.. Analyse-microtomographique, 65 5.4 Implants souples avec traitement de surface à la soude

A. Abu-serriah, J. Ayoub, C. Boyd, E. D. Paterson, and . Wray, The role of ultrasound in monitoring reconstruction of mandibular continuity defects using osteogenic protein-1 (rhOP-1), International Journal of Oral and Maxillofacial Surgery, vol.32, issue.6
DOI : 10.1054/ijom.2002.0421

M. Abu-serriah, A. Kontaxis, A. Ayoub, J. Harrison, E. Odell et al., Mechanical evaluation of mandibular defects reconstructed using osteogenic protein-1 (rhOP-1) in a sheep model: a critical analysis, International Journal of Oral and Maxillofacial Surgery, vol.34, issue.3, p.287293, 2005.
DOI : 10.1016/j.ijom.2004.09.008

M. Abu-serriah, A. Ayoub, D. Wray, N. Milne, S. Carmichael et al., Contour and volume assessment of repairing mandibular osteoperiosteal continuity defects in sheep using recombinant human osteogenic protein 1. Journal of Cranio-Maxillo-Facial Surgery : Ofcial Publication of the European Association for Cranio-Maxillo-Facial Surgery, p.162167, 2006.

T. Adachi, Y. Osako, M. Tanaka, M. Hojo, and S. J. Hollister, Framework for optimal design of porous scaold microstructure by computational simulation of bone regeneration, Biomaterials, vol.27, p.39643972, 2006.

D. Ambard and P. Swider, A predictive mechano-biological model of the bone-implant healing, European Journal of Mechanics - A/Solids, vol.25, issue.6, p.927937, 2006.
DOI : 10.1016/j.euromechsol.2006.02.006

URL : https://hal.archives-ouvertes.fr/hal-00582982

A. Andreykiv, P. J. Prendergast, F. Van-keulen, W. Swieszkowski, and P. M. Rozing, Bone ingrowth simulation for a concept glenoid component design, Journal of Biomechanics, vol.38, issue.5, p.10231033, 2005.
DOI : 10.1016/j.jbiomech.2004.05.044

A. Andreykiv, F. Van-keulen, P. J. Et, and . Prendergast, Computational Mechanobiology to Study the Effect of Surface Geometry on Peri-Implant Tissue Differentiation, Journal of Biomechanical Engineering, vol.130, issue.5, p.51015, 2008.
DOI : 10.1115/1.2970057

J. E. Aubin, Bone stem cells, Journal of cellular biochemistry. Supplement, pp.30-317382, 1998.

A. Bailón-plaza and M. C. Van-der-meulen, A mathematical framework to study the eects of growth factor inuences on fracture healing, Journal of Theoretical Biology, vol.212, issue.2, p.191209, 2001.

A. Barbas, A. Bonnet, P. Lipinski, R. Pesci, and E. G. Dubois, Development and mechanical characterization of porous titanium bone substitutes, Journal of the Mechanical Behavior of Biomedical Materials, vol.9, p.3444, 2012.
DOI : 10.1016/j.jmbbm.2012.01.008

URL : https://hal.archives-ouvertes.fr/hal-00959501

A. Barbas, Etude biomécanique de substituts osseux en titane poreux destinés à la chirurgie maxillo-faciale, 2011.

E. Baril, L. P. Lefebvre, and S. A. Hacking, Direct visualization and quantication of bone growth into porous titanium implants using micro computed tomography, Journal of Materials Science. Materials in Medicine, vol.22, issue.5, p.13211332, 2011.

G. Beaupre, T. Orr, and E. D. Carter, An approach for time-dependent bone modeling and remodelingtheoretical development, Journal of Orthopaedic Research, vol.8, issue.5, p.651661, 1990.

R. Bernhardt, D. Scharnweber, B. Müller, P. Thurner, H. Schliephake et al., Comparison of microfocus-and synchrotron X-ray tomography for the analysis of osteointegration around Ti6al4v implants, European Cells & Materials, vol.7, issue.51, p.4251, 2004.

M. A. Biot, Theory of Elasticity and Consolidation for a Porous Anisotropic Solid, Journal of Applied Physics, vol.26, issue.2, p.182185, 1955.
DOI : 10.1063/1.1721956

URL : https://hal.archives-ouvertes.fr/hal-01368659

M. A. Biot, General Theory of Three???Dimensional Consolidation, Journal of Applied Physics, vol.12, issue.2, p.155164, 1941.
DOI : 10.1063/1.1712886

URL : https://hal.archives-ouvertes.fr/hal-01368635

J. Blackburn, R. Hodgskinson, J. D. Currey, and J. E. Mason, Mechanical properties of microcallus in human cancellous bone, Journal of Orthopaedic Research, vol.48, issue.2, p.237246, 1992.
DOI : 10.1002/jor.1100100211

V. Bousson, C. Bergot, A. Meunier, F. Barbot, C. Parlier-cuau et al., CT of the Middiaphyseal Femur: Cortical Bone Mineral Density and Relation to Porosity, Radiology, vol.217, issue.1, p.179187, 2000.
DOI : 10.1148/radiology.217.1.r00se11179

M. L. Bouxsein, S. K. Boyd, B. A. Christiansen, R. E. Guldberg, K. J. Jepsen et al., Guidelines for assessment of bone microstructure in rodents using micro-computed tomography, Journal of Bone and Mineral Research, vol.22, issue.7, p.14681486, 2010.
DOI : 10.1002/jbmr.141

P. J. Boyne, Application of Bone Morphogenetic Proteins in the Treatment of Clinical Oral and Maxillofacial Osseous Defects, The Journal of Bone and Joint Surgery-American Volume, vol.83, issue.2, pp.83-146150, 2001.
DOI : 10.2106/00004623-200100002-00009

P. J. Boyne, Animal studies of application of rhBMP-2 in maxillofacial reconstruction, Bone, vol.19, issue.1, pp.83-92, 1996.
DOI : 10.1016/S8756-3282(96)00144-5

P. M. Buechner, R. S. Lakes, C. Swan, and R. A. Brand, A broadband viscoelastic spectroscopic study of bovine bone : implications for uid ow, Annals of Biomedical Engineering, issue.8, p.29719728, 2001.

