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Abstract

Elliptic Curve Cryptography ( ecc ) has gained much importance in smart cards because of
its higher speed and lower memory needs compared with other asymmetric cryptosystems such
as rsa . ecc is believed to be unbreakable in the black box model, where the cryptanalyst has
access to inputs and outputs only. However, it is not enough if the cryptosystem is embedded on
a device that is physically accessible to potential attackers. In addition to inputs and outputs,
the attacker can study the physical behaviour of the device. This new kind of cryptanalysis is
called Physical Cryptanalysis where two main families arise:Side-Channeland Fault Attacks .
Side-Channel Attacks exploit information leaking during the execution of a cryptographic algo-
rithm embedded in a device. In a Fault Attack, the attacker forces the device into an abnormal
mode of operation. The attacker can potentially derive the secrets stored in the system from
the wrong results. This thesis focuses on physical cryptanalysis of ecc .

The �rst part gives the background on ecc . From the lowest to the highest level, ecc
involves a hierarchy of tools: Finite Field Arithmetic, Elliptic Curve Arithmetic, Elliptic Curve
Scalar Multiplication and Cryptographic Protocol. Depending on the physical attack, the crypt-
analyst must have a certain knowledge of the implementation to a certain level. Therefore, each
level of the hierarchy is described in detail in a chapter.

The second part exhibits a state-of-the-art of the di�erent physical attacks and countermea-
sures onecc . For each attack, the context on which it can be applied is given while, for each
countermeasure, we estimate the time and memory cost. We propose new attacks and new
countermeasures. Then, we give a clear synthesis of the attacks depending on the context. This
is useful during the task of selecting the countermeasures. Finally, we give a clear synthesis of
the e�ciency of each countermeasure against the attacks.
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R�esum�e

La Cryptographie sur les Courbes Elliptiques (abr�evi�ee ecc de l'anglaisElliptic Curve Cryp-
tography) est devenue tr�es importante dans les cartes �a puces car elle pr�esente de meilleures
performances en temps et en m�emoire compar�ee �a d'autres cryptosyst�emes asym�etriques comme
rsa . ecc est pr�esum�e incassable dans le mod�ele dit \Bô�te Noire", o�u le c ryptanalyste a unique-
ment acc�es aux entr�ees et aux sorties. Cependant, ce n'est pas su�sant si le cryptosyst�eme
est embarqu�e dans un appareil qui est physiquement accessible �ade potentiels attaquants. En
plus des entr�es et des sorties, l'attaquant peut �etudier le comportement physique de l'appareil.
Ce nouveau type de cryptanalyse est appel�ecryptanalyse physique, qui se distinguent en deux
grandes familles: attaques par canal auxiliaire et attaques en fautes. Les attaques par canal
auxiliaire exploitent l'information �emanant de l'appareil pendant l' ex�ecution d'un algorithme
cryptographique. Concernant les attaques en fautes, l'attaquant force l'appareil �a e�ectuer
un mode d'op�erations anormal. �A partir des faux r�esultats, l'attaquant peut potentiellement
d�eriver les secrets stock�es sur la carte. Cette th�ese portesur les attaques physiques surecc .

La premi�ere partie fournit les pr�e-requis sur ecc . Du niveau le plus bas au plus �elev�e, ecc
n�ecessite les outils suivants : l'arithm�etique sur les corps �nis, l'arithm�etique sur courbes ellip-
tiques, la multiplication scalaire sur courbes elliptiques et en�n les protocoles cryptographiques.
Les attaques physiques n�ecessitent une certaine connaissance de l'impl�ementation vis�ee jusqu'�a
un certain niveau dans la hi�erarchie. Ainsi, chaque niveau est d�ecrit de fa�con d�etaill�ee dans un
chapitre.

La deuxi�eme partie expose un �etat de l'art des di��erentes attaqu es physiques et con-
tremesures surecc . Pour chaque attaque, nous donnons le contexte dans lequel elle est ap-
plicable. Pour chaque contremesure, nous estimons son coût en temps et en m�emoire. Nous
proposons de nouvelles attaques et de nouvelles contremesures. Ensuite, nous donnons une
synth�ese claire des attaques suivant le contexte. Cette synth�ese est utile pendant la tâche du
choix des contremesures. En�n, une synth�ese claire de l'e�cacit�e de chaque contremesure sur
les attaques est donn�ee.
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Description des travaux

La cryptographie est une science qui permet de prot�eger des messages. Avant l'envoi d'un
message, il est d'abord transform�e de fa�con �a ce qu'il soit incompr�ehensible sauf pour le des-
tinataire du message : c'est le chi�rement. La con�dentialit�e est al ors assur�ee. La m�ethode
inverse est appel�e le d�echi�rement. En plus de la con�dential it�e, la cryptographie remplit
d'autres fonctionnalit�es telles que l'authenti�cation et l'int� egrit�e.

Par le principe de Kerckho�s, la s�ecurit�e d'un cryptosyst�em e doit uniquement reposer sur
une donn�ee secr�ete et non sur les m�ethodes utilis�ees pour chi�rer ou d�echi�rer des messages.
Cette donn�ee secr�ete est appel�eecl�e . Deux grandes familles de cryptosyst�emes existent: la
cryptographie sym�etrique et asym�etrique.

Dans un cryptosyst�eme sym�etrique, la même cl�e est utilis�ee pour chi�rer et d�echi�rer des
messages.

Dans un cryptosyst�eme asym�etrique, deux cl�es sont utilis�ees. Une cl�e est publiquement
di�us�ee et sert �a e�ectuer des proc�edures publiques tell es que le chi�rement de messages ou la
v�eri�cation de signatures. Cette cl�e est appel�ee cl�e publique. Lorsqu'un message est chi�r�e, per-
sonne n'est capable de le d�echi�rer sauf le propri�etaire de la seconde cl�e, appel�ee cl�e priv�ee . Le
d�etenteur de cette cl�e priv�ee est aussi le seul capable de signer des messages. La cryptographie
asym�etrique apporte plus de fonctionnalit�es que la cryptographie sym�etrique mais elle n�ecessite
des calculs beaucoup plus importants que la cryptographie sym�etrique. G�en�eralement, la cryp-
tographie asym�etrique est utilis�ee au d�epart d'une communication entre deux entit�es pour
l'authenti�cation et l'�echange d'une cl�e sym�etrique. Une fois f ait, les deux entit�es commu-
niquent en utilisant un cryptosyst�eme sym�etrique avec la cl�e �echang�ee que seules ces entit�es
connaissent. rsa fut le premier cryptosyst�eme asym�etrique, introduit par Riv est, Shamir et
Adleman en 1977. �A la �n des ann�ees 1980, Koblitz et Miller ont pr�esent�e l'utilisati on des
courbes elliptiques pour des applications cryptographiques. Cetteth�ese se focalise sur la Cryp-
tographie sur Courbes Elliptiques (abr�evi�ee ecc , de l'anglais Elliptic Curve Cryptography ).

La s�ecurit�e d'un cryptosyst�eme est assur�ee par de fortes preuves math�ematiques dans le
mod�ele de la bô�te noire. Dans ce mod�ele, l'attaquant a uniquement acc�es aux entr�ees et aux
sorties.

La cryptographie est beaucoup utilis�ee dans les cartes �a puces. Un nouveau type d'attaques
sur les cartes �a puces a vu le jour �a la �n des ann�ees 1990. Kocher a montr�e qu'une sim-
ple analyse du temps d'ex�ecution �etait su�sante pour r�ecup�er er la cl�e utilis�ee dans la carte
cibl�ee. Depuis, de nombreuses attaques de ce type ont �emerg�e.Elles se basent sur l'observation
du comportement de la cible pendant l'ex�ecution d'un algorithme cryptographique. Ce type
d'attaques est appel�e attaques physiques. Les preuves de s�ecurit�e dans le mod�ele de la bô�te
noire ne sont pas su�santes dans ce cas. Bien sûr, de nombreuses m�ethodes existent pour
contrer ces attaques.
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8 Description des travaux

Cette th�ese s'adressent aux designers d�eveloppant des applications cryptographiques �a base
de courbes elliptiques embarqu�ees s�ecuris�ees. La premi�ere partie donne les pr�e-requis deecc .
La seconde partie se focalisent sur les attaques physiques et contremesures surecc . En plus d'un
�etat-de-l'art complet, nous introduisons de nouvelles attaques etde nouvelles contremesures.

Partie I : Cryptographie sur Courbes Elliptiques

Cette partie fournit les pr�e-requis sur ecc . Du niveau le plus bas au plus �elev�e, ecc n�ecessite
les outils suivants : l'arithm�etique sur les corps �nis, l'arith m�etique sur courbes elliptiques,
la multiplication scalaire sur courbes elliptiques et en�n les protocoles cryptographiques. Les
attaques physiques n�ecessitent une certaine connaissance de l'impl�ementation vis�ee jusqu'�a un
certain niveau dans la hi�erarchie. Ainsi, chaque niveau est d�ecrit de fa�con d�etaill�ee dans un
chapitre.

Cette partie est en fait un �etat-de-l'art des di��erentes m�eth odes de calcul sur les courbes
elliptiques.

Chapitre 1 : D�e�nition des Courbes Elliptiques

Ce chapitre d�ecrit les courbes elliptiques et leurs propri�et�es. �A savoir, une courbe elliptique
sur un corps K de caract�eristique di��erente de deux et trois, est d�e�ni par s on �equation de
Weierstra� r�eduite :

E : y2 = x3 + ax + b :

aveca; b2 K v�eri�ant 4 a3 + 27b2 6= 0.

Dans ce chapitre, nous donnons �egalement les propri�et�es principales des courbes elliptiques.
Parmi celles-ci, nous insistons sur leur structure de groupe car c'est ce qui fait des courbes
elliptiques de bons outils pour la cryptographie. Les points de la courbe elliptiques forment un
groupe ab�elien additif, en suivant la r�egle de la s�ecante tangente illustr�e ci-dessous surR.

Figure 1: Addition et doublement de points sur la courbey2 = x3  2x + 1 sur R

Nous pr�esentons �egalement le syst�eme de coordonn�ees projectives. Dans ce syst�eme, les
points de la courbe sont d�e�nis avec trois coordonn�ees (X; Y; Z ) au lieu de deux (x; y). Ce
syst�eme et ses variantes (tel que les coordonn�ees Jacobiennes) sont tr�es utilis�es car ils permettent
d'�eviter d'e�ectuer de nombreuses inversions modulaires tr�es coûteuses.
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Chapitre 2 : Arithm�etique sur les Corps Finis

Les courbes elliptiques les plus utilis�ees sont les courbes elliptiques d�e�nies sur un corps premier
de grande caract�eristique. Ainsi, les op�erations de bases sur les courbes elliptiques, mais aussi
sur rsa , sont les op�erations sur le corpsFp avecp > 3. Ces op�erations sont tr�es importantes car
elles doivent être tr�es performantes. Elles sont donc tr�es �etudi�ees tant au niveau algorithmique
qu'au niveau de l'impl�ementation logicielle ou mat�erielle.

Certaines attaques physiques se focalisent sur ce niveau le plus bas de la hi�erarchie. Nous
d�ecrivons donc en d�etails certaines impl�ementations pour une grande compr�ehension de ces
attaques. Nous d�ecrivons notamment en d�etails la multiplication de M ontgomery qui tr�es
largement r�epandue.

Chapitre 3: Arithm�etique sur les Courbes Elliptiques

De nombreuses formules existent pour calculer l'addition de deux points ou le doublement d'un
point. On trouve aussi d'autres formules plus exotiques telles quel'addition conjugu�e de deux
points P et Q qui calcule P + Q et P " Q au sein de la même formule.

Ce chapitre synth�etise les di��erentes formules les plus utilis�ees. Une synth�ese sur le coût
des formules en temps et en m�emoire est fourni �a la �n de ce chapitre.

Chapitre 4 : Multiplication Scalaire

La multiplication scalaire sur courbes elliptiques (ecsm de l'anglais Elliptic Curve Scalar Mul-
tiplication ) est l'op�eration qui consiste �a calculer

[k]P = P + � � � + P| {z }
k fois

;

�a partir d'un point P de la courbe donn�ee et d'un entierk.

Ce chapitre donne les algorithmes de multiplication scalaire les plusutilis�es. Les multipli-
cations scalaires sont r�epertori�ees en fonction de la r�egularit�e. Un ecsm est dit r�egulier si, �a
chaque it�eration, les mêmes op�erations sur la courbe sont e�ectu�es quel que soit la valeur du
scalaire.

Cette distinction est importante pour la s�ecurit�e physique pu isqu'une multiplication scalaire
r�eguli�ere est prot�eg�ee face �a l'une des premi�eres attaques en canaux auxiliaires : l'attaque Simple
Side-Channel Analysis.

De même que pour les formules sur courbes elliptiques, une synth�ese est donn�ee �a la �n du
chapitre sur le coût des di��erents algorithmes de multiplicati on scalaire.

Chapitre 5 : Protocoles Cryptographiques

Ce chapitre d�ecrit certains protocoles cryptographiques bas�es sur les courbes elliptiques. Le
protocole de signatureecdsa , le protocole d'�echange de cl�esecdh et le protocole de chi�rement
ec-elgamal sont d�ecrits. Voici la proc�edure de signature ecdsa qui sera utile par la suite.
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Algorithm 1 ecdsa Signature
Entr�ee: cl�e priv�ee d, un entier encod�e m 2 [0; p  1] repr�esentant un message
Sortie: Signature (r; s)

1: k R! f 1; : : : ; t  1g
2: Q ! [k]G
3: r ! xQ mod t
4: if r = 0 then
5: go to ligne 1
6: kinv ! k 1 mod t
7: s ! kinv (dr + m) mod t
8: if s = 0 then
9: go to ligne 1

10: return (r; s)

Toutes les proc�edures priv�ees de ces protocoles n�ecessitent le calcul d'une multiplication
scalaire [k]P avec k devant rester imp�erativement secret sinon la cl�e priv�ee du syst�eme cryp-
tographique est retrouv�ee.

Chapitre 6 : S�ecurit�e de ECC

La s�ecurit�e de ecc dans le mod�ele de la bô�te noire repose sur la di�cult�e du Logarithme
Discret sur Courbes Elliptiques (ecdlp de l'anglais Elliptic Curve Discrete Logarithm
Problem) ou de ses variantes. Le probl�emeecdlp consiste �a retrouver k en ayant acc�es �a P et
Q = [ k]P.

Ce probl�eme est consid�er�e comme di�cile. Actuellement, les m eilleurs algorithmes permet-
tant de le r�esoudre sont l'algorithme rho de Pollard [Pol78] et l'algorithm e Baby-step Giant-Step
[Sha71]. Ils ont tous les deux une complexit�e deO(

p
t) o�u t = ord(P). Lors d'une application

cryptographique, si l est le param�etre de s�ecurit�e (par exemple 128 ou 256), la courbe elliptique
est choisie de telle sorte qu'il existe un pointP d'ordre ord(P) � 22l .

G�en�eralement, les attaques physiques visent �a r�ecup�erer le scalaire k avec des m�ethodes
totalement di��erentes, sans r�esoudre le ecdlp . Heureusement, il existe aussi des m�ethodes
pour parer ces attaques. C'est le sujet de la seconde partie de la th�ese.

Partie II : Attaques physiques et contremesures sur ECC

Cette partie d�ecrit les di��erentes attaques physiques et cont remesures surecc . Les attaques
et contremesures sont tr�es nombreuses et doivent être d�ecrites suivant une m�ethodologie. Le
chapitre 7 explique comment les di��erentes attaques seront d�ecrites. Le chapitre 8 est le c�ur
de la th�ese car c'est dans ce chapitre qu'on liste toutes les attaques et contremesures. Nous
pr�esentons �egalement de nouvelles attaques et contremesures. Dans le chapitre 9, nous ex-
pliquons comment il est possible d'e�ectuer des attaques en faute di��erentielles sur ecdsa .
En�n, les chapitres 10 et 11 sont des synth�eses des attaques et des contremesures.
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Chapitre 7 : Caract�erisation
�Etant donn�e le tr�es grand nombre d'attaques physiques sur ecc , il est important de choisir des
termes pr�ecis pour les d�ecrire. Les attaques sont class�ees en trois cat�egories :

� Attaques par canaux auxiliaires. L'attaquant observe le comportement de la cible
sans le perturber. Jusqu'�a maintenant, les di��erents attaques par canaux auxiliaires sont:

{ Attaques temporelles. L'attaquant d�eduit de l'information sur le secret en analysant
le temps d'ex�ecution.

{ Attaques par analyse simple. L'attaquant observe les di��erents motifs de la
consommation courant ou du rayonnement �electromagn�etique pendant l'ex�ecution
d'un algorithme cryptographique.

{ Attaques par templates. L'attaquant contrôle une carte (c'est �a dire qu'il peut
choisir les donn�ees mais aussi les secrets) ayant exactement les mêmes caract�eristiques
physiques que la carte cibl�ee. Il r�ecup�ere la trace de consommation courant ou du
rayonnement �electromagn�etique de sa carte qu'il contrôle en faisant varier des sous-
parties de la cl�e. Cette phase constitue les templates. Il r�ecup�ere ensuite la trace de
la cible et compare celle-ci avec les templates pour conclure quelsecret est le plus
probable.

{ Attaques en canaux auxiliaires verticales. Plusieurs ecsms sont ex�ecut�es et
l'attaquant r�ecup�ere la trace de consommation �a chaque fois. Un outil statistique
est appliqu�e sur les traces pour d�eduire les valeurs utilis�ees et donc le secret.

{ Attaques en canaux auxiliaires horizontales. Une seule trace est disponible.
L'attaquant utilise des outils statistiques sur des segments de la trace.

� Attaques en faute. L'attaquant perturbe le syst�eme et les r�esultats �eventuellem ent
incorrects peuvent d�eduire de l'information. Pour ecc , les di��erentes attaques en faute
sont :

{ Attaques Safe-Error. L'attaquant injecte une faute sur une zone pr�ecise �a un
moment pr�ecis de l'ex�ecution. Le r�esultat �nal sera incorrect u niquement si le secret
v�eri�e certaines conditions.

{ Attaques par courbes faibles. Une donn�ee est perturb�ee. L'ecsm est e�ectu�e
sur une courbe qui est plus faible que la courbe de d�epart.

{ Attaques en fautes di��erentielles. Plusieurs ecsms sont ex�ecut�es. �A chaque
fois, une faute est introduite. Les r�esultats incorrectes sont compar�es avec les bons
r�esultats ou entre eux pour d�eduire de l'information sur le secret.

� Attaques combin�ees. L'attaquant peut combiner deux attaques ou plus, �eventuellement
une attaque par canaux auxiliaires et en faute.

Le contexte de chaque attaque sera aussi d�ecrit. En e�et, certainesattaques ne fonctionnent
que sur certaines impl�ementations, ou certaines courbes, ou si l'attaquant peut choisir le point
de base de l'ecsm. Pour chaque attaque, nous donnons les informations suivantes:

� R�ecup�eration de la cl�e. Une description de la proc�edure de r�ecup�eration de la cl�e est
donn�ee.

� Particularit�e de la courbe elliptique. Nous indiquons si l'attaque fonctionne unique-
ment sur certaines courbes.
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� Particularit�e de l'impl�ementation. Nous indiquons si l'attaque fonctionne unique-
ment sur des impl�ementations particuli�eres.

� Nombre d'ex�ecutions. Le nombre d'ex�ecutions n�ecessaire pour retrouver l'int�egralit�e
du scalaire est donn�e.

� Acc�es au point de base. Nous indiquons si l'attaquant doit choisir le point de d�epart,
ou s'il doit le connâ�tre ou s'il n'a aucune importance.

� Acc�es au r�esultat. Nous indiquons si l'attaquant doit connâ�tre ou non le r�esultat de
l' ecsm.

� Mod�ele de faute. Pour les attaques en faute, nous indiquons la pr�ecision de la faute
n�ecessaire pour que l'attaque puisse fonctionner.

Chaque contremesure a un certain coût. Nous pr�ecisons le coût enutilisant les notations
suivantes :

� ecsml;n : temps d'ex�ecution d'un ecsm avec un scalaire del bits et un module de n bits,

� ecadd n ; ecdbl n ; c-ecadd n : temps d'ex�ecution d'une addition, d'un doublement et d'une
addition conjugu�ee respectivement avec un module den bits,

� add n ; sqr n ; mul n ; div n : temps d'ex�ecution d'une addition/soustraction, d'un carr�e, d'u ne
multiplication et d'une division respectivement, avec des entiers den bits,

� madd n ; msqr n ; mmul n ; minv n : temps d'ex�ecution d'une addition/soustraction modu-
laire, d'un carr�e modulaire, d'une multiplication modulaire et d 'une inversion modulaire
respectivement, avec des entiers den bits,

� rng n : temps d'ex�ecution de la g�en�eration d'un nombre al�eatoire de n bits,

� rpg m : temps d'ex�ecution de la g�en�eration d'une permutation al�eatoir e dem �el�ements,

� crc n : temps d'ex�ecution d'un contrôle de redondance cyclique d'un entier de n bits,

� memn : bloc m�emoire pour stocker un entier den bits.

Chapitre 8 : Attaques et Contremesures

C'est le c�ur de la th�ese. Ce chapitre liste les attaques physiques et contremesures surecc ,
avec une pr�ecision sur la description de chaque attaque et le coût de chaque contremesure en
utilisant les notations du chapitre pr�ec�edent.

Quand les designers proposent des m�ethodes pour se pr�emunir contre une classe d'attaques
ou une attaque en particulier, les cryptanalystes proposent de nouvelles attaques pour con-
tourner ou rendre totalement ine�cace certaines contremesures. C'est r�eellement un jeu du
chat et de la souris entre les attaques et les protections. Nous avons choisi de pr�esenter les
attaques et les contremesures avec une structure d'arbre pour correspondre �a cette id�ee.

Nous d�ecrivons ci-dessous nos attaques et contremesures nouvelles qui ont �et�e publi�ees ou
vont être publi�ees dans des conf�erences.
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Same-Values Analysis sur la contremesure d'atomicit�e

La contremesure d'atomicit�e consiste �a r�e�ecrire les formules d'addition et de doublement de
point en utilisant les mêmespatterns atomiques[CCJ04]. Un pattern atomique est une s�equence
d'op�erations dans le corps de base.

Cette contremesure contrecarre l'attaque par analyse de courant simple classique introduite
dans [Cor99] car l'attaquant n'est pas capable de di��erencier une addition d'un doublement.
Cette contremesure a �et�e am�elior�ee dans [GV10].

Notre proposition d'attaque est d'identi�er les paires de multiplic ations o�u il y a un op�erande
en commun au sein de trois patterns atomiques seulement si ces trois patterns correspondent �a
une addition suivi d'un doublement. Cette suite d'op�erations est e�ectu�ee si le bit courant du
scalaire est di��erent de 0 lors de l'ex�ecution de l' ecsm. Les op�erandes en commun sont illustr�es
dans la Figure 2 avec des bô�tes num�erot�ees. Les op�erandes en commun ont le même num�ero.
Seize paires de multiplications peuvent être analys�ees.

ecadd - part 1 ecadd - part 2 modecdbl

1. T1  
�

�

�

�Z2
2

1;2;14
T1  

�

�

�

�T6
2

9;10
T1  

�

�

�

�X 1
2

12
2. ? ? T2  Y1 + Y1

3. T2  Y1 �
�

�

�

�Z2 1;3;15
T4  T5 � T1 Z3  T2 �

�

�

�

�Z1 14;15;16
4. ? ? T4  T1 + T1

5. T5  Y2 �
�

�

�

�Z1 4;5
T5  T1 �

�

�

�

�T6 9;11
T3  T2 � Y1

6. ? ? T6  T3 + T3

7. T3  
�

�

�

�T1 7
� T2 T1  

�

�

�

�Z1 5;6
�

�

�

�

�T6 10;11
T2  T6 � T3

8. ? ? T1  T4 + T1

9. ? ? T1  T1 + W1

10. T4  
�

�

�

�Z1
2

4;6
T6  T2

2 T3  T2
1

11. T5  T5 �
�

�

�

�T4 8
Z3  T1 �

�

�

�

�Z2 2;3;16
T4  T6 �

�

�

�

�X 1 13
12. ? T1  T4 + T4 T5  W1 + W1

13. T2  T2 ! T3 T6  T6 ! T1 T3  T3 ! T4

14. T5  
�

�

�

�T1 7
� X 1 T1  T5 � T3 W3  T2 � T5

15. ? X 3  T6 ! T5 X 3  T3 ! T4

16. ? T4  T4 ! X 3 T6  T4 ! X 3

17. T6  
�

�

�

�X 2 12;13
�

�

�

�

�T4 8
T3  T4 � T2 T4  T6 � T1

18. T6  T6 ! T5 Y3  T3 ! T1 Y2  T4 ! T2

Figure 2: Op�erandes en commun dans seulement si les patterns correspondent �a une addition
de points (deux premi�eres colonnes) suivi d'un doublement (troisi�eme colonne)

Pour distinguer les op�erandes en commun, nous proposons deux m�ethodes di��erentes. La
premi�ere m�ethode fournit une attaque verticale, la seconde fournit une attaque horizontale plus
puissante.

La premi�ere m�ethode consiste �a analyser plusieurs traces correspondant �a plusieurs ecsms.
Une paire de multiplication parmi les seize est choisie arbitrairement. Ensuite, deux variables
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al�eatoires sont construits �a partir des traces. La variable X est construite �a l'endroit temporelle
correspondant �a la premi�ere multiplication et la variable Y correspondant �a la deuxi�eme mul-
tiplication de la paire comme illustr�ee dans la Figure 3. Le coe�cient de corr�elation est calcul�e
entre ces deux variables. Ce coe�cient est �elev�e si pour chaquepaire de multiplication, on a
e�ectivement un op�erande en commun.

Figure 3: Construction des variables al�eatoires pour une d�etection demême valeurs

Dans la deuxi�eme m�ethode, nous utilisons une technique d�ecrite dans l'attaque Big Mac
[Wal01]. Soient T1; T2 les traces durant le calcul de respectivement deux multiplications A �
B mod P, C � D mod P, avec A 6= C. �A partir de T1; T2, la m�ethode Big Mac consiste �a
a�rmer si C = D. Le succ�es de cette attaque d�epend de la taille des entiers manipul�es. Plus
les entiers sont grands, plus les chances de succ�es de la distinction sont �elev�ees. Ainsi, cette
attaque fonctionne tr�es bien sur rsa mais pas surecc car les entiers manipul�es sont beaucoup
plus petits (256 bits pour ecc face �a 2048 pourrsa pour atteindre le même niveau de s�ecurit�e).

Nous avons �etendu cette m�ethode pour attaquer la contremesure d'atomicit�e. En e�et,
comme indiqu�e pr�ec�edemment, on peut comparer non pas une seule paire de multiplications
mais seize. Le grand nombre de paires de multiplication que nous pouvons comparer permet
de compenser la petite taille des entiers.

Nous avons test�e cette attaque exp�erimentalement et nous avons obtenu de tr�es bons
r�esultats.

D�ecalage de la Courbe par Isomorphisme

Nous pr�esentons notre contremesure contre l'attaque Re�ned Side-Channel Analysis (RSCA)
[Gou03]. Cette attaque prend avantage de points particuliers de la formeP0 = (0 ; y). Ce point
va apparâ�tre durant le calcul de l'ecsm uniquement sous certaines conditions du scalaire secret.

Notre contremesure, publi�ee �a [DGH+ 12], consiste �a changer de courbe de d�epart par isomor-
phisme. L'isomorphisme' est choisi de telle sorte que l'image du point de d�epartP = ( xP ; yP )
vaut ' (P) = P0 = (0 ; yP ).

Les courbesE and E 0 d'�equations

E : y2 = x3 + a4x + a6,
E 0: y2 = x3 + a0

2x2 + a0
4x + a0

6
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sont isomorphiques surFp si et seulement s'ils existentu 2 F�
p et r 2 Fp tels que le changement

de variables

(x; y) ! (u 2(x  r ); u 3y)

transforme �equation E en l'�equation E 0 avec :
8
<

:

u2a0
2 = 3 r

u4a0
4 = a4 + 3 r 2

u6a0
6 = a6 + ra4 + r 3 :

Si P = ( xP ; yP ) est le point de base, il su�t de choisir u = 1 et r = xP pour obtenir le r�esultat
attendu. Cet isomorphisme est illustr�e �a la Figure 4.

Figure 4: D�ecalage par isomorphisme avecE : y2 = x3  3x + 3 et E 0: y2 = x3  6x2 + 9x + 1 :

Malheureusement, E 0 n'est pas sous sa forme d'�equation de Weierstra� r�eduite. Les for-
mules classiques ne s'appliquent pas. Il faut les modi�er et elles ont un surcoût. Cependant, ce
surcoût est compens�e par le fait que le point de base estP0 = (0 ; yP ). Nous pouvons simpli�er
les formules lorsqu'on additionne un point avecP0 ou  P0. Pour certains ecsms, il est même
avantageux d'appliquer la contremesure.

La s�ecurit�e contre l'attaque RSCA est assur�ee par des th�eor�eme s que nous d�etaillons dans
le m�emoire. L'id�ee est que P0 et  P0 sont les seules points ayant une coordonn�eex �a z�ero. Le
point P0 est le point de base de l'ecsm, ainsi ce point ne peut apparâ�tre en tant que point
interm�ediaire en faveur de l'attaquant.

Same-Values Analysis classique

Nous d�ecrivons notre attaque publi�ee �a [MGD + 12]. L'id�ee de l'attaque est de pro�ter de points
sp�eciaux. Ces points ont la particularit�e suivante. Pendant leur doublement, deux variables
interm�ediaires ont la même valeur.

L'attaquant identi�e un point particulier PSVA . Il choisit le point de base de l'ecsm de telle
sorte PSVA apparaisse pendant l'ecsm seulement si le bit courant vis�e est �egal �a 1. L'attaquant
d�eduit ainsi le scalaire secret de fa�con r�ecursive.
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Pour d�etecter si le point particulier est e�ectivement apparu du rant le calcul de l'ecsm,
nous proposons deux m�ethodes di��erentes.

La premi�ere correspond �a une attaque verticale car plusieurs traces sont n�ecessaires. Cette
m�ethode est similaire �a l'attaque verticale contre la contremesure de l'atomicit�e et est illustr�e
�a la Figure 3.

Pour la seconde m�ethode, il nous faut d�ecrire des points ayant desconditions plus fortes
que pr�ec�edemment. En plus de faire intervenir deux mêmes valeurs durant le doublement, ces
valeurs sont ensuite utilis�ees de la même fa�con. Typiquement, ces valeurs seront mises au carr�e.
La di��erence des traces correspondant au calcul du carr�e modulairesdes deux valeurs permet
de r�ev�eler si les valeurs sont justement identiques.

Attaque sur la conversion de coordonn�ees projectives en coordonn� ees a�nes

Cette attaque a �et�e pr�esent�ee �a [MMNT13]. Les coordonn�ees proj ectives ou Jacobiennes per-
mettent d'acc�el�erer les calculs durant l' ecsm. �A la �n du calcul, le r�esultat est converti en coor-
donn�ees a�nes. Notre attaque consiste �a injecter une faute pendant la conversion et r�ecup�erer
les coordonn�ees projectives ou Jacobiennes du pointQ = [ k]P. Naccache, Smart et Stern ont
montr�e que lorsque le r�esultat de l' ecsm �etait fourni en coordonn�ees projectives ou Jacobiennes,
l'attaquant peut retrouver quelques bits de k [NSS04].

