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Abstract

Theamount of available audio data, such asbroadcast news archives, radio recordings,
music and songs collections, podcasts or various internet media is constantly increasing. In
the sametime there are not alot of audio classi cation and retrieval tools, which could help
users to browse audio documents.

Content-based audio-retrieval is a less mature eld compar ed to image and video
retrieval. There are some existing applications such as song class cation, advertisement
(commercial) detection, speaker diarization and identi cation, with various systems being
developed to automatically analyze and summarize audio content for indexing and retrieval
purposes. Within these systems audio data istreated di erently depending on the applica-
tions. For example, song identi cation systems are general ly based on audio ngerprinting
using energy and spectrogram peaks (asin the SHAZAM and the Philips systems). While
speaker diarization and identi cation systems are using cep stral features and machine learn-
ing techniques such as Gaussian Mixture Models (GMMs) and/ or Hidden Markov Models
(HMM).

The diversity of audio indexing techniques makes unsuitable the simultaneous treat-
ment of audio streams where di erent types of audio content (music, commercials, jingles,
speech, laughter, etc.) coexist.

In this thesis we report our recent e ortsin extending the ALISP (Automatic Lan-
guage Independent Speech Processing) approach developed for speech as a generic method
for audio indexing, retrieval and recognition. ALISP is a data-driven technique that was

rst developed for very low bit-rate speech coding, and then su ccessfully adapted for other

tasks such as speaker veri cation and forgery, and language id enti cation. The particularity



of ALISP tools isthat no textual transcriptions are needed during the learning step, and
only raw audio data issu cient. Any input speech data is transformed into a sequence of
arbitrary symbols. These symbols can be used for indexing purposes. The main contribu-
tion of this thesisis the exploitation of the ALISP approach as a generic method for audio
(and not only speech) indexing and recognition. To this end, an audio indexing system

based on the ALISP technique is proposed. It is composed of the following modules:

* Automated acquisition (with unsupervised machine learning methods) and Hidden

Markov Modeling (HMM) of ALISP audio models.

» Segmentation (also referred as sequencing and transcription) module that transforms
the audio data into a sequence of symbols (using the previously acquired ALISP
Hidden Markov Models).

e Comparison and decision module, including approximate matching algorithms in-
spired form the Basic Local Alignment Search (BLAST) tool widely used in bioin-
formatics and the Levenshtein distance, to search for a sequence of ALISP symbols of

unknown audio data in the reference database (related to di erent audio items).
Our main contributionsin this Ph.D can be divided into three parts:

1. Improving the ALISP tools by introducing a simple method to nd stable segments
within the audio data. This technique, referred as spectral stability segmentation, is
replacing the temporal decomposition used before for speech processing. The main ad-
vantage of this method isits computation requirements which are very low comparing

to temporal decomposition.

2. Proposing an e cient technique to retrieve relevant information from ALISP se-
guences using BLAST algorithm and Levenshtein distance. This method speeds up

the retrieval process without a ecting the accuracy of the audio indexing process.

3. Proposing a generic audio indexing system, based on data-driven ALISP sequencing,
for radio streams indexing. Thissystem isapplied for di erent eldsof audio indexing

to cover the majority of audio items that could be present in a radio stream:



- audio identi cation: detection of occurrences of a speci ¢ audio content (mu-

sic, advertisements, jingles) in a radio stream;

- audio motif discovery: detection of repeating objectsin audio streams (music,

advertisements, and jingles);

- speaker diarization: segmentation of an input audio stream into homogenous
regions according to speaker’s identities in order to answer the question: "Who

spoke when?”;

- nonlinguistic vocalization detection: detection of nonlinguistic sounds such

as laughter, sighs, cough, or hesitations;

The evaluations of the proposed systems are done on the YACAST database (a work-
ing database for the SurfOnHertz project) and other publicly available corpora. The ex-
perimental results show an excellent performance in audio identi cation (for advertisement
and songs), audio motif discovery (for advertisement and songs), speaker diarization and
laughter detection. Moreover, the ALISP-based system has obtained the best results in
ETAPE 2011 (Evaluations en Traitement Automatique de la Parole) evaluation campaign

for the speaker diarization task.



Glossary

Automatic speech recognition: Conversion of a speech signal into a textual representa-
tion by automated methods.

Audio ngerprint: Compact content-based signature that re presents an audio recording.
Audio identi cation: Detection and location of occurrences of a speci ¢ audio content
(music, advertisement, jingle,..) in audio streams or audio databases.

Audio indexing: Extraction of relevant information from unknown audio data.

Audio motif discovery: Detecting repeating audio objects in audio streams or audio
databases.

Basic Local Alignment Search Tool (BLAST): Algorithm for comparing primary
biological sequence information, such as amino-acid sequences of di erent proteins or the
nucleotides of DNA sequences.

Data-driven approaches: Techniques that automatically learn the linguistic units and
information required from representative examples of data without human expertise.
Hidden M arkov M odel (HM M ): Statistical model used to model a process which evolves
over time, where the exact state of the process is unknown, or ”hidden”.

High-level information: Set of information that re ects th e behavioral traits such as
prosody, phonetic information, pronunciation, idiolectal word usage, conversational pat-
terns, topics of conversations, etc.

Levenshtein distance: String metricsfor measuring thedi erence between two sequences.
The Levenshtein distance between two words is the minimum number of single-character
edits (insertions, deletions, substitutions) required to change one word into another.

M el-Frequency Cepstral Coe cients (MFCC): Coe cients of the cepstrum of the



short-term spectrum, downsampled and weighted according to the Médl scale that follows
the sensitivity of the human ear.

Nonlinguistic vocalization: Very brief, discrete, nonverbal expressions related to human
behavior.

Precision: Fraction of retrieved documents that are relevant to the search.

Recall: Fraction of the documents that are relevant to the query that are successfully
retrieved.

Reference Database: Contains all the audio items to be identi ed by an audio identi -
cation system.

Speaker diarization: Segmenting an input audio data into homogenous regions according
to speaker’s identities in order to answer the question ”Who spoke when?”.

Speaker identi cation: Determining which registered spea ker provides a given utterance.

Speaker veri cation: Accepting or reecting the identity claim of a speaker.
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Chapter 1

Resume Long

1.1 Introduction

La quantite de donnees audio disponibles, telles que les enregistrements radio, la
musique, les podcasts et les publicites est en augmentation constance. Par contre, il n'y
a pas beaucoup d'outils de classi cation et d'indexation, qui permettent aux utilisateurs
de naviguer et retrouver des documents audio. L’indexation audio par le contenu est un
domaine moins mature que I'indexation d’'images et de videos. Les applications existantes
telles que la classi cation des morceaux de musique, I'iden ti cation des publicites et la seg-
mentation et regroupement en locuteurs sont basees sur di erents systémes mis au point
pour analyser et resumer automatiquement le contenu audio a des nsd’'indexation et iden-
ti cation. Dans ces systemes, les donnees audio sont trai tees di eremment en fonction
des applications. Par exemple, les systemes d’identi cat ion des morceaux de musique sont
generalement bases sur ce qu’on appelle les empreintes audio en utilisant I'energie ou les pics
dans les spectrogrammes comme les systemes proposes par SHAZAM et PHILIPS. Alors
gue les systemes de segmentation et regroupement en locuteurs utilisent generalement les
coe cients cepstraux et les techniques d’'apprentissage comme les melanges de Gaussiennes
ou les modeles de Markov caches. Ladiversite de cestechniquesd’indexation rend inadequat
le traitement simultane de ux audio ou di erents types de contenu audio (musique, pub-

licite, jingles, parole, rire, etc.) coexistent. Dans cette these, nous presentons nos travaux
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sur I'extension de I'approche ALISP (Automatic Speech Processing Language Indepen-
dent) [28] (Chollet et al., 1999), developpe initialement pour la parole, comme une methode
generique pour I'indexation et I'identi cation audio. A LISP est une approche non supervisee
qui a eteinitialement developpee pour le codage de la parole a tres bas debit [26] (Cernoky,
1998) [96] (Padellini et al., 2005), puis exploitee avec succes pour d’'autres taches telles que
la veri cation du locuteur [40] (EIHannani et al., 2009) [39] (EIHannani, 2007) [102], la
conversion de la voix [99] (Perrot et al., 2005) et I'identi cation de la langue (Petr ovska-
Delacretaz et al., 2000). La particularite des outils ALISP est qu'aucune transcription
textuelle ou annotation manuelle est necessaire lors de I'etape d’apprentissage. Le principe
de cet outil est de transformer les donnees audio en une sequence de symboles. Ces sym-
boles peuvent &tre utilises a des ns d’indexation. La pri ncipale contribution de cette these
est I'exploitation de I'approche ALISP comme une methode generique pour I'indexation et
identi cation audio. De ce fait, un systeme d’indexation a udio base sur I'approche ALISP

est propose. 1l est compose des modules suivants:
» Acquisition et modelisation des unites ALISP d’'une maniére non supervisee

e Segmentation (aussi appelee transcription) ALISP, qui transforme les donnees au-
dio en une sequence de symboles (en utilisant les modé&les de Markov caches ALISP

precedemment acquis).

» Comparaison et decision qui utilisent les algorithmes de recherche approximative des
sequences de symboles, inspirees de la technique BLAST (Basic Local Alignment
Search) [3] (Altschul et al., 1990) et la distance de Levenshtein [76] (Levenshtein ,
1966).

Les principales contributions de cette these peuvent &tre divisees en trois parties:

1. Ameliorer les outils ALISP en introduisant une methode simple pour segmenter les
donnees d’'apprentissage en segments stables. Cette technique, appelee segmentation
par stabilite spectrale, remplace la decomposition temporelle utilisee auparavant dans
lesoutilsALISP. Leprincipal avantage de cette methode est I'acceleration du processus

d’apprentissage non supervise des modeles HMM ALISP.
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2. Proposer unetechniquee cacepour larecherche et comparaison des sequences ALISP
utilisant I'algorithme BLAST et la distance de Levenshtein. Cette methode accelere
le processus de la recherche approximative des sequences de symboles sans a ecter les

performances du systeme d’indexation audio

3. Proposer un systeme generique pour I'indexation audio pour les ux radiophoniques
base sur la segmentation ALISP. Ce systeme est applique dans di erents domaines
d’indexation audio pour couvrir la majorite des documents audio qui pourraient &tre

presents dans un ux radio:

- identi cation audio: detection d'occurrences d'un cont enu audio speci que

(musique, publicite) dans un ux radio;

- decouverte des motifs audio recurrents: detection des repetitions des doc-

uments audio dans un ux radio (musique, publicite);

- segmentation et regroupement en locuteurs: segmentation d’'un ux audio
en regions homogenes en fonction de I'identite des locuteurs a n de regpondre a
la question : "Qui parle quand?’;

- detection de vocalisation non linguistiques: detection de sons non linguis-

tiques tels que les rires, soupirs, toux ou hesitations;

Les evaluations du systeéme propose pour les di erentes applications sont e ectuees
avec la base de donnees YACAST (une base de donnees acquis dans le cadre du projet Sur-
fOnHertz) et avec d’autres corpus disponibles publiguement. Les resultats experimentaux
montrent d’excellentes performances pour I'identi cation audio (pour la publicite et la
musique), pour la decouverte de motifs recurrents (pour la publicite et la musique), pour la
segmentation et regroupement en locuteurs et pour la detection derire. En outre, le systeme
propose base sur ALISP, a obtenu les meilleurs resultats dans la campagne d’evaluation
ETAPE 2011 (evaluations en Traitement Automatique de la Parole) pour la tache de seg-
mentation et regroupement en locuteurs.

Ce resume est structure de la facon suivante : la section 2 presente un etat de I'art

des principales methodes de I'indexation audio par extraction d'empreintes. La section 3
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decrit les principales contributions de nos travaux de these. Les evaluations du systeme
propose pour les taches d’identi cation audio, decouver te des motifs audio, segmentation

et regroupement en locuteur et la detection du rire sont decrites dans la section 4.

1.2 Etat de I'Art des Systemes d’Indexation Audio par Ex-

traction d’Empreinte

L'indexation audio par extraction d'empreinte est composee de deux modules : un
module d’extraction d’empreinte et un module de comparaison. La premiere etape dans un
systeme d’indexation audio par extraction d’empreinte (appele aussi I'identi cation audio
par extraction d’empreinte) est la creation d’une base d’empreintes a partir d’une base de
references. La base de references contient les documents audio (musique, publicites, jingles)
gue le systeme pourrait identi er. Dans la deuxieme etap e un extrait audio inconnu est
identi @ en comparant son empreinte avec celles de la base de réeferences. L’identi cation
audio par extraction d’empreinte a ete tres etudiee durant les dix dernieres annees. Ains,
I'etat de I'art est relativement fourni, avec des propositions d’approches tres diverses pour
aborder le probleme. Le principal de de ces systemes est de calculer une empreinte audio
robuste aux di erentstypes de distorsions et de proposer une methode rapide de compara-
ison qui peut satisfaire les contraintes temps-reel quelle que soit la taille de la base de
references.

Plusieurs methodes d’'indexation audio par extraction d’empreinte ont ete proposees [25] (Cano
et al., 2005). Nous avons choisi de presenter ces systemes selon I'approche utilisee pour
I'extraction d’empreinte. A travers les articles publies sur le sujet, trois grandes familles se
degagent en ce qui concerne la technique d’extraction d’empreinte.

La premiere famille opere directement sur la representation spectrale du signal
pour extraire les empreintes. Cetype d’empreinte est generalement facile a extraire et
ne requiert pas des ressources de calcul importantes. La deuxieme famille fait appel aux
techniques utilisees dansle domaine de la vision par ordinateur, I'idee principale etant

de traiter le spectrogramme de chaque document audio comme une image 2-D et de trans-
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former I'identi cation audio en un probleme de traitement d'images. La derniere famille
inclut les approches basees sur la quanti cation vectoriel le et I’apprentissage au-
tomatique, cessystemes proposent un modele d’empreinte qui imite lestechniques utilisees

dans le traitement de la parole.

1.2.1 Techniques Basees sur la Representation Spectrale

Cestechniques sont les plus couramment utiliseesvuelasimplicited’extraction d’empreinte.
Plusieurs systemes ont utilise directement la representation spectrale du signal pour con-
struire I'empreinte.