E. H. Burger and J. Klein-nulend, Mechanotransduction in bonerole of the lacuno-canalicular network, FASEB journal : ocial publication of the Federation of American Societies for Experimental Biology, vol.13, p.101112, 1999.

E. H. Burger, J. Klein-nulend, A. Van-der-plas, P. J. Et, and . Nijweide, Function of osteocytes in bonetheir role in mechanotransduction, The Journal of Nutrition, vol.125, issue.7, pp.2020-2023, 1995.

D. P. Byrne, D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast, Simulation of tissue dierentiation in a scaold as a function of porosity, young's modulus and dissolution rate : application of mechanobiological models in tissue engineering, Biomaterials, vol.28, p.55445554, 2007.

S. C. Cachinho and R. N. Correia, Titanium scaolds for osteointegration : mechanical, in vitro and corrosion behaviour, Journal of materials science. Materials in medicine, vol.19, p.451457, 2008.

M. M. Carroll, An eective stress law for anisotropic elastic deformation, Journal of Geophysical Research : Solid Earth, vol.84, issue.B13, p.75107512, 1979.

D. R. Carter, Mechanical loading histories and cortical bone remodeling. Calcied Tissue International, p.1924, 1984.

D. R. Carter, P. R. Blenman, and G. S. Beaupré, Correlations between mechanical stress history and tissue dierentiation in initial fracture healing, Journal of Orthopaedic Research, vol.6, issue.5, p.736748, 1988.

Y. Carter, C. D. Thomas, J. G. Clement, A. G. Peele, K. Hannah et al., Variation in osteocyte lacunar morphology and density in the human femura synchrotron radiation micro-CT study, Bone, vol.52, issue.1, p.126132, 2013.

S. Checa and P. J. Prendergast, Eect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaold : A mechano-biological model using a lattice approach to simulate cell activity, Journal of Biomechanics, vol.43, p.961968, 2010.

L. Claes, P. Augat, G. Suger, and H. J. Wilke, Inuence of size and stability of the osteotomy gap on the success of fracture healing, Journal of Orthopaedic Research, vol.15, issue.4, p.577584, 1997.

L. Claes and C. Heigele, Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing, Journal of Biomechanics, vol.32, issue.3, p.255266, 1999.
DOI : 10.1016/S0021-9290(98)00153-5

S. C. Cowin, Bone Stress Adaptation Models, Journal of Biomechanical Engineering, vol.115, issue.4B, p.528533, 1993.
DOI : 10.1115/1.2895535

S. C. Cowin, G. Gailani, and E. M. Benalla, Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.120, issue.6, p.34013444, 1902.
DOI : 10.1115/1.2834881

S. Cowin, L. Moss-salentijn, and E. M. Moss, Candidates for the Mechanosensory System in Bone, Journal of Biomechanical Engineering, vol.113, issue.2, p.191197, 1991.
DOI : 10.1115/1.2891234

S. C. Cowin, Bone poroelasticity, Journal of Biomechanics, vol.32, issue.3, p.217238, 1999.

S. C. Cowin, Bone Mechanics Handbook, Second Edition, 2001.
DOI : 10.1201/b14263

T. A. Curtis, S. H. Ashra, and D. F. Weber, Canalicular communication in the cortices of human long bones. The Anatomical record, p.336344, 1985.

M. De-wild, R. Schumacher, K. Mayer, E. Schkommodau, D. Thoma et al., Bone Regeneration by the Osteoconductivity of Porous Titanium Implants Manufactured by Selective Laser Melting: A Histological and Micro Computed Tomography Study in the Rabbit, Tissue Engineering Part A, vol.19, issue.23-24, pp.23-2426452654, 2013.
DOI : 10.1089/ten.tea.2012.0753

F. C. Den-boer, P. Patka, F. C. Bakker, B. W. Wippermann, A. Van-lingen et al., New segmental long bone defect model in sheep : Quantitative analysis of healing with dual energy x-ray absorptiometry, Journal of Orthopaedic Research, vol.17, p.654660, 1999.

E. Detournay and A. Cheng, Fundamentals of Poroelasticity, Comprehensive rock engineering, vol.2, p.113171, 1993.
DOI : 10.1016/B978-0-08-040615-2.50011-3

M. Doblaré and J. Garcia, Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement, Journal of Biomechanics, vol.34, issue.9, p.1157, 2001.
DOI : 10.1016/S0021-9290(01)00069-0

M. Ekholm, J. Hietanen, R. Tulamo, J. Muhonen, C. Lindqvist et al., The copolymer of epsilon-caprolactone-lactide and tricalcium phosphate does not enhance bone growth in mandibular defect of sheep, Journal of Materials Science. Materials in Medicine, vol.17, issue.2, p.139145, 2006.

E. F. Eriksen, L. Mosekilde, and E. F. Melsen, Trabecular bone remodeling and balance in primary hyperparathyroidism, Bone, vol.7, issue.3, p.213221, 1986.
DOI : 10.1016/8756-3282(86)90020-7

F. Evans and M. Lebow, The strength of human compact bone as revealed by engineering technics, The American Journal of Surgery, vol.83, issue.3, p.326331, 1952.
DOI : 10.1016/0002-9610(52)90265-1

X. Fan, B. Feng, Z. Liu, J. Tan, W. Zhi et al., Fabrication of TiO2 nanotubes on porous titanium scaold and biocompatibility evaluation in vitro and in vivo, Journal of Biomedical Materials Research. Part A, vol.100, issue.12, p.34223427, 2012.

P. E. Faria, A. L. Carvalho, D. N. Felipucci, C. Wen, L. Sennerby et al., Bone Formation Following Implantation of Titanium Sponge Rods into Humeral Osteotomies in Dogs: A Histological and Histometrical Study, Clinical Implant Dentistry and Related Research, vol.45, issue.2, p.7279, 2010.
DOI : 10.1111/j.1708-8208.2008.00132.x

S. A. Feik, C. D. Thomas, and J. G. Clement, Age-related changes in cortical porosity of the midshaft of the human femur, Journal of Anatomy, vol.191, issue.3, p.407416, 1997.
DOI : 10.1046/j.1469-7580.1997.19130407.x

P. Fornells, J. García-aznar, and E. M. Doblaré, A nite element dual porosity approach to model deformation-induced uid ow in cortical bone, Annals of Biomedical Engineering, vol.35, issue.10, p.16871698, 2007.

F. Forriol, U. G. Longo, C. Concejo, P. Ripalda, N. Maulli et al., Platelet-rich plasma, rhOP-1?? (rhBMP-7) and frozen rib allograft for the reconstruction of bony mandibular defects in sheep. A pilot experimental study, Injury, vol.40, pp.40-44, 2009.
DOI : 10.1016/S0020-1383(09)70011-7

H. Frost, Bone's mechanostat: A 2003 update, The Anatomical Record, vol.54, issue.2, p.10811101, 2003.
DOI : 10.1002/ar.a.10119

S. Fujibayashi, H. Kim, M. Neo, M. Uchida, T. Kokubo et al., Repair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cage, Biomaterials, issue.20, p.2434453451, 2003.

S. Fujibayashi, M. Neo, H. Kim, T. Kokubo, and E. T. Nakamura, Osteoinduction of porous bioactive titanium metal, Biomaterials, vol.25, issue.3, p.443450, 2004.
DOI : 10.1016/S0142-9612(03)00551-9

T. Funck-brentano and M. Cohen, Le vieillissement osseux??: les nouveaux acteurs de communication intercellulaire, M??decine & Long??vit??, vol.2, issue.4, 2010.
DOI : 10.1016/j.mlong.2010.05.001

G. Gailani and S. Cowin, Ramp loading in Russian doll poroelasticity, Journal of the Mechanics and Physics of Solids, vol.59, issue.1, p.103120, 2011.
DOI : 10.1016/j.jmps.2010.09.001

J. Gardinier, C. Townend, K. Jen, Q. Wu, R. Duncan et al., In situ permeability measurement of the mammalian lacunar???canalicular system, Bone, vol.46, issue.4, p.10751081, 2010.
DOI : 10.1016/j.bone.2010.01.371

E. Garner, R. Lakes, T. Lee, C. Swan, and E. R. Brand, Viscoelastic dissipation in compact bone : Implications for stress-induced uid ow in bone, Journal of Biomechanical Engineering, vol.122, issue.2, p.166172, 1999.

H. Gerber and N. Ferrara, Angiogenesis and Bone Growth, Trends in Cardiovascular Medicine, vol.10, issue.5, p.223228, 2000.
DOI : 10.1016/S1050-1738(00)00074-8

L. Geris, A. Gerisch, J. V. Sloten, R. Weiner, and H. V. Oosterwyck, Angiogenesis in bone fracture healing: A bioregulatory model, Journal of Theoretical Biology, vol.251, issue.1, p.137158, 2008.
DOI : 10.1016/j.jtbi.2007.11.008

A. E. Goodship and J. Kenwright, The inuence of induced micromovement upon the healing of experimental tibial fractures, The Journal of bone and joint surgery. British volume, vol.67, p.650655, 1985.

G. Goulet, N. Hamilton, D. Cooper, D. Coombe, D. Tran et al., Inuence of vascular porosity on uid ow and nutrient transport in loaded cortical bone, Journal of Biomechanics, issue.10, p.4121692175, 2008.

L. V. Grin, J. C. Gibeling, R. B. Martin, V. A. Gibson, and S. M. Stover, The eects of testing methods on the exural fatigue life of human cortical bone, Journal of Biomechanics, vol.32, issue.1, p.105109, 1999.

H. Gruler and B. D. Bültmann, Analysis of cell movement, Blood Cells, vol.10, issue.1, p.6177, 1984.

R. Hambli and A. Kourta, A theory for internal bone remodeling based on interstitial uid velocity stimulus function, Applied Mathematical Modelling, 2014.

Y. Han, S. Cowin, M. Schaer, and E. S. Weinbaum, Mechanotransduction and strain amplication in osteocyte cell processes, p.1668916694, 2004.

K. M. Hannah, C. D. Thomas, J. G. Clement, F. De-carlo, and A. G. Peele, Bimodal distribution of osteocyte lacunar size in the human femoral cortex as revealed by micro-CT, Bone, vol.47, issue.5, p.47866871, 2010.
DOI : 10.1016/j.bone.2010.07.025

Y. He, Z. Zhang, H. Zhu, W. Qiu, X. Jiang et al., Experimental Study on Reconstruction of Segmental Mandible Defects Using Tissue Engineered Bone Combined Bone Marrow Stromal Cells With Three-Dimensional Tricalcium Phosphate, Journal of Craniofacial Surgery, vol.18, issue.4, p.800805, 2007.
DOI : 10.1097/scs.0b013e31806901f5

S. T. Ho and D. W. Hutmacher, A comparison of micro CT with other techniques used in the characterization of scaolds, Biomaterials, vol.27, issue.8, p.13621376, 2006.

L. C. Hofbauer, S. Khosla, C. R. Dunstan, D. L. Lacey, W. J. Boyle et al., The Roles of Osteoprotegerin and Osteoprotegerin Ligand in the Paracrine Regulation of Bone Resorption, Journal of Bone and Mineral Research, vol.23, issue.Suppl 1, p.212, 2000.
DOI : 10.1359/jbmr.2000.15.1.2

M. Hoshino, T. Egi, H. Terai, T. Namikawa, and E. K. Takaoka, Repair of long intercalated rib defects using porous beta-tricalcium phosphate cylinders containing recombinant human bone morphogenetic protein-2 in dogs, Biomaterials, vol.27, issue.28, p.2749344940, 2006.
DOI : 10.1016/j.biomaterials.2006.04.044

R. Huiskes, Failed innovation in total hip replacement: Diagnosis and proposals for a cure, Acta Orthopaedica Scandinavica, vol.69, issue.1, p.699716, 1993.
DOI : 10.3109/17453679308994602

R. Huiskes, H. Weinans, H. Grootenboer, M. Dalstra, B. Fudala et al., Adaptive boneremodeling theory applied to prosthetic-design analysis, Journal of biomechanics, vol.20, issue.11, p.11351150, 1987.

R. Huiskes, W. D. Driel, P. J. Prendergast, and E. K. Søballe, A biomechanical regulatory model for periprosthetic brous-tissue dierentiation, Journal of Materials Science : Materials in Medicine, p.785788, 1997.

K. A. Hussein, I. E. Zakhary, D. Hailat, R. Elrefai, M. Sharawy et al., Delayed Versus Immediate Reconstruction of Mandibular Segmental Defects Using Recombinant Human Bone Morphogenetic Protein 2/Absorbable Collagen Sponge, Journal of Oral and Maxillofacial Surgery, vol.71, issue.6, p.7111071118, 2013.
DOI : 10.1016/j.joms.2012.12.018

H. Isaksson, C. C. Van-donkelaar, R. Huiskes, and E. K. Ito, Corroboration of mechanoregulatory algorithms for tissue dierentiation during fracture healing : Comparison with in vivo results, Journal of Orthopaedic Research, vol.24, issue.5, p.898907, 2006.

H. Isaksson, W. Wilson, C. C. Van-donkelaar, R. Huiskes, and E. K. Ito, Comparison of biophysical stimuli for mechano-regulation of tissue dierentiation during fracture healing, Journal of Biomechanics, vol.39, p.15071516, 2006.

H. Isaksson, O. Comas, C. C. Van-donkelaar, J. Mediavilla, W. Wilson et al., Bone regeneration during distraction osteogenesis: Mechano-regulation by shear strain and fluid velocity, Journal of Biomechanics, vol.40, issue.9, 2007.
DOI : 10.1016/j.jbiomech.2006.09.028

H. Isaksson, C. C. Van-donkelaar, R. Huiskes, and E. K. Ito, A mechano-regulatory bone-healing model incorporating cell-phenotype specic activity, Journal of theoretical biology, vol.252, p.230246, 2008.

C. Jacobs, J. Simo, G. Beaupre, and E. D. Carter, Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations, Journal of Biomechanics, vol.30, issue.6, p.603613, 1997.
DOI : 10.1016/S0021-9290(96)00189-3

X. Jiang, S. Zou, B. Ye, S. Zhu, Y. Liu et al., bFGF-Modied BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits, Bone, vol.46, issue.4, p.11561161, 2010.

M. W. Johnson, Behavior of uid in stressed bone and cellular stimulation. Calcied Tissue International, p.7276, 1984.

L. Joná²ová, F. A. Müller, A. Helebrant, J. Strnad, and E. P. Greil, Biomimetic apatite formation on chemically treated titanium, Biomaterials, issue.78, p.2511871194, 2004.

Y. Kameo, T. Adachi, and E. M. Hojo, Transient response of uid pressure in a poroelastic material under uniaxial cyclic loading, Journal of the Mechanics and Physics of Solids, vol.56, issue.5, p.17941805, 2008.

Y. Kameo, T. Adachi, and E. M. Hojo, Fluid pressure response in poroelastic materials subjected to cyclic loading, Journal of the Mechanics and Physics of Solids, vol.57, issue.11, p.18151827, 2009.
DOI : 10.1016/j.jmps.2009.08.002

V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaolds and osteogenesis, Biomaterials, vol.26, p.54745491, 2005.

D. J. Kelly and P. J. Prendergast, Prediction of the optimal mechanical properties for a scaold used in osteochondral defect repair, Tissue engineering, vol.12, p.25092519, 2006.

M. K. Tate, P. Niederer, and E. U. Knothe, In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading, Bone, vol.22, issue.2, p.107117, 1998.

A. Kontaxis, M. Abu-serriah, A. F. Ayoub, and J. C. Barbenel, Mechanical testing of recombinant human bone morphogenetic protein-7 regenerated bone in sheep mandibles, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol.17, issue.6, p.381388, 2004.
DOI : 10.1243/0954411042632135

D. Lacroix and P. Prendergast, A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading, Journal of Biomechanics, vol.35, issue.9, pp.1163-1171, 2002.
DOI : 10.1016/S0021-9290(02)00086-6

G. Li, J. Bronk, K. An, and P. Kelly, Permeability of cortical bone of canine tibiae, Microvascular Research, vol.34, issue.3, p.302310, 1987.
DOI : 10.1016/0026-2862(87)90063-X

W. Li, J. D. Gardinier, C. Price, and L. Wang, Does blood pressure enhance solute transport in the bone lacunarcanalicular system ?, Bone, vol.47, issue.2, p.353359, 2010.

Y. Lin and S. Xu, AFM analysis of the lacunar-canalicular network in demineralized compact bone, Journal of Microscopy, vol.120, issue.6, p.291302, 2011.
DOI : 10.1111/j.1365-2818.2010.03431.x

M. Lind, B. Schumacker, K. Søballe, J. Keller, F. Melsen et al., Transforming growth factor-?? enhances fracture healing in rabbit tibiae, Acta Orthopaedica Scandinavica, vol.51, issue.12, p.553556, 1993.
DOI : 10.3109/17453679308993691

C. Lindqvist, A. L. Söderholm, A. Salo, J. Subasinghe, S. Ylijoki et al., A comparative study on four screw-plate locking systems in sheep: a clinical and radiological study, International Journal of Oral and Maxillofacial Surgery, vol.30, issue.2, p.160166, 2001.
DOI : 10.1054/ijom.2000.0037

G. Liu, L. Zhao, W. Zhang, L. Cui, W. Liu et al., Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate, Journal of Materials Science : Materials in Medicine, vol.19, issue.6, p.23672376, 2007.

X. Liu and G. L. Niebur, Bone ingrowth into a porous coated implant predicted by a mechanoregulatory tissue dierentiation algorithm, Biomechanics and Modeling in Mechanobiology, vol.7, p.335344, 2008.

M. A. Lopez-heredia, J. Sohier, C. Gaillard, S. Quillard, M. Dorget et al., Rapid prototyped porous titanium coated with calcium phosphate as a scaold for bone tissue engineering, Biomaterials, vol.29, p.26082615, 2008.

E. Malachanne, D. Dureisseix, P. Cañadas, and E. F. Jourdan, Experimental and numerical identication of cortical bone permeability, Journal of Biomechanics, vol.41, issue.3, p.721725, 2008.

L. Malaval, F. Liu, P. Roche, and J. E. Aubin, Kinetics of osteoprogenitor proliferation and osteoblast dierentiation in vitro, Journal of cellular biochemistry, vol.74, issue.4, p.616627, 1999.

P. Manfredini, G. Cocchetti, G. Maier, A. Redaelli, and F. M. Montevecchi, Poroelastic nite element analysis of a bone specimen under cyclic loading, Journal of Biomechanics, vol.32, issue.2, p.135144, 1999.

S. Mantri, G. Shankaran, A. Bhasin, and E. P. Gupta, Scope of prosthodontic services for patients with head and neck cancer, Indian Journal of Cancer, vol.49, issue.1, pp.39-2012
DOI : 10.4103/0019-509X.98917

P. G. Marotti, The original contributions of the scanning electron microscope to the knowledge of bone structure, Ultrastructure of Skeletal Tissues, number 7 in Electron Microscopy in Biology and Medicine, pp.978-979, 1939.
DOI : 10.1007/978-1-4613-1487-5_2

M. Martola, C. Lindqvist, H. Hänninen, and J. , Fracture of titanium plates used for mandibular reconstruction following ablative tumor surgery, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.45, issue.2, p.345352, 2007.
DOI : 10.1002/jbm.b.30603

B. R. Mccreadie, S. J. Hollister, M. B. Schaer, and S. A. Goldstein, Osteocyte lacuna size and shape in women with and without osteoporotic fracture, Journal of Biomechanics, vol.37, issue.4, p.563572, 2004.
DOI : 10.1016/S0021-9290(03)00287-2

E. Mittra, C. Rubin, and Y. Qin, Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone, Journal of Biomechanics, vol.38, issue.6, p.12291237, 2005.
DOI : 10.1016/j.jbiomech.2004.06.007

L. Monfoulet, B. Rabier, O. Chassande, and J. Fricain, Drilled Hole Defects in Mouse Femur as Models of Intramembranous Cortical and Cancellous Bone Regeneration, Calcified Tissue International, vol.107, issue.3, p.7281, 2010.
DOI : 10.1007/s00223-009-9314-y

V. C. Mow, S. C. Kuei, W. M. Lai, and C. G. Armstrong, Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments, Journal of Biomechanical Engineering, vol.102, issue.1, p.7384, 1980.
DOI : 10.1115/1.3138202

V. C. Mow, C. C. Wang, and C. T. Hung, The extracellular matrix, interstitial uid and ions as a mechanical signal transducer in articular cartilage, Osteoarthritis and Cartilage, vol.7, issue.1, p.4158, 1999.

G. F. Muschler, V. P. Raut, T. E. Patterson, J. C. Wenke, and J. O. Hollinger, The Design and Use of Animal Models for Translational Research in Bone Tissue Engineering and Regenerative Medicine, Tissue Engineering Part B: Reviews, vol.16, issue.1, p.123145, 2010.
DOI : 10.1089/ten.teb.2009.0658

A. Nafei, C. C. Danielsen, F. Linde, and E. I. Hvid, Properties of growing trabecular ovine bone PART i : MECHANICAL AND PHYSICAL PROPERTIES, Journal of Bone & Joint Surgery, vol.82910920, 2000.

M. Niinomi and M. Nakai, Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone, International Journal of Biomaterials, vol.260, issue.1-2, p.836587, 2011.
DOI : 10.2320/matertrans.48.301

M. C. Nol, N. Gellrich, G. Hauschild, M. Fehr, K. Bormann et al., Comparison of two beta-tricalcium phosphate composite grafts used for reconstruction of mandibular critical size bone defects, Veterinary and Comparative Orthopaedics and Traumatology, vol.22, issue.2, p.96102, 2009.

M. C. Nol, H. Kokemueller, G. Hauschild, M. Fehr, K. Bormann et al., Comparison of computed tomography and microradiography for graft evaluation after reconstruction of critical size bone defects using beta-tricalcium phosphate. Journal of Cranio-Maxillo-Facial Surgery : Ocial Publication of the European Association for Cranio-Maxillo-Facial Surgery, p.3846, 2010.

A. Nur and J. D. Byerlee, An exact eective stress law for elastic deformation of rock with uids, Journal of Geophysical Research, vol.76, issue.26, p.64146419, 1971.

B. Otsuki, M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo et al., Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants, Biomaterials, vol.27, issue.35, p.58925900, 2006.
DOI : 10.1016/j.biomaterials.2006.08.013

M. Otter, V. Palmieri, D. Wu, K. Seiz, L. Macginitie et al., A comparative analysis of streaming potentials in vivo and in vitro, Journal of Orthopaedic Research, vol.91, issue.5, p.710719, 1992.
DOI : 10.1002/jor.1100100513

I. Owan, D. B. Burr, C. H. Turner, J. Qiu, Y. Tu et al., Mechanotransduction in bone : osteoblasts are more responsive to uid forces than mechanical strain, The American Journal of Physiology, vol.273, issue.3, p.810815, 1997.

A. Ozaki, M. Tsunoda, S. Kinoshita, and E. R. Saura, Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process, Journal of Orthopaedic Science, vol.5, issue.1, p.6470, 2000.
DOI : 10.1007/s007760050010

A. Palmquist, A. Snis, L. Emanuelsson, M. Browne, and E. P. Thomsen, Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: Experimental studies in sheep, Journal of Biomaterials Applications, vol.27, issue.8, p.2710031016, 2013.
DOI : 10.1177/0885328211431857

D. K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi et al., Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments, Acta Biomaterialia, vol.7, issue.3, p.13981406, 2011.
DOI : 10.1016/j.actbio.2010.09.034

F. Pauwels, Eine neue theorie über den einuÿ mechanischer reize auf die dierenzierung der stützgewebe, Anatomy and Embryology, vol.121, issue.6, p.478515, 1960.

A. I. Pearce, R. G. Richards, S. Milz, E. Schneider, and S. G. Pearce, Animal models for implant biomaterial research in bone : a review, European cells & materials, vol.13, p.110, 2007.

D. H. Perrott, B. Rahn, D. Wahl, B. Linke, P. Thurüller et al., Development of a mechanical testing system for a mandibular distraction wound, International Journal of Oral and Maxillofacial Surgery, vol.32, issue.5, p.523527, 2003.
DOI : 10.1016/S0901-5027(03)90424-3

H. Petite, V. Viateau, W. Bensaïd, A. Meunier, C. De-pollak et al., Tissue-engineered bone regeneration, Nature Biotechnology, vol.18, issue.9, p.959963, 2000.

J. Poirier and M. Catala, Histologie : les tissus, 2006.

S. Ponader, C. Von-wilmowsky, M. Widenmayer, R. Lutz, P. Heinl et al., In vivo performance of selective electron beam-melted Ti-6al-4v structures, Journal of Biomedical Materials Research. Part A, vol.92, issue.1, p.5662, 2010.

P. J. Prendergast, S. Checa, and E. D. Lacroix, Computational models of tissue dierentiation, Computational Modeling in Biomechanics, pp.353372-978, 2010.

P. Prendergast and D. Taylor, Prediction of bone adaptation using damage accumulation, Journal of Biomechanics, vol.27, issue.8, p.10671076, 1994.
DOI : 10.1016/0021-9290(94)90223-2

P. Prendergast, R. Huiskes, and E. K. Søballe, Biophysical stimuli on cells during tissue dierentiation at implant interfaces, Journal of Biomechanics, vol.30, issue.6, p.539548, 1997.

M. A. Pérez and P. J. Prendergast, Random-walk models of cell dispersal included in mechanobiological simulations of tissue dierentiation, Journal of biomechanics, vol.40, issue.10, p.22442253, 2007.

C. Price, X. Zhou, W. Li, and E. L. Wang, Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: Direct evidence for load-induced fluid flow, Journal of Bone and Mineral Research, vol.47, issue.2, p.277285, 2011.
DOI : 10.1002/jbmr.211

L. Qin, A. T. Mak, C. Cheng, L. Hung, and K. Chan, Histomorphological study on pattern of uid movement in cortical bone in goats, The Anatomical Record, vol.255, issue.4, p.380387, 1999.

Y. Qin, W. Lin, and E. C. Rubin, The pathway of bone uid ow as dened by in vivo intramedullary pressure and streaming potential measurements, Annals of Biomedical Engineering, vol.30, issue.5, p.693702, 2002.

B. Rai, M. E. Oest, K. M. Dupont, K. H. Ho, S. H. Teoh et al., Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaolds for segmental bone defect repair, Journal of Biomedical Materials Research. Part A, vol.81, issue.4, p.888899, 2007.

C. Renghini, V. Komlev, F. Fiori, E. Verné, F. Baino et al., Micro-CT studies on 3-D bioactive glassceramic scaolds for bone regeneration, Acta Biomaterialia, vol.5, issue.4, p.13281337, 2009.

J. R. Rice and M. P. Cleary, Some basic stress diusion solutions for uid-saturated elastic porous media with compressible constituents, Reviews of Geophysics, vol.14, issue.2, p.227241, 1976.

A. Roshan-ghias, A. Vogel, L. Rakotomanana, and D. P. Pioletti, Prediction of spatio-temporal bone formation in scaold by diusion equation, Biomaterials, vol.32, p.70067012, 2011.

S. Rouhana, M. Johnson, D. Chakkalakal, R. Harper, and E. J. Katz, Permeability of compact bone, Proceedings of the Joint ASME-ASCE Conference Biomechanics Symposium AMD, p.169172, 1981.

J. Rudnicki, Eect of pore uid diusion on deformation and failure of rock, Mech of Geomater, 1985.

R. Salmon and W. Duncan, Determination of the critical size for non-healing defects in the mandibular bone of sheep. part 1 : A pilot study, Journal of the New Zealand Society of Periodontology, issue.81, p.615, 1996.

J. A. Sanz-herrera, J. M. Garcia-aznar, and E. M. Doblare, A mathematical model for bone tissue regeneration inside a specic type of scaold, Biomechanics and Modeling in Mechanobiology, vol.7, issue.5, p.355366, 2008.

J. Sanz-herrera, J. García-aznar, and E. M. Doblaré, Micromacro numerical modelling of bone regeneration in tissue engineering, Computer Methods in Applied Mechanics and Engineering, vol.197, p.30923107, 2008.

J. Sanz-herrera, J. García-aznar, and E. M. Doblaré, On scaold designing for bone regeneration : A computational multiscale approach, Acta Biomaterialia, vol.5, p.219229, 2009.

K. Søballe, Hydroxyapatite ceramic coating for bone implant xation. Mechanical and histological studies in dogs, Acta Orthopaedica Scandinavica. Supplementum, vol.255, p.158, 1993.

K. Søballe, H. Brockstedt-rasmussen, E. S. Hansen, and E. C. Bünger, Hydroxyapatite coating modies implant membrane formation. Controlled micromotion studied in dogs, Acta Orthopaedica Scandinavica, vol.63, issue.2, p.128140, 1992.

K. Søballe, E. S. Hansen, H. B-rasmussen, P. H. Jørgensen, and C. Bünger, Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions, Journal of Orthopaedic Research, vol.182, issue.suppl 220, p.285299, 1992.
DOI : 10.1002/jor.1100100216

R. K. Schenk, D. Buser, W. R. Hardwick, and E. C. Dahlin, Healing pattern of bone regeneration in membrane-protected defects : a histologic study in the canine mandible, The International journal of oral & maxillofacial implants, vol.9, p.1329, 1994.

H. Schliephake, J. W. Knebel, M. Aufderheide, and E. M. Tauscher, Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects: an experimental pilot study in sheep, International Journal of Oral and Maxillofacial Surgery, vol.30, issue.6, p.531537, 2001.
DOI : 10.1054/ijom.2001.0164

P. Schneider, M. Meier, R. Wepf, and E. R. Müller, Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuno-canalicular network, Bone, vol.49, issue.2, p.304311, 2011.
DOI : 10.1016/j.bone.2011.04.005

W. Schneiders, A. Reinstorf, A. Biewener, A. Serra, R. Grass et al., In vivo eects of modication of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia, Journal of Orthopaedic Research, vol.27, issue.1, p.1521, 2009.

I. Seto, E. Marukawa, and E. I. Asahina, Mandibular Reconstruction Using a Combination Graft of rhBMP-2 with Bone Marrow Cells Expanded In Vitro, Plastic and Reconstructive Surgery, vol.117, issue.3, p.902908, 2006.
DOI : 10.1097/01.prs.0000200069.81973.49

D. Sharma, C. Ciani, P. A. Marin, J. D. Levy, S. B. Doty et al., Alterations in the osteocyte lacunarcanalicular microenvironment due to estrogen deciency, Bone, issue.3, p.51488497, 2012.

T. Smit, J. Huyghe, and E. S. Cowin, Estimation of the poroelastic parameters of cortical bone, Journal of Biomechanics, vol.35, issue.6, p.829835, 2002.
DOI : 10.1016/S0021-9290(02)00021-0

M. Spector, Historical review of porous-coated implants, The Journal of Arthroplasty, vol.2, issue.2, p.163177, 1987.
DOI : 10.1016/S0883-5403(87)80024-4

E. D. Spoerke, N. G. Murray, H. Li, L. C. Brinson, D. C. Dunand et al., Titanium with aligned, elongated pores for orthopedic tissue engineering applications, Journal of Biomedical Materials Research Part A, vol.24, issue.2, pp.84-402412, 2008.
DOI : 10.1002/jbm.a.31317

J. St-pierre, M. Gauthier, L. Lefebvre, and E. M. Tabrizian, Three-dimensional growth of dierentiating MC3T3-E1 pre-osteoblasts on porous titanium scaolds, Biomaterials, vol.26, p.73197328, 2005.

R. Steck, P. Niederer, and M. L. Tate, A nite element analysis for the prediction of load-induced uid ow and mechanochemical transduction in bone, Journal of Theoretical Biology, vol.220, issue.2, p.249259, 2003.

A. Syahrom, M. R. Kadir, J. Abdullah, and E. A. Öchsner, Mechanical and microarchitectural analyses of cancellous bone through experiment and computer simulation, Medical & Biological Engineering & Computing, vol.37, issue.375???377, p.13931403, 2011.
DOI : 10.1007/s11517-011-0833-0

M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo et al., Mechanical properties and osteoconductivity of porous bioactive titanium, Biomaterials, vol.26, p.60146023, 2005.

J. C. Teo, K. M. Si-hoe, J. E. Keh, and S. H. Teoh, Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone, Clinical Biomechanics, vol.21, issue.3, p.235244, 2006.
DOI : 10.1016/j.clinbiomech.2005.11.001

J. J. Thomason, L. E. Grovum, A. G. Deswysen, and W. W. Bignell, In vivo surface strain and stereology of the frontal and maxillary bones of sheep: Implications for the structural design of the mammalian skull, The Anatomical Record, vol.25, issue.4, p.325338, 2001.
DOI : 10.1002/ar.10025

M. Thompson and J. R. Willis, A reformation of the equations of anisotropic poroelasticity, Journal of Applied Mechanics, vol.58, issue.3, p.612616, 1991.

S. M. Tommasini, A. Trinward, A. S. Acerbo, F. De-carlo, L. M. Miller et al., Changes in intracortical microporosities induced by pharmaceutical treatment of osteoporosis as detected by high resolution micro-CT, Bone, vol.50, issue.3, p.50596604, 2012.
DOI : 10.1016/j.bone.2011.12.012

M. G. Uglow, R. A. Peat, M. S. Hile, L. E. Bilston, E. J. Smith et al., Low-intensity ultrasound stimulation in distraction osteogenesis in rabbits, Clinical Orthopaedics and Related Research, issue.417, p.303312, 2003.

J. Van-der-stok, O. P. Van-der-jagt, S. Amin-yavari, M. F. De-haas, J. H. Waarsing et al., Selective laser melting-produced porous titanium scaolds regenerate bone in critical size cortical bone defects, Journal of Orthopaedic Research, issue.5, p.31792799, 2013.

P. S. Vanzillotta, M. S. Sader, I. N. Bastos, and G. D. Soares, Improvement of in vitro titanium bioactivity by three different surface treatments, Dental Materials, vol.22, issue.3, pp.275-282, 2006.
DOI : 10.1016/j.dental.2005.03.012

F. J. Vermolen, A. Andreykiv, E. M. Aken, J. C. Linden, E. Javierre et al., A suite of mathematical models for bone ingrowth, bone fracture healing and intraosseous wound healing, Advanced Computational Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering, p.289314, 2010.

V. Viateau, G. Guillemin, V. Bousson, K. Oudina, D. Hannouche et al., Long-bone critical-size defects treated with tissue-engineered grafts: A study on sheep, Journal of Orthopaedic Research, vol.22, issue.6, p.25741749, 2007.
DOI : 10.1002/jor.20352

W. R. Walsh, P. Sherman, C. R. Howlett, D. H. Sonnabend, and M. G. Ehrlich, Fracture Healing in a Rat Osteopenia Model, Clinical Orthopaedics and Related Research, vol.342, issue.342, p.218227, 1997.
DOI : 10.1097/00003086-199709000-00029

L. Wang, S. P. Fritton, S. C. Cowin, and E. S. Weinbaum, Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment, Journal of Biomechanics, vol.32, issue.7, p.663672, 1999.
DOI : 10.1016/S0021-9290(99)00059-7

L. Wang, Y. Wang, Y. Han, S. Henderson, R. Majeska et al., In situ measurement of solute transport in the bone lacunar-canalicular system, Proceedings of the National Academy of Sciences of the United States of America, p.1191111916, 2005.
DOI : 10.1073/pnas.0505193102

Y. Wang, L. Mcnamara, M. Schaer, and E. S. Weinbaum, A model for the role of integrins in ow induced mechanotransduction in osteocytes, Proceedings of the National Academy of Sciences of the United States of America, vol.104, issue.40, p.1594115946, 2007.

P. H. Warnke, T. Douglas, P. Wollny, E. Sherry, M. Steiner et al., Rapid Prototyping: Porous Titanium Alloy Scaffolds Produced by Selective Laser Melting for Bone Tissue Engineering, Tissue Engineering Part C: Methods, vol.15, issue.2, p.15115124, 2009.
DOI : 10.1089/ten.tec.2008.0288

H. Weinans and P. Prendergast, Tissue adaptation as a dynamical process far from equilibrium, Bone, vol.19, issue.2, p.143149, 1996.
DOI : 10.1016/8756-3282(96)00143-3

S. Weinbaum, S. Cowin, and E. Y. Zeng, A model for the excitation of osteocytes by mechanical loading-induced bone uid shear stresses, Journal of Biomechanics, vol.27, issue.3, p.339360, 1994.

J. Wieding, T. Lindner, P. Bergschmidt, and E. R. Bader, Biomechanical stability of novel mechanically adapted open-porous titanium scaolds in metatarsal bone defects of sheep, Biomaterials, vol.46, p.3547, 2015.

B. M. Willie, R. D. Bloebaum, W. R. Bireley, K. N. Bachus, and A. A. Hofmann, Determining relevance of a weight-bearing ovine model for bone ingrowth assessment, Journal of Biomedical Materials Research, vol.8, issue.3, p.69567576, 2004.
DOI : 10.1002/jbm.a.30038

B. M. Willie, X. Yang, N. H. Kelly, J. Merkow, S. Gagne et al., Osseointegration into a novel titanium foam implant in the distal femur of a rabbit, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.26, issue.2, p.479488, 2010.
DOI : 10.1002/jbm.b.31541

W. Xue, B. V. Krishna, A. Bandyopadhyay, and E. S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomaterialia, vol.3, issue.6, p.10071018, 2007.
DOI : 10.1016/j.actbio.2007.05.009

L. You, S. Cowin, M. Schaer, and E. S. Weinbaum, A model for strain amplication in the actin cytoskeleton of osteocytes due to uid drag on pericellular matrix, Journal of Biomechanics, issue.11, p.3413751386, 2001.

J. Yuan, L. Cui, W. J. Zhang, W. Liu, and E. Y. Cao, Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate, Biomaterials, vol.28, issue.6, p.10051013, 2007.

J. Yuan, W. J. Zhang, G. Liu, M. Wei, Z. L. Qi et al., Repair of Canine Mandibular Bone Defects with Bone Marrow Stromal Cells and Coral, Tissue Engineering Part A, vol.16, issue.4, p.13851394, 2010.
DOI : 10.1089/ten.tea.2009.0472

D. Zhang, S. Weinbaum, and S. C. Cowin, Estimates of the Peak Pressures in Bone Pore Water, Journal of Biomechanical Engineering, vol.120, issue.6, p.697703, 1998.
DOI : 10.1115/1.2834881

D. Zhang and S. C. Cowin, Oscillatory bending of a poroelastic beam, Journal of the Mechanics and Physics of Solids, vol.42, issue.10, p.15751599, 1994.
DOI : 10.1016/0022-5096(94)90088-4

M. Zhang, G. Wang, H. Zhang, X. Hu, X. Shi et al., Repair of Segmental Long Bone Defect in a Rabbit Radius Nonunion Model: Comparison of Cylindrical Porous Titanium and Hydroxyapatite Scaffolds, Artificial Organs, vol.67, issue.Suppl. 3, p.38493502, 2014.
DOI : 10.1111/aor.12208

M. Zhou, X. Peng, C. Mao, F. Xu, M. Hu et al., Primate mandibular reconstruction with prefabricated, vascularized tissue-engineered bone aps and recombinant human bone morphogenetic protein-2 implanted in situ, Biomaterials, issue.18, p.3149354943, 2010.

X. Zhou, J. Novotny, and E. L. Wang, Modeling uorescence recovery after photobleaching in loaded bone : Potential applications in measuring uid and solute transport in the osteocytic lacunar-canalicular system, Annals of Biomedical Engineering, issue.12, p.3619611977, 2008.

. Fan, Reconstruction de defects interrupteurs réalisés sur le métatarse de moutons (Wieding et al., 2015) et b) reconstruction de defects cylindriques réalisés sur le fémur de chiens, 2012.

E. Le-scaold, implant contrôle sont implantés sur la même mandibule Le scaold est implanté sur l'hémimandibule droite et l'implant contrôle sur celle de gauche, p.32

. Scanco and S. Brüttisellen, Courbe représentant l'évolution des coecients d'atténuation de l'os et des tissus mous en fonction de l'énergie du rayonnement X, p.50

.. Au-titane, Méthode de post-traitment des µCT scan prenant en compte les artefacts dûs, p.55

. Andreykiv, Taux de prolifération cellulaire et b) Taux de diérentiation cellulaire en fonction du stimulus mécanique S, p.109, 2008.

. Adachi, Evolution de la formation osseuse au sein d'un pore cubique l=1, p.111, 2006.

C. Annexe, I-12 et b) la géométrie de l'hémimandibule EF implantée : les dimensions, les conditions aux limites et les domaines. A, B et C sont les trois points utilisés pour évaluer la concentration c m lors de l'étude de sensibilité, IV.11a) L'hémimandibule, p.115

B. Valeur-de and . Tv, TV au sein d'un scaold et d'un implant contrôle vide pour des dilatations du masque du titane allant de 1 à 4 pixels, p.56

A. Figure, Mise en plan de la plaque intermédiaire entre le support en aluminium et la glissière à billes

A. Figure, Mandibule implantée (a) et et saine (b) provenant d'une même brebis sacriée juste après l'opération

A. Figure, Agrandissements de la coupe centrale du scaold de la brebis 90085 : a) chondrocytes sous l'implant suggérant une désolidarisation de celui-ci ou une fracture, b) tissu breux et c) os minéralisé en remodelage actif

A. Figure, Résultats des essais de exion réalisés sur les hémimandibules de la brebis 90085 Les deux hémimandibules présentent chacune une zone de faiblesse. En eet, l'interface distale du scaold et l'interface proximale de l'implant contrôle ont des rigidités respectives de 45