La proc�edure suivante convertit le point en coordonn�ees Jacobiennes P = ( X; Y; Z ) =
(xZ 2; yZ 3; Z ) en coordonn�ees a�nes (x; y).

convert (X; Y; Z ) =

8
>>>><

>>>>:

r  Z  1

s  r 2

x  X � s
t  Y � s
y  t � r return( x; y)

Notre attaque consiste �a injecter une faute juste apr�es l'�etape s  r 2. La valeur corrompue
s + � donne les �equations suivantes :

~x = X (s + � ) ) ~x = x + xZ 2�;

~y = Y(s + � )r ) ~y = y + yZ 2� :

Ensuite, nous proposons di��erentes m�ethodes pour r�ecup�erer la valeur de Z manquante �a
partir de un ou plusieurs r�esultats incorrects ~x; ~y. Les m�ethodes propos�ees d�ependent de la
taille de la faute.

Notre attaque permet de r�ecup�erer les coordonn�ees projectivesou Jacobiennes du r�esultat
de l'ecsm et ainsi appliquer l'attaque de [NSS04].

Chapitre 9: Attaques en Faute Di��erentielles sur ECDSA

Certaines attaques en faute di��erentielles n�ecessitent de comparer un r�esultat corrompu avec
le r�esultat correct d'un ecsm pour d�eduire quelques bits du scalaire.

Lors d'une signatureecdsa (Algorithme 1), le scalaire est choisi al�eatoirement pour chaque
nouvelle signature. Ainsi, la comparaison entre un r�esultat deecsm corrompu et le bon r�esultat
semble infaisable.
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Nous avons remarqu�e que c'est en fait possible. Grâce �a un r�esultat de ecsm corrompu,
fourni avec la signature corrompue, il est possible de r�ecup�ererle bon r�esultat de l' ecsm. Voici
la m�ethode utilis�ee.

Nous supposons que, durant la proc�edure de signature, une faute est introduite pendant le
calcul de Q = [ k]G = ( xQ ; yQ ), ce qui donne le mauvais r�esultat ~Q = ( x ~Q ; y ~Q ). La signature
incorrecte (~r; ~s) v�eri�e:

~r = x ~Q mod t

~s = kinv (d~r + m) mod t

�A partir de (~r; ~s), l'attaquant peut calculer :

~w = ~s 1 mod t
~u1 = ~w � m mod t
~u2 = ~w � ~r mod t

R = [~u1]G + [~u2]P =
h

km
d~r + m

i
G +

h
k ~r

d~r + m

i
P =

h
km

d~r + m

i
G +

h
dk ~r

d~r + m

i
G

=
h
k � d~r + m

d~r + m

i
G = [ k]G

Le point R est en fait la bonne valeur deQ = ( xQ ; yQ ) = [ k]G qui �etait cens�ee être calcul�ee au
d�epart. L'attaquant retrouve xQ ; yQ et x ~Q mod t. Il peut ainsi appliquer certains attaques en
faute di��erentielles car il peut comparer le bon et le mauvais r�esultat.

Chapitre 10: R�esum�e des Attaques de Fa�con Contextuel

Dans le chapitre pr�ec�edent, pour chaque attaque d�ecrite, nous fournissons le contexte de
l'attaque. Dans ce chapitre-ci, une synth�ese des attaques au niveaucontextuelle est donn�ee.
Cette synth�ese est tr�es utile pour un designer car il peut v�er i�er tr�es rapidement si des attaques
sont faisables suivant l'application qu'il est cens�e d�evelopper. Si certaines attaques ne sont pas
faisables, une protection n'est pas n�ecessaire et l'application peut ainsi être plus rapide.

Chapitre 11: Synth�ese des Attaques et des Contremesures

Ce chapitre donne une synth�ese de l'e�cacit�e de chaque contremesure contre chaque attaque.
Toutes les attaques et contremesures de cette th�ese sont r�epertori�ees sous forme d'un tableau
pour un a�chage clair de l'interaction entre les attaques et les contremesures.

Conclusion et Perspectives

Dans cette th�ese, nous avons �etudi�e les attaques physiques surecc . Pour chaque attaque, nous
d�etaillons le contexte dans lequel l'attaque est faisable. Aussi, pour chaque contremesure, nous
d�etaillons son coût. Nous avons choisi de pr�esenter les attaques etles contremesures suivant
une structure d'arborescence pour clairement indiquer si une attaque a �et�e pr�esent�ee contre une
contremesure en particulier ou si elle est plus g�en�erale. De lamême fa�con, nous pouvons voir
si une contremesure couvre une attaque en particulier ou si elle estplus g�en�erale.

Nous introduisons de nouvelles attaques appel�ees Same-Values Analysis. Les attaques sont
nomm�ees ainsi car elles se basent sur des mêmes valeurs qui sont r�ep�et�ees au sein d'un ecsm.
Elles di��erent sur l'impl�ementation vis�ee ou sur la m�ethod e de d�etection de l'apparition des
mêmes valeurs.
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Nous introduisons �egalement une nouvelle attaque en faute di��erentielle. �A la di��erence des
autres attaques en faute, o�u la faute est introduite avant ou pendant l' ecsm, une faute est ici
introduite pendant la conversion de coordonn�ees projectives �aa�nes �a la �n du calcul.

Nous pr�esentons �egalement une contremesure contre l'attaque Re�ned Side-Channel Anal-
ysis (RSCA). L'attaque RSCA repose sur l'apparition d'un point partic ulier de la forme (0; y).
Nous proposons d'utiliser un isomorphisme entre les courbes elliptiques pour contrôler le point
particulier gênant. Son apparition ne r�ev�ele rien sur le scalaire secret.

En�n, nous montrons que les attaques en faute di��erentielles peuvent s'appliquer sur ecdsa ,
qui est un protocole de signature probabiliste.

Dans cette th�ese, nous fournissons un �etat-de-l'art complet sur les attaques physiques sur
ecc . �A l'avenir, de nouvelles attaques vont in�evitablement survenir. De même, de nouvelles
contremesures �emergeront. Elles peuvent être int�egr�ees au fur et �a mesure dans l'�etat-de-l'art
en suivant la même m�ethodologie.

Il serait int�eressant d'�etendre ce travail �a d'autres cryptos yst�emes asym�etriques tels quersa
ou ceux bas�es sur le couplage. Une autre id�ee serait de pr�esenter un�etat-de-l'art commun entre
ces cryptosyst�emes d'une certaine fa�con. En e�et, de nombreuses similarit�es subsistent entre ces
cryptosyst�emes. D'abord, le même module d'arithm�etique modulaire est g�en�eralement utilis�e
pour rsa , ecc et la cryptographie �a base de couplage. Ensuite, les m�ethodes de multiplication
scalaire pour ecc et le couplage sont similaires aux m�ethodes d'exponentiations pourrsa .
Ainsi, des attaques et contremesures sont �egalement similaires.
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Introduction

Cryptography formerly referred to the art of protecting messages. Before sending a message,
it is �rst encoded in a way that makes it seem nonsensical. This process is calledencryption.
Only the intended receiver can read it by applying the inverse process, thedecryption. The
processes are known by the sender and the receiver only. Con�dentiality of the message is then
ensured.

Following the evolution of telecommunications, cryptography also changed. Modern cryp-
tography, highly in
uenced by the Data Encryption Standard (des) in the 1970s, is no more an
art but a science. Today, in addition to con�dentiality, cryptograph y brings new functionalities
such asauthentication, i.e. the con�rmation of an entity's identity, and integrity , i.e. the con-
�rmation that messages received have not been modi�ed by an unauthorized entity, and many
others.

By Kerckho�s's principle, the security of a cryptosystem should rely on secret data only,
rather than on the very methods used for encoding and decoding messages. These methods will
necessarily be discovered somehow. Such a secret is called akey. Two families of cryptosystems
arise: symmetric and asymmetric cryptosystems.

In a symmetric cryptosystem, the same key is used for both encryption and decryption.
It must be kept secret by the entities who want to communicate. Nowadays, encryption and
decryption are very fast and are suitable for con�dentiality. The des is in fact a symmetric
cryptosystem.

In an asymmetric cryptosystem, two keys are used. One key is broadcast. It is used for pub-
lic processes such as encryption or veri�cation of signatures. This key is called thepublic key.
When a message is encrypted, no one can decrypt it, except the owner of the second key called
the private key. The owner of the private key is also the only one who can sign messages. Asym-
metric cryptosystems are interesting because they are suitable for authentication. However, the
computations they involve are a lot slower than those involved by symmetric cryptosystems.
This is because they rely on computationally costly mathematical tools such as arithmetic on
very large integers. rsa is the �rst asymmetric cryptosystem, introduced by Rivest, Shamir
and Adleman in 1977. Koblitz and Miller independently introduced the use of elliptic curves
for cryptographic applications in the late 1980s. The class of asymmetric cryptosystems based
on elliptic curves is called Elliptic Curve Cryptography ( ecc ). This thesis focuses onecc only.

Nowadays, the security of a cryptosystem is generally based on the di�culty of solving a
mathematical problem, such as integer factorization or the Elliptic Discrete Logarithm Problem
in the case ofecc . Proofs based on assertions such as \this cryptosystemC is unbreakable if no
one can solve problemP" arise. These proofs go with a cryptosystem and ensure its security.
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26 INTRODUCTION

Cryptography is naturally used in smart cards. Many di�erent examples such as bank
cards, telephony, or electronic passports, obviously need cryptography to ensure con�dentiality,
authentication or integrity. A new kind of attacks in smart cards arose in the late 1990s.
Kocher showed that analysing the execution timing of a device to execute a cryptographic
algorithm can be enough to recover the secret key. No need to solve the di�cult underlying
mathematical problem. Other attacks of this kind have emerged since then. They are based
on the observation of the device's behaviour when a cryptographic algorithm is being executed.
This kind of attacks is called physical attacks. The security proofs of a cryptosystem are no
longer enough when physical attacks are taken into account. Of course, manymethods have
also emerged to prevent these attacks.

Provable security against physical attacks is still a research topic.Until a clear methodol-
ogy of provable security onecc in smart cards is accepted by the cryptographic community,
attacks and countermeasures will be a cat-and-mouse game. So, to date, a designer who wants
to prove the security of his implementation, has no choice but to argue that his implementation
is protected againstall existing physical attacks by an exhaustive method.

This thesis is intended to help the designer implementing a secure embeddedecc . The �rst
part gives a detailed background onecc , useful to understand the physical attacks and coun-
termeasures. In the second part, the physical attacks and countermeasures are displayed with a
tree structure. This follows the idea of the cat-and-mouse game of attacks and countermeasures.
In addition to the complete and accurate state-of-the art, we introduce new attacks. Some of
these attacks are powerful since they need only one execution of the cryptographic algorithm.
Moreover the knowledge of the inputs is not necessary. Also, a new countermeasure against an
attack, the Re�ned Power Analysis is proposed. Surprisingly, undersome assumptions that we
detail, it turns out that applying the countermeasure is in fact more e�cient. In addition to
security, this is an improvement for ecc implementations.



Part I

Elliptic Curve Cryptography
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Introduction

The use of elliptic curves for cryptographic applications has been independently introduced by
Koblitz [Kob87] and Miller [Mil85]. With the same security level, Ell iptic Curve Cryptography
(ecc ) involves smaller key lengths compared with other asymmetric cryptosystems such asrsa
or systems based on the multiplicative group of a �nite �eld. In most architectures, the com-
plexity in time of the modular multiplication, which is the most fr equently used operation in
both ecc and rsa , is quadratic in the size of the operands. For example, for a security require-
ment of 128 bits, the minimal size of the key inecc is 256 bits, as opposed torsa in which
the public modulus is at least a 3072-bit integer. For this reason, the use of elliptic curves in
cryptographic applications has increased these last years, especiallyin embedded systems with
limited resources.

The elliptic curves used forecc are generally de�ned over prime �elds Fp, p > 3 or binary
�elds F2n . The latter can bring better performance because arithmetic operations in such �elds
are carry-free. However, elliptic curves over prime �elds are more often used because of the
following main reasons. First, elliptic curves over binary �elds are restricted by several patents.
The second reason is that, recently, Faug�eres, Perret, Petit and Renault improved the index
calculus to solve the Elliptic Curve Discrete Logarithm Problem (ecdlp ) on elliptic curves over
binary �elds [FPPR12]. They did not break ecc over binary �elds but it is a strong basis
towards future results to reduce the complexity of theecdlp . Consequently, we only focus on
ecc over Fp, p > 3.

This part exposes the background onecc . Chapter 1 gives the general de�nition of elliptic
curves. The di�erent levels of ecc 's hierarchy are described in the next chapters. The arithmetic
in Fp is described in Chapter 2. The most e�cient elliptic curve formul � can be found in
Chapter 3. The most frequently used elliptic curve scalar multiplications are given in Chapter 4.
Some examples of cryptographic protocols, including a signature, a cipher and a key agreement
schemes, based on elliptic curves can be found in Chapter 5. Finally, the security of ecc in the
black box model is discussed in Chapter 6.
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Chapter 1

General De�nition

This chapter gives the background on elliptic curves used for cryptographic applications. The
following de�nitions and properties can be found in [BSS99, CFA+ 06].

1.1 Elliptic Curves in A�ne Coordinates

De�nition 1.1. In a �eld K, an elliptic curve is de�ned by its Weierstra� equation:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 : (1.1)

with a1; a2; a3; a4; a6 2 K and � 6= 0 where � is de�ned as follows:
8
>>>><

>>>>:

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6  a1a3a4 + a2a2

3  a2
4

� =  d2
2d8  8d3

4  27d2
6 + 9d2d4d6 :

We denote by E(K) the set of points (x; y) 2 K2 satisfying Equation (1.1), together with a
\point at in�nity" O. � is called the discriminant of the curve. The coordinates x; y are called
the a�ne coordinates.

Remark 1.2. If the �eld is implicit, the set of points is denoted by E.

1.2 Group Structure

E(K) is an additive Abelian group de�ned by the following addition law. Let P = ( x1; y1) 6= O
and Q = ( x2; y2) 62 fO;  Pg be two points on E(K). The point R = ( x3; y3) = P + Q is de�ned
by the formula:

x3 = � 2 + a1�  a2  x1  x2

y3 = � (x1  x3)  y1  a1x3  a3
where � =

(
y1  y2
x 1  x 2

if P 6= Q,
3x 2

1 +2 a2 x 1 + a4  a1 y1

2y1 + a1 x 1 + a3
if P = Q.

The inverse element of the pointP is  P = ( x1;  y1  a1x1  a3). O is the neutral element, in
that P + O = O + P = P.
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Geometrically, we draw the line passing throughP; Q (or the tangent of P if P = Q). � is
the slope of this line. The line intersects the curve in a third point, counting with multiplicity.
We call it S = ( x3; y4). x3; y4 are found by solving the equations system

(
y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

y = �x + y1 " �x 1

This leads to the equation in x:

(�x + y1 " �x 1)2 + a1x(�x + y1 " �x 1) + a3y = x3 + a2x2 + a4x + a6 :

We can simplify the equation sincex1; x2 are solutions. This gives the formula ofx3 above. x3

yields y4. We take " S = R = ( x3; y3 = " y4 " a1x3 " a3) as the result of the addition. R is the
intersection between the curve and the line passing throughO and S.

Remark 1.3. We take R = " S as the result of the addition to respect the group axioms.

If K is a �nite �eld of q elements, the number of points onE(K) is denoted by #E(K) (or
simply # E if the �eld is implicit). By Hasse's theorem [Has36], # E(K) satis�es

j# E(K) " q " 1j � 2
p

q :

# E(K) and q have the same magnitude. In cryptographic applications, recommended elliptic
curves satisfy #E(K) = ht with t a large prime and h a very small number (1, 2 or 4). h is
called the cofactor. Only points of order t are considered in cryptographic applications.

1.3 Short Weierstra� Equation

Five parameters de�ne an elliptic curve in its Weiertra� equation. The group law requires many
�eld operations. Using isomorphisms between elliptic curves simplify the curve equation and
thus the group law.

De�nition 1.4. Two elliptic curves E; E 0 de�ned by their Weierstra� equations:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,
E 0: y2 + a0

1xy + a0
3y = x3 + a0

2x2 + a0
4x + a0

6,

are said to be isomorphic over K if there exist r; s; t 2 K; u 2 K � , such that the change of
variables

x0 = u 2(x " r ); y0 = u 3(y " sx " sr " t) (1.2)

preserving O, transforms equation E into equation E 0. The transformation (1.2) is called an
admissible change of variables. Furthermore, the elliptic curves parameters are linked by

8
>>>><

>>>>:

ua0
1 = a1 + 2s

u2a0
2 = a2 " sa1 + 3 r " s2

u3a0
3 = a3 + ra1 + 2 t

u4a0
4 = a4 " sa3 + 2 ra2 " (t + rs)a1 + 3 r 2 " 2st

u6a0
6 = a6 + ra4 + r 2a2 + r 3 " ta3 " t2 " rta 1 :
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Let the curve E : y2+ a1xy + a3y = x3+ a2x2+ a4x+ a6 de�ned over a �eld K of characteristic
di�erent from 2 and 3 (which makes division by 2 and 3 possible). Choosing

8
>>><

>>>:

u = 1

r = " a2
1 +4 a2

12
s = " a1

2

t = a3
1 +4 a1 a2  12a3

24

transforms the curve E into
E 0: y2 = x3 + ax + b : (1.3)

for somea; b 2 K. Equation (1.3) is called the short Weierstra� equation. Its discrimi nant is
� = " 16(4a3 + 27b2).

Let P = ( x1; y1) 6= O and Q = ( x2; y2) 62 fO; " Pg be two points on E 0(K). Points addition
R = ( x3; y3) = P + Q is given by the formula:

x3 = � 2 " x1 " x2

y3 = � (x1 " x3) " y1
where � =

(
y1  y2
x 1  x 2

if P 6= Q,
3x 2

1 + a
2y1

if P = Q.

The inverse element ofP is " P = ( x1; " y1). The group law of elliptic curves in the short
Weierstra� equation is illustrated in Figure 1.1 over the real elements.

Figure 1.1: Addition and doubling of points on the curve y2 = x3 " 2x + 1 over R

1.4 Elliptic Curves in Projective Coordinates

To avoid costly inversions when computing� , elliptic curves can also be de�ned in the projective
plane.

De�nition 1.5. The projective plan P2(K) over the �eld K is:

P2(K) =
f (X; Y; Z ) 2 K3 n (0; 0; 0)g

�

with � being the following equivalence relation:

(X 1; Y1; Z1) � (X 2; Y2; Z2) if 9 r 2 K � such that (X 1; Y1; Z1) = ( rX 2; rY2; rZ 2)
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The coordinates are calledhomogeneousor projective coordinates. The equivalences classes,
denoted by (X : Y : Z ) with ( X; Y; Z ) 2 K3 n (0; 0; 0), are calledprojective points. We denote
by (X; Y; Z ) a representative of the projective point (X : Y : Z ).

If K is �nite of cardinality # K, the projective point ( X : Y : Z ) have # K  1 representatives.
If Z 6= 0, ( X : Y : Z ) corresponds to the unique a�ne point ( X=Z; Y=Z).

Remark 1.6. In the rest of this thesis, by abuse of notation, we will call a \point" on t he curve
which is in fact a \representative" of a projective point. Unless otherwise speci�ed (explicitly
stated or using the notation (X : Y : Z )), a point will refer to a representative of a projective
point.

The equation of an elliptic curve in the homogeneous coordinates systemin the reduced
Weierstra� form is:

E P : Y 2Z = X 3 + aXZ 2 + bZ3 :

The point at in�nity O, which is not explicit in a�ne coordinates, is the projective poin t
O = (0 : 1 : 0). In fact, O is the only projective point on the curve with a zero Z coordinate.

The coordinates were generalized using di�erent equivalence relations. The Jacobian coor-
dinates is often used for e�ciency reason. The equation of an elliptic curve in the Jacobian
projective coordinates system in the reduced Weierstra� form is:

E J : Y 2 = X 3 + aXZ 4 + bZ6 :

The point at in�nity is O = (1 : 1 : 0). The projective point ( X : Y : Z ), with Z 6= 0,
corresponds to the unique a�ne point ( X=Z 2; Y=Z3). The equivalence relation is:

(X 1; Y1; Z1) � (X 2; Y2; Z2) if 9 r 2 K � such that (X 1; Y1; Z1) = ( r 2X 2; r 3Y2; rZ 2)

Remark 1.7. We omit the notation J or P when the coordinates system is obvious in the
context.

Let P1 = ( X 1; Y1; Z1); P2 = ( X 2; Y2; Z2) be two points on E J (K) with P1 6= O; ord(P1) > 2
and P2 62 fO;  P1g. Point doubling and points addition are de�ned by the following formul �:

� . P3 = ( X 3; Y3; Z3) = 2 P1 can be computed as:
X 3 = T; Y3 =  8Y 4

1 + M (S  T); Z3 = 2Y1Z1;
S = 4X 1Y 2

1 ; M = 3X 2
1 + aZ4

1 ; T =  2S + M 2

� . P3 = ( X 3; Y3; Z3) = P1 + P2 can be computed as:
X 3 =  H 3  2U1H 2 + R2; Y3 =  S1H 3 + R(U1H 2  X 3); Z3 = Z1Z2H;
U1 = X 1Z 2

2 ; U2 = X 2Z 2
1 ; S1 = Y1Z 3

2 ; S2 = Y2Z 3
1 ; H = U2  U1; R = S2  S1

There is a certain hierarchy of calculation inecc applications. The di�erent levels, from the
lowest to the highest, are �nite �eld arithmetic, elliptic curv e arithmetic, elliptic curve scalar
multiplication ( ecsm) and cryptographic protocol. These di�erent levels are detailed in the
next chapters.



Chapter 2

Finite Field Arithmetic

Finite �eld arithmetic �nds its application in asymmetric cryptogr aphy. Therefore, it is a
subject under intensive study, and many di�erent algorithms and implementations are proposed
to perform fast operations in the �eld Fp. A description of certain methods is required to
understand some side-channel attacks targeting this level inecc 's hierarchy. This chapter
details these methods.

2.1 Field Element Representation

The elements ofFp are integers in [0; p" 1]. The algorithms to perform �eld operations generally
operate word by word. Denotew the size of the words1.

Denote n = dlog2 pe the bit length of p and m = dn=we. The integers in [0; p " 1] are
manipulated as arrays ofm elements, as illustrated in Figure 2.1.

a[m " 1] : : : a[1] a[0]

Figure 2.1: Representation ofA = 2 (m  1)w a[m " 1]+ � � � +2 w a[1]+ a[0] as an array ofm words.

In the rest of this chapter, capital letters will denote long integers and lower cases will denote
words of w bits.

2.2 Main Module

In the algorithms exposed in the rest of this chapter, we suppose there is a module performing
the following operation:

(u; v)  a � b+ e+ c (2.1)

with e; a; b; c; u; vbeingw-bit words. v is the low word of the result andu is the high word (called
the carry). No over
ow occurs becausea; b; c; e2 [0; 2w [ ) a� b+ e+ c � (2w ! 1)2 +2 � 2w ! 2 =
22w ! 1 ) u < 2w . Thus, a � b+ e + c = 2 w u + v. We use the notation (u; �)  a � b+ e + c
when only the carry is updated; the low result is thrown out. In most architectures, the same
module supports the two's complement of integers:

(u; v)  a � b+ �e+ c (2.2)
1w = 32 or w = 64 in common architectures, even in smart cards where there are hardware accelerators.
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The two's complement ofe is �e = 2 w " 1" e. Subtracting two words a; e with a � e can be done
using the module illustrated in Equation (2.2) by replacing b by 1 and c by 1. v will contain
a " e and u will be equal to 1 which is ignored.

2.3 Modular Addition and Subtraction

We give the schoolbook algorithms for addition and subtraction of long integers.

Algorithm 2 Schoolbook long integer addition (add )
Input: A = ( a[m " 1]; : : : ; a[0]); B = ( b[m " 1]; : : : ; b[0]); m.
Output: (c; R) with R = A + B if c = 0 and R = A + B " 2wm if c = 1

1: c  0
2: for i = 0 to m " 1 do
3: (c; r[i ])  a[i ] + b[i ] + c . c 2 f 0; 1g becausea[i ] + b[i ] + c � 2w+1 " 1

4: return (c; R)

The operation of line 3 can be done using the module illustrated in Equation (2.1) by
replacing b by 1 and e by b.

Algorithm 3 Two's complement schoolbook long integer subtraction (sub)
Input: A = ( a[m " 1]; : : : ; a[0]); B = ( b[m " 1]; : : : ; b[0]); m.
Output: (c; R) with R = A " B if c = 0 and R = A " B + 2 wm if c = 1

1: c  1 . e is set to 1 because we will compute (A + �B + 1) = A " B + 2 mw

2: for i = 0 to m " 1 do
3: (c; r[i ])  a[i ] + �b[i ] + c . c 2 f 0; 1g

4: c  c � 1
5: return (c; R)

With those two basic procedures, we can give modular addition and subtraction.

Algorithm 4 Modular Addition
Input: A; B; P; m such that A < P; B < P .
Output: A + B mod P

(c; R)  add (A; B; m )
if c = 1 then

(d; S)  sub(R; P; m)
return S

else
if R � P then

(d; S)  sub(R; P; m)
return S

else
return R
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Algorithm 5 Modular Subtraction
Input: A; B; P; m such that A < P; B < P .
Output: A " B mod P

(c; R)  sub(A; B; m )
if c = 1 then

(d; S)  add (R; P; m) . in this case,c = d = 1 and the carry cancels the borrow
return S

else
return R

The conditional subtraction or addition of the previous algorithms can be inconvenient.
First, an operator comparing long integers is required for the modular addition. Secondly, we
will see in Sections 8.1 and 8.2.2.1 that some physical attacks take advantage ofthis step. We
can remove the conditional step by introducing a dummy operation, as described below. We
present the following methods to properly handle the carry and theborrow.

Algorithm 6 Constant Time Modular Addition (m add )
Input: A; B; P; m such that A < P; B < P .
Output: A + B mod P

1: (c; R)  add (A; B; m )
2: (d; S)  sub(R; P; m)
3: if c � d = 0 then
4: return S
5: else
6: return R

The correctness of Algorithm 6 is proved below.
Since 0� A < P; 0 � B < P , we must consider the three following cases:

� A + B < P < 2wm .
In this case, R = A + B .
Since A + B < P , =) c = 0 and d = 1. R is therefore the correct result because it
satis�es 0 � R = A + B < P .

� P < A + B < 2wn .
In this case, R = A + B and S = A + B " P.
Since P < A + B < 2wn =) c = 0 and d = 0. Moreover, P � A + B < 2P =) 0 �
A + B " P < P . S is the only integer in [0; P[ satisfying S = A + B mod P.

� 2wn < A + B < 2P.
In this case, R = A + B " 2wn .
Since 2wn < A + B =) c = 0. Moreover, A + B < 2P =) A + B " 2wn < 2P " 2wn < P .
Therefore, d = 1 and S = R " P + 2 wn = A + B " P. S is the only integer in [0; P[
satisfying S = A + B mod P.

Remark 2.1. The condition c = 1 ; d = 0, never occurs.
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Algorithm 7 Constant Time Modular Subtraction (m sub)
Input: A; B; P; m such that A < P; B < P .
Output: A " B mod P

(c; R)  sub(A; B; m )
(d; S)  add (R; P; m)
if c = 0 then

return R
else . in this case,c = d = 1 and the carry cancels the borrow

return S

The correctness of Algorithm 7 is trivial considering Algorithm 5.

2.4 Modular Multiplication

Field inversions are costly compared with the other �eld operations. In Section 1.4, we ex-
plained how the Projective or Jacobian coordinates enables the substitution of inversions for
multiplications. Hence, modular multiplications become the most numerous expensive opera-
tions involved in ecc . Great care should be taken for implementing the modular multiplication
operator.

Many methods exist to e�ciently perform modular multiplications . For instance:

� the Montgomery multiplication [Mon85],

� the Barrett multiplication [Bar86],

� the Quisquater's multiplication [Qui90, Qui91] and

� the Montgomery multiplication in the Residue Number System [Baj98].

In addition, some standardized elliptic curves, such as the ones proposed in the Digital
Signature Standard [FIPS186-3], are based over prime �elds enabling fast modular reduction.
Due to the particular form of the prime p, modular reductions can be performed with only
shifts, additions and subtractions. However, this optimization is not always considered because
of the lack of genericity: each curve has its own modular multiplication module. The need of a
generic modular multiplication module is required anyway for someecc protocols. Moreover,
a common module is generally implemented for all asymmetric cryptosystems.

We choose to detail the Montgomery multiplication (Algorithm 8), because it is quite com-
mon and many side-channel attacks are described with this example.

The algorithm, called the Coarsely Integrated Operand Scanning, alternates the multipli-
cation and the reduction loops. This permits to avoid the extra memory required if a naive
modular multiplication is performed: �rst compute the entire pro duct, then reduce. This algo-
rithm is from [KA96], where we added the �nal conditional subtraction step.
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Algorithm 8 Montgomery Modular Multiplication (mont mul )
Input: A = ( a[m " 1]; : : : ; a[0]); B = ( b[m " 1]; : : : ; b[0]); P = ( p[m " 1]; : : : ; p[0]); ~p; m such

that A < P; B < P; ~p = " p[0] mod 2w .
Output: A � B � 2 wm mod P

1: R  0
2: s  0 . s will hold the ( m + 1) th word of the temporary result R
3:

4: . Main loop
5: for i = 0 to m " 1 do
6: . Step R  R + a[i ]B
7: c  0
8: for j = 0 to m " 1 do
9: (c; r[j ])  a[i ] � b[j ] + r [j ] + c

10: end for
11: (c; s)  s + c
12: t  c . t will hold the ( m + 2) th word of the temporary result R
13: . End Step R  R + a[i ]B
14: c  0
15: (c; q)  r [0] � ~p + c . q = " RP  1 mod 2w

16:

17: . Step R  R + qP
2w

18: c  0
19: (c; �)  q � p[0] + r [0] + c
20: for j = 1 to m " 1 do
21: (c; r[j " 1])  q � p[j ] + r [j ] + c

22: end for
23: (c; r[m " 1])  s + c
24: s  t
25: . End Step R  R + qP

2w

26: . Invariant: R2( i +1) w = ( a[i ]2iw + � � � + a[0])B mod P
27: . Invariant: R < P + B
28: end for
29:

30: . End Main Loop
31: . Reduction step
32: if s = 1 then
33: (c; S)  sub(R; P; m)
34: return S
35: else
36: if R � P then
37: (c; S)  sub(R; P; m)
38: return S
39: else
40: return R
41: end if
42: end if

When P; ~p; m are implicit, we simply denote montmul (A; B ) the Montgomery multiplica-
tion of A; B .
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Like the modular addition, there is a conditional step depending on the value at the end.
By adding extra words to the manipulated integers, the �nal subtract ion condition can be
avoided [Wal99, HQ00]. However, this solution is costly. For a constant timeMontgomery
multiplication, one can perform a subtraction whatever the value after the main loop, as for
the modular addition. This can be done by replacing the reduction step by:

c  s
(d; S)  sub(R; P; m)
if d � c = 0 then

return S
else

return R

The justi�cation of the correctness of the reduction step is the same as the modular addition
(Algorithm 6).

To avoid the resetting data of line 1, the �rst iteration ( i = 0), line 9 can be replaced by
(c; r[j ])  a[j ] � b[j ] + c. Also, it is possible to improve the algorithm if A = B (montsqr ).

Denote C = A � B mod P the product of two integers A; B modulo P. The Montgomery
multiplication of A; B returns C � 2 wm mod P. Let A0 = A2wm mod P and B 0 = B 2wm mod
P. The Montgomery multiplication of A0; B 0 returns

montmul (A0; B 0) = A2wm � B 2wm � 2 wm mod P
= C2wm mod P

Denote C0 = C2wm mod P. A0; B 0; C0 are called the Montgomery representations ofA; B; C
respectively. The Montgomery multiplication of integers in their M ontgomery representations
returns the Montgomery representation of the product. At the beginning of ecc applica-
tions, Montgomery representations of the manipulated integers are pre-computed. Trivially,
the modular addition of integers in their Montgomery representation returns the Montgomery
representation of the sum:

A0+ B 0 = A2wm + B 2wm mod P
= ( A + B )2wm mod P

Obviously, the same holds for modular subtraction. Integers in theirMontgomery represen-
tation are then manipulated in a transparent manner, as if they were in the regular form. At the
end of an ecc application, the correct values are easily recovered usingA = mont mul (A0; 1).
Algorithm 8 can be optimized if one of the operand is 1.

The pre-computations of the Montgomery representation of the integers is the main draw-
back of the Montgomery multiplication. The pre-computation of the Montgomery representa-
tion of A can be done by computingA0 = mont mul (A; R) with R = 2 2wm mod P. One way to
compute R is to perform:
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R  montmul (1; 1) . R = 2  wm

R  montmul (R; 1) . R = 2  2wm

R  minv (R; P; m) . R = 2 2wm (modular inversion described below)

2.5 Modular Inversion

Modular inversions are costly and are avoided as much as possible, usingprojective or Jacobian
coordinates. It is estimated that the cost of a modular inversion is approximatively 100 times
the cost of a modular multiplication [Ver12, x1.1.1.6], which is the case for our implementation.
Modular inversion is however required at the end of theecsm for the conversion from projective
to a�ne coordinates, for some cryptographic protocols or for some countermeasures. We give
the unsigned version of the binary inversion algorithm of [HMV03, Algorithm 2.22].

Algorithm 9 Euclidean Modular Inversion (minv )
Input: A; P; m such that gcd(A; P ) = 1, P is odd and A < 2wm ; P < 2wm

Output: A  1 mod P
U  A
V  P
X  1
Y  0

while U 6= 1 and V 6= 1 do
while U is evendo

c  0
U  (U >> 1) . right shift
if X is odd then . perform X  (X + P)=2 with the following

(c; X )  add (X; P; m )
X  (X >> 1)
if c = 1 then X  X + 2 wm  1 . set the most signi�cant bit to 1

while V is evendo
c  0
V  (V >> 1)
if Y is odd then

(c; Y)  add (Y; P; m)
Y  (Y >> 1)
if c = 1 then Y  Y + 2 wm  1 . set the most signi�cant bit to 1

if U � V then
(c; U)  sub(U; V; m)
X  msub(X; Y; P; m)

else
(c; V)  sub(V; U; m)
Y  msub(Y; X; P; m)

if U = 1 then
return X

else
return Y
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2.6 Cost of Arithmetic Operations

In Part II, we are interested on the theoretical cost of the countermeasures against physical
attacks. For some applications or countermeasures, it is also necessary to have an access to long
integer arithmetic such as addition, subtraction, multiplication, s quare and Euclidean division
with remainder. Since the real cost depends on the architecture andon the size of the integers,
we choose the following notation:

� add n : execution time of an addition or a subtraction2 of n-bit integers,

� sqr n : execution time of a square of an-bit integer,

� mul n : execution time of a multiplication of n-bit integers,

� div n : execution time of a division of n-bit integers,

� madd n : execution time of a modular addition or subtraction2 of n-bit integers,

� msqr n : execution time of a modular square of an-bit integer3,

� mmul n : execution time of a modular multiplication of n-bit integers3,

� minv n : execution time of a modular inversion of an-bit integer3.

2The cost of an addition and subtraction are rarely signi�can tly di�erent.
3The modulus is a n-bit integer as well.



Chapter 3

Elliptic Curve Arithmetic

The formul� given in Section 1.4 ( ecadd and ecdbl ) may be used to perform addition and
doubling. During the past years, many di�erent formul� have been pr oposed for di�erent ellip-
tic curves and di�erent coordinates. So far, standardized curves for cryptographic applications
are given in the short Weierstra� equation. We thus restrict to these elliptic curves where the
Jacobian coordinates are the most e�cient. The choice of the formul� is m ade depending on
the ecsm used, on some physical security requirements or on the memory available.

We give in Section 3.1 the most commonly used formul� for elliptic curves in the short
Weierstra� equation. It is essential for describing and understanding some physical attacks.
Moreover, some countermeasures consist in slightly modifying theformul�. For a more detailed
explanation on the formul� and on their cost, one can refer to the synthesis given in [BL04]
and [Ver12, Chapter 1]. In addition, we give the memory required. Section 3.2 summarizes the
cost in number of �eld operations and the memory required.

3.1 Elliptic Curve Formul�

This section gives the most e�cient formul� for elliptic curves ov er Fp, with p a n-bit prime
integer, in the short Weierstra� equation. We distinguish classical operations (addition and
doubling) from the co-Z formul� where more re�ned operations are presented: the addition
and update, and the conjugate addition and update formul�.

The number of registers for each formula is given without consideringinput and output
points. Only the number of extra temporary registers is taken into account. meml denotes
a memory block of l bits. We can save some memory with additional �eld additions and
subtractions as in [GJM+ 11]. We give the memory required for an optimal number of �nite
�eld operations.

This section gives high level algorithm of elliptic curve operations. The same algorithms
with register allocation are given in appendix, only if they are usefulfor the description of some
attacks or countermeasures.

For all formul�, the points are in the Jacobian coordinates system, and they are di�erent
from the point at in�nity.
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3.1.1 Classical Formul�

Algorithm 10 ecadd
Input: P = ( X 1; Y1; Z1); Q = ( X 2; Y2; Z2) with Q 6= � P
Output: P + Q

A  X 1Z 2
2 ; B  X 2Z 2

1 ; C  Y1Z 3
2 ; D  Y2Z 3

1
E  B ! A; F  D ! C
X 3  F 2 ! E 3 ! 2AE 2

Y3  F (AE 2 ! X 3) ! CE 3

Z3  Z1Z2E
return (X 3; Y3; Z3)

If Q is in a�ne coordinates ( Z2 = 1), one can save four multiplications and one square [CMO98].
It is called mixed addition (m ecadd ). If Z 2

2 and Z 3
2 are pre-computed, one multiplication and

one square are saved [CC86]. It is called re-addition (reecadd ).
Cost (ecadd ): 12 mmul n , 4 msqr n , 7 madd n , 3 memn

Cost (mecadd ): 8 mmul n , 3 msqr n , 7 madd n , 3 memn

Cost (reecadd ): 11 mmul n , 3 msqr n , 7 madd n , 3 memn

Algorithm 11 ecdbl
Input: P = ( X 1; Y1; Z1) with ord(P) 6= 2, elliptic curve parameter a
Output: 2P

A  2Y 2
1

B  2AX 1; C  3X 2
1 + aZ4

1 ; D  2A2

X 3  C2 ! 2B
Y3  C(B ! X 3) ! D
Z3  2Y1Z1

return (X 3; Y3; Z3)

If ( X 3; Y3; Z3) is used later for re-addition, computing Z 2
3 and Z 3

3 needs one extra square and
one extra multiplication (re ecdbl ). If W1 = aZ4

1 is pre-computed, two squares are saved, and it
needs one extra addition1 [CMO98]. It is called the modi�ed Jacobian coordinates (modecdbl ).
The use of both modi�ed coordinates and re-addition is also given (mod-reecdbl ).
Cost (ecdbl ): 4 mmul n , 6 msqr n , 11 madd n , 3 memn

Cost (reecdbl ): 5 mmul n , 7 msqr n , 11 madd n , 3 memn

Cost (modecdbl ): 4 mmul n , 4 msqr n , 12 madd n , 3 memn

Cost (mod-reecdbl ): 5 mmul n , 5 msqr n , 12 madd n , 3 memn

Remark 3.1. In the standardized elliptic curves recommended in [FIPS186-3], the parameter
a of the curve is equal to ! 3. This makes it possible to perform a faster computation of
C = 3X 2

1 + aZ4
1 in this way: C  3(X 1 + Z 2

1 )(X 1 ! Z 2
1 ). This saves two squares and costs an

extra subtraction over ecdbl . The formula is called fast doubling.

3.1.2 Co- Z Formul�

An ecsm is generally based on addition and doubling formul� of points. Meloni shows that addi-
tion of two points of an elliptic curve is more e�cient if they share th e sameZ -coordinate [Mel07].

1 In fact, two squares and one multiplication are saved. An ext ra addition and an extra multiplication are
needed for the computation of W3 = aZ 4

3 = 2 DW 1 .
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He brought a new formula, which was called later co-Z addition and update (zaddu ) in
[GJM10]. This formula alone is enough to perform anecsm with addition chains and Zeckendorf
representation [Mel07].

Algorithm 12 co-Z addition and update (zaddu ) [Mel07]
Input: P = ( X 1; Y1; Z ); Q = ( X 2; Y2; Z ) with Q 6= � P
Output: (R; S) with R = P + Q and S = ( � 2X 1; � 3Y1; �Z ) with � = X 1  X 2

C ! (X 1  X 2)2

W1 ! X 1C; W2 ! X 2C; Z3 ! Z (X 1  X 2)
D ! (Y1  Y2)2; A1 ! Y1(W1  W2)
X 3 ! D  W1  W2

Y3 ! (Y1  Y2)(W1  X 3)  A1

X 4 ! W1

Y4 ! A1

return ((X 3; Y3; Z3); (X 4; Y4; Z3))

The computation of the Z coordinate is not necessary if the Montgomery Ladder is used for
the ecsm [GJM+ 11]. It is called (X; Y )-only co-Z addition and update (zaddu' ). One multi-
plication is saved. The �nal Z coordinate is recovered at the end of theecsm.
Cost (zaddu ): 5 mmul n , 2 msqr n , 7 madd n , 2 memn

Cost (zaddu' ): 4 mmul n , 2 msqr n , 7 madd n , 2 memn

Meloni's formula was extended. The conjugate co-Z addition ( zaddc ) was proposed in
[GJM10]. It consists in computing the points P + Q and P  Q within the same formula. In
[GJM10, HJS11, GJM+ 11], with both zaddu and zaddc , the authors show that co-Z formul�
might be usable with classicalecsm algorithms such as the Right-to-Left signed-digit method,
the Montgomery Powering Ladder [JY02], or the Joye's double-add method [Joy07].

Algorithm 13 conjugate co-Z addition ( zaddc ) [GJM10]
Input: P = ( X 1; Y1; Z ); Q = ( X 2; Y2; Z ) with Q 6= � P
Output: (R; S) with R = P + Q, S = P  Q

C ! (X 1  X 2)2

W1 ! X 1C; W2 ! X 2C; Z3 ! Z (X 1  X 2)
D1 ! (Y1  Y2)2; A1 ! Y1(W1  W2)
X 3 ! D1  W1  W2

Y3 ! (Y1  Y2)(W1  X 3)  A1

D2 ! (Y1 + Y2)2

X 4 ! D2  W1  W2

Y4 ! (Y1 + Y2)(W1  X 4)  A1

return ((X 3; Y3; Z3); (X 4; Y4; Z3))

The computation of the Z coordinate is not necessary if the Montgomery Ladder is used
[GJM+ 11]. It is called (X; Y )-only co-Z conjugate addition (zaddc' ). One multiplication
is saved. The �nal Z coordinate is recovered at the end of theecsm.
Cost (zaddc ): 6 mmul n , 3 msqr n , 11 madd n , 3 memn

Cost (zaddc' ): 5 mmul n , 3 msqr n , 11 madd n , 3 memn
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3.2 Cost Summary

Table 3.1 gives the cost of the di�erent formul� of this section. The me mory cost is the number
of temporary registers needed for the formula, excluding input and output memory blocks.

Point doubling
ecdbl 4 mmul n , 6 msqr n , 11 madd n , 3 memn

reecdbl 5 mmul n , 7 msqr n , 11 madd n , 3 memn

modecdbl 4 mmul n , 4 msqr n , 12 madd n , 3 memn

mod-reecdbl 5 mmul n , 5 msqr n , 12 madd n , 3 memn

Points addition
ecadd 12 mmul n , 4 msqr n , 7 madd n , 3 memn

mecadd 8 mmul n , 3 msqr n , 7 madd n , 3 memn

reecadd 11 mmul n , 3 msqr n , 7 madd n , 3 memn

zaddu 5 mmul n , 2 msqr n , 7 madd n , 2 memn

zaddu' 4 mmul n , 2 msqr n , 7 madd n , 2 memn

Points conjugate addition
zaddc 6 mmul n , 3 msqr n , 11 madd n , 3 memn

zaddc' 5 mmul n , 3 msqr n , 11 madd n , 3 memn

Table 3.1: Cost of the most commonly used elliptic curve formul� for a n-bit prime modulus.

We use the following notation to quantify the di�erent ecsms described in the next chapter
and the cost of some countermeasures increasing the number of elliptic curve operations:

� ecadd n : execution time of an elliptic curve points addition with a modulus of sizen,

� ecdbl n : execution time of an elliptic curve point doubling with a modulus of sizen,

� c-ecadd n : execution time of an elliptic curve points conjugate addition with a modulus
of sizen.



Chapter 4

Elliptic Curve Scalar
Multiplication

In ecc applications, one has to compute scalar multiplications (ecsms), i.e. compute

[k]P = P + � � � + P| {z }
k times

;

given a point P and an integer k. The choice of anecsm algorithm depends on the memory
constraints and on the physical security requirements.

ecsms are generally performed with a loop scanning of the bits of the scalar. In fact, the
ecsms can be compared to the modular exponentiation methods used inrsa and systems based
on the multiplicative group of a �nite �eld: an addition of points is repl aced by a multiplication,
and a doubling is replaced by a square. In addition, in elliptic curves we can take advantage
of the useful property that the inverse element of the point P = ( x; y) is  P = ( x;  y). This
operation is almost free; hence, it can be done on the 
y. For modular exponentiations, the
analogy would be computing modular inverses, which are very costly.

The ecsms are generally organized depending of the regularity. Anecsm is said to bereg-
ular if, at each iteration, the same elliptic curve operations are performedwhatever the value
of the scalar. Unregular ecsms are generally more e�cient. However, we will see in Section
8.2 that unregular ecsms can be vulnerable to the Simple Side-Channel Analysis. We will also
describe some related countermeasures.

The ecsms described in this section can use di�erent formul� given in the previous section,
depending on the performance and on the security requirements. Weuse the notation \ � + �"
for an elliptic curve addition and \2 �" for an elliptic curve doubling. We evaluate the cost of
the ecsm using the notations of Section 3.2 wheren is the bit-length of the prime modulus.
A more detailed comparison on the cost of theecsms can be found in [Ver12, Chapter 1]. In
addition, we give the memory required. A summary of the cost of theecsms is given in Section
4.3.
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4.1 Unregular ECSMs

We give in Algorithms 14, 15, 16, 17, 18, the most commonly used unregularecsms.

Algorithm 14 Left-to-Right Double-and-Add
Input: a point P and an integer k = (1 ; kn  2; : : : ; k0)2

Output: [k]P
R0  P
for i = n " 2 downto 0 do

R0  2R0 . R 0 = [( kn  1; : : : ; ki +1 ; 0)2]P
if ki = 1 then R0  R0 + P . R 0 = [( kn  1; : : : ; ki +1 ; ki )2]P

return R0

Cost : n
2 ecadd n + n ecdbl n

Algorithm 15 Right-to-Left Double-and-Add
Input: k = ( kn  1; : : : ; k1; 1)2; P
Output: [k]P

R0  P
R1  2P
for i = 1 to n " 1 do

if ki = 1 then R0  R0 + R1 . R 0 = [( ki ; : : : ; k0)2]P
R1  2R1 . R 1 = [2 i +1 ]P

return R0

Cost : n
2 ecadd n + n ecdbl n

Computing the inverse element of a point is almost free: ifP = ( x; y), then " P = ( x; " y).
Using a signed digit representation of the scalar can speed up some algorithms. The Non-
Adjacent Form (NAF) is suitable. The following de�nitions and properties of the NAF can be
found in [HMV03, Section 3.3].

De�nition 4.1. A non-adjacent form (NAF) of a positive integer k is an expressionk =
P l  1

i =0 ki 2i where ki 2 f" 1; 0; 1g, kl  1 6= 0, and no two consecutive digits ki are nonzero. The
length of the NAF is l .

Theorem 4.2. [HMV03, Theorem 3.29]. Let k be a positive integer.

� k has a unique NAF denoted NAF(k) or (kl  1; : : : ; k0)NAF .

� NAF(k) has the fewest nonzero digits of any signed digit representation ofk.

� l is at most one more than the length of the binary representation ofk.

� The average density of nonzero digits among all NAFs of lengthn is approximatively 1=3.
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Algorithm 16 Left-to-Right sliding window NAF scalar multiplication
Input: k = (1 ; kl  2; : : : ; k0)NAF ; v � 2; P
Output: [k]P

m  2(2v ! (! 1)v )=3 ! 1
Q  P
for i = 1 to m by 2 do

Pi  [i ]P

i  l ! 2
while i � 0 do

if ki = 0 then
Q  2Q
i  i ! 1

else
s  max(i ! v + 1 ; 0)
while ks = 0 do

s  s + 1
u  (ki ; : : : ; ks)NAF

for j = 1 to i ! s + 1 do
Q  2Q

if u > 0 then
Q  Q + Pu

if u < 0 then
Q  Q ! P u

i  s ! 1
return Q

Cost :
�

l
v+ f (v) + 2v  (  1) v

3 ! 1
�

ecadd n + ( l + 1) ecdbl n , with f (v) = 4
3 ! (  1) v

3� 2v  2

The NAF can be generalized to larger digits.

De�nition 4.3. Let v � 2 be a positive integer. Awidth- v NAF of a positive integer k is an
expressionk =

P l  1
i =0 ki 2i where each nonzero coe�cient is odd,! 2v 1 < k i < 2v 1, kl  1 6= 0,

and at most one of anyv consecutive digits is nonzero. Thelength of the NAF is l .

Theorem 4.4. [HMV03, Theorem 3.33]. Let k be a positive integer.

� k has a unique width-v NAF denoted NAFv (k).

� NAF 2(k) = NAF (k).

� l is at most one more than the length of the binary representation ofk.

� The average density of nonzero digits among all width-v NAFs of length l is approxima-
tively 1=(v + 1) .
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The following algorithm computes the width-v NAF representation of the scalar on the 
y.

Algorithm 17 Right-to-Left sliding window width- v NAF scalar multiplication
Input: k = ( kn  1; : : : ; k0)2; v � 2; P
Output: [k]P

m  2v 1 ! 1
R  P
Q1; Q3; : : : ; Qm  O
while k � 1 do

if k0 = 1 then
u  (kv 1; : : : ; k0)
if u � 2v 1 then u  u ! 2v

if u > 0 then
Qu  Qu + R

if u < 0 then
Q u  Q u ! R

k  k ! u
R  2R
k  k=2

for i = 3 to m by 2 do
Q1  Q1 + [ i ]Qi

return Q1

Cost :
�

n
v+1 + 2 2v 4 ! 1

�
ecadd n + n ecdbl n

The Shamir's trick computes [k]P + [ d]S with a single loop scanning.

Algorithm 18 Shamir's trick [Str64]
Input: k = ( kn  1; : : : ; k0)2, d = ( dn  1; : : : ; d0)2 with ( kn  1; dn  1) 6= (0 ; 0), P; S
Output: [k]P + [ d]S

R1  P ; R2  S; R3  P + S
c  2dn  1 + kn  1; R0  Rc

for i = n ! 2 downto 0 do
R0  2R0 . R 0 = [( kn  1; : : : ; ki +1 ; 0)2]P

+[( dn  1; : : : ; di +1 ; 0)2]S
c  2di + ki

if c 6= 0 then R0  R0 + Rc

. R 0 = [( kn  1; : : : ; ki +1 ; ki )2]P
+[( dn  1; : : : ; di +1 ; di )2]S

return R0

Cost : 3n
4 ecadd n + n ecdbl n
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4.2 Regular ECSMs

We give in Algorithms 19, 20, 21, 22, 23, 24, 25 the most commonly used regularecsms.

Algorithm 19 Left-to-Right Double-and-Add always [Cor99, x3.1]
Input: k = (1 ; kn  2; : : : ; k0)2, P
Output: [k]P

R0  P; R1  2P
for i = n ! 2 downto 0 do

R0  2R0

R1 k i  R1 k i + P

return R0

Cost : n ecadd n + n ecdbl n

Algorithm 20 Right-to-Left Double-and-Add always
Input: k = ( kn  1; : : : ; k1; 1)2; P
Output: [k]P

R0  P
R1  P . point for dummy operations
R2  2P
for i = 1 to n ! 1 do

R1 k i  R1 k i + R2 . R 0 = [( ki ; : : : ; k0)2]P
and R1 = [( �ki ; : : : ; �k0)2]P

R2  2R2 . R 2 = [2 i +1 ]P

return R0

Cost : n ecadd n + n ecdbl n

Algorithm 21 Montgomery Ladder [JY02]
Input: k = (1 ; kn  2; : : : ; k0)2; P
Output: [k]P

1: R0  P; R1  2P
2: for i = n ! 2 downto 0 do
3: R1 k i  R0 + R1

4: Rk i  2Rk i . R 0 = [( kn  1; : : : ; ki )2]P
5: and R1 = R0 + P
6: return R0

Cost : n ecadd n + n ecdbl n
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The Montgomery Ladder, adapted with the co-Z formul�, is given below.

Algorithm 22 Montgomery Ladder with co-Z formul� [GJM10]
Input: k = (1 ; kn  2; : : : ; k0)2; P
Output: [k]P

R0  P; R1  2P
for i = n ! 2 downto 0 do

(R1 k i ; Rk i )  zaddc (Rk i ; R1 k i )
(Rk i ; R1 k i )  zaddu (R1 k i ; Rk i ) . R 0 = [( kn  1; : : : ; ki )2]P

and R1 = R0 + P
return R0

Cost : n c-ecadd n + n ecadd n

The following algorithm is the regular version of Algorithm 18 by adding a dummy operation.

Algorithm 23 Regular Shamir's trick [CJ03]
Input: k = ( kn  1; : : : ; k0)2, d = ( dn  1; : : : ; d0)2

with ( kn  1; dn  1) 6= (0 ; 0), P; S
Output: [k]P + [ d]S

R1  P ; R2  S; R3  P + S
R4  P + S . R 4 is used for dummy operations
c  2dn  1 + kn  1; R0  Rc

for i = n ! 2 downto 0 do
R0  2R0 . R 0 = [( kn  1; : : : ; ki +1 ; 0)2]P

+[( dn  1; : : : ; di +1 ; 0)2]S
b  : (ki _ di ); c  2di + ki

R4b  R4b + Rc . R 0 = [( kn  1; : : : ; ki )2]P
+[( dn  1; : : : ; di )2]S

return R0

Cost : n ecadd n + n ecdbl n

Algorithm 24 Binary Random Initial Point (BRIP) [MMM04]
Input: k = ( kn  1; : : : ; k0)2; P
Output: [k]P

S  random point ()
R0  S; R1  ! S; R2 = P ! S
for i = n ! 1 downto 0 do

R0  2R0 . R 0 = [( kn  1; : : : ; ki +1 ; 0)2]P + [2]S
R0  R0 + R1+ k i . R 0 = [( kn  1; : : : ; ki )2]P + S

return R0 + R1

Cost : n ecadd n + n ecdbl n
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The following algorithm was introduced for rsa applications. We adapted it for elliptic
curves. We removed the �nal coherence check which will be discussed in Section 8.18.

Algorithm 25 Blinded Right-to-Left Double-and-Add always [BHT09]
Input: k = ( kn  1; : : : ; k0)2; P
Output: [k]P

S  random point ()
R0  S; R1  ! S; R2 = P
for i = 0 to n ! 1 do

R1 k i  R1 k i + R2 . R 0 = [( ki ; : : : ; k0)2]P + S
and R1 = [( �ki ; : : : ; �k0)2]P ! S

R2  2R2 . R 2 = [2 i +1 ]P

return R0 ! S

Cost : n ecadd n + n ecdbl n

4.3 Cost Summary

Table 4.1 gives the cost of the di�erent ecsms without any countermeasure. For eachecsm, the
more suitable formul� from Chapter 3 are chosen regarding the e�ciency. The memory cost
is calculated from the memory blocks required to store all involved points, the intermediate
variables for elliptic curve operations, and the curve parametersa; p (b is not used).

Remark 4.5. The number of �eld operations is given in average per bit of scalar. Obviously,
the number is exact for regularecsms since the operations do not depend on the scalar.

Remark 4.6. The length of the NAF is at most one more than the length of the binary
representation of the scalar. In ecc applications, the prime modulus is at least a 256-bit
integers. Therefore, we can neglect the extra possible digit when the scalar in expressed in the
NAF representation. In Table 4.1, we expose the cost of theecsms without distinguishing the
representation of the scalar.

Some countermeasures against physical attacks increase the number of iterations of the
ecsm or increase the number ofecsms. We denote byecsml;n the execution time of an ecsm
with a l-bit scalar and a n-bit modulus.



54 CHAPTER 4. ELLIPTIC CURVE SCALAR MULTIPLICATION

Unregular s
L-to-R Double-Add 8 mmul n , 7.5 msqr n ,
ecdbl and mecadd 14.5 madd n , 8 memn

R-to-L Double-Add 10 mmul n , 6 msqr n ,
modecdbl and ecadd 15.5 madd n , 10 memn

L-to-R window NAF ( v = 2) 6.7 mmul n , 5 msqr n ,
ecdbl and mecadd 13.4 madd n , 8 memn

L-to-R window NAF ( v = 3) 5.8 mmul n , 4.7 msqr n ,
ecdbl and mecadd 12.6 madd n , 12 memn

L-to-R window NAF ( v = 4) 5.6 mmul n , 4.6 msqr n ,
ecdbl and mecadd 12.4 madd n , 16 memn

R-to-L window NAF ( v = 2) 8 mmul n , 5.4 msqr n ,
modecdbl and ecadd 14.4 madd n , 10 memn

R-to- L window NAF ( v = 3) 7 mmul n , 5 msqr n ,
modecdbl and ecadd 13.8 madd n , 13 memn

R-to-L window NAF ( v = 4) 6.4 mmul n , 4.8 msqr n ,
modecdbl and ecadd 13.4 madd n , 19 memn

Shamir's trick 9 mmul n , 6.75 msqr n ,
ecdbl and mecadd 13.5 madd n , 12 memn

Regular s
L-to-R Double-Add always 12 mmul n , 9 msqr n ,

ecdbl and mecadd 18 madd n , 11 memn

R-to-L Double-Add always 18 mmul n , 8 msqr n ,
modecdbl and ecadd 19 madd n , 13 memn

Montgomery Ladder 9 mmul n , 5 msqr n ,
zaddu' and zaddc' 18 madd n , 9 memn

Regular Shamir's trick 12 mmul n , 9 msqr n ,
ecdbl and mecadd 18 madd n , 13 memn

BRIP 12 mmul n , 9 msqr n ,
ecdbl and mecadd 18 madd n , 12 memn

Blinded R-to-L Double-Add always 18 mmul n , 8 msqr n ,
modecdbl and ecadd 19 madd n , 13 memn

Table 4.1: Average cost per bit of scalar for the most commonly usedecsms for a n-bit prime
modulus



Chapter 5

Cryptographic Protocol

Given the following curve parameters:

� E , an elliptic curve over a prime �eld Fp,

� G, a generator of a subgroup ofE of order t,

a private key is expressed by an integerd randomly chosen in f 1; t  1g. The corresponding
public key is P = [ d]G.

Such a key pair is involved in cryptographic protocols such as the signature schemeecdsa
(Section 5.1), the key agreement protocolecdh (Section 28) or the encryption schemeec-
elgamal (Section 5.3).

5.1 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm ( ecdsa ) is a signature scheme. It has been
standardized in [ANSI X9.62].

Algorithm 26 ecdsa Signature
Input: private key d, an encoded integerm 2 [0; p  1] representing a message
Output: Signature (r; s)

1: k R! f 1; : : : ; t  1g
2: Q ! [k]G
3: r ! xQ mod t
4: if r = 0 then
5: go to line 1
6: kinv ! k 1 mod t
7: s ! kinv (dr + m) mod t
8: if s = 0 then
9: go to line 1

10: return (r; s)
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Algorithm 27 ecdsa Veri�cation
Input: public key P, an encoded integerm 2 [0; p  1] representing a message, signature (r; s)
Output: true or false

sinv  s 1 mod t
u1  sinv � m mod t
u2  sinv � r mod t
Q  [u1]G + [ u2]P
v  xQ mod t
if v = r then

return true
else

return false

The Shamir's trick (Algorithm 18) is suitable for the veri�cation proce dure.

5.2 Elliptic Curve Di�e Hellman

The Elliptic Curve Di�e Hellman ( ecdh ) cryptographic scheme is a key agreement between
two entities. It was standardized in [ANSI X9.63]. The procedure enables to share a secret
data from the private key of the �rst entity and the public key of the s econd entity.

Algorithm 28 ecdh
Input: A's private key dA , B 's public key PB

Output: Secret Point S
S  [dA ]PB

if S = O then
return ERROR

return S

The entity B does the same with his own private keydB and A's public key PA . Both
respective calculations give the pointS = [ dA dB ]G. A and B now share a secret data.ecdh
can be used with ephemeral or static keys.

5.3 Elliptic Curve ElGamal

The Elliptic Curve ElGamal ( ec-elgamal ) is a cipher scheme.

Algorithm 29 ec-elgamal Encryption
Input: Public Key P, an encoded integerm 2 [0; p ! 1] representing a message
Output: (x1; y1; c)

k R ! f 1; : : : ; t ! 1g
(x1; y1)  [k]G
(x2; y2)  [k]P
c  x2 + m mod p
return (x1; y1; c)
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Algorithm 30 ec-elgamal Decryption
Input: Private Key d, an encrypted message (x1; y1; c)
Output: an encoded integerm0 2 [0; p  1] representing a message

(x0
2; y0

2) ! [d](x1; y1)
m0 ! c  x0

2 mod p
return m0



58 CHAPTER 5. CRYPTOGRAPHIC PROTOCOL



Chapter 6

ECC Security

The security of ecc in the black box model relies on the hardness of one of the following
problems:

� the Elliptic Curve Discrete Logarithm Problem ( ) , that is the computation
of k given P and Q = [ k]P,

� the Elliptic Curve Computational Di�e Hellman , that is the computation of
[k1k2]P given P, Q1 = [ k1]P and Q2 = [ k2]P ,

� the Elliptic Curve Decisional Di�e Hellman , that is, given P, Q1 = [ k1]P , Q2 =
[k2]P and Q3 = [ k3]P , assess ifQ3 = [ k1k2]P .

The Elliptic Curve Computational Di�e Hellman and the Elliptic Curv e Decisional Di�e
Hellman are trivially solvable if the ecdlp is. The best known algorithms to solve theecdlp
are the Pollard's rho [Pol78] and the Baby-step Giant-Step [Sha71] methods. They both have
a complexity of O(

p
t) where t = ord(P). If l is the security parameter of the cryptographic

application (e.g. 128 or 256), the recommended elliptic curve shall have apoint P of order
ord(P) � 22l . Although there is no concrete proof that theecdlp cannot be solvable with better
algorithms, this problem has been accepted by the cryptographic community to guarantee the
security of ecc .

Note that, so far, no sub-exponential algorithm is known to solve theecdlp . This is not
the case for integers factorization (which immediately breaksrsa ) and discrete logarithms on
the multiplicative group of a �nite �eld.

Remark 6.1. In particular elliptic curves, such as anomalous curves, supersingular curves, or
other curves [BSS99, Chapter III], better methods than the Pollard's rho and the Baby-step
Giant-Step are known for solving theecdlp . Elliptic curves for cryptographic applications are
chosen with good care so they do not have any of those particularities, and the Pollard's rho
or the Baby-step Giant-Step methods are the best known methods tosolve the ecdlp .