Haitsma et al. [57] ont developpe un systeme d’identi cation audio pour la r econnais-
sance des morceaux de musique. lls ont utilise une echelle Bark pour reduire le nombre de
bandes frequentidles par I'intermediaire de 33 bandes logarithmiques couvrant I'intervalle
de 300Hz a 2 kHz. Le signe de la di erence d’energie des bandes adjacentes est calcule et
stocke sous forme binaire. Leresultat de ce processus de quanti cation est une empreinte de
32 bits par trame. La methode de recherche adoptee par PHILIPS consiste a indexer chaque
trame de reference dans une table de correspondances (lookup table). Si le nombre de sous-
bandes utiliseesest Ny, alors chaque trame sera representee par un vecteur de (N 1) bitset
on retrouvera dans le ” lookup table” 2Nv entrees. Chaque trame binaire de I’empreinte sert
de cle dans le lookup table, toutes les empreintes de references possedant une meme trame
binaire gu'une empreinte a identi er sont considerees c omme candidates a I'identi cation.
Haitsma suppose donc qu'il existe au moins une trame binaire de I'empreinte a identi er
non distordue par rapport a la reference qui lui correspond. Cette technique a donnge lieu
a des etudes diverses. Une amédlioration de la methode d’extraction d’empreinte de fagon a
rendre plus robuste le systeme face aux distorsions comme I'etirement tempord (pitching)
a ete proposee [58] (Haitsma and Kalker, 2003). Dans [78] (Liu et al., 2009) ont modi &
I"algorithme pour contourner I’hypothese de presence d’une trame binaire non distordue.

Un autre systeme commercial (SHAZAM) qui se base sur la representation spectrale
du systeme a ete propose par Wang [133] pour I'identi cation d’un extrait audio inconnu

capture par un telephone mabile. Cette technique binarise le spectrogramme en ne gardant
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gue des maxima locaux. Il sagit alors d’extraire des pics de ce spectrogramme en prenant
soin de choisir des points d’energie maximale localement et en s'assurant une densite de pics
homogene au sein du spectrogramme. L’auteur propose alors d’'indexer les empreintes des
references en utilisant lalocalisation des picscommeindex. Cependant, un index s'appuyant
sur la localisation de chaque point isolement se revele peu selectif. Par consequent, Wang
propose d’'utiliser des paires de pics en tant que index, chaque pic est combine avec ses plus
proches voisins. Cette technique est utilisee pour identi er un morceau de musique dans
un milieu bruite. Cependant pour les objets de courte duree (une publicite ou un jingle),
elle Savere ine cace vue le nombre insu sant de pics extraits. De plus Fenet et al. [44]
ont montre que ce systeme n'est pas robuste a I'etirement temporel et ont propose une
version di erente de cet algorithme en se basant sur la transformee a Q constant (Constant
Q Transform-CQT).

1.2.2 Techniques Basees sur la Vision par Ordinateur

Il'y a eu plusieurs experiences de I'utilisation des techniques de vision par ordinateur
pour I'identi cation audio par extraction d’empreinte. L’ idee principale est de traiter le
spectrogramme de chaque document audio comme une image 2-D.

Baluja et al. [12] ont exploite I'applicabilite des ondelettes dans la recherche des
images dans des larges bases de donnees pour developper un systeme d’identi cation audio
par extraction d’empreinte. Cette technique consiste a generer un spectrogramme a partir
d’un signal audio avec les memes procedures que [57] (Haitsma and Kalker, 2002), ce qui
donne 32 bandes d’energielogarithmique entre 318 Hz et 2 kHz pour chaquetrame. Ensuite,
une image spectrale est extraite a partir de la combinaison des bandes energetiques sur un
certain nombre de trames et la decomposition en ondelettes, utilisant les ondelettes de
Haar, est appliquee sur les images obtenues. Les signes du premiers 200 amplitudes des
ondelettes sont exploite pour construire une empreinte binaire. En n, une table de hachage
est utilisee pour trouver les meilleures empreintes et la distance de Hamming est calculee
entre les empreintes candidates de morceaux de musique et les empreintes de la requéte.

Ke et al. [68] ont propose un systeme d’identi cation de morceaux de mu sique base
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sur I'algorithme de Viola-Jones [132] (Viola and Jones, 2001). Un algorithme de 'boosting’
est utilise sur un ensemble de descripteurs de Viola-Jones pour apprendre des descrip-
teurs locaux et discriminants. Durant la phase de recherche, une liste des candidats est
determinee a partir des descripteurs appris auparavant. Pour chaque candidat, I’algorithme
RANSAC [45] (Fishler and Bolles, 1987) est applique pour aligner le candidat avec larequete

et une mesure de vraisemblance est calculee entre les deux morceaux.

1.2.3 Techniques Basees sur la Modelisation Statistique

Cette derniere famille regroupe les techniques utilisees habituellement pour le traite-
ment de la parole, comme la quanti cation vectorielle ou les m odeles de Markov caches.

Cremer et al. [31] ont propose une approche essentiellement base sur la quanti cation
vectorielle. La creation de I'empreinte se fait a partir des descripteurs utilises dans la
norme MPEG-7. Les descripteurs utilises sont I'intensite, la mesure de platitude spectrale
et le facteur de crete spectral. La methodologie de I'identi cation consiste a extraire ces
descripteurs a partir des references. Un algorithme de quanti cation vectorielle produit
ensuite un ensemble de centroides (appeles vecteurs de codage) approximant les vecteurs
des descripteurs de la reference. Lorsque le systeme identi e un extrait inconnu, il extrait
les vecteurs descripteurs du signal, puis pour chaque reference, projette ces vecteurs sur
les vecteurs de codage de la reference. La reference possedant les vecteurs de codage qui
produisent I'erreur de projection minimale est consideree comme la reference a identi er.

Cano et al. [24] ont propose un systeme base sur la modéelisation de Markov cache.
32 moddes HMM appeles genes audio sont utilisees pour segmenter le signal audio en util-
isant I'algorithme de Viterbi. L'empreinte audio se compose de sequences d'etiquettes (les
genes) et d'information temporelle (temps du debut et de la n de chaque gene). Durant
le processus d'appariement, des sequences des genes sont extraites a partir d'un ux ra-
dio continu et comparees avec les empreintes des references. A n de reduire la duree du
traitement, I'algorithme de recherche de I’ADN appele FASTA [98] (Pearson and Lipman,
1988) a ete utilise. Ce systeme a ete evalue sur la tache de I'identi cation des morceaux de

musique dans un ux radio.
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1.2.4 Etude Comparative

Comme I’'on a mentionne auparavant, les systemes d’indexation audio par extraction
d’empreintesont pour but de calculer une empreinte audio robuste contredi erentstypesde
distorsions et de proposer une methode de comparaison e cace et rapide qui peut satisfaire
les contraintes temps-reel. Nous avons compare les systemes presentes dans les sections

precedentes en termes des criteres suivants :

* Fiabilite : le nombre d’identi cations correctes, les fausses alarmes et les fausses

identi cations.

* Robustesse: La capacite du systeme a identi er correct ement les documents audio en

presence de di erents types de distorsion (bruit, ltrage, pitching, etc.).

* Granularite: La duree minimale de I’empreinte requéete necessaire pour identi er le
document audio. Par exemple, la duree moyenne des publicites varie de 5 a 30 secon-

des, de ce fait il est necessaire d’avoir une granularite inferieure a 5 secondes.

» Complexite : La complexite du systeme determine le colit et le temps de calcul

necessaire pour I'identi cation.

» Passage a I'echelle: les performances du systeme en presence de plus grande base
de references. Ce critére est en relation directe avec la complexite et la abilite du

systeme.

Letableau 1.1 illustreles performances des systemes d'indexation audio par extraction
d’empreintes selon les critéres decrit en dessus.

D’autrepart, di erentsprotocoles experimentaux sont utilises pour evaluer les systemes
d’'indexation audio par extraction d’empreintes. Ces protocolessont resumesdansletableau 1.2.

Les deux mesures de performance utilisees pour evaluer ces systemes sont :

- Precision: le nombre de documents audio correctement detectees/ nombre total de

documents audio.
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Systemes Fiabilite | Robustesse | Granularite | Complexite | Passage a I'echelle
Haitsma et al. [57] + NA NA + -
Wang et al. [133] - - - + +
Pinquier et al. [104] + NA + + -
Baluja et al. [12] + + NA - NA
KE et al. [68] - - NA - NA
Cremer et al. [31] + NA NA - -
Cano et al. [24] + + NA - NA

Table 1.1: Performances des systeme d’'indexation audio par extraction d’empreintes en
termes de abilite, robustesse, granularite, complexit & et passage a I'echelle.

Systemes References Test Precision | Rappe
Haitsma et al. [57] 4 chansons 4 chansons 100% 100%
Wang et al. [133] | 10,000 chansons 250 chansons NA 80%

Pinquier et al. [104] 32 jingles 10h radiodi usion 100% 98,5%
Baluja et al. [12] 10,000 chansons 1,000 chansons NA 97,9%
KE et al. [68] 1,862 chansons 220 chansons 93% 80%
Cremer et al. [31] | 15,000 chansons | 15,000 chansons NA 98%
Cano et al. [24] 50,000 chansons | 12h radiodi usion 100% 100%

Table 1.2: Comparaison des performances des systemes decrits dans la section 3.5.3, les
bases de reference et I’ensemble de test, precision et rappel.

- Rappel: le nombre de documents audio correctement detectees/ Le nombre de doc-

uments audio qui doivent &tre detectees.

La plupart des systemes d’indexation audio decrits dans les tableaux 1.1 et 1.2 sont
evalues sur un type speci que de contenu audio (musique o u jingle). De plus ces systemes
utilisent des protocoles d’evaluation prives rendant la comparaison entre eux impossible.

Danscettesection, un apercu desmethodes d’indexation audio par extraction d’empreintes
est presente. Ces systemes devraient repondre a certains criteres comme la granularite et la
precision. En outre, I'empreinte doit etrerobustea di erentes degradations que le signal au-
dio pourrait subir. Nous avons aussi montrée que ces systemes utilisent di erentestechniques
pour extraire I'empreinte et proposent plusieurs methodes de recherche des empreintes dans
la base de references.

Dans cette these nous proposons un systeme d’indexation audio generique capable

d’identi er simultanement les morceaux de musique, publi cites, tours de parole et les
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rires. Ce systeme sera evalue sur des bases privees et publiques, lors de la campagne
d’evaluation QUAERO 2010 [108] (Ramona et al., 2012) et la campagne devaluation
ETAPE 2011 [55] (Gravier €l al., 2012). Dans la section suivante, les pricipales contibutions
de nos travaux sont presentees. Elles concernent le module d’acquisition et modéelisation
des unites ALISP, le module de la recherche et comparaison des sequences ALISP et le

developpement du systeme generique d’indexation audio.

1.3 Contributions a I''ndexation Audio Non Supervisee

Les principales contributions de cette these peuvent &tre divisees en trois parties:

1. Améliorer les outils ALISP en introduisant une methode simple pour segmenter les
donnees d’apprentissage en segments stables. Cette technique, appelee segmentation
par stabilite spectrale, remplace la decomposition temporelle utilisee auparavant dans
lesoutilsALISP. Leprincipal avantage de cette methode est I'acceleration du processus

d’apprentissage non supervise des modeles HMM ALISP.

2. Proposer une technique e cace pour la comparaison et la recherche des sequences
ALISP utilisant I'algorithme BLAST et la distance de Levenshtein. Cette methode
accelere le processus de la recherche approximative des sequences de symboles sans

a ecter les performances du systeme d’indexation audio.

3. Proposer un systeme generique pour I'indexation audio pour les ux radiophonique
base sur la segmentation ALISP. Ce systeme est applique dans di erents domaines
d’indexation audio pour couvrir la majorite des documents audio qui pourraient &tre

presents dans un ux radio.

- identi cation audio: detection d’occurrences d’'un cont enu audio speci que

(musique, publicite) dans un ux radio;

- decouverte des motifs audio: detection des repéetitions des documents audio

dans un ux radio (musique, publicite);
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- segmentation et regroupement en locuteurs: segmentation d'un ux audio
en regions homogenes en fonction de I'identite des locuteurs a n de regpondre a
la question : "Qui parle quand”;

- detection de vocalisation non linguistiques: detection de sons non linguis-

tiques tels que les rires, soupirs, toux ou hesitation;

Comme I'on a souligne precedemment, les outils ALISP ont &te dgja utilises pour le
codage de la parole a tres bas debit, la reconnaissance du locuteur et de la langue et la
conversion de Voix.

L'objectif decettethese est d'exploiter lesinformations de haut niveau fournies par les
unites ALISP a n de developper un systeme d’indexation au dio generique et unsupervisee.

Notre methode consiste a segmenter les donnees audio en utilisant les modeles HMM
ALISP. La particularite des outils ALISP est qu’aucunes transcriptions textuelles ne sont
necessaireslors del'etape d apprentissage, et seulesles donneesaudio brutessont su santes.
De cette maniere, toutes les donnees audio sont transformees en une sequence de symboles,

appeles symboles ALISP. Ces symboles peuvent &tre utilises a des ns d’'indexation.

1.3.1 Amelioration des Outils ALISP

Une partie de nos travaux est liee a adapter et améliorer lesoutils ALISP al'egard de
la tache et les bases de donnees. Les améliorations que nous avons apportees concernent la
segmentation initiale faite par la decomposition temporelle. La decomposition temporelle
est utilisee pour obtenir une segmentation initiale et quasi-stationnaire des donnees audio.
Ces segment s sont regroupes en utilisant la quanti cation vectorielle. Ensuite, ces segments
ainsi que leurs etiquettes sont utilises comme transcription initiale pour la modéelisation de
Markov cache.

Dans cette section, d'autres methodes de segmentation sont explorees a n d’accelerer
le processus d'apprentissage des modeles ALISP et d’etudier I'in uence de la segmentation

initiale sur le systeme d’indexation audio. Ces methodes sont les suivantes:

» Segmentation uniforme : c'est I'approche la plus simple pour segmenter les donnees

audio. Elle consiste a segmenter les donnees audio en trame de taille egale.
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» Segmentation par stabilite spectrale : Le but de cette methode est de trouver les
regions stables du signal audio. Ces regions representent les segments spectralement
stables des donnees audio. Ce processus est e ectue en utilisant la courbe de stabilite
spectrale obtenue en calculant la distance euclidienne entre deux vecteurs MFCC

successives comme suit:

<

d= (Cij Cij+1)? (1Y

i=1
OuC;jj et Cjj+1 sont deux vecteurs MFCC successifs et n est leur taille. Les maxima
locaux de cette courbe representent les frontieres des segments alors que les minima

representent les trames " stables’ du signal audio.

» Segmentation phonetique : Cette methode consiste a utiliser des modeles HMM
phongtiques pour obtenir la segmentation initiale des donnees audio. Cette segmen-
tation est utilisee pour determiner si les modeles phonetiques pourraient &tre utilises
ades nsd’indexation audio. Les modeles HMM phongtique s sont appris avec la base
de donnees ESTER (base de donnees francaise de radiodi usion) [49] (Galliano et
al., 2009). Comme pour les modeles ALISP, chague phone (41 phones) est modelise
par un HMM gauche-droite ayant trois etats emetteurs sans sauts. La segmentation
phongtique remplace la decomposition temporelle et la quanti cation vectorielle. En
fait, la segmentation phonétique est utilisee en tant que transcription initiale pour la

modelisation de Markov cache.

Un ensemble de modeles ALISP est appris pour chaque technique de segmentation
initiale en utilisant une base de donnees d’apprentissage de 288 heures issues 12 radios
francaises. La gure 1.1 illustre le spectrogramme d'un extrait audio et les segmentations
obtenues avec chaque ensemble de modeles ALISP.

Cette guremontre quela segmentation par stabilite spect rale fournit la ssgmentation
la plus proche a celle fournie par la decomposition temporelle. D’autre part, les segmenta-
tions phonetiques et uniformes ne sont pas appropriees pour obtenir une segmentation en

region spectralement stables des donnees audio.
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Figure 1.1: Spectrogramme d'un extrait audio et les segmentations obtenues avec chaque
ensemble de modéles ALISP utilisant la decomposition temporelle (rouge), Segmentation
par stabilite spectrale (vert), segmentation uniforme (bleu), segmentation phonetique (gris).

En plus, pour acquéerir 32 modeles ALISP avec 288 heures de donnees audio, le temps

de traitement de compose comme sulit:
» 10 jours pour la decomposition temporélle;
e 7 jours pour la segmentation par stabilite spectrale;
e 6 jours pour la segmentation uniforme;
» 18 jours pour la segmentation phonétique.

Ce resultat montre qu’en remplacant la decomposition temporelle par la segmen-
tation par stabilite spectrale, le temps de traitement est diminue de 3 jours. D’autre
part, I'in uence des quatre methodes de segmentation sur | es performances du systeme

d’indexation audio propose sera etudiee dans les sections suivantes.
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1.3.2 Appariement Approximatif des Sequences ALISP

Le systeme d’indexation audio propose est compose de trois modules. acquisition et
modeélisation desunites ALISP, lemodule de segmentation ALISP et lemodules d’appariement
approximatif des sequences ALISP. Dansla section precedente, nous avons presente nos con-
tributions pour le premier et le deuxieme module. Dans cette section, une nouvelletechnique
de recherche approximative de sequence de symboles ALISP est proposee. Cette technique
est basee sur I'algorithme BLAST et la distance de Levenshtein.

Comme la principale exigence du systeme d’indexation audio est la robustesse aux
plusieurs types de distorsions, les sequences de symboles ALISP extraites du signal audio
n'est pas entierement identique aux sequences qui existent dans la base de references. De ce
fait, deux techniques d’appariement approximatif des sequences ALISP sont developpees. La
premiere est basee sur une recherche exhaustive (ou recherche brute), tandis que la seconde

technique est inspiree de la methode BLAST, utilisee generalement en bioinformatique.

1.3.2.1 Recherche Exhaustive

Dans cette methode les sequences ALISP extraites du ux radio continu sont com-
parees contre les transcriptions ALISP stockees dans la base de reference. Tout d’abord, les
transcriptions ALISP de chaque document audio de reference (ceux que nous allons chercher
dansle ux radio continu) sont calculees. Ensuite, le ux r adio detest est transforme en une
sequence de symboles ALISP. Une fois les transcriptions ALISP de reference et de donnees
de test sont obtenues, nous pouvons passer a I'etape d’'appariement. La mesure de simi-
larite utilisee pour comparer les transcriptions ALISP est la distance de Levenshtein. La
distance de Levenshtein mesure la similarite entre deux cha'nes de caracteres. Elle est egale
au nombre minimal de caractéeres qu'il faut supprimer, inserer ou remplacer pour passer
d’'une chd'ne a |'autre.

Pour commencer, lamethode de recherche utilisee dans notre systemeest treselementaire.
A chaqgue iteration on avance par une unite ALISP dansle ux radio de test et la distance
de Levenshtein est calculee entrela transcription de reference et la transcription de I'extrait

selectionne dans le ux radio. Au moment ol la distance de Levenshtein est inferieure a un
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certain seuil, cela signi e que nous avons un chevauchement avec la reference. Puis nous
continuons la comparaison en avancant par un symbole ALISP jusqu’'a ce que la distance
de Levenshtein augmente par rapport a sa valeur a l’iteration precedente. Ce point indique
I'appariement optimal, ou toute la reference a ete detectee.

A n d'accelerer la phase derecherche, une methode alter native d’appariement approx-

imatif des sequences ALISP, basee sur BLAST et la distance de Levenshtein, est developpee.

1.3.2.2 BLAST Algorithm

BLAST est un algorithme de comparaison de sequence biologique, telsqueles sequences
de nucleotides ou d’'acides amines. Une recherche BLAST permet de chercher une sequence
requete dans une base de donnees, et identi er les sequen ces de chanes de caracteres ayant
une mesure de similarite inferieur & un certain seuil.

Soit q la sequence de chane requéte, D la base de donnees et w une sous-cha'ne de
la sequence q. La premiere etape de I'algorithme consiste a construire un ”Lookup Table
(LUT)” qui contient toutes les sous-cha'nes dans D de longueur w. Chaque entree de LUT
pointe a la position de la sous-cha’ne dans la base D. Dans la deuxieme etape, pour chaque
sous-cha’ne de la sequence requéte g, une liste de sous-cha’nes est generee en utilisant le
LUT. Cetteliste contient toutes les sous-cha nes de longueur w avec un score de similarite
supérieur a un certain seuil T. La derniere etape de I'algorithme consiste a etendre chaque
sous-cha’ne candidate pour trouver I'alignement optimal avec la sequence requete g. Un
candidat est considere comme I'alignement optimal si son score de similarite avec la requéte
g est superieur a un certain seuil S. Dans notre cas, la requéte est une longue sequence
de symboles ALISP ou des occurrences de publicites et des morceaux de musique sont

recherchees. A n de resoudre ce probleme, I'algorithme BLAST a ete adapte comme suit.

1.3.2.3 Meéethode Proposee pour I’Appariement Approximatif

Le processus d’appariement approximatif illustre dansla gure 1.2 est propose. Tout
d’abord, un LUT est cree par toutes les sequences ALISP de longueur w mais avec un

decalage de k unites qui existent dans les transcriptions ALISP de la base de references.
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Cette base contient tous les documents audio que le systeme pourrait identi er, tels que des
morceaux de musique, des publicites, des tours de parole et des motifs audio.

Chaque entreede LUT pointe vers sa position dans le document de reference. Comme
une sequence ALISP peut se produire dans plusieurs references, une sequence ALISP peut

avoir plusieurs pointeurs et positions.

Requéte
ALISP LUT Element 1 Element N
Abkub5.rs SbkM8.f1 IlvMI2.w3 > dn5Hz.18
clépy..e9 dn5Hz.18 swk32.rq —> Abku6..rq
| | | |
| | | |
| | AbKu6.Tq |
jg0@c..40 [— | |
I
Abku6..Tq
jgP@c...4 k jgP@c..4k
I
I
I
fd4idi.4v

Figure 1.2: Appariement approximatif d’'une requete ALISP en utilisant un Lookup Table
(LUT) et une base de reference contenant N eements.

Ensuite, la transcription ALISP de la requete est calculee, et pour chaque sous-
sequence w avec un decalage de k de cette requete une liste de sous-sequences candidates
est genereeal’aidedu LUT. A partir de cette liste de sous-sequences, une liste de references
et la position dans laquelle les sous-sequences se produisent est creee.

Comme la base de reference est formee par la transcription ALISP de chaque docu-
ment audio, I'etape nale du processus de comparaison est di erente de celle de BLAST.
Elle consiste a une simple comparaison entre la transcription ALISP de la requéte au-

dio et les references candidates avec la distance de Levenshtein. La reference candidate
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ayant la distance de Levenshtein la plus faible et inferieure a un certain seuil est relative a

I’appariement optimale de la requéte audio.

1.3.3 Systeme Generique d’Indexation Audio a Base d'8R

L’'objectif principal de nostravaux est d'indexer et identi er la majorite des elements
audio presents dans un ux radio. Ces elements sont gen’eralement: la musique, publicite,
jingle, la parole et la vocalisation non linguistique (rire, toux, ...). A cette n, un systeme
d'indexation audio generique et unsupervise base sur la methode ALISP est developpe
et applique pour I'identi cation audio, la decouverte de m otif audio, la segmentation et
regroupement en locuteurs et la detection de rire. Bien que ces systemes soient di erents,
ils utilisent une architecture commune basee sur la methode ALISP. Comme le montre la
gure 1.3, cette architecture est composee de trois modules. modélisation et acquisition des

modeles ALISP, segmentation ALISP et appariement approximatif des sequences ALISP.

Figure1.3: Architecture generale du systeme generique d’'indexation audio a base d’ALISP.
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Dans cette section, les principales contributions de cette these ont ete presentees.
D’abord, nous avons montre qu’en remplacant la decomposition temporelle par la segmen-
tation par stabilite spectrale le processus d’'apprentissage des modeles ALISP pourrait &tre
accelere. Ensuite une methode d’appariement approximatif des sequences ALISP inspiree
de BLAST et la distance de Levenshtein est presentee. Enn, un systeme d’indexation
audio generique et unsupervise base sur ALISP est propose. Dans la section suivante, le
systeme d’indexation propose est evalue sur les taches d’identi cation audio, decouverte de

motifs audio, segmentation et regroupement en locuteurs et detection derire.

1.4 Evaluations et Resultats

Dans cette section, nous presentons les protocoles experimentaux et les resultats

obtenus pour les di erentes taches auxquelles le systeme d’indexation audio est applique.

1.4.1 Identication Audio

Le systeme d’'identi cation audio basee sur ALISP est util ise pour identi er les pub-
licites et les morceaux de musique dans les ux de radio. Pour evaluer ce systeme, deux
protocoles experimentaux sont proposes.

Le premier protocole, appele protocole YACAST, correspond a 12 journees radios

fournies dans le cadre du projet ANR-SurfOnHertz et divisees comme suit:

» Donnees developpement : 5 jours radios sont utilises pour etudier la stabilite des

transcriptions ALISP et xer le seuil de decision pour la di stance de Levenshtein.

» Donnees de reference: elles contiennent 2,172 publicites et 7,000 morceaux de

musique menant a 9,172 elements de reference.

 Donnees d’evaluation: 7 jours de trois radios frangaises. Ces jours sont di erents
de ceux utilises dans les donnees de developpement et dans le corpus d’apprentissage
de modeles ALISP. Ces donnees contiennent 1,456 publicites et 4,880 chansons a

identi er.
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| Systeme | R% | P% | Elements non identi es | Fausses alarmes |
Decomposition temporelle | 92 | 100 416 0
Stabilite spectrale 92 | 100 416 0
Segmentation uniforme N | 95 623 301
Segmentation phonetique | 85 | 87 942 806

Table 1.3: Rappd (P%), Precision (R%), nombre d’édements non identi es e¢ nombre de
fausses alarmes pour lesdi erentes techniques de segmentation avec le protocole YACAST.

L e deuxieme protocole, appele protocole QUAERO, a &te utilise lors de la campagne

d’evaluation QUAERO 2010 (http ://www.quaero.org/)). Il est decrit comme suit :
» Donnéees de developpement: les mémes que celles utilisees dans le protocole YACAST

» Donnéees de reference: elles contiennent 7,309 extraits de morceaux de musique ayant
une duree d’une minute chacune. La position de ces signatures dans les morceaux de

musique est inconnue.

» Donnees d'evaluation: 7 jours de la radio francaise RTL (dureetotale de 168 heures).

Ces enregistrements contiennent 551 morceaux de musique..

A nd’evaluer lesperformancesdenotresystemed’identi cation, lesmesuresderappel
(R%) et precision (P%) sont utilisees. Pour le protocole YACAST I'in uence des methodes
de segmentation initiale sur les performances du systeme propose est etudiee. Letableau 1.3
illustre les taux de rappel et precision pour chague methode de segmentation initiale.

Letableau 1.3 montre que pour les modeles ALISP HMM utilisant la decomposition
temporelleet lastabilite spectrale, le systemen’etait pasen mesured’identi er 416 elements.
Ces elements correspondent a 389 chansons et 27 publicitées.

Pour la musique, 372 morceaux sont lies a des chansons qui ont une version di erente
de celle presente dans la base de reference. Par exemple, nous avons trouve 302 morceaux
de musique "live” dans le ux radio, tandis que les referenc es associees sont interpretees
en version studio. Pour les publicites, les 27 elements non identi es sont di erents de leurs
references. Cesresultats montrent que le systeme propose permet de trouver les erreurs des

annotations manuelles de la musique et des publicites.
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| Systeme | R% | P% | Elements non identi es | Fausses alarmes |
Notre systeme 100 | 100 0 0
Fenet et al. [44] | 97.4 | 100 12 0
Ramona et al. [109] | 96.9 | 99 15 2
Yacast [108] 959 | 99 17 0

Table 1.4: Precision (P%), Rappd (R%), nombre d'@dements non identi es e¢ nombre de
fausses alarmes pour le protocole QUAERO 2010.

D’autre part, le systeme utilisant la segmentation uniforme a obtenu plus d’elements
non identi es et de fausses alarmes que ceux obtenus avec la d ecomposition temporelle et
la stabilite spectrale. De plus, les modeles ALISP bases sur la segmentation phongtique ont
obtenu les pires resultats. Cependant, ce systeme a correctement identi e tout les elements
audio ou la parole est la partie dominante.

Letableau 1.4 compare les performances de notre systeme par rapport a ceux partic-
ipant a la campagne devaluation QUAERO 2010. Notons que dans le protocole QUAERO
la reconnaissance d’interpretations di erentes du meme titre est consideree comme hors du
perimétre de I'identi cation audio.

Letableau 1.4 montre que notre systeme se comporte aussi bien que les systemes qui
ont participe a la campagne d’evaluation. De plus notre systeme a montre sa robustesse
a I'etirement temporel (plus connu sous le nom du "pitching”). En e et parmi les 459
morceaux de musique correctement identi es, 209 morceaux ont ete acceleres (ou ralentis)
jusgu’a 7% par rapport a leurs versions de references.

Relativement au temps necessaire pour les di erents modules, I'acquisition et la
modelisation des unites ALISP se fait horsligne. D’autre part, le temps necessaire pour La
transcription des ux audio avec les modeles ALISP est negl igeable. Par consequence, la
complexite de calcul du systeme est actuellement limitee a la recherche de la plus proche
sequence ALISP avec la distance de Levenshtein. Avec la methode de recherche exhaustive,
le temps necessaire pour traiter une seconde du signal detest est de six secondes alors qu’en
utilisant la nouvelle methode de recherche basee sur BLAST le temps de traitement est
reduit a 0.49 secondes avec 33 modeles ALISP et pour une base de references qui contient

9,000 eements avec une machine 3.00GHz Intel Core 2 Duo 4 Go de RAM.
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1.4.2 Decouverte des Motifs Audio Recurrents

Pour I'identi cation audio, le systeme dispose d'une base de references qui contient
les documents audio (musique, publicites) qu’il pourrait identi er. De ce fait un morceau
de musique ou une publicite qui n'a pas une reference ne pourrait pas etre identi e. C'est
le cas des nouvelles chansons et publicites qui sont di usees pour la premiere fois par les
radios. Ce genre de document audio est generalement joue plusieurs fois par la radio. Par
consequent, la detection desrepetitions d’elements audio (appele aussi decouverte des motifs
audio) dans les ux radio devrait conduire a la decouverte a utomatique des publicites et
des chansons sans avoir besoin d’une base de references.

La decouverte des motifs audio est generalement basee sur I’extraction d’empreintes
audio. Danscettethese, lesoutils ALISP sont utilisespour convertir le ux audio heterogene
(contenant de la musique, jingles, publicites, parole, etc.) en une sequence de symboles.
Ces symboles representent I'empreinte necessaire pour detecter les elements repetitifs dans
les ux audio. Par consequent, le probleme consistant a d ecouvrir les motifs audio est
transforme en un probleme de recherche approximative des sequences ALIPS qui serepetent.
Ceprobleme est traite a I’aide du systeme generique d’'indexation audio ou les outils ALISP
sont utilises pour calculer I'empreinte audio et la methode de recherche inspire de BLAST
et la distance de Levenshtein est utilisee pour accelerer la recherche motifs audio dans le
ux radio.

A n d’evaluer notre systeme pour cette tache, le protocole YACAST (utilise aussi
pour la tache d’'identi cation audio est utilisg). Dans ce protocole les donnees d’evaluation
se constituent de 7 jours de trois radios francaises qui contiennent 1,456 publicites et 4,880
chansons. Dans ces donnees, il existe 1,315 repéetitions pour les publicites et 3,081 pour la
musique. La moyenne des repetitions est de 2 pour les publicites et 4 pour la musique.

L evaluation du systeme propose pour la tache de la decouverte de motifs audio a ete
realisee avec les mesures de precision et rappel, exposees dans le tableau 1.5.

Pour la musique, le systeme n’etait pas capable de detecter 21 repetitions. Ces
repetitions sont liees a des morceaux de musique qui se chevauchent avec des tours de

parole, ce qui perturbe le processus de detection. D’autre part, I’absence de fausses alarmes
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Repetitions | R% | P% | repetitions non detectees | Fausses alarmes
Songs 3081 99 | 100 21 0
Ads 1315 98 | 99 14 6

Table1.5: Nombredergpetitions, precision (P%), rappel (R%), nombre des repetitions non
detectees et nombre des fausses alarmes, obtenu pour le protocole d'evaluation YACAST.

con rme le resultat obtenu pour la tache d’identi cation audio.

Pour les publicites, le systeme n'etait pas capable de detecter 14 repéetitions et a
obtenu six fausses alarmes. En fait, ces erreurs sont liees a la detection de deux repetitions
de deux publicites successives et une repéetition de trois publicites successives. Alors que
dans les transcriptions manuelles, ces publicites ont ete annotees comme motif distinct ce
qui a cause les erreurs de detection et les fausses alarmes.

D’autre part, en utilisant I'algorithme base sur BLAST, le systéme a besoin de 10
heures pour traiter les 24 heures de ux radio avec une machine 3.00GHz Intel Core 2 Duo
4 Go de RAM, tandis que pour la recherche exhaustive le temps est estime a 10 jours pour

traiter un jour de ux radio.

1.4.3 Segmentation et Regroupement en Locuteurs

Dans les taches d’'identi cation audio et la decouverte des motifs audio, le but etait
d’indexer et identi er les morceaux de musique et les publicites. Pour montrer la genericite
de notre systeme d’indexation audio, nous nous interessons a un autre type de document
audio, la parole, a travers la tache de segmentation et regroupement en locuteurs (appele
auss "diarization”).

La segmentation et regroupement en locuteurs a pour objectif de segmenter un signal
audio en regions homogenes selon I'identite des locuteurs an de repondre a la question
"Qui parle quand?’. Cette tache est composee generalement de deux etapes. Une etape
de segmentation qui consiste a trouver les frontieres des segments de parole homogenes en
detectant les points de changement acoustique. Les segmentent trouves devraient contenir
la parole d’'un seul locuteur ou un signal audio autre que la parole (silence, bruit, jingle,

musique, etc.). Dans I'etape de regroupement, les segments de parole ayant prononces par
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le méme locuteur sont etiquetes avec le meme identi ant.
Generalement, un systeme de segmentation et regroupement en locuteurs est compose

de quatre etapes :

» Parametrisation: lesignal audio est transforme en une sequence de vecteurs, generalement

les MFCCs

» Detection d'activite vocale: la segmentation du signal audio en segments de parole et

de non parole en utilisant les vecteurs calcules dans |'etape precedente.

» Segmentation: segmentation des regions de parole en segments homogenes (du meme

locuteur).
» Regroupement: classer les segments obtenus selon I'identite de locuteur.

Dans nos travaux, nous Nous sommes interesses par la segmentation et regroupement
en locuteurs des emissions radio et TV. Generalement, ces emissions ont tendance a garder
la méme structure avec les memes presentateurs, journalistes, e ets sonores, jingles, etc.
Cette redondance est utilisee pour améliorer la performance du systeme de diarization.

L’'idee principale de notre systeme est de comparer I'emission a segmentes avec la
meme emissions di usee a une date ultérieure a n de trouver les elements au dio similaires,
comme les tours de parole prononce par le meme locuteur, le silence, le bruit, les jingles,
la musique et les publicites. Cette operation est e ectuee par I'intermediaire du systeme
d’indexation audiobasesur ALISP. En e et, une sequence de symboles ALISP est extraitede
chague document audio stocke dans la base de references. Un extrait audio de test inconnu
est determine en comparant son empreinte ALISP avec celles de la base de references a
I’aide de notre algorithme de recherche approximative des symboles ALISP. Ensuite, les
segments identi es sont etiquetes selon leur nature (parole, jingle, silence, etc.), determinee
avec les elements de la base de references. Tandis qu'une gtiquette "inconnu” est attribuee
aux segments non identi es. En n lesignal du test pre-et iquetée est traite avec un detecteur
d’activite vocale, un module de segmentation et un module de regroupement.

Ce systeme a ete evalue lors de la campagne d'evaluation ETAPE 2011 [55] (Gravier

el al., 2012). Cette campagne d’evaluation vise a evaluer les di erents systemes de traite-
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| Genre | Train | Dev | Test | Sources
Journaux TV 7h30 | 1h35 | 1h35 | BFM Story, Top Questions (LCP)
Debats TV 10h30 | 2h40 | 2h40 | Pile et Face, Ca vous regarde
Entre les lignes (LCP)
Varietes TV - 1h05 | 1h05 | La place du village (TV8)

Emissions Radio | 7h50 | 3h00 | 3h00 | Un temps de Pauchon, Service Public

Le masqgue et la plume, Comme on nous parle
Le fou du roi

Total 25h30 | 8h20 | 8n20 | 42h10

Table 1.6: Basede donnees ETAPE : apprentissage (train), developpement (dev), evaluation
(test) [55].

ment de la parole a travers la reconnaissance automatique de la parole, la segmentation et
regroupement en locuteurs, la detection de la parole multiples et la detection des entites
nommes.

Comme le montre le tableau 1.6, les donnees ETAPE sont divise en trois sous-corpus.
Notez que le nombre d’heures sont rapportes en termes d’enregistrements, et non de tours
de parole. Plus precisement 77 % des enregistrements contiennent de la parole. La mesure
d’evaluation utilisee est le Diarization Error Rate (DER).

Letableau 1.7 donnelesvaleurs DER pour le systeme debase (sans|’etaped’indexation
audio basee sur ALISP) et le systeme propose. Ce tableau montre que I'introduction du
systeme d’'indexation audio basee sur ALISP a améliore les performances du systeme de
diarization pour toutes les emissions TV et radio. Cependant, ces améliorations ne sont
pas signi catives pour toutes les emissions. Pour I'emission " LCP-TopQuestions-213800"
I'améelioration relative de la DER est 84,62%, tandis que pour I'emission "EST 2BC-ENG-
FR-0910" elle est de 5,38 %. D’une facon plus generale, I'amélioration globale relative est
de 34.37% et I’amélioration absolue de 8.5%.

D’autre part, notre systeme a eu les meilleures performances lors de la campagne
d’evaluation ETAPE 2011, sachant que 7 institutions ont participe a la tache de diarization
dans cette campagne et que le plus grand DER &tait de 29.32%.
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Emission Baseline ALISP

BFMTV-BFMStory-175900 19.30 15.87 (-17.77%)
L CP-CaVousRegarde-235900 20.70 12.60 (-39.13%)
LCP-EntreLesLignes-192800-1 24.77 17.31 (-30.11%)
LCP-EntrelesLignes-192800-2 27.19 18.48 (-32.03%)

LCP-PilesEt Face-192800 28.42 | 19.76 (-30.04%)
LCP-TopQuestions-000400 3546 | 29.55 (-16.66%)
LCP-TopQuestions-213800 1587 | 2.44 (-84.62%)

TV8-LaPlaceDuVillage-201300 | 37.86 22.27 (-41.22%)
TV8-LaPlaceDuVillage-172800 | 35.82 20.40 (-43.04%)

EST 2BC-FRE-FR-1000 14.55 13.75 (-5.49%)
EST2BC-FRE-FR-1750 30.41 | 22.93 (-41.81%)
EST2BC-FRE-FR-2152-1 41.83 | 27.34 (-34.64%)
EST2BC-FRE-FR-2152-2 2991 | 23.93(-19.99%)
EST2BC-FRE-FR-0910 8.73 8.26 (-5.38%)
EST2BC-FRE-FR-2004 2113 | 15.48 (-26.73%)
ETAPE-2011 24.73 | 16.23 (-34.37%)

Table 1.7: DER du systeme de base (baseline) et le systeme propose (ALISP) avec le
protocole d'evaluation ETAPE 2011.

1.4.4 Detection du Rire

Dans les sections precedentes, le systeme d’indexation audio basee sur ALISP a ete
applique sur I'identi cation audio et la decouverte de mot ifs audio pour la musique et les
publicites, et la segmentation et regroupement en locuteurs pour la parole. Dans cette
section, une categorie di erente de document audio, appelee vocalisation non linguistique,
est etudiee.

Malgretouslese ortsdeployesau coursdesdeux dernieresdecenniesdansles systemes
de reconnaissance de la parole, la detection des vocalisations non linguistiqgues comme le
rire, le soupire, la respiration, I’hesitation semble encore une tache di  cile cite Weninger-
ICASSP 2011 (Weninger et al., 2011). Ces vocalisations sont plus frequentes dans les
emissions radio et TV ou dans les conversations quotidiennes.

Dans nos travaux, nous nous interessons a un type de vocalisation non linguistique
bien precis qui est lerire. Lerire est un type de vocalisation non linguistique complexe qui
communique des messages avec des signi cations di  erentes. En outre, lerire est un signal

tres variable (variabilite intra-locuteur et iner-locuteur).
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O

Figure1.4: Segmentation ALISP d’un signal derire obtenu par lesmodeles ALISP originaux
(rouge) et par les ensembles de modeles speci ques (bleu) . Les symboles commencant par
'L’ sont speci que au rire et les autres symboles sont speci ques aux elements audio autre
gue le rire. Le symbole marque par un cercle est une erreur de transcription qui pourrait
etre corrigee automatiquement avec un systeme de lissage.

Vu cettevariabilite, une etape d’adaptation est ajoutee au systemed’indexation audio
basee sur ALISP pour améliorer les performances du systeme de detection du rire. Apres
avoir apprisles modelesHMM ALISP originaux sur le corpus d’apprentissage YACAST (qui
on ete utilises pour toutes les taches precedentes), deux ensembles speci ques de modeles
HMM sont adaptes. Le premier est obtenu en adaptant les modeles ALISP originaux avec
un corpus du rire et le deuxieme avec un corpus qui ne contient pas derire.

Les deux ensembles de modéeles obtenus sont utilises pour transformer le signal audio
en une sequence de symboles en utilisant I'algorithme de Viterbi. La gure 1.4 illustre le
spectrogramme d’un signal du rire e les transcriptions obtenus avec les deux ensembles de
modeles speci ques.

Apres avoir transcrit le signal audio en symboles ALISP spéci que au rire et au non
rire, une etape de lissage est realisee pour corriger les eventuelles erreurs de transcriptions
comme le montre la gure 1.4.

A n d’evaluer le systeme propose, les trois bases de donn ees publiques, SEMAINE-

DB [86] (McLeown €t al., 2012), AVLaughterCycle [130] (Urbain et al., 2010) et Mahnob
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laughter database [100] (Petridis et al., 2013) ont &te utilisees. De plus, nous avons compare
notre systeme par rapport a des systemes bases sur des modelisations GMM et HMM.

Le tableau 1.8 montre la precision, le rappel et la F-mesure obtenus pour les di erentes

méethodes.
[%0] Precision | Rappel | F-measure
GMMs 70.8 78.6 745
HMMs en serie 85.7 86.3 86.0
HMMs ergodique 92.8 84.5 88.5
ALISP-adapt 88.6 90.9 89.7
ALISP-adapt-sm3 92.4 92.7 92.6
ALISP-adapt-sm5 94.3 93.9 94.1

Table 1.8: Taux de precision, rappel et F-mesure pour les methodes: GMM, HMM en serie,
HMM ergodique, le systeme propose sans lissage (ALISP-adapt), le systeme propose avec
une fenetre de lissage de taille 3 (ALIPS-sm3) et le systéme propose avec une fenétre de
lissage de taille 5 (ALIPS-smb5).

Parmi les modéles acoustiques globaux, lesHMM ergodiques performent mieux que les
GMM et lesHMM en serie. Les HMM ergodiques montrent une grande precision (92,8%) a
localiser lesregions du rire, tandis que lesHMM en serie sont relativement mieux en rappel
(86,3%). En se comparant avec ALISP-adapt, les HMM ergodiques sont toujours mieux de
4,2% de Precision. Cependant, ALISP-adapt obtient de meilleurs resultats en termes de
F -mesure par rapport aux HMM globaux.

D’autre part, les modeles ALISP HMM avec une fenetre de lissage o rent une ex-
ibilite supplementaire pour corriger les valeurs aberrantes a I'aide d’'un systeme de vote
majoritaire smple. Par consequent, ALISP-adapter-SM3 et ALISP-adapter-sm5 montrent
respectivement une améelioration en termes de F-mesure par rapport a ALISP-adapter de
2,9% et 4,4%. Dans I'’ensemble, ALISP-adapter-sm5 a obtenu des performances relative-

ment mieux que toutes les autres approches teste dans nos travaux.
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1.5 Conclusions et Perspectives

Dans cette these, nous avons propose un systeme generique d’'indexation audio pour
identi er lamajorite des documents audio presentsdansu n ux radio. Ces documents sont:
la musique, les publicites, la parole et les vocalisations non linguistiques (comme lerirg, la
toux, lavue, ...). De ce fait, le systeme d’indexation audio base sur la methode ALISP est
applique pour di erentestaches qui sont : I'identi cation audio, decouve rte de motifs audio,
segmentation et regroupement en locuteurs et la detection du rire. Le systeme propose se

compose de trois modules:
» Acquisition et modelisation des unites ALISP d’une maniere unsupervisee

» Segmentation (aussi appelee transcription) ALISP, qui transforme les donnees au-
dio en une sequence de symboles (en utilisant les modé&les de Markov caches ALISP

precedemment acquis).

» Comparaison et decision qui comprend les algorithmes correspondants a la recherche
approximative des sequences de symboles inspirees de la technique BLAST (Basic

Local Alignment Search) et la distance de Levenshtein

Les principales contributions de cette these peuvent &tre divisees en trois parties:

1. Améliorer les outils ALISP en introduisant une methode simple pour segmenter les
donnees d’'apprentissage en segments stables. Cette technique, appelee segmentation
par stabilite spectrale, remplace la decomposition temporélle utilisee auparavant dans
lesoutilsALISP. Leprincipal avantage de cette methode est I'acceleration du processus

d’apprentissage non supervise des modeles HMM ALISP.

2. Proposer une technique e cace pour la comparaison et la recherche des sequences
ALISP utilisant I'algorithme BLAST et la distance de Levenshtein. Cette methode
accelere le processus de la recherche approximative des sequences de symboles sans

a ecter les performances du systeme d’indexation audio

3. Proposer un systeme generique pour I'indexation audio pour les ux radiophonique

base sur la segmentation ALISP. Ce systeme est applique dans di erents domaines
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d’indexation audio pour couvrir la majorite des documents audio qui pourraient &tre

presents dans un ux radio.

L evaluation du systeme pour latached’identi cation a udio en utilisant le protocole QUAERO
2010, montre la robustesse de I'empreinte ALISP par rapport aux autres systemes. Pour la
decouverte de motif audio les resultats experimentaux montrent que le systeme propose est
auss performant que les systemes utilisant les empreintes audio pour detecter des objets
repetitifsdansles ux deradio. Pour latachedediarization le systeme a ete evalue au cours
de la campagne d’'evaluation ETAPE 2011 et a obtenu les meilleurs resultats parmi les 7
participants. En n pour la detection de rire, les moddes HMM fournis par les outils AL-
ISP ont obtenu de meilleurs resultats par rapport aux systeme utilisant des modélisations
acoustiques globaux (GMM , HMM en serie, HMM ergodique ).

Les directions possibles de poursuite de ces travaux sont les suivantes. Tout d'abord,
lesinformations semantiques provenant des systemes de reconnaissance dela parole pourront
etre exploitees pour améliorer les performances du systeme de segmentation et regroupe-
ment en locuteurs. De plus, un traitement parallele pourrait etre e ectue an d’accelerer
le processus d’'indexation et identi cation. En e et, le systeme propose d’'indexation audio
pourrait &tre integre dans un autoradio ce qui necessite un traitement simultane de plusieurs
stations radio. En outre, le calcul des MFCC, I'algorithme de Viterbi et la recherche ap-
proximative des sequences ALISP seront etudies a n de detecter la partie qui pourrait &tre
parallelise et mis en oeuvre a I'aide des processeur graphique (GPU). En n, le systeme
propose pour la detection des vocalisations non linguistiques pourrait &tre aussi appliques
pour la detection des sons domestiques, telles que la fermeture des porte et le bruit des

machines.
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Chapter 2

General Introduction

2.1 Context and Motivation

For many decades, audio processing technologies have simpli ed the storage and ac-
cessibility to data. Actually, millions of audio documents are listened and hundreds of them
are created every day. For example, more than 1 billion unique users visit YouTube each
month and over 6 billion hours of video are watched each month on YouTube, that’s almost
an hour for every person on Earth®. However, there are not a lot of audio classi cation and
retrieval tools to index, manage and characterize these data. Accordingly, few applications
are developed to help users to search and browse the audio contents.

It was predictable that many researchers and industrials started focusing on audio
indexing. There are some existing applications such as song classi cation, advertisement
(commercial) detection, speaker diarization and identi cation, with various systems being
developed to automatically analyze and summarize audio content for indexing and retrieval
purposes. Within these systemsaudio data aretreated di erently depending on the applica-
tions. For example, song identi cation systems are general ly based on audio ngerprinting
using the energy and the spectrogram peaks such as SHAZAM and Philips systems. While
speaker diarization and identi cation systems are using cep stral features and machine learn-

ing techniques such as Gaussian Mixture Models and/ or Hidden Markov Models.

hitp:/Avw.youtube.comiyt/press/statistics.html
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However, the diversity of the audio indexing techniques makes unsuitable the simulta-
neous treatment of audio streams where di erent types of audio content coexist. For exam-
plein radio streams, many types of audio data are found. These data are usually related to
songs, commercials, jingles, speech and nonlinguistic vocalizations (such as laughter, sights
and coughs). Therefore, a generic framework for audio indexing, retrieval and recognition
is needed.

In this thesis we report our recent e ortsin extending the ALISP (Automatic Lan-
guage Independent Speech Processing) approach developed for speech as a generic method
for audio indexing, retrieval and recognition. ALISP is a data-driven technique that was
rst developed for very low bit-rate speech coding, and then su ccessfully adapted for other
tasks such as speaker veri cation and forgery, and language id enti cation. The particularity
of ALISP tools isthat no textual transcriptions are needed during the learning step, and
only raw audio data issu cient. In such a way any input speech data is transformed into

a sequence of arbitrary symbols. These symbols can be used for indexing purposes.

2.2 Audio Indexing: Problematic

Audio indexing denotes the step in which relevant information is retrieved from un-
known audio data. As shown in gure 2.1, such information, also referred as descriptive
metadata, is usually linked to the type of audio content. Obtaining these metadata man-
ually is tedious, time consuming, subjective and error-prone. Therefore, many systems are

developed to automatically generate this information using minimal human intervention.

2.3 Contributions

As pointed out before, the general aim of this thesis is to use high-level information
provided by ALISP tools for indexing purposes. In speech processing, high-level informa-
tion represents the set of information that re ects the behavioral traits such as prosody,
phonetic information, pronunciation, idiolectal word usage, conversational patterns, topics

of conversations, etc. The main contribution of thisthesisis the exploitation of the ALISP
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Figure 2.1: Audio indexing system.

approach as a generic method for audio (and not only speech) indexing and recognition.
To this end, an audio indexing system based on the ALISP technique is introduced. The

proposed architecture is composed of three modules:

- Automated acquisition (with unsupervised machine learning methods) and Hidden

Markov Modeling (HMM) of ALISP audio models.

- Segmentation (also referred as sequencing and transcription) module that transforms
the audio data into a sequence of symbols (using the previously acquired ALISP
Hidden Markov Models).

- Comparison and decision module, including approximate matching algorithms in-
spired form the Basic Local Alignment Search (BLAST) tool widely used in bioin-
formatics and the Levenshtein distance, to search for a sequence of ALISP symbols of

unknown audio data in the reference database (related to di erent audio items).

Our main contributions in this Ph.D can be divided into three parts:
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1. Improving the ALISP tools by introducing a simple method to nd stable segments
within the audio data. This technique, referred as spectral stability segmentation, is
replacing thetemporal decomposition used before for speech processing. The main ad-
vantage of this method isits computation requirements which are very low comparing

to temporal decomposition.

2. Proposing an e cient technique to retrieve relevant information from ALISP se-
guences using BLAST algorithm and Levenshtein distance. This method speeds up

the retrieval process without a ecting the accuracy of the audio indexing process.

3. Proposing a generic audio indexing system, based on data-driven ALISP sequencing,
for radio streams indexing. Thissystem isapplied for di erent elds of audio indexing

to cover the majority of audio items that could be present in a radio stream:

- audio identi cation: detection of occurrences of a speci ¢ audio content (mu-

sic, advertisement, jingle) in a radio stream;

- audio motif discovery: detection of repeating objectsin audio streams (music,

advertisement, and jingle);

- speaker diarization: segmentation of an input audio stream into homogenous
regions according to speaker’s identities in order to answer the question: "Who

spoke when?”;

- nonlinguistic vocalization detection: detection of nonlinguistic sounds such

as laughter, sighs, cough, or hesitation;

2.4 Thesis Structure

The thesis is organized as follows:

Chapter 2: State of the Art of Data-driven Speech Processing and Audio
Indexing, focuses on the state of the art of data-driven speech processing and audio index-
ing. An overview of the techniques used to extract relevant information from unannotated

speech data without using any linguistic information and rules is reported. Moreover the
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ALISP data-driven segmentation method is presented. Finally a literature review of audio
indexing systems based on ngerprinting is given.

Chapter 3: Databases, describes all the databases used in our work. They include
the audio corpus provided by YACAST? that is used to train the ALISP models and to
evaluate the ALISP-based audio indexing systems. Then, the ETAPE database used in
the evaluation campaigns for automatic speech processing is described. Next, the MOBIO
database exploited to evaluate our speaker veri cation system is presented. Finally, the
databases needed for laughter detection are described.

Chapter 4: Contributionsto Data-driven Audio Indexing, presentsthe main
contributions of our work. The rst contribution isrelated to the ALISP segmenter where
the temporal decomposition is replaced by a simpler technique to nd stable segments
within the audio data. Second, an e cient technique to retrieve relevant information from
ALISP sequencesis proposed. Third, a generic audio indexing system, based on data-driven
ALISP sequencing is developed, to cover the majority of audio items that could be present
in a radio stream (song, advertisement, audio motif, speaker turn, laughter).

Chapter 5. Audio Identi cation, presents the ALISP-based a udio indexing sys-
tem applied to the audio identi cation task. Experimental studies about the number of
Gaussian components, number of ALISP units and the method used for the initial segmen-
tation are reported. Moreover, a comparison of the performances of our system with the
systems participating in the 2010 QUAERO evaluation campaign is given.

Chapter 6: Audio M otif Discovery, describestheexploitation of the ALISP-based
audio indexing system for audio motif discovery. Related works to audio motif discovery
are presented. In addition, the evaluation of the proposed method is given. This evaluation
involves repeating songs and advertisement detection in radio streams.

Chapter 7: Speaker Diarization, reportsthe use of the ALISP-based audio index-
ing systems to perform speaker diarization. First, an overview of methods used for speaker
diarization isgiven. Moreover, the performances of the proposed system in the ETAPE 2011

evaluation campaign are given. Finally, the evaluation of the proposed speaker veri cation

2 http:/Aww.yacast frffrindex.html
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system in the MOBIO 2013 evaluation campaign is reported.

Chapter 8: Nonlinguistic Vocalizations Detection, deals with the detection
of laughter using the high-level information provided by the ALISP segmenter. A generic
framework to detect nonlinguistic vocalizations is proposed. The evaluation of the system
is performed on three publicly available databases.

Finally, Chapter 9 closes this thesis with conclusions, discussions and perspectives.
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Chapter 3

State of the Art of Data-driven
Speech Processing and Audio

Indexing

3.1 Introduction

The main purpose of our work is to exploit data-driven approaches, usually applied
for speech processing, to develop a generic audio indexing system. In this chapter two
states of the art are reviewed. The rst oneisrelated to data -driven approaches for speech
processing while the second one deals with audio indexing.

Two categories of speech and language processing systems could be found in the

literature:
» Supervised systems that use linguistic information and rules.

» Unsupervised systems that exploit machine learning techniques to extract relevant

information from a set of representative examples.

The rst category requires the availability of a number of li nguistic information, such
as phonetic inventories, lexicons and language models, and annotated training corpora con-

sisting of manual transcriptions of speech data. While such systems have proven its robust-
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ness and e ectiveness for many problems where the human contributions are essential and

labeled speech data are easy available, they have many disadvantages, such as.

» Language dependency: supervised systems are developed for a speci ¢ language, which

make them not portable across languages.

* Human e ort: signi cant human expertise is required to acquire the k nowledge base

such as pronunciation lexicon and labeled speech data.

» Diversity of linguistic models: representing all linguistic rules and phenomena using

a common theory of linguistic seems to be impossible.

On theother hand, unsupervised systems (also referred as data-driven systems or zero
resource systems) do not require transcriptions, annotations nor prior linguistic knowledge.
The amount of available speech data, such as broadcast news archives, radio recordings,
podcastsor variousinternet mediaisconstantly increasing. Therefore, most of these systems
exploit machine learning techniques to automatically determine the linguistic units and
information required from representative examples of data.

The second part of this chapter deals with audio indexing. Audio indexing denotes
the step in which relevant information are retrieved from unknown audio data. In our work
we are interested in a particular eld of audio indexing, whi ch is the audio identi cation
(known also as audio detection or audio information retrieval).

Audio identi cation involves detecting (and eventually locat ing) occurrences of a spe-
ci ¢ audio content (music, advertisement, jingle,...) in audio streams or audio database.
In the literature the majority of proposed audio identi cat ion systems rely on the same
underlying concept: audio ngerprinting. An audio ngerpr int is a compact content-based
signature that represents an audio recording. Thistechnique consists of two parts. a nger-
print extraction module and a comparison module. First a ngerprint isextracted from each
audio document stored in a reference database. An unlabeled audio excerpt isidenti ed by
comparing its ngerprint with those of the reference databa se.

In this chapter, the state of the art of unsupervised techniques for speech processing

is reviewed. Then the adopted data-driven system based on the Automatic Language In-
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dependent Speech Processing (ALISP) method is detailed. After that an overview of the
application of the ALISP approach to speech processing, in particular, very low bite rate
speech coding, speaker veri cation, voice forgery and languag e identi cation is presented.

Finally aliterature review of audio indexing based on nger printing techniquesis presented.

3.2 Toward Unsupervised Techniques for Speech Processing

Automatic Speech Recognition is the most mature eld of speech processing. De-
veloping speech recognition systems requires the availability of large speech corpora with
the corresponding world-level annotations. Huge linguistic resources associated with the
constantly increasing computational and storage power have signi cantly reduced the word
error rates on increasingly challenging tasks is speech processing [16] (Beyerlein et al.,
2002) [84] (Martin and Garofolo, 2007) [38] (Deligne et al., 2002).

Supervised techniques provide good performances for scenarios where human exper-
tise and annotated data are available. However, they remain ine ective when transcribed
data are not available. Therefore, many frameworks are proposed to develop increasingly
unsupervised data-driven systems which are less reliant on linguistic expertise and anno-
tated corpora.

In [53] (Glass, 2012), speech processing techniques are divided into four groups de-
pending on the scenario for which they are applied. Each scenario requires decreasing
amount of human expertise and annotated resources, and increasing amount of unsuper-

vised learning. These groups are illustrated in gure 3.1 [53] (Glass, 2012).

3.2.1 Expert-based Speech Processing

Expert-based speech processing denotes systems that use human expertise associated
with annotated speech corpora. Human expertise is often provided in the form of a pro-
nunciation lexicon that gives the relation between vocabulary words and their associated
sub-word unit realizations. This scenario represents the most developed speech recognition
system using the Hidden Markov Model (HMM) to represent the speech data [11] (Baker
et al., 2009).
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Figure 3.1: Potential scenarios for speech processing depending on human expertise and
unsupervised training.



3.2. TOWARD UNSUPERVISED TECHNIQUES FOR SPEECH
PROCESSING 57

3.2.2 Data-based Speech Processing

Data-based speech processing systems aim to learn the pronunciation lexicon and
provide automatically linguistic information, if no language expert knowledge (e.g. phonetic
transcriptions) is available or a ordable.

In [70] (Killer et al., 2003) the authors automatethe pronunciation dictionary creation
process for languagesthat have straightforward world-to-sound mappings (English, Spanish,
German). A grapheme-based approach is proposed to develop a speech recognition system.
Pronunciation dictionaries for grapheme based recognizers are built by simply splitting a
word into its graphemes. Each grapheme is modeled by a 3-state Hidden Markov Modél
(HMM) consisting of a begin, a middle, and an end-state. The evaluation of this system
shows that English has the worse correspondence between phonemes and graphemes while
the best one isrelative to Spanish language.

When a straightforward letter-to-sound mapping is not possible, a pronunciation mix-
ture model could be used to perform a grapheme-to-phoneme conversion [10] (Badr et al.,
2011). A joint-multigram approach [19] (Bisani and Ney, 2008) is employed to model the
relationship between graphemes and phonetic units and to build a pronunciation mixture
model. The evaluation of this approach shows that learned lexicons outperform expert,
hand-crafted lexicons for a weather information retrieval spoken dialogue system and for
the academic lectures domain.

Data-based scenarios could also involve the combination of annotated data from sev-
eral languagesto easily adapt the speech processing parametersto a new language[118] (Schultz
and Kirchho , 2006). Moreover, in [54] (Gollan et al., 2007), the authors propose to com-
bine untranscribed and transcribed data to improve the performances of a speaker adaptive
acoustic model. Furthermore in [94] (Novotney et al., 2009), initial models are trained
from a small amount of transcribed data. Then these models are used to decode a larger
amount of speech data. Finally, new models are iteratively learned from these automatic

transcripts.
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3.2.3 Decipher-based Speech Processing

A more challenging scenario consists of building an automatic speech processing sys-
tem from speech only corpus combined with non-parallel text data. The decipher-based
speech processing systems represent a major breakthrough from conventional speech recog-
nition systems.

In the last few years, many systems are developed to automatically extract useful
information from not annotated speech data. This scenario is generally referred to a zero
resource scenario. Most of these systems are used to identify word-like patterns in the
speech signal by extracting recurrent speech sequences.

In [97] (Park and Glass, 2008), an unsupervised speech pattern discovery framework
is proposed. It is based on a segmental variant of Dynamic Time Warping, which is used
to search for matching acoustic patterns between spoken utterances. Similar acoustic se-
guences are grouped together to form clusters corresponding to lexical entities such aswords
and short multiword phrases. The evaluation of the proposed system on a corpus of aca-
demic lecture material showsthat the obtained clusters are relevant to summarize the audio
stream.

Muscaridlo et al. [92] (Muscariello et al., 2012) develop a similar system to extract
speech motifs or patterns by unsupervised word discovery. The proposed system is based
on a template matching technique to identify recurrent acoustic segments (using segmental
Dynamic Time Warping metric combined with self-similarity matrix). A searching strategy
based on the ARGOS framework [61] (Herley, 2006) to detect repetitions is designed. It
consists of a sequential algorithm to nd repetition in audi o stream. First, the speech signal
is divided into two parts. the query pattern and the past stream. Then the query pattern
is searched in a library of motifs that are already extracted. After that, if a positive match
is found a new occurrence of the corresponding motif is created, otherwise the pattern is
searched in the past stream. Finally, if a positive match is found in the past stream, an
extension of the query matching is performed to nd the entir e occurrence. The proposed
system is evaluated on a French radio broadcast data and shows good results.

Another system using a Gaussian posteriorgram based representation for unsuper-
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vised discovery of speech patterns is proposed by [136] (Yaodong and Glass, 2010). This
framework is composed of three steps. First a Gaussian posteriorgram technique is per-
formed to train an unsupervised Gaussian Mixture Model and associates each speech frame
with a Gaussian posteriorgram representation. Then the segmental Dynamic Time Warp-
ing metric is used to detect similar sequences of Gaussian posteriorgram vectors. Finally a
graph clustering procedure is carried out to group similar segments into clusters.

In addition to systems described above, many other frameworks are developed to
detect automatically speech patterns in large audio corpora. In [122] (Siu et al., 2011)
an unsupervised Hidden Markov Model-based recognizer system is built to convert speech
datainto self-organized units which are used to detect common audio patterns. Moreover an
unsupervised speaker recognition system is proposed in [67](Kanthak and Ney, 2003), that
combines grapheme-based units with multilingual acoustic modeling. Furthermore, a Polish
speech recognition system is developed by combining the exploitation of the cross-language
bootstrapping and con dence based unsupervised acoustic m odel training [79] (Loof et al.,
2009). In addition, a multigram model is proposed in [37] (Deligne et Bimbot, 1997) to re-
trieve sequential variable-length regularities within streams of text data, which are exploited
for automatic speech recognition. Speech motif discovery is useful for several applications,
including spoken term detection [91] (Muscariello et al., 2011), nonnegative convolutive
sparse coding [134] (Wang et al., 2011), topic segmentation [82] (Malioutov et al., 2007),
topic classi cation [ 51] (Gish et al., 2009), spoken corpus summarization [60] (Harwath et
al., 2013) and unit learning [64] (Jansen and Church, 2011).

In [28] (Chollet et al., 1999), a data-driven system, referred as Automatic Language
Independent Speech Processing (ALISP) isproposed. ALISP method consistsin segmenting
the speech into data-driven speech units, denoted in this chapter and in the followings as
ALISP units (or data-driven units or pseudo-phonemes). These units are automatically
determined from the training corpus with no need of phonetic transcriptions and textual
annotations of the corpus. As pointed out before, our objective through this thesis is to
exploit high-level information for audio indexing by using data-driven units. To this end,

we selected Automatic Language Independent Speech Processing (ALISP) tools as they
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are versatile and have already been used in di erent applications for speech processing. A

detailed description of these tools is given in section 3.3.

3.2.4 Sensor-based Speech Processing

In the sensor-based speech processing scenario, speech data are associated with other
modalities such as vision. Most of the systems belonging to this category are relative to
human-machine interaction. Theaim isto jointly learn linguistic and perceptual models of
semantic concepts [114] (Roy and Pentland, 2000). For example, it would be appropriate

to teach robots new concepts through spoken interactions in a new environment.

3.3 Data-driven ALISP Segmentation

In the previous section, we described many techniquesthat are used to acquirerelevant
information from untranscribed speech data. For our work, we decided to use the ALISP
method to exploit the resulting data-driven units for audio indexing purposes.

ALISP tools are selected as they are versatile and have already been used in di erent
applications. First, they were used in Very Low Bit Rate coding based on recognition-
synthesis [26] (Cernoky, 1998) [96] (Padellini et al., 2005). The second application was the
use of those units for segmental speaker veri cation [ 40] (EIHannani et al., 2009) [39] (El-
Hannani, 2007) [102] (Petrovska-Delacretaz et al., 2000). Then, it was applied for voice
forgery [99] (Perrot et al., 2005). They were also exploited for automatic language identi -
cation [29] (Chollet et al., 2005).

Theset of ALISP unitsisautomatically acquired through parameterization, temporal
decomposition, vector quantization, and Hidden Markov Modeling as shown in gure 3.2.

We detail hereafter each component of the gure.

3.3.1 Parameterization

The parameterization of audio data is done with Mel Frequency Cepstral Coe cients

(MFCCQC), calculated on 20 ms windows, with a 10 ms shift. For each frame, Hamming
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Figure 3.2: Automatic Language Independent Speech Processing (ALISP) units acquisition
and their HMM modeling.

window is applied and a cepstral vector of dimension 15 is computed and appended with

rst and second order deltas.

3.3.2 Temporal Decomposition

After the parameterization step temporal decomposition is used to obtain an initial
segmentation of the audio data into quasi-stationary segments. This method is introduced
originally by Atal [8] (Atal, 1983) as nonuniform sampling and interpolation procedure for
e cient parameter coding.

Temporal decomposition approximates a matrix X of N successive parameter vectors
of dimension P by H target vectors ay, with associated interpolation functions p(t)). The

trajectory of xP , the p'" parameter of the t'" frame, is approximated as follows:

%= ap n(t) p={1 P} (3.2)
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The previous equation can be written more compactly using matrix notation:

X =A (3.2)

where X is the approximated parameter matrix, A is the target-vectors matrix, and
isthe interpolation functions matrix.

The procedure to nd targets and interpolation functions co nsists of the following

steps:

1. Initial search of interpolation functions using adaptive rectangular window and local

singular value decomposition.

2. Post-processing of interpolation functions. smoothing, de-correlation and normaliza-

tion.

3. Target vectors computation: A = X # where # is the pseudo-inverse of initial

interpolation functions matrix.

4. Local adaptive re nement of interpolation functions and t argets by iterations mini-

mizing the distance of X and X .

The detailed algorithm can be found in [18] (Bimbot and Atal, 1991).

Once interpolation functions are computed, their intersections are used to determine
segment boundaries. The audio segments correspond at this point to spectrally stable
portions of the signal. These segments will be further clustered using Vector Quantization.
Then, boundariestogether with labelswill be used asinitial transcription for Hidden Markov
Modeling. This step corresponds, in traditional phonetic recognizer systems, to the use of
phonetically transcribed data to initialize phone models.

3.3.3 Vector Quantization

The next step in the ALISP process is the unsupervised clustering procedure per-
formed via vector quantization [81] (Makhoul et al., 1985). This method maps the P-

dimensional vectors of each segment provided by the temporal decomposition into a nite
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set of L vectorsY = {y;;1 i L}. Each vector y; is called a code vector or a codeword
and the set of all codewords is called a codebook. The codebook size L de nes the number
of ALISP units. Codebook training is performed using vectors located in gravity centers of
segments computed with temporal decomposition (one vector per segment).

This training is done by a K-means algorithm with binary splitting. This method,
called Linde-Buzo-Gray or LBG [77] (Linde et al., 1980), results in a codebook size which

is power of 2. The LBG procedure is as follows:
1. Compute the initial centroid as the average of all vectorsin the training set.

2. Split each centroid into two by moving it in opposite directions. This is done by

adding small noise values + .
3. Redistribute vectors between the two centroids using the nearest neighbor rule.

4. Compute new positions for the two centroids by obtaining the average of their re-
spective clusters. Then iteratein Step 3 until the change of the average distortion is

relatively small.
5. Goto step 2 if the desired codebook size not yet reached, otherwise terminate.

Theinitial labeling of the entire audio segments is achieved by assigning segments to
classes using minimization of the cumulated distances of all the vectors x; from the audio

segment to the nearest centroid of the codebook.

Xs
ys=min  d(xc yi) (33)
i t=bs
where s denotes a particular segment with the beginning bs and theend es. All vectors

in segment s are labeled with the label | of the winner centroid. The result of this step is

an initial segmentation and labeling of the training corpus.

3.3.4 Hidden Markov Modeling

The nal component in gure 3.2 represents the Hidden Markov Modeling proce-

dure. The objective here is to train robust models of ALISP units on the basis of the
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initial segments resulting from the temporal decomposition and vector quantization steps.
HMMs training is performed using the HTK toolkit [1]. It is mainly based on Baum-Welch
re-estimations and on an iterative procedure of re nement of the models that may be sum-

marized as follows:

1. Initialization of parameters: Thisstep providesinitial estimatesfor the parameters
of HMMs using a set of observation sequences. First, a prototype HMM de nition
must be speci ed in order to x the model topology. In thissys tem, each ALISP unit
ismodeled by aleft-right HMM having three emitting stateswith no skips. Covariance
matrices are diagonal, and computed for each mixture. The initialization of models
is performed via HInit tool. Let each audio segment be represented by a sequence
of feature vectors or observations dened asO = {0 or}, where o; isthe feature
vector observed at timet. Hinit rst divides the training obse rvation vectors equally
amongst the model states and then initializes values for the mean and variance of each

statej using the equations 3.4 and 3.5:

XT
by = % O (34)
t=1
. X
J=-|—£ (o0 mj)(o pj) (3.5

2. Context independent re-estimation: The initial parameter values computed by
Hinit arethen further re-estimated by HRest tool using the Baum-Welch re-estimation
procedure. In the contrary of HInit in which each observation vector o is assigned
to a unique state, HRest assigns each observation to every statein proportion to the

probability of the model being in that state when the vector was observed.

Thus, if P (t) denotesthe probability of beingin statej at timet then the equations 3.4

and 3.5 given above become the following weighted average:

Pt
N -, Pj(t
= M (3.6)
=1 P (1)
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P
~ Lle(Q(ot HICHEN)
J C1Pi®

where the summations in the denominators are included to give the required normal-

(3.7)

ization. Equations 3.6 and 3.7 are the Baum-Welch re-estimation formula. The prob-
ability of state occupation Pj(t) is computed using the so-called Forward-Backward

algorithm.

3. Context dependent re-estimation: Thisre-estimation step uses the same Baum-
Welch procedure as for the context independent re-estimation but rather than training
each model individually all models are trained in parallel. This re-estimation is done
by HERest tool. For each training utterance, the corresponding segment models are
concatenated to construct a composite HMM which spans the whole audio segment.
T hiscomposite HMM is made by concatenating instances of the ALISP classessHMMs
corresponding to each label in the transcription. The forward-backward algorithm
is then used to accumulate, for each HMM in the sequence, the statistics of state
occupation, means, variances, etc. When all of the training data has been processed,
the accumulated statistics are used to compute re-estimates of the HMM parameters.
It isimportant to emphasize that in this process, the transcriptions are only needed
to identify the sequence of labelsin each segment. No segment boundary information
is needed.

4. Model re nement: Thisstep consistsin an iterative re nem ent of these HMMs by
successive segmentation of the training data followed by re-estimations of parameters.
The segmentation is performed using the HVite tool which is based on the Viterbi
algorithm called the Token Passing Model [137] (Young et al., 1989). HVite matches
an audio le against a network of HMMs and outputs its transcr iption. A simple
grammar, in which each class can follow any other class, is used for decoding. The

procedure of re nement can be summarized as follows:

* use the previous models to segment the training data to produce new transcrip-

tions. For the rst iteration the models used are the one obtained in step 3;
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* re-estimate new set of HMMs parameters using transcriptions obtained in the
previous step. Old parameters are used as initial values and the re-estimation

procedure used in this step is the one described in step 3;

« if the maximal number of iterationsisreached (in thiswork 8) stop the re nement

procedure, otherwise return to the rst step;

5. Final re nement: This nal step of the Hidden Markov Modeli ng aims at incre-
menting the number of mixture componentsin each model in a dynamic manner. The
operation of increasing the number of components in a mixture is done by a process
called mixture splitting using the HHEd tool. The procedure of nal re nement may

be summarized as follows:

a. denoteHMMsparameters ™ and thelist of models ™. Set theiteration number
mto0. © correspondsto the parameters resulting from the rst re ne ment and

thelist © contains all ALISP models;

b. increment the number of mixture componentsin HMMs for each ALISP classes

in theliss ™. Denote new parameters ™M* 1

c. re-estimate the new set of HMMs parameters ™*1 using transcriptions obtained

at the end of the rst re nement;
d. perform a forced alignment of the all training data using ™*1;

e. for each ALISP class, compute the di erence of recognition likelihoods using
m+land ™. Updatethe ALISP list ™** by removing all ALISP classes for

which the likelihood di erence is relatively small;

f. terminate the procedure if ™*1 is empty or otherwise return to b;

The resulting HMM models will then be used to transcribe any incoming audio data.
This transcription will bereferred in this chapter and the following as ALISP segmentation
(or ALISP sequencing or ALISP transcriptions). Figure 3.3 shows the spectrogram of the

sentence "Bonjour Christophe” and its ALISP transcription.
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hsil hf h7 | hi h7 hz hn h5 hR hsil

Figure 3.3: Spectrogram of a French speech sentence "Bonjour Christophe’ and its ALISP
transcription (hf, h7, hz,... are the name of ALISP units).

3.4 ALISP-based Speech Processing

As mentioned before, ALISP is a data-driven technique that was rst developed for
Very Low Bit Rate speech coding, and then successfully adapted for other tasks such as
speaker veri cation and forgery and language recognition. In this section the ALISP-based
speech processing systems are shortly described.

3.4.1 Very Low Bite Rate Speech Coding

Most of speech coding systemsthat achieve a bit rates lower than 600 bits s are based
on a recognition-synthesis approach. The ALISP-based Very Low Bit Rate speech coding
system [26] (Cernoky, 1998) [96] (Padellini et al., 2005) is composed of two phases:

» Encoding phase: The Viterbi algorithm is used to segment the speech leto be coded
using the ALISP HMM models. Then, the prosodic information is extracted from
each resulting segment. This information is used to nd the n earest synthesis unit
in the reference codebook. The synthesis codebook is organized in such a way that

each class (the ALISP unit) is associated with the previous identi ed class to take
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into account the backward context information.

» Decoder phase: From the unit indexes sent by the encoder, synthesis units are found
in the reference codebook and concatenated using the Harmonic plus Noise Model

algorithm [123] (Stylianou, 1996) to recover the target speech le.

3.4.2 Speaker Veri cation

In [40] (EIHannani et al., 2009) [39] (EIHannani, 2007) [102] (Petrovska-Delacretaz et
al., 2000), high-level features derived from the speech data using the ALISP segmentation

are used to develop three speaker veri cation systems:

1. Idiolectal system: In this approach, only the labels associated to the ALISP segments
are used as source of information. T he speaker models and the background model are
computed using a simple n-gram frequency count. T he background model isestimated
using a large number of speakers while the speaker models are obtained by adapting
the background model. Intheevaluation phase, each ALISP-sequenceistested against
the speaker speci ¢ model and the background model using a likelihood ratio.

2. ALISP language models system: The symbol sequences produced by data-driven AL-
ISP tools are used to train ALISP n-grams models. These models are built as follows.
Firstly, the training text is scanned and the n-grams are counted and stored in a
database of gram les. Secondly, the resulting gram lesare used to compute n-gram
probabilities which are stored in the language models le. | n the evaluation phase, the
test leistranscribed using the ALISP tools. Then alog-likelihood ratio is computed

to obtain the recognition score.

3. Duration models system: In this system, the duration of the ALISP units are used as
features to model speakers. The duration of each ALISP unit is extracted and used
to train background models. Each speaker is represented by 64 GMMs each of them
models the duration of an ALISP class. The speaker speci ¢ 64 m odels are adapted
from the 64 ALISP class dependent background models. During the evaluation phase,

the duration vectors of thetest |le are extracted. Then, thet est duration vectors are
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compared to the hypothesized speaker model and to the background model of the
corresponding ALISP class using the log-likelihood ratio.

The proposed systems were evaluated on English trials from NIST 2006 SRE and
compared with phonetic approaches. It was shown that data-driven units provide better

results than phonetic approaches.

3.4.3 Voice Forgery

Voice forgery aims to covert the voice of an arbitrary person (the impostor), in such
away that it seemsto bethe voice of another person (the client). In order to automatically
transform the voice, the ALISP-based speech coder is used [99] (Perrot et al., 2005). First,
speech corpus of the client is used to train the ALISP HMM models which provides a
segmentation of this corpus. Then Harmonic plus Noise Model parameters are extracted
from each segment of the client speech. After that, theimpostor voice is encoded using the
ALISP codebook of the client. Finally, in the decoding phase, synthesis units of the client

voice are used to build the transformed speech signal.

3.4.4 Language ldenti cation

In this part we report about the application of the ALISP data-driven segmentation
method for Automatic Language Identi cation task [ 29] (Chollet et al., 2005). Two ALISP-
based systems are developed to perform this task:

1. ALISP HMM based system: In this system, each test utterance is decoded by all
language-dependent ALISP-recognizers, producing a transcription into ALISP-units
along with their log-likelihood scores. For a given language, these segmental scores
are summed up and normalized by the utterance length to produce a score for the test
utterance. In thissummation process, the segments previously identi ed assilence are
simply skipped. Finally, each score produced for a language is divided by the mean

of the other languages scores.
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2. ALISP N-gram language models system: For each language, statistics of the 2-grams
occurring in the transcription produced by that language recognizer are gathered.
For each 2-gram ALISP sequence in the test utterance, its probability in the given
language is divided by the mean of its probability in the other language models. The
nal scoreisthe sum of the 2-gram probabilities normalized by the number of 2-grams

in the test utterance.

At thispoint, ALISP method was only used for speech processing. It was exploited for
very low biterate speech coding, speaker veri cation and forgery and languageidenti cation.
In thisthesis we report our e ortsin applying the ALISP approach as a generic method for
audio (and not only speech) indexing and recognition. The next section presents the state

of the art of audio indexing based on audio ngerprinting.

3.5 Audio Indexing Based on Fingerprinting: State of the
Art

Audio indexing denotes the step in which relevant information are retrieved from
unknown audio data. In our work we are interested in a particular eld of audio indexing,
which is the audio identi cation based on ngerprinting (kn own also as audio detection or
audio information retrieval).

The general architecture of an audio identi cation system i s described in gure 3.4.
This gure showsthat an audio identi cation system based on audio ngerprinting consists

of 2 modules:
* A ngerprint extraction module
* A comparison module

The rst step in an audio ngerprinting system is to create a ngerprint database
from a reference database. T he reference database contains audio les (Music pieces, jin-
gles, advertisements,...) to be identi ed. In the second step an unlabeled audio excerpt is

identi ed by comparing its ngerprint with those of the refe rence database.
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Figure 3.4: Audio identi cation system based on audio nger printing.

3.5.1 Properties of Audio Fingerprinting

An audio ngerprinting system should meet certain properti esin order to take into
account several requirements. Theimportance of each requirement varies depending on the
application. Such systems have to be computationally e cient and robust. The require-

ments are the following [25] (Cano et al., 2005):

Accuracy: The number of correct identi cations, missed identi cations and false

alarms (wrong identi cation).

Robustness: The ability of the system to work satisfactorily under the presence of

di erent types of degradation.

- Granularity: The minimum duration of the query ngerprint needed to uniquely
identify the audio le. For example, the average duration of a dvertisements varying

from 5 to 30 seconds, it is necessary to have granularity less than 5 seconds.

- Complexity: The complexity of the system determines the computational costs.
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They include costs needed to create the ngerprint, to search for it and to add a new

entry in the existing reference database.

- Scalability: Performance in the presence of larger database. This has direct rela-

tionship with the complexity and the accuracy of the system.

Improving one parameter often puts additional constraints on other parameters. To
improve the robustness of the system, complex features need to be computed which a ects
complexity and scalability. Using large databases often a ects the accuracy of the system.
Due to these reasons, trade-o s need to be made to nd an optimal solution which has

satisfactory performance with respect to all parameters.

3.5.2 Audio Degradations

Even though the audio les are made available to the audio iden ti cation system for
building the reference database, the unknown audio signal (especially broadcasted audio)
goes through several processes which degrade the quality to a certain extent. A very diverse
panel of audio degradations arereported in theliterature, designed to reproduce most of the
audioe ectsthat can beapplied to an audiosignal, a ectingitsquality, without changingits
semantic content. Some of the degradations which occur quite often arelisted in [24] (Cano
et al., 2002) and reported below:

- Dynamic Amplitude compression: A ecting the dynamic range of the signal,
thesee ectsareused in order to ensurethe headroom of digital systemswhile avoiding

clippings.

- Channel Itering: When the audio is broadcasted through a channd, it passes

through various Iters which change the frequency spectrum of the audio.

- Real world noise addition: Due to poor transmission quality, but also sounds

superposed on the original document such as speech utterance in the beginning of a

music track.
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- Pitching: Playing songs or advertisements in a radio broadcast faster or sower,
where both the pitch and the tempo change. Sometimes stations use pitching up to
2,5% to achieve two goals: playing more songs per hour and getting more attraction

for listeners.

- Equalization: Boosting or cutting the level of certain audio frequency bands com-

pared to other bands.

- Perceptual Audio Coding: With theincreasing amount of available audio, various
compression techniques are used to store the audio clips such as *.mp3 and *.aac
format. Compression techniques degrade the quality of audio, but perception of the

clip remains the same.

3.5.3 Literature Review of Audio Fingerprinting Systems

There have been many studies in the eld of ngerprinting of au dio using di erent
features. Several ngerprinting systems have been reviewed by Cano et al. in [25] (Cano
et al., 2005). The main challenge of these systemsisto create a robust ngerprint against
di erent types of distortions and to propose a fast matching method that can satisfy real-
time requirements regardless the size of the reference database.

By reviewing papers published on the subject, we group them in three main families

based on the strategy of ngerprint extraction:

* Spectral representation techniques: These methods are generally based on the

division of the spectrum into sub-bands.

e Computer vision techniques: These systems involve the processing of the audio
signal as a 2-D image. They are usually using the wavelet transform to extract the

audio ngerprint.

 Machine learning techniques: This family includes approaches based on vector
guantization and data-driven techniques. These systems propose a ngerprint model

that mimics the modeling and classi cation techniques used in speech processing.
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We present audio ngerprinting systems according to the thr ee families identi ed
above. First, we describe few works that provide ngerprint m odels based on the spectral
representation of the signal, then we present some approaches that rely on computer vision

techniques and we end up by with works based on machine learning approaches.

3.5.3.1 Spectral Representations Techniques

Most of audio identi cation systems based on ngerprinting operate directly on the
spectral representations of the signal to extract the nger print. This ngerprint is generally
easy to extract and does not require signi cant computing re sources.

Haistma et al. [57] (Haitsma and Kalker, 2002) developed an audio identi cation
system for the company Philips. They use 33 non-overlapping logarithmic bands covering
the range of 300Hz to 2kHz as their base feature. To improve the robustness of the system
and to reduce the computational requirement, the changein theenergy di erence of adjacent
bands on frame to frame basis is computed and stored as a single bit. This process of
guantization gives a robust 32-bit feature vector per frame. Such a vector iscalculated every
12 ms, giving about 86 frames per seconds. In this case the number of vectorsto store for a
music database of 10,000 songs of 5 minutesisabout 260 million vectors. Di erent variations
of this ngerprint have been developed, some by the authors the mselves [58] (Haitsma and
Kalker, 2003), in order to makethe ngerprint morerobust to deformations such as changing
the speed (pitching). Improvements are however not very important.

For the comparison phase, the similarity measure used is the bit error rate, which is
the number of erroneous bits divided by the total number of bits. The unknown ngerprint
is considered identi ed if the bit error rate is less than a certain threshold. The authors
show that for a value of 0 35, the probability of a false alarm is around 10 2° . The search
method is based on indexing every reference frame in a look-up table. If the number of
sub-bands used is Ny, then each frame will be a vector of (N, 1) bits and the look-up
table will have a 2Nv entries. Each entry, called a key, pointsto all objects that have exactly
thisentry in the corresponding time. To reduce theidenti c ation time, candidate selection

from the reference templates in the database is done with an assumption that at least one
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feature vector among the block is the same as its original. This mechanism is faced with
two di culties. The rst isthe limitation of available memory, the look-up table is indeed
too large to be loaded into memory. The second di culty involves the distortions that the
unknown signal will su er. Infact, theassumption that at least onefeature vector amongthe
block isthe same asits original, is not respected if same degradationsa ect the entire block.
In order to test the robustness of this system, a hash block is extracted from four audio
excerpts. All the excerpts are then subjected to di erent kinds of synthetic degradations.
Experimental results show the robustness of the system against these degradations and the
discrimination power of the hash blocs.

Wang et al. [133] (Wang et al., 2006) propose an audio search engine for the company
SHAZAM. Thealgorithm uses a combinatorial hashed time-frequency constellation analysis
of the signal. The ngerprint is based on the concept of landm arks. The landmark point is
the spectrogram peak which has a higher energy content than all its neighborsin a region
centered on itself. Candidate peaks are chosen according to a density criterion in order
to assure that the time-frequency strip for the audio le has reasonably uniform coverage.
Oncethelandmark points areidenti ed, they are combined to increasethe provided amount
of information. Authors propose to create a key for each pair of landmarks, in fact, for two
spectrogram peaks (f1 t1) and (f2 t2), the key will be the triplet (f1 f> to t 1). Each key
presents an entry in the look-up table and each entry will contain thelist of references (p t)
having this key, where p is the reference ID and t the time inside the reference.

In the searching process, triplet key of the unknown signal (f; fo t t 1) ismatched
to select the possible candidates. For each candidate (p t), the temporal o set histogram
is computed where the o set is equal tot; t. Once all candidate o set histograms are
computed, the one with the maximum peak, which must be superior to a certain threshold,
is considered as the best match to the unknown signal. The system is evaluated with 250
music samples of varying length and noise levels against a reference database of 10,000
tracks consisting of popular music. Audio excerpts of 15, 10, and 5 seconds in length are
taken from the middle of each test track, each of which was taken from the test database.

For each test excerpt, the relative power of the noise was normalized to the desired Signal-
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to-Noise Ratio (SNR), then linearly added to the sample. Recognition rates are 50% for 15,
10, and 5 second samples at approximately -9, -6, and -3 dB SNR and more than 80% at
3, 6 and 9 db SNR. For the same analysis, except that the resulting music+ noise mixture
is further subjected to GSM 6.10 compression, then reconverted to PCM audio, the 50%
recognition rate level for 15, 10, and 5 second samples occurs at approximately -3, 0, and
+4 dB SNR. Thismethod isintended to identify long audio objects. Indeed, short objects,
like an advertisement or a radio jingle will not have enough landmark points, to ensure
the reliability of the measure used in this case. In addition Fenet et al. [44] (Fenet et al.,
2011) propose to use the Constant Q Transform (CQT) to improve the performances of the
SHAZAM audio identi cation engine.

Pinquier et al. [104] (Pinquier and Andre-Obrecht) propose a method based on simple
spectral coe cients. A total of 29 coe cients spanning the range of 100Hz to 8000Hz are
used as feature vector. The nal ngerprint consists of block s of N such vectors where N
depends on size of the training le. During the identi catio n process, a block of the input
feature vector is compared with the block stored in database using Euclidean distance. To
achieve the goal of real-time processing, instead of performing comparison at each frame,
xed number of frames are skipped before next comparison. Test database is made up
of six di erent corpora. The total duration is about 10 hours. The reference database is
composed of 32 jingles with duration between 1 and 5s. Among 132 jingles which had to
be detected and identi ed, 130 are identi ed (98.5% of accur acy).

3.5.3.2 Computer Vision Techniques

There have been several experiments of using computer vision techniques for audio
ngerprinting. The main ideaisto treat the spectrogram of each audio clip as a 2-D image
that transforms music identi cation into a corrupted sub-i mage retrieval problem.

In [12] (Baluja and Covell, 2008), the authors exploit the applicability of wavelet
in image queries for large databases in ngerprinting appli cations by processing the audio
spectrogram asa 2-D image. They generate a spectrogram of an audio with exactly the same

parameter as described in [57] (Haitsma and Kalker, 2002). Then the audio spectrogram
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is divided into smaller spectral images. Wavelet decomposition of each spectral image is
carried out using Haar wavelet. Signs of top 200 wavelet magnitudes areretained in the nal
ngerprint. Then a hash tableis used to nd the best ngerpri nt segments and Hamming
distance is computed between the candidate ngerprints and the query ngerprints. The
system is evaluated with 1,000 independent probe snippets against a reference database of
10,000 songs, with an average song duration of 3.5 minutes. For this con guration, the
recognition rate is 97.9%.

In [68] (Ke et al., 2005), the spectrogram of each music clip is treated as a 2-D
image and transforms music identi cation into a corrupted sub-image retrieval problem.
By employing pair-wise boosting on a large set of Viola-Jones features [132] (Viola and
Jones, 2001), the system learns compact, discriminative, local descriptors. The system
is evaluated on 220 songs captured with a very noisy recording setup against a reference
database of 1,862 songs. The precision rate obtained with this con guration is 93% with
the corresponding recall value of 80%.

Many other audio ngerprinting methods based on computer-v ision techniques are
proposed in the literature. For example in [138] (Zhu et al., 2010) an audio ngerprinting
system is proposed to solve the problem of time scale modi cat ion and pitch shifting by
extracting the Scale Invariant Feature Transform (SIFT) features from the spectrogram

image.

3.5.3.3 Machine Learning Techniques

The last category of audio ngerprinting systems is based on machine learning tech-
niques usually exploited for speech processing. These systems generally rely on vector
guantization and HMM modeling.

In [31] (Cremer et al., 2001), the authors exploit low-level signal features standard-
ized in MPEG-7 framework to develop a ngerprinting system. T he system uses loudness,
Spectral Flatness Measure and Spectral Crest Measure as the base feature. The features
extracted from the training data are further processed with vector quantization method to

obtain a set of code vectors by minimizing the Root Mean Square Error criterion. The
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obtained set of code vectors is stored in a database forming a codebook which represents
a particular class (audio item). The music identi cation task here is a N -class classi ca-
tion problem. For each of the music items in the database one class, i.e. the associated
codebook, is generated.

To identify an unknown music item which is included in the reference database, a
sequence of feature vectors is generated from the unknown item and these features are
compared to the codebooks stored in the database. The class with minimal cumulative
distance is assigned as the resultant class to the query input. A correct identi cation rate
of 98% is achieved on a test set comprising 15,000 songs. The system runs about 80 times
real-time on a Pentium 111 500MHz class PC.

In [24] (Cano et al., 2002) a system based on HMM modeling is proposed. 32 models
called AudioDNA are used to segment the audio signal into Audio Gens using the Viterbi al-
gorithm. The nal ngerprint consists of a sequence of lette rs(the Gens) and their temporal
information (start time and duration). During the matching process, short subsequences
of AudioDNA from an observed audio stream are continuously extracted and compared
with the ngerprints in the references database. To reduce t he computational processing
time, string search algorithm called FASTA [98] (Pearson and Lipman, 1988) is proposed.
The FASTA algorithm is initially deployed for bioinformatics. They report results with a
reference database containing 50,000 music titles. In a preliminary experiment 12 hours
of continuously broadcasted audio of di erent stations are captured to test the recogni-
tion performance of the system. All the 104 titles included in the reference database are

detected.

3.5.3.4 Comparing System Performances

In the previous section, we presented some representative works of the state of the
art in the eld of audio identi cation based on ngerprintin g. The main challenge of these
systemsisto create arobust ngerprint against di erent typesof distortions and to propose
a fast matching method that can satisfy real-time requirements regardless the size of the

reference database. Table 4.1 illustrates the performance of the systems described above
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Systems Accuracy | Robustness | Granularity | Complexity | Scalability
Haitsma et al. [57] + NA NA + -
Wang et al. [133] - - - + +
Pinquier et al. [104] + NA + + -
Baluja et al. [12] + + NA - NA
KE et al. [68] - - NA - NA
Cremer et al. [31] + NA NA - -
Cano et al. [24] + + NA - NA
Table 3.1: Performance of audio ngerprinting systems described in section re

fch02.sec.5.subsec.3, according to accuracy, robustness, granularity, complexity and
scalability.

Systems Reference database | Test database | Precision | Recall
Haitsma et al. [57] 4 excerpts 4 excerpts 100% 100%
Wang et al. [133] 10,000 songs 250 NA 80%
Pinquier et al. [104] 32 jingles 10h broadcast 100% 98,5%
Baluja et al. [12] 10,000 songs 1,000 songs NA 97,9%
KE et al. [68] 1,862 songs 220 songs 93% 80%
Cremer et al. [31] 15,000 songs 15,000 excerpts NA 98%
Cano et al. [24] 50,000 songs 12h broadcast 100% 100%

Table 3.2: Comparison of the performances of the systems described in 3.5.3, involving
database and corpus sizes, precision and recall.

according to the criteria (accuracy, robustness, granularity, complexity and scalability) de-
scribed in section 3.5.1.

Moreover, di erent experimental protocols are used in order to evaluate the audio
identi cation systems based on ngerprinting. Table 4.2 summarizes the evaluation pro-
tocols used by the systems described in the previous section. The performance measure

computed to evaluate audio identi cation systems based on ngerprinting are usually:

- Precision: The number of audio items correctly detected / Total number of detected

audio items.

- Recall: The number of audio items correctly detected / The number audio items that

should be detected.

Most of the audio ngerprinting systems described in tables 4.1 and 4.2 are only

evaluated on a speci ¢ type of audio content (song or jingle) using private corpora which
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makes the comparison between each other impossible. In chapter 6, we will present an
audio ngerprinting system based on ALISP method to detect simultaneously, songs and
advertisements in radio broadcast streams. The proposed system will be evaluated during
the 2010 QUAERO evaluation campaign [108] (Ramona et al., 2012).

In this section, a system overview of audio identi cation based on ngerprinting was
described. In fact audio ngerprinting system should meet certain criteria as granularity
and accuracy. In addition the ngerprint must be robust to di erent degradations that
the audio signal could su er. We also described in this chapter the most representative
techniques of the state of the art. These systems used di erent techniques to extract the
ngerprint and proposed several matching processto search t hat ngerprint in thereferences

database.

3.6 Conclusion

In this chapter, the state of the art of the unsupervised techniques for speech process-
ing was reviewed. These techniques are generally requiring decreasing amount of human
expertise and annotated resources, and increasing amount of unsupervised learning. Then,
the adopted unsupervised technique used in our works was presented. This method is based
on ALISP data-driven segmentation which consists of four steps. parameterization, tem-
poral decomposition, vector quantization and HMM modeling. Finally, the ALISP-based
speech processing systems are described. These systems are relative to very low bite rate
speech coding, speaker veri cation and forgery and language i denti cation.

At this point, ALISP method was only used for speech processing. In thisthesis, a
generic audio indexing system based on ALISP segmentation isproposed. The main purpose
of this system is to retrieve and identify all the items present in a radio streams. These
items are usually: music, commercial, jingle, speech and nonlinguistic vocalization (such
as laughter, cough, applause,...). To this end, an audio indexing system based on data-
driven ALISP technique is exploited for radio streams indexing and used for di erent audio
indexing tasks, which are audio identi cation, audio motif discovery, speaker diarization

and nonlinguistic vocalizations detection.
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Chapter 4

Databases

4.1 Introduction

In this chapter, we present the audio databases exploited during this thesis. A radio
broadcast corpus of radio data is provided by YACAST . We had 26 days of annotated audio
data that separated to train the ALISP models and to evaluate the ALISP-based audio
indexing systems. In order to validate our proposal for speaker diarization we participated
to the ETAPE'2011 evaluation campaign. Moreover, the proposed speaker veri cation
system is evaluated during the MOBI0O’2013 evaluation campaign. Finally, we use three

publicly available corpora to evaluate our system for laughter detection.

4.2 Radio Broadcast Corpus

In the framework of the ANR-SurfOnHertz project we had at disposal the YACAST
database. We had 26 days of annotated audio data from 13 French radio stations.
Three types of annotation are available, music, commercial and speaker turn, de-

scribed below:

e Music annotation: it provides information about the songs present in the radio

stream. This ground truth is given by an XML le for each radio station. The XML

http:/www.yacast frfirfindex.html
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structureis given as follows:

<MusicTrack>
<id>4134305</id>
<idMedia>553</idMedia>
<title>Belly dancer</title>
<artist>Bob Sinclar, Kevin Lyttle</artist>
<album>Born in 69</album>
<genre>Dance</genre>
<sousGenre>House</ sousGenre>
<startDate>2009 12 03 23:57:54</ startDate>
<endDate>2009 12 04 00:00:47</ endDate>

</ MusicTrack>

Music annotations are available for 10 radio stations which are: Virgin Radio, NRJ,

RFM, RTL, RTL2, Cherie FM, FUN Radio, Europel, RMC, and France Inter.

« Commercial’s annotation: Asfor music, it providesinformation about thedi used

commercial in the radio station. Its XML structure is given as follows:

<Advertisement>
<id>5917143</id>
<idMedia>1</idMedia>
<name>MUSE CONCERT</name>
<brand>MUSE CONCERT</brand>
<advertiser >MUSE CONCERT</ advertiser>
<startDate>2009 12 01 00:45:08</ startDate>
<endDate>2009 12 01 00:45:51</ endDate>

</Advertisement>

Commercial’s annotations are available for the 10 radios given above plusthe ” France

Info” radio.
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* Speaker turn annotation: It gives the start and end time of each utterance in the
radio streams with the identity of the corresponding speaker. Its XML structure is

given as follows:

<TalkPassage>
<idMedia>175712</idMedia>
<mediaName>France Culture Temps de parole</mediaName>
<idSpeaker >13355</ idSpeaker>
<speakerName>SARKOZY NICOLAS</speakerName>
<startDate>2010 06 27 05:00:31:404</ startDate>
<endDate>2010 06 27 05:00:51:438</ endDate>

</ TalkPassage>

This database contains 2,172 di erent commercials that are broadcasted between 2
and 117 times. Themean duration of these commercialsis 24 seconds and their total number
in the 26 days of recordings is 14,953. Moreover, 8,694 di erent songs are present in this
database. The mean duration of these songs is 229 seconds (3 minutes and 49 seconds) and
their total number in these recoding is 56,902. Regarding the speaker turn annotations,
this database contains 283 annotated speakers with a total duration of 42h46min.

The ALISP HMM models are trained on a part of this corpus. In fact, the ALISP
models are trained on one day of audio stream from 12 radios (leading to 288 h). It is
important to insist that the training database remains the same for all the proposed audio
indexing systems. This training database is referred in this chapter and in the followings
as the ALISP training database, for the HMM ALISP models.

Three audio indexing systems are evaluated using this corpus: audio identi cation,
audio motif discovery and speaker diarization that is also evaluated duringthe ETAPE’2011

evaluation campaign.
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genre train dev test sources

TV news 7h30 1h35 1h35 BFM Story, Top Questions (LCP)

TV debates 10h30 2h40 2h40 Pile et Face, Ca vous regarde
Entre les lignes (LCