

• sqrn: execution time of a square of a n-bit integer,

• muln: execution time of a multiplication of n-bit integers,

• divn: execution time of a division of n-bit integers,

• maddn: execution time of a modular addition or subtraction2 of n-bit integers,

• msqrn: execution time of a modular square of a n-bit integer3,

• mmuln: execution time of a modular multiplication of n-bit integers3,

• minvn: execution time of a modular inversion of a n-bit integer3.

2The cost of an addition and subtraction are rarely significantly different.
3The modulus is a n-bit integer as well.

Chapter 3

Elliptic Curve Arithmetic

The formulæ given in Section 1.4 (ecadd and ecdbl) may be used to perform addition and
doubling. During the past years, many different formulæ have been proposed for different ellip-
tic curves and different coordinates. So far, standardized curves for cryptographic applications
are given in the short Weierstraß equation. We thus restrict to these elliptic curves where the
Jacobian coordinates are the most efficient. The choice of the formulæ is made depending on
the ecsm used, on some physical security requirements or on the memory available.

We give in Section 3.1 the most commonly used formulæ for elliptic curves in the short
Weierstraß equation. It is essential for describing and understanding some physical attacks.
Moreover, some countermeasures consist in slightly modifying the formulæ. For a more detailed
explanation on the formulæ and on their cost, one can refer to the synthesis given in [BL04]
and [Ver12, Chapter 1]. In addition, we give the memory required. Section 3.2 summarizes the
cost in number of field operations and the memory required.

3.1 Elliptic Curve Formulæ

This section gives the most efficient formulæ for elliptic curves over Fp, with p a n-bit prime
integer, in the short Weierstraß equation. We distinguish classical operations (addition and
doubling) from the co-Z formulæ where more refined operations are presented: the addition
and update, and the conjugate addition and update formulæ.

The number of registers for each formula is given without considering input and output
points. Only the number of extra temporary registers is taken into account. meml denotes
a memory block of l bits. We can save some memory with additional field additions and
subtractions as in [GJM+11]. We give the memory required for an optimal number of finite
field operations.

This section gives high level algorithm of elliptic curve operations. The same algorithms
with register allocation are given in appendix, only if they are useful for the description of some
attacks or countermeasures.

For all formulæ, the points are in the Jacobian coordinates system, and they are different
from the point at infinity.

43

44 CHAPTER 3. ELLIPTIC CURVE ARITHMETIC

3.1.1 Classical Formulæ

Algorithm 10 ecadd

Input: P = (X1, Y1, Z1), Q = (X2, Y2, Z2) with Q 6= ±P
Output: P +Q

A← X1Z
2
2 ; B ← X2Z

2
1 ; C ← Y1Z

3
2 ; D ← Y2Z

3
1

E ← B −A; F ← D − C
X3 ← F 2 − E3 − 2AE2

Y3 ← F (AE2 −X3)− CE3

Z3 ← Z1Z2E
return (X3, Y3, Z3)

If Q is in affine coordinates (Z2 = 1), one can save four multiplications and one square [CMO98].
It is called mixed addition (mecadd). If Z2

2 and Z3
2 are pre-computed, one multiplication and

one square are saved [CC86]. It is called re-addition (reecadd).
Cost (ecadd): 12 mmuln, 4 msqrn, 7 maddn, 3 memn

Cost (mecadd): 8 mmuln, 3 msqrn, 7 maddn, 3 memn

Cost (reecadd): 11 mmuln, 3 msqrn, 7 maddn, 3 memn

Algorithm 11 ecdbl

Input: P = (X1, Y1, Z1) with ord(P) 6= 2, elliptic curve parameter a
Output: 2P

A← 2Y 2
1

B ← 2AX1; C ← 3X2
1 + aZ4

1 ; D ← 2A2

X3 ← C2 − 2B
Y3 ← C(B −X3)−D
Z3 ← 2Y1Z1

return (X3, Y3, Z3)

If (X3, Y3, Z3) is used later for re-addition, computing Z2
3 and Z3

3 needs one extra square and
one extra multiplication (reecdbl). If W1 = aZ4

1 is pre-computed, two squares are saved, and it
needs one extra addition1 [CMO98]. It is called the modified Jacobian coordinates (modecdbl).
The use of both modified coordinates and re-addition is also given (mod-reecdbl).
Cost (ecdbl): 4 mmuln, 6 msqrn, 11 maddn, 3 memn

Cost (reecdbl): 5 mmuln, 7 msqrn, 11 maddn, 3 memn

Cost (modecdbl): 4 mmuln, 4 msqrn, 12 maddn, 3 memn

Cost (mod-reecdbl): 5 mmuln, 5 msqrn, 12 maddn, 3 memn

Remark 3.1. In the standardized elliptic curves recommended in [FIPS186-3], the parameter
a of the curve is equal to −3. This makes it possible to perform a faster computation of
C = 3X2

1 + aZ4
1 in this way: C ← 3(X1 + Z2

1)(X1 − Z2
1). This saves two squares and costs an

extra subtraction over ecdbl. The formula is called fast doubling.

3.1.2 Co-Z Formulæ

An ecsm is generally based on addition and doubling formulæ of points. Meloni shows that addi-
tion of two points of an elliptic curve is more efficient if they share the same Z-coordinate [Mel07].

1In fact, two squares and one multiplication are saved. An extra addition and an extra multiplication are
needed for the computation of W3 = aZ4

3
= 2DW1.

3.1. ELLIPTIC CURVE FORMULÆ 45

He brought a new formula, which was called later co-Z addition and update (zaddu) in
[GJM10]. This formula alone is enough to perform an ecsm with addition chains and Zeckendorf
representation [Mel07].

Algorithm 12 co-Z addition and update (zaddu) [Mel07]

Input: P = (X1, Y1, Z), Q = (X2, Y2, Z) with Q 6= ±P
Output: (R,S) with R = P +Q and S = (λ2X1, λ

3Y1, λZ) with λ = X1 −X2

C ← (X1 −X2)
2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 −X2)
D ← (Y1 − Y2)

2; A1 ← Y1(W1 −W2)
X3 ← D −W1 −W2

Y3 ← (Y1 − Y2)(W1 −X3)−A1

X4 ←W1

Y4 ← A1

return ((X3, Y3, Z3), (X4, Y4, Z3))

The computation of the Z coordinate is not necessary if the Montgomery Ladder is used for
the ecsm [GJM+11]. It is called (X,Y)-only co-Z addition and update (zaddu’). One multi-
plication is saved. The final Z coordinate is recovered at the end of the ecsm.
Cost (zaddu): 5 mmuln, 2 msqrn, 7 maddn, 2 memn

Cost (zaddu’): 4 mmuln, 2 msqrn, 7 maddn, 2 memn

Meloni’s formula was extended. The conjugate co-Z addition (zaddc) was proposed in
[GJM10]. It consists in computing the points P + Q and P − Q within the same formula. In
[GJM10, HJS11, GJM+11], with both zaddu and zaddc, the authors show that co-Z formulæ
might be usable with classical ecsm algorithms such as the Right-to-Left signed-digit method,
the Montgomery Powering Ladder [JY02], or the Joye’s double-add method [Joy07].

Algorithm 13 conjugate co-Z addition (zaddc) [GJM10]

Input: P = (X1, Y1, Z), Q = (X2, Y2, Z) with Q 6= ±P
Output: (R,S) with R = P +Q, S = P −Q
C ← (X1 −X2)

2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 −X2)
D1 ← (Y1 − Y2)

2; A1 ← Y1(W1 −W2)
X3 ← D1 −W1 −W2

Y3 ← (Y1 − Y2)(W1 −X3)−A1

D2 ← (Y1 + Y2)
2

X4 ← D2 −W1 −W2

Y4 ← (Y1 + Y2)(W1 −X4)−A1

return ((X3, Y3, Z3), (X4, Y4, Z3))

The computation of the Z coordinate is not necessary if the Montgomery Ladder is used
[GJM+11]. It is called (X,Y)-only co-Z conjugate addition (zaddc’). One multiplication
is saved. The final Z coordinate is recovered at the end of the ecsm.
Cost (zaddc): 6 mmuln, 3 msqrn, 11 maddn, 3 memn

Cost (zaddc’): 5 mmuln, 3 msqrn, 11 maddn, 3 memn

46 CHAPTER 3. ELLIPTIC CURVE ARITHMETIC

3.2 Cost Summary

Table 3.1 gives the cost of the different formulæ of this section. The memory cost is the number
of temporary registers needed for the formula, excluding input and output memory blocks.

Point doubling
ecdbl 4 mmuln, 6 msqrn, 11 maddn, 3 memn

reecdbl 5 mmuln, 7 msqrn, 11 maddn, 3 memn

modecdbl 4 mmuln, 4 msqrn, 12 maddn, 3 memn

mod-reecdbl 5 mmuln, 5 msqrn, 12 maddn, 3 memn

Points addition
ecadd 12 mmuln, 4 msqrn, 7 maddn, 3 memn

mecadd 8 mmuln, 3 msqrn, 7 maddn, 3 memn

reecadd 11 mmuln, 3 msqrn, 7 maddn, 3 memn

zaddu 5 mmuln, 2 msqrn, 7 maddn, 2 memn

zaddu’ 4 mmuln, 2 msqrn, 7 maddn, 2 memn

Points conjugate addition
zaddc 6 mmuln, 3 msqrn, 11 maddn, 3 memn

zaddc’ 5 mmuln, 3 msqrn, 11 maddn, 3 memn

Table 3.1: Cost of the most commonly used elliptic curve formulæ for a n-bit prime modulus.

We use the following notation to quantify the different ecsms described in the next chapter
and the cost of some countermeasures increasing the number of elliptic curve operations:

• ecaddn: execution time of an elliptic curve points addition with a modulus of size n,

• ecdbln: execution time of an elliptic curve point doubling with a modulus of size n,

• c-ecaddn: execution time of an elliptic curve points conjugate addition with a modulus
of size n.

Chapter 4

Elliptic Curve Scalar
Multiplication

In ecc applications, one has to compute scalar multiplications (ecsms), i.e. compute

[k]P = P + · · ·+ P
︸ ︷︷ ︸

k times

,

given a point P and an integer k. The choice of an ecsm algorithm depends on the memory
constraints and on the physical security requirements.

ecsms are generally performed with a loop scanning of the bits of the scalar. In fact, the
ecsms can be compared to the modular exponentiation methods used in rsa and systems based
on the multiplicative group of a finite field: an addition of points is replaced by a multiplication,
and a doubling is replaced by a square. In addition, in elliptic curves we can take advantage
of the useful property that the inverse element of the point P = (x, y) is −P = (x,−y). This
operation is almost free; hence, it can be done on the fly. For modular exponentiations, the
analogy would be computing modular inverses, which are very costly.

The ecsms are generally organized depending of the regularity. An ecsm is said to be reg-
ular if, at each iteration, the same elliptic curve operations are performed whatever the value
of the scalar. Unregular ecsms are generally more efficient. However, we will see in Section
8.2 that unregular ecsms can be vulnerable to the Simple Side-Channel Analysis. We will also
describe some related countermeasures.

The ecsms described in this section can use different formulæ given in the previous section,
depending on the performance and on the security requirements. We use the notation “· + ·”
for an elliptic curve addition and “2 ·” for an elliptic curve doubling. We evaluate the cost of
the ecsm using the notations of Section 3.2 where n is the bit-length of the prime modulus.
A more detailed comparison on the cost of the ecsms can be found in [Ver12, Chapter 1]. In
addition, we give the memory required. A summary of the cost of the ecsms is given in Section
4.3.

47

48 CHAPTER 4. ELLIPTIC CURVE SCALAR MULTIPLICATION

4.1 Unregular ECSMs

We give in Algorithms 14, 15, 16, 17, 18, the most commonly used unregular ecsms.

Algorithm 14 Left-to-Right Double-and-Add

Input: a point P and an integer k = (1, kn−2, . . . , k0)2
Output: [k]P

R0 ← P
for i = n− 2 downto 0 do

R0 ← 2R0 ⊲ R0 = [(kn−1, . . . , ki+1, 0)2]P
if ki = 1 then R0 ← R0 + P ⊲ R0 = [(kn−1, . . . , ki+1, ki)2]P

return R0

Cost: n
2 ecaddn + n ecdbln

Algorithm 15 Right-to-Left Double-and-Add

Input: k = (kn−1, . . . , k1, 1)2, P
Output: [k]P

R0 ← P
R1 ← 2P
for i = 1 to n− 1 do

if ki = 1 then R0 ← R0 +R1 ⊲ R0 = [(ki, . . . , k0)2]P
R1 ← 2R1 ⊲ R1 = [2i+1]P

return R0

Cost: n
2 ecaddn + n ecdbln

Computing the inverse element of a point is almost free: if P = (x, y), then −P = (x,−y).
Using a signed digit representation of the scalar can speed up some algorithms. The Non-
Adjacent Form (NAF) is suitable. The following definitions and properties of the NAF can be
found in [HMV03, Section 3.3].

Definition 4.1. A non-adjacent form (NAF) of a positive integer k is an expression k =
∑l−1

i=0 ki2
i where ki ∈ {−1, 0, 1}, kl−1 6= 0, and no two consecutive digits ki are nonzero. The

length of the NAF is l.

Theorem 4.2. [HMV03, Theorem 3.29]. Let k be a positive integer.

• k has a unique NAF denoted NAF(k) or (kl−1, . . . , k0)NAF.

• NAF(k) has the fewest nonzero digits of any signed digit representation of k.

• l is at most one more than the length of the binary representation of k.

• The average density of nonzero digits among all NAFs of length n is approximatively 1/3.

4.1. UNREGULAR ECSMS 49

Algorithm 16 Left-to-Right sliding window NAF scalar multiplication

Input: k = (1, kl−2, . . . , k0)NAF, v ≥ 2, P
Output: [k]P

m← 2(2v − (−1)v)/3− 1
Q← P
for i = 1 to m by 2 do

Pi ← [i]P

i← l − 2
while i ≥ 0 do

if ki = 0 then
Q← 2Q
i← i− 1

else
s← max(i− v + 1, 0)
while ks = 0 do

s← s+ 1

u← (ki, . . . , ks)NAF

for j = 1 to i− s+ 1 do
Q← 2Q

if u > 0 then
Q← Q+ Pu

if u < 0 then
Q← Q− P−u

i← s− 1

return Q

Cost:
(

l
v+f(v) +

2v−(−1)v

3 − 1
)

ecaddn + (l + 1) ecdbln, with f(v) = 4
3 −

(−1)v

3×2v−2

The NAF can be generalized to larger digits.

Definition 4.3. Let v ≥ 2 be a positive integer. A width-v NAF of a positive integer k is an
expression k =

∑l−1
i=0 ki2

i where each nonzero coefficient is odd, −2v−1 < ki < 2v−1, kl−1 6= 0,
and at most one of any v consecutive digits is nonzero. The length of the NAF is l.

Theorem 4.4. [HMV03, Theorem 3.33]. Let k be a positive integer.

• k has a unique width-v NAF denoted NAFv(k).

• NAF2(k) = NAF(k).

• l is at most one more than the length of the binary representation of k.

• The average density of nonzero digits among all width-v NAFs of length l is approxima-
tively 1/(v + 1).

50 CHAPTER 4. ELLIPTIC CURVE SCALAR MULTIPLICATION

The following algorithm computes the width-v NAF representation of the scalar on the fly.

Algorithm 17 Right-to-Left sliding window width-v NAF scalar multiplication

Input: k = (kn−1, . . . , k0)2, v ≥ 2, P
Output: [k]P

m← 2v−1 − 1
R← P
Q1, Q3, . . . , Qm ← O
while k ≥ 1 do

if k0 = 1 then
u← (kv−1, . . . , k0)
if u ≥ 2v−1 then u← u− 2v

if u > 0 then
Qu ← Qu +R

if u < 0 then
Q−u ← Q−u −R

k ← k − u

R← 2R
k ← k/2

for i = 3 to m by 2 do
Q1 ← Q1 + [i]Qi

return Q1

Cost:
(

n
v+1 + 22v−4 − 1

)

ecaddn + n ecdbln

The Shamir’s trick computes [k]P + [d]S with a single loop scanning.

Algorithm 18 Shamir’s trick [Str64]

Input: k = (kn−1, . . . , k0)2, d = (dn−1, . . . , d0)2 with (kn−1, dn−1) 6= (0, 0), P, S
Output: [k]P + [d]S

R1 ← P ; R2 ← S; R3 ← P + S
c← 2dn−1 + kn−1; R0 ← Rc

for i = n− 2 downto 0 do
R0 ← 2R0 ⊲ R0 = [(kn−1, . . . , ki+1, 0)2]P

+[(dn−1, . . . , di+1, 0)2]S
c← 2di + ki
if c 6= 0 then R0 ← R0 +Rc

⊲ R0 = [(kn−1, . . . , ki+1, ki)2]P
+[(dn−1, . . . , di+1, di)2]S

return R0

Cost: 3n
4 ecaddn + n ecdbln

4.2. REGULAR ECSMS 51

4.2 Regular ECSMs

We give in Algorithms 19, 20, 21, 22, 23, 24, 25 the most commonly used regular ecsms.

Algorithm 19 Left-to-Right Double-and-Add always [Cor99, §3.1]
Input: k = (1, kn−2, . . . , k0)2, P
Output: [k]P

R0 ← P,R1 ← 2P
for i = n− 2 downto 0 do

R0 ← 2R0

R1−ki
← R1−ki

+ P

return R0

Cost: n ecaddn + n ecdbln

Algorithm 20 Right-to-Left Double-and-Add always

Input: k = (kn−1, . . . , k1, 1)2, P
Output: [k]P

R0 ← P
R1 ← P ⊲ point for dummy operations
R2 ← 2P
for i = 1 to n− 1 do

R1−ki
← R1−ki

+R2 ⊲ R0 = [(ki, . . . , k0)2]P
and R1 = [(k̄i, . . . , k̄0)2]P

R2 ← 2R2 ⊲ R2 = [2i+1]P

return R0

Cost: n ecaddn + n ecdbln

Algorithm 21 Montgomery Ladder [JY02]

Input: k = (1, kn−2, . . . , k0)2, P
Output: [k]P
1: R0 ← P,R1 ← 2P
2: for i = n− 2 downto 0 do
3: R1−ki

← R0 +R1

4: Rki
← 2Rki

⊲ R0 = [(kn−1, . . . , ki)2]P
5: and R1 = R0 + P

6: return R0

Cost: n ecaddn + n ecdbln

52 CHAPTER 4. ELLIPTIC CURVE SCALAR MULTIPLICATION

The Montgomery Ladder, adapted with the co-Z formulæ, is given below.

Algorithm 22 Montgomery Ladder with co-Z formulæ [GJM10]

Input: k = (1, kn−2, . . . , k0)2, P
Output: [k]P

R0 ← P,R1 ← 2P
for i = n− 2 downto 0 do

(R1−ki
, Rki

)← zaddc(Rki
, R1−ki

)
(Rki

, R1−ki
)← zaddu(R1−ki

, Rki
) ⊲ R0 = [(kn−1, . . . , ki)2]P

and R1 = R0 + P

return R0

Cost: n c-ecaddn + n ecaddn

The following algorithm is the regular version of Algorithm 18 by adding a dummy operation.

Algorithm 23 Regular Shamir’s trick [CJ03]

Input: k = (kn−1, . . . , k0)2, d = (dn−1, . . . , d0)2
with (kn−1, dn−1) 6= (0, 0), P, S

Output: [k]P + [d]S
R1 ← P ; R2 ← S; R3 ← P + S
R4 ← P + S ⊲ R4 is used for dummy operations
c← 2dn−1 + kn−1; R0 ← Rc

for i = n− 2 downto 0 do
R0 ← 2R0 ⊲ R0 = [(kn−1, . . . , ki+1, 0)2]P

+[(dn−1, . . . , di+1, 0)2]S
b← ¬(ki ∨ di); c← 2di + ki
R4b ← R4b +Rc ⊲ R0 = [(kn−1, . . . , ki)2]P

+[(dn−1, . . . , di)2]S

return R0

Cost: n ecaddn + n ecdbln

Algorithm 24 Binary Random Initial Point (BRIP) [MMM04]

Input: k = (kn−1, . . . , k0)2, P
Output: [k]P

S ← random point()
R0 ← S, R1 ← −S,R2 = P − S
for i = n− 1 downto 0 do

R0 ← 2R0 ⊲ R0 = [(kn−1, . . . , ki+1, 0)2]P + [2]S
R0 ← R0 +R1+ki

⊲ R0 = [(kn−1, . . . , ki)2]P + S

return R0 +R1

Cost: n ecaddn + n ecdbln

4.3. COST SUMMARY 53

The following algorithm was introduced for rsa applications. We adapted it for elliptic
curves. We removed the final coherence check which will be discussed in Section 8.18.

Algorithm 25 Blinded Right-to-Left Double-and-Add always [BHT09]

Input: k = (kn−1, . . . , k0)2, P
Output: [k]P

S ← random point()
R0 ← S, R1 ← −S,R2 = P
for i = 0 to n− 1 do

R1−ki
← R1−ki

+R2 ⊲ R0 = [(ki, . . . , k0)2]P + S
and R1 = [(k̄i, . . . , k̄0)2]P − S

R2 ← 2R2 ⊲ R2 = [2i+1]P

return R0 − S

Cost: n ecaddn + n ecdbln

4.3 Cost Summary

Table 4.1 gives the cost of the different ecsms without any countermeasure. For each ecsm, the
more suitable formulæ from Chapter 3 are chosen regarding the efficiency. The memory cost
is calculated from the memory blocks required to store all involved points, the intermediate
variables for elliptic curve operations, and the curve parameters a, p (b is not used).

Remark 4.5. The number of field operations is given in average per bit of scalar. Obviously,
the number is exact for regular ecsms since the operations do not depend on the scalar.

Remark 4.6. The length of the NAF is at most one more than the length of the binary
representation of the scalar. In ecc applications, the prime modulus is at least a 256-bit
integers. Therefore, we can neglect the extra possible digit when the scalar in expressed in the
NAF representation. In Table 4.1, we expose the cost of the ecsms without distinguishing the
representation of the scalar.

Some countermeasures against physical attacks increase the number of iterations of the
ecsm or increase the number of ecsms. We denote by ecsml,n the execution time of an ecsm

with a l-bit scalar and a n-bit modulus.

54 CHAPTER 4. ELLIPTIC CURVE SCALAR MULTIPLICATION

Unregular s
L-to-R Double-Add 8 mmuln, 7.5 msqrn,
ecdbl and mecadd 14.5 maddn, 8 memn

R-to-L Double-Add 10 mmuln, 6 msqrn,
modecdbl and ecadd 15.5 maddn, 10 memn

L-to-R window NAF (v = 2) 6.7 mmuln, 5 msqrn,
ecdbl and mecadd 13.4 maddn, 8 memn

L-to-R window NAF (v = 3) 5.8 mmuln, 4.7 msqrn,
ecdbl and mecadd 12.6 maddn, 12 memn

L-to-R window NAF (v = 4) 5.6 mmuln, 4.6 msqrn,
ecdbl and mecadd 12.4 maddn, 16 memn

R-to-L window NAF (v = 2) 8 mmuln, 5.4 msqrn,
modecdbl and ecadd 14.4 maddn, 10 memn

R-to- L window NAF (v = 3) 7 mmuln, 5 msqrn,
modecdbl and ecadd 13.8 maddn, 13 memn

R-to-L window NAF (v = 4) 6.4 mmuln, 4.8 msqrn,
modecdbl and ecadd 13.4 maddn, 19 memn

Shamir’s trick 9 mmuln, 6.75 msqrn,
ecdbl and mecadd 13.5 maddn, 12 memn

Regular s
L-to-R Double-Add always 12 mmuln, 9 msqrn,

ecdbl and mecadd 18 maddn, 11 memn

R-to-L Double-Add always 18 mmuln, 8 msqrn,
modecdbl and ecadd 19 maddn, 13 memn

Montgomery Ladder 9 mmuln, 5 msqrn,
zaddu’ and zaddc’ 18 maddn, 9 memn

Regular Shamir’s trick 12 mmuln, 9 msqrn,
ecdbl and mecadd 18 maddn, 13 memn

BRIP 12 mmuln, 9 msqrn,
ecdbl and mecadd 18 maddn, 12 memn

Blinded R-to-L Double-Add always 18 mmuln, 8 msqrn,
modecdbl and ecadd 19 maddn, 13 memn

Table 4.1: Average cost per bit of scalar for the most commonly used ecsms for a n-bit prime
modulus

Chapter 5

Cryptographic Protocol

Given the following curve parameters:

• E, an elliptic curve over a prime field Fp,

• G, a generator of a subgroup of E of order t,

a private key is expressed by an integer d randomly chosen in {1, t − 1}. The corresponding
public key is P = [d]G.

Such a key pair is involved in cryptographic protocols such as the signature scheme ecdsa

(Section 5.1), the key agreement protocol ecdh (Section 28) or the encryption scheme ec-

elgamal (Section 5.3).

5.1 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm (ecdsa) is a signature scheme. It has been
standardized in [ANSI X9.62].

Algorithm 26 ecdsa Signature

Input: private key d, an encoded integer m ∈ [0, p− 1] representing a message
Output: Signature (r, s)

1: k
R←− {1, . . . , t− 1}

2: Q← [k]G
3: r ← xQ mod t
4: if r = 0 then
5: go to line 1

6: kinv ← k−1 mod t
7: s← kinv(dr +m) mod t
8: if s = 0 then
9: go to line 1

10: return (r, s)

55

56 CHAPTER 5. CRYPTOGRAPHIC PROTOCOL

Algorithm 27 ecdsa Verification

Input: public key P , an encoded integer m ∈ [0, p− 1] representing a message, signature (r, s)
Output: true or false

sinv ← s−1 mod t
u1 ← sinv ×m mod t
u2 ← sinv × r mod t
Q← [u1]G+ [u2]P
v ← xQ mod t
if v = r then

return true

else
return false

The Shamir’s trick (Algorithm 18) is suitable for the verification procedure.

5.2 Elliptic Curve Diffie Hellman

The Elliptic Curve Diffie Hellman (ecdh) cryptographic scheme is a key agreement between
two entities. It was standardized in [ANSI X9.63]. The procedure enables to share a secret
data from the private key of the first entity and the public key of the second entity.

Algorithm 28 ecdh

Input: A’s private key dA, B’s public key PB

Output: Secret Point S
S ← [dA]PB

if S = O then
return ERROR

return S

The entity B does the same with his own private key dB and A’s public key PA. Both
respective calculations give the point S = [dAdB]G. A and B now share a secret data. ecdh

can be used with ephemeral or static keys.

5.3 Elliptic Curve ElGamal

The Elliptic Curve ElGamal (ec-elgamal) is a cipher scheme.

Algorithm 29 ec-elgamal Encryption

Input: Public Key P , an encoded integer m ∈ [0, p− 1] representing a message
Output: (x1, y1, c)

k
R
←− {1, . . . , t− 1}

(x1, y1)← [k]G
(x2, y2)← [k]P
c← x2 +m mod p
return (x1, y1, c)

5.3. ELLIPTIC CURVE ELGAMAL 57

Algorithm 30 ec-elgamal Decryption

Input: Private Key d, an encrypted message (x1, y1, c)
Output: an encoded integer m′ ∈ [0, p− 1] representing a message

(x′2, y
′
2)← [d](x1, y1)

m′ ← c− x′2 mod p
return m′

58 CHAPTER 5. CRYPTOGRAPHIC PROTOCOL

Chapter 6

ECC Security

The security of ecc in the black box model relies on the hardness of one of the following
problems:

• the Elliptic Curve Discrete Logarithm Problem (), that is the computation
of k given P and Q = [k]P ,

• the Elliptic Curve Computational Diffie Hellman, that is the computation of
[k1k2]P given P , Q1 = [k1]P and Q2 = [k2]P ,

• the Elliptic Curve Decisional Diffie Hellman, that is, given P , Q1 = [k1]P , Q2 =
[k2]P and Q3 = [k3]P , assess if Q3 = [k1k2]P .

The Elliptic Curve Computational Diffie Hellman and the Elliptic Curve Decisional Diffie
Hellman are trivially solvable if the ecdlp is. The best known algorithms to solve the ecdlp

are the Pollard’s rho [Pol78] and the Baby-step Giant-Step [Sha71] methods. They both have
a complexity of O(

√
t) where t = ord(P). If l is the security parameter of the cryptographic

application (e.g. 128 or 256), the recommended elliptic curve shall have a point P of order
ord(P) ≈ 22l. Although there is no concrete proof that the ecdlp cannot be solvable with better
algorithms, this problem has been accepted by the cryptographic community to guarantee the
security of ecc.

Note that, so far, no sub-exponential algorithm is known to solve the ecdlp. This is not
the case for integers factorization (which immediately breaks rsa) and discrete logarithms on
the multiplicative group of a finite field.

Remark 6.1. In particular elliptic curves, such as anomalous curves, supersingular curves, or
other curves [BSS99, Chapter III], better methods than the Pollard’s rho and the Baby-step
Giant-Step are known for solving the ecdlp. Elliptic curves for cryptographic applications are
chosen with good care so they do not have any of those particularities, and the Pollard’s rho
or the Baby-step Giant-Step methods are the best known methods to solve the ecdlp.

Generally, physical attacks aim at recovering the scalar or breaking the protocol with totally
different methods, without solving the ecdlp. Fortunately, several methods exist to thwart
them. This is the topic of the next part.

59

60 CHAPTER 6. ECC SECURITY

Part II

Physical Attacks and
Countermeasures on ECC

61

Introduction

Side-Channel Analysis (SCA) is the cryptographic technique exploiting different leaks, such
as the execution time, the power consumption, the electromagnetic emanation during the ex-
ecution of a cryptographic algorithm embedded in a device. Kocher was the first to report
a side-channel attack in 1996 [Koc96]. The attack exploits the variation of execution timing
with different inputs. Boneh, DeMillo and Lipton introduced another kind of physical attack
in 1997 [BDL97]. They suggest introducing a fault during the execution of the cryptographic
algorithm. The secret key is then derived from the erroneous result. Since then, various fault
attacks have emerged. On the other hand, many different countermeasures have been imagined
and introduced year after year to defeat physical attacks. This part gives a survey on the
physical attacks and countermeasures on ecc.

While defenders introduce new methods to thwart a class of attacks or an attack in par-
ticular, cryptanalysts propose new attacks to bypass previous countermeasures making them
incomplete or even completely ineffective. We exhibit the attacks and countermeasures with a
tree structure to represent this cat-and-mouse game.

Chapter 7 is devoted to the characterisation of the attacks and countermeasures. Consider-
ing the large number of attacks, the employment of precise terms to describe them is required.
Also, most of the countermeasures have a negative effect on the performance; we explain how
to quantify their cost.

Chapter 8 is the core of the thesis. It displays the different attacks and countermeasures. We
propose new side-channel attacks, called Same-Values Analysis (SVA), based on the occurrence
of same values within the same ecsm. Namely, these attacks are the horizontal SVA targeting
the Unified Formulæ (Section 8.2.2.2), the vertical and horizontal SVA against the Side-Channel
Atomicity (Sections 8.2.3.1 and 8.2.3.2), the vertical and horizontal classical SVA (Sections 8.13
and 8.14). Also, a new kind of fault attacks is proposed in Section 8.23. A fault is induced
at the very end of the ecsm, during the conversion from projective to affine coordinates. In
addition, we propose a very efficient countermeasure against the Refined Side-Channel Analysis
in Section 8.11.1. We propose new elliptic curve formulæ, ensuring the security against the
Refined Side-Channel Analysis.

Some fault attacks require several pairs of correct and faulted results. Intuitively, ecdsa
seems naturally immune against such attacks because it is a probabilistic signature scheme. We
show in Chapter 9 that is not true for several fault attacks.

Chapter 10 summarizes the attacks depending on the context. It is suitable for the task of
selecting different countermeasures when implementing a secure embedded ecc application.

Finally, a synthesis on the attacks versus the countermeasures is given in Chapter 11. The
efficiency of each countermeasure against the attacks is clearly displayed.

63

64

Chapter 7

Characterisation of Attacks and
Countermeasures

Given the large number of physical attacks in ecc, the use of precise terms is essential to describe
and classify them. In Section 7.1, we give the different categories of the attacks depending of
the exploited leak. Section 7.2 gives a description of the context for the attacks. In the next
chapter, experimental results are given to verify the practicability of some side-channel attacks.
To perform the experiments, we use a test platform that is described in Section 7.3. Finally,
we give in Section 7.4 the terms that will quantify the cost of each countermeasure.

7.1 Categories of the Attacks

The different attacks in embedded systems are generally classified into three main categories:
Side-Channel, Fault and Combined Attacks. For each attack of the next chapter, we
specify in which category it belongs to.

Side-Channel or Passive Attacks are those where the attacker observes the behaviour of
the chip during a process without disturbing it. Since the behaviour depends on the manipulated
data, the observations may reveal secret information such as the secret scalar. So far, the
different passive attacks are:

• Timing Attacks. They exploit the interdependence between values of the inputs and
the time needed to execute the cryptographic algorithm. The first reported side-channel
attack of Kocher [Koc96] is in fact a timing attack.

• Simple Side-Channel Analysis (SSCA). The attacker observes the different patterns
of the power consumption or the electromagnetic traces. Each step of the attack requires
a single trace to conclude on some information of the secret.

• Template Attacks. They proceed in two phases [CRR02]. The first phase consists in
building the templates. The attacker needs a fully controllable device in which she can
choose private and public data, and acquire traces of the power consumption by varying
the input data: this database makes up the templates. The second phase is the acquisition
of the targeted device with the same known public data used for the templates. The trace
is then compared with the templates to conclude which secret data are the more probably
manipulated.

65

66 CHAPTER 7. CHARACTERISATION

• Vertical Side-Channel Analysis. Several ecsms are run with different input data.
Each time, the power consumption or the electromagnetic radiation is acquired. A statis-
tical analysis is performed on the different traces to deduce the manipulated values, and
hence the secret scalar.

• Horizontal Side-Channel Analysis. A single trace is analysed to conclude on some in-
formation of the secret. The attacker uses statistical tools on segments of the trace. Since
a single trace is available, the length of the random variables is really limited. Therefore,
Horizontal SCA is more difficult to mount in practice compared with Vertical SCA in
which the attacker has a potential access to unlimited traces. Nonetheless, recently, these
attacks have been intensively studied because they are in fact very powerful since a single
trace can reveal the whole secret data. These attacks make it possible to target some
cryptographic protocols naturally immune to vertical SCA such as ecdsa. They also can
bypass some very powerful countermeasures.

Fault or Active Attacks are those where the opponent disturbs the chip during the execu-
tion of the cryptographic algorithm by using a laser, by varying the supply voltage, by varying
the external clock or other methods. The possibly erroneous result can reveal information of
the targeted secret data. The first reported attack that used a fault to derive secret information
was introduced by Boneh, DeMillo and Lipton [BDL97] to target rsa implementations used
with the Chinese Remainder Theorem (CRT). The attack was renamed later Bellcore attack
after the name of the company for which Boneh, DeMillo and Lipton were working. Since then,
many methods to derive a secret key using a fault were introduced. In ecc, the different active
attacks are generally classified as follows:

• Safe-Error Attacks. The attacker injects a fault on a specific area of the chip at a
specific time during a process. The final result will be wrong if and only if some condition
of the secret data is met. Otherwise, the result will be correct and the fault had no effect:
it was safe.

• Weak Curve Attacks. A fault is induced on some parameters before the ecsm so that
the ecsm is performed on another elliptic curve that is weaker than the original one. The
new curve E′ is weak in the sense that solving the ecdlp is easy. Generally, this means
that the order of E′ has no large factor.

• Differential Fault Attacks (DFA). Several ecsms are run. Each time, a fault is
induced during the execution of the cryptographic algorithm. The attacker collects the
erroneous results. They are analysed and compared with each other or with the correct
ones to deduce some information on the secret key. The term “Differential Fault Analysis”
was first employed by Biham and Shamir to describe an attack against an implementation
of the Data Encryption Standard (des) [BS97]. The Bellcore attack on rsa is in fact a
DFA.

This thesis focuses on the different methods to derive the secret scalar from possibly erro-
neous results rather than the technical aspect of injecting a fault. For a detailed description of
the different methods to disturb the chip, the interested reader can refer to the survey given in
[BCN+06].

Combined Attacks are those where the attacker combines two (or more) passive or active
attacks at a time.

7.2. ATTACK CONTEXT 67

7.2 Attack Context

The context of an attack is essential for the designer trying to protect an embedded system.
Depending on the protocol, the implementation or the architecture, an attack is not necessarily
feasible. In this case, a protection is not necessary, and the performance can be increased
because each countermeasure has a cost. The context is described by giving details on the
following information:

• Key Recovery. A description of the key recovery procedure is given; it can be either
recursive if the bits recovery process follows a certain order, or “independent bits” if the
bits are recovered independently from each other. The key recovery process can also
involve more computation such as the ecdlp to recover a small scalar, or the ecdlp on
a weak curve.

• Elliptic Curve Specificity. Some attacks work only if the given elliptic curve has some
properties; these properties are given,

• Implementation Access. The attacker needs some knowledge of the implementation
(until a certain level of the ecc’s hierarchy), or she needs an access to a device with
exactly the same implementation.

• Implementation Specificity. An attack can either be adapted for many different im-
plementations, or it targets a very specific implementation, a specific algorithm, a specific
elliptic curve formula or a specific countermeasure.

• Number of Executions Needed. To succeed, an attack requires the run of one or sev-
eral ecsms (for example n, n being the bit-length of the scalar); when the attack is based
on a statistical approach, we simply say “multiple” executions because the executions
number depends on the standard deviation of the random variables.

• Input Access. Either the attacker needs to choose a base point having some properties
or she simply needs the knowledge of it or the base point does not matter.

• Output Access. The attacker may need either some information about the output point
like the knowledge of it or, more simply, the knowledge of its validity (correct or incorrect)
or, even, no information at all about it.

• Fault model. The different faults are characterized as data randomization (a random
fault is injected into a specific area), resetting data (a fault is injected to force a data to the
zero value) or modifying opcode (a fault is injected to modify or skip some instructions).
Also the area size of the fault is given.

7.3 Test Platform

Side-Channel attacks are generally experimentally validated. We implemented elliptic curves
operations in the Side-channel Attack Standard Evaluation Board SASEBO-GII [SASEBO].
The hardware arithmetic module was implemented using algorithms described in Chapter 2
with a word size of 64 bits. All measures and experimental results given in the next chapter
are performed with this test platform.

68 CHAPTER 7. CHARACTERISATION

7.4 Quantifying the Cost of the Countermeasures

Each countermeasure has a non negligible time or memory cost on ecc applications. Indeed,
a countermeasure can extend the ecsm by several iterations, it can increase the number of
operations of an elliptic curve formula, or it can cost only a few modular multiplications. For
the extra field operations, extra elliptic curve operations, or extra iterations of the ecsm, we use
the notation of Sections 2.6, 3.2 and 4.3 respectively. A Random Number Generation (rng), a
Random Permutation Generation (rpg) or a Cyclic Redundancy Check (crc) might be needed
for the countermeasure. We notify it. The memory required to store the extra values also
matters. For each countermeasure, we give the cost with the following notation:

• ecsml,n: execution time of an ecsm with a l-bit scalar and a n-bit modulus,

• ecaddn, ecdbln,c-ecaddn: execution time of an elliptic curve addition, doubling and
conjugate addition with a modulus of size n,

• addn, sqrn,muln,divn: execution time of an addition/subtraction, a square, a multipli-
cation and a division respectively, with n-bit integers,

• maddn,msqrn,mmuln,minvn: execution time of a modular addition/subtraction, a
modular square, a modular multiplication and a modular inversion respectively, with
n-bit integers,

• rngn: execution time of the generation of a random n-bit integer,

• rpgm: execution time of the generation of a random permutation of m elements,

• crcn: execution time of a cyclic redundancy check of a n-bit integer,

• memn: memory block to store a n-bit integer.

Chapter 8

Attacks and Countermeasures

This chapter gives a state-of-the-art in physical attacks and countermeasures on ecc. Existing
attacks and countermeasures are described. Our new attacks: the Same-Values Analysis and
the Fault Attack on Projective to Affine Conversion are detailed. Our countermeasure against
the Refined Side-Channel Analysis is described as well.

Some countermeasures were introduced to counteract an attack in particular. In this case,
the countermeasure will be a subsection of the latter. The same is done with an attack targeting
a specific countermeasure. This structure tree is more suitable to expose the state-of-the-art.
In addition, the titles of the attacks are in red, while the titles of the countermeasures are in
blue.

For each attack, we specify if some countermeasures, prior in the state-of-the-art, thwart
the attack. We also specify if previous countermeasures have been proven ineffective against
the attack currently described. This analysis of interaction was either found in the paper in-
troducing the attack or it is from our own researches.

The characteristics of the attacks, as described in the previous chapter, are given. Also, the
cost of each countermeasure is specified.

Remark 8.1. Some passive attacks consist in analysing the power consumption trace dur-
ing the execution of the cryptographic operation. These attacks can be adapted using the
electromagnetic radiation trace. We use a single notation for better clarity.

In this chapter, unless otherwise specified, we consider the following parameters:

• E : y2 = x3+ax+b is the given elliptic curve defined over Fp with p a n-bit prime integer,

• k is the secret scalar that the attacker tries to recover.

8.1 Classical Timing Attack [Koc96]

The first timing attack, introduced by Kocher, targets rsa implementations. It takes advan-
tage of the non-constant execution timing of the modular multiplication such as Algorithm 8
with the conditional reduction step. The attack was improved and simplified by Dhem, Koe-
une, Leroux, Mestré, Quisquater and Willems [DKL+98]. It is described below, adapted to ecc.

69

70 CHAPTER 8. ATTACKS AND COUNTERMEASURES

The attack is recursive. Suppose that the attacker already knows the n− i− 1 leftmost bits
of the fixed scalar k = (kn−1, . . . , k0)2 and tries to recover ki (

1).

The attacker collects the execution time of different ecsms with different base points. She
simulates the computation with exactly the same implementation of the targeted chip, by
making an assumption on ki (e.g. ki = 0).

She separates the different timings in two sets S1 and S2. If a final reduction is needed at
a specific time of the algorithm (this can be for example the first multiplication of the elliptic
curve operation), the timing is put in S2. The timing is put in S1 otherwise (no reduction).
Let T1 and T2 be the average timings of S1 and S2 respectively. If T2 − T1 ≈ ε, ε being the
average time of the final reduction, then the hypothesis on the secret was right.

Remark 8.2. In [DKL+98], they improve the attack by making the two possible assumptions:
ki = 0 and ki = 1. The sets T1 (no reduction) and T2 (reduction) are constructed for both

assumptions. They are denoted by T
(0)
1 , T

(0)
2 and T

(1)
1 , T

(1)
2 for ki = 0 and ki = 1, respectively.

The method consists in comparing T
(0)
2 − T

(0)
1 and T

(1)
2 − T

(1)
1 . The larger number reveals the

good hypothesis.

Attack Context:

• Key recovery: recursive,

• Elliptic Curve Specificity: none,

• Implementation Access: full knowledge of all algorithms,

• Implementation Specificity: deterministic and non-constant time execution of modu-
lar multiplications,

• Number of Executions Needed: multiple,

• Input Access: known and varying,

• Output: unnecessary.

8.1.1 Constant Time of Field Operations

A effective solution to prevent the timing attack described above is to perform all field operations
in constant time, whatever the input values. This can be done by adding dummy operations if
necessary as explained in Sections 2.3 and 2.4. To ensure a full protection, the designer should
verify that the the field operations are performed with the same number of cycles whatever the
input values.

With random values, the probability of subtraction for a modular addition is 1/2, and the
probability of addition for a modular subtraction is 1/2. The probability of a final reduction is
3/16 for a Montgomery multiplication and 1/4 for a Montgomery squaring [SST04]. One extra
memory block is required to store the result of dummy operations.

Cost: 1/2 addn per maddn, 13/16 addn per mmuln, 3/4 addn per msqrn, 1 memn

1This presumes this is a Left-to-Right ecsm. Of course, the attack works backwards on Right-to-Left ecsms.

8.2. SIMPLE SIDE-CHANNEL ANALYSIS 71

8.2 Simple Side-Channel Analysis [Cor99]

Coron was the first to report a SSCA on ecc. This attack targets unregular ecsms such as the
Left-to-Right Double-and-Add method (Algorithm 14).

At each iteration, an addition of points is performed only if the current bit of the scalar is
1. If the attacker is able to distinguish the power consumption of a doubling from the one of
an addition of points, as in Figure 8.1, the bits of the scalar are easily recovered. Contrary to
rsa, where squares and multiplications can be executed by the same code, this is not the case
for ecc.

Figure 8.1: Power consumption trace of a doubling (left curve) and an addition (right curve).
Field operations are delimited by vertical lines.

A single trace of an ecsm is enough to recover the scalar.

Attack Context:

• Key recovery: recursive (the iteration number has to be known),

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the ecsm and the elliptic curve formulæ,

• Implementation Specificity: unregular ecsm, different formulæ for addition and dou-
bling operations,

• Number of Executions Needed: 1,

• Input Access: unnecessary,

• Output Access: unnecessary.

8.2.1 Regular ECSM [Cor99, §3.1]

A countermeasure against SSCA consists in regularizing the ecsm, i.e. perform the same elliptic
curve operations at each iteration of the ecsm whatever the value of the scalar.

Introducing dummy operations can make an ecsm regular such as the Left-to-Right Double-
and-Add always (Algorithm 19). The Montgomery Ladder (Algorithms 21 and 22) is regular
as well without any dummy operation. Regular ecsms were previously given in Section 4.2.

72 CHAPTER 8. ATTACKS AND COUNTERMEASURES

8.2.1.1 C Safe-Error [YKLM01]

C Safe-Error attacks, introduced by Yen, Kim, Lim and Moon, target implementations with
dummy operations such as the Left-to-Right Double-and-Add always method (Algorithm 19).

The attacker injects a fault during the computation of the addition of points at iteration i.
If the addition is dummy, which is the case if ki = 0, the fault had no effect and the result is
correct.

This attack targets one bit at a time per ecsm.

Attack Context:

• Key recovery: independent bits,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the location of the field arithmetic module,
knowledge of the ecsm and the elliptic curve formulæ,

• Implementation Specificity: implementation with dummy operations depending on
the current bit,

• Number of Executions Needed: n,

• Input Access: unnecessary,

• Output Access: knowledge of the validity,

• Fault Model: any on the field arithmetic module.

8.2.2 Unified Formulæ [BJ02]

This countermeasure was introduced by Brier and Joye to prevent the SSCA. Elliptic curve
operations are reviewed so that the operations for computing a doubling and an addition are
the same.

The following formula can be used for both addition (Q 6= ±P) and doubling (Q = P). They
presented the formula in projective coordinates because it is more efficient than the Jacobian
coordinates.

Algorithm 31 unified ecadd in projective coordinates [BJ02]

Input: P = (X1, Y1, Z1), Q = (X2, Y2, Z2) in projective coordinates such that Y1Z2 6= −Y2Z1,
elliptic curve parameter a

Output: P +Q
U1 ← X1Z2; U2 ← X2Z1;S1 ← Y1Z2; S2 ← Y2Z1

Z ← Z1Z2; T ← U1 + U2; M ← S1 + S2

R← T 2 − U1U2 + aZ2; F ← ZM
L←MF
G← TL
W ← R2 −G
X3 ← 2FW
Y3 ← R(G− 2W)− L2

Z3 ← 2F 3

return (X3, Y3, Z3)

8.2. SIMPLE SIDE-CHANNEL ANALYSIS 73

Cost: (unified ecadd): 13 mmuln, 5 msqrn, 9 maddn, 6 memn

This prevents the classical SSCA since doubling and addition operations cannot be distin-
guished with the power consumption trace as in Figure 8.1.

This countermeasure must be carefully implemented. The attacker should not be able to
distinguish the transition of an iteration to the next from the transition of the two elliptic curve
operations within the same iteration. The atomicity principle should be applied [CCJ04].

An addition of points requires 13 mmuln, 5 msqrn, 9 maddn and 6 temporary registers.

Cost:

• 9 mmuln − 1 msqrn − 2 maddn over ecdbln,

• 1 mmuln + 1 msqrn + 2 maddn over ecaddn.

8.2.2.1 SSCA on Unified Formulæ [Wal04]

Walter showed that a simple SCA can reveal whether a final subtraction is needed at the
end of the Montgomery multiplication, as shown in Figure 8.2. By analysing all Montgomery
multiplications performed during the execution of Algorithm 31, the attacker is able to tell if
the points are the same (doubling) or not (addition).

Figure 8.2: Power consumption of a multiplication with a final subtraction (left curve) and
without a final subtraction step (right curve). The vertical arrow indicates the additional
subtraction.

Stebila and Thériault improved the attack [ST06]. In addition to the conditional subtrac-
tion at the end of the Montgomery multiplication, they use the conditional subtraction (resp.
addition) at the end of the modular addition (resp. subtraction).

A single trace may be enough to recover the whole bits of the scalar. In addition, the
knowledge of the input point is not required [Wal04, ST06]. Obviously, the Constant Time of
Field Operations countermeasure, as described in Section 8.1.1, thwarts the attack2.

Attack Context:

• Key recovery: recursive (the iteration number has to be known),

• Elliptic Curve Specificity: unregular ecsm,

2Of course, only if the dummy operations are performed in the same manner as if they were real. Also, the
conditional step and throwing away the temporary wrong result should not be distinguished with side-channel
analysis.

74 CHAPTER 8. ATTACKS AND COUNTERMEASURES

• Implementation Access: full knowledge of all algorithms,

• Implementation Specificity: deterministic and non-constant time execution of modu-
lar multiplications, unified formulæ,

• Number of Executions Needed: 1,

• Input Access: unnecessary,

• Output Access: unnecessary.

8.2.2.2 Horizontal Same Values Analysis on Unified Formulæ

We introduce a new attack against the Unified Formulæ countermeasure. A single trace is
analysed: it is a horizontal attack.

Algorithm 31 is used so that the attacker cannot distinguish whether a doubling or an
addition is being performed. However, if the input points of unified ecadd are the same, the
values U1, U2 are computed with the same input values: X1 = X2 and Z1 = Z2. The same goes
for S1, S2: Y1 = Y2 and Z1 = Z2.

The trace segments during the computation of U1, U2 are compared as illustrated in Figure
8.3.

Figure 8.3: Comparison of the power consumption during the computation of unified ecadd.

If the inputs of the two multiplications are equal, the difference of traces corresponds of the
difference of the noise only. Consequently, if the noise is low, the difference of traces will be
near zero in that case. If the noise is high, a more sophisticated tool than a simple difference
can be used, such as the Euclidean distance or the correlation with the points of interest of
the traces. The trace segments during the computation of U1, U2 can be seen as random vari-
ables X,Y respectively. The construction of such random variables are illustrated in Figure 8.4.

The comparison can be done at each iteration, so the scalar can be recovered from a single
trace.

Attack Context:

• Key recovery: recursive (the iteration number has to be known),

• Elliptic Curve Specificity: none,

8.2. SIMPLE SIDE-CHANNEL ANALYSIS 75

Figure 8.4: Construction of random variables for a Horizontal SCA without a leakage model
during the execution of an ecsm.

• Implementation Access: knowledge of the ecsm and the elliptic curve formulæ,

• Implementation Specificity: unified formula,

• Number of Executions Needed: 1,

• Input Access: unnecessary,

• Output Access: unnecessary.

8.2.3 Side-Channel Atomicity [CCJ04]

The concept of Side-Channel Atomicity was introduced by Chevallier-Mames, Ciet and Joye.
The elliptic curve formulæ are rewritten with sequences of identical atomic patterns. In [CCJ04],
an atomic pattern is the sequence of the following (possibly fake) operations:

1. modular multiplication or square

2. modular addition

3. modular opposite

4. modular addition

A point doubling requires 10 of these atomic patterns, while an addition requires 16.

This countermeasure has been improved by Giraud and Verneuil [GV10]. A point doubling
in modified coordinates requires 2 msqrn, 6 mmuln, 10 maddn and 7 temporary registers3. An
addition of points requires the double amount of operations: 4 msqrn, 12 mmuln, 20 maddn

and 7 temporary registers3. The formulæ are suitable for the Right-to-Left sliding window
width-v NAF scalar multiplication (Algorithm 17). The elliptic curve operations are illustrated
in Figure 8.5.

This implementation is not vulnerable anymore to SSCA since the attacker cannot distin-
guish between the operations performed. She only sees a sequence of identical atomic patterns
without knowing if they correspond to a doubling or an addition (see Figure 8.6).

Fake operations are introduced so that the different elliptic curve operations might be written
with the same atomic patterns. Therefore, Safe-Error attacks can be applied to distinguish
which operation is currently performed.

36 temporary registers are needed in [GV10], we added one extra temporary registers for the dummy opera-
tions.

76 CHAPTER 8. ATTACKS AND COUNTERMEASURES

ecadd - part 1 (A1) ecadd - part 2 (A2) modecdbl (D)

1. T1 ← Z2
2 T1 ← T 2

6 T1 ← X2
1

2. ⋆ ⋆ T2 ← Y1 + Y1

3. T2 ← Y1 × Z2 T4 ← T5 × T1 Z3 ← T2 × Z1

4. ⋆ ⋆ T4 ← T1 + T1

5. T5 ← Y2 × Z1 T5 ← T1 × T6 T3 ← T2 × Y1

6. ⋆ ⋆ T6 ← T3 + T3

7. T3 ← T1 × T2 T1 ← Z1 × T6 T2 ← T6 × T3

8. ⋆ ⋆ T1 ← T4 + T1

9. ⋆ ⋆ T1 ← T1 +W1

10. T4 ← Z2
1 T6 ← T 2

2 T3 ← T 2
1

11. T5 ← T5 × T4 Z3 ← T1 × Z2 T4 ← T6 ×X1

12. ⋆ T1 ← T4 + T4 T5 ←W1 +W1

13. T2 ← T2 − T3 T6 ← T6 − T1 T3 ← T3 − T4

14. T5 ← T1 ×X1 T1 ← T5 × T3 W3 ← T2 × T5

15. ⋆ X3 ← T6 − T5 X3 ← T3 − T4

16. ⋆ T4 ← T4 −X3 T6 ← T4 −X3

17. T6 ← X2 × T4 T3 ← T4 × T2 T4 ← T6 × T1

18. T6 ← T6 − T5 Y3 ← T3 − T1 Y3 ← T4 − T2

Figure 8.5: ecadd and modecdbl operations written with the same atomic pattern (⋆ repre-
sents a dummy operation). Each column is an atomic pattern.

Figure 8.6: Power trace observed during a few iterations of the ecsm using the patterns of
Figure 8.5

Cost:

• modecdbln with atomic patterns costs 2 mmuln − 2 msqrn − 2 maddn + 4 memn over
the classical modecdbln of Section 3.1.1 (which is an improvement if mmuln = msqrn),

• ecaddn with atomic patterns costs 13 maddn + 4 memn over the classical ecaddn of
Section 3.1.1.

8.2.3.1 Same Values Analysis against the Atomicity Countermeasure

We present our Vertical Side-Channel Attack targeting the Side-Channel Atomicity Counter-
measure. We use the notation of the patterns A1,A2,D as described in the previous section.
We illustrate our attack on the Right-to-Left sliding window width-v NAF scalar multiplication
(Algorithm 17) in which the Side-Channel Atomicity was described in [CCJ04, GV10].

8.2. SIMPLE SIDE-CHANNEL ANALYSIS 77

If we are able to distinguish between a doubling (D) and an addition (A1;A2), we can
deduce if the current digit of the scalar is zero. The attack is recursive. For a better clarity,
we will see how to find the first digit k0 of the v-NAF representation of k. The next digits are
recovered in the same way.

The core idea of the attack is to identify which operation is performed by analysing the
possible repetitions of variables in the patterns.

Possibilities of the patterns. Considering Algorithm 17, the possible operations of the
three first atomic patterns are:

1. A1;A2;D. In this case, k0 6= 0.

2. D;A1;A2. In this case, k0 = 0.

3. D;D;A1. In this case, k0 = 0.

4. D;D;D. In this case, k0 = 0.

We want to assert if the first three patterns correspond to A1;A2;D (k0 6= 0).

Same values in the different patterns. With Figure 8.5 and the different possibilities of
the three first patterns, we label the modular multiplications with a common operand only if the
operations are A1;A2;D; we deliberately omit the multiplications sharing a common operand
if they possibly occur in another sequence of patterns.

The common operands are illustrated in Figure 8.7. They are denoted with boxes with the
same index. For example, the square at line 1 of the 1st pattern and the multiplication at line
3 of the 1st pattern share a common operand (Z2) only if the sequence is A1;A2;D. Note
that the multiplication at line 17 of the 1st pattern and the multiplication at line 11 of the
3rd pattern share a common operand (X2 and X1) only if A1;A2;D is performed. The same
holds for Z2 in A1;A2 and Z1 in D. Indeed, the point (X2, Y2, Z2) of A1;A2 and the point
(X1, Y1, Z1) of D both correspond to the point R or −R in Algorithm 17.

The total number of pairs of multiplications or squares sharing a common operand is sixteen
in the sequence A1;A2;D.

Detecting the same values. The attacker arbitrarily chooses a pair within the sixteen.
Several ecsms are run with the same scalar k. The base point does not matter.

We want to detect if, for each ecsm, the two multiplications of the selected pair share a
common operand. The method introduced by Schramm et al. [SWP03] to attack an imple-
mentation of the des can be used. It was later improved in [CFG+11] to attack a protected
implementation of the Advance Encryption Standard (aes). The principle of the method is as
follows. Within each trace, the two points where the same values are possibly manipulated are
saved for constructing two random variables, as illustrated in Figure 8.8. The correlation or
another statistical tool is performed to reveal if the same values are indeed manipulated.

Remark 8.3. The pair of multiplications is selected such that the common operands are in
the same operand input (left or right). This makes it possible to perform a collision analysis
without any synchronization procedure. The attack is still possible if it is not the case, but
a strong study on the field arithmetic module is required for a synchronization because the
sensitive data is not manipulated at the same time within the field operation.

78 CHAPTER 8. ATTACKS AND COUNTERMEASURES

ecadd - part 1 (A1) ecadd - part 2 (A2) modecdbl (D)

1. T1 ←
✞

✝

☎

✆
Z2

2

1,2,14
T1 ←

✞

✝

☎

✆
T6

2

9,10
T1 ←

✞

✝

☎

✆
X1

2

12

2. ⋆ ⋆ T2 ← Y1 + Y1

3. T2 ← Y1 ×
✞

✝

☎

✆
Z2

1,3,15
T4 ← T5 × T1 Z3 ← T2 ×

✞

✝

☎

✆
Z1

14,15,16

4. ⋆ ⋆ T4 ← T1 + T1

5. T5 ← Y2 ×
✞

✝

☎

✆
Z1

4,5
T5 ← T1 ×

✞

✝

☎

✆
T6

9,11
T3 ← T2 × Y1

6. ⋆ ⋆ T6 ← T3 + T3

7. T3 ←
✞

✝

☎

✆
T1

7
× T2 T1 ←

✞

✝

☎

✆
Z1

5,6
×

✞

✝

☎

✆
T6

10,11
T2 ← T6 × T3

8. ⋆ ⋆ T1 ← T4 + T1

9. ⋆ ⋆ T1 ← T1 +W1

10. T4 ←
✞

✝

☎

✆
Z1

2

4,6
T6 ← T 2

2 T3 ← T 2
1

11. T5 ← T5 ×
✞

✝

☎

✆
T4

8
Z3 ← T1 ×

✞

✝

☎

✆
Z2

2,3,16
T4 ← T6 ×

✞

✝

☎

✆
X1

13

12. ⋆ T1 ← T4 + T4 T5 ←W1 +W1

13. T2 ← T2 − T3 T6 ← T6 − T1 T3 ← T3 − T4

14. T5 ←
✞

✝

☎

✆
T1

7
×X1 T1 ← T5 × T3 W3 ← T2 × T5

15. ⋆ X3 ← T6 − T5 X3 ← T3 − T4

16. ⋆ T4 ← T4 −X3 T6 ← T4 −X3

17. T6 ←
✞

✝

☎

✆
X2

12,13
×

✞

✝

☎

✆
T4

8
T3 ← T4 × T2 T4 ← T6 × T1

18. T6 ← T6 − T5 Y3 ← T3 − T1 Y2 ← T4 − T2

Figure 8.7: Common operands in the atomic patterns

Figure 8.8: Construction of random variables for a detection of same values

Experimental Results. We conducted an experiment with the test platform described in
Section 7.3. We measured the power consumption of 400 pairs of modular multiplications of
256-bit integers. For each pair, the two modular multiplications share a common operand.
We then computed the correlation curve (X and Y illustrated in Figure 8.8 are slid together
along the traces). The same was done with 400 pairs of modular multiplications with random
operands. The correlation curves are given in Figure 8.9. Four peaks can be seen when the

8.2. SIMPLE SIDE-CHANNEL ANALYSIS 79

modular multiplications share a common operand. It corresponds to the four words of the
common operand.

Figure 8.9: Correlation curves results for 400 pairs of modular multiplications sharing a common
operand (left curve) and random operands (right curve) of 256-bit integers

If a significant peak can be seen on the correlation curve (left curve of Figure 8.9), the
operations of the three first patterns are A1;A2;D. The attacker concludes that k0 6= 0. She
starts again with the next three patterns to target the digit k1. Conversely, if no peak is detected
(right curve of Figure 8.9), the first pattern corresponds to D, and the attackers concludes that
k0 = 0. The attacker starts again with the two last patterns of the three, added together with
the fourth of the ecsm to target k1.

The fifteen other pairs can be used to increase the length of the random variables and
therefore decrease the number of traces required.

Attack Context:

• Key recovery: recursive (the iteration number has to be known),

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the ecsm and the elliptic curve formulæ,

• Implementation Specificity: unregular ecsm, usage of the Side-Channel Atomicity
countermeasure,

• Number of Executions Needed: multiple,

• Input Access: unnecessary,

• Output Access: unnecessary.

8.2.3.2 Horizontal SVA on the Atomicity Countermeasure

The previous attack was a Vertical Side-Channel Attack. The attack is no longer applicable if
the scalar is not fixed or randomized.

We extend the previous attack and propose a Horizontal Side-Channel Attack. Like the
previous attack, the attacker tries to detect if the three current patterns are A1;A2;D using
the possibly same values occurring in the patterns. Our attack is based on the Big Mac principle.

Big Mac attack. The Big Mac attack was first introduced by Walter to target rsa imple-
mentations [Wal01]. The attack is based on a method to detect if two multiplications share a
common operand by comparing their power trace. This method is described here because we
extend this method for our attack. The Big Mac attack will be fully described later in Section
8.7.

80 CHAPTER 8. ATTACKS AND COUNTERMEASURES

Walter pointed out that two multiplications with a common operand have similarities as
for the power consumption. Denote by T1, T2 the traces during the computation of respec-
tively two modular multiplications A×B mod P , C ×D mod P , with A 6= C (or Montgomery
multiplications).

Denote by m the words number of the integers. The sample points of the trace T1, in which

each bj , j ∈ [0,m[is manipulated, are averaged into one single value s
(j)
1 . If Algorithm 8 is

used, this corresponds to the lines 8 to 10. The computation of s
(0)
1 is illustrated in Figure 8.10.

Figure 8.10: Illustration of the computation of s
(0)
1 with a modular multiplication of integers

of four words (256-bit integers in a 64-bit architecture)

The average permits to reduce the noise corresponding to the manipulation of the ai for i ∈
[0,m[and other activities of the device [Wal01]. Let S1 = s

(0)
1 || . . . ||s(m−1)

1 be the concatenation

of the s
(j)
1 . The same is done with T2 to obtain S2.

If B = D, the Euclidean distance between S1 and S2 is small. If B 6= D, the distance is
high. The trace segments T1, T2 can be seen as random variables constructed from a single
trace of an exponentiation, as illustrated in Figure 8.4.

This method works with a single pair of multiplications on rsa because the number of words
is large compared to ecc4. The success of the attack depends on the size of the manipulated
integers: the longer the used integers are, the higher the success rate is [Wal01, BJPW13a].

Big Mac CoCo. In [CFG+12], Clavier et al. propose to use the Pearson coefficient between
S1, S2 instead of the Euclidean distance. They called the method Big Mac CoCo (CoCo for
Collision-Correlation). They compare the two methods with simulation results on rsa and the
correlation is better by far [CFG+12].

Later, Bauer, Prouff, Jaulmes and Wild gave simulation results of the Big Mac CoCo on
elliptic curves [BJPW13b]. They target the Side-Channel Atomicity. Indeed, they notice that
there are common operands regarding the side-channel atomicity formulæ. For instance, to dis-
tinguish an addition from a doubling, they suggest to compare the first multiplication (line 1)
and the second multiplication (line 3) of Figure 8.5. If it is a doubling, the two multiplications

4For a 128 bits security, ecc must use 256-bit integers length, while rsa must use 3072-bit integers.

8.2. SIMPLE SIDE-CHANNEL ANALYSIS 81

share a common operand. They give the success rate on simulation results using a correlation
which was high enough even for a 32 bits architecture.

We experimentally tried both the Big Mac and the Big Mac CoCo on real measurements on
a 64 bits architecture and we failed. In the following, we present a significant improvement of
the attack of [BJPW13b]. We also present experimental results of our attack.

Assembling the pieces of the puzzle. In [BJPW13b], they compare only two multiplica-
tions in two different patterns. Our contribution is to compare many pairs of multiplications by
analysing a sequence of several patterns depending of a bit of the scalar. Namely, we want to
assert if the three first patterns correspond to A1;A2;D. In this case, the first bit is non-zero.

Compared with the classical Big Mac attack on rsa, the low number of words is compensated
by the large number of modular multiplications we compare. We can compare sixteen pairs
(see Figure 8.7) instead of one, thanks to the atomicity countermeasure.

First, we split the trace of the three first patterns; we separate the field operations. We
denote by s(·) the method for constructing S1 or S2 as previously described for the Big Mac
attack.

We then construct two sets U1, U2 as follows. U1, U2 are first set empty. We perform s(·)
for the power traces of the multiplications that might share a common operand. One element
of each pair is put in U1, the other is put in U2. The construction of U1, U2 is illustrated in
Figure 8.11 for the first three pairs possibly sharing the same operand Z2.

The Euclidean distance between U1 and U2 is small if each pair share a common operand.
In this case the three patterns observed are actually A1;A2;D, and the attacker concludes
that k0 6= 0. She then iterates the method with the next three patterns to target the digit k1.
Conversely, The Euclidean distance between U1 and U2 is large if no multiplication among all
multiplications shares a common operand. In this case, the three patterns observed are not
A1;A2;D, and the attacker concludes that k0 = 0. She starts again with the two last patterns
of the three, added together with the fourth pattern of the ecsm to target k1.

Figure 8.11: Assembling the pieces of the puzzle of three atomic patterns

Experimental Results - Euclidean Distance. We mounted the attack with 384-bit inte-
gers (six words with our 64-bit architecture) with our test platform described in Section 7.3.

The first step of the attack is the characterisation of the arithmetic module. We constructed

82 CHAPTER 8. ATTACKS AND COUNTERMEASURES

U1, U2 as previously described with fourteen pairs of multiplications sharing a common operand5

100 times. The average Euclidean distance was 2.165. The same was done with fourteen
pairs of multiplication with random operands. The average Euclidean distance was 3.198. We
established that a distance lower than the mean 2.682 correspond to A1;A2;D.

We then assembled the pieces of the puzzle as previously described with a trace of A1;A2;D
50 times. Only one distance was larger than 2.682. We conclude that the attacker can detect
A1;A2;D with a success of 98%. The same was done with D;D;A1 50 times. Only two
distances were smaller than 2.682. We conclude that the attacker wrongly detects a patterns
triplet as A1;A2;D with probability 4%.

We performed the experiment with 256-bit integers (four words) as well. We obtained a
probability of 96% to correctly detect A1;A2;D, and a probability of 16% that D;D;A1 was
detected as A1;A2;D, which is still acceptable to perform the attack.

We strongly believe that the success probability is higher on a 32-bit architecture because
of the larger number of words.

Experimental Results - Big Mac CoCo. We also tried using the Pearson correlation as
in [CFG+12, BJPW13b]. Surprisingly, the coefficient was high (around 0.9) each time, even if
the guess was incorrect (i.e. even if there are no common operand for all multiplications).

The reason is that there are similarities in long integer multiplications even if the values are
different such as the word index. Our experiment shows that in certain cases, the Euclidean
Distance is better than the correlation. It also shows how difficult it is to characterise the
leakage of an implementation with simulated leaks. We think that, at this stage of research,
the best method is to experimentally try different methods and pick the best one.

Unlike the vertical version (Section 8.2.3.1), only a single trace is analysed. The secret scalar
can thus be recovered with a single execution of the ecsm.

Attack Context:

• Key recovery: recursive (the iteration number has to be known),

• Elliptic Curve Specificity: none,

• Implementation Access: full knowledge of all algorithms, knowledge of the architecture
of the modular arithmetic operator,

• Implementation Specificity: unregular ecsm, usage of the Side-Channel Atomicity
countermeasure, word-wise method of the modular multiplication,

• Number of Executions Needed: 1,

• Input Access: unnecessary,

• Output Access: unnecessary.

Note that we introduced side-channel attacks against the Unified Formulæ and the Side-
Channel Atomicity. Both countermeasures were proposed to prevent the SSCA. Furthermore,
our attacks are very powerful since they require only a single trace and the knowledge of the
input is not necessary. We strongly suggest to use regular ecsms, the only remaining protection
against the SSCA that has not been directly targeted by powerful attacks.

5We use fourteen pairs instead of sixteen as shown in Figure 8.7 because we avoid the pairs where the possibly
same operand is not in the same side: boxes 5 and 13.

8.3. CORRELATION SIDE-CHANNEL ANALYSIS 83

8.3 Correlation Side-Channel Analysis [Cor99, §3.2]

Coron was the first to report a Vertical Side-Channel Analysis on ecc. This attack is called
Correlation Side-Channel Analysis (CSCA).

The attack is recursive. Suppose that the attacker already knows the n− i− 1 leftmost bits
of the fixed scalar k = (kn−1, . . . , k0)2 and tries to recover ki (

6).
The attacker collects N power consumption traces during the iteration i of the ecsms with

different base points. Each time, she tries to guess the values that are manipulated, by making
an assumption on ki. The guessed values are denoted by aj with j ∈ [1, N]. The aj are indeed
manipulated only if her guess is correct.

She constructs the random variable X with the samples of the traces where the possible
values aj are used. Besides, she constructs the random variable Y with these values aj and a
specific leakage model m (e.g. the Hamming weight or the Hamming distance). The correlation
between X and Y is high if the hypothesis on the secret data is correct. Figure 8.12 illustrates
the construction of X and Y .

Figure 8.12: Construction of random variables for a CSCA

Attack Context:

• Key recovery: recursive,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the ecsm, the elliptic curve formulæ, the rep-
resentation of integers and the word size of manipulated integers,

• Implementation Specificity: none,

• Number of Executions Needed: multiple,

• Input Access: known and varying,

• Output Access: unnecessary.

6This presumes this is a Left-to-Right ecsm. Of course, the attack works backwards on Right-to-Left ecsms.

84 CHAPTER 8. ATTACKS AND COUNTERMEASURES

In the same paper introducing the CSCA on ecc, Coron exposes three very different methods
to thwart his own attack: the Group Scalar Randomization (Section 8.3.1), the Point Blinding
(Section 8.3.5) and the Random Projective Coordinates (Section 8.3.6). These methods were
intensively studied, attacked or improved during the past years.

8.3.1 Group Scalar Randomization [Cor99, §5.1]

Coron suggests to randomize the scalar using the group structure of the elliptic curve. The
scalar is randomized as k′ = k + r#E, with a random r of small size (32 bits seems a good
trade of between security and efficiency). Obviously, the result of the ecsm is the same:
[k + r#E]P = [k]P + [r]([#E]P) = [k]P for any point on the curve.

The countermeasure prevents the CSCA because the attack works only on a fixed scalar. It
prevents the classical Timing attack (see Section 8.1) for the same reason. The countermeasure
thwarts also the C Safe-Error attack (see Section 8.2.1.1). Indeed, this attack can target a
single bit at a time. Recovering a single bit of k′ is useless.

k and #E have generally the same size n. So k′ is approximatively a (n + 32)-bit integer.
The ecsm is longer by 32 iterations.

Cost: 1 mmuln, 1 addn+32, 1 mem32, 1 rng32, 1 ecsm32,n

8.3.1.1 Carry Leakage Attack [FRVD08]

Fouque, Réal, Valette and Drissi introduced the Vertical Attack called the Carry Leakage At-
tack to target the Group Scalar Randomization.

This attack consists in analysing the carry propagation of the addition performed for the
scalar randomization. The probability to have a carry only depends on the most significant bits
of each word. The power consumption of several randomizations are averaged. The amplitude
reveals the probability to have a carry and hence the most significant bits of each word of the
scalar are recovered.

The remainder of the unknown bits are recovered using the baby-step, giant-step method
[Sha71].

Attack Context:

• Key recovery: independent bits followed by a baby-step, giant-step method to recover
the missing bits,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the scalar randomization technique and the
word size of manipulated integers,

• Implementation Specificity: group scalar randomization or additive splitting counter-
measure,

• Number of Executions Needed: multiple,

• Input Access: unnecessary,

• Output Access: unnecessary.

8.3. CORRELATION SIDE-CHANNEL ANALYSIS 85

8.3.2 Additive Splitting [CJ01, §4.2]

Clavier and Joye proposed another method to randomize the scalar. Instead of computing [k]P ,
one can compute Q = [k − r]P + [r]P with a random r.

This countermeasure doubles the cost of the execution since two ecsms are performed.
Another solution is to compute [k − r]P and [r]P in parallel. In this case, this doubles the
memory required. Finally, one can use a multi-exponentiation method such as the regular
Shamir’s trick (Algorithm 23) with S = P and the scalars k − r and r.

Cost:

• 1 ecsmn,n, 1 ecaddn, 1 addn, 1 rngn, 1 memn in the case of a sequential computation

• 1 ecaddn, 1 addn, 1 rngn, and as many memn needed for one ecsmn,n in the case of a
parallel computation

• 1 addn, 1 rngn in the case of the regular Shamir’s trick (Algorithm 23)

8.3.2.1 Carry Leakage Attack [FRVD08]

In the Additive Splitting countermeasure, the scalar is subtracted to a random value. The
method described in Section 8.3.1.1 can be performed during the computation of k− r. Indeed,
as explained in Section 2.3, subtraction is generally performed using the two’s complement. We
compute k− r as k+ r̄+1. This is exactly the scenario considered in Section 8.3.1.1 with r̄+1
instead of r#E.

8.3.2.2 Combined Attacks against Additive Splitting [MV06]

This attack of Muller and Valette consists in combining two attacks to target the Additive
Splitting countermeasure.

The bits repartition of k− r and r are highly correlated to the bits repartition of k. Denote
by r(j) the random value r for the jth split. A statistical analysis of the values (k − r(j))i and
(r(j))i of different computations j can reveal ki+1.

Different combined attacks are proposed to recover the statistical repartition of (k − r(j))i
and (r(j))i:

• combining two C or M Safe-Errors (see Sections 8.2.1.1 and 8.4 respectively), which is
called second order Safe-Errors attack, or

• combining a C or M Safe-Error and an address-bit DSCA (see Section 8.9).

The Additive Splitting method resists to the three attacks if they are performed separately.

Attack Context:

• Key recovery: independent bits,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the ecsm, knowledge of the location of the field
arithmetic module (C Safe-Error) or the memory blocks (M Safe-Error),

86 CHAPTER 8. ATTACKS AND COUNTERMEASURES

• Implementation Specificity: same addresses values on different executions, group
scalar randomization or additive splitting,

• Number of Executions Needed: multiple,

• Input Access: unnecessary,

• Output Access: knowledge of the validity,

• Fault Model: any on the field arithmetic module (C Safe-Error) or data randomization
on a single memory block of size n (M Safe-Error).

8.3.3 Multiplicative Splitting [TE02]

Trichina and Belleza propose another scalar randomization technique. It consists in computing
Q = [k′]S, with

• S = [r]P ,

• k′ = kr−1 mod #E,

with r a random integer of small size (32 bits seems a good trade of between security and
efficiency).

The countermeasure brings an additional ecsm with a 32-bit scalar6.

Cost: 1 ecsm32,n, 1 muln, 1 minvn, 1 rng32, 1 mem32

8.3.4 Euclidean Splitting [CJ03, §4]

Ciet and Joye suggest to compute Q = [k1]P + [k2]S, with

• S = [r]P

• k1 = k mod r

• k2 = ⌊k/r⌋

r being a random integer half the size of k. The result of the ecsm is the same because
[k1]P + [k2]S = [k mod r]P + [⌊k/r⌋]([r]P) = [k mod r + ⌊k/r⌋r]P = [k]P .

This scalar randomization countermeasure increases the cost of the execution of 50%: three
ecsms are performed with scalars having half the size of k. Another solution is to use the
regular Shamir’s trick (Algorithm 23) for the computation of [k1]P + [k2]S. In this case, there
is no additional cost7: two ecsms are performed (one to compute S = [r]P and one to compute
[k1]P + [k2]S) with scalars half the size of the initial scalar.

Cost:

• 1 ecsmn/2,n, 1 ecaddn, 1 divn, 1 rngn/2, 1 memn/2, 3 memn

• 1 rngn/2, 1 divn in the case of the use of the regular Shamir’s trick

7A Jacobian to affine coordinates conversion of the point S is sometimes needed in the case where the base
point needs to be in affine coordinates.

8.3. CORRELATION SIDE-CHANNEL ANALYSIS 87

8.3.5 Point Blinding [Cor99, §5.2]

The countermeasure, by Coron, consists in computing Q = [k](P +R) instead of [k]P , with R
a pseudo-random point. The chip returns Q − [k]R. R and S = [k]R are pre-computed and
stored in the chip. After each ecsm, R and S are updated by computing R ← (−1)t2R and
S ← (−1)t2S with t randomly chosen in {0, 1}.

The pre-computation of a random point is required because the dynamic generation of a
random point is very costly. Indeed this can be done by generating a random number x, then
computing the square root of x3+ax+b (a, b being the curve parameters). Computing a square
root on a limited resources system is costly.

This countermeasure was improved in [IIT04] and later in [MMM04]. The authors proposed
to modify the ecsm to gradually subtract the random point R. With this improvement, the
pre-computation of [k]R is not necessary anymore (see Algorithm 24).

Later, Boscher, Handshuh and Trichina propose another blinded exponentiation algorithm
for rsa implementations [BHT09]. We adapted it for ecc in Algorithm 25.

The countermeasure prevents the CSCA since the intermediate values are randomized by
the pseudo-random point. It prevents the classical Timing attack (Section 8.1) as well.

Cost:

• 2 ecaddn, 2 ecdbln, 6 memn for the initial countermeasure [Cor99, §5.2]

• 1 ecaddn, 1 ecdbln in the case of the use of the BRIP ecsm (Algorithm 24) or Boscher
et al.’s algorithm (Algorithm 25)

8.3.6 Random Projective Coordinates [Cor99, §5.3]

A point P = (X,Y, Z) in Jacobian coordinates is equivalent to any point (r2X, r3Y, rZ), with
r ∈ F

∗
p. Coron suggests to randomize the base point at the beginning of the ecsm by choosing

a random nonzero r.
If the base point must remain in affine coordinates for efficiency reasons (e.g. using the

mixed coordinates for Algorithm 19), the randomization can be applied on the other points
instead before the main loop of the ecsm (e.g. R0, R1 in Algorithm 19).

The countermeasure prevents the CSCA since the coordinates are randomized. It prevents
the classical Timing attack (Section 8.1) as well.

Cost: 3 mmuln, 1 msqrn, 1 rngn

8.3.7 Random Curve Isomorphism [JT01]

Given Definition 1.4, elliptic curves E : y2 = x3+ax+b and E′ : y2 = x3+a′x+b′ are isomorphic
if and only if there exists u ∈ F

∗
p such that u4a′ = a and u6b′ = b. The isomorphism ϕ is defined

as:

ϕ : E
∼
−→ E′,

{
O → O

(x, y) → (u−2x, u−3y)

The countermeasure, introduced by Joye and Tymen, consists in computing the ecsm on a
random curve E′ instead of E. The base point is therefore randomized, as well as the parameters

88 CHAPTER 8. ATTACKS AND COUNTERMEASURES

a, b of the curve. Therefore, the CSCA cannot be applied. The implementation is also protected
against the classical Timing attack (Section 8.1).

Cost: 8 mmuln, 2 msqrn, 1 minvn, 1 memn, 1 rngn

8.4 M Safe-Error [YJ00]

M Safe-Error attacks, brought out by Yen and Joye, exploit the fact that a fault on a memory
block is cleared only if the scalar meets some condition. For example, in Algorithm 21, the
attacker injects an error on R1 just after the computation of the addition and just before the
storage of the result in R1−ki

(8). The fault will be cleared only if ki = 0.

The attack can target a single bit at a time. Therefore, if a scalar randomization method is
used, the attack can no longer be done.

Attack Context:

• Key recovery: independent bits,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the location of the memory blocks, knowledge
of the ecsm and the elliptic curve formulæ,

• Implementation Specificity: same addresses values on different executions,

• Number of Executions Needed: n,

• Input Access: unnecessary,

• Output Access: knowledge of the validity,

• Fault Model: data randomization on a single memory block of size n.

8.5 Invalid Point Attack [BMM00, §4]

Biehl, Meyer and Müller introduced the first Weak Curve Attack on ecc.
A fault is injected on the x coordinate of the base point P = (xP , yP) yielding the erroneous

point P̃ = (xP̃ , yP). Instead of lying on the strong given elliptic curve E : y2 = x3 + ax+ b, P̃

lies on a weak curve Ẽ : y2 = x3+ ax+ b̃ for some b̃ ∈ Fp. Indeed, the parameter b of the initial
curve is generally not involved in elliptic curve operations.

The ecsm is run with the base point P̃ ∈ Ẽ and the attacker recovers the result Q̃ =
(xQ̃, yQ̃) = [k]P̃ . The attacker can deduce the value of b̃ with b̃ = y2

Q̃
− x3

Q̃
− axQ̃.

The faulted value xP̃ is deduced by solving the equation y2P = x3 + ax + b̃ on x [CJ05].
This polynomial has two or three roots. The correct candidate is the one having the most bits
matching those of xP .

The attacker can solve the ecdlp on the weak curve Ẽ to recover k mod ord(P̃).

8This attack needs a more details on the implementation.

8.6. CLASSICAL DIFFERENTIAL FAULT ATTACK 89

Attack Context:

• Key recovery: each time, an ecdlp on Ẽ is performed to recover k mod ord(P̃); the
full key is then recovered using the CRT,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the location of the base point’s memory blocks,
the ecsm,

• Implementation Specificity: same addresses of the coordinates’ base point on different
executions,

• Number of Executions Needed: less than n (it depends on the order of P̃ on the
weak curve Ẽ),

• Input Access: known,

• Output Access: known,

• Fault Model: data randomization on a single memory block of size n.

8.5.1 Output Point Validity [BMM00]

Biehl, Meyer and Müller suggest to verify that the computed point lies on the elliptic curve
given. That is, given Q = (xQ, yQ) and the curve equation y2 = x3 + ax + b, verify that the
equality y2Q = x3

Q + axQ + b is satisfied. If not, no output is given.

Cost: 2 mmuln, 2 msqrn, 4 maddn, 1 memn

8.6 Classical Differential Fault Attack [BMM00, §5]

Biehl et al. introduced the first DFA on ecc with the Right-to-Left Double-and-Add method
(Algorithm 15).

First, a correct result Q = [k]P is recovered. A second ecsm is run with the same scalar
and the same input. Denote by Qi the value of R0 at the end of iteration i of Algorithm 15:
Qi = [(ki−1, . . . , k0)2]P . The attacker injects a fault on a few bits on Qi yielding the wrong
value Q̃i. She recovers the erroneous result Q̃.

If we denote k(i) = (kn−1, . . . , ki)2, we have Q = Qi+[2ik(i)]P and Q̃ = Q̃i+[2ik(i)]P . The
attacker tries all possible values of k(i) to generate Qi = Q− [2ik(i)]P and Q̃i = Q̃− [2ik(i)]P .
The correct hypothesis of k(i) is the one where Qi and Q̃i differ from only a few bits.

This attack can be iterated to recover the next bits, and it can be adapted for other ecsms.

Remark 8.4. Q̃i does not lie on the elliptic curve. Biehl et al. argued that this is not an issue.
The computation of Q̃i = Q̃− [2ik(i)]P can be performed with elements in F

2
p not lying on the

same elliptic curve. They call it pseudo-addition [BMM00].

The countermeasures described in Section 8.3 against CSCA, consisting in randomizing the
points or the scalar, thwart the attack. Indeed, the attacker cannot guess the intermediate
points Q̃i and Qi anymore.

In addition, this attack seems feasible only if the affine coordinates are used. Indeed, the
fault induced to Qi is done on one or several point’s coordinates. If the Jacobian coordinates
are used, the attacker needs to compute the same representatives of Qi and Q̃i that actually

90 CHAPTER 8. ATTACKS AND COUNTERMEASURES

occurred during the execution of the ecsm. The attacker cannot perform the pseudo-additions
to generate Qi and Q̃i since she does not know the Jacobian coordinates of the result Q and Q̃,
but only the affine coordinates. It is not clear how to take advantage of the fault in Jacobian
or homogeneous coordinates.

Attack Context:

• Key recovery: recursive,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the location of the memory blocks, knowledge
of the ecsm and the elliptic curve formulæ,

• Implementation Specificity: affine coordinates formulæ, same addresses of the coor-
dinates’ intermediate point on different executions,

• Number of Executions Needed: less than n,

• Input Access: known and constant,

• Output Access: known,

• Fault Model: data randomization on a single register.

8.6.1 Output Point Validity [BMM00]

The method described in Section 8.5.1 was presented to prevent both the Invalid Point and
Differential Fault Attacks of Sections 8.5 and 8.6 respectively.

8.7 Big Mac Attack [Wal01]

The Big Mac attack was introduced by Walter against sliding window methods on rsa im-
plementations, with unknown inputs [Wal01]. A single trace is analysed which makes it a
Horizontal Side-Channel Attack.

The attack is based on a method to detect if two multiplications share a common operand
by comparing their power trace. This method was described in Section 8.2.3.2 and used for our
horizontal attack against the Side-Channel Atomicity countermeasure.

If we take the example of the Left-to-Right sliding window NAF method (Algorithm 16),
the comparison of the multiplications can be used to identify which point Pu or −P−u is being
added to Q at iteration i.

The method can be applied at each iteration to deduce the whole scalar with a single ecsm.
Since no leakage model is needed, this attack works on unknown and/or randomized input.
This attack has been extended to the Square-and-Multiply method in [BJPW13a]. Given our
definition of a same-values attack, the Big Mac attack is in fact a SVA.

Remark 8.5. The Big Mac was introduced to target rsa implementations. The success of
the attack depends on the size of the manipulated integers: the longer the used integers are,
the higher the success rate is [Wal01, BJPW13a]. In ecc, the integers are shorter than rsa9.
However, more integers and operations are involved during a doubling or addition of points.

9For a 128 bits security, ecc must use 256-bit integers length, while rsa must use 3072-bit integers.

8.7. BIG MAC ATTACK 91

The attack can theoretically be applied on ecc but no practical experiment has been reported.
In Section 8.2.3.2, we presented an attack based on the Big Mac principle with experimental
results. This attack is however presented on a specific implementation which permits to compare
many (fourteen) multiplications to balance the small size of the integers.

Attack Context:

• Key recovery: independent bits,

• Elliptic Curve Specificity: none,

• Implementation Access: full knowledge of all algorithms, knowledge of the architecture
of the modular arithmetic operator,

• Implementation Specificity: wordwise method of the modular multiplication,

• Number of Executions Needed: 1,

• Input Access: unnecessary,

• Output Access: unnecessary.

8.7.1 Multiplication with Random Permutation [CFG+10]

Clavier, Feix, Gagnerot, Rousselet and Verneuil introduced the Multiplication with Random
Permutation countermeasure [CFG+10]. It consists in randomizing the order of the manipu-
lation of the words during a long multiplication. For example, in Algorithm 8, it consists in
randomizing the order of both loops (lines 5 and 8) with two random permutations in [0,m[(m
being the word number of the manipulated integers).

The construction of s
(j)
1 , 0 ≤ j < m is no longer possible for the Big Mac attack. The

countermeasure is also efficient against the horizontal SVA attacks.

Guessing both random permutations is not possible: there is (m2)! possibilities. However, a
drawback of the countermeasure was noticed in [BJPW13a]. Bauer, Jaulmes, Prouff and Wild
proved that the attack is still possible when guessing only one random permutation within the
two. That reduces the possibilities to m!, which is possible for m ≤ 16. This is due to the fact
that the proposed multiplication method in [CFG+10] still follows a “schoolbook like” method
(namely, the same word of A is used during the j loop at lines 8 to 10 in Algorithm 8).

The authors of [BJPW13a] suggest another method to correct this drawback: a single loop is
performed where the words of A and B are randomly chosen with a random permutation of size
m2+2m. 2m additional word multiplication are performed during a long integer multiplication.
Also, a second permutation of size 2m+1 is required to avoid attacks in the carry propagation
treatment. Since the modular multiplication described in Section 2.4 requires 2m2 word mul-
tiplications with both multiplication (m2) and reduction (m2), a modular multiplication with
the countermeasure roughly costs 1 rpgm2+2m + 1 rpg2m+1 + (1 + 1

m) mmuln.
However, an adjustment of the module performing the operation described by Equation

(2.1) is required since the addition with another word and the addition with the carry are
performed independently. Moreover, as pointed in [CFG+10], it remains difficult to design the
countermeasure in hardware due to the numerous permutations and atomic operations. The
real cost might be higher than 1 rpgm2+2m + 1 rpg2m+1 +

1
m mmuln.

92 CHAPTER 8. ATTACKS AND COUNTERMEASURES

Cost: 1 rpgm2+2m, 1 rpg2m+1,
1
m mmuln per modular multiplication (with m = ⌈n/w⌉ and

w the word size of the architecture).

8.8 Horizontal Correlation Side-Channel Analysis [CFG+10]

As opposed to the Big Mac attack, the Horizontal Correlation Side-Channel Analysis of Clavier,
Feix, Gagnerot, Roussellet and Verneuil was initially presented with a leakage model.

The attacker collects a single trace of an ecsm. The attack is recursive. Like the CSCA (see
Section 8.3), the attacker guesses intermediate variables by making an assumption on the current
bit. The attacker computes the intermediate values vj involving during the multiplication of
the supposed variables. If Algorithm 8 is used, these values can correspond to the words of the
inputs, i.e. a[i], b[j], but also all intermediate values such as a[i]×b[j], q×p[j] for (i, j) ∈ [0,m[2.
A leakage model m (e.g. the Hamming weight) is applied to those values, yielding a random
variable Y . She performs a correlation or applies another statistical tool between the points of
interest10 of the trace of the very modular multiplication she had guessed the inputs, yielding
the random variable X, and Y (see Figure 8.13). The coefficient is high if her guess is correct.

Figure 8.13: Construction of random variables for Horizontal Side-Channel Analysis with a
leakage model

This attack has been extended to more exponentiation methods in [BJPW13a]. As opposed
to the Big Mac attack, this attack requires the knowledge of the input. Therefore, randomizing
the input, such as the Point Blinding (Section 8.3.5), the Random Projective Coordinates
(Section 8.3.6) and the Random Curve Isomorphism (Section 8.3.7), thwarts the attack, only if
the random is large enough to prevent a guess with a brute force approach [CFG+10].

Remark 8.6. Remark 8.5 concerning the Big Mac attack holds here: the Horizontal Correlation
SCA was presented on rsa and no practical experiment has been reported on ecc due to the
difference of the size of the manipulated integers.

Attack Context:

• Key recovery: recursive,

• Elliptic Curve Specificity: none,

• Implementation Access: full knowledge of all algorithms, knowledge of the architecture
of the modular arithmetic operator,

• Implementation Specificity: wordwise method of the modular multiplication,

10That is where the supposed values are possibly manipulated.

8.9. ADDRESS-BIT DSCA 93

• Number of Executions Needed: 1,

• Input Access: known,

• Output Access: unnecessary.

8.8.1 Multiplication with Random Permutation [CFG+10]

The Random Permutation countermeasure described in Section 8.7.1 was in fact first presented
against the Classical Horizontal SCA.

The classical Horizontal Attack, which consists in making assumptions on the intermediate
values during the modular multiplication can no longer be applied. Indeed, the values of the
random variables X,Y of Section 8.8 must be in the same order.

8.9 Address-bit DSCA [IIT02]

Address-bit Differential Side-Channel Analysis (Address-bit DSCA), introduced by Itoh, Izu
and Takenaka, is a vertical attack exploiting the manipulation of addresses rather than data.

In most ecsms, the manipulation of data depends only on a few bits of the scalar. For
example, in Algorithm 21, the point R1 is doubled only if ki = 1.

The attack consists in detecting if the manipulated addresses during the doubling at iteration
i are the same as the ones of a reference. The reference can be the doubling of the first iteration:
the attacker supposes that kn−2 = 1 (11). The random variable X is constructed where the
addresses of R1 are manipulated during the doubling of the first iteration.

Then, the attacker constructs the random variable Y where the addresses of Rki
are manip-

ulated during the doubling at iteration i. In [IIT02], the authors suggest to perform a difference
of means between X and Y . An another statistical method (e.g. a correlation or the Euclidean
distance) can be used instead. Figure 8.8 illustrates the construction of the random variables.

Attack Context:

• Key recovery: independent bits,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the ecsm,

• Implementation Specificity: same addresses values on different executions,

• Number of Executions Needed: multiple,

• Input Access: unnecessary,

• Output Access: unnecessary.

11If her guess is incorrect, at the end of the attack, she will recover k̄ instead of k. The correct value of the
scalar is trivially recovered.

94 CHAPTER 8. ATTACKS AND COUNTERMEASURES

8.9.1 Random Register Address [IIT03]

The authors that introduced the Address-bit DSCA proposed a countermeasures to thwart it.
It consists in randomizing the addresses at each iteration of the ecsm. A flaw of the counter-
measure has been showed by Izumi, Ikegami, Sakiyama and Ohta and the countermeasure was
improved [IISO10]. In [IIT03], an extra point is necessary for the Left-to-Right Double-and-
Add always method. We propose an alternative solution illustrated in Algorithm 32 without
any extra point. For the Montgomery Ladder, an extra point in necessary [IISO10].

Algorithm 32 Left-to-Right Double-and-Add always with Random Address

Input: k = (1, kn−2, . . . , k0)2, P
Output: [k]P

r
R
←− [0, 2n[

R0 ← P,R1 ← P
for i = n− 2 downto 0 do

Rri ← 2Rri+1

R1−(ri⊕ki) ← Rri + P

return Rr0

The countermeasure prevents the address-bit DSCA, described in Section 8.9. It also pre-
vents M Safe-Errors (Section 8.4) since the addresses are randomized.

Cost:

• 1 rngn, 1 memn for the Left-to-Right Double-and-Add always method,

• 1 rngn, 4 memn for the Montgomery Ladder.

8.10 Doubling Attack [FV03]

The doubling attack of Fouque and Valette relies on the power consumption comparison of two
ecsms with the base point P and [2]P , respectively. This is a vertical attack (with only two
traces).

The same values occur in the two ecsms only if the scalar meets some condition (e.g. the
current bit is 0) and therefore a collision of traces can be detected. In [FV03], the authors
suggest to perform a difference between the traces to detect a collision. The doubling attack is
illustrated in Figure 8.14.

Due to the birthday paradox, the doubling attack can be performed even if the Group Scalar
Randomization (Section 8.3.1) or the Multiplicative Splitting (Section 8.3.3) is used [FV03].

The Point Blinding countermeasure (Section 8.3.5) is vulnerable as well [FV03]. This is
because the pseudo-random point R, intended to randomize the base point P , is updated as
R ← (−1)t2R, with t ∈ [0, 1], after each ecsm. There is a probability of 1/2, that the attack
still works.

The doubling attack can be mounted only if elliptic curve formulæ are implemented using
the affine coordinates. Indeed, in Jacobian coordinates, the base point [2]P of the second ecsm

is first given in affine coordinates. Same projective points will occur during the computation

8.11. REFINED SIDE-CHANNEL ANALYSIS 95

Figure 8.14: Construction of random variables for the doubling attack

[k]P and [k]([2]P) but with different representatives. We recall that, in Jacobian coordinates,
there is the equivalence relation (X,Y, Z) ∼ (r2X, r3Y, rZ) with r ∈ F

∗
p.

Attack Context:

• Key recovery: independent bits,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the ecsm and the elliptic curve formulæ,

• Implementation Specificity: affine coordinates formulæ,

• Number of Executions Needed: 2,

• Input Access: 1 known and 1 chosen,

• Output Access: unnecessary.

8.11 Refined Side-Channel Analysis [Gou03]

The Refined Side-Channel Analysis (RSCA) of Goubin is based on the occurrence of the par-
ticular point P0 = (0, y) during the ecsm. It is a SSCA.

The attacker chooses the base point P such that the special point P0 will occur under some
assumption (for example the current targeted bit is 0). The computation of such a point P is
performed as follows, with the example of the Double-and-Add always method (Algorithm 19).

Suppose that the attacker already knows the n − i − 1 leftmost bits of the fixed scalar
k = (kn−1, . . . , k0)2 and tries to recover ki. If the base point P is chosen such that P =
[(kn−1, . . . , ki+1, 1)

−1
2 mod #E]P0, P0 will be doubled at iteration i− 1 only if ki = 1.

The doubling of the point P0 can be detected by observing the trace, as shown in Figure 8.15.

Obviously, the particular point is not randomized neither by the Random Projective nor by
the Random Curve Isomorphism countermeasures (see Sections 8.3.6 and 8.3.7).

Scalar randomization techniques help prevent the RSCA since the recursive process is bro-
ken. However, an attacker can target several bits at a time. Several bits of the randomized
scalar can be recovered and reveal some information on the initial scalar.

96 CHAPTER 8. ATTACKS AND COUNTERMEASURES

Figure 8.15: Power consumption of 256-bits modular multiplications of two random operands
(left curve) and a random operand and zero (right curve)

The Point Blinding described in Section 8.3.5 thwarts the attack because the point P0 +R
with an unknown pseudo-random point R will occur instead of P0.

Attack Context:

• Key recovery: recursive,

• Elliptic Curve Specificity: must contain a point of the form (0, y) for some y ∈ Fp,

• Implementation Access: knowledge of the ecsm,

• Implementation Specificity: none,

• Number of Executions Needed: n,

• Input Access: chosen,

• Output Access: unnecessary.

8.11.1 Isomorphism Shifting [DGH+12]

We present our countermeasure thwarting the RSCA. The basic principle is to use an isomor-
phism to transform the base point into the inconvenient point of the RSCA, namely (0, y). We
“control” this point and its apparition does not reveal anything about the scalar. Moreover, on
some ecsms, the extra cost of the countermeasure is negligible and even negative thanks to the
zero value.

Transformation of the base point using an isomorphism. With Definition 1.4, the
elliptic curves E and E′ given by the equations

E : y2 = x3 + a4x+ a6
E′ : y2 = x3 + a′2x

2 + a′4x+ a′6

are isomorphic over Fp if and only if there exist u ∈ F
∗
p and r ∈ Fp such that the change of

variables

(x, y)→ (u−2(x− r), u−3y)

transforms equation E into equation E′ with:

u2a′2 = 3r
u4a′4 = a4 + 3r2

u6a′6 = a6 + ra4 + r3 .

8.11. REFINED SIDE-CHANNEL ANALYSIS 97

This isomorphism is a particular case of Definition 1.4 with s = t = 0. Given the base point
P = (xP , yP) we can choose u = 1 and r = xP . The isomorphism ϕ is

ϕ : E
∼
−→ E′,

{
O → O

(x, y) → (x− xP , y)

and transforms P into ϕ(P) = P ′ = (0, yP). Applying the isomorphism on the curve costs
2 mmuln + 1 msqrn + 5 maddn. Applying the isomorphism on a point costs only 1 maddn.
It costs also 1 maddn for the isomorphism inverse. Two extra memory blocs of n bits are also
required to store a′2 and xP . The transformation over R is illustrated in Figure 8.16.

Figure 8.16: Isomorphism Shifting with E : y2 = x3 − 3x+3 and E′ : y2 = x3 − 6x2 +9x+1 .

Modifications of the elliptic curve formulæ. The isomorphic curve E′ is not in its Weier-
straß equation. The formulæ given in Section 3.1 do not apply with the curve E′. Extra fields
operations are required using the general formulæ in affine coordinates of Section 1.2 (with
a1 = a3 = 0).

However, the x coordinate of P ′ is equal to zero. We can remove the unnecessary field
operations when adding P ′ or −P ′. If P ′ is the base point, P ′ and −P ′ are involved at each
iteration in some ecsms, such as the Left-to-Right Double-and-Add methods (Algorithms 14
and 19) and the Montgomery Ladder with co-Z formulæ (Algorithm 22).

We give the adapted formulæ that can be used for the three ecsms listed above. The input
and output points lie on the curve E′ : y2 = x3 + a′2x

2 + a′4x + a′6. The value a′2Z
2
3 is always

computed (Z3 being the Z coordinate of the output point), we can add it in the coordinates.
We denote it by U .

98 CHAPTER 8. ATTACKS AND COUNTERMEASURES

Algorithm 33 ecadd-iso-shifting

Input: P ′ = (0, Y1, Z1, U1 = a′2Z
2
1), Q

′ = (X2, Y2, Z2, U2 = a′2Z
2
2), elliptic curve parameter a′2

Output: P ′ +Q′

B ← X2Z
2
1 ; C ← Y1Z

3
2 ; D ← Y2Z

3
1

F ← D − C
Z ′3 ← Z1Z2B
U3 ← a′2Z

2
3

X3 ← F 2 −B3 − U3

Y3 ← −FX3 − CB3

return (X3, Y3, Z3, U3)

Like the classical formulæ, if P ′ is in affine coordinates, we can save four multiplications and
one square (mixed addition: mecadd-iso-shifting). If Z2

1 and Z3
1 are pre-computed, one

multiplication and one square are saved (re-addition: reecadd-iso-shifting).
Cost (ecadd-iso-shifting): 11 mmuln, 5 msqrn, 5 maddn, 5 memn

Cost (mecadd-iso-shifting): 7 mmuln, 4 msqrn, 5 maddn, 3 memn

Cost (reecadd-iso-shifting): 10 mmuln, 4 msqrn, 5 maddn, 5 memn

For the three additions, the difference is 1 msqrn−1 mmuln−2 maddn compared with ecadd,
mecadd and reecadd.

Algorithm 34 ecdbl-iso-shifting

Input: Q′ = (X1, Y1, Z1, U1 = a′2Z
2
1), elliptic curve parameters a′2, a

′
4

Output: 2Q′

A← 2Y 2
1

B ← 2AX1; C ← 3X2
1 + 2X1U1 + a′4Z

4
1 ; D ← 2A2

Z3 ← 2Y1Z1

U3 ← a′2Z
2
3

X3 ← C2 − 2B − U3

Y3 ← C(B −X3)−D
return (X3, Y3, Z3, U3)

If (X3, Y3, Z3, U3) is used later for re-addition, the computation of Z2
3 and Z3

3 needs one ex-
tra multiplication12 (reecdbl-iso-shifting). If a′4Z

4
1 is pre-computed (modified formulæ:

modecdbl-iso-shifting), two squares are saved, and it needs one extra addition for the com-
putation of a′4Z

4
3 . The use of both modified coordinates and re-addition is also given (mod-

reecdbl-iso-shifting).
Cost (ecdbl-iso-shifting): 7 mmuln, 6 msqrn, 14 maddn, 3 memn

Cost (reecdbl-iso-shifting): 8 mmuln, 6 msqrn, 14 maddn, 4 memn

Cost (modecdbl-iso-shifting): 7 mmuln, 4 msqrn, 15 maddn, 4 memn

Cost (mod-reecdbl-iso-shifting): 8 mmuln, 5 msqrn, 15 maddn, 4 memn

The extra cost is 3 mmuln+3 maddn, 3 mmuln− 1 msqrn+3 maddn, 3 mmuln+3 maddn

compared with the general doubling, the doubling for re-addition, the doubling in modified
coordinates and the doubling in both modified coordinates and re-addition, respectively.

For the Montgomery Ladder using co-Z formulæ (Algorithm 22), the cost is even smaller
because no doubling is performed. We give the adapted formulæ below.

12This is because Z2

3
is computed anyway for U3.

8.11. REFINED SIDE-CHANNEL ANALYSIS 99

Algorithm 35 co-Z addition and update with the isomorphism shifting
(zaddu-iso-shifting)

Input: P ′ = (X1, Y1, Z, U = a′2Z
2), Q′ = (0, Y2, Z, U)

Output: (R′, S′) with R′ = P ′ +Q′ and S′ = (λ2X1, λ
3Y1, λZ, a

′
2(λZ)2) with λ = X1

C ← X2
1

W1 ← X1C; Z3 ← ZX1; U3 ← UC
D ← (Y1 − Y2)

2; A1 ← Y1W1

X3 ← D −W1 − U3

Y3 ← (Y1 − Y2)(W1 −X3)−A1

X4 ←W1

Y4 ← A1

return ((X3, Y3, Z3, U3), (X4, Y4, Z3, U3))

Like the classical co-Z addition and update, the computation of the Z coordinate is not neces-
sary and one multiplication is saved (zaddu’-iso-shifting).
Cost (zaddu-iso-shifting): 5 mmuln, 2 msqrn, 5 maddn, 1 memn

Cost (zaddu’-iso-shifting): 4 mmuln, 2 msqrn, 5 maddn, 1 memn

For both formulæ, the gain is 2 maddn compared with zaddu and zaddu’.

Algorithm 36 conjugate co-Z addition with the isomorphism shifting
(zaddc-iso-shifting)

Input: P ′ = (X1, Y1, Z, U = a′2Z
2), Q′ = (X2, Y2, Z, U) such that xP ′−Q′ = 0.

Output: (R′, S) with R′ = P ′ +Q′, S′ = P ′ −Q′

C ← (X1 −X2)
2

W1 ← X1C; W2 ← X2C; Z3 ← Z(X1 −X2); U3 ← UC
D ← (Y1 − Y2)

2; A1 ← Y1(W1 −W2)
X3 ← D −W1 −W2 − U3

Y3 ← (Y1 − Y2)(W1 −X3)−A1

Y4 ← (Y1 + Y2)W1 −A1

return ((X3, Y3, Z3, U3), (0, Y4, Z3, U3))

Like the classical conjugate co-Z addition, the computation of the Z coordinate is not necessary
and one multiplication is saved (zaddc’-iso-shifting).
Cost (zaddc-iso-shifting): 7 mmuln, 2 msqrn, 10 maddn, 2 memn

Cost (zaddc’-iso-shifting): 6 mmuln, 2 msqrn, 10 maddn, 2 memn

For both formulæ, the difference is 1 mmuln − 1 msqr− 1 maddn compared with zaddu and
zaddu’. The formulæ with register allocation, is given in appendix.

An important remark is that, if 1 mmuln = 1 msqrn, we gain three modular additions
per bit for the Montgomery Ladder using co-Z formulæ. Therefore, it is a non-negligible
improvement to apply the countermeasure in this condition.

Security Analysis. We explain here how the countermeasure prevents the RSCA. The elliptic
curve E′ : y2 = x3 + a′2x

2 + a′4x + a′6 contains exactly two points of the form (0, y′). Those
points are P ′ = (0,

√

a′6) and −P
′ = (0,−

√

a′6). We give the following theorems:

100 CHAPTER 8. ATTACKS AND COUNTERMEASURES

Theorem 8.7. Suppose that the Left-to-Right Double-and-Add (Algorithm 14) is performed
with a scalar k = (kn−1, . . . , k0)2, the base point P ′ = (0, yP) and the formulæ ecadd-iso-

shifting and ecdbl-iso-shifting. Let k(i) = (kn−1, kn−2, . . . , ki)2. Suppose that gcd(k(i) ±
1, ord(P ′)) = 1 and gcd(2k(i+1) ± 1, ord(P ′)) = 1 for all i ∈ [0, n− 2[.
Then R0 cannot be equal to ±P ′ at any iteration i ∈ [0, n− 2[.

Proof. At the beginning of iteration i with n− 2 < i ≤ 0, the point R0 verifies R0 = [k(i+1)]P ′.

• if R0 = [k(i+1)]P ′ = P ′, then [k(i+1) − 1]P ′ = O so the order of P ′ is (k(i+1) − 1), which
contradicts our hypothesis on k.

• if R0 = [2k(i+1)]P ′ = P ′ after the doubling, then [2k(i+1) − 1]P ′ = O so the order of P ′

is (2k(i+1) − 1), which contradicts our hypothesis on k.

• if R0 = [k(i)]P ′ = P ′ after the doubling, then [k(i) − 1]P ′ = O so the order of P ′ is
(k(i) − 1), which contradicts our hypothesis on k.

• if R0 = [k(i+1)]P ′ = −P ′, then [k(i+1) +1]P ′ = O so the order of P ′ is (k(i+1) +1), which
contradicts our hypothesis on k.

• if R0 = [2k(i+1)]P ′ = −P ′ after the doubling, then [2k(i+1) + 1]P ′ = O so the order of P ′

is (2k(i+1) + 1), which contradicts our hypothesis on k.

• if R0 = [k(i)]P ′ = −P ′ after the doubling, then [k(i) + 1]P ′ = O so the order of P ′ is
(k(i) + 1), which contradicts our hypothesis on k.

Remark 8.8. The condition gcd(k(i) ± 1, ord(P ′)) = 1 and gcd(2k(i+1) ± 1, ord(P ′)) = 1 for
all n − 2 < i ≤ 0 is not binding. If l is the security parameter, then ord(P ′) is a prime and
ord(P ′) ≈ 22l. This is explained in Chapter 6.

Corollary 8.1. Suppose that the Left-to-Right Double-and-Add always (Algorithm 19) is per-
formed with a scalar k = (kn−1, . . . , k0)2, the base point P ′ = (0, yP) and the formulæ ecadd-

iso-shifting and ecdbl-iso-shifting. Let k(i) = (kn−1, kn−2, . . . , ki)2. Suppose that gcd(k
(i)+

1 ± 1, ord(P ′)) = 1, gcd(k(i) ± 1, ord(P ′)) = 1 and gcd(2k(i+1) ± 1, ord(P ′)) = 1 for all
i ∈ [0, n− 2[.
Then neither R0 nor R1 can be equal to ±P ′ at any iteration i ∈ [0, n− 2[.

Proof. In addition to the previous theorem, we only need to check that the value of R1 cannot
take the value ±P ′. This is verified as long as gcd(k(i) + 1± 1, ord(P ′)) = 1.

With the countermeasure, both ecsms are secure against the RSCA since the inconvenient
points are managed and the attacker cannot take advantage of their occurrence.

Theorem 8.9. Suppose that the Montgomery Ladder using co-Z formulæ (Algorithm 22) is
performed with a scalar k = (kn−1, . . . , k0)2, the base point P ′ = (0, yP) and the formulæ
zaddu-iso-shifting and zaddc-iso-shifting. Let k(i) = (kn−1, kn−2, . . . , ki)2. Suppose that
gcd(k(i), ord(P ′)) = 1, gcd(k(i) ± 1, ord(P ′)) = 1 and gcd(k(i) + 2, ord(P ′)) = 1 for all i ∈
[0, n− 1[.
Then neither R0 nor R1 can be equal to ±P ′ at the end of any iteration.

Proof. At the end of iteration i with n−2 < i ≤ 0, the points R0, R1 verify R0 = [k(i)]P ′, R1 =
[k(i) + 1]P ′.

8.12. ZERO SIDE-CHANNEL ANALYSIS 101

• if R0 = [k(i)]P ′ = P ′, then [k(i) − 1]P ′ = O so the order of P ′ is (k(i) − 1), which
contradicts our hypothesis on k.

• if R1 = [k(i) + 1]P ′ = P ′, then [k(i)]P ′ = O so the order of P ′ is (k(i)), which contradicts
our hypothesis on k.

• if R0 = [k(i)]P ′ = −P ′, then [k(i) + 1]P ′ = O so the order of P ′ is (k(i) + 1), which
contradicts our hypothesis on k.

• if R1 = [k(i) + 1]P ′ = −P ′, then [k(i) + 2]P ′ = O so the order of P ′ is (k(i) + 2), which
contradicts our hypothesis on k.

With the countermeasure, the ecsm is secure against the RSCA since the inconvenient
points are managed.

We presented an elegant countermeasure against the RSCA using an isomorphism between
curves. Because of the isomorphism, the formulæ have been reviewed.

Cost:

• (2.5n+2) mmuln, (0.5n+1) msqr, (2n+6) madd, 4 memn for the Left-to-Right Double-
and-Add method (Algorithm 14)

• (2n+2) mmuln, (n+1) msqr, (n+6) madd, 5 memn for the Left-to-Right Double-and-
Add always method (Algorithm 19)

• (n+2) mmuln, (−n+1) msqr, (−3n+6) madd for the Montgomery Ladder using co-Z
formulæ (Algorithm 22)

8.12 Zero Side-Channel Analysis [AT03]

The Zero Side-Channel Analysis (ZSCA) of Akishita and Takagi is an extension of the RSCA.
This attack does not only focus on a zero value in a point’s coordinates but on intermediate

values when performing a doubling or an addition. Such points are defined as zero-value points.
For example, consider ecdbl with register allocation (Algorithm 39). Let P = (xP , yP) a point
such that 3xP + a = 0 in affine coordinates. The doubling of P in Jacobian coordinates will
lead to the condition C = 3X2

P + aZ4
P = 0, with XP = xPZ

2
P for some ZP ∈ F ∗p . The ZSCA

brings more possible particular points to consider.

As the RSCA, the Random Projective or the Random Curve Isomorphism countermeasures
(see Sections 8.3.6 and 8.3.7) does not prevent this attack.

As the RSCA, scalar randomization techniques help prevent the ZSCA since the recursive
process is broken and the Point Blinding (see Section 8.3.5) thwarts the attack.

Attack Context:

• Key recovery: recursive,

• Elliptic Curve Specificity: must contain zero-value points,

• Implementation Access: knowledge of the ecsm and the elliptic curve formulæ,

102 CHAPTER 8. ATTACKS AND COUNTERMEASURES

• Implementation Specificity: none,

• Number of Executions Needed: n,

• Input: chosen,

• Output: unnecessary.

8.13 Classical Same Values Side-Channel Analysis [MGD+12]

We present our vertical SCA called the classical Same Values Side-Channel Analysis (SVA). Like
the RSCA and ZSCA (Sections 8.11 and 8.12), it exploits the occurrence of particular points.
These points verify that, within an elliptic curve operation (e.g. an addition or a doubling),
two distinct intermediate variables have the same values.

Some curves do not contain any zero-value point for performing the RSCA or ZSCA. The
SVA considerably increases the number of particular points the attacker can use to mount an
attack, and therefore, works on a larger set of curves.

Same-values points. We introduce the definitions of the particular points that the attacker
will take advantage to perform the SVA.

Definition 8.10. Let E be an elliptic curve over Fp and ecdbl a doubling algorithm. A point
P = (x1, y1) ∈ E is a same-values point relative to ecdbl if, for any representative of P (i.e.
(λ2x1, λ

3y1, λ) for all λ ∈ F
∗
p in Jacobian coordinates), same values show up among intermediate

variables during the computation of the point 2P using algorithm ecdbl.

Definition 8.11. Let E be an elliptic curve over Fp and ecadd an addition algorithm (respec-
tively c-ecadd a conjugate addition algorithm). Points P,Q ∈ E are said to be same-values
points relative to ecadd (resp. to c-ecadd) if, for any representatives of P and Q, same
values show up among intermediate variables during the computation of the point P +Q using
algorithm ecadd (resp. the computation of P +Q and P −Q using algorithm c-ecadd).

The same-values points depend on the elliptic curve formulæ used. The formulæ given in
Section 3.1 are not accurate enough to identify the same-values points. The knowledge of the
ecdbl and/or ecadd algorithms, together with register allocation is required. We will give
examples of same-values points for a doubling algorithm and for an addition algorithm.

Theorem 8.12. Let E : y2 = x3 + ax+ b be an elliptic curve over Fp. Let P = (x1, y1) a point
lying on E and R = (x3, y3) = [2]P . P is a same-values point relative to ecdbl with register
allocation (Algorithm 39 in appendix) if one of the following conditions is satisfied:

1. x1 = 1

2. 2x1y
2
1 = (3x2

1 + a)2

3. 6x1y
2
1 = (3x2

1 + a)2

4. 8x1y
2
1 = (3x2

1 + a)2

5. 10x1y
2
1 = (3x2

1 + a)2

6. 12x1y
2
1 = (3x2

1 + a)2

7. −4y41 = y3

8. 12y41 = y3

9. 16y41 = y3

10. x1 = 0

11. y1 = 0

12. x3 = 0

13. y3 = 0

14. 3x2
1 = −a

8.13. CLASSICAL SAME VALUES SIDE-CHANNEL ANALYSIS 103

15. 4x1y
2
1 = (3x2

1 + a)2

16. x2
1 = y1

17. x2
1 = 2y1

18. x1 = −1

19. x2
1 = a

20. −2x2
1 + a = 0

21. 2x2
1 = y1

22. 3x2
1 = y1

23. y1 = 1

24. y1 = a

25. y1 = 3x2
1 + a

26. 3x2
1 = 2y1

27. 2y1 = 1

28. 2y1 = 3x2
1 + a

29. 2x2
1 = 1

30. 2x2
1 = a

31. −x2
1 + a = 0

32. 3x2
1 = 1

33. 3x2
1 = a

34. 3x2
1 + a = 1

Proof. Given a point P = (X1, Y1, Z1) = (λ2x1, λ
3y1, λ), the relations of Theorem 8.12 must

hold for any λ ∈ F
∗
p. So we must check equalities between terms with a factor λ of the same

degree. Let Si be the set of values that involve a factor λ of degree i. An analysis of Algorithm
39 gives:

• S1 = {Z1},

• S2 = {X1, Z
2
1},

• S3 = {Y1},

• S4 = {X2
1 , Y1Z1, 2Y1Z1, 2X

2
1 , 3X

2
1 , Z

4
1 , aZ

4
1 , C = 3X2

1 + aZ4
1},

• S6 = {Y 2
1 , 2Y

2
1 },

• S8 = {2X1Y
2
1 , B = 4X1Y

2
1 , C

2, X3 +B = C2 −B,X3 = C2 − 2B,B −X3 = 3B − C2},

• S12 = {A2 = 4Y 4
1 , 2A

2 = 8Y 4
1 , Y3 + 2A2 = C(B −X3), Y3 = C(B −X3)− 2A2}

Equal values can only be found in the same set. Comparing the terms from each other by set,
and developing give the relations of the theorem.

Remark 8.13. Points satisfying one of the condition

• x1 = 0 or

• y1 = 0 or

• x3 = 0 or

• y1 = 0 or

• y3 = 0 or

• 3x2
1 = −a or

104 CHAPTER 8. ATTACKS AND COUNTERMEASURES

• 4x1y
2
1 = (3x2

1 + a)2

are zero-value points.

Theorem 8.14. Let E : y2 = x3 + ax + b be an elliptic curve over Fp. Let P = (x1, y1), Q =
(x2, y2) two points lying on E and R = (x3, y3) = P +Q. P,Q are same-values points relative
to ecadd with register allocation (Algorithm 37 in appendix) if one of the following conditions
given below is satisfied:

1. x1 = 1

2. y1 = 1

3. x2 = 1

4. y2 = 1

5. x1 = x2

6. 2x1 = x2

7. y1(x1 − x2)
3 = y3

8. x1 = 0

9. y1 = 0

10. x1 = x2

11. x3 = 0

12. y3 = 0

13. x1(x2 − x1)
2 = −x3

14. x1(x2 − x1)
2 = x3

15. (x2 − x1)
3 = (y2 − y1)

2

16. x2 − x1 = y1

17. x2 − x1 = y2

18. x2 − x1 = y2 − y1

19. y1 = y2

20. 2y1 = y2

21. x1(x2 − x1)
2 = (y2 − y1)

2

22. 2(x2 − x1)
3 = (y2 − y1)

2

23. 2(x2 − x1)
3 = (y2 − y1)

2 − x1(x2 − x1)
2

24. 2(x2 − x1)
3 = (y2 − y1)

2 − 2x1(x2 − x1)
2

25. 3x1(x2 − x1)
2 = (y2 − y1)

2

26. x1(x2 − x1)
2 = (x1 − x2)

3

27. 2x1(x2 − x1)
2 = (x1 − x2)

3

28. 2(y2 − y1)
2 = 3x1(x2 − x1)

2 + (x2 − x1)
3

29. 2(y2−y1)
2 = 3x1(x2−x1)

2+2(x2−x1)
3

30. 2x3 = x1(x2 − x1)
2

Proof. Given points P = (X1, Y1, Z1) = (λ2
1x1, λ

3
1y1, λ1) andQ = (X2, Y2, Z2) = (λ2

2x2, λ
3
2y2, λ2),

the relations of Theorem 8.12 must hold for any λ1, λ2 ∈ F
∗
p. So we must check equalities be-

tween terms with factors λ1, λ2 of the same degree. Let Si,j be the set of values that involve a
factor λ1 of degree i and a factor λ2 of degree j. An analysis of Algorithm 37 gives:

• S1,0 = {Z1}

• S0,1 = {Z2}

• S1,1 = {Z1Z2}

• S2,0 = {X1, Z
2
1}

• S3,0 = {Y1, Z
3
1}

• S0,2 = {X2, Z
2
2}

• S0,3 = {Y2, Z
3
2}

8.13. CLASSICAL SAME VALUES SIDE-CHANNEL ANALYSIS 105

• S2,2 = {A = X1Z
2
2 , B = X2Z

2
1 , E = X2Z

2
1 −X1Z

2
2}

• S3,3 = {Z3 = Z1Z2E,C = Y1Z
3
2 , D = Y2Z

3
1 , F = Y2Z

3
1 − Y1Z

3
2}

• S4,4 = {E2}

• S6,6 = {AE2, E3, F 2, F 2−E3, X3+AE2 = F 2−E3−AE2, X3 = F 2−E3−2AE2, AE2−
X3 = 3AE2 + E3 − F 2}

• S9,9 = {CE3, Y3 + CE3 = F (AE2 −X3), Y3 = F (AE2 −X3)− CE3}

Equal values can only be found in the same set. Comparing the terms from each other by set,
and developing give the relations of the theorem.

Remark 8.15. Points satisfying one of the following condition

• x1 = 0 or

• y1 = 0 or

• x1 = x2 or

• y3 = 0 or

• x1(x2 − x1)
2 = −x3 or

• x1(x2 − x1)
2 = x3 or

• (x2 − x1)
3 = (y2 − y1)

2

are zero-value points.

Remark 8.16. If E and E′ are both given in their reduced Weierstraß form, the isomorphism
ϕ is defined as

ϕ : E
∼
−→ E′,

{
O → O

(x, y) → (u−2x, u−3y)

for some u ∈ F
∗
p. If P is a same-values point relative to a doubling algorithm on E, this does

not imply that it is a same-values point on E′. For example, comparing the values of the set
S2 = {X1, Z

2
1} of Theorem 8.12, leading to the affine condition x1 = 1, is not relevant anymore

on E′. Indeed, if X1 = Z2
1 (P is a same-values point on E) then u−2X1 6= Z2

1 if u 6= ±1 (P ′ is
not a same-values point on E′).

Therefore, the Random Curve Isomorphism, described in Section 8.3.7, decreases the number
of same-values points relative to some elliptic curve operations but does not entirely prevents
the attack since some equalities still hold. For example, 2X2

1 can be compared to C = 3X2
1+aZ4

1

(set S4 of Theorem 8.12) whatever the value of u.

Taking advantage of the same-values points is similar to the RSCA and ZSCA (Sections
8.11 and 8.12) and it is recalled below.

106 CHAPTER 8. ATTACKS AND COUNTERMEASURES

Choosing the suitable base point. First, the attacker finds a same-values point PSVA

relative to the doubling formula. She then chooses a base point such that PSVA will occur on
a certain condition of the scalar (e.g. the current targeted bit is 1). The computation of such
a point P is performed as follows, with the example of the Double-and-Add always method
(Algorithm 19). It can be adapted for the other ecsms. Assume that the attacker already
knows the n− i− 1 leftmost bits of the fixed scalar k = (kn−1, . . . , k0)2 and tries to recover ki.
The attacker computes the point P = [(kn−1, . . . , ki+1, 1)

−1
2 mod #E]PSVA. The point PSVA

will be doubled at iteration i − 1 only if ki = 1. Several ecsms are run, with the same scalar
and the same base point P . The attacker collects the power consumption trace of the doubling
at iteration i− 1. If ki = 1, PSVA will be doubled at iteration i− 1 in each ecsm.

Remark 8.17. Taking advantage of same-values points relative to addition is more diffi-
cult. Indeed, the attacker needs to find a base point P such that P and Q = [c]P , with
c = (kn−1, . . . , ki+1, 1)2, are same-values point relative to the addition used. Finding such a
point P is currently difficult if c is large. This issue is discussed in [IT03] and [AT03] for similar
reasons.

Detecting the same-values point. To detect if PSVA occurs each time, one can apply the
method described in Section 8.2.3.1 for detecting the same values.

Remark 8.18. The same-values point is chosen such that the same values are used in the same
field operation (multiplication or addition) and in the same side (left or right). This makes it
possible to perform a collision analysis without any synchronization procedure. The attack is
still possible if it is not the case, but a strong study on the field arithmetic module is required
for a synchronization because the sensitive data is not manipulated at the same time within
the field operation.

Compared with the RSCA and the ZSCA, the number of possible same-values points on a
curve is very large. This makes it very hard to find a curve that does not contain any same-
values points. We do not know if it is even possible.

As opposed to the RSCA and the ZSCA, several traces are necessary to detect if the par-
ticular point occurs. Therefore, scalar randomization techniques thwart this attack.

Like the RSCA and the ZSCA, the Point Blinding (see Section 8.3.5) thwarts the attack
since the point PSVA +R with an unknown pseudo-random point R will occur instead of PSVA.

Attack Context:

• Key recovery: recursive,

• Elliptic Curve Specificity: must contain same-values points,

• Implementation Access: knowledge of the ecsm and the elliptic curve formulæ,

• Implementation Specificity: none,

• Number of Executions Needed: multiple,

• Input Access: chosen,

• Output Access: unnecessary.

8.14. HORIZONTAL SVA 107

8.14 Horizontal SVA

We propose to extend the SVA which has been introduced as a vertical attack in our paper
[MGD+12]. We show that, in some conditions, the occurrence of the particular point can be
detected with a single trace.

Stronger Conditions of Same-Values Points. In the vertical SVA described in the pre-
vious section, the attacker takes advantage of points that have same values occurring in an
elliptic curve formula. Here, we take advantage of points with stronger conditions. In addition
of the occurrence of the same values, those same values will be inputs of the modular square
operation. We can compare the power consumption of the squares to detect if they have indeed
the same input. Among all conditions of Theorems 8.12 and 8.14, the conditions below give
the required result:

1. x1 = 1: this condition implies that the inputs of the squares at lines 5 (X2
1 = (x1Z

2
1)

2)
and 11 ((Z2

1)
2) of Algorithm 39 are the same.

2. 2y1 = 3x2
1+a: this condition implies that the input of the square at line 14 ((3X2

1+aZ4
1)

2 =
((3x2

1 + a)Z4
1)

2) of Algorithm 39 and the input of the square of the value Z3 = 2Y1Z1 =
2y1Z

4
1 , which will occur during the addition or the doubling of P3 at the next iteration of

the ecsm, are the same.

3. y2 − y1 = x2 − x1: this condition implies that the input of the square at line 16 (F 2 =
(Y2Z

3
1−Y1Z

3
2)

2 = ((y2−y1)Z3
1Z

3
2)

2 and the input of the square of the value Z3 = Z1Z2E =
((X2Z

2
1 − Y2Z

2
2)Z1Z2)

2 = ((x2− x1)Z
3
1Z

3
2)

2 of Algorithm 37, which will occur during the
addition or doubling of P3 at the next iteration of the ecsm, are the same.

The attacker analyses the trace segments of the two squares to determine if the value squared
is the same and conclude on the current bit.

Detecting the Same Inputs in the Squares. If the noise signal is low, a simple difference
of the trace segments is enough to detect if the same value is manipulated. If the difference is
near zero, the inputs of the two multiplications are equal. This is illustrated in Figure 8.3. If
the noise signal is high, a more sophisticated tool can be used, such as the Euclidean distance
or the correlation with the points of interest of the traces. The trace segments of the squares
to compare can be seen as random variables X,Y . The construction of such random variables
are illustrated in Figure 8.4.

The number of possible particular points is reduced compared with the classical SVA of the
previous section (two conditions instead of thirty-three for ecdbl). Finding a curve that does
not contain any same-values points with the strong condition is feasible. Moreover, for the
three conditions listed above, the Random Curve Isomorphism (see Section 8.3.7) thwarts the
attack. This information has to be taken with great caution because it is not necessarily the
case for other formulæ.

Compared with the vertical version, a single trace is enough to detect if the particular point
appears. However, the attack is recursive and n executions of the ecsm is required to reveal
the whole scalar. Therefore, like the RSCA and the ZSCA, scalar randomization techniques
help prevent the horizontal SVA since the recursive process is broken. However, an attacker
can target several bits at a time by guessing several bits instead of only one. Several bits of the
randomized scalar can be recovered and reveal some information of the initial scalar.

108 CHAPTER 8. ATTACKS AND COUNTERMEASURES

Like the RSCA, the ZSCA and the classical SVA, the Point Blinding described in Section
8.3.5 thwarts the attack.

We introduced a new kind of attacks and proved the danger of repetition of same values.
This was in fact the first Same-Values Analysis that we published. Later, we tried to extend
this attack and take advantage of repetition of values on other implementations and proposed
the other SVA already described in Sections 8.2.2.2, 8.2.3.1 and 8.2.3.2.

Attack Context:

• Key recovery: recursive,

• Elliptic Curve Specificity: the curve must contain same-value points which brings
same values that will be squared,

• Implementation Access: knowledge of the ecsm and the elliptic curve formulæ,

• Implementation Specificity: none,

• Number of Executions Needed: n,

• Input Access: chosen,

• Output Access: unnecessary.

8.15 Particular Point Timing Attack [SST04]

Sato, Schepers and Takagi introduced another timing attack. Like the classical Timing Attack
described in Section 8.1, this attack takes advantage of the conditional final reduction of the
Montgomery multiplication. It works only on curves with parameter a = −3. Such curves
enable computing the variable C of ecdbl (Algorithm 11) as follows (see Remark 3.1):

C = 3(X1 + Z2
1)(X1 − Z2

1) (8.1)

The attack exploits the occurrence of a special point: P = (2, y). In Jacobian coordinates,
P = (2Z2

1 , yZ
3
1 , Z1) for some Z1 ∈ F

∗
p. When P is doubled, substitute its coordinates into

Equation (8.1) leads to:
C ← 3(3Z2

1)(Z
2
1)

In [SST04], the authors show that the probability of the final reduction during the Montgomery
multiplication of α, β is higher if β = 3α than for random values.

If the attacker judiciously chooses the base point, this point occurs only on a certain hy-
pothesis of the scalar. In this case, the average timing of the ecsms is higher than random
inputs.

The particular point is not well randomized by the Random Projective Coordinates coun-
termeasure (see Section 8.3.6). Indeed, whatever the value of Z1, the inputs of the modular
multiplication when computing C will still be α, β = 3α for some α ∈ Fp. The attack can
therefore be applied even if this countermeasure is present.

In the following, we show that the Random Curve Isomorphism countermeasure (see Section
8.3.7) thwarts the attack. Indeed, if the points are randomized with the isomorphism defined

8.16. INVALID CURVE ATTACK 109

as ϕ : (x, y) → (u−2x, u−3y) for some random u ∈ F ∗p , the special point P = (2Z2
1 , yZ

3
1 , Z1)

is randomized as ϕ(P) = P ′ = (2u−2Z2
1 , yu

−3Z3
1 , Z1) in Jacobian coordinates. Substitute its

coordinates into Equation (8.1):

C ← 3(Z2
1 (2u

−2 + 1))(Z2
1 (2u

−2 − 1))

The inputs of the modular multiplication: α = (Z2
1 (2u

−2 + 1)), β = (Z2
1 (2u

−2 − 1)) do not
verify β = 3α if u 6= ±1.

A more drastic method is to use the Constant Time of Field Operations countermeasure
described in Section 8.1.1.

Attack Context:

• Key recovery: recursive,

• Elliptic Curve Specificity: elliptic curve parameter a = −3, must contain a point of
the form (2, y) for some y ∈ Fp,

• Implementation Access: full knowledge of all algorithms,

• Implementation Specificity: deterministic and non-constant time execution of modu-
lar multiplications, fast doubling,

• Number of Executions Needed: multiple,

• Input Access: chosen,

• Output Access: unnecessary.

8.16 Invalid Curve Attack [CJ05]

This weak curve attack is similar to the Invalid Point Attack described in Section 8.5. Rather
than injecting a fault on the base point P , Ciet and Joye propose to inject a fault on the curve
parameters, particularly on the parameter a of the curve.

Denote by ã the corrupted value. Since the parameter b of the initial curve is generally not
used, P = (xP , yP) lies on another curve Ẽ : y2 = x3 + ãx+ b̃.

The ecsm is performed on the weak curve E′. The attacker recovers the result Q̃ =
(xQ̃, yQ̃) = [k]P . The parameters ã, b̃ of the curve Ẽ can be retrieved from the following
equations system:

{

ãxP + b̃ = y2P − x3
P

ãxQ̃ + b̃ = y2
Q̃
− x3

Q̃

The attacker can solve the ecdlp on the weak curve Ẽ to recover k mod ord(P).

Attack Context:

• Key recovery: each time, an ecdlp on Ẽ is performed to recover k mod ord(P); the
full key is then recovered using the CRT,

• Elliptic Curve Specificity: none,

110 CHAPTER 8. ATTACKS AND COUNTERMEASURES

• Implementation Access: knowledge of the location of the curve parameters’ memory
blocks, knowledge of the ecsm,

• Implementation Specificity: same addresses of the curve parameters on different exe-
cutions,

• Number of Executions Needed: less than n (it depends on the order of P on the
weak curve Ẽ),

• Input Access: known,

• Output Access: known,

• Fault Model: data randomization on a single memory block of size n.

8.16.1 Curve Integrity Check [CJ05]

Ciet and Joye pointed out the necessity to verify that the public parameters were not disturbed.
A cyclic redundancy check is performed on the curve parameters to verify that no fault was
introduced. For a full protection, we must check all curve parameters: a, b and the modulus p.

Cost: 3 crcn

8.17 Sign Change Fault Attack [BOS06]

Blömer, Otto and Seifert introduced a DFA. Their idea is to inject a fault to change the sign
of an intermediate point during the ecsm. Let’s take for example the Double-and-Add always
method (Algorithm 19).

First, a correct result Q = [k]P is recovered from a first ecsm. A second ecsm is run with
the same scalar and the same input. At iteration i, a fault is induced during the addition of
points to switch the sign of R0. The operation R1−ki

← R0 + P becomes R1−ki
← P −R0. If

ki = 0, the result is correct, and the attacker tries again at another iteration. If ki = 1, the
incorrect result Q̃ is equal to Q̃ = [(ki, . . . , k0)2]P − [2i(kn−1, . . . , ki+1)2]P .

The attacker computes Q + Q̃ = [2(ki, . . . , k0)2]P . If i is small enough, the attacker can
perform the ecdlp on Q+ Q̃ to recover (ki, . . . , k0)2 with a complexity of 2i/2 using the baby-
step giant-step method [Sha71].

The method is iterated to recover the other bits.

The inverse of point R = (X,Y, Z) is −R = (X,−Y, Z). To change the sign of a point, the
control signal of the two’s complement of the operand is switched when loading Y [BOS06].
One can also inject a fault on an opcode during the elliptic curve addition formula to switch
from a field addition to a field subtraction.

Since all points still lie on the given elliptic curve, the Output Point Validity and the Curve
Integrity Check do not detect the fault (see Sections 8.5.1 and 8.16.1 respectively).

Attack Context:

• Key recovery: recursive, several ecdlps are performed,

• Elliptic Curve Specificity: none,

8.18. COHERENCE CHECK 111

• Implementation Access: full knowledge of all algorithms, knowledge of the architecture
of the modular arithmetic operator,

• Implementation Specificity: same addresses of the coordinates’ intermediate point on
different executions,

• Number of Executions Needed: less than n,

• Input Access: known and constant,

• Output Access: known,

• Fault Model: data randomization on a single control signal or modifying opcode.

8.18 Coherence Check [Gir06]

This countermeasure was introduced by Giraud to protect rsa implementations against fault
attacks. It can be adapted for ecc. A verification is performed at the end of to the Montgomery
Ladder (Algorithm 21) to check the integrity of the result.

At the end of each iteration, R0 and R1 verify R1 − R0 = P . One can verify at the end
of the ecsm that the equality stands. Any fault on the curve parameters or the intermediate
points after the initialization phase (lines 1 and 2 of algorithm 21) will be detected with very
high probability [DH11].

This countermeasure can be adapted for Algorithm 20. Indeed, at the end of each iteration,
R0 + R1 + P = [(ki, . . . , k0)2]P + [(k̄i, . . . , k̄0)2]P + P = [2i+1]P = R2. The equality can be
verified at the end.

The countermeasure is also applicable on Algorithm 25 [BHT09]. The equality is similar to
Algorithm 20: R0 +R1 + P = R2 is verified at each iteration.

In addition of preventing the Weak Curve attacks (Sections 8.6, 8.5 and 8.16), it also brings
security against the Sign Change Fault attack (Section 8.17). This also thwarts the C Safe-Error
(Section 8.2.1.1) since the dummy operations introduced are in fact used at the end for the check.

The countermeasure costs one or two elliptic curve additions (depending on the algorithm),
the field operations necessary to compare two points in Jacobian coordinates (a conversion to
the same Z coordinate is required) and two memory blocks needed to store the base point P
for the final check.

Cost: 1 or 2 ecaddn, 2 msqrn, 6 mmuln, 2 maddn, 2 memn

8.19 Zero Word and SSCA [AVFM07]

Amiel, Villegas, Feix and Marcel suggest to combine a fault attack and a SSCA.
Let’s take the example of the Left-to-Right sliding window NAF method (Algorithm 16).

At the beginning of the ecsm, a fault is introduced to set a word of one coordinate of one of
the read-only points (for example P1) to zero. A multiplication with an operand with a zero
word is easily detected by observing the trace (see Figure 8.17).

This attack permits to recover all bits of the scalar with a single trace. This attack works
on ecsms in which at least one point is read only, and its usage depends on the scalar. This is
the case for the Left-to-Right window method (Algorithm 16), the Shamir’s trick (Algorithms

112 CHAPTER 8. ATTACKS AND COUNTERMEASURES

Figure 8.17: Power consumption of a random Montgomery multiplication (left curve) and a
Montgomery multiplication with the first word of the first operand being zero (right curve)

18 and 23), and the BRIP (Algorithm 24).

Checking the validity of the output is ineffective since the scalar is deduced from the side-
channel observation.

Attack Context:

• Key recovery: independent bits,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the ecsm, knowledge of the location of the
memory blocks,

• Implementation Specificity: ecsm where a point is read only,

• Number of Executions Needed: 1,

• Input Access: unnecessary,

• Output Access: unnecessary,

• Fault Model: resetting data on a word.

8.20 Template Attack on ECDSA [MO08]

Medwed and Oswald could mount a template attack on ecdsa to recover a few bits of several
different scalars from different signatures.

The number of bits was large enough to recover the static private key of the signature using
the lattice attack described in [HS01].

There is no theoretical obstruction which prevents this attack from recovering all bits of
the scalar. Indeed, when the first bits are known, the attacker can construct new templates
using her own controllable device with the known first bits and the next unknown few bits. The
templates are compared with the same trace of the targeted device. However, no experimental
results have been proposed to recover the whole scalar.

Randomizing the base point using the Random Projective Coordinates (Section 8.3.6), the
Point Blinding (Section 8.3.5) or the Random Curve Isomorphism (Section 8.3.7) thwarts the
attack since the stage of constructing the templates cannot be done.

8.21. TWIST CURVE ATTACK 113

Attack Context:

• Key recovery: recursive,

• Elliptic Curve Specificity: none,

• Implementation Access: access to exactly the same controllable chip as the target,

• Implementation Specificity: none,

• Number of Executions Needed: 1,

• Input Access: known,

• Output Access: unnecessary.

8.21 Twist Curve Attack [FLRV08]

If the Montgomery Ladder is used, addition and doubling formulæ can be performed without
the y coordinate [IMT02]. Fouque, Lercier, Réal and Valette suggest to inject a fault on the x
coordinate of the base point P = (xP , yP) lying on the elliptic curve E : y2 = x3 + ax+ b.

Let P̃ = (xP̃ , yP̃) denotes the faulted point. yP̃ is unused during the computation of [k]P̃ .
Two possibilities arise:

• x3
P̃
+ axP̃ + b is a square. In this case, yP̃ is a solution of the equation y2 = x3

P̃
+ axP̃ + b

in Fp and P̃ lies on the curve E. The x coordinate of the result point Q̃ = [k]P̃ gives
nothing.

• x3
P̃
+axP̃ +b is not a square. In this case, yP̃ is a solution of the equation y2 = x3

P̃
+axP̃ +b

in Fp2 and P̃ lies on the twist curve Ẽ defined over Fp2 . If Ẽ is weak, the ecdlp is feasible.

In the latter case, one method to recover the faulted value xP̃ = xP ⊕ ε is to try all possible

values of ε and compute the ecdlp with P̃ and the result point Q̃ = [k]P . Therefore, the
number of bits affected by the fault has to be small (max 8 or 16)13.

The output point validity described in Section 8.5.1 thwarts the attack only if a full check
is performed, i.e. with all curve parameters and all coordinates. For example, it is not enough
to verify if x3

Q+axQ+ b is a square, xQ being the x coordinate of the ecsm’s output. A second
fault can be induced at the end to bypass the check with probability 1/2 [FLRV08].

Attack Context:

• Key recovery: performing 28 or 216 ecdlps on Ẽ (depending on the precision of the
fault),

• Elliptic Curve Specificity: the twist of the curve is weak,

• Implementation Access: knowledge of the location of the base point’s memory blocks,

• Implementation Specificity: elliptic curve formulæ without the y coordinate, same
addresses of the coordinates’ base point on different executions,

13Another method to find the value x
P̃
, with less computational effort, is described in [FLRV08]. However, it

needs more faulted results.

114 CHAPTER 8. ATTACKS AND COUNTERMEASURES

• Number of Executions Needed: 1,

• Input Access: known,

• Output Access: known,

• Fault Model: data randomization on a single register of small size (maximum 8 or 16).

8.22 Invalid Point Attack and SSCA [FGV11]

Fan, Gierliches and Vercauteren propose to combine an Invalid Point Attack (see Section 8.5)
and a SSCA.

At the beginning of the ecsm, a known fault is introduced to the base point P . The faulty
point P̃ lies on another curve, and has a very low order ord(P̃). Eventually, the point at infinity
O will occur during the computation of [k]P̃ . In embedded systems, the point at infinity is
generally not managed for efficiency reasons. This is understandable since the point at infinity
should not appear in a normal mode of operation. The elliptic curve points operations will then
be incorrect and zero values will appear and remain till the end of the ecsm. The manipulation
of a zero value is easily detected by SSCA (see Figure 8.15). The number of iterations before
the apparition of the point at infinity reveals k mod ord(P̃), or the most significant bits of k
modulo ord(P̃) in the case of a Left-to-Right ecsm.

Unlike the classical Invalid Point Attack (see Section 8.5), the attacker does not need the
output point: the attack works even if a validity check is performed at the end of the ecsm (see
Sections 8.5.1 and 8.18).

The choice of the base point is made by the attacker because it has to be a neighbour of a
point of low order P̃ . P and P̃ are neighbours in the sense that only one bit differs between P
and P̃ [FGV11].

The Point Blinding of Section 8.3.5 and any scalar randomization prevent the attack [FGV11].

Attack Context:

• Key recovery: each time, k mod ord(P̃) is revealed; the full key is then recovered using
the CRT,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the location of the base point’s memory blocks,
knowledge of the ecsm,

• Implementation Specificity: same addresses of the coordinates’ base point on different
executions,

• Number of Executions Needed: less than n (it depends on the order of P̃),

• Input Access: chosen,

• Output Access: unnecessary,

• Fault Model: data randomization on a single bit.

8.23. FAULT ATTACK ON COORDINATES CONVERSION 115

8.22.1 Input Point Validity after a Randomization [FGV11]

Checking if the base point lies on the given elliptic curve is generally done at the cryptographic
level. However, a fault can be induced after the verification.

Performing the check after a randomization of the input, such as the Random Projective
Coordinates (Section 8.3.6), the Random Curve Isomorphism (Section 8.3.7) or the Point Blind-
ing (Section 8.3.5), is very powerful. Indeed, the fault injected after the check will necessarily
be random, since all values are randomized.

Cost: 5 mmuln, 4 msqrn, 4 maddn

8.23 Fault Attack on Coordinates Conversion [MMNT13]

We present our new DFA. In the previous fault attacks, the fault is either introduced at the
beginning (Weak Curve attacks) or during the ecsm (Safe-Errors and the other DFAs). Here,
the fault is introduced at the very end of the ecsm, during the projective to affine coordinates
conversion. This enables to retrieve the projective coordinates of the result of the ecsm [k]P .
Naccache, Smart and Stern showed that when the result is given in projective coordinates, an
attacker can recover information on k [NSS04].

Leakage in Projective Coordinates. First, we briefly overview the attack described in
[NSS04] when the attacker has access to the Jacobian coordinates of the output.

Assume that Algorithm 14 is used to compute Q = [k]P with mixed coordinates (P is in
affine coordinates).

We denote by Ai = (Xi, Yi, Zi) the value of point A at the end of iteration i in Algorithm
14. The attacker knows the output A0 = Q = (X0, Y0, Z0) in Jacobian coordinates and the
input P = (xP , yP) in affine coordinates. The attacker will attempt to reverse the scalar mul-
tiplication process i.e. replace doubling by halving and replace additions of P by subtractions.

If k0 = 0, A1 can be recovered by halving A0. Given Algorithm 11:

Z0 = 2Y1Z1 = 2y1Z
4
1 ⇒ Z4

1 =
Z0

2y1

y1 is obtained by computing (x1, y1) = [2−1 mod #E]Q in affine coordinates which is always
possible. We need to compute a fourth root to obtain Z1 from Z0 and y1:

• if p ≡ 1 (mod 4), then computing a fourth root is possible in a quarter of the cases and
yields four values.

• if p ≡ 3 (mod 4), then computing a fourth root is possible for half of the inputs and,
when possible, this computation yields two values.

We can easily obtain X1 and Y1 from Z1.

If, on the other hand, k0 = 1, A1 can be recovered by subtracting P from A and halving.
We denote by (Xt, Yt, Zt) the intermediate point between doubling (step A← ecdbl(A)) and

116 CHAPTER 8. ATTACKS AND COUNTERMEASURES

addition (step if ki = 1 then A ← ecadd(A,P)). Given Algorithm 10 in mixed coordinates,
we have:

Z0 = (xPZ
2
t −Xt)Zt ⇒ Z3

t =
Z0

xP − xt

xt is obtained by computing (xt, yt) = Q−P in affine coordinates. We need to compute a cubic
root to obtain Zt from Z0, xp and xt:

• if p ≡ 1 (mod 3), then extracting a cubic root is possible in a third of the cases and, when
possible, this calculation yields one of three possible values.

• if p ≡ 2 (mod 3), then extracting a cubic root is always possible and yields a unique value.

We can easily obtain Xt and Yt from Zt. After subtraction, the attacker must halve (Xt, Yt, Zt)
as described previously:

Z4
1 =

Zt

2yt
.

From this observation, the opponent can recover the least significant bit of k. Indeed, if the
value Z0

2y1
isn’t a fourth power, the opponent immediately concludes that k0 = 1. If Z0

2y1
is a

fourth power, then the attacker must try the subtraction and halving step. If subtracting P from
A0 or halving At is impossible, the attacker concludes that k0 = 0. If both steps are possible
(which happens with non-negligible probability), the attacker cannot immediately identify k0,
but can hope to do so by backtracking, i.e. guessing the values of k1, k2, etc. and computing
the corresponding intermediate points until reaching one of the previous contradictions.

Once k0 is known, the opponent can iterate the procedure starting with k1 and so forth to
extract a few more bits of k. Note that several candidate values for Z1 arise from the reversal
process as the corresponding equations have several roots, and backtracking is usually required
to determine the correct one.

[NSS04] reports experimental data on the number of recovered bits and success probabilities.
The success highly depends on the value of p mod 12.

To prevent this attack, the defender should in principle output results in affine coordinates.
Another possible countermeasure suggested in [NSS04] is to randomize the output, replacing
(X0, Y0, Z0) by (r2X0, r

3Y0, rZ0) for some random r ∈ F
∗
p, which effectively avoids any possible

leakage from the Jacobian representation.

As a side note, we point out that, while [NSS04] also claims that attacks are thwarted by
randomly flipping the sign of Z0, this is incorrect: just as k1 can be recovered with significant
probability even though Z1 is only known up to a sign (by simply trying both possibilities and
backtracking until a contradiction is reached), k0 can also be recovered even when Z0 is only
known up to a sign. This observation is important in our case, as the fault attacks described
hereafter retrieve Z2

0 rather than Z0 itself.

Projective-to-Affine Conversion. The following procedure converts the point P = (X,Y, Z) =
(xZ2, yZ3, Z) from Jacobian to affine coordinates (x, y).

convert(X,Y, Z) =

r ← Z−1

s ← r2

x ← X · s
t ← Y · s
y ← t · r return(x, y)

(8.2)

8.23. FAULT ATTACK ON COORDINATES CONVERSION 117

Faults during conversion. In standardized cryptographic protocols based on elliptic curves,
the computed points are given in affine coordinates, and hence [NSS04] does not apply. Our
idea is to corrupt the conversion process, so that the faulty affine results reveal the missing Z
coordinate. Suppose that an error corrupted s just after the step s ← r2 (of Process (8.2)).
The corrupted s+ ε yields:

x̃ = X(s+ ε)⇒ x̃ = x+ xZ2ε (8.3)

ỹ = Y (s+ ε)r ⇒ ỹ = y + yZ2ε (8.4)

Equations (8.3) and (8.4) imply
x̃

x
− 1 = Z2ε (8.5)

ỹ

y
− 1 = Z2ε (8.6)

We will describe three different attacks depending on the fault’s precision.

Large Unknown Faults and One Correct Result. Let ε = (ε1, ..., εl) be a vector of l
large faults, as illustrated in Figure 8.18. We want to recover ε.

= s̃1 = Z−2 + ε1

= s̃2 = Z−2 + ε2

...

= s̃l = Z−2 + εl

Figure 8.18: Illustration of large fault injections

Each εi satisfies an equation of the form (8.5), thus the attacker knows l numbers ui =
Z2 · εi mod p denoted as a vector u = (u1, ..., ul). Assume that ∀i ∈ {1, . . . , l}, εi < pα for
a number α < 1. Let L be the lattice generated by the vector u and pZl in Z

l and let
s = Z−2 mod p. Since ε satisfies ε = s ·u mod p, ε is a vector in L, of length ‖ε‖ . pα. Assume
further that g = gcd(u1, . . . , ul) = 1. This happens with probability ≈ 1/ζ(l) ≈ 1− 2−l, which

is very close to 1. Then, we have vol(L)
1
l = [Zl : L]

1
l = p1−

1
l . Therefore, we can recover ε

directly by reducing the lattice L using lll [LLL82] as long as pα ≪ p1−
1
l , i.e. l > 1

1−α .
The attack can also be carried out when g > 1: in that case, lll will recover ±1/g · ε, so

exhaustive search on the few possible values of g is enough. However, the probability that g > 1
is so small makes this refinement unnecessary.

Size of p (modulus size) 256 bits
Number of errors (l) 9
Error size (percentage of the modulus size) 224 bits (87.5%)
Success probability 99.8%
cpu time 3 ms

Table 8.1: Timings for a sage implementation on a 2.27 GHz Intel Core i3 cpu core.

118 CHAPTER 8. ATTACKS AND COUNTERMEASURES

To evaluate the attack, we implemented it in sage [SAGE12] (without treating the case
g > 1) and observed the results given in Table 8.1. The failure rate of ≈ 0.2% corresponds to
the cases when g > 1, and is consistent with 1/ζ(9) ≈ 0.998.

Remark 8.19. In the paper [MMNT13], we present an alternative solution where the correct
result is not necessary.

Since several faulty results with the same Z coordinate are necessary, any randomization
used against the CSCA described in Section 8.3 thwarts this attack. The knowledge of the base
point in affine coordinates is necessary for the backtracking algorithm. For this reason, the
Point Blinding countermeasure (see Section 8.3.5) is also effective against the attack.

Attack Context:

• Key recovery: Naccache’s et al.’s backtracking algorithm,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the location of the memory blocks, knowledge
of the conversion procedure,

• Implementation Specificity: use of Jacobian or projective coordinates,

• Number of Executions Needed: ≈ 10 for a few bits,

• Input Access: constant,

• Output Access: known,

• Fault Model: data randomization on a single memory block of size ≈ 4n
5 .

Two Faults and a Correct Result. As we have just seen, a correct conversion and two
faulty conversions yield the values: Z2ε1 and Z2ε2 and hence, by modular division β = ε1ε

−1
2 .

Theorem 8.20 (see [FSW02]) guarantees that ε1 and ε2 can be efficiently recovered from β
if each εi is smaller than the square root of p divided by 2. This problem is known as the
Rational Number Reconstruction [PW04, WP03] and is typically solved using Gauß’ algorithm
for finding the shortest vector in a bidimensional lattice [Val91].

Theorem 8.20. Let ε1, ε2 ∈ Z such that −A ≤ ε1 ≤ A and 0 < ε2 ≤ B. Let p > 2AB be a
prime and β = ε1ε

−1
2 mod p. Then ε1, ε2 can be recovered from A,B, β, p in polynomial time.

Assume that the εi are smaller than
√
p, as illustrated in Figure 8.19. Taking A = B =

⌊
√

p/2⌋, we get 2AB < p. Moreover, 0 ≤ ε1 ≤ A and 0 < ε2 ≤ B. Thus the attacker can
recover ε1 and ε2 from β in polynomial time.

If the εi are shifted to the left by an arbitrary number of bit positions, this does not change
anything as these powers of two will divide out.

The attack is also feasible in the more general unbalanced case when

ε1ε2 ≤ p/4. (8.7)

In contrast to the case where the εi are bound individually (i.e. 0 ≤ ε1 ≤ A and 0 < ε2 ≤ B) we
do not have a fixed bound for ε1 and ε2 anymore; Equation (8.7) only provides a bound for the
product ε1ε2. Equation (8.7) implies that there exists 1 ≤ i ≤ ⌊n⌋ such that 0 ≤ ε1 ≤ 2i and
0 < ε2 ≤ p/2i+1. Then using Theorem 8.20 again, the attacker can recover the pair (ε1, ε2),

8.23. FAULT ATTACK ON COORDINATES CONVERSION 119

= s̃1 = Z−2 + ε1

= s̃2 = Z−2 + ε2

Figure 8.19: Illustration of two fault injections, half the size of p

and hence Z. In principle, there could be several candidate solutions depending on the choice
of i, making it necessary to consider many possible values of Z. In practice, however, multiple
solutions seem to occur with negligible probability when p is large enough.

Like the previous attack with large faults, any randomization described in Section 8.3
thwarts this attack since two faulty results with the same Z coordinate are necessary. The
Point Blinding of Section 8.3.5 is effective as well.

Attack Context:

• Key recovery: Naccache’s et al’s backtracking algorithm,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the location of the memory blocks, knowledge
of the conversion procedure,

• Implementation Specificity: use of Jacobian or projective coordinates,

• Number of Executions Needed: 3 for a few bits,

• Input Access: constant,

• Output Access: known,

• Fault Model: data randomization on a single memory block of size n/2.

Known or guessable fault. If ε is known or successfully guessed, then one faulty point
(x̃ = x + xZ2ε, ỹ = y + yZ2ε) and the correct point (x, y) is enough to recover Z (up to the
sign).

As opposed to the previous attacks, a single faulty result is necessary for this attack. The
security is not guaranteed anymore by the randomization techniques of Section 8.3, except for
the Point Blinding because the attacker needs the knowledge of the base point of the ecsm.

Attack Context:

• Key recovery: Naccache’s et al’s backtracking algorithm,

• Elliptic Curve Specificity: none,

• Implementation Access: knowledge of the location of the memory blocks, knowledge
of the conversion procedure,

120 CHAPTER 8. ATTACKS AND COUNTERMEASURES

• Implementation Specificity: use of Jacobian or projective coordinates,

• Number of Executions Needed: 2 for a few bits,

• Input Access: constant,

• Output Access: known,

• Fault Model: data randomization on a single bit.

Chapter 9

Differential Fault Attacks on
ECDSA

Some DFAs previously described rely on the comparison of one erroneous result and the cor-
rect result of an ecsm, to recover a few bits of the scalar. That is the case for the classical
DFA (Section 8.6), the Sign Change Fault attack (Section 8.17) and the Fault Attack on the
Coordinates Conversion with the known fault (Section 8.23).

In ecdsa, the scalar used for the ecsm is randomly chosen for each new signature. In this
chapter, we describe a method to attack the ecdsa with the DFAs listed above. This method
was initially described in our paper [MMNT13, §6.1].

9.1 Principle of the Method

Let G be the generator of the subgroup considered on the given elliptic curve E, d the secret
key the attacker wants to recover, and P = [d]G the corresponding public key.

We suppose that, during the signature procedure of ecdsa (Algorithm 26), a fault is induced
during the computation of Q, yielding to the wrong result Q̃ = (xQ̃, yQ̃). The erroneous
signature (r̃, s̃) satisfies:

r̃ = xQ̃ mod t

s̃ = kinv(dr̃ +m) mod t

From (r̃, s̃), the attacker can compute:

w̃ = s̃−1 mod t
ũ1 = w̃ ·m mod t
ũ2 = w̃ · r̃ mod t

R = [ũ1]G+ [ũ2]P =
[

km
dr̃+m

]

G+
[

kr̃
dr̃+m

]

P =
[

km
dr̃+m

]

G+
[

dkr̃
dr̃+m

]

G

=
[

k · dr̃+m
dr̃+m

]

G = [k]G

The point R is hence the correct value of Q = (xQ, yQ) = [k]G that was intended to be computed
during the signature. The attacker gets xQ, yQ and xQ̃ mod t. Since log2(p) ≈ log2(t) in most
standardized curves, xQ̃ can be guessed from xQ̃ mod t.

121

122 CHAPTER 9. DIFFERENTIAL FAULT ATTACKS ON ECDSA

9.2 Attacking ECDSA with the Classical Differential Fault
Attack

We recall that for the classical DFA, described in Section 8.6, a fault is induced on an interme-
diate point of the ecsm. Using the example of the Right-to-Left Double-and-Add method (Al-
gorithm 15), the attacker injects a fault to alter the intermediate point Qi = [(ki−1, . . . , k0)2]P
into Q̃i (we use the same notations as in Section 8.6). If the fault is known or can be guessed1,
the attacker can generate Q̃ from Q̃i and all possible values of (ki−1, . . . , k0)2. The good hy-
pothesis is the one where the x coordinate of Q̃ matches xQ̃.

9.3 Attacking ECDSA with the Sign Change Fault Attack

We recall that, in the attack described in Section 8.17, the sign of an intermediate point at
iteration i is switched during the ecsm. The attacker gets the x coordinate of the ecsm’s result
Q̃ from the signature. The correct result Q is retrieved using the method described above.
Since Q̃ lies on the curve, the attacker can recover the missing y coordinates with probability
1/2 using the curve equation. She then computes Q + Q̃ = [2(ki, . . . , k0)2]P and preforms an
ecdlp to recover (ki, . . . , k0)2. If she is not successful, her guess on y was wrong and tries the
other possibility.

9.4 Attacking ECDSA with the Fault on the Coordinates

Conversion

In our attack described in Section 8.23, a fault is induced during the affine to projective co-
ordinates conversion process. The attacker gets the faulty x coordinate of the result xQ̃ =

xQ + xQZ
2
Qε with xQ, ZQ unknown. xQ̃, ε (the fault targets only a bit) are known. The at-

tacker can recover xQ using the method previously described. ZQ is then retrieved and this
makes the attack described in Section 8.23 and in [NSS04] possible. A few bits of k can be
recovered.

9.5 Synthesis

We showed how to use the properties of ecdsa to compare a correct and an erroneous result of
an ecsm. For the three DFAs, a few bits of the ephemeral scalar k can be recovered. Iterating
the procedure can reveal a few bits of several ephemeral scalars. This is precisely the scenario
considered in [HS01] allowing recover the private key d.

Our analysis showed that the ecdsa is not naturally immune to attacks where several ecsms
have to be run with the same scalar.

1For example if a single bit is switched but the attacker does not know which one, she can try all bits

Chapter 10

Summary of the Context of the
Attacks

In this chapter, we give a synthesis of the attacks depending on the context. This clear syn-
thesis is useful when implementing an embedded ecc application. Depending on the protocols
intended to support or on the targeted implementation, some attacks are not feasible and a
protection against this attack is not necessary.

10.1 Key Recovery

The synthesis of the key recovery process is given in Table 10.1. This makes an understanding of
the attacks. We can anticipate on some future refinements of the attacks since the key recovery
process does not evolve drastically.

10.2 Elliptic Curve Specificity

Few attacks work on specific curves only. We give the list below.

• Particular Point Timing Attack (Section 8.15): the parameter a of the curve is
equal to −3 and the curve contains a point of the form (2, y) for some y ∈ Fp.

• RSCA (Section 8.11): the curve contains a point of the form (0, y) for some y ∈ Fp.

• ZSCA (Section 8.12): the curve contains at least one zero-value point.

• SVA (Section 8.13): the curve contains at least one same-values point.

• Horizontal SVA (Section 8.14): the curve contains at least one same-values point
where the same values will be squared.

• Twist Curve Attack (Section 8.21): the twist of the curve is weak.

This synthesis is useful if the application has to support only a few known curves. We can
easily check if the curves verify the condition for each attack. If it is not the case, a protection
against the corresponding attack is not necessary.

123

124 CHAPTER 10. SUMMARY OF THE CONTEXT OF THE ATTACKS

In
d
ep

en
d
en
t
B
it
s

R
ec
u
rs
iv
e

e
c
d
l
p
w
it
h
sm

al
le
r
sc
al
ar
s

e
c
b
l
p
on

a
w
ea
k
cu
rv
e

C
h
in
es
e
R
em

ai
n
d
er

T
h
eo
re
m

N
ac
ca
ch
es

et
al
’s

b
ac
k
tr
ac
k
in
g
al
go
ri
th
m

Classical Timing Attack
Section 8.1

X

Particular Point Timing Attack
Section 8.15

X

Classical SSCA
Section 8.2

X

SSCA on unified formulæ
Section 8.2.2.1

X

RSCA
Section 8.11

X

ZSCA
Section 8.12

X

Template Attack
Section 8.20

X

CSCA
Section 8.3

X

Address-bit DSCA
Section 8.9

X

Doubling Attack
Section 8.10

X

Carry Leakage Attack
Section 8.3.1.1

X

SVA
Section 8.13

X

SVA on Atomicity
Section 8.2.3.1

X

Big Mac
Section 8.7

X

Horizontal Correlation SCA
Section 8.8

X

Horizontal SVA
Section 8.14

X

Horizontal SVA on Unified Formulæ
Section 8.2.2.2

X

Horizontal SVA on Atomicity
Section 8.2.3.2

X

C Safe-Error
Section 8.2.1.1

X

M Safe-Error
Section 8.4

X

Invalid Point Attack
Section 8.5

X X

Invalid Curve Attack
Section 8.16

X X

Twist Curve Attack
Section 8.21

X

Classical DFA
Section 8.6

X

Sign Change Fault
Section 8.17

X X

Fault Attack on Coordinates Conversion
Section 8.23

X

Combined Attack on Additive Splitting
Section 8.3.2.2

X

Zero word and SSCA
Section 8.19

X

Invalid Point Attack and SSCA
Section 8.22

X X

Table 10.1: Synthesis of the Key Recovery Process for each attack

10.3. IMPLEMENTATION ACCESS 125

10.3 Implementation Access

The synthesis of the implementation access, i.e. the attacker’s level of knowledge of the imple-
mentation, is given in Table 10.2. This synthesis reveals what the attacker needs to know or
guess to succeed.

10.4 Implementation Specificity

The synthesis of the implementation specificity is given in Table 10.3. When implementing an
embedded ecc application, it is fast to check if some attacks are not feasible because of the
choice of the implementation. Instead of selecting countermeasures to prevent some attacks,
one may prefer to implement an embedded ecc that is naturally immune against some attacks.

10.5 Number of Executions Needed

The synthesis of the number of executions needed is given in Table 10.4. For all attacks, the
number given corresponds to the number required to recover the whole scalar, except for the
fault attacks on the conversion coordinates which permits to recover only a few bits (see Section
8.23).

10.6 Input Access

The synthesis of the input access is given in Table 10.5. When the attacker needs to choose the
base point, the attack is not feasible for some protocols such as the ecdsa Signature (Section
5.1) where the input is fixed and constant.

10.7 Output Access

The synthesis of the output access is given in Table 10.6. When the output is needed, the attack
is not feasible for some protocols such as the ec-elgamal Decryption (Section 5.3) where the
output is intended to be kept inside the embedded system.

10.8 Fault Model

The synthesis of the implementation specificity is given in Table 10.7. This reveals the difficulty
of some attacks to mount in practice depending on the accuracy.

126 CHAPTER 10. SUMMARY OF THE CONTEXT OF THE ATTACKS

e
c
sm

E
ll
ip
ti
c
C
u
rv
e
F
or
m
u
læ

M
o
d
u
la
r
A
ri
th
m
et
ic

A
lg
o
ri
th
m
s

W
o
rd

S
iz
e
o
f
In
te
g
er
s

M
o
d
u
la
r
A
ri
th
m
et
ic

M
o
d
u
le

A
rc
h
it
ec
tu
re

M
em

o
ry

L
o
ca
ti
o
n

A
cc
es
s
to

th
e
sa
m
e

C
o
n
tr
o
ll
a
b
le

D
ev
ic
e

S
p
li
tt
in
g
M
et
h
o
d

C
o
n
ve
rs
io
n
P
ro
ce
d
u
re

Classical Timing Attack
Section 8.1

X X X

Particular Point Timing Attack
Section 8.15

X X X

Classical SSCA
Section 8.2

X X

SSCA on unified formulæ
Section 8.2.2.1

X X X

RSCA
Section 8.11

X X

ZSCA
Section 8.12

X X X

Template Attack
Section 8.20

X

CSCA
Section 8.3

X X X X

Address-bit DSCA
Section 8.9

X

Doubling Attack
Section 8.10

X X

Carry Leakage Attack
Section 8.3.1.1

X X

SVA
Section 8.13

X X

SVA on Atomicity
Section 8.2.3.1

X X

Big Mac
Section 8.7

X X X X X

Horizontal Correlation SCA
Section 8.8

X X X X X

Horizontal SVA
Section 8.14

X X X

Horizontal SVA on Unified Formulæ
Section 8.2.2.2

X X X

Horizontal SVA on Atomicity
Section 8.2.3.2

X X X X X

C Safe-Error
Section 8.2.1.1

X X X

M Safe-Error
Section 8.4

X X X

Invalid Point Attack
Section 8.5

X X

Invalid Curve Attack
Section 8.16

X X

Twist Curve Attack
Section 8.21

X

Classical DFA
Section 8.6

X

Sign Change Fault
Section 8.17

X X X X

Fault Attack on Coordinates Conversion
Section 8.23

X X

Combined Attack on Additive Splitting
Section 8.3.2.2

X X

Zero word and SSCA
Section 8.19

X X

Invalid Point Attack and SSCA
Section 8.22

X X X

Table 10.2: Synthesis of the Implementation Access Context

10.8. FAULT MODEL 127

D
et
er
m
in
is
ti
c
an

d
N
on

-C
on

st
an

t
M
o
d
u
la
r
A
ri
th
m
et
ic

F
as
t
D
ou

b
li
n
g

U
n
re
gu

la
r
e
c
sm

R
ea
d
O
n
ly

P
oi
n
t

D
u
m
m
y
O
p
er
at
io
n

D
iff
er
en
t
A
d
d
it
io
n

an
d
D
ou

b
li
n
g
F
or
m
u
læ

In
d
is
ti
n
gu

is
h
ab

le
F
or
m
u
læ

w
it
h
ou

t
y
co
or
d
in
at
e

A
ffi
n
e
C
o
or
d
in
at
es

P
ro
je
ct
iv
e
C
o
or
d
in
at
es

A
to
m
ic
it
y

S
am

e
A
d
d
re
ss
es

G
ro
u
p
S
ca
la
r
R
an

d
om

iz
at
io
n

A
d
d
it
iv
e
S
p
li
tt
in
g

W
or
d
w
is
e
M
o
d
u
la
r
M
u
lt
ip
li
ca
ti
on

Classical Timing Attack
Section 8.1

X

Particular Point Timing Attack
Section 8.15

X X

Classical SSCA
Section 8.2

X X

SSCA on unified formulæ
Section 8.2.2.1

X X

Address-bit DSCA
Section 8.9

X

Doubling Attack
Section 8.10

X

Carry Leakage Attack
Section 8.3.1.1

X1 X7

SVA on Atomicity
Section 8.2.3.1

X X

Big Mac
Section 8.7

X

Horizontal Correlation SCA
Section 8.8

X

Horizontal SVA on Unified Formulæ
Section 8.2.2.2

X

Horizontal SVA on Atomicity
Section 8.2.3.2

X

C Safe-Error
Section 8.2.1.1

X X

M Safe-Error
Section 8.4

X

Invalid Point Attack
Section 8.5

X

Invalid Curve Attack
Section 8.16

X

Twist Curve Attack
Section 8.21

X X

Classical DFA
Section 8.6

X X

Sign Change Fault
Section 8.17

X

Fault Attack on Coordinates Conversion
Section 8.23

X X

Combined Attack on Additive Splitting
Section 8.3.2.2

X X

Zero word and SSCA
Section 8.19

X X

Invalid Point Attack and SSCA
Section 8.22

X

Table 10.3: Synthesis of the Implementation Specificity for each attack

128 CHAPTER 10. SUMMARY OF THE CONTEXT OF THE ATTACKS

1 2 3 ≈ 10 n Multiple

Classical Timing Attack
Section 8.1

X

Particular Point Timing Attack
Section 8.15

X

Classical SSCA
Section 8.2

X

SSCA on unified formulæ
Section 8.2.2.1

X

RSCA
Section 8.11

X

ZSCA
Section 8.12

X

Template Attack
Section 8.20

X

CSCA
Section 8.3

X

Address-bit DSCA
Section 8.9

X

Doubling Attack
Section 8.10

X

Carry Leakage Attack
Section 8.3.1.1

X

SVA
Section 8.13

X

SVA on Atomicity
Section 8.2.3.1

X

Big Mac
Section 8.7

X

Horizontal Correlation SCA
Section 8.8

X

Horizontal SVA
Section 8.14

X

Horizontal SVA on Unified Formulæ
Section 8.2.2.2

X

Horizontal SVA on Atomicity
Section 8.2.3.2

X

C Safe-Error
Section 8.2.1.1

X

M Safe-Error
Section 8.4

X

Invalid Point Attack
Section 8.5

X

Invalid Curve Attack
Section 8.16

X

Twist Curve Attack
Section 8.21

X

Classical DFA
Section 8.6

X

Sign Change Fault
Section 8.17

X

Fault Attack on Coordinates Conversion
(Large Faults)
Section 8.23

X

Fault Attack on Coordinates Conversion
(n/2 bit length Faults)

Section 8.23

X

Fault Attack on Coordinates Conversion
(Known Faults)
Section 8.23

X

Combined Attack on Additive Splitting
Section 8.3.2.2

X

Zero word and SSCA
Section 8.19

X

Invalid Point Attack and SSCA
Section 8.22

X

Table 10.4: Synthesis of the Number of Executions Needed for each attack

10.8. FAULT MODEL 129

Unnecessary Known Chosen Constant Varying

Classical Timing Attack
Section 8.1

X X

Particular Point Timing Attack
Section 8.15

X X

Classical SSCA
Section 8.2

X

SSCA on unified formulæ
Section 8.2.2.1

X

RSCA
Section 8.11

X X

ZSCA
Section 8.12

X X

Template Attack
Section 8.20

X

CSCA
Section 8.3

X X

Address-bit DSCA
Section 8.9

X

Doubling Attack
Section 8.10

X X

Carry Leakage Attack
Section 8.3.1.1

X

SVA
Section 8.13

X X

SVA on Atomicity
Section 8.2.3.1

X

Big Mac
Section 8.7

X

Horizontal Correlation SCA
Section 8.8

X

Horizontal SVA
Section 8.14

X X

Horizontal SVA on Unified Formulæ
Section 8.2.2.2

X

Horizontal SVA on Atomicity
Section 8.2.3.2

X

C Safe-Error
Section 8.2.1.1

X

M Safe-Error
Section 8.4

X

Invalid Point Attack
Section 8.5

X

Invalid Curve Attack
Section 8.16

X

Twist Curve Attack
Section 8.21

X

Classical DFA
Section 8.6

X X

Sign Change Fault
Section 8.17

X X

Fault Attack on Coordinates Conversion
Section 8.23

X

Combined Attack on Additive Splitting
Section 8.3.2.2

X

Zero word and SSCA
Section 8.19

X

Invalid Point Attack and SSCA
Section 8.22

X X

Table 10.5: Synthesis of the Input Access for each attack

130 CHAPTER 10. SUMMARY OF THE CONTEXT OF THE ATTACKS

Unnecessary Known
Knowledge of
the Validity

Classical Timing Attack
Section 8.1

X

Particular Point Timing Attack
Section 8.15

X

Classical SSCA
Section 8.2

X

SSCA on unified formulæ
Section 8.2.2.1

X

RSCA
Section 8.11

X

ZSCA
Section 8.12

X

Template Attack
Section 8.20

X

CSCA
Section 8.3

X

Address-bit DSCA
Section 8.9

X

Doubling Attack
Section 8.10

X

Carry Leakage Attack
Section 8.3.1.1

X

SVA
Section 8.13

X

SVA on Atomicity
Section 8.2.3.1

X

Big Mac
Section 8.7

X

Horizontal Correlation SCA
Section 8.8

X

Horizontal SVA
Section 8.14

X

Horizontal SVA on Unified Formulæ
Section 8.2.2.2

X

Horizontal SVA on Atomicity
Section 8.2.3.2

X

C Safe-Error
Section 8.2.1.1

X

M Safe-Error
Section 8.4

X

Invalid Point Attack
Section 8.5

X

Invalid Curve Attack
Section 8.16

X

Twist Curve Attack
Section 8.21

X

Classical DFA
Section 8.6

X

Sign Change Fault
Section 8.17

X

Fault Attack on Coordinates Conversion
Section 8.23

X

Combined Attack on Additive Splitting
Section 8.3.2.2

X

Zero word and SSCA
Section 8.19

X

Invalid Point Attack and SSCA
Section 8.22

X

Table 10.6: Synthesis of the Output Access for each attack

10.8. FAULT MODEL 131

Data
Randomization

Resetting
Data

Modifying
Opcode

Fault Lentgh
(in bits)

C Safe-Error
Section 8.2.1.1

X
size of the

arithmetic module

M Safe-Error
Section 8.4

X n

Invalid Point Attack
Section 8.5

X n

Invalid Curve Attack
Section 8.16

X n

Twist Curve Attack
Section 8.21

X < 16

Classical DFA
Section 8.6

X 1

Sign Change Fault
(Switch Control Signal)

Section 8.17

X

size of the control
signal of two’s
complement

Sign Change Fault
(Switch Addition to Subtraction)

Section 8.17

X

size of the signal
operation
command

Fault Attack on Coordinates Conversion
(Large Faults)
Section 8.23

X ≈ 4n
5

Fault Attack on Coordinates Conversion
(1/2 bit length Faults)

Section 8.23

X n/2

Fault Attack on Coordinates Conversion
(Known Fault)
Section 8.23

X 1

Combined Attack on Additive Splitting
(C Safe-Error)
Section 8.3.2.2

X
size of the

arithmetic module

Combined Attack on Additive Splitting
(M Safe-Error)
Section 8.3.2.2

X n

Zero word and SSCA
Section 8.19

X size of a word

Invalid Point Attack and SSCA
Section 8.22

X 1

Table 10.7: Synthesis of the Fault Model for each attack

132 CHAPTER 10. SUMMARY OF THE CONTEXT OF THE ATTACKS

Chapter 11

Synthesis of the Attacks versus
the Countermeasures

In this chapter, we give a synthesis of the efficiency of each countermeasure against the different
attacks on ecc. It is displayed of the form of a table (Table 11.1) inspired from [FGD+10]. It
was completed with more recent attacks and we were able to fill some of the boxes from our
analysis. We use the following symbols:

◦ X means that the countermeasure thwarts the attack,

◦ ∼ means that the countermeasure highly disturbs the attack but does not guarantee a
full protection,

◦ ×means that the countermeasure brings the specified vulnerability to the implementation,

◦ − means it has been shown that the countermeasure is ineffective against the attack,
despite the apparent link between them,

◦ an empty cell means that either the countermeasure and the attack are clearly unrelated
or there is no concrete published study on the effect of the countermeasure on the attack.

133

1
34

C
H
A
P
T
E
R

11
.

S
Y
N
T
H
E
S
IS

Passive Attacks Active Attacks Combined Attacks

TA SSCA Vertical Analysis Horizontal Analysis Safe-Error Weak Curve DFA
Attacks against

Additive Splitting

C
la
ss
ic
al

T
A

P
ar
ti
cu

la
r
P
oi
n
t
T
A

C
la
ss
ic
al

S
S
C
A

S
S
C
A

on
U
n
ifi
ed

F
or
m
u
læ

R
S
C
A

Z
S
C
A

T
em

p
la
te

A
tt
ac
k

C
la
ss
ic
al

C
S
C
A

A
d
d
re
ss
-b
it
D
S
C
A

D
ou

b
li
n
g
A
tt
ac
k

C
ar
ry

L
ea
ka
ge

C
la
ss
ic
al

S
V
A

S
V
A

on
A
to
m
ic
it
y

B
ig

M
ac

A
tt
ac
k

H
or
iz
on

ta
l
C
or
re
la
ti
on

S
C
A

H
or
iz
on

ta
l
S
V
A

H
or
iz
on

ta
l
S
V
A

on
U
n
ifi
ed

F
or
m
u
læ

H
or
iz
on

ta
l
S
V
A

on
A
to
m
ic
it
y

C
S
af
e-
E
rr
or

M
S
af
e-
E
rr
or

In
va
li
d
P
oi
n
t
A
tt
ac
k

In
va
li
d
C
u
rv
e
A
tt
ac
k

T
w
is
t
C
u
rv
e
A
tt
ac
k

C
la
ss
if
ca
l
D
F
A

S
ig
n
C
h
an

ge

F
au

lt
on

P
ro
je
ct
iv
e-
to
-a
ffi
n
e
C
on

ve
rs
io
n

H
ig
h
O
rd
er

C
S
af
e-
E
rr
or

H
ig
h
O
rd
er

M
S
af
e-
E
rr
or

C
S
af
e-
E
rr
or

an
d
A
d
d
re
ss
-b
it
D
S
C
A
A

M
S
af
e-
E
rr
or

an
d
A
d
d
re
ss
-b
it
D
S
C
A
A

Z
er
o
W
or
d
an

d
S
S
C
A
A

P
oi
n
t
of

lo
w

O
rd
er

an
d
S
S
C
A
A

Constant Time Arithmetic X X X

Regular ecsm X X ×a ×a ×a Xb

Unified Formulæ X × ×
Side-Channel Atomicity X × × × × ×
Isomorphism Shifting X

Random Coordinates X - - - X X X - X - X Xc

Random Curve Isomorphism X X - - X X X - X X Xc

Point Blinding X X X X X X - X X X X X X

Group Scalar Randomization X X ∼ ∼ X X - × X ∼ X X X Xc X

Additive Splitting X X ∼ ∼ X X × X ∼ X X X Xc × × × × X

Euclidean Splitting X X ∼ ∼ X X X ∼ X X X Xc X

Multiplicative Splitting X X ∼ ∼ X X - X ∼ X X X Xc X

Random Register Address X X X X

Random Multiplication X X X X X

Coherence Check X X X X X X

Output Point Validity X X X X Xd

Input Point Validity Xe

Curve Integrity Check X

Table 11.1: Attacks versus Countermeasures

aexcept for the Montgomery Ladder
bexcept for BRIP and the regular Shamir’s trick
cexcept for the known fault
donly if the check is performed after the Projective-to-affine conversion
eonly if the check is performed after a randomization of the base point

135

136 CHAPTER 11. SYNTHESIS

Conclusion and Perspectives

This thesis is a survey on the physical attacks and countermeasures on ecc. The feasibility of
each attack depending on the context is detailed. The cost of each countermeasure are detailed
as well. Surveys on physical cryptanalysis usually display the attacks and countermeasures
separately. We tried a different approach. The attacks and countermeasures are exhibited with
a tree structure to clearly indicates if an attack has been introduced against a specific coun-
termeasure or if it more general. Similarly, we can see if a countermeasure has been proposed
against a specific attack. A synthesis in tabular form of attacks and countermeasures is given
at the end. For this one, we clearly separate the attacks from the countermeasures.

We introduced new attacks called Same-Values Analysis. The attacks are named after the
same principle: they all take advantage of same values occurring within an Elliptic Curve Scalar
Multiplication (ecsm). They differ from the targeted implementation or from the method used
to detect the occurrence of the same values.

The classical SVA consists in choosing the suitable base point so that same values occur
only if some condition of the scalar is met. This attack, originally proposed as a vertical attack,
was extended into a horizontal analysis. We also used the occurrence of same values to target
some existing countermeasures such as the Unified Formulæ and the Side-Channel Atomicity
countermeasures, with a single trace.

Depending on the attack, we used different existing statistical methods to detect the oc-
currence of same values. For the Horizontal SVA on the Atomicity Countermeasure, we also
used a new method inspired from the Big Mac attack. For each method, we gave experimental
results to validate the attacks.

With this new kind of attacks, we showed that the occurrence of same values within an ecsm

can be exploited by the attacker. This concept can probably be modified and refined to target
other implementations, and even to other asymmetric cryptosystems. Against these attacks,
we are currently studying on new methods to ensure that the occurrence of same values is not
possible.

We also introduced a new Differential Fault Attack. As opposed to previous fault attacks,
where the fault is induced at the beginning or during the ecsm, our attack targets the final
conversion process from projective to affine coordinates. Such faults permit to recover some
information of the missing Z coordinate of the projective or Jacobian coordinates systems. This
makes it possible to retrieve a few bits of the scalar from a method presented by Naccache et
al. at Eurocrypt 2005.

Also, a new countermeasure against the Refined Side-Channel Analysis (RSCA) is presented.
The RSCA relies on the occurrence of a particular point, namely the points of the form (0, y).
We proposed to use an isomorphism between elliptic curves to control the inconvenient point.

137

138 CONCLUSION AND PERSPECTIVES

Its occurrence does not reveal anything about the scalar. Because of the isomorphism, elliptic
curve formulæ are updated. Under certain assumptions that we clearly detailed, the new for-
mulæ are in fact more efficient than the regular ones.

Finally, we showed that some differential fault attacks are feasible on the ecdsa. These
attacks need the comparison of one erroneous result and the corresponding correct result. In
ecdsa, the scalar changes at each new signature. Intuitively, one can think that the signature
scheme is naturally immune against DFAs. We showed that this is not the case for some attacks
because of some properties of the ecdsa.

This thesis gave a state-of-the-art on attacks and countermeasures on ecc. A detailed de-
scription of the attacks and the cost of the countermeasure is useful for the designer trying to
protect his implementation. In the introduction, we emphasized that the topic on side-channel
and fault analysis is a cat-and-mouse game. In the future, new attacks will necessarily emerge,
targeting a specific implementation or a countermeasure, or it will be more general. New coun-
termeasures will appear as well. The structure tree proposed and the synthesis at the end are
suitable to easily incorporate new attacks and countermeasures.

It would be interesting to extend this work to other asymmetric cryptosystems such as
rsa or pairing-based cryptography. Another method would be to give a single state-of-the-art
for the different asymmetric cryptosystems in some way. Indeed there are strong similarities
between the implementations. First, the same arithmetic module is generally used for rsa, ecc
and pairing-based cryptography. Secondly, Elliptic Curve Scalar Multiplication methods for
both ecc and pairing-based cryptography are similar to the modular exponentiation methods
for rsa. Some attacks and countermeasures would also be similar.

Publications

[DGH+12] J.-L. Danger, S. Guilley, P. Hoogvorst, C. Murdica and D. Naccache, Low-Cost
Countermeasure against RPA. Proceedings of cardis’12, lncs vol. 7771, Springer, 2013, pp.
106-122.

[DGH+13] J.-L. Danger, S. Guilley, P. Hoogvorst, C. Murdica and D. Naccache, A synthe-
sis of side-channel attacks on elliptic curve cryptography in smart-cards. J. Cryptographic
Engineering vol. 3, iss. 4, 2013, pp 241-265.

[MMNT13] D. Maimut, C. Murdica, D. Naccache and M. Tibouchi Fault Attacks on Projective-
to-Affine Coordinates Conversion. Proceedings of cosade’13, lncs vol. 7864, Springer, 2013,
pp. 46-61.

[MGD+12] C. Murdica, S. Guilley, J.-L. Danger, P. Hoogvorst and D. Naccache, Same Values
Power Analysis Using Special Points on Elliptic Curves. Proceedings of cosade’12, lncs vol.
7275, Springer, 2012, pp. 183-198.

References

[AT03] T. Akishita and T. Takagi, Zero-Value Point Attacks on Elliptic Curve Cryptosystem.
Proceedings of isc’03, lncs vol. 2851, Springer, 2003, pp. 218-233.

[ANSI X9.62] ANSI X9.62, Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ecdsa). ANSI, USA, 1998.

[ANSI X9.63] ANSI X9.63, Public Key Cryptography for the Financial Services Industry: Key
Agreement and Key Transport Using Elliptic Curve Cryptography. ANSI, USA, 2001.

[AVFM07] F. Amiel, K. Villegas, B. Feix and L. Marcel, Passive and Active Combined Attacks:
Combining Fault Attacks and Side Channel Analysis. fdtc’07, IEEE Computer Society, 2007,
pp. 92-102.

[Baj98] J.-C. Bajard, An RNS Montgomery Modular Multiplication Algorithm. IEEE Trans.
Computers vol. 47, iss. 7, 1998, pp. 766-776.

139

140 REFERENCES

[BCN+06] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall and C. Whelan, The Sorcerer’s
Apprentice Guide to Fault Attacks. Proceedings of the IEEE’06, vol. 94, iss. 2, pp. 370-382.

[Bar86] P. Barrett, Implementing the Rivest Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor. Proceedings of crypto’86, lncs vol.
263, Springer, 1987, pp. 311-323.

[BJPW13a] A. Bauer, É. Jaulmes, E. Prouff and J. Wild, Horizontal and Vertical Side-Channel
Attacks against Secure rsa Implementations. Proceedings of ct-rsa’13, lncs vol. 7779,
Springer, 2013, pp. 1-17.

[BJPW13b] A. Bauer, É. Jaulmes, E. Prouff and J. Wild, Horizontal Collision Correlation
Attack on Elliptic Curves. To appear in the proceedings of sac’13, lncs.

[BL04] D. J. Bernstein and T. Lange, Explicit-formulas database. 2004, hyperelliptic.org/
EFD.

[BMM00] I. Biehl, B. Meyer and V. Müller, Differential Fault Attacks on Elliptic Curve Cryp-
tosystems. Proceedings of crypto’00, lncs vol. 1880, Springer, 2000, pp. 131-146.

[BS97] E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems.
Proceedings of crypto’97, lncs vol. 1294, Springer-Verlag, 1997, pp. 513-525.

[BSS99] I. Blake, G. Seroussi and N. Smart, Elliptic Curves in Cryptography. Cambridge Uni-
versity Press, 1999.

[BOS06] J. Blömer, M. Otto and J.-P. Seifert, Sign Change Fault Attacks on Elliptic Curve
Cryptosystems. Proceedings of fdtc’06, lncs vol. 4236, Springer, 2006, pp. 36-52.

[BDL97] D. Boneh, R. DeMillo and R. Lipton, On the Importance of Checking Cryptographic
Protocols for Faults (Extended Abstract). Proceedings of eurocrypt’97, lncs vol. 1233,
Springer-Verlag, 1997, pp. 37-51.

[BHT09] A. Boscher, H. Handschuh and E. Trichina, Blinded Fault Resistant Exponentiation
Revisited. fdtc’09, IEEE Computer Society, 2009, pp. 3-9.

[BJ02] É. Brier and M. Joye, Weierstraß Elliptic Curves and Side-Channel Attacks. Proceedings
of pkc’02, lncs vol. 2274, Springer, 2002, pp. 335-345.

[CJ03] M. Ciet and M. Joye, (Virtually) Free Randomization Techniques for Elliptic Curve
Cryptography. Proceedings of icis’03, lncs vol. 2836, Springer, 2003, pp. 348-359.

[CJ05] M. Ciet and M. Joye, Elliptic Curve Cryptosystems in the Presence of Permanent and
Transient Faults. Des. Codes Cryptography vol. 36, iss. 1, 2005, pp. 33-43.

[CRR02] S. Chari, J. R. Rao and P. Rohatgi, Template Attacks. Proceedings of ches’02, lncs
vol. 2523, Springer, 2003, pp. 13-28.

[CCJ04] B. Chevallier-Mames, M. Ciet and M. Joye, Low-Cost Solutions for Preventing Simple
Side-Channel Analysis: Side-Channel Atomicity. IEEE Trans. Computers vol. 53, iss. 6, 2004,
pp. 460-468.

[CC86] D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Adv. Appl. Math. vol. 7, iss. 4,
1986, pp. 385-502.

REFERENCES 141

[CFG+12] C. Clavier, B. Feix, G. Gagnerot, C. Giraud, M. Rousselet and V. Verneuil,
ROSETTA for Single Trace Analysis. Proceedings of indocrypt’12, lncs vol. 7668, Springer,
2012, pp. 140-155.

[CFG+11] C. Clavier, B. Feix, G. Gagnerot, M. Rousselet and V. Verneuil, Improved Collision-
Correlation Power Analysis on First Order Protected aes. Proceedings of ches’11, lncs vol.
6917, Springer, 2011, pp. 49-62.

[CFG+10] C. Clavier, B. Feix, G. Gagnerot, M. Roussellet and V. Verneuil, Horizontal Corre-
lation Analysis on Exponentiation. Proceedings of icics’10, lncs vol. 6476, Springer, 2010,
pp. 46-61.

[CJ01] C. Clavier and M. Joye, Universal Exponentiation Algorithm. Proceedings of ches’01,
lncs vol. 2162, Springer, 2001, pp. 300-308.

[CFA+06] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren,
Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, 2006.

[CMO98] H. Cohen, A. Miyaji and T. Ono, Efficient Elliptic Curve Exponentiation Using Mixed
Coordinates. Proceedings of asiacrypt’98, lncs vol. 1514, Springer, 1998, pp. 51-65.

[Cor99] J.-S. Coron, Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. Proceedings of ches’99, lncs vol. 1717, Springer, 1999, pp. 292-302.

[DKL+98] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater and J.-L. Willems,
A Practical Implementation of the Timing Attack. Proceedings of cardis’98, lncs vol. 1820,
Springer, 2000, pp. 167-182.

[DH11] A. Dominguez-Oviedo and M. A. Hansan, Algorithm-level error detection for Mont-
gomery ladder-based ecsm. J. Cryptographic Engineering vol. 1, iss. 1, 2011, pp 57-69.

[FGV11] J. Fan, B. Gierliches and F. Vercauteren, To Infinity and Beyond: Combined Attack
on ecc Using Points of Low Order. Proceedings of ches’11, lncs vol. 6917, Springer, 2011,
pp. 143-159.

[FGD+10] J. Fan, X. Guo, E. De Mulder, P. Schaumont, B. Preneel and I. Verbauwhede, State-
of-the-art of Secure ECC Implementations: A Survey on Known Side-channel Attacks and
Countermeasures. Proceedings of host’10, IEEE Computer Society, 2010, pp. 76-87.

[FPPR12] J.-C. Faugères, L. Perret, C. Petit and G. Renault, Improving the Complexity of In-
dex Calculus Algorithms in Elliptic Curves over Binary Fields. Proceedings of eurocrypt’12,
lncs vol. 7237, Springer, 2012, pp. 27-44.

[FIPS186-3] FIPS PUB 186-3. Digital Signature Standard (DSS). NIST, USA, 2009.

[FLRV08] P.-A. Fouque, R. Lercier, D. Réal and F. Valette, Fault Attack on Elliptic Curve
Montgomery Ladder Implementation. fdtc’08, IEEE Computer Society, 2008, pp. 92-98.

[FRVD08] P.-A. Fouque, D. Réal, F. Valette and M. Drissi, The Carry Leakage on the Ran-
domized Exponent Countermeasure. Proceedings of ches’08, lncs vol. 5154, Springer, 2008,
pp. 198-213.

[FSW02] P.-A. Fouque, J. Stern and J.G. Wackers, CryptoComputing with Rationals. Proceed-
ings of Financial Cryptography’02, lncs vol. 2357, Springer, 2003, pp. 136-146.

142 REFERENCES

[FV03] P.-A. Fouque and F. Valette, The Doubling Attack - Why Upwards Is Better than
Downwards. Proceedings of ches’03, lncs vol. 2779, Springer, 2003, pp. 269-280.

[Gir06] C. Giraud, An rsa Implementation Resistant to Fault Attacks and to Simple Power
Analysis. IEEE Trans. Computers vol. 55, iss. 9, 2006, pp. 1116-1120.

[GV10] C. Giraud and V. Verneuil, Atomicity Improvement for Elliptic Curve Scalar Multipli-
cation. Proceedings of cardis’10, lncs vol. 6035, Springer, 2010, pp. 80-101.

[Gou03] L. Goubin, A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems. Pro-
ceedings of pkc’03, lncs vol. 2567, Springer-Verlag, 2002, pp. 199-210.

[GJM10] R. R. Goundar, M. Joye and A. Miyaji, Co-Z Addition Formulæ and Binary Ladders
on Elliptic Curves - (Extended Abstract). Proceedings of ches’10, lncs vol. 6225, Springer-
Verlag, 2010, pp. 65-79.

[GJM+11] R. R. Goundar, M. Joye, A. Miyaji, M. Rivain and A. Venelli, Scalar multiplication
on Weierstraß elliptic curves from Co-Z arithmetic. J. Cryptographic Engineering vol. 1, iss.
2, 2011, pp 161-176.

[Has36] H. Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper III. J. Reine
Angew. Math. vol. 1936, iss. 175, pp 193–208.

[HQ00] G. Hachez and J.-J. Quisquater, Montgomery Exponentiation with no Final Subtrac-
tions: Improved Results. Proceedings of ches’00, lncs vol. 1965, Springer, 2000, pp. 293-301

[HMV03] D. Hankerson, A. J. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography.
Springer-Verlag New York, Inc., 2003.

[HS01] N. Howgrave-Graham and N. Smart, Lattice Attacks on Digital Signature Schemes.
Des. Codes Cryptography vol. 23, iss. 3, 2001, pp. 283-290.

[HJS11] M. Hutter, M. Joye, and Y. Sierra, Memory-Constrained Implementations of Elliptic
Curve Cryptography in Co-Z Coordinate Representation. Proceedings of africacrypt’11,
lncs vol. 6737, Springer, 2011, pp. 170-187.

[IIT02] K. Itoh, T. Izu and M. Takenaka, Address-Bit Differential Power Analysis of Crypto-
graphic Schemes ok-ecdh and ok-ecdsa. Proceedings of ches’02, lncs vol. 2523, Springer,
2003, pp. 129-143.

[IIT03] K. Itoh, T. Izu and M. Takenaka, A Practical Countermeasure against Address-Bit
Differential Power Analysis. Proceedings of ches’03, lncs vol. 2779, Springer, 2003, pp.
382-396.

[IIT04] K. Itoh, T. Izu and M. Takenaka, Efficient Countermeasures against Power Analysis
for Elliptic Curve Cryptosystems. cardis’04, Kluwer, 2004, pp. 99-114.

[IMT02] T. Izu, B. Möller and T. Takagi, Improved Elliptic Curve Multiplication Methods
Resistant against Side Channel Attacks. indocrypt’02, lncs vol. 2551, Springer, 2002, pp.
296-313.

[IT03] T. Izu and T. Takagi, Exceptional Procedure Attack on Elliptic Curve Cryptosystems.
Proceedings of pkc’03, lncs vol. 2567, Springer, 2003, pp. 224-239.

[IISO10] M. Izumi, J. Ikegami, K. Sakiyama and K. Ohta, Improved countermeasure against
Address-bit DPA for ecc scalar multiplication. date’10, IEEE, 2010, pp. 981-984.

REFERENCES 143

[Joy07] M. Joye, Highly Regular Right-to-Left Algorithms for Scalar Multiplication. Proceed-
ings of ches’07, lncs vol. 4727, Springer, 2007, pp. 135-147.

[JT01] M. Joye and C. Tymen, Protections against Differential Analysis for Elliptic Curve
Cryptography. Proceedings of ches’01, lncs vol. 2162, Springer, 2001, pp. 377-390.

[JY02] M. Joye and S.-M. Yen, The Montgomery Powering Ladder. Proceedings of ches’02,
lncs vol. 2162, Springer, 2003, pp. 291-302.

[Kob87] N. Koblitz, Elliptic Curve Cryptosystems. Mathematics of Computation vol. 48, iss.
177, 1987, pp 203-209.

[KA96] C. K. Koa̧nd T. Acar, Analyzing and Comparing Montgomery Multiplication Algo-
rithms. Micro, IEEE vol. 16, iss. 3, 1996, pp. 26-33.

[Koc96] P. C. Kocher, Timing Attacks on Implementations of Diffie-Hellman, rsa, dss, and
Other Systems. Proceedings of crypto’96, lncs vol. 1109, Springer, 1996, pp. 104-113.

[LLL82] A.K. Lenstra, H.W. Lenstra and L. Lovàsz, Factoring polynomials with rational coef-
ficients. Math. Ann. vol. 261, 1982, pp. 515-534.

[MMM04] H. Mamiya, A. Miyaji and H. Morimoto, Efficient Countermeasures against RPA,
DPA, and SPA. Proceedings of ches’04, lncs vol. 3156, Springer, 2004, pp. 343-356.

[MO08] M. Medwed and E. Oswald, Template Attacks on ecdsa. Proceedings of wisa’08, lncs
vol. 5379, Springer, 2009, pp. 14-27.

[Mel07] N. Meloni, New Point Addition Formulae for ecc Applications. Proceedings of
waifi’07, lncs vol. 4547, Springer, 2007, pp. 189-201.

[Mil85] V. S. Miller, Use of elliptic curves in cryptography. Proceedings of crypto’85, lncs
vol. 218, Springer, 1985, pp. 417-426.

[Mon85] P. L. Montgomery, Modular Multiplication without Trial Division. Mathematics of
Computation vol. 44, iss. 170, 1985, pp 519-521.

[MV06] F. Muller and F. Valette, High-Order Attacks Against the Exponent Splitting Protec-
tion. Proceedings of pkc’06, lncs vol. 3958, Springer, 2006, pp. 315-329.

[NSS04] D. Naccache, N. Smart and J. Stern, Projective Coordinates Leak. Proceedings of
eurocrypt’04, lncs vol. 3027, Springer, 2004, pp. 257-267.

[PW04] V.Y. Pan and X. Wang, On Rational Number Reconstruction and Approximation.
SIAM J. Comput. vol. 33, iss. 2, 2004, pp. 502-503.

[Pol78] J. Pollard, Monte Carlo methods for Index Computation (mod p). Mathematics of
Computation vol. 32, iss. 143, 1978, pp 918-924.

[Qui90] J.J. Quisquater, Procédé de codage selon la méthode dite rsa par un microcontrôleur
et dispositifs utilisant ce procédé. Demande de brevet français, No de dépôt 90 02274, 1990.

[Qui91] J.J. Quisquater, Encoding system according to the so-called rsa method, by means of
a microcontroller and arrangement implementing this system. U.S. Patent #5,166,978, 1991.

[SASEBO] Side-channel Attack Standard Evaluation Board (SASEBO). http://www.rcis.
aist.go.jp/special/SASEBO/

144 REFERENCES

[SST04] H. Sato, D. Schepers and T. Takagi, Exact Analysis of Montgomery Multiplication.
Proceedings of indocrypt’04, lncs vol. 3348, Springer, 2004, pp. 290-304.

[SWP03] K. Schramm, T.J. Wollinger and C. Paar, A New Class of Collision Attacks and Its
Application to des. fse’03, lncs vol. 2887, Springer-Verlag, 2003, pp. 206-222.

[Sha71] D. Shanks, Class Number, a Theory of Factorization and Genera. Proceedings of Sym-
posia in Pure Mathematics vol. 20, 1971, pp. 415-440.

[Str64] E. G. Straus, Addition chains of vectors (problem 5125). The American Mathemat-

ical Monthly vol. 71, num. 7, 1964, pp. 806-808.

[ST06] D. Stebila and N. Thériault, Unified Point Addition Formulæ and Side-Channel Attacks.
Proceedings of ches’06, lncs vol. 4249, Springer, 2006, pp. 354-368.

[SAGE12] W. A. Stein et al. Sage Mathematics Software (Version 5.0). The Sage Development
Team, 2012, http://www.sagemath.org.

[TE02] E. Trichina and A. Bellezza, Implementation of Elliptic Curve Cryptography with Built-
In Counter Measures against Side Channel Attacks. Proceedings of ches’02, lncs vol. 2523,
Springer, 2002, pp. 98-113.

[Val91] B. Vallée, Gauss’ Algorithm Revisited. Journal of Algorithms vol. 12, iss. 4, 1991, pp.
556-572.

[Ver12] V. Verneuil, Cryptographie à base de courbes elliptiques et sécurité de composants
embarqués. Ph.D. thesis, Université de Bordeaux, 2012.

[Wal99] C. D. Walter, Montgomery’s Multiplication Technique: How to Make It Smaller and
Faster. Proceedings of ches’99, lncs vol. 1717, Springer, 1999, pp. 80-93.

[Wal01] C. D. Walter, Sliding Windows Succumbs to Big Mac Attack. Proceedings of ches’01,
lncs vol. 2162, Springer, 2001, pp. 286-299.

[Wal04] C. D. Walter, Simple Power Analysis of Unified Code for ecc Double and Add. Pro-
ceedings of ches’04, lncs vol. 3156, Springer, 2004, pp. 191-204.

[WP03] X. Wang and V.Y. Pan, Acceleration of Euclidean algorithm and rational number
reconstruction. SIAM J. Comput. vol. 32, iss. 2, 2003, pp. 548-556.

[YJ00] S.-M. Yen and M. Joye, Checking Before Output May Not Be Enough Against Fault-
Based Cryptanalysis. IEEE Trans. Computers vol. 49, iss. 9, 2000, pp. 967-970.

[YKLM01] S.-M. Yen, S. Kim, S. Lim and S.-M. Moon, A Countermeasure against One Physical
Cryptanalysis May Benefit Another Attack. Proceedings of icisc’01, lncs vol. 2288, Springer,
2001, pp. 141-427.

Elliptic Curve Formulæ with
register allocation

The following appendix resumes some algorithms of Section 3.1 and, in addition, it gives the
detailed registers allocation.

Classical Formulæ

Algorithm 37 ecadd (register allocation)

Input: P = (X1, Y1, Z1), Q = (X2, Y2, Z2)
Output: P +Q

T1 ← X1; T2 ← Y1; T3 ← Z1

T4 ← X2; T5 ← Y2; T6 ← Z2

1: T7 ← T3 × T6 {Z1Z2}
2: T8 ← T 2

3 {Z2
1}

3: T3 ← T3 × T8 {Z3
1}

4: T3 ← T5 × T3 {D = Y2Z
3
1}

5: T9 ← T4 × T8 {B = X2Z
2
1}

6: T8 ← T 2
6 {Z2

2}
7: T1 ← T1 × T8 {A = X1Z

2
2}

8: T8 ← T8 × T6 {Z3
2}

9: T2 ← T2 × T8 {C = Y1Z
3
2}

10: T9 ← T9 − T1 {E = B −A}
11: T8 ← T3 − T2 {F = D − C}

12: T3 ← T7 × T9 {Z3 = Z1Z2E}
13: T7 ← T 2

9 {E2}
14: T9 ← T7 × T9 {E3}
15: T7 ← T1 × T7 {AE2}
16: T2 ← T2 × T9 {CE3}
17: T1 ← T 2

8 {F 2}
18: T1 ← T1 − T9 {F 2 − E3}
19: T1 ← T1 − T7 {F 2 − E3 −AE2}
20: T1 ← T1 − T7 {X3}
21: T7 ← T7 − T1 {AE2 −X3}
22: T8 ← T8 × T7 {F (AE2 −X3)}
23: T2 ← T8 − T2 {Y3}

return (T1, T2, T3)

Remark .1. T4, T5, T6 are not modified. The operation P ← ecadd(P,Q) can be done with 3
extra temporary registers without modifying the coordinates of Q.

145

146 FORMULÆ WITH REGISTER ALLOCATION

Algorithm 38 mecadd (register allocation)

Input: P = (X1, Y1, Z1), Q = (x2, y2)
Output: P +Q

T1 ← X1; T2 ← Y1; T3 ← Z1

T4 ← x2; T5 ← y2

1: T7 ← T 2
3 {Z2

1}
2: T9 ← T4 × T7 {B = x2Z

2
1}

3: T7 ← T7 × T3 {Z3
1}

4: T7 ← T7 × T5 {D = y2Z
3
1}

5: T9 ← T9 − T1 {E = B −X1}
6: T8 ← T7 − T2 {F = D − Y1}
7: T3 ← T3 × T9 {Z3 = Z1E}
8: T7 ← T 2

9 {E2}
9: T9 ← T9 × T7 {E3}

10: T7 ← T7 × T1 {X1E
2}

11: T2 ← T2 × T9 {Y1E
3}

12: T1 ← T 2
8 {F 2}

13: T1 ← T1 − T9 {F 2 − E3}
14: T1 ← T1 − T7 {F 2 − E3 −X1E

2}
15: T1 ← T1 − T7 {X3}
16: T7 ← T7 − T1 {X1E

2 −X3}
17: T8 ← T8 × T7 {F (X1E

2 −X3)}
18: T2 ← T8 − T2 {Y3}

return (T1, T2, T3)

Algorithm 39 ecdbl (register allocation)

Input: P = (X1, Y1, Z1), elliptic curve parameter a
Output: 2P

T1 ← X1; T2 ← Y1; T3 ← Z1

1: T6 ← T 2
2 {Y 2

1 }
2: T6 ← T6 + T6 {A = 2Y 2

1 }
3: T4 ← T1 × T6 {AX1}
4: T4 ← T4 + T4 {B = 2AX1}
5: T1 ← T 2

1 {X2
1}

6: T5 ← T1 + T1 {2X2
1}

7: T1 ← T1 + T5 {3X2
1}

8: T5 ← T 2
3 {Z2

1}
9: T3 ← T3 × T2 {Y1Z1}

10: T3 ← T3 + T3 {Z3 = 2Y1Z1}
11: T5 ← T 2

5 {Z4
1}

12: T5 ← T5 × a {aZ4
1}

13: T5 ← T5 + T1 {C = 3X2
1 + aZ4

1}
14: T1 ← T 2

5 {C2}
15: T1 ← T1 − T4 {C2 −B}
16: T1 ← T1 − T4 {C2 − 2B = X3}
17: T6 ← T 2

6 {A2}
18: T6 ← T6 + T6 {D = 2A2}
19: T2 ← T4 − T1 {B −X3}
20: T2 ← T2 × T5 {C(B −X3)}
21: T2 ← T2 − T6 {Y3}

return (T1, T2, T3)

147

Co-Z Formulæ

Algorithm 40 zaddu (register allocation)

Input: P = (X1, Y1, Z), Q = (X2, Y2, Z)
Output: (R,S) with R = P +Q and S = (λ2X1, λ

3Y1, λZ) with λ = X1 −X2

T1 ← X1; T2 ← Y1; T3 ← X2; T4 ← Y2; T5 ← Z

1: T6 ← T1 − T3 {X1 −X2}
2: T5 ← T5 × T6 {Z(X1 −X2)}
3: T6 ← T 2

6 {C = (X1 −X2)
2}

4: T7 ← T3 × T6 {W2 = X2C}
5: T3 ← T1 × T6 {W1 = X1C}
6: T6 ← T2 − T4 {Y1 − Y2}
7: T4 ← T3 − T7 {W1 −W2}

8: T4 ← T2 × T4 {A1 = Y1(W1 −W2)}
9: T1 ← T 2

6 {D = (Y1 − Y2)
2}

10: T1 ← T1 − T3 {D −W1}
11: T1 ← T1 − T7 {X3 = D −W1 −W2}
12: T2 ← T3 − T1 {W1 −X3}
13: T2 ← T2 × T6 {Y3 +A1}
14: T2 ← T2 − T4 {Y3}

return ((T1, T2, T5), (T3, T4, T5))

Algorithm 41 zaddc (register allocation)

Input: P = (X1, Y1, Z), Q = (X2, Y2, Z)
Output: (R,S) with R = P +Q, S = P −Q
T1 ← X1; T2 ← Y1; T3 ← X2; T4 ← Y2; T5 ← Z

1: T6 ← T1 − T3 {X1 −X2}
2: T5 ← T5 × T6 {Z(X1 −X2)}
3: T6 ← T 2

6 {C = (X1 −X2)
2}

4: T8 ← T1 × T6 {W1 = X1C}
5: T6 ← T3 × T6 {W2 = X2C}
6: T7 ← T8 − T6 {W1 −W2}
7: T6 ← T8 + T6 {W1 +W2}
8: T7 ← T7 × T2 {A1 = Y1(W1 −W2)}
9: T3 ← T2 − T4 {Y1 − Y2}

10: T4 ← T2 + T4 {Y1 + Y2}

11: T1 ← T 2
3 {D1 = (Y1 − Y2)

2}
12: T1 ← T1 − T6 {X3 = D1 −W1 −W2}
13: T2 ← T8 − T1 {W1 −X3}
14: T2 ← T2 × T3 {Y3 +A1}
15: T2 ← T2 − T7 {Y3}
16: T3 ← T 2

4 {D2 = (Y1 + Y2)
2}

17: T3 ← T3 − T6 {X4 = D2 −W1 −W2}
18: T6 ← T8 − T3 {W1 −X4}
19: T4 ← T4 × T6 {Y4 +A1}
20: T4 ← T4 − T7 {Y4}

return ((T1, T2, T5), (T3, T4, T5))

148 FORMULÆ WITH REGISTER ALLOCATION

Algorithm 42 zaddu-iso-shifting (register allocation)

Input: P ′ = (X1, Y1, Z, U = a′2Z
2), Q′ = (0, Y2, Z, U)

Output: (R′, S′) with R′ = P ′ +Q′ and S′ = (λ2X1, λ
3Y1, λZ, a

′
2(λZ)2) with λ = X1

T1 ← X1; T2 ← Y1; T4 ← Y2; T5 ← Z; T6 ← U

1: T5 ← T5 × T1 {Z3 = ZX1}
2: T7 ← T 2

1 {C = X2
1}

3: T3 ← T1 × T7 {W1 = X1C}
4: T6 ← T6 × T7 {U3 = UC}
5: T7 ← T2 − T4 {Y1 − Y2}
6: T4 ← T2 × T3 {A1 = Y1W1}

7: T1 ← T 2
7 {D = (Y1 − Y2)

2}
8: T1 ← T1 − T6 {D − U3}
9: T1 ← T1 − T3 {X3 = D −W1 − U3}

10: T2 ← T3 − T1 {W1 −X3}
11: T2 ← T2 × T7 {Y3 +A1}
12: T2 ← T2 − T4 {Y3}

return ((T1, T2, T5, T6), (T3, T4, T5, T6))

Algorithm 43 zaddc-iso-shifting (register allocation)

Input: P ′ = (X1, Y1, Z, U = a′2Z
2), Q′ = (X2, Y2, Z, U) such that xP ′−Q′ = 0.

Output: (R′, S) with R′ = P ′ +Q′, S′ = P ′ −Q′

T1 ← X1; T2 ← Y1; T3 ← X2; T4 ← Y2; T5 ← Z; T6 ← U

1: T7 ← T1 − T3 {X1 −X2}
2: T5 ← T5 × T7 {Z(X1 −X2)}
3: T7 ← T 2

7 {C = (X1 −X2)
2}

4: T6 ← T6 × T7 {U3 = UC}
5: T8 ← T3 × T7 {W2 = X2C}
6: T3 ← T1 × T7 {W1 = X1C}
7: T1 ← T3 + T8 {W1 +W2}
8: T8 ← T3 − T8 {W1 −W2}
9: T8 ← T8 × T2 {A1 = Y1(W1 −W2)}

10: T7 ← T2 − T4 {Y1 − Y2}

11: T4 ← T2 + T4 {Y1 + Y2}
12: T4 ← T4 × T3 {(Y1 + Y2)W1}
13: T2 ← T 2

7 {D = (Y1 − Y2)
2}

14: T2 ← T2 − T6 {D − U3}
15: T1 ← T2 − T1 {X3 = D−W1 −W2 −U3}
16: T3 ← T3 − T1 {W1 −X3}
17: T2 ← T7 × T3 {Y3 +A1}
18: T2 ← T2 − T8 {Y3}
19: T4 ← T4 − T8 {Y4}
20: T3 ← 0

return ((T1, T2, T5, T6), (T3, T4, T5, T6))