Generally, physical attacks aim at recovering the scalar or breaking the protocol with totally
di�erent methods, without solving the ecdlp . Fortunately, several methods exist to thwart
them. This is the topic of the next part.
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Part II

Physical Attacks and
Countermeasures on ECC
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Introduction

Side-Channel Analysis (SCA) is the cryptographic technique exploiting di�erent leaks, such
as the execution time, the power consumption, the electromagnetic emanation during the ex-
ecution of a cryptographic algorithm embedded in a device. Kocher was the �rst to report
a side-channel attack in 1996 [Koc96]. The attack exploits the variation of execution timing
with di�erent inputs. Boneh, DeMillo and Lipton introduced anothe r kind of physical attack
in 1997 [BDL97]. They suggest introducing a fault during the execution ofthe cryptographic
algorithm. The secret key is then derived from the erroneous result. Since then, various fault
attacks have emerged. On the other hand, many di�erent countermeasures have been imagined
and introduced year after year to defeat physical attacks. This part gives a survey on the
physical attacks and countermeasures onecc .

While defenders introduce new methods to thwart a class of attacksor an attack in par-
ticular, cryptanalysts propose new attacks to bypass previous countermeasures making them
incomplete or even completely ine�ective. We exhibit the attacks and countermeasures with a
tree structure to represent this cat-and-mouse game.

Chapter 7 is devoted to the characterisation of the attacks and countermeasures. Consider-
ing the large number of attacks, the employment of precise terms to describe them is required.
Also, most of the countermeasures have a negative e�ect on the performance; we explain how
to quantify their cost.

Chapter 8 is the core of the thesis. It displays the di�erent attacks and countermeasures. We
propose new side-channel attacks, called Same-Values Analysis (SVA), based on the occurrence
of same values within the sameecsm. Namely, these attacks are the horizontal SVA targeting
the Uni�ed Formul� (Section 8.2.2.2), the vertical and horizontal SVA agains t the Side-Channel
Atomicity (Sections 8.2.3.1 and 8.2.3.2), the vertical and horizontal classical SVA (Sections 8.13
and 8.14). Also, a new kind of fault attacks is proposed in Section 8.23. A fault isinduced
at the very end of the ecsm, during the conversion from projective to a�ne coordinates. In
addition, we propose a very e�cient countermeasure against the Re�nedSide-Channel Analysis
in Section 8.11.1. We propose new elliptic curve formul�, ensuring the security against the
Re�ned Side-Channel Analysis.

Some fault attacks require several pairs of correct and faulted results. Intuitively, ecdsa
seems naturally immune against such attacks because it is a probabilistic signature scheme. We
show in Chapter 9 that is not true for several fault attacks.

Chapter 10 summarizes the attacks depending on the context. It is suitable for the task of
selecting di�erent countermeasures when implementing a secure embeddedecc application.

Finally, a synthesis on the attacks versus the countermeasures is given in Chapter 11. The
e�ciency of each countermeasure against the attacks is clearly displayed.
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Chapter 7

Characterisation of Attacks and
Countermeasures

Given the large number of physical attacks inecc , the use of precise terms is essential to describe
and classify them. In Section 7.1, we give the di�erent categories of theattacks depending of
the exploited leak. Section 7.2 gives a description of the context for the attacks. In the next
chapter, experimental results are given to verify the practicability of some side-channel attacks.
To perform the experiments, we use a test platform that is described in Section 7.3. Finally,
we give in Section 7.4 the terms that will quantify the cost of each countermeasure.

7.1 Categories of the Attacks

The di�erent attacks in embedded systems are generally classi�ed into three main categories:
Side-Channel, Fault and Combined Attacks . For each attack of the next chapter, we
specify in which category it belongs to.

Side-Channel or Passive Attacks are those where the attacker observes the behaviour of
the chip during a process without disturbing it. Since the behaviour depends on the manipulated
data, the observations may reveal secret information such as the secretscalar. So far, the
di�erent passive attacks are:

� Timing Attacks. They exploit the interdependence between values of the inputs and
the time needed to execute the cryptographic algorithm. The �rst reported side-channel
attack of Kocher [Koc96] is in fact a timing attack.

� Simple Side-Channel Analysis (SSCA). The attacker observes the di�erent patterns
of the power consumption or the electromagnetic traces. Each step of theattack requires
a single trace to conclude on some information of the secret.

� Template Attacks. They proceed in two phases [CRR02]. The �rst phase consists in
building the templates. The attacker needs a fully controllable device in which she can
choose private and public data, and acquire traces of the power consumption by varying
the input data: this database makes up the templates. The second phase is the acquisition
of the targeted device with the same known public data used for the templates. The trace
is then compared with the templates to conclude which secret data are the more probably
manipulated.
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� Vertical Side-Channel Analysis. Several ecsms are run with di�erent input data.
Each time, the power consumption or the electromagnetic radiation is acquired. A statis-
tical analysis is performed on the di�erent traces to deduce the manipulated values, and
hence the secret scalar.

� Horizontal Side-Channel Analysis. A single trace is analysed to conclude on some in-
formation of the secret. The attacker uses statistical tools on segmentsof the trace. Since
a single trace is available, the length of the random variables is really limited. Therefore,
Horizontal SCA is more di�cult to mount in practice compared with Verti cal SCA in
which the attacker has a potential access to unlimited traces. Nonetheless, recently, these
attacks have been intensively studied because they are in fact very powerful since a single
trace can reveal the whole secret data. These attacks make it possible totarget some
cryptographic protocols naturally immune to vertical SCA such asecdsa . They also can
bypass some very powerful countermeasures.

Fault or Active Attacks are those where the opponent disturbs the chip during the execu-
tion of the cryptographic algorithm by using a laser, by varying the supply voltage, by varying
the external clock or other methods. The possibly erroneous resultcan reveal information of
the targeted secret data. The �rst reported attack that used a fault to d erive secret information
was introduced by Boneh, DeMillo and Lipton [BDL97] to target rsa implementations used
with the Chinese Remainder Theorem(CRT). The attack was renamed later Bellcore attack
after the name of the company for which Boneh, DeMillo and Lipton were working. Since then,
many methods to derive a secret key using a fault were introduced. In ecc , the di�erent active
attacks are generally classi�ed as follows:

� Safe-Error Attacks. The attacker injects a fault on a speci�c area of the chip at a
speci�c time during a process. The �nal result will be wrong if and only if some condition
of the secret data is met. Otherwise, the result will be correct and the fault had no e�ect:
it was safe.

� Weak Curve Attacks. A fault is induced on some parameters before theecsm so that
the ecsm is performed on another elliptic curve that is weaker than the original one. The
new curve E 0 is weak in the sense that solving theecdlp is easy. Generally, this means
that the order of E 0 has no large factor.

� Di�erential Fault Attacks (DFA). Several ecsms are run. Each time, a fault is
induced during the execution of the cryptographic algorithm. The attacker collects the
erroneous results. They are analysed and compared with each other or withthe correct
ones to deduce some information on the secret key. The term \Di�erential Fault Analysis"
was �rst employed by Biham and Shamir to describe an attack against an implementation
of the Data Encryption Standard (des) [BS97]. The Bellcore attack on rsa is in fact a
DFA.

This thesis focuses on the di�erent methods to derive the secret scalar from possibly erro-
neous results rather than the technical aspect of injecting a fault.For a detailed description of
the di�erent methods to disturb the chip, the interested reader can refer to the survey given in
[BCN+ 06].

Combined Attacks are those where the attacker combines two (or more) passive or active
attacks at a time.
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7.2 Attack Context

The context of an attack is essential for the designer trying to protectan embedded system.
Depending on the protocol, the implementation or the architecture,an attack is not necessarily
feasible. In this case, a protection is not necessary, and the performance can be increased
because each countermeasure has a cost. The context is described by giving details on the
following information:

� Key Recovery. A description of the key recovery procedure is given; it can be either
recursive if the bits recovery process follows a certain order,or \independent bits" if the
bits are recovered independently from each other. The key recovery process can also
involve more computation such as theecdlp to recover a small scalar, or theecdlp on
a weak curve.

� Elliptic Curve Speci�city. Some attacks work only if the given elliptic curve has some
properties; these properties are given,

� Implementation Access. The attacker needs some knowledge of the implementation
(until a certain level of the ecc 's hierarchy), or she needs an access to a device with
exactly the same implementation.

� Implementation Speci�city. An attack can either be adapted for many di�erent im-
plementations, or it targets a very speci�c implementation, a speci�c algorithm, a speci�c
elliptic curve formula or a speci�c countermeasure.

� Number of Executions Needed. To succeed, an attack requires the run of one or sev-
eral ecsms (for examplen, n being the bit-length of the scalar); when the attack is based
on a statistical approach, we simply say \multiple" executions because the executions
number depends on the standard deviation of the random variables.

� Input Access. Either the attacker needs to choose a base point having some properties
or she simply needs the knowledge of it or the base point does not matter.

� Output Access. The attacker may need either some information about the output point
like the knowledge of it or, more simply, the knowledge of its validity (correct or incorrect)
or, even, no information at all about it.

� Fault model. The di�erent faults are characterized as data randomization (a random
fault is injected into a speci�c area), resetting data (a fault is injected to force a data to the
zero value) or modifying opcode (a fault is injected to modify or skip some instructions).
Also the area size of the fault is given.

7.3 Test Platform

Side-Channel attacks are generally experimentally validated. We implemented elliptic curves
operations in the Side-channel Attack Standard Evaluation Board SASEBO-GII [SASEBO].
The hardware arithmetic module was implemented using algorithms described in Chapter 2
with a word size of 64 bits. All measures and experimental results given in the next chapter
are performed with this test platform.
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7.4 Quantifying the Cost of the Countermeasures

Each countermeasure has a non negligible time or memory cost onecc applications. Indeed,
a countermeasure can extend theecsm by several iterations, it can increase the number of
operations of an elliptic curve formula, or it can cost only a few modular multiplications. For
the extra �eld operations, extra elliptic curve operations, or extra iterations of the ecsm, we use
the notation of Sections 2.6, 3.2 and 4.3 respectively. A Random Number Generation ( rng ), a
Random Permutation Generation (rpg ) or a Cyclic Redundancy Check (crc ) might be needed
for the countermeasure. We notify it. The memory required to store the extra values also
matters. For each countermeasure, we give the cost with the followingnotation:

� ecsml;n : execution time of an ecsm with a l-bit scalar and a n-bit modulus,

� ecadd n ; ecdbl n ; c-ecadd n : execution time of an elliptic curve addition, doubling and
conjugate addition with a modulus of sizen,

� add n ; sqr n ; mul n ; div n : execution time of an addition/subtraction, a square, a multipli-
cation and a division respectively, with n-bit integers,

� madd n ; msqr n ; mmul n ; minv n : execution time of a modular addition/subtraction, a
modular square, a modular multiplication and a modular inversion respectively, with
n-bit integers,

� rng n : execution time of the generation of a randomn-bit integer,

� rpg m : execution time of the generation of a random permutation ofm elements,

� crc n : execution time of a cyclic redundancy check of an-bit integer,

� memn : memory block to store an-bit integer.



Chapter 8

Attacks and Countermeasures

This chapter gives a state-of-the-art in physical attacks and countermeasures onecc . Existing
attacks and countermeasures are described. Our new attacks: the Same-Values Analysis and
the Fault Attack on Projective to A�ne Conversion are detailed. Our cou ntermeasure against
the Re�ned Side-Channel Analysis is described as well.

Some countermeasures were introduced to counteract an attack in particular. In this case,
the countermeasure will be a subsection of the latter. The same is done with an attack targeting
a speci�c countermeasure. This structure tree is more suitable to expose the state-of-the-art.
In addition, the titles of the attacks are in red, while the titles of the countermeasures are in
blue.

For each attack, we specify if some countermeasures, prior in the state-of-the-art, thwart
the attack. We also specify if previous countermeasures have been proven ine�ective against
the attack currently described. This analysis of interaction was either found in the paper in-
troducing the attack or it is from our own researches.

The characteristics of the attacks, as described in the previous chapter, are given. Also, the
cost of each countermeasure is speci�ed.

Remark 8.1. Some passive attacks consist in analysing the power consumption trace dur-
ing the execution of the cryptographic operation. These attacks can be adapted using the
electromagnetic radiation trace. We use a single notation for better clarity.

In this chapter, unless otherwise speci�ed, we consider the following parameters:

� E : y2 = x3 + ax + b is the given elliptic curve de�ned over Fp with p a n-bit prime integer,

� k is the secret scalar that the attacker tries to recover.

8.1 Classical Timing Attack [Koc96]

The �rst timing attack, introduced by Kocher, targets rsa implementations. It takes advan-
tage of the non-constant execution timing of the modular multiplication such as Algorithm 8
with the conditional reduction step. The attack was improved and simpli�ed by Dhem, Koe-
une, Leroux, Mestr�e, Quisquater and Willems [DKL + 98]. It is described below, adapted toecc .

69
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The attack is recursive. Suppose that the attacker already knows then " i " 1 leftmost bits
of the �xed scalar k = ( kn  1; : : : ; k0)2 and tries to recover ki (1).

The attacker collects the execution time of di�erent ecsms with di�erent base points. She
simulates the computation with exactly the same implementation of the targeted chip, by
making an assumption onki (e.g. ki = 0).

She separates the di�erent timings in two setsS1 and S2. If a �nal reduction is needed at
a speci�c time of the algorithm (this can be for example the �rst multi plication of the elliptic
curve operation), the timing is put in S2. The timing is put in S1 otherwise (no reduction).
Let T1 and T2 be the average timings ofS1 and S2 respectively. If T2 " T1 � " , " being the
average time of the �nal reduction, then the hypothesis on the secretwas right.

Remark 8.2. In [DKL + 98], they improve the attack by making the two possible assumptions:
ki = 0 and ki = 1. The sets T1 (no reduction) and T2 (reduction) are constructed for both
assumptions. They are denoted byT (0)

1 ; T (0)
2 and T (1)

1 ; T (1)
2 for ki = 0 and ki = 1, respectively.

The method consists in comparingT (0)
2 " T (0)

1 and T (1)
2 " T (1)

1 . The larger number reveals the
good hypothesis.

Attack Context:

� Key recovery : recursive,

� Elliptic Curve Speci�city : none,

� Implementation Access : full knowledge of all algorithms,

� Implementation Speci�city : deterministic and non-constant time execution of modu-
lar multiplications,

� Number of Executions Needed : multiple,

� Input Access : known and varying,

� Output : unnecessary.

8.1.1 Constant Time of Field Operations

A e�ective solution to prevent the timing attack described above is to perform all �eld operations
in constant time, whatever the input values. This can be done by adding dummy operations if
necessary as explained in Sections 2.3 and 2.4. To ensure a full protection, the designer should
verify that the the �eld operations are performed with the same number of cycles whatever the
input values.

With random values, the probability of subtraction for a modular addition is 1/2, and the
probability of addition for a modular subtraction is 1/2. The probability of a �nal reduction is
3/16 for a Montgomery multiplication and 1/4 for a Montgomery squaring [SST04]. One extra
memory block is required to store the result of dummy operations.

Cost: 1/2 add n per madd n , 13/16 add n per mmul n , 3/4 add n per msqr n , 1 memn

1This presumes this is a Left-to-Right ecsm. Of course, the attack works backwards on Right-to-Left ecsms.
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8.2 Simple Side-Channel Analysis [Cor99]

Coron was the �rst to report a SSCA on ecc . This attack targets unregular ecsms such as the
Left-to-Right Double-and-Add method (Algorithm 14).

At each iteration, an addition of points is performed only if the current bit of the scalar is
1. If the attacker is able to distinguish the power consumption of a doubling from the one of
an addition of points, as in Figure 8.1, the bits of the scalar are easily recovered. Contrary to
rsa , where squares and multiplications can be executed by the same code, this is not the case
for ecc .

Figure 8.1: Power consumption trace of a doubling (left curve) and an addition (right curve).
Field operations are delimited by vertical lines.

A single trace of anecsm is enough to recover the scalar.

Attack Context:

� Key recovery : recursive (the iteration number has to be known),

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of theecsm and the elliptic curve formul�,

� Implementation Speci�city : unregular ecsm, di�erent formul� for addition and dou-
bling operations,

� Number of Executions Needed : 1,

� Input Access : unnecessary,

� Output Access : unnecessary.

8.2.1 Regular ECSM [Cor99, x3.1]

A countermeasure against SSCA consists in regularizing theecsm, i.e. perform the same elliptic
curve operations at each iteration of theecsm whatever the value of the scalar.

Introducing dummy operations can make anecsm regular such as the Left-to-Right Double-
and-Add always (Algorithm 19). The Montgomery Ladder (Algorithms 21 and 22) is regular
as well without any dummy operation. Regular ecsms were previously given in Section 4.2.
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8.2.1.1 C Safe-Error [YKLM01]

C Safe-Error attacks, introduced by Yen, Kim, Lim and Moon, target impl ementations with
dummy operations such as the Left-to-Right Double-and-Add always method (Algorithm 19).

The attacker injects a fault during the computation of the addition of poi nts at iteration i .
If the addition is dummy, which is the case if ki = 0, the fault had no e�ect and the result is
correct.

This attack targets one bit at a time per ecsm.

Attack Context:

� Key recovery : independent bits,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of the location of the �eld arithmetic module,
knowledge of theecsm and the elliptic curve formul�,

� Implementation Speci�city : implementation with dummy operations depending on
the current bit,

� Number of Executions Needed : n,

� Input Access : unnecessary,

� Output Access : knowledge of the validity,

� Fault Model : any on the �eld arithmetic module.

8.2.2 Uni�ed Formul� [BJ02]

This countermeasure was introduced by Brier and Joye to prevent the SSCA. Elliptic curve
operations are reviewed so that the operations for computing a doubling and an addition are
the same.

The following formula can be used for both addition (Q 6= � P) and doubling (Q = P). They
presented the formula in projective coordinates because it is more e�cient than the Jacobian
coordinates.

Algorithm 31 uni�ed ecadd in projective coordinates [BJ02]
Input: P = ( X 1; Y1; Z1); Q = ( X 2; Y2; Z2) in projective coordinates such that Y1Z2 6=  Y2Z1,

elliptic curve parameter a
Output: P + Q

U1 ! X 1Z2; U2 ! X 2Z1; S1 ! Y1Z2; S2 ! Y2Z1

Z ! Z1Z2; T ! U1 + U2; M ! S1 + S2

R ! T2  U1U2 + aZ2; F ! ZM
L ! MF
G ! T L
W ! R2  G
X 3 ! 2F W
Y3 ! R(G  2W )  L 2

Z3 ! 2F 3

return (X 3; Y3; Z3)
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Cost: (uni�ed ecadd ): 13 mmul n , 5 msqr n , 9 madd n , 6 memn

This prevents the classical SSCA since doubling and addition operations cannot be distin-
guished with the power consumption trace as in Figure 8.1.

This countermeasure must be carefully implemented. The attackershould not be able to
distinguish the transition of an iteration to the next from the transit ion of the two elliptic curve
operations within the same iteration. The atomicity principle should be applied [CCJ04].

An addition of points requires 13 mmul n , 5 msqr n , 9 madd n and 6 temporary registers.

Cost:

� 9 mmul n  1 msqr n  2 madd n over ecdbl n ,

� 1 mmul n + 1 msqr n + 2 madd n over ecadd n .

8.2.2.1 SSCA on Uni�ed Formul� [Wal04]

Walter showed that a simple SCA can reveal whether a �nal subtraction is needed at the
end of the Montgomery multiplication, as shown in Figure 8.2. By analysingall Montgomery
multiplications performed during the execution of Algorithm 31, the att acker is able to tell if
the points are the same (doubling) or not (addition).

Figure 8.2: Power consumption of a multiplication with a �nal subtracti on (left curve) and
without a �nal subtraction step (right curve). The vertical arrow in dicates the additional
subtraction.

Stebila and Th�eriault improved the attack [ST06]. In addition to the conditional subtrac-
tion at the end of the Montgomery multiplication, they use the condition al subtraction (resp.
addition) at the end of the modular addition (resp. subtraction).

A single trace may be enough to recover the whole bits of the scalar. In addition, the
knowledge of the input point is not required [Wal04, ST06]. Obviously, the Constant Time of
Field Operations countermeasure, as described in Section 8.1.1, thwarts the attack2.

Attack Context:

� Key recovery : recursive (the iteration number has to be known),

� Elliptic Curve Speci�city : unregular ecsm,

2Of course, only if the dummy operations are performed in the s ame manner as if they were real. Also, the
conditional step and throwing away the temporary wrong resu lt should not be distinguished with side-channel
analysis.
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� Implementation Access : full knowledge of all algorithms,

� Implementation Speci�city : deterministic and non-constant time execution of modu-
lar multiplications, uni�ed formul�,

� Number of Executions Needed : 1,

� Input Access : unnecessary,

� Output Access : unnecessary.

8.2.2.2 Horizontal Same Values Analysis on Uni�ed Formul�

We introduce a new attack against the Uni�ed Formul� countermeasure. A single trace is
analysed: it is a horizontal attack.

Algorithm 31 is used so that the attacker cannot distinguish whether a doubling or an
addition is being performed. However, if the input points of uni�ed ecadd are the same, the
valuesU1; U2 are computed with the same input values:X 1 = X 2 and Z1 = Z2. The same goes
for S1; S2: Y1 = Y2 and Z1 = Z2.

The trace segments during the computation ofU1; U2 are compared as illustrated in Figure
8.3.

Figure 8.3: Comparison of the power consumption during the computation of uni�ed ecadd .

If the inputs of the two multiplications are equal, the di�erence of traces corresponds of the
di�erence of the noise only. Consequently, if the noise is low, thedi�erence of traces will be
near zero in that case. If the noise is high, a more sophisticated tool than a simple di�erence
can be used, such as the Euclidean distance or the correlation with thepoints of interest of
the traces. The trace segments during the computation ofU1; U2 can be seen as random vari-
ablesX; Y respectively. The construction of such random variables are illustrated in Figure 8.4.

The comparison can be done at each iteration, so the scalar can be recoveredfrom a single
trace.

Attack Context:

� Key recovery : recursive (the iteration number has to be known),

� Elliptic Curve Speci�city : none,
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Figure 8.4: Construction of random variables for a Horizontal SCA without a leakage model
during the execution of an ecsm.

� Implementation Access : knowledge of theecsm and the elliptic curve formul�,

� Implementation Speci�city : uni�ed formula,

� Number of Executions Needed : 1,

� Input Access : unnecessary,

� Output Access : unnecessary.

8.2.3 Side-Channel Atomicity [CCJ04]

The concept of Side-Channel Atomicity was introduced by Chevallier-Mames, Ciet and Joye.
The elliptic curve formul� are rewritten with sequences of identical atomic patterns. In [CCJ04],
an atomic pattern is the sequence of the following (possibly fake) operations:

1. modular multiplication or square

2. modular addition

3. modular opposite

4. modular addition

A point doubling requires 10 of these atomic patterns, while an additionrequires 16.

This countermeasure has been improved by Giraud and Verneuil [GV10].A point doubling
in modi�ed coordinates requires 2 msqr n , 6 mmul n , 10 madd n and 7 temporary registers3. An
addition of points requires the double amount of operations: 4 msqr n , 12 mmul n , 20 madd n

and 7 temporary registers3. The formul� are suitable for the Right-to-Left sliding window
width- v NAF scalar multiplication (Algorithm 17). The elliptic curve operations are illustrated
in Figure 8.5.

This implementation is not vulnerable anymore to SSCA since the attacker cannot distin-
guish between the operations performed. She only sees a sequence of identical atomic patterns
without knowing if they correspond to a doubling or an addition (see Figure 8.6).

Fake operations are introduced so that the di�erent elliptic curve operations might be written
with the same atomic patterns. Therefore, Safe-Error attacks can be applied to distinguish
which operation is currently performed.

36 temporary registers are needed in [GV10], we added one extr a temporary registers for the dummy opera-
tions.
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ecadd - part 1 (A1) ecadd - part 2 (A2) modecdbl (D)

1. T1  Z 2
2 T1  T2

6 T1  X 2
1

2. ? ? T2  Y1 + Y1

3. T2  Y1 � Z2 T4  T5 � T1 Z3  T2 � Z1

4. ? ? T4  T1 + T1

5. T5  Y2 � Z1 T5  T1 � T6 T3  T2 � Y1

6. ? ? T6  T3 + T3

7. T3  T1 � T2 T1  Z1 � T6 T2  T6 � T3

8. ? ? T1  T4 + T1

9. ? ? T1  T1 + W1

10. T4  Z 2
1 T6  T2

2 T3  T2
1

11. T5  T5 � T4 Z3  T1 � Z2 T4  T6 � X 1

12. ? T1  T4 + T4 T5  W1 + W1

13. T2  T2 ! T3 T6  T6 ! T1 T3  T3 ! T4

14. T5  T1 � X 1 T1  T5 � T3 W3  T2 � T5

15. ? X 3  T6 ! T5 X 3  T3 ! T4

16. ? T4  T4 ! X 3 T6  T4 ! X 3

17. T6  X 2 � T4 T3  T4 � T2 T4  T6 � T1

18. T6  T6 ! T5 Y3  T3 ! T1 Y3  T4 ! T2

Figure 8.5: ecadd and modecdbl operations written with the same atomic pattern (? repre-
sents a dummy operation). Each column is an atomic pattern.

Figure 8.6: Power trace observed during a few iterations of theecsm using the patterns of
Figure 8.5

Cost:

� modecdbl n with atomic patterns costs 2 mmul n ! 2 msqr n ! 2 madd n + 4 memn over
the classical modecdbl n of Section 3.1.1 (which is an improvement if mmul n = m sqr n ),

� ecadd n with atomic patterns costs 13 madd n + 4 memn over the classicalecadd n of
Section 3.1.1.

8.2.3.1 Same Values Analysis against the Atomicity Countermeasure

We present our Vertical Side-Channel Attack targeting the Side-Channel Atomicity Counter-
measure. We use the notation of the patternsA1; A2; D as described in the previous section.
We illustrate our attack on the Right-to-Left sliding window width- v NAF scalar multiplication
(Algorithm 17) in which the Side-Channel Atomicity was described in [CCJ04, GV10].
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If we are able to distinguish between a doubling (D) and an addition (A1;A2), we can
deduce if the current digit of the scalar is zero. The attack is recursive. For a better clarity,
we will see how to �nd the �rst digit k0 of the v-NAF representation of k. The next digits are
recovered in the same way.

The core idea of the attack is to identify which operation is performedby analysing the
possible repetitions of variables in the patterns.

Possibilities of the patterns. Considering Algorithm 17, the possible operations of the
three �rst atomic patterns are:

1. A1;A2;D. In this case, k0 6= 0.

2. D; A1;A2. In this case,k0 = 0.

3. D; D; A1. In this case,k0 = 0.

4. D; D; D. In this case, k0 = 0.

We want to assert if the �rst three patterns correspond to A1;A2;D (k0 6= 0).

Same values in the di�erent patterns. With Figure 8.5 and the di�erent possibilities of
the three �rst patterns, we label the modular multiplications wit h a common operandonly if the
operations areA1;A2;D; we deliberately omit the multiplications sharing a common operand
if they possibly occur in another sequence of patterns.

The common operands are illustrated in Figure 8.7. They are denoted with boxes with the
same index. For example, the square at line 1 of the 1st pattern and the multiplication at line
3 of the 1st pattern share a common operand (Z2) only if the sequence isA1;A2;D. Note
that the multiplication at line 17 of the 1 st pattern and the multiplication at line 11 of the
3rd pattern share a common operand (X 2 and X 1) only if A1;A2;D is performed. The same
holds for Z2 in A1;A2 and Z1 in D. Indeed, the point (X 2; Y2; Z2) of A1;A2 and the point
(X 1; Y1; Z1) of D both correspond to the point R or  R in Algorithm 17.

The total number of pairs of multiplications or squares sharing a common operand is sixteen
in the sequenceA1;A2;D.

Detecting the same values. The attacker arbitrarily chooses a pair within the sixteen.
Severalecsms are run with the same scalark. The base point does not matter.

We want to detect if, for each ecsm, the two multiplications of the selected pair share a
common operand. The method introduced by Schramm et al. [SWP03] to attack an imple-
mentation of the des can be used. It was later improved in [CFG+ 11] to attack a protected
implementation of the Advance Encryption Standard (aes). The principle of the method is as
follows. Within each trace, the two points where the same values are possibly manipulated are
saved for constructing two random variables, as illustrated in Figure8.8. The correlation or
another statistical tool is performed to reveal if the same values are indeed manipulated.

Remark 8.3. The pair of multiplications is selected such that the common operands are in
the same operand input (left or right). This makes it possible to perform a collision analysis
without any synchronization procedure. The attack is still possible if it is not the case, but
a strong study on the �eld arithmetic module is required for a synchronization because the
sensitive data is not manipulated at the same time within the �eld operation.
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ecadd - part 1 (A1) ecadd - part 2 (A2) modecdbl (D)

1. T1  
�

�

�

�Z2
2

1;2;14
T1  

�

�

�

�T6
2

9;10
T1  

�

�

�

�X 1
2

12
2. ? ? T2  Y1 + Y1

3. T2  Y1 �
�

�

�

�Z2 1;3;15
T4  T5 � T1 Z3  T2 �

�

�

�

�Z1 14;15;16
4. ? ? T4  T1 + T1

5. T5  Y2 �
�

�

�

�Z1 4;5
T5  T1 �

�

�

�

�T6 9;11
T3  T2 � Y1

6. ? ? T6  T3 + T3

7. T3  
�

�

�

�T1 7
� T2 T1  

�

�

�

�Z1 5;6
�

�

�

�

�T6 10;11
T2  T6 � T3

8. ? ? T1  T4 + T1

9. ? ? T1  T1 + W1

10. T4  
�

�

�

�Z1
2

4;6
T6  T2

2 T3  T2
1

11. T5  T5 �
�

�

�

�T4 8
Z3  T1 �

�

�

�

�Z2 2;3;16
T4  T6 �

�

�

�

�X 1 13
12. ? T1  T4 + T4 T5  W1 + W1

13. T2  T2 ! T3 T6  T6 ! T1 T3  T3 ! T4

14. T5  
�

�

�

�T1 7
� X 1 T1  T5 � T3 W3  T2 � T5

15. ? X 3  T6 ! T5 X 3  T3 ! T4

16. ? T4  T4 ! X 3 T6  T4 ! X 3

17. T6  
�

�

�

�X 2 12;13
�

�

�

�

�T4 8
T3  T4 � T2 T4  T6 � T1

18. T6  T6 ! T5 Y3  T3 ! T1 Y2  T4 ! T2

Figure 8.7: Common operands in the atomic patterns

Figure 8.8: Construction of random variables for a detection of same values

Experimental Results. We conducted an experiment with the test platform described in
Section 7.3. We measured the power consumption of 400 pairs of modular multiplications of
256-bit integers. For each pair, the two modular multiplications share a common operand.
We then computed the correlation curve (X and Y illustrated in Figure 8.8 are slid together
along the traces). The same was done with 400 pairs of modular multiplications with random
operands. The correlation curves are given in Figure 8.9. Four peaks can be seen when the
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modular multiplications share a common operand. It corresponds to the four words of the
common operand.

Figure 8.9: Correlation curves results for 400 pairs of modular multiplications sharing a common
operand (left curve) and random operands (right curve) of 256-bit integers

If a signi�cant peak can be seen on the correlation curve (left curve of Figure 8.9), the
operations of the three �rst patterns are A1;A2;D. The attacker concludes that k0 6= 0. She
starts again with the next three patterns to target the digit k1. Conversely, if no peak is detected
(right curve of Figure 8.9), the �rst pattern corresponds to D, and the attackers concludes that
k0 = 0. The attacker starts again with the two last patterns of the three, added together with
the fourth of the ecsm to target k1.

The �fteen other pairs can be used to increase the length of the random variables and
therefore decrease the number of traces required.

Attack Context:

� Key recovery : recursive (the iteration number has to be known),

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of theecsm and the elliptic curve formul�,

� Implementation Speci�city : unregular ecsm, usage of the Side-Channel Atomicity
countermeasure,

� Number of Executions Needed : multiple,

� Input Access : unnecessary,

� Output Access : unnecessary.

8.2.3.2 Horizontal SVA on the Atomicity Countermeasure

The previous attack was a Vertical Side-Channel Attack. The attack is no longer applicable if
the scalar is not �xed or randomized.

We extend the previous attack and propose a Horizontal Side-Channel Attack. Like the
previous attack, the attacker tries to detect if the three current patterns are A1;A2;D using
the possibly same values occurring in the patterns. Our attack is based on the Big Mac principle.

Big Mac attack. The Big Mac attack was �rst introduced by Walter to target rsa imple-
mentations [Wal01]. The attack is based on a method to detect if two multiplications share a
common operand by comparing their power trace. This method is described here because we
extend this method for our attack. The Big Mac attack will be fully described later in Section
8.7.
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Walter pointed out that two multiplications with a common operand have s imilarities as
for the power consumption. Denote by T1; T2 the traces during the computation of respec-
tively two modular multiplications A � B mod P, C � D mod P, with A 6= C (or Montgomery
multiplications).

Denote by m the words number of the integers. The sample points of the traceT1, in which
each bj ; j 2 [0; m[ is manipulated, are averaged into one single values( j )

1 . If Algorithm 8 is
used, this corresponds to the lines 8 to 10. The computation ofs(0)

1 is illustrated in Figure 8.10.

Figure 8.10: Illustration of the computation of s(0)
1 with a modular multiplication of integers

of four words (256-bit integers in a 64-bit architecture)

The average permits to reduce the noise corresponding to the manipulation of the ai for i 2
[0; m[ and other activities of the device [Wal01]. LetS1 = s(0)

1 jj : : : jj s(m  1)
1 be the concatenation

of the s( j )
1 . The same is done withT2 to obtain S2.

If B = D, the Euclidean distance betweenS1 and S2 is small. If B 6= D, the distance is
high. The trace segmentsT1; T2 can be seen as random variables constructed from a single
trace of an exponentiation, as illustrated in Figure 8.4.

This method works with a single pair of multiplications on rsa because the number of words
is large compared toecc 4. The success of the attack depends on the size of the manipulated
integers: the longer the used integers are, the higher the success rate is [Wal01, BJPW13a].

Big Mac CoCo. In [CFG + 12], Clavier et al. propose to use the Pearson coe�cient between
S1; S2 instead of the Euclidean distance. They called the method Big Mac CoCo (CoCo for
Collision-Correlation). They compare the two methods with simulation results onrsa and the
correlation is better by far [CFG+ 12].

Later, Bauer, Prou�, Jaulmes and Wild gave simulation results of the Big Mac CoCo on
elliptic curves [BJPW13b]. They target the Side-Channel Atomicity. Indeed, they notice that
there are common operands regarding the side-channel atomicity formul�. For instance, to dis-
tinguish an addition from a doubling, they suggest to compare the �rst multiplication (line 1)
and the second multiplication (line 3) of Figure 8.5. If it is a doubling, the two multiplications

4For a 128 bits security, ecc must use 256-bit integers length, while rsa must use 3072-bit integers.
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share a common operand. They give the success rate on simulation resultsusing a correlation
which was high enough even for a 32 bits architecture.

We experimentally tried both the Big Mac and the Big Mac CoCo on real measurements on
a 64 bits architecture and we failed. In the following, we present a signi�cant improvement of
the attack of [BJPW13b]. We also present experimental results of our attack.

Assembling the pieces of the puzzle. In [BJPW13b], they compare only two multiplica-
tions in two di�erent patterns. Our contribution is to compare many p airs of multiplications by
analysing a sequence of several patterns depending of a bit of the scalar. Namely, we want to
assert if the three �rst patterns correspond to A1;A2;D. In this case, the �rst bit is non-zero.

Compared with the classical Big Mac attack onrsa , the low number of words is compensated
by the large number of modular multiplications we compare. We can comparesixteen pairs
(see Figure 8.7) instead of one, thanks to the atomicity countermeasure.

First, we split the trace of the three �rst patterns; we separate the �eld operations. We
denote by s(�) the method for constructing S1 or S2 as previously described for the Big Mac
attack.

We then construct two sets U1; U2 as follows. U1; U2 are �rst set empty. We perform s(�)
for the power traces of the multiplications that might share a common operand. One element
of each pair is put in U1, the other is put in U2. The construction of U1; U2 is illustrated in
Figure 8.11 for the �rst three pairs possibly sharing the same operandZ2.

The Euclidean distance betweenU1 and U2 is small if each pair share a common operand.
In this case the three patterns observed are actuallyA1;A2;D, and the attacker concludes
that k0 6= 0. She then iterates the method with the next three patterns to target the digit k1.
Conversely, The Euclidean distance betweenU1 and U2 is large if no multiplication among all
multiplications shares a common operand. In this case, the three patterns observed are not
A1;A2;D, and the attacker concludes thatk0 = 0. She starts again with the two last patterns
of the three, added together with the fourth pattern of the ecsm to target k1.

Figure 8.11: Assembling the pieces of the puzzle of three atomic patterns

Experimental Results - Euclidean Distance. We mounted the attack with 384-bit inte-
gers (six words with our 64-bit architecture) with our test platform de scribed in Section 7.3.

The �rst step of the attack is the characterisation of the arithmetic mo dule. We constructed
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U1; U2 as previously described with fourteen pairs of multiplications sharing a common operand5

100 times. The average Euclidean distance was 2.165. The same was done with fourteen
pairs of multiplication with random operands. The average Euclidean distance was 3.198. We
established that a distance lower than the mean 2.682 correspond toA1;A2;D.

We then assembled the pieces of the puzzle as previously described with a trace of A1;A2;D
50 times. Only one distance was larger than 2.682. We conclude that the attacker can detect
A1;A2;D with a success of 98%. The same was done withD; D; A1 50 times. Only two
distances were smaller than 2.682. We conclude that the attacker wrongly detects a patterns
triplet as A1;A2;D with probability 4%.

We performed the experiment with 256-bit integers (four words) as well. We obtained a
probability of 96% to correctly detect A1;A2;D, and a probability of 16% that D; D; A1 was
detected asA1;A2;D, which is still acceptable to perform the attack.

We strongly believe that the success probability is higher on a 32-bit architecture because
of the larger number of words.

Experimental Results - Big Mac CoCo. We also tried using the Pearson correlation as
in [CFG+ 12, BJPW13b]. Surprisingly, the coe�cient was high (around 0.9) each time, even if
the guess was incorrect (i.e. even if there are no common operand for all multiplications).

The reason is that there are similarities in long integer multiplications even if the values are
di�erent such as the word index. Our experiment shows that in certain cases, the Euclidean
Distance is better than the correlation. It also shows how di�cult i t is to characterise the
leakage of an implementation with simulated leaks. We think that, at this stage of research,
the best method is to experimentally try di�erent methods and p ick the best one.

Unlike the vertical version (Section 8.2.3.1), only a single trace is analysed. The secret scalar
can thus be recovered with a single execution of theecsm.

Attack Context:

� Key recovery : recursive (the iteration number has to be known),

� Elliptic Curve Speci�city : none,

� Implementation Access : full knowledge of all algorithms, knowledge of the architecture
of the modular arithmetic operator,

� Implementation Speci�city : unregular ecsm, usage of the Side-Channel Atomicity
countermeasure, word-wise method of the modular multiplication,

� Number of Executions Needed : 1,

� Input Access : unnecessary,

� Output Access : unnecessary.

Note that we introduced side-channel attacks against the Uni�ed Formul� and the Side-
Channel Atomicity. Both countermeasures were proposed to prevent the SSCA. Furthermore,
our attacks are very powerful since they require only a single trace and the knowledge of the
input is not necessary. We strongly suggest to use regularecsms, the only remaining protection
against the SSCA that has not been directly targeted by powerful attacks.

5We use fourteen pairs instead of sixteen as shown in Figure 8. 7 because we avoid the pairs where the possibly
same operand is not in the same side: boxes 5 and 13.
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8.3 Correlation Side-Channel Analysis [Cor99, x3.2]

Coron was the �rst to report a Vertical Side-Channel Analysis on ecc . This attack is called
Correlation Side-Channel Analysis (CSCA).

The attack is recursive. Suppose that the attacker already knows then " i " 1 leftmost bits
of the �xed scalar k = ( kn  1; : : : ; k0)2 and tries to recover ki (6).

The attacker collects N power consumption traces during the iteration i of the ecsms with
di�erent base points. Each time, she tries to guess the values thatare manipulated, by making
an assumption onki . The guessed values are denoted byaj with j 2 [1; N ]. The aj are indeed
manipulated only if her guess is correct.

She constructs the random variableX with the samples of the traces where the possible
values aj are used. Besides, she constructs the random variableY with these valuesaj and a
speci�c leakage modelm (e.g. the Hamming weight or the Hamming distance). The correlation
betweenX and Y is high if the hypothesis on the secret data is correct. Figure 8.12 illustrates
the construction of X and Y .

Figure 8.12: Construction of random variables for a CSCA

Attack Context:

� Key recovery : recursive,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of theecsm, the elliptic curve formul�, the rep-
resentation of integers and the word size of manipulated integers,

� Implementation Speci�city : none,

� Number of Executions Needed : multiple,

� Input Access : known and varying,

� Output Access : unnecessary.

6This presumes this is a Left-to-Right ecsm. Of course, the attack works backwards on Right-to-Left ecsms.



84 CHAPTER 8. ATTACKS AND COUNTERMEASURES

In the same paper introducing the CSCA onecc , Coron exposes three very di�erent methods
to thwart his own attack: the Group Scalar Randomization (Section 8.3.1), the Point Blinding
(Section 8.3.5) and the Random Projective Coordinates (Section 8.3.6). These methods were
intensively studied, attacked or improved during the past years.

8.3.1 Group Scalar Randomization [Cor99, x5.1]

Coron suggests to randomize the scalar using the group structure of the elliptic curve. The
scalar is randomized ask0 = k + r # E, with a random r of small size (32 bits seems a good
trade of between security and e�ciency). Obviously, the result of the ecsm is the same:
[k + r # E ]P = [ k]P + [ r ]([# E ]P) = [ k]P for any point on the curve.

The countermeasure prevents the CSCA because the attack works only ona �xed scalar. It
prevents the classical Timing attack (see Section 8.1) for the same reason. The countermeasure
thwarts also the C Safe-Error attack (see Section 8.2.1.1). Indeed, thisattack can target a
single bit at a time. Recovering a single bit ofk0 is useless.

k and # E have generally the same sizen. So k0 is approximatively a (n + 32)-bit integer.
The ecsm is longer by 32 iterations.

Cost: 1 mmul n , 1 add n +32 , 1 mem32, 1 rng 32, 1 ecsm32;n

8.3.1.1 Carry Leakage Attack [FRVD08]

Fouque, R�eal, Valette and Drissi introduced the Vertical Attack c alled the Carry Leakage At-
tack to target the Group Scalar Randomization.

This attack consists in analysing the carry propagation of the addition performed for the
scalar randomization. The probability to have a carry only depends on themost signi�cant bits
of each word. The power consumption of several randomizations are averaged.The amplitude
reveals the probability to have a carry and hence the most signi�cant bits of each word of the
scalar are recovered.

The remainder of the unknown bits are recovered using the baby-step, giant-step method
[Sha71].

Attack Context:

� Key recovery : independent bits followed by a baby-step, giant-step method torecover
the missing bits,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of the scalar randomization technique and the
word size of manipulated integers,

� Implementation Speci�city : group scalar randomization or additive splitting counter-
measure,

� Number of Executions Needed : multiple,

� Input Access : unnecessary,

� Output Access : unnecessary.
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8.3.2 Additive Splitting [CJ01, x4.2]

Clavier and Joye proposed another method to randomize the scalar. Instead of computing [k]P,
one can computeQ = [ k " r ]P + [ r ]P with a random r .

This countermeasure doubles the cost of the execution since twoecsms are performed.
Another solution is to compute [k " r ]P and [r ]P in parallel. In this case, this doubles the
memory required. Finally, one can use a multi-exponentiation method such as the regular
Shamir's trick (Algorithm 23) with S = P and the scalarsk " r and r .

Cost:

� 1 ecsmn;n , 1 ecadd n , 1 add n , 1 rng n , 1 memn in the case of a sequential computation

� 1 ecadd n , 1 add n , 1 rng n , and as manymemn needed for oneecsmn;n in the case of a
parallel computation

� 1 add n , 1 rng n in the case of the regular Shamir's trick (Algorithm 23)

8.3.2.1 Carry Leakage Attack [FRVD08]

In the Additive Splitting countermeasure, the scalar is subtracted to a random value. The
method described in Section 8.3.1.1 can be performed during the computation of k " r . Indeed,
as explained in Section 2.3, subtraction is generally performed using the two's complement. We
compute k " r as k + �r + 1. This is exactly the scenario considered in Section 8.3.1.1 with �r + 1
instead of r # E .

8.3.2.2 Combined Attacks against Additive Splitting [MV06]

This attack of Muller and Valette consists in combining two attacks to target the Additive
Splitting countermeasure.

The bits repartition of k " r and r are highly correlated to the bits repartition of k. Denote
by r ( j ) the random value r for the j th split. A statistical analysis of the values (k " r ( j ) ) i and
(r ( j ) ) i of di�erent computations j can revealki +1 .

Di�erent combined attacks are proposed to recover the statistical repartition of ( k " r ( j ) ) i

and (r ( j ) ) i :

� combining two C or M Safe-Errors (see Sections 8.2.1.1 and 8.4 respectively), which is
called second order Safe-Errors attack, or

� combining a C or M Safe-Error and an address-bit DSCA (see Section 8.9).

The Additive Splitting method resists to the three attacks if th ey are performed separately.

Attack Context:

� Key recovery : independent bits,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of theecsm, knowledge of the location of the �eld
arithmetic module (C Safe-Error) or the memory blocks (M Safe-Error),
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� Implementation Speci�city : same addresses values on di�erent executions, group
scalar randomization or additive splitting,

� Number of Executions Needed : multiple,

� Input Access : unnecessary,

� Output Access : knowledge of the validity,

� Fault Model : any on the �eld arithmetic module (C Safe-Error) or data randomization
on a single memory block of sizen (M Safe-Error).

8.3.3 Multiplicative Splitting [TE02]

Trichina and Belleza propose another scalar randomization technique. It consists in computing
Q = [ k0]S, with

� S = [ r ]P,

� k0 = kr  1 mod # E,

with r a random integer of small size (32 bits seems a good trade of between security and
e�ciency).

The countermeasure brings an additionalecsm with a 32-bit scalar6.

Cost: 1 ecsm32;n , 1 mul n , 1 minv n , 1 rng 32, 1 mem32

8.3.4 Euclidean Splitting [CJ03, x4]

Ciet and Joye suggest to computeQ = [ k1]P + [ k2]S, with

� S = [ r ]P

� k1 = k mod r

� k2 = bk=rc

r being a random integer half the size ofk. The result of the ecsm is the same because
[k1]P + [ k2]S = [ k mod r ]P + [ bk=rc]([r ]P) = [ k mod r + bk=rcr ]P = [ k]P.

This scalar randomization countermeasure increases the cost of the execution of 50%: three
ecsms are performed with scalars having half the size ofk. Another solution is to use the
regular Shamir's trick (Algorithm 23) for the computation of [ k1]P + [ k2]S. In this case, there
is no additional cost7: two ecsms are performed (one to computeS = [ r ]P and one to compute
[k1]P + [ k2]S) with scalars half the size of the initial scalar.

Cost:

� 1 ecsmn= 2;n , 1 ecadd n , 1 div n , 1 rng n= 2, 1 memn= 2, 3 memn

� 1 rng n= 2, 1 div n in the case of the use of the regular Shamir's trick

7A Jacobian to a�ne coordinates conversion of the point S is sometimes needed in the case where the base
point needs to be in a�ne coordinates.
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8.3.5 Point Blinding [Cor99, x5.2]

The countermeasure, by Coron, consists in computingQ = [ k](P + R) instead of [k]P, with R
a pseudo-random point. The chip returnsQ " [k]R. R and S = [ k]R are pre-computed and
stored in the chip. After each ecsm, R and S are updated by computing R  (" 1)t 2R and
S  (" 1)t 2S with t randomly chosen inf 0; 1g.

The pre-computation of a random point is required because the dynamic generation of a
random point is very costly. Indeed this can be done by generating a random number x, then
computing the square root ofx3 + ax + b (a; bbeing the curve parameters). Computing a square
root on a limited resources system is costly.

This countermeasure was improved in [IIT04] and later in [MMM04]. The authors proposed
to modify the ecsm to gradually subtract the random point R. With this improvement, the
pre-computation of [k]R is not necessary anymore (see Algorithm 24).

Later, Boscher, Handshuh and Trichina propose another blinded exponentiation algorithm
for rsa implementations [BHT09]. We adapted it for ecc in Algorithm 25.

The countermeasure prevents the CSCA since the intermediate values are randomized by
the pseudo-random point. It prevents the classical Timing attack (Section 8.1) as well.

Cost:

� 2 ecadd n , 2 ecdbl n , 6 memn for the initial countermeasure [Cor99,x5.2]

� 1 ecadd n , 1 ecdbl n in the case of the use of the BRIPecsm (Algorithm 24) or Boscher
et al.'s algorithm (Algorithm 25)

8.3.6 Random Projective Coordinates [Cor99, x5.3]

A point P = ( X; Y; Z ) in Jacobian coordinates is equivalent to any point (r 2X; r 3Y; rZ ), with
r 2 F�

p. Coron suggests to randomize the base point at the beginning of theecsm by choosing
a random nonzeror .

If the base point must remain in a�ne coordinates for e�ciency reasons ( e.g. using the
mixed coordinates for Algorithm 19), the randomization can be applied on the other points
instead before the main loop of theecsm (e.g. R0; R1 in Algorithm 19).

The countermeasure prevents the CSCA since the coordinates are randomized. It prevents
the classical Timing attack (Section 8.1) as well.

Cost: 3 mmul n , 1 msqr n , 1 rng n

8.3.7 Random Curve Isomorphism [JT01]

Given De�nition 1.4, elliptic curves E : y2 = x3 + ax+ band E 0: y2 = x3 + a0x+ b0 are isomorphic
if and only if there exists u 2 F�

p such that u4a0 = a and u6b0 = b. The isomorphism' is de�ned
as:

' : E �"! E 0;
�

O ! O
(x; y) ! (u 2x; u  3y)

The countermeasure, introduced by Joye and Tymen, consists in computing the ecsm on a
random curveE 0 instead ofE . The base point is therefore randomized, as well as the parameters
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a; bof the curve. Therefore, the CSCA cannot be applied. The implementation is also protected
against the classical Timing attack (Section 8.1).

Cost: 8 mmul n , 2 msqr n , 1 minv n , 1 memn , 1 rng n

8.4 M Safe-Error [YJ00]

M Safe-Error attacks, brought out by Yen and Joye, exploit the fact that a fault on a memory
block is cleared only if the scalar meets some condition. For example,in Algorithm 21, the
attacker injects an error on R1 just after the computation of the addition and just before the
storage of the result in R1 k i (8). The fault will be cleared only if ki = 0.

The attack can target a single bit at a time. Therefore, if a scalar randomization method is
used, the attack can no longer be done.

Attack Context:

� Key recovery : independent bits,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of the location of the memory blocks, knowledge
of the ecsm and the elliptic curve formul�,

� Implementation Speci�city : same addresses values on di�erent executions,

� Number of Executions Needed : n,

� Input Access : unnecessary,

� Output Access : knowledge of the validity,

� Fault Model : data randomization on a single memory block of sizen.

8.5 Invalid Point Attack [BMM00, x4]

Biehl, Meyer and M•uller introduced the �rst Weak Curve Attack on ecc .
A fault is injected on the x coordinate of the base pointP = ( xP ; yP ) yielding the erroneous

point ~P = ( x ~P ; yP ). Instead of lying on the strong given elliptic curve E : y2 = x3 + ax + b, ~P
lies on a weak curve~E : y2 = x3 + ax + ~b for some~b 2 Fp. Indeed, the parameterb of the initial
curve is generally not involved in elliptic curve operations.

The ecsm is run with the base point ~P 2 ~E and the attacker recovers the result ~Q =
(x ~Q ; y ~Q ) = [ k] ~P. The attacker can deduce the value of~b with ~b = y2

~Q
 x3

~Q
 ax ~Q .

The faulted value x ~P is deduced by solving the equationy2
P = x3 + ax + ~b on x [CJ05].

This polynomial has two or three roots. The correct candidate is the one having the most bits
matching those ofxP .

The attacker can solve theecdlp on the weak curve ~E to recover k mod ord( ~P).

8This attack needs a more details on the implementation.
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Attack Context:

� Key recovery : each time, an ecdlp on ~E is performed to recoverk mod ord( ~P); the
full key is then recovered using the CRT,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of the location of the base point's memory blocks,
the ecsm,

� Implementation Speci�city : same addresses of the coordinates' base point on di�erent
executions,

� Number of Executions Needed : less than n (it depends on the order of ~P on the
weak curve ~E),

� Input Access : known,

� Output Access : known,

� Fault Model : data randomization on a single memory block of sizen.

8.5.1 Output Point Validity [BMM00]

Biehl, Meyer and M•uller suggest to verify that the computed point l ies on the elliptic curve
given. That is, given Q = ( xQ ; yQ ) and the curve equation y2 = x3 + ax + b, verify that the
equality y2

Q = x3
Q + axQ + b is satis�ed. If not, no output is given.

Cost: 2 mmul n , 2 msqr n , 4 madd n , 1 memn

8.6 Classical Di�erential Fault Attack [BMM00, x5]

Biehl et al. introduced the �rst DFA on ecc with the Right-to-Left Double-and-Add method
(Algorithm 15).

First, a correct result Q = [ k]P is recovered. A secondecsm is run with the same scalar
and the same input. Denote byQi the value of R0 at the end of iteration i of Algorithm 15:
Qi = [( ki  1; : : : ; k0)2]P . The attacker injects a fault on a few bits on Qi yielding the wrong
value ~Qi . She recovers the erroneous result~Q.

If we denotek( i ) = ( kn  1; : : : ; ki )2, we haveQ = Qi + [2 i k( i ) ]P and ~Q = ~Qi + [2 i k( i ) ]P . The
attacker tries all possible values ofk( i ) to generateQi = Q  [2i k( i ) ]P and ~Qi = ~Q  [2i k( i ) ]P .
The correct hypothesis ofk( i ) is the one whereQi and ~Qi di�er from only a few bits.

This attack can be iterated to recover the next bits, and it can be adapted for other ecsms.

Remark 8.4. ~Qi does not lie on the elliptic curve. Biehl et al. argued that this is not an issue.
The computation of ~Qi = ~Q  [2i k( i ) ]P can be performed with elements inF2

p not lying on the
same elliptic curve. They call it pseudo-addition [BMM00].

The countermeasures described in Section 8.3 against CSCA, consisting in randomizing the
points or the scalar, thwart the attack. Indeed, the attacker cannot guessthe intermediate
points ~Qi and Qi anymore.

In addition, this attack seems feasible only if the a�ne coordinates are used. Indeed, the
fault induced to Qi is done on one or several point's coordinates. If the Jacobian coordinates
are used, the attacker needs to compute the same representatives ofQi and ~Qi that actually
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occurred during the execution of theecsm. The attacker cannot perform the pseudo-additions
to generateQi and ~Qi since she does not know the Jacobian coordinates of the resultQ and ~Q,
but only the a�ne coordinates. It is not clear how to take advantage of the fault in Jacobian
or homogeneous coordinates.

Attack Context:

� Key recovery : recursive,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of the location of the memory blocks, knowledge
of the ecsm and the elliptic curve formul�,

� Implementation Speci�city : a�ne coordinates formul�, same addresses of the coor-
dinates' intermediate point on di�erent executions,

� Number of Executions Needed : less thann,

� Input Access : known and constant,

� Output Access : known,

� Fault Model : data randomization on a single register.

8.6.1 Output Point Validity [BMM00]

The method described in Section 8.5.1 was presented to prevent both the Invalid Point and
Di�erential Fault Attacks of Sections 8.5 and 8.6 respectively.

8.7 Big Mac Attack [Wal01]

The Big Mac attack was introduced by Walter against sliding window methods on rsa im-
plementations, with unknown inputs [Wal01]. A single trace is analysed which makes it a
Horizontal Side-Channel Attack.

The attack is based on a method to detect if two multiplications sharea common operand
by comparing their power trace. This method was described in Section 8.2.3.2 and used for our
horizontal attack against the Side-Channel Atomicity countermeasure.

If we take the example of the Left-to-Right sliding window NAF method ( Algorithm 16),
the comparison of the multiplications can be used to identify which point Pu or  P u is being
added to Q at iteration i .

The method can be applied at each iteration to deduce the whole scalar with a single ecsm.
Since no leakage model is needed, this attack works on unknown and/or randomized input.
This attack has been extended to the Square-and-Multiply method in [BJPW13a]. Given our
de�nition of a same-values attack, the Big Mac attack is in fact a SVA.

Remark 8.5. The Big Mac was introduced to target rsa implementations. The success of
the attack depends on the size of the manipulated integers: the longer the used integers are,
the higher the success rate is [Wal01, BJPW13a]. Inecc , the integers are shorter thanrsa 9.
However, more integers and operations are involved during a doubling or addition of points.

9For a 128 bits security, ecc must use 256-bit integers length, while rsa must use 3072-bit integers.
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The attack can theoretically be applied onecc but no practical experiment has been reported.
In Section 8.2.3.2, we presented an attack based on the Big Mac principle with experimental
results. This attack is however presented on a speci�c implementation which permits to compare
many (fourteen) multiplications to balance the small size of the integers.

Attack Context:

� Key recovery : independent bits,

� Elliptic Curve Speci�city : none,

� Implementation Access : full knowledge of all algorithms, knowledge of the architecture
of the modular arithmetic operator,

� Implementation Speci�city : wordwise method of the modular multiplication,

� Number of Executions Needed : 1,

� Input Access : unnecessary,

� Output Access : unnecessary.

8.7.1 Multiplication with Random Permutation [CFG + 10]

Clavier, Feix, Gagnerot, Rousselet and Verneuil introduced the Multiplication with Random
Permutation countermeasure [CFG+ 10]. It consists in randomizing the order of the manipu-
lation of the words during a long multiplication. For example, in Algorith m 8, it consists in
randomizing the order of both loops (lines 5 and 8) with two random permutations in [0; m[ (m
being the word number of the manipulated integers).

The construction of s( j )
1 ; 0 � j < m is no longer possible for the Big Mac attack. The

countermeasure is also e�cient against the horizontal SVA attacks.

Guessing both random permutations is not possible: there is (m2)! possibilities. However, a
drawback of the countermeasure was noticed in [BJPW13a]. Bauer, Jaulmes, Prou� and Wild
proved that the attack is still possible when guessing only one random permutation within the
two. That reduces the possibilities to m!, which is possible form � 16. This is due to the fact
that the proposed multiplication method in [CFG + 10] still follows a \schoolbook like" method
(namely, the same word ofA is used during the j loop at lines 8 to 10 in Algorithm 8).

The authors of [BJPW13a] suggest another method to correct this drawback:a single loop is
performed where the words ofA and B are randomly chosen with a random permutation of size
m2 +2m. 2m additional word multiplication are performed during a long integer mul tiplication.
Also, a second permutation of size 2m + 1 is required to avoid attacks in the carry propagation
treatment. Since the modular multiplication described in Section 2.4 requires 2m2 word mul-
tiplications with both multiplication ( m2) and reduction (m2), a modular multiplication with
the countermeasure roughly costs 1rpg m 2 +2 m + 1 rpg 2m +1 + (1 + 1

m ) mmul n .
However, an adjustment of the module performing the operation described by Equation

(2.1) is required since the addition with another word and the addition with the carry are
performed independently. Moreover, as pointed in [CFG+ 10], it remains di�cult to design the
countermeasure in hardware due to the numerous permutations and atomicoperations. The
real cost might be higher than 1rpg m 2 +2 m + 1 rpg 2m +1 + 1

m mmul n .
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Cost: 1 rpg m 2 +2 m , 1 rpg 2m +1 , 1
m mmul n per modular multiplication (with m = dn=we and

w the word size of the architecture).

8.8 Horizontal Correlation Side-Channel Analysis [CFG + 10]

As opposed to the Big Mac attack, the Horizontal Correlation Side-Channel Analysis of Clavier,
Feix, Gagnerot, Roussellet and Verneuil was initially presented with a leakage model.

The attacker collects a single trace of anecsm. The attack is recursive. Like the CSCA (see
Section 8.3), the attacker guesses intermediate variables by making an assumption on the current
bit. The attacker computes the intermediate values vj involving during the multiplication of
the supposed variables. If Algorithm 8 is used, these values can correspond to the words of the
inputs, i.e. a[i ]; b[j ], but also all intermediate values such asa[i ]� b[j ], q� p[j ] for (i; j ) 2 [0; m[2.
A leakage modelm (e.g. the Hamming weight) is applied to those values, yielding a random
variable Y . She performs a correlation or applies another statistical tool betweenthe points of
interest10 of the trace of the very modular multiplication she had guessed the inputs, yielding
the random variable X , and Y (see Figure 8.13). The coe�cient is high if her guess is correct.

Figure 8.13: Construction of random variables for Horizontal Side-Channel Analysis with a
leakage model

This attack has been extended to more exponentiation methods in [BJPW13a]. As opposed
to the Big Mac attack, this attack requires the knowledge of the input. Therefore, randomizing
the input, such as the Point Blinding (Section 8.3.5), the Random Projective Coordinates
(Section 8.3.6) and the Random Curve Isomorphism (Section 8.3.7), thwarts the attack, only if
the random is large enough to prevent a guess with a brute force approach [CFG+ 10].

Remark 8.6. Remark 8.5 concerning the Big Mac attack holds here: the Horizontal Correlation
SCA was presented onrsa and no practical experiment has been reported onecc due to the
di�erence of the size of the manipulated integers.

Attack Context:

� Key recovery : recursive,

� Elliptic Curve Speci�city : none,

� Implementation Access : full knowledge of all algorithms, knowledge of the architecture
of the modular arithmetic operator,

� Implementation Speci�city : wordwise method of the modular multiplication,

10 That is where the supposed values are possibly manipulated.
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� Number of Executions Needed : 1,

� Input Access : known,

� Output Access : unnecessary.

8.8.1 Multiplication with Random Permutation [CFG + 10]

The Random Permutation countermeasure described in Section 8.7.1 was in fact �rst presented
against the Classical Horizontal SCA.

The classical Horizontal Attack, which consists in making assumptions onthe intermediate
values during the modular multiplication can no longer be applied. Indeed, the values of the
random variables X; Y of Section 8.8 must be in the same order.

8.9 Address-bit DSCA [IIT02]

Address-bit Di�erential Side-Channel Analysis (Address-bit DSCA), introduced by Itoh, Izu
and Takenaka, is a vertical attack exploiting the manipulation of addresses rather than data.

In most ecsms, the manipulation of data depends only on a few bits of the scalar. For
example, in Algorithm 21, the point R1 is doubled only if ki = 1.

The attack consists in detecting if the manipulated addresses during the doubling at iteration
i are the same as the ones of a reference. The reference can be the doubling of the �rst iteration:
the attacker supposes thatkn  2 = 1 ( 11). The random variable X is constructed where the
addresses ofR1 are manipulated during the doubling of the �rst iteration.

Then, the attacker constructs the random variableY where the addresses ofRk i are manip-
ulated during the doubling at iteration i . In [IIT02], the authors suggest to perform a di�erence
of means betweenX and Y . An another statistical method (e.g. a correlation or the Euclidean
distance) can be used instead. Figure 8.8 illustrates the construction of the random variables.

Attack Context:

� Key recovery : independent bits,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of theecsm,

� Implementation Speci�city : same addresses values on di�erent executions,

� Number of Executions Needed : multiple,

� Input Access : unnecessary,

� Output Access : unnecessary.

11 If her guess is incorrect, at the end of the attack, she will re cover �k instead of k. The correct value of the
scalar is trivially recovered.
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8.9.1 Random Register Address [IIT03]

The authors that introduced the Address-bit DSCA proposed a countermeasures to thwart it.
It consists in randomizing the addresses at each iteration of theecsm. A 
aw of the counter-
measure has been showed by Izumi, Ikegami, Sakiyama and Ohta and the countermeasure was
improved [IISO10]. In [IIT03], an extra point is necessary for the Left-to-Right Double-and-
Add always method. We propose an alternative solution illustrated in Algorithm 32 without
any extra point. For the Montgomery Ladder, an extra point in necessary [IISO10].

Algorithm 32 Left-to-Right Double-and-Add always with Random Address
Input: k = (1 ; kn  2; : : : ; k0)2, P
Output: [k]P

r R " [0; 2n [
R0  P; R1  P
for i = n " 2 downto 0 do

Rr i  2Rr i +1

R1 ( r i � k i )  Rr i + P

return Rr 0

The countermeasure prevents the address-bit DSCA, described inSection 8.9. It also pre-
vents M Safe-Errors (Section 8.4) since the addresses are randomized.

Cost:

� 1 rng n , 1 memn for the Left-to-Right Double-and-Add always method,

� 1 rng n , 4 memn for the Montgomery Ladder.

8.10 Doubling Attack [FV03]

The doubling attack of Fouque and Valette relies on the power consumption comparison of two
ecsms with the base point P and [2]P, respectively. This is a vertical attack (with only two
traces).

The same values occur in the twoecsms only if the scalar meets some condition (e.g. the
current bit is 0) and therefore a collision of traces can be detected. In [FV03], the authors
suggest to perform a di�erence between the traces to detect a collision. The doubling attack is
illustrated in Figure 8.14.

Due to the birthday paradox, the doubling attack can be performed even if the Group Scalar
Randomization (Section 8.3.1) or the Multiplicative Splitting (Secti on 8.3.3) is used [FV03].

The Point Blinding countermeasure (Section 8.3.5) is vulnerable as well [FV03]. This is
because the pseudo-random pointR, intended to randomize the base pointP, is updated as
R  (" 1)t 2R, with t 2 [0; 1], after eachecsm. There is a probability of 1/2, that the attack
still works.

The doubling attack can be mounted only if elliptic curve formul� are i mplemented using
the a�ne coordinates. Indeed, in Jacobian coordinates, the base point [2]P of the secondecsm
is �rst given in a�ne coordinates. Same projective points will occu r during the computation
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Figure 8.14: Construction of random variables for the doubling attack

[k]P and [k]([2]P) but with di�erent representatives. We recall that, in Jacobian co ordinates,
there is the equivalence relation (X; Y; Z ) � (r 2X; r 3Y; rZ ) with r 2 F�

p.

Attack Context:

� Key recovery : independent bits,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of theecsm and the elliptic curve formul�,

� Implementation Speci�city : a�ne coordinates formul�,

� Number of Executions Needed : 2,

� Input Access : 1 known and 1 chosen,

� Output Access : unnecessary.

8.11 Re�ned Side-Channel Analysis [Gou03]

The Re�ned Side-Channel Analysis (RSCA) of Goubin is based on the occurrence of the par-
ticular point P0 = (0 ; y) during the ecsm. It is a SSCA.

The attacker chooses the base pointP such that the special point P0 will occur under some
assumption (for example the current targeted bit is 0). The computation of such a point P is
performed as follows, with the example of the Double-and-Add always method (Algorithm 19).

Suppose that the attacker already knows then  i  1 leftmost bits of the �xed scalar
k = ( kn  1; : : : ; k0)2 and tries to recover ki . If the base point P is chosen such thatP =
[(kn  1; : : : ; ki +1 ; 1) 1

2 mod # E]P0, P0 will be doubled at iteration i  1 only if ki = 1.
The doubling of the point P0 can be detected by observing the trace, as shown in Figure 8.15.

Obviously, the particular point is not randomized neither by the Random Projective nor by
the Random Curve Isomorphism countermeasures (see Sections 8.3.6 and 8.3.7).

Scalar randomization techniques help prevent the RSCA since the recursive process is bro-
ken. However, an attacker can target several bits at a time. Several bitsof the randomized
scalar can be recovered and reveal some information on the initial scalar.
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Figure 8.15: Power consumption of 256-bits modular multiplications of two random operands
(left curve) and a random operand and zero (right curve)

The Point Blinding described in Section 8.3.5 thwarts the attack because the point P0 + R
with an unknown pseudo-random point R will occur instead of P0.

Attack Context:

� Key recovery : recursive,

� Elliptic Curve Speci�city : must contain a point of the form (0; y) for some y 2 Fp,

� Implementation Access : knowledge of theecsm,

� Implementation Speci�city : none,

� Number of Executions Needed : n,

� Input Access : chosen,

� Output Access : unnecessary.

8.11.1 Isomorphism Shifting [DGH + 12]

We present our countermeasure thwarting the RSCA. The basic principle is to use an isomor-
phism to transform the base point into the inconvenient point of the RSCA, namely (0; y). We
\control" this point and its apparition does not reveal anything about the s calar. Moreover, on
someecsms, the extra cost of the countermeasure is negligible and even negativethanks to the
zero value.

Transformation of the base point using an isomorphism. With De�nition 1.4, the
elliptic curves E and E 0 given by the equations

E : y2 = x3 + a4x + a6

E 0: y2 = x3 + a0
2x2 + a0

4x + a0
6

are isomorphic overFp if and only if there exist u 2 F�
p and r 2 Fp such that the change of

variables

(x; y) ! (u 2(x  r ); u 3y)

transforms equation E into equation E 0 with:
8
<

:

u2a0
2 = 3 r

u4a0
4 = a4 + 3 r 2

u6a0
6 = a6 + ra4 + r 3 :
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This isomorphism is a particular case of De�nition 1.4 with s = t = 0. Given the base point
P = ( xP ; yP ) we can chooseu = 1 and r = xP . The isomorphism ' is

' : E �"! E 0;
�

O ! O
(x; y) ! (x " xP ; y)

and transforms P into ' (P) = P0 = (0 ; yP ). Applying the isomorphism on the curve costs
2 mmul n + 1 msqr n + 5 madd n . Applying the isomorphism on a point costs only 1 madd n .
It costs also 1 madd n for the isomorphism inverse. Two extra memory blocs ofn bits are also
required to store a0

2 and xP . The transformation over R is illustrated in Figure 8.16.

Figure 8.16: Isomorphism Shifting with E : y2 = x3 " 3x + 3 and E 0: y2 = x3 " 6x2 + 9x + 1 :

Modi�cations of the elliptic curve formul�. The isomorphic curveE 0 is not in its Weier-
stra� equation. The formul� given in Section 3.1 do not apply with the cu rve E 0. Extra �elds
operations are required using the general formul� in a�ne coordinates of Section 1.2 (with
a1 = a3 = 0).

However, the x coordinate of P0 is equal to zero. We can remove the unnecessary �eld
operations when addingP0 or " P0. If P0 is the base point, P0 and " P0 are involved at each
iteration in some ecsms, such as the Left-to-Right Double-and-Add methods (Algorithms 14
and 19) and the Montgomery Ladder with co-Z formul� (Algorithm 22).

We give the adapted formul� that can be used for the three ecsms listed above. The input
and output points lie on the curve E 0: y2 = x3 + a0

2x2 + a0
4x + a0

6. The value a0
2Z 2

3 is always
computed (Z3 being the Z coordinate of the output point), we can add it in the coordinates.
We denote it by U.



98 CHAPTER 8. ATTACKS AND COUNTERMEASURES

Algorithm 33 ecadd-iso-shifting

Input: P0 = (0 ; Y1; Z1; U1 = a0
2Z 2

1 ); Q0 = ( X 2; Y2; Z2; U2 = a0
2Z 2

2 ), elliptic curve parameter a0
2

Output: P0+ Q0

B  X 2Z 2
1 ; C  Y1Z 3

2 ; D  Y2Z 3
1

F  D ! C
Z 0

3  Z1Z2B
U3  a0

2Z 2
3

X 3  F 2 ! B 3 ! U3

Y3  ! F X 3 ! CB 3

return (X 3; Y3; Z3; U3)

Like the classical formul�, if P0 is in a�ne coordinates, we can save four multiplications and
one square (mixed addition: mecadd-iso-shifting ). If Z 2

1 and Z 3
1 are pre-computed, one

multiplication and one square are saved (re-addition: reecadd-iso-shifting ).
Cost (ecadd-iso-shifting ): 11 mmul n , 5 msqr n , 5 madd n , 5 memn

Cost (mecadd-iso-shifting ): 7 mmul n , 4 msqr n , 5 madd n , 3 memn

Cost (reecadd-iso-shifting ): 10 mmul n , 4 msqr n , 5 madd n , 5 memn

For the three additions, the di�erence is 1 msqr n ! 1 mmul n ! 2 madd n compared with ecadd ,
mecadd and reecadd .

Algorithm 34 ecdbl-iso-shifting

Input: Q0 = ( X 1; Y1; Z1; U1 = a0
2Z 2

1 ), elliptic curve parameters a0
2; a0

4
Output: 2Q0

A  2Y 2
1

B  2AX 1; C  3X 2
1 + 2X 1U1 + a0

4Z 4
1 ; D  2A2

Z3  2Y1Z1

U3  a0
2Z 2

3
X 3  C2 ! 2B ! U3

Y3  C(B ! X 3) ! D
return (X 3; Y3; Z3; U3)

If ( X 3; Y3; Z3; U3) is used later for re-addition, the computation of Z 2
3 and Z 3

3 needs one ex-
tra multiplication 12 (reecdbl-iso-shifting ). If a0

4Z 4
1 is pre-computed (modi�ed formul�:

modecdbl-iso-shifting ), two squares are saved, and it needs one extra addition for the com-
putation of a0

4Z 4
3 . The use of both modi�ed coordinates and re-addition is also given (mod-

reecdbl-iso-shifting ).
Cost (ecdbl-iso-shifting ): 7 mmul n , 6 msqr n , 14 madd n , 3 memn

Cost (reecdbl-iso-shifting ): 8 mmul n , 6 msqr n , 14 madd n , 4 memn

Cost (modecdbl-iso-shifting ): 7 mmul n , 4 msqr n , 15 madd n , 4 memn

Cost (mod-reecdbl-iso-shifting ): 8 mmul n , 5 msqr n , 15 madd n , 4 memn

The extra cost is 3 mmul n + 3 madd n , 3 mmul n ! 1 msqr n + 3 madd n , 3 mmul n + 3 madd n

compared with the general doubling, the doubling for re-addition, the doubling in modi�ed
coordinates and the doubling in both modi�ed coordinates and re-addition, respectively.

For the Montgomery Ladder using co-Z formul� (Algorithm 22), the cost is even smaller
because no doubling is performed. We give the adapted formul� below.

12 This is because Z 2
3 is computed anyway for U3 .
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Algorithm 35 co-Z addition and update with the isomorphism shifting
(zaddu-iso-shifting )

Input: P0 = ( X 1; Y1; Z; U = a0
2Z 2); Q0 = (0 ; Y2; Z; U )

Output: (R0; S0) with R0 = P0+ Q0 and S0 = ( � 2X 1; � 3Y1; �Z; a 0
2(�Z )2) with � = X 1

C  X 2
1

W1  X 1C; Z3  ZX 1; U3  UC
D  (Y1 ! Y2)2; A1  Y1W1

X 3  D ! W1 ! U3

Y3  (Y1 ! Y2)(W1 ! X 3) ! A1

X 4  W1

Y4  A1

return ((X 3; Y3; Z3; U3); (X 4; Y4; Z3; U3))

Like the classical co-Z addition and update, the computation of the Z coordinate is not neces-
sary and one multiplication is saved (zaddu'-iso-shifting ).
Cost (zaddu-iso-shifting ): 5 mmul n , 2 msqr n , 5 madd n , 1 memn

Cost (zaddu'-iso-shifting ): 4 mmul n , 2 msqr n , 5 madd n , 1 memn

For both formul�, the gain is 2 m add n compared with zaddu and zaddu' .

Algorithm 36 conjugate co-Z addition with the isomorphism shifting
(zaddc-iso-shifting )

Input: P0 = ( X 1; Y1; Z; U = a0
2Z 2); Q0 = ( X 2; Y2; Z; U ) such that xP 0 Q 0 = 0.

Output: (R0; S) with R0 = P0+ Q0, S0 = P0 " Q0

C  (X 1 " X 2)2

W1  X 1C; W2  X 2C; Z3  Z (X 1 " X 2); U3  UC
D  (Y1 " Y2)2; A1  Y1(W1 " W2)
X 3  D " W1 " W2 " U3

Y3  (Y1 " Y2)(W1 " X 3) " A1

Y4  (Y1 + Y2)W1 " A1

return ((X 3; Y3; Z3; U3); (0; Y4; Z3; U3))

Like the classical conjugate co-Z addition, the computation of the Z coordinate is not necessary
and one multiplication is saved (zaddc'-iso-shifting ).
Cost (zaddc-iso-shifting ): 7 mmul n , 2 msqr n , 10 madd n , 2 memn

Cost (zaddc'-iso-shifting ): 6 mmul n , 2 msqr n , 10 madd n , 2 memn

For both formul�, the di�erence is 1 m mul n " 1 msqr " 1 madd n compared with zaddu and
zaddu' . The formul� with register allocation, is given in appendix.

An important remark is that, if 1 m mul n = 1 msqr n , we gain three modular additions
per bit for the Montgomery Ladder using co-Z formul�. Therefore, it is a non-negligible
improvement to apply the countermeasure in this condition.

Security Analysis. We explain here how the countermeasure prevents the RSCA. The elliptic
curve E 0: y2 = x3 + a0

2x2 + a0
4x + a0

6 contains exactly two points of the form (0; y0). Those
points are P0 = (0 ;

p
a0

6) and " P0 = (0 ; "
p

a0
6). We give the following theorems:
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Theorem 8.7. Suppose that the Left-to-Right Double-and-Add (Algorithm 14) is performed
with a scalar k = ( kn  1; : : : ; k0)2, the base pointP0 = (0 ; yP ) and the formul� ecadd-iso-
shifting and ecdbl-iso-shifting . Let k( i ) = ( kn  1; kn  2; : : : ; ki )2. Suppose thatgcd(k( i ) �
1; ord(P0)) = 1 and gcd(2k( i +1) � 1; ord(P0)) = 1 for all i 2 [0; n  2[.
Then R0 cannot be equal to� P0 at any iteration i 2 [0; n  2[.

Proof. At the beginning of iteration i with n  2 < i � 0, the point R0 veri�es R0 = [ k( i +1) ]P0.

� if R0 = [ k( i +1) ]P0 = P0, then [k( i +1)  1]P0 = O so the order ofP0 is (k( i +1)  1), which
contradicts our hypothesis onk.

� if R0 = [2k( i +1) ]P0 = P0 after the doubling, then [2k( i +1)  1]P0 = O so the order ofP0

is (2k( i +1)  1), which contradicts our hypothesis onk.

� if R0 = [ k( i ) ]P0 = P0 after the doubling, then [k( i )  1]P0 = O so the order of P0 is
(k( i )  1), which contradicts our hypothesis onk.

� if R0 = [ k( i +1) ]P0 =  P0, then [k( i +1) + 1]P0 = O so the order ofP0 is (k( i +1) + 1), which
contradicts our hypothesis onk.

� if R0 = [2k( i +1) ]P0 =  P0 after the doubling, then [2k( i +1) + 1]P0 = O so the order ofP0

is (2k( i +1) + 1), which contradicts our hypothesis on k.

� if R0 = [ k( i ) ]P0 =  P0 after the doubling, then [k( i ) + 1]P0 = O so the order of P0 is
(k( i ) + 1), which contradicts our hypothesis on k.

Remark 8.8. The condition gcd(k( i ) � 1; ord(P0)) = 1 and gcd(2k( i +1) � 1; ord(P0)) = 1 for
all n  2 < i � 0 is not binding. If l is the security parameter, then ord(P0) is a prime and
ord(P0) � 22l . This is explained in Chapter 6.

Corollary 8.1. Suppose that the Left-to-Right Double-and-Add always (Algorithm19) is per-
formed with a scalar k = ( kn  1; : : : ; k0)2, the base pointP0 = (0 ; yP ) and the formul� ecadd-
iso-shifting and ecdbl-iso-shifting . Let k( i ) = ( kn  1; kn  2; : : : ; ki )2. Suppose thatgcd(k( i ) +
1 � 1; ord(P0)) = 1 , gcd(k( i ) � 1; ord(P0)) = 1 and gcd(2k( i +1) � 1; ord(P0)) = 1 for all
i 2 [0; n  2[.
Then neither R0 nor R1 can be equal to� P0 at any iteration i 2 [0; n  2[.

Proof. In addition to the previous theorem, we only need to check that the value of R1 cannot
take the value � P0. This is veri�ed as long as gcd(k( i ) + 1 � 1; ord(P0)) = 1.

With the countermeasure, both ecsms are secure against the RSCA since the inconvenient
points are managed and the attacker cannot take advantage of their occurrence.

Theorem 8.9. Suppose that the Montgomery Ladder using co-Z formul� (Algorithm 22) is
performed with a scalar k = ( kn  1; : : : ; k0)2, the base point P0 = (0 ; yP ) and the formul�
zaddu-iso-shifting and zaddc-iso-shifting . Let k( i ) = ( kn  1; kn  2; : : : ; ki )2. Suppose that
gcd(k( i ) ; ord(P0)) = 1 , gcd(k( i ) � 1; ord(P0)) = 1 and gcd(k( i ) + 2 ; ord(P0)) = 1 for all i 2
[0; n  1[.
Then neither R0 nor R1 can be equal to� P0 at the end of any iteration.

Proof. At the end of iteration i with n  2 < i � 0, the points R0; R1 verify R0 = [ k( i ) ]P0; R1 =
[k( i ) + 1]P0.
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� if R0 = [ k( i ) ]P0 = P0, then [k( i )  1]P0 = O so the order of P0 is (k( i )  1), which
contradicts our hypothesis onk.

� if R1 = [ k( i ) + 1]P0 = P0, then [k( i ) ]P0 = O so the order ofP0 is (k( i ) ), which contradicts
our hypothesis onk.

� if R0 = [ k( i ) ]P0 =  P0, then [k( i ) + 1]P0 = O so the order of P0 is (k( i ) + 1), which
contradicts our hypothesis onk.

� if R1 = [ k( i ) + 1]P0 =  P0, then [k( i ) + 2]P0 = O so the order ofP0 is (k( i ) + 2), which
contradicts our hypothesis onk.

With the countermeasure, the ecsm is secure against the RSCA since the inconvenient
points are managed.

We presented an elegant countermeasure against the RSCA using an isomorphism between
curves. Because of the isomorphism, the formul� have been reviewed.

Cost:

� (2:5n+2) m mul n , (0:5n+1) m sqr , (2n+6) m add , 4 memn for the Left-to-Right Double-
and-Add method (Algorithm 14)

� (2n + 2) m mul n , (n + 1) m sqr , (n + 6) m add , 5 memn for the Left-to-Right Double-and-
Add always method (Algorithm 19)

� (n + 2) m mul n , ( n + 1) m sqr , ( 3n + 6) m add for the Montgomery Ladder using co-Z
formul� (Algorithm 22)

8.12 Zero Side-Channel Analysis [AT03]

The Zero Side-Channel Analysis (ZSCA) of Akishita and Takagi is an extension of the RSCA.
This attack does not only focus on a zero value in a point's coordinates but on intermediate

values when performing a doubling or an addition. Such points are de�ned aszero-value points.
For example, considerecdbl with register allocation (Algorithm 39). Let P = ( xP ; yP ) a point
such that 3xP + a = 0 in a�ne coordinates. The doubling of P in Jacobian coordinates will
lead to the condition C = 3X 2

P + aZ4
P = 0, with X P = xP Z 2

P for someZP 2 F �
p . The ZSCA

brings more possible particular points to consider.

As the RSCA, the Random Projective or the Random Curve Isomorphism countermeasures
(see Sections 8.3.6 and 8.3.7) does not prevent this attack.

As the RSCA, scalar randomization techniques help prevent the ZSCA since the recursive
process is broken and the Point Blinding (see Section 8.3.5) thwarts the attack.

Attack Context:

� Key recovery : recursive,

� Elliptic Curve Speci�city : must contain zero-value points,

� Implementation Access : knowledge of theecsm and the elliptic curve formul�,
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� Implementation Speci�city : none,

� Number of Executions Needed : n,

� Input : chosen,

� Output : unnecessary.

8.13 Classical Same Values Side-Channel Analysis [MGD + 12]

We present our vertical SCA called the classical Same Values Side-Channel Analysis (SVA). Like
the RSCA and ZSCA (Sections 8.11 and 8.12), it exploits the occurrence ofparticular points.
These points verify that, within an elliptic curve operation (e.g. an addition or a doubling),
two distinct intermediate variables have the same values.

Some curves do not contain any zero-value point for performing the RSCA orZSCA. The
SVA considerably increases the number of particular points the attacker can use to mount an
attack, and therefore, works on a larger set of curves.

Same-values points. We introduce the de�nitions of the particular points that the attacke r
will take advantage to perform the SVA.

De�nition 8.10. Let E be an elliptic curve overFp and ecdbl a doubling algorithm. A point
P = ( x1; y1) 2 E is a same-values pointrelative to ecdbl if, for any representative of P (i.e.
(� 2x1; � 3y1; � ) for all � 2 F�

p in Jacobian coordinates), same values show up among intermediate
variables during the computation of the point 2P using algorithm ecdbl .

De�nition 8.11. Let E be an elliptic curve overFp and ecadd an addition algorithm (respec-
tively c-ecadd a conjugate addition algorithm). Points P; Q 2 E are said to besame-values
points relative to ecadd (resp. to c-ecadd ) if, for any representatives of P and Q, same
values show up among intermediate variables during the computation of the point P + Q using
algorithm ecadd (resp. the computation of P + Q and P  Q using algorithm c-ecadd ).

The same-values points depend on the elliptic curve formul� used. The formul� given in
Section 3.1 are not accurate enough to identify the same-values points. The knowledge of the
ecdbl and/or ecadd algorithms, together with register allocation is required. We will give
examples of same-values points for a doubling algorithm and for an addition algorithm.

Theorem 8.12. Let E : y2 = x3 + ax + b be an elliptic curve overFp. Let P = ( x1; y1) a point
lying on E and R = ( x3; y3) = [2] P. P is a same-values point relative toecdbl with register
allocation (Algorithm 39 in appendix) if one of the following conditions is satis�ed:

1. x1 = 1

2. 2x1y2
1 = (3 x2

1 + a)2

3. 6x1y2
1 = (3 x2

1 + a)2

4. 8x1y2
1 = (3 x2

1 + a)2

5. 10x1y2
1 = (3 x2

1 + a)2

6. 12x1y2
1 = (3 x2

1 + a)2

7.  4y4
1 = y3

8. 12y4
1 = y3

9. 16y4
1 = y3

10. x1 = 0

11. y1 = 0

12. x3 = 0

13. y3 = 0

14. 3x2
1 =  a
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15. 4x1y2
1 = (3 x2

1 + a)2

16. x2
1 = y1

17. x2
1 = 2y1

18. x1 = " 1

19. x2
1 = a

20. " 2x2
1 + a = 0

21. 2x2
1 = y1

22. 3x2
1 = y1

23. y1 = 1

24. y1 = a

25. y1 = 3x2
1 + a

26. 3x2
1 = 2y1

27. 2y1 = 1

28. 2y1 = 3x2
1 + a

29. 2x2
1 = 1

30. 2x2
1 = a

31. " x2
1 + a = 0

32. 3x2
1 = 1

33. 3x2
1 = a

34. 3x2
1 + a = 1

Proof. Given a point P = ( X 1; Y1; Z1) = ( � 2x1; � 3y1; � ), the relations of Theorem 8.12 must
hold for any � 2 F�

p. So we must check equalities between terms with a factor� of the same
degree. LetSi be the set of values that involve a factor� of degreei . An analysis of Algorithm
39 gives:

� S1 = f Z1g,

� S2 = f X 1; Z 2
1 g,

� S3 = f Y1g,

� S4 = f X 2
1 ; Y1Z1; 2Y1Z1; 2X 2

1 ; 3X 2
1 ; Z 4

1 ; aZ4
1 ; C = 3X 2

1 + aZ4
1 g,

� S6 = f Y 2
1 ; 2Y 2

1 g,

� S8 = f 2X 1Y 2
1 ; B = 4X 1Y 2

1 ; C2; X 3 + B = C2  B; X 3 = C2  2B; B  X 3 = 3B  C2g,

� S12 = f A2 = 4Y 4
1 ; 2A2 = 8Y 4

1 ; Y3 + 2A2 = C(B  X 3); Y3 = C(B  X 3)  2A2g

Equal values can only be found in the same set. Comparing the terms from each other by set,
and developing give the relations of the theorem.

Remark 8.13. Points satisfying one of the condition

� x1 = 0 or

� y1 = 0 or

� x3 = 0 or

� y1 = 0 or

� y3 = 0 or

� 3x2
1 =  a or
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� 4x1y2
1 = (3 x2

1 + a)2

are zero-value points.

Theorem 8.14. Let E : y2 = x3 + ax + b be an elliptic curve overFp. Let P = ( x1; y1); Q =
(x2; y2) two points lying on E and R = ( x3; y3) = P + Q. P; Q are same-values points relative
to ecadd with register allocation (Algorithm 37 in appendix) if one of the following conditions
given below is satis�ed:

1. x1 = 1

2. y1 = 1

3. x2 = 1

4. y2 = 1

5. x1 = x2

6. 2x1 = x2

7. y1(x1  x2)3 = y3

8. x1 = 0

9. y1 = 0

10. x1 = x2

11. x3 = 0

12. y3 = 0

13. x1(x2  x1)2 =  x3

14. x1(x2  x1)2 = x3

15. (x2  x1)3 = ( y2  y1)2

16. x2  x1 = y1

17. x2  x1 = y2

18. x2  x1 = y2  y1

19. y1 = y2

20. 2y1 = y2

21. x1(x2  x1)2 = ( y2  y1)2

22. 2(x2  x1)3 = ( y2  y1)2

23. 2(x2  x1)3 = ( y2  y1)2  x1(x2  x1)2

24. 2(x2  x1)3 = ( y2  y1)2  2x1(x2  x1)2

25. 3x1(x2  x1)2 = ( y2  y1)2

26. x1(x2  x1)2 = ( x1  x2)3

27. 2x1(x2  x1)2 = ( x1  x2)3

28. 2(y2  y1)2 = 3x1(x2  x1)2 + ( x2  x1)3

29. 2(y2  y1)2 = 3x1(x2  x1)2 +2( x2  x1)3

30. 2x3 = x1(x2  x1)2

Proof. Given points P = ( X 1; Y1; Z1) = ( � 2
1x1; � 3

1y1; � 1) and Q = ( X 2; Y2; Z2) = ( � 2
2x2; � 3

2y2; � 2),
the relations of Theorem 8.12 must hold for any� 1; � 2 2 F�

p. So we must check equalities be-
tween terms with factors � 1; � 2 of the same degree. LetSi;j be the set of values that involve a
factor � 1 of degreei and a factor � 2 of degreej . An analysis of Algorithm 37 gives:

� S1;0 = f Z1g

� S0;1 = f Z2g

� S1;1 = f Z1Z2g

� S2;0 = f X 1; Z 2
1 g

� S3;0 = f Y1; Z 3
1 g

� S0;2 = f X 2; Z 2
2 g

� S0;3 = f Y2; Z 3
2 g
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� S2;2 = f A = X 1Z 2
2 ; B = X 2Z 2

1 ; E = X 2Z 2
1  X 1Z 2

2 g

� S3;3 = f Z3 = Z1Z2E; C = Y1Z 3
2 ; D = Y2Z 3

1 ; F = Y2Z 3
1  Y1Z 3

2 g

� S4;4 = f E 2g

� S6;6 = f AE 2; E 3; F 2; F 2  E 3; X 3 + AE 2 = F 2  E 3  AE 2; X 3 = F 2  E 3  2AE 2; AE 2  
X 3 = 3AE 2 + E 3  F 2g

� S9;9 = f CE 3; Y3 + CE 3 = F (AE 2  X 3); Y3 = F (AE 2  X 3)  CE 3g

Equal values can only be found in the same set. Comparing the terms from each other by set,
and developing give the relations of the theorem.

Remark 8.15. Points satisfying one of the following condition

� x1 = 0 or

� y1 = 0 or

� x1 = x2 or

� y3 = 0 or

� x1(x2  x1)2 =  x3 or

� x1(x2  x1)2 = x3 or

� (x2  x1)3 = ( y2  y1)2

are zero-value points.

Remark 8.16. If E and E 0 are both given in their reduced Weierstra� form, the isomorphism
' is de�ned as

' : E � ! E 0;
�

O ! O
(x; y) ! (u 2x; u  3y)

for someu 2 F�
p. If P is a same-values point relative to a doubling algorithm onE, this does

not imply that it is a same-values point on E 0. For example, comparing the values of the set
S2 = f X 1; Z 2

1 g of Theorem 8.12, leading to the a�ne condition x1 = 1, is not relevant anymore
on E 0. Indeed, if X 1 = Z 2

1 (P is a same-values point onE) then u 2X 1 6= Z 2
1 if u 6= � 1 (P0 is

not a same-values point onE 0).
Therefore, the Random Curve Isomorphism, described in Section 8.3.7,decreases the number

of same-values points relative to some elliptic curve operations but does not entirely prevents
the attack since some equalities still hold. For example, 2X 2

1 can be compared toC = 3X 2
1 + aZ4

1
(set S4 of Theorem 8.12) whatever the value ofu.

Taking advantage of the same-values points is similar to the RSCA and ZSCA(Sections
8.11 and 8.12) and it is recalled below.
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Choosing the suitable base point. First, the attacker �nds a same-values point PSVA

relative to the doubling formula. She then chooses a base point such that PSVA will occur on
a certain condition of the scalar (e.g. the current targeted bit is 1). The computation of such
a point P is performed as follows, with the example of the Double-and-Add alwaysmethod
(Algorithm 19). It can be adapted for the other ecsms. Assume that the attacker already
knows the n " i " 1 leftmost bits of the �xed scalar k = ( kn  1; : : : ; k0)2 and tries to recoverki .
The attacker computes the point P = [( kn  1; : : : ; ki +1 ; 1) 1

2 mod # E]PSVA . The point PSVA

will be doubled at iteration i " 1 only if ki = 1. Several ecsms are run, with the same scalar
and the same base pointP. The attacker collects the power consumption trace of the doubling
at iteration i " 1. If ki = 1, PSVA will be doubled at iteration i " 1 in eachecsm.

Remark 8.17. Taking advantage of same-values points relative to addition is more di�-
cult. Indeed, the attacker needs to �nd a base point P such that P and Q = [ c]P, with
c = ( kn  1; : : : ; ki +1 ; 1)2, are same-values point relative to the addition used. Finding such a
point P is currently di�cult if c is large. This issue is discussed in [IT03] and [AT03] for similar
reasons.

Detecting the same-values point. To detect if PSVA occurs each time, one can apply the
method described in Section 8.2.3.1 for detecting the same values.

Remark 8.18. The same-values point is chosen such that the same values are used in the same
�eld operation (multiplication or addition) and in the same side (left or right). This makes it
possible to perform a collision analysis without any synchronization procedure. The attack is
still possible if it is not the case, but a strong study on the �eld arithmetic module is required
for a synchronization because the sensitive data is not manipulated at the same time within
the �eld operation.

Compared with the RSCA and the ZSCA, the number of possible same-values points on a
curve is very large. This makes it very hard to �nd a curve that does not contain any same-
values points. We do not know if it is even possible.

As opposed to the RSCA and the ZSCA, several traces are necessary to detect if the par-
ticular point occurs. Therefore, scalar randomization techniques thwart this attack.

Like the RSCA and the ZSCA, the Point Blinding (see Section 8.3.5) thwarts the attack
since the point PSVA + R with an unknown pseudo-random point R will occur instead of PSVA .

Attack Context:

� Key recovery : recursive,

� Elliptic Curve Speci�city : must contain same-values points,

� Implementation Access : knowledge of theecsm and the elliptic curve formul�,

� Implementation Speci�city : none,

� Number of Executions Needed : multiple,

� Input Access : chosen,

� Output Access : unnecessary.
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8.14 Horizontal SVA

We propose to extend the SVA which has been introduced as a verticalattack in our paper
[MGD + 12]. We show that, in some conditions, the occurrence of the particularpoint can be
detected with a single trace.

Stronger Conditions of Same-Values Points. In the vertical SVA described in the pre-
vious section, the attacker takes advantage of points that have same values occurring in an
elliptic curve formula. Here, we take advantage of points with stronger conditions. In addition
of the occurrence of the same values, those same values will be inputsof the modular square
operation. We can compare the power consumption of the squares to detectif they have indeed
the same input. Among all conditions of Theorems 8.12 and 8.14, the conditions below give
the required result:

1. x1 = 1: this condition implies that the inputs of the squares at lines 5 (X 2
1 = ( x1Z 2

1 )2)
and 11 ((Z 2

1 )2) of Algorithm 39 are the same.

2. 2y1 = 3x2
1+ a: this condition implies that the input of the square at line 14 ((3X 2

1 + aZ4
1 )2 =

((3x2
1 + a)Z 4

1 )2) of Algorithm 39 and the input of the square of the value Z3 = 2Y1Z1 =
2y1Z 4

1 , which will occur during the addition or the doubling of P3 at the next iteration of
the ecsm, are the same.

3. y2 " y1 = x2 " x1: this condition implies that the input of the square at line 16 (F 2 =
(Y2Z 3

1 " Y1Z 3
2 )2 = (( y2" y1)Z 3

1 Z 3
2 )2 and the input of the square of the valueZ3 = Z1Z2E =

((X 2Z 2
1 " Y2Z 2

2 )Z1Z2)2 = (( x2 " x1)Z 3
1 Z 3

2 )2 of Algorithm 37, which will occur during the
addition or doubling of P3 at the next iteration of the ecsm, are the same.

The attacker analyses the trace segments of the two squares to determine if the value squared
is the same and conclude on the current bit.

Detecting the Same Inputs in the Squares. If the noise signal is low, a simple di�erence
of the trace segments is enough to detect if the same value is manipulated. If the di�erence is
near zero, the inputs of the two multiplications are equal. This is illustrated in Figure 8.3. If
the noise signal is high, a more sophisticated tool can be used, such as the Euclidean distance
or the correlation with the points of interest of the traces. The trace segments of the squares
to compare can be seen as random variablesX; Y . The construction of such random variables
are illustrated in Figure 8.4.

The number of possible particular points is reduced compared with the classical SVA of the
previous section (two conditions instead of thirty-three for ecdbl ). Finding a curve that does
not contain any same-values points with the strong condition is feasible. Moreover, for the
three conditions listed above, the Random Curve Isomorphism (see Section 8.3.7) thwarts the
attack. This information has to be taken with great caution because it is not necessarily the
case for other formul�.

Compared with the vertical version, a single trace is enough to detectif the particular point
appears. However, the attack is recursive andn executions of theecsm is required to reveal
the whole scalar. Therefore, like the RSCA and the ZSCA, scalar randomization techniques
help prevent the horizontal SVA since the recursive process is broken. However, an attacker
can target several bits at a time by guessing several bits instead of onlyone. Several bits of the
randomized scalar can be recovered and reveal some information of the initial scalar.
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Like the RSCA, the ZSCA and the classical SVA, the Point Blinding described in Section
8.3.5 thwarts the attack.

We introduced a new kind of attacks and proved the danger of repetitionof same values.
This was in fact the �rst Same-Values Analysis that we published. Later, we tried to extend
this attack and take advantage of repetition of values on other implementations and proposed
the other SVA already described in Sections 8.2.2.2, 8.2.3.1 and 8.2.3.2.

Attack Context:

� Key recovery : recursive,

� Elliptic Curve Speci�city : the curve must contain same-value points which brings
same values that will be squared,

� Implementation Access : knowledge of theecsm and the elliptic curve formul�,

� Implementation Speci�city : none,

� Number of Executions Needed : n,

� Input Access : chosen,

� Output Access : unnecessary.

8.15 Particular Point Timing Attack [SST04]

Sato, Schepers and Takagi introduced another timing attack. Like the classical Timing Attack
described in Section 8.1, this attack takes advantage of the conditional �nalreduction of the
Montgomery multiplication. It works only on curves with parameter a =  3. Such curves
enable computing the variableC of ecdbl (Algorithm 11) as follows (see Remark 3.1):

C = 3( X 1 + Z 2
1 )(X 1  Z 2

1 ) (8.1)

The attack exploits the occurrence of a special point:P = (2 ; y). In Jacobian coordinates,
P = (2 Z 2

1 ; yZ 3
1 ; Z1) for some Z1 2 F�

p. When P is doubled, substitute its coordinates into
Equation (8.1) leads to:

C ! 3(3Z 2
1 )(Z 2

1 )

In [SST04], the authors show that the probability of the �nal reduction d uring the Montgomery
multiplication of �; � is higher if � = 3 � than for random values.

If the attacker judiciously chooses the base point, this point occurs only on a certain hy-
pothesis of the scalar. In this case, the average timing of theecsms is higher than random
inputs.

The particular point is not well randomized by the Random Projective Coordinates coun-
termeasure (see Section 8.3.6). Indeed, whatever the value ofZ1, the inputs of the modular
multiplication when computing C will still be �; � = 3 � for some � 2 Fp. The attack can
therefore be applied even if this countermeasure is present.

In the following, we show that the Random Curve Isomorphism countermeasure (see Section
8.3.7) thwarts the attack. Indeed, if the points are randomized with the isomorphism de�ned
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as ' : (x; y) ! (u 2x; u  3y) for some random u 2 F �
p , the special point P = (2 Z 2

1 ; yZ 3
1 ; Z1)

is randomized as' (P) = P0 = (2 u 2Z 2
1 ; yu 3Z 3

1 ; Z1) in Jacobian coordinates. Substitute its
coordinates into Equation (8.1):

C  3(Z 2
1 (2u 2 + 1))( Z 2

1 (2u 2 ! 1))

The inputs of the modular multiplication: � = ( Z 2
1 (2u 2 + 1)) ; � = ( Z 2

1 (2u 2 ! 1)) do not
verify � = 3 � if u 6= � 1.

A more drastic method is to use the Constant Time of Field Operations countermeasure
described in Section 8.1.1.

Attack Context:

� Key recovery : recursive,

� Elliptic Curve Speci�city : elliptic curve parameter a = ! 3, must contain a point of
the form (2; y) for some y 2 Fp,

� Implementation Access : full knowledge of all algorithms,

� Implementation Speci�city : deterministic and non-constant time execution of modu-
lar multiplications, fast doubling,

� Number of Executions Needed : multiple,

� Input Access : chosen,

� Output Access : unnecessary.

8.16 Invalid Curve Attack [CJ05]

This weak curve attack is similar to the Invalid Point Attack describ ed in Section 8.5. Rather
than injecting a fault on the base point P, Ciet and Joye propose to inject a fault on the curve
parameters, particularly on the parameter a of the curve.

Denote by ~a the corrupted value. Since the parameterb of the initial curve is generally not
used,P = ( xP ; yP ) lies on another curve ~E : y2 = x3 + ~ax + ~b.

The ecsm is performed on the weak curveE 0. The attacker recovers the result ~Q =
(x ~Q ; y ~Q ) = [ k]P. The parameters ~a;~b of the curve ~E can be retrieved from the following
equations system:

(
~axP + ~b = y2

P ! x3
P

~ax ~Q + ~b = y2
~Q

! x3
~Q

The attacker can solve theecdlp on the weak curve ~E to recover k mod ord(P).

Attack Context:

� Key recovery : each time, an ecdlp on ~E is performed to recoverk mod ord(P); the
full key is then recovered using the CRT,

� Elliptic Curve Speci�city : none,
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� Implementation Access : knowledge of the location of the curve parameters' memory
blocks, knowledge of theecsm,

� Implementation Speci�city : same addresses of the curve parameters on di�erent exe-
cutions,

� Number of Executions Needed : less than n (it depends on the order of P on the
weak curve ~E),

� Input Access : known,

� Output Access : known,

� Fault Model : data randomization on a single memory block of sizen.

8.16.1 Curve Integrity Check [CJ05]

Ciet and Joye pointed out the necessity to verify that the public parameters were not disturbed.
A cyclic redundancy check is performed on the curve parameters to verify that no fault was
introduced. For a full protection, we must check all curve parameters: a; b and the modulus p.

Cost: 3 crc n

8.17 Sign Change Fault Attack [BOS06]

Bl•omer, Otto and Seifert introduced a DFA. Their idea is to inje ct a fault to change the sign
of an intermediate point during the ecsm. Let's take for example the Double-and-Add always
method (Algorithm 19).

First, a correct result Q = [ k]P is recovered from a �rst ecsm. A secondecsm is run with
the same scalar and the same input. At iteration i , a fault is induced during the addition of
points to switch the sign of R0. The operation R1 k i  R0 + P becomesR1 k i  P ! R0. If
ki = 0, the result is correct, and the attacker tries again at another iteration. If ki = 1, the
incorrect result ~Q is equal to ~Q = [( ki ; : : : ; k0)2]P ! [2i (kn  1; : : : ; ki +1 )2]P .

The attacker computes Q + ~Q = [2( ki ; : : : ; k0)2]P . If i is small enough, the attacker can
perform the ecdlp on Q + ~Q to recover (ki ; : : : ; k0)2 with a complexity of 2 i= 2 using the baby-
step giant-step method [Sha71].

The method is iterated to recover the other bits.

The inverse of point R = ( X; Y; Z ) is ! R = ( X; ! Y; Z). To change the sign of a point, the
control signal of the two's complement of the operand is switched when loading Y [BOS06].
One can also inject a fault on an opcode during the elliptic curve addition formula to switch
from a �eld addition to a �eld subtraction.

Since all points still lie on the given elliptic curve, the Output Point Validity and the Curve
Integrity Check do not detect the fault (see Sections 8.5.1 and 8.16.1 respectively).

Attack Context:

� Key recovery : recursive, severalecdlp s are performed,

� Elliptic Curve Speci�city : none,
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� Implementation Access : full knowledge of all algorithms, knowledge of the architecture
of the modular arithmetic operator,

� Implementation Speci�city : same addresses of the coordinates' intermediate point on
di�erent executions,

� Number of Executions Needed : less thann,

� Input Access : known and constant,

� Output Access : known,

� Fault Model : data randomization on a single control signal or modifying opcode.

8.18 Coherence Check [Gir06]

This countermeasure was introduced by Giraud to protectrsa implementations against fault
attacks. It can be adapted forecc . A veri�cation is performed at the end of to the Montgomery
Ladder (Algorithm 21) to check the integrity of the result.

At the end of each iteration, R0 and R1 verify R1  R0 = P. One can verify at the end
of the ecsm that the equality stands. Any fault on the curve parameters or the intermediate
points after the initialization phase (lines 1 and 2 of algorithm 21) will be detected with very
high probability [DH11].

This countermeasure can be adapted for Algorithm 20. Indeed, at the end of each iteration,
R0 + R1 + P = [( ki ; : : : ; k0)2]P + [( �ki ; : : : ; �k0)2]P + P = [2 i +1 ]P = R2. The equality can be
veri�ed at the end.

The countermeasure is also applicable on Algorithm 25 [BHT09]. The equalityis similar to
Algorithm 20: R0 + R1 + P = R2 is veri�ed at each iteration.

In addition of preventing the Weak Curve attacks (Sections 8.6, 8.5 and 8.16), it also brings
security against the Sign Change Fault attack (Section 8.17). This also thwarts the C Safe-Error
(Section 8.2.1.1) since the dummy operations introduced are in fact used at the end for the check.

The countermeasure costs one or two elliptic curve additions (depending on the algorithm),
the �eld operations necessary to compare two points in Jacobian coordinates (a conversion to
the sameZ coordinate is required) and two memory blocks needed to store the base point P
for the �nal check.

Cost: 1 or 2 ecadd n , 2 msqr n , 6 mmul n , 2 madd n , 2 memn

8.19 Zero Word and SSCA [AVFM07]

Amiel, Villegas, Feix and Marcel suggest to combine a fault attack and a SSCA.
Let's take the example of the Left-to-Right sliding window NAF method ( Algorithm 16).

At the beginning of the ecsm, a fault is introduced to set a word of one coordinate of one of
the read-only points (for example P1) to zero. A multiplication with an operand with a zero
word is easily detected by observing the trace (see Figure 8.17).

This attack permits to recover all bits of the scalar with a single trace. This attack works
on ecsms in which at least one point is read only, and its usage depends on the scalar. This is
the case for the Left-to-Right window method (Algorithm 16), the Shamir' s trick (Algorithms
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Figure 8.17: Power consumption of a random Montgomery multiplication (left curve) and a
Montgomery multiplication with the �rst word of the �rst operand being zero (right curve)

18 and 23), and the BRIP (Algorithm 24).

Checking the validity of the output is ine�ective since the scalar is deduced from the side-
channel observation.

Attack Context:

� Key recovery : independent bits,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of the ecsm, knowledge of the location of the
memory blocks,

� Implementation Speci�city : ecsm where a point is read only,

� Number of Executions Needed : 1,

� Input Access : unnecessary,

� Output Access : unnecessary,

� Fault Model : resetting data on a word.

8.20 Template Attack on ECDSA [MO08]

Medwed and Oswald could mount a template attack onecdsa to recover a few bits of several
di�erent scalars from di�erent signatures.

The number of bits was large enough to recover the static private key of the signature using
the lattice attack described in [HS01].

There is no theoretical obstruction which prevents this attack from recovering all bits of
the scalar. Indeed, when the �rst bits are known, the attacker can construct new templates
using her own controllable device with the known �rst bits and the next unknown few bits. The
templates are compared with the same trace of the targeted device. However, no experimental
results have been proposed to recover the whole scalar.

Randomizing the base point using the Random Projective Coordinates (Section 8.3.6), the
Point Blinding (Section 8.3.5) or the Random Curve Isomorphism (Section8.3.7) thwarts the
attack since the stage of constructing the templates cannot be done.
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Attack Context:

� Key recovery : recursive,

� Elliptic Curve Speci�city : none,

� Implementation Access : access to exactly the same controllable chip as the target,

� Implementation Speci�city : none,

� Number of Executions Needed : 1,

� Input Access : known,

� Output Access : unnecessary.

8.21 Twist Curve Attack [FLRV08]

If the Montgomery Ladder is used, addition and doubling formul� can be performed without
the y coordinate [IMT02]. Fouque, Lercier, R�eal and Valette suggest to inject a fault on the x
coordinate of the base pointP = ( xP ; yP ) lying on the elliptic curve E : y2 = x3 + ax + b.

Let ~P = ( x ~P ; y ~P ) denotes the faulted point. y ~P is unused during the computation of [k] ~P.
Two possibilities arise:

� x3
~P

+ ax ~P + b is a square. In this case,y ~P is a solution of the equationy2 = x3
~P

+ ax ~P + b

in Fp and ~P lies on the curve E. The x coordinate of the result point ~Q = [ k] ~P gives
nothing.

� x3
~P
+ ax ~P + b is not a square. In this case,y ~P is a solution of the equationy2 = x3

~P
+ ax ~P + b

in Fp2 and ~P lies on the twist curve ~E de�ned over Fp2 . If ~E is weak, theecdlp is feasible.

In the latter case, one method to recover the faulted valuex ~P = xP � " is to try all possible
values of " and compute the ecdlp with ~P and the result point ~Q = [ k]P. Therefore, the
number of bits a�ected by the fault has to be small (max 8 or 16)13.

The output point validity described in Section 8.5.1 thwarts the attack only if a full check
is performed, i.e. with all curve parameters and all coordinates. For example, it is not enough
to verify if x3

Q + axQ + b is a square,xQ being the x coordinate of the ecsm's output. A second
fault can be induced at the end to bypass the check with probability 1/2 [FLRV08].

Attack Context:

� Key recovery : performing 28 or 216 ecdlp s on ~E (depending on the precision of the
fault),

� Elliptic Curve Speci�city : the twist of the curve is weak,

� Implementation Access : knowledge of the location of the base point's memory blocks,

� Implementation Speci�city : elliptic curve formul� without the y coordinate, same
addresses of the coordinates' base point on di�erent executions,

13 Another method to �nd the value x ~P , with less computational e�ort, is described in [FLRV08]. H owever, it
needs more faulted results.
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� Number of Executions Needed : 1,

� Input Access : known,

� Output Access : known,

� Fault Model : data randomization on a single register of small size (maximum 8 or 16).

8.22 Invalid Point Attack and SSCA [FGV11]

Fan, Gierliches and Vercauteren propose to combine an Invalid Point Attack (see Section 8.5)
and a SSCA.

At the beginning of the ecsm, a known fault is introduced to the base point P. The faulty
point ~P lies on another curve, and has a very low orderord( ~P). Eventually, the point at in�nity
O will occur during the computation of [k] ~P. In embedded systems, the point at in�nity is
generally not managed for e�ciency reasons. This is understandable since the point at in�nity
should not appear in a normal mode of operation. The elliptic curve pointsoperations will then
be incorrect and zero values will appear and remain till the end of theecsm. The manipulation
of a zero value is easily detected by SSCA (see Figure 8.15). The number of iterations before
the apparition of the point at in�nity reveals k mod ord( ~P), or the most signi�cant bits of k
modulo ord( ~P) in the case of a Left-to-Right ecsm.

Unlike the classical Invalid Point Attack (see Section 8.5), the attacker does not need the
output point: the attack works even if a validity check is performed at the end of the ecsm (see
Sections 8.5.1 and 8.18).

The choice of the base point is made by the attacker because it has to be aneighbour of a
point of low order ~P. P and ~P are neighbours in the sense that only one bit di�ers betweenP
and ~P [FGV11].

The Point Blinding of Section 8.3.5 and any scalar randomization prevent the attack [FGV11].

Attack Context:

� Key recovery : each time, k mod ord( ~P) is revealed; the full key is then recovered using
the CRT,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of the location of the base point's memory blocks,
knowledge of theecsm,

� Implementation Speci�city : same addresses of the coordinates' base point on di�erent
executions,

� Number of Executions Needed : less thann (it depends on the order of ~P),

� Input Access : chosen,

� Output Access : unnecessary,

� Fault Model : data randomization on a single bit.
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8.22.1 Input Point Validity after a Randomization [FGV11]

Checking if the base point lies on the given elliptic curve is generally done at the cryptographic
level. However, a fault can be induced after the veri�cation.

Performing the check after a randomization of the input, such as the Random Projective
Coordinates (Section 8.3.6), the Random Curve Isomorphism (Section 8.3.7)or the Point Blind-
ing (Section 8.3.5), is very powerful. Indeed, the fault injectedafter the check will necessarily
be random, since all values are randomized.

Cost: 5 mmul n , 4 msqr n , 4 madd n

8.23 Fault Attack on Coordinates Conversion [MMNT13]

We present our new DFA. In the previous fault attacks, the fault is either introduced at the
beginning (Weak Curve attacks) or during the ecsm (Safe-Errors and the other DFAs). Here,
the fault is introduced at the very end of the ecsm, during the projective to a�ne coordinates
conversion. This enables to retrieve the projective coordinatesof the result of the ecsm [k]P.
Naccache, Smart and Stern showed that when the result is given in projective coordinates, an
attacker can recover information onk [NSS04].

Leakage in Projective Coordinates. First, we brie
y overview the attack described in
[NSS04] when the attacker has access to the Jacobian coordinates of the output.

Assume that Algorithm 14 is used to computeQ = [ k]P with mixed coordinates (P is in
a�ne coordinates).

We denote by A i = ( X i ; Yi ; Z i ) the value of point A at the end of iteration i in Algorithm
14. The attacker knows the output A0 = Q = ( X 0; Y0; Z0) in Jacobian coordinates and the
input P = ( xP ; yP ) in a�ne coordinates. The attacker will attempt to reverse the scalar mul-
tiplication process i.e. replace doubling by halving and replace additions ofP by subtractions.

If k0 = 0, A1 can be recovered by halvingA0. Given Algorithm 11:

Z0 = 2Y1Z1 = 2y1Z 4
1 ) Z 4

1 =
Z0

2y1

y1 is obtained by computing (x1; y1) = [2  1 mod # E]Q in a�ne coordinates which is always
possible. We need to compute a fourth root to obtainZ1 from Z0 and y1:

� if p � 1 (mod 4), then computing a fourth root is possible in a quarter of the cases and
yields four values.

� if p � 3 (mod 4), then computing a fourth root is possible for half of the inputs and,
when possible, this computation yields two values.

We can easily obtainX 1 and Y1 from Z1.

If, on the other hand, k0 = 1, A1 can be recovered by subtractingP from A and halving.
We denote by (X t ; Yt ; Z t ) the intermediate point between doubling (step A  ecdbl (A)) and
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addition (step if ki = 1 then A  ecadd (A; P )). Given Algorithm 10 in mixed coordinates,
we have:

Z0 = ( xP Z 2
t ! X t )Z t ) Z 3

t =
Z0

xP ! x t

x t is obtained by computing (x t ; yt ) = Q! P in a�ne coordinates. We need to compute a cubic
root to obtain Z t from Z0; xp and x t :

� if p � 1 (mod 3), then extracting a cubic root is possible in a third of the cases and, when
possible, this calculation yields one of three possible values.

� if p � 2 (mod 3), then extracting a cubic root is always possible and yieldsa unique value.

We can easily obtainX t and Yt from Z t . After subtraction, the attacker must halve ( X t ; Yt ; Z t )
as described previously:

Z 4
1 =

Z t

2yt
:

From this observation, the opponent can recover the least signi�cant bit of k. Indeed, if the
value Z 0

2y1
isn't a fourth power, the opponent immediately concludes that k0 = 1. If Z 0

2y1
is a

fourth power, then the attacker must try the subtraction and halving step. If subtracting P from
A0 or halving A t is impossible, the attacker concludes thatk0 = 0. If both steps are possible
(which happens with non-negligible probability), the attacker cannot immediately identify k0,
but can hope to do so by backtracking,i.e. guessing the values ofk1, k2, etc. and computing
the corresponding intermediate points until reaching one of the previous contradictions.

Once k0 is known, the opponent can iterate the procedure starting withk1 and so forth to
extract a few more bits of k. Note that several candidate values forZ1 arise from the reversal
process as the corresponding equations have several roots, and backtracking is usually required
to determine the correct one.

[NSS04] reports experimental data on the number of recovered bits and success probabilities.
The success highly depends on the value ofp mod 12.

To prevent this attack, the defender should in principle output results in a�ne coordinates.
Another possible countermeasure suggested in [NSS04] is to randomize theoutput, replacing
(X 0; Y0; Z0) by ( r 2X 0; r 3Y0; rZ 0) for some randomr 2 F�

p, which e�ectively avoids any possible
leakage from the Jacobian representation.

As a side note, we point out that, while [NSS04] also claims that attacks are thwarted by
randomly 
ipping the sign of Z0, this is incorrect: just as k1 can be recovered with signi�cant
probability even though Z1 is only known up to a sign (by simply trying both possibilities and
backtracking until a contradiction is reached), k0 can also be recovered even whenZ0 is only
known up to a sign. This observation is important in our case, as the faultattacks described
hereafter retrieve Z 2

0 rather than Z0 itself.

Projective-to-A�ne Conversion. The following procedure converts the pointP = ( X; Y; Z ) =
(xZ 2; yZ 3; Z ) from Jacobian to a�ne coordinates ( x; y).

convert (X; Y; Z ) =

8
>>>><

>>>>:

r  Z  1

s  r 2

x  X � s
t  Y � s
y  t � r return( x; y)

(8.2)
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Faults during conversion. In standardized cryptographic protocols based on elliptic curves,
the computed points are given in a�ne coordinates, and hence [NSS04] doesnot apply. Our
idea is to corrupt the conversion process, so that the faulty a�ne results reveal the missingZ
coordinate. Suppose that an error corrupteds just after the step s  r 2 (of Process (8.2)).
The corrupted s + " yields:

~x = X (s + ") ) ~x = x + xZ 2" (8.3)

~y = Y(s + ")r ) ~y = y + yZ 2" (8.4)

Equations (8.3) and (8.4) imply
~x
x

! 1 = Z 2" (8.5)

~y
y

! 1 = Z 2" (8.6)

We will describe three di�erent attacks depending on the fault's precision.

Large Unknown Faults and One Correct Result. Let " = ( "1; :::; " l ) be a vector of l
large faults, as illustrated in Figure 8.18. We want to recover" .

= ~s1 = Z  2 + "1

= ~s2 = Z  2 + "2

...

= ~sl = Z  2 + " l

Figure 8.18: Illustration of large fault injections

Each " i satis�es an equation of the form (8.5), thus the attacker knows l numbers ui =
Z 2 � " i mod p denoted as a vectoru = ( u1; :::; ul ). Assume that 8i 2 f 1; : : : ; lg; " i < p � for
a number � < 1. Let L be the lattice generated by the vector u and pZ l in Z l and let
s = Z  2 mod p. Since" satis�es " = s� u mod p, " is a vector in L , of length k" k . p� . Assume
further that g = gcd(u1; : : : ; ul ) = 1. This happens with probability � 1=� (l ) � 1  2 l , which
is very close to 1. Then, we have vol(L )

1
l = [ Z l : L ]

1
l = p1 1

l . Therefore, we can recover"
directly by reducing the lattice L using lll [LLL82] as long asp� � p1 1

l , i.e. l > 1
1 � .

The attack can also be carried out wheng > 1: in that case, lll will recover � 1=g� " , so
exhaustive search on the few possible values ofg is enough. However, the probability that g > 1
is so small makes this re�nement unnecessary.

Size ofp (modulus size) 256 bits
Number of errors (l ) 9
Error size (percentage of the modulus size) 224 bits (87:5%)
Success probability 99:8%
cpu time 3 ms

Table 8.1: Timings for a sage implementation on a 2.27 GHz Intel Core i3cpu core.
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To evaluate the attack, we implemented it in sage [SAGE12] (without treating the case
g > 1) and observed the results given in Table 8.1. The failure rate of� 0:2% corresponds to
the cases wheng > 1, and is consistent with 1=� (9) � 0:998.

Remark 8.19. In the paper [MMNT13], we present an alternative solution where the correct
result is not necessary.

Since several faulty results with the sameZ coordinate are necessary, any randomization
used against the CSCA described in Section 8.3 thwarts this attack. The knowledge of the base
point in a�ne coordinates is necessary for the backtracking algorithm. For this reason, the
Point Blinding countermeasure (see Section 8.3.5) is also e�ective against the attack.

Attack Context:

� Key recovery : Naccache's et al.'s backtracking algorithm,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of the location of the memory blocks, knowledge
of the conversion procedure,

� Implementation Speci�city : use of Jacobian or projective coordinates,

� Number of Executions Needed : � 10 for a few bits,

� Input Access : constant,

� Output Access : known,

� Fault Model : data randomization on a single memory block of size� 4n
5 .

Two Faults and a Correct Result. As we have just seen, a correct conversion and two
faulty conversions yield the values:Z 2"1 and Z 2"2 and hence, by modular division� = "1"  1

2 .
Theorem 8.20 (see [FSW02]) guarantees that"1 and "2 can be e�ciently recovered from �
if each " i is smaller than the square root ofp divided by 2. This problem is known as the
Rational Number Reconstruction [PW04, WP03] and is typically solved using Gau�' algorithm
for �nding the shortest vector in a bidimensional lattice [Val91].

Theorem 8.20. Let "1; "2 2 Z such that  A � "1 � A and 0 < " 2 � B . Let p > 2AB be a
prime and � = "1"  1

2 mod p. Then "1; "2 can be recovered fromA; B; �; p in polynomial time.

Assume that the " i are smaller than
p

p, as illustrated in Figure 8.19. Taking A = B =
b
p

p=2c, we get 2AB < p . Moreover, 0 � "1 � A and 0 < " 2 � B . Thus the attacker can
recover "1 and "2 from � in polynomial time.

If the " i are shifted to the left by an arbitrary number of bit positions, this d oes not change
anything as these powers of two will divide out.

The attack is also feasible in the more general unbalanced case when

"1"2 � p=4: (8.7)

In contrast to the case where the" i are bound individually ( i.e. 0 � "1 � A and 0 < " 2 � B ) we
do not have a �xed bound for "1 and "2 anymore; Equation (8.7) only provides a bound for the
product "1"2. Equation (8.7) implies that there exists 1 � i � b nc such that 0 � "1 � 2i and
0 < " 2 � p=2i +1 . Then using Theorem 8.20 again, the attacker can recover the pair ("1; "2),
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= ~s1 = Z  2 + "1

= ~s2 = Z  2 + "2

Figure 8.19: Illustration of two fault injections, half the size of p

and henceZ . In principle, there could be several candidate solutions depending on the choice
of i , making it necessary to consider many possible values ofZ . In practice, however, multiple
solutions seem to occur with negligible probability whenp is large enough.

Like the previous attack with large faults, any randomization described in Section 8.3
thwarts this attack since two faulty results with the same Z coordinate are necessary. The
Point Blinding of Section 8.3.5 is e�ective as well.

Attack Context:

� Key recovery : Naccache's et al's backtracking algorithm,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of the location of the memory blocks, knowledge
of the conversion procedure,

� Implementation Speci�city : use of Jacobian or projective coordinates,

� Number of Executions Needed : 3 for a few bits,

� Input Access : constant,

� Output Access : known,

� Fault Model : data randomization on a single memory block of sizen=2.

Known or guessable fault. If " is known or successfully guessed, then one faulty point
(~x = x + xZ 2"; ~y = y + yZ 2" ) and the correct point (x; y) is enough to recoverZ (up to the
sign).

As opposed to the previous attacks, a single faulty result is necessaryfor this attack. The
security is not guaranteed anymore by the randomization techniques of Section 8.3, except for
the Point Blinding because the attacker needs the knowledge of the base point of theecsm.

Attack Context:

� Key recovery : Naccache's et al's backtracking algorithm,

� Elliptic Curve Speci�city : none,

� Implementation Access : knowledge of the location of the memory blocks, knowledge
of the conversion procedure,
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� Implementation Speci�city : use of Jacobian or projective coordinates,

� Number of Executions Needed : 2 for a few bits,

� Input Access : constant,

� Output Access : known,

� Fault Model : data randomization on a single bit.



Chapter 9

Di�erential Fault Attacks on
ECDSA

Some DFAs previously described rely on the comparison of one erroneous result and the cor-
rect result of an ecsm, to recover a few bits of the scalar. That is the case for the classical
DFA (Section 8.6), the Sign Change Fault attack (Section 8.17) and the Fault Attack on the
Coordinates Conversion with the known fault (Section 8.23).

In ecdsa , the scalar used for theecsm is randomly chosen for each new signature. In this
chapter, we describe a method to attack theecdsa with the DFAs listed above. This method
was initially described in our paper [MMNT13, x6.1].

9.1 Principle of the Method

Let G be the generator of the subgroup considered on the given elliptic curveE, d the secret
key the attacker wants to recover, andP = [ d]G the corresponding public key.

We suppose that, during the signature procedure ofecdsa (Algorithm 26), a fault is induced
during the computation of Q, yielding to the wrong result ~Q = ( x ~Q ; y ~Q ). The erroneous
signature (~r; ~s) satis�es:

~r = x ~Q mod t

~s = kinv (d~r + m) mod t

From (~r; ~s), the attacker can compute:

~w = ~s 1 mod t
~u1 = ~w � m mod t
~u2 = ~w � ~r mod t

R = [~u1]G + [~u2]P =
h

km
d~r + m

i
G +

h
k ~r

d~r + m

i
P =

h
km

d~r + m

i
G +

h
dk ~r

d~r + m

i
G

=
h
k � d~r + m

d~r + m

i
G = [ k]G

The point R is hence the correct value ofQ = ( xQ ; yQ ) = [ k]G that was intended to be computed
during the signature. The attacker gets xQ ; yQ and x ~Q mod t. Since log2(p) � log2(t) in most
standardized curves,x ~Q can be guessed fromx ~Q mod t.
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9.2 Attacking ECDSA with the Classical Di�erential Fault
Attack

We recall that for the classical DFA, described in Section 8.6, a fault isinduced on an interme-
diate point of the ecsm. Using the example of the Right-to-Left Double-and-Add method (Al-
gorithm 15), the attacker injects a fault to alter the intermediate poin t Qi = [( ki  1; : : : ; k0)2]P
into ~Qi (we use the same notations as in Section 8.6). If the fault is known or can beguessed1,
the attacker can generate ~Q from ~Qi and all possible values of (ki  1; : : : ; k0)2. The good hy-
pothesis is the one where thex coordinate of ~Q matchesx ~Q .

9.3 Attacking ECDSA with the Sign Change Fault Attack

We recall that, in the attack described in Section 8.17, the sign of an intermediate point at
iteration i is switched during the ecsm. The attacker gets the x coordinate of theecsm's result
~Q from the signature. The correct result Q is retrieved using the method described above.
Since ~Q lies on the curve, the attacker can recover the missingy coordinates with probability
1/2 using the curve equation. She then computesQ + ~Q = [2( ki ; : : : ; k0)2]P and preforms an
ecdlp to recover (ki ; : : : ; k0)2. If she is not successful, her guess ony was wrong and tries the
other possibility.

9.4 Attacking ECDSA with the Fault on the Coordinates
Conversion

In our attack described in Section 8.23, a fault is induced during the a�ne to projective co-
ordinates conversion process. The attacker gets the faultyx coordinate of the result x ~Q =
xQ + xQ Z 2

Q " with xQ ; ZQ unknown. x ~Q ; " (the fault targets only a bit) are known. The at-
tacker can recoverxQ using the method previously described. ZQ is then retrieved and this
makes the attack described in Section 8.23 and in [NSS04] possible. A few bits of k can be
recovered.

9.5 Synthesis

We showed how to use the properties ofecdsa to compare a correct and an erroneous result of
an ecsm. For the three DFAs, a few bits of the ephemeral scalark can be recovered. Iterating
the procedure can reveal a few bits of several ephemeral scalars. This is precisely the scenario
considered in [HS01] allowing recover the private keyd.

Our analysis showed that theecdsa is not naturally immune to attacks where severalecsms
have to be run with the same scalar.

1For example if a single bit is switched but the attacker does n ot know which one, she can try all bits



Chapter 10

Summary of the Context of the
Attacks

In this chapter, we give a synthesis of the attacks depending on the context. This clear syn-
thesis is useful when implementing an embeddedecc application. Depending on the protocols
intended to support or on the targeted implementation, some attacks are not feasible and a
protection against this attack is not necessary.

10.1 Key Recovery

The synthesis of the key recovery process is given in Table 10.1. This makes an understanding of
the attacks. We can anticipate on some future re�nements of the attacks since the key recovery
process does not evolve drastically.

10.2 Elliptic Curve Speci�city

Few attacks work on speci�c curves only. We give the list below.

� Particular Point Timing Attack (Section 8.15) : the parameter a of the curve is
equal to  3 and the curve contains a point of the form (2; y) for some y 2 Fp.

� RSCA (Section 8.11) : the curve contains a point of the form (0; y) for some y 2 Fp.

� ZSCA (Section 8.12) : the curve contains at least one zero-value point.

� SVA (Section 8.13) : the curve contains at least one same-values point.

� Horizontal SVA (Section 8.14) : the curve contains at least one same-values point
where the same values will be squared.

� Twist Curve Attack (Section 8.21) : the twist of the curve is weak.

This synthesis is useful if the application has to support only a fewknown curves. We can
easily check if the curves verify the condition for each attack. If it is not the case, a protection
against the corresponding attack is not necessary.
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Classical Timing Attack
Section 8.1

X

Particular Point Timing Attack
Section 8.15

X

Classical SSCA
Section 8.2

X

SSCA on uni�ed formul�
Section 8.2.2.1

X

RSCA
Section 8.11

X

ZSCA
Section 8.12

X

Template Attack
Section 8.20

X

CSCA
Section 8.3

X

Address-bit DSCA
Section 8.9

X

Doubling Attack
Section 8.10

X

Carry Leakage Attack
Section 8.3.1.1

X

SVA
Section 8.13

X

SVA on Atomicity
Section 8.2.3.1

X

Big Mac
Section 8.7

X

Horizontal Correlation SCA
Section 8.8

X

Horizontal SVA
Section 8.14

X

Horizontal SVA on Uni�ed Formul�
Section 8.2.2.2

X

Horizontal SVA on Atomicity
Section 8.2.3.2

X

C Safe-Error
Section 8.2.1.1

X

M Safe-Error
Section 8.4

X

Invalid Point Attack
Section 8.5

X X

Invalid Curve Attack
Section 8.16

X X

Twist Curve Attack
Section 8.21

X

Classical DFA
Section 8.6

X

Sign Change Fault
Section 8.17

X X

Fault Attack on Coordinates Conversion
Section 8.23

X

Combined Attack on Additive Splitting
Section 8.3.2.2

X

Zero word and SSCA
Section 8.19

X

Invalid Point Attack and SSCA
Section 8.22

X X

Table 10.1: Synthesis of the Key Recovery Process for each attack
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10.3 Implementation Access

The synthesis of the implementation access,i.e. the attacker's level of knowledge of the imple-
mentation, is given in Table 10.2. This synthesis reveals what the attacker needs to know or
guess to succeed.

10.4 Implementation Speci�city

The synthesis of the implementation speci�city is given in Table 10.3. When implementing an
embeddedecc application, it is fast to check if some attacks are not feasible because ofthe
choice of the implementation. Instead of selecting countermeasuresto prevent some attacks,
one may prefer to implement an embeddedecc that is naturally immune against some attacks.

10.5 Number of Executions Needed

The synthesis of the number of executions needed is given in Table 10.4. For all attacks, the
number given corresponds to the number required to recover the whole scalar, except for the
fault attacks on the conversion coordinates which permits to recoveronly a few bits (see Section
8.23).

10.6 Input Access

The synthesis of the input access is given in Table 10.5. When the attacker needs to choose the
base point, the attack is not feasible for some protocols such as theecdsa Signature (Section
5.1) where the input is �xed and constant.

10.7 Output Access

The synthesis of the output access is given in Table 10.6. When the output is needed, the attack
is not feasible for some protocols such as theec-elgamal Decryption (Section 5.3) where the
output is intended to be kept inside the embedded system.

10.8 Fault Model

The synthesis of the implementation speci�city is given in Table 10.7. This reveals the di�culty
of some attacks to mount in practice depending on the accuracy.
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Classical Timing Attack
Section 8.1

X X X

Particular Point Timing Attack
Section 8.15

X X X

Classical SSCA
Section 8.2

X X

SSCA on uni�ed formul�
Section 8.2.2.1

X X X

RSCA
Section 8.11

X X

ZSCA
Section 8.12

X X X

Template Attack
Section 8.20

X

CSCA
Section 8.3

X X X X

Address-bit DSCA
Section 8.9

X

Doubling Attack
Section 8.10

X X

Carry Leakage Attack
Section 8.3.1.1

X X

SVA
Section 8.13

X X

SVA on Atomicity
Section 8.2.3.1

X X

Big Mac
Section 8.7

X X X X X

Horizontal Correlation SCA
Section 8.8

X X X X X

Horizontal SVA
Section 8.14

X X X

Horizontal SVA on Uni�ed Formul�
Section 8.2.2.2

X X X

Horizontal SVA on Atomicity
Section 8.2.3.2

X X X X X

C Safe-Error
Section 8.2.1.1

X X X

M Safe-Error
Section 8.4

X X X

Invalid Point Attack
Section 8.5

X X

Invalid Curve Attack
Section 8.16

X X

Twist Curve Attack
Section 8.21

X

Classical DFA
Section 8.6

X

Sign Change Fault
Section 8.17

X X X X

Fault Attack on Coordinates Conversion
Section 8.23

X X

Combined Attack on Additive Splitting
Section 8.3.2.2

X X

Zero word and SSCA
Section 8.19

X X

Invalid Point Attack and SSCA
Section 8.22

X X X

Table 10.2: Synthesis of the Implementation Access Context
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Classical Timing Attack
Section 8.1

X

Particular Point Timing Attack
Section 8.15

X X

Classical SSCA
Section 8.2

X X

SSCA on uni�ed formul�
Section 8.2.2.1

X X

Address-bit DSCA
Section 8.9

X

Doubling Attack
Section 8.10

X

Carry Leakage Attack
Section 8.3.1.1

X 1 X 7

SVA on Atomicity
Section 8.2.3.1

X X

Big Mac
Section 8.7

X

Horizontal Correlation SCA
Section 8.8

X

Horizontal SVA on Uni�ed Formul�
Section 8.2.2.2

X

Horizontal SVA on Atomicity
Section 8.2.3.2

X

C Safe-Error
Section 8.2.1.1

X X

M Safe-Error
Section 8.4

X

Invalid Point Attack
Section 8.5

X

Invalid Curve Attack
Section 8.16

X

Twist Curve Attack
Section 8.21

X X

Classical DFA
Section 8.6

X X

Sign Change Fault
Section 8.17

X

Fault Attack on Coordinates Conversion
Section 8.23

X X

Combined Attack on Additive Splitting
Section 8.3.2.2

X X

Zero word and SSCA
Section 8.19

X X

Invalid Point Attack and SSCA
Section 8.22

X

Table 10.3: Synthesis of the Implementation Speci�city for each attack
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1 2 3 � 10 n Multiple

Classical Timing Attack
Section 8.1

X

Particular Point Timing Attack
Section 8.15

X

Classical SSCA
Section 8.2

X

SSCA on uni�ed formul�
Section 8.2.2.1

X

RSCA
Section 8.11

X

ZSCA
Section 8.12

X

Template Attack
Section 8.20

X

CSCA
Section 8.3

X

Address-bit DSCA
Section 8.9

X

Doubling Attack
Section 8.10

X

Carry Leakage Attack
Section 8.3.1.1

X

SVA
Section 8.13

X

SVA on Atomicity
Section 8.2.3.1

X

Big Mac
Section 8.7

X

Horizontal Correlation SCA
Section 8.8

X

Horizontal SVA
Section 8.14

X

Horizontal SVA on Uni�ed Formul�
Section 8.2.2.2

X

Horizontal SVA on Atomicity
Section 8.2.3.2

X

C Safe-Error
Section 8.2.1.1

X

M Safe-Error
Section 8.4

X

Invalid Point Attack
Section 8.5

X

Invalid Curve Attack
Section 8.16

X

Twist Curve Attack
Section 8.21

X

Classical DFA
Section 8.6

X

Sign Change Fault
Section 8.17

X

Fault Attack on Coordinates Conversion
(Large Faults)
Section 8.23

X

Fault Attack on Coordinates Conversion
(n=2 bit length Faults)

Section 8.23

X

Fault Attack on Coordinates Conversion
(Known Faults)

Section 8.23

X

Combined Attack on Additive Splitting
Section 8.3.2.2

X

Zero word and SSCA
Section 8.19

X

Invalid Point Attack and SSCA
Section 8.22

X

Table 10.4: Synthesis of the Number of Executions Needed for each attack
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Unnecessary Known Chosen Constant Varying

Classical Timing Attack
Section 8.1

X X

Particular Point Timing Attack
Section 8.15

X X

Classical SSCA
Section 8.2

X

SSCA on uni�ed formul�
Section 8.2.2.1

X

RSCA
Section 8.11

X X

ZSCA
Section 8.12

X X

Template Attack
Section 8.20

X

CSCA
Section 8.3

X X

Address-bit DSCA
Section 8.9

X

Doubling Attack
Section 8.10

X X

Carry Leakage Attack
Section 8.3.1.1

X

SVA
Section 8.13

X X

SVA on Atomicity
Section 8.2.3.1

X

Big Mac
Section 8.7

X

Horizontal Correlation SCA
Section 8.8

X

Horizontal SVA
Section 8.14

X X

Horizontal SVA on Uni�ed Formul�
Section 8.2.2.2

X

Horizontal SVA on Atomicity
Section 8.2.3.2

X

C Safe-Error
Section 8.2.1.1

X

M Safe-Error
Section 8.4

X

Invalid Point Attack
Section 8.5

X

Invalid Curve Attack
Section 8.16

X

Twist Curve Attack
Section 8.21

X

Classical DFA
Section 8.6

X X

Sign Change Fault
Section 8.17

X X

Fault Attack on Coordinates Conversion
Section 8.23

X

Combined Attack on Additive Splitting
Section 8.3.2.2

X

Zero word and SSCA
Section 8.19

X

Invalid Point Attack and SSCA
Section 8.22

X X

Table 10.5: Synthesis of the Input Access for each attack



130 CHAPTER 10. SUMMARY OF THE CONTEXT OF THE ATTACKS

Unnecessary Known
Knowledge of
the Validity

Classical Timing Attack
Section 8.1

X

Particular Point Timing Attack
Section 8.15

X

Classical SSCA
Section 8.2

X

SSCA on uni�ed formul�
Section 8.2.2.1

X

RSCA
Section 8.11

X

ZSCA
Section 8.12

X

Template Attack
Section 8.20

X

CSCA
Section 8.3

X

Address-bit DSCA
Section 8.9

X

Doubling Attack
Section 8.10

X

Carry Leakage Attack
Section 8.3.1.1

X

SVA
Section 8.13

X

SVA on Atomicity
Section 8.2.3.1

X

Big Mac
Section 8.7

X

Horizontal Correlation SCA
Section 8.8

X

Horizontal SVA
Section 8.14

X

Horizontal SVA on Uni�ed Formul�
Section 8.2.2.2

X

Horizontal SVA on Atomicity
Section 8.2.3.2

X

C Safe-Error
Section 8.2.1.1

X

M Safe-Error
Section 8.4

X

Invalid Point Attack
Section 8.5

X

Invalid Curve Attack
Section 8.16

X

Twist Curve Attack
Section 8.21

X

Classical DFA
Section 8.6

X

Sign Change Fault
Section 8.17

X

Fault Attack on Coordinates Conversion
Section 8.23

X

Combined Attack on Additive Splitting
Section 8.3.2.2

X

Zero word and SSCA
Section 8.19

X

Invalid Point Attack and SSCA
Section 8.22

X

Table 10.6: Synthesis of the Output Access for each attack
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Data
Randomization

Resetting
Data

Modifying
Opcode

Fault Lentgh
(in bits)

C Safe-Error
Section 8.2.1.1

X
size of the

arithmetic module

M Safe-Error
Section 8.4

X n

Invalid Point Attack
Section 8.5

X n

Invalid Curve Attack
Section 8.16

X n

Twist Curve Attack
Section 8.21

X < 16

Classical DFA
Section 8.6

X 1

Sign Change Fault
(Switch Control Signal)

Section 8.17

X
size of the control

signal of two's
complement

Sign Change Fault
(Switch Addition to Subtraction)

Section 8.17

X
size of the signal

operation
command

Fault Attack on Coordinates Conversion
(Large Faults)
Section 8.23

X � 4n
5

Fault Attack on Coordinates Conversion
(1=2 bit length Faults)

Section 8.23

X n=2

Fault Attack on Coordinates Conversion
(Known Fault)

Section 8.23

X 1

Combined Attack on Additive Splitting
(C Safe-Error)
Section 8.3.2.2

X
size of the

arithmetic module

Combined Attack on Additive Splitting
(M Safe-Error)
Section 8.3.2.2

X n

Zero word and SSCA
Section 8.19

X size of a word

Invalid Point Attack and SSCA
Section 8.22

X 1

Table 10.7: Synthesis of the Fault Model for each attack
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Chapter 11

Synthesis of the Attacks versus
the Countermeasures

In this chapter, we give a synthesis of the e�ciency of each countermeasure against the di�erent
attacks on ecc . It is displayed of the form of a table (Table 11.1) inspired from [FGD+ 10]. It
was completed with more recent attacks and we were able to �ll some of theboxes from our
analysis. We use the following symbols:

� X means that the countermeasure thwarts the attack,

� � means that the countermeasure highly disturbs the attack but does notguarantee a
full protection,

� � means that the countermeasure brings the speci�ed vulnerability to the implementation,

�  means it has been shown that the countermeasure is ine�ective againstthe attack,
despite the apparent link between them,

� an empty cell means that either the countermeasure and the attack are clearly unrelated
or there is no concrete published study on the e�ect of the countermeasure on the attack.
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Constant Time Arithmetic X X X

Regular ecsm X X � a � a � a X b

Uni�ed Formul� X � �
Side-Channel Atomicity X � � � � �
Isomorphism Shifting X

Random Coordinates X - - - X X X - X - X X c

Random Curve Isomorphism X X - - X X X - X X X c

Point Blinding X X X X X X - X X X X X X

Group Scalar Randomization X X � � X X - � X � X X X X c X
Additive Splitting X X � � X X � X � X X X X c � � � � X
Euclidean Splitting X X � � X X X � X X X X c X

Multiplicative Splitting X X � � X X - X � X X X X c X

Random Register Address X X X X

Random Multiplication X X X X X

Coherence Check X X X X X X
Output Point Validity X X X X X d

Input Point Validity X e

Curve Integrity Check X

Table 11.1: Attacks versus Countermeasures
aexcept for the Montgomery Ladder
bexcept for BRIP and the regular Shamir's trick
cexcept for the known fault
donly if the check is performed after the Projective-to-a�ne conversion
eonly if the check is performed after a randomization of the ba se point



135



136 CHAPTER 11. SYNTHESIS



Conclusion and Perspectives

This thesis is a survey on the physical attacks and countermeasures onecc . The feasibility of
each attack depending on the context is detailed. The cost of each countermeasure are detailed
as well. Surveys on physical cryptanalysis usually display the attacks and countermeasures
separately. We tried a di�erent approach. The attacks and countermeasures are exhibited with
a tree structure to clearly indicates if an attack has been introduced against a speci�c coun-
termeasure or if it more general. Similarly, we can see if a countermeasure has been proposed
against a speci�c attack. A synthesis in tabular form of attacks and countermeasures is given
at the end. For this one, we clearly separate the attacks from the countermeasures.

We introduced new attacks called Same-Values Analysis. The attacks arenamed after the
same principle: they all take advantage of same values occurring withinan Elliptic Curve Scalar
Multiplication ( ecsm). They di�er from the targeted implementation or from the method use d
to detect the occurrence of the same values.

The classical SVA consists in choosing the suitable base point so thatsame values occur
only if some condition of the scalar is met. This attack, originally proposed as a vertical attack,
was extended into a horizontal analysis. We also used the occurrenceof same values to target
some existing countermeasures such as the Uni�ed Formul� and the Side-Channel Atomicity
countermeasures, with a single trace.

Depending on the attack, we used di�erent existing statistical methods to detect the oc-
currence of same values. For the Horizontal SVA on the Atomicity Countermeasure, we also
used a new method inspired from the Big Mac attack. For each method, we gave experimental
results to validate the attacks.

With this new kind of attacks, we showed that the occurrence of same values within an ecsm
can be exploited by the attacker. This concept can probably be modi�edand re�ned to target
other implementations, and even to other asymmetric cryptosystems. Against these attacks,
we are currently studying on new methods to ensure that the occurrence of same values is not
possible.

We also introduced a new Di�erential Fault Attack. As opposed to previous fault attacks,
where the fault is induced at the beginning or during the ecsm, our attack targets the �nal
conversion process from projective to a�ne coordinates. Such faults permit to recover some
information of the missing Z coordinate of the projective or Jacobian coordinates systems. This
makes it possible to retrieve a few bits of the scalar from a method presented by Naccache et
al. at Eurocrypt 2005.

Also, a new countermeasure against the Re�ned Side-Channel Analysis (RSCA) is presented.
The RSCA relies on the occurrence of a particular point, namely the points of the form (0; y).
We proposed to use an isomorphism between elliptic curves to controlthe inconvenient point.
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Its occurrence does not reveal anything about the scalar. Because of the isomorphism, elliptic
curve formul� are updated. Under certain assumptions that we clearly detailed, the new for-
mul� are in fact more e�cient than the regular ones.

Finally, we showed that some di�erential fault attacks are feasible on the ecdsa . These
attacks need the comparison of one erroneous result and the correspondingcorrect result. In
ecdsa , the scalar changes at each new signature. Intuitively, one can think that the signature
scheme is naturally immune against DFAs. We showed that this is not thecase for some attacks
because of some properties of theecdsa .

This thesis gave a state-of-the-art on attacks and countermeasures onecc . A detailed de-
scription of the attacks and the cost of the countermeasure is useful forthe designer trying to
protect his implementation. In the introduction, we emphasized that the topic on side-channel
and fault analysis is a cat-and-mouse game. In the future, new attacks will necessarily emerge,
targeting a speci�c implementation or a countermeasure, or it will be more general. New coun-
termeasures will appear as well. The structure tree proposed and thesynthesis at the end are
suitable to easily incorporate new attacks and countermeasures.

It would be interesting to extend this work to other asymmetric cryptosystems such as
rsa or pairing-based cryptography. Another method would be to give a single state-of-the-art
for the di�erent asymmetric cryptosystems in some way. Indeed there are strong similarities
between the implementations. First, the same arithmetic moduleis generally used forrsa , ecc
and pairing-based cryptography. Secondly, Elliptic Curve Scalar Multiplication methods for
both ecc and pairing-based cryptography are similar to the modular exponentiationmethods
for rsa . Some attacks and countermeasures would also be similar.
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Elliptic Curve Formul� with
register allocation

The following appendix resumes some algorithms of Section 3.1 and, in addition, it gives the
detailed registers allocation.

Classical Formul�

Algorithm 37 ecadd (register allocation)
Input: P = ( X 1; Y1; Z1); Q = ( X 2; Y2; Z2)
Output: P + Q

T1  X 1; T2  Y1; T3  Z1

T4  X 2; T5  Y2; T6  Z2

1: T7  T3 � T6 f Z1Z2g
2: T8  T2

3 f Z 2
1 g

3: T3  T3 � T8 f Z 3
1 g

4: T3  T5 � T3 f D = Y2Z 3
1 g

5: T9  T4 � T8 f B = X 2Z 2
1 g

6: T8  T2
6 f Z 2

2 g
7: T1  T1 � T8 f A = X 1Z 2

2 g
8: T8  T8 � T6 f Z 3

2 g
9: T2  T2 � T8 f C = Y1Z 3

2 g
10: T9  T9 ! T1 f E = B ! Ag
11: T8  T3 ! T2 f F = D ! Cg

12: T3  T7 � T9 f Z3 = Z1Z2Eg
13: T7  T2

9 f E 2g
14: T9  T7 � T9 f E 3g
15: T7  T1 � T7 f AE 2g
16: T2  T2 � T9 f CE 3g
17: T1  T2

8 f F 2g
18: T1  T1 ! T9 f F 2 ! E 3g
19: T1  T1 ! T7 f F 2 ! E 3 ! AE 2g
20: T1  T1 ! T7 f X 3g
21: T7  T7 ! T1 f AE 2 ! X 3g
22: T8  T8 � T7 f F (AE 2 ! X 3)g
23: T2  T8 ! T2 f Y3g

return (T1; T2; T3)

Remark .1. T4; T5; T6 are not modi�ed. The operation P  ecadd (P; Q) can be done with 3
extra temporary registers without modifying the coordinates of Q.
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146 FORMUL� WITH REGISTER ALLOCATION

Algorithm 38 mecadd (register allocation)
Input: P = ( X 1; Y1; Z1); Q = ( x2; y2)
Output: P + Q

T1  X 1; T2  Y1; T3  Z1

T4  x2; T5  y2

1: T7  T2
3 f Z 2

1 g
2: T9  T4 � T7 f B = x2Z 2

1 g
3: T7  T7 � T3 f Z 3

1 g
4: T7  T7 � T5 f D = y2Z 3

1 g
5: T9  T9 ! T1 f E = B ! X 1g
6: T8  T7 ! T2 f F = D ! Y1g
7: T3  T3 � T9 f Z3 = Z1Eg
8: T7  T2

9 f E 2g
9: T9  T9 � T7 f E 3g

10: T7  T7 � T1 f X 1E 2g
11: T2  T2 � T9 f Y1E 3g
12: T1  T2

8 f F 2g
13: T1  T1 ! T9 f F 2 ! E 3g
14: T1  T1 ! T7 f F 2 ! E 3 ! X 1E 2g
15: T1  T1 ! T7 f X 3g
16: T7  T7 ! T1 f X 1E 2 ! X 3g
17: T8  T8 � T7 f F (X 1E 2 ! X 3)g
18: T2  T8 ! T2 f Y3g

return (T1; T2; T3)

Algorithm 39 ecdbl (register allocation)
Input: P = ( X 1; Y1; Z1), elliptic curve parameter a
Output: 2P

T1  X 1; T2  Y1; T3  Z1

1: T6  T2
2 f Y 2

1 g
2: T6  T6 + T6 f A = 2Y 2

1 g
3: T4  T1 � T6 f AX 1g
4: T4  T4 + T4 f B = 2AX 1g
5: T1  T2

1 f X 2
1 g

6: T5  T1 + T1 f 2X 2
1 g

7: T1  T1 + T5 f 3X 2
1 g

8: T5  T2
3 f Z 2

1 g
9: T3  T3 � T2 f Y1Z1g

10: T3  T3 + T3 f Z3 = 2Y1Z1g
11: T5  T2

5 f Z 4
1 g

12: T5  T5 � a f aZ4
1 g

13: T5  T5 + T1 f C = 3X 2
1 + aZ4

1 g
14: T1  T2

5 f C2g
15: T1  T1 ! T4 f C2 ! B g
16: T1  T1 ! T4 f C2 ! 2B = X 3g
17: T6  T2

6 f A2g
18: T6  T6 + T6 f D = 2A2g
19: T2  T4 ! T1 f B ! X 3g
20: T2  T2 � T5 f C(B ! X 3)g
21: T2  T2 ! T6 f Y3g

return (T1; T2; T3)
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Co-Z Formul�

Algorithm 40 zaddu (register allocation)
Input: P = ( X 1; Y1; Z ); Q = ( X 2; Y2; Z )
Output: (R; S) with R = P + Q and S = ( � 2X 1; � 3Y1; �Z ) with � = X 1 " X 2

T1  X 1; T2  Y1; T3  X 2; T4  Y2; T5  Z

1: T6  T1 " T3 f X 1 " X 2g
2: T5  T5 � T6 f Z (X 1 " X 2)g
3: T6  T2

6 f C = ( X 1 " X 2)2g
4: T7  T3 � T6 f W2 = X 2Cg
5: T3  T1 � T6 f W1 = X 1Cg
6: T6  T2 " T4 f Y1 " Y2g
7: T4  T3 " T7 f W1 " W2g

8: T4  T2 � T4 f A1 = Y1(W1 " W2)g
9: T1  T2

6 f D = ( Y1 " Y2)2g
10: T1  T1 " T3 f D " W1g
11: T1  T1 " T7 f X 3 = D " W1 " W2g
12: T2  T3 " T1 f W1 " X 3g
13: T2  T2 � T6 f Y3 + A1g
14: T2  T2 " T4 f Y3g

return ((T1; T2; T5); (T3; T4; T5))

Algorithm 41 zaddc (register allocation)
Input: P = ( X 1; Y1; Z ); Q = ( X 2; Y2; Z )
Output: (R; S) with R = P + Q, S = P " Q

T1  X 1; T2  Y1; T3  X 2; T4  Y2; T5  Z

1: T6  T1 " T3 f X 1 " X 2g
2: T5  T5 � T6 f Z (X 1 " X 2)g
3: T6  T2

6 f C = ( X 1 " X 2)2g
4: T8  T1 � T6 f W1 = X 1Cg
5: T6  T3 � T6 f W2 = X 2Cg
6: T7  T8 " T6 f W1 " W2g
7: T6  T8 + T6 f W1 + W2g
8: T7  T7 � T2 f A1 = Y1(W1 " W2)g
9: T3  T2 " T4 f Y1 " Y2g

10: T4  T2 + T4 f Y1 + Y2g

11: T1  T2
3 f D1 = ( Y1 " Y2)2g

12: T1  T1 " T6 f X 3 = D1 " W1 " W2g
13: T2  T8 " T1 f W1 " X 3g
14: T2  T2 � T3 f Y3 + A1g
15: T2  T2 " T7 f Y3g
16: T3  T2

4 f D2 = ( Y1 + Y2)2g
17: T3  T3 " T6 f X 4 = D2 " W1 " W2g
18: T6  T8 " T3 f W1 " X 4g
19: T4  T4 � T6 f Y4 + A1g
20: T4  T4 " T7 f Y4g

return ((T1; T2; T5); (T3; T4; T5))
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Algorithm 42 zaddu-iso-shifting (register allocation)

Input: P0 = ( X 1; Y1; Z; U = a0
2Z 2); Q0 = (0 ; Y2; Z; U )

Output: (R0; S0) with R0 = P0+ Q0 and S0 = ( � 2X 1; � 3Y1; �Z; a 0
2(�Z )2) with � = X 1

T1  X 1; T2  Y1; T4  Y2; T5  Z ; T6  U

1: T5  T5 � T1 f Z3 = ZX 1g
2: T7  T2

1 f C = X 2
1 g

3: T3  T1 � T7 f W1 = X 1Cg
4: T6  T6 � T7 f U3 = UCg
5: T7  T2 ! T4 f Y1 ! Y2g
6: T4  T2 � T3 f A1 = Y1W1g

7: T1  T2
7 f D = ( Y1 ! Y2)2g

8: T1  T1 ! T6 f D ! U3g
9: T1  T1 ! T3 f X 3 = D ! W1 ! U3g

10: T2  T3 ! T1 f W1 ! X 3g
11: T2  T2 � T7 f Y3 + A1g
12: T2  T2 ! T4 f Y3g

return ((T1; T2; T5; T6); (T3; T4; T5; T6))

Algorithm 43 zaddc-iso-shifting (register allocation)

Input: P0 = ( X 1; Y1; Z; U = a0
2Z 2); Q0 = ( X 2; Y2; Z; U ) such that xP 0 Q 0 = 0.

Output: (R0; S) with R0 = P0+ Q0, S0 = P0 ! Q0

T1  X 1; T2  Y1; T3  X 2; T4  Y2; T5  Z ; T6  U

1: T7  T1 ! T3 f X 1 ! X 2g
2: T5  T5 � T7 f Z (X 1 ! X 2)g
3: T7  T2

7 f C = ( X 1 ! X 2)2g
4: T6  T6 � T7 f U3 = UCg
5: T8  T3 � T7 f W2 = X 2Cg
6: T3  T1 � T7 f W1 = X 1Cg
7: T1  T3 + T8 f W1 + W2g
8: T8  T3 ! T8 f W1 ! W2g
9: T8  T8 � T2 f A1 = Y1(W1 ! W2)g

10: T7  T2 ! T4 f Y1 ! Y2g

11: T4  T2 + T4 f Y1 + Y2g
12: T4  T4 � T3 f (Y1 + Y2)W1g
13: T2  T2

7 f D = ( Y1 ! Y2)2g
14: T2  T2 ! T6 f D ! U3g
15: T1  T2 ! T1 f X 3 = D ! W1 ! W2 ! U3g
16: T3  T3 ! T1 f W1 ! X 3g
17: T2  T7 � T3 f Y3 + A1g
18: T2  T2 ! T8 f Y3g
19: T4  T4 ! T8 f Y4g
20: T3  0

return ((T1; T2; T5; T6); (T3; T4; T5; T6))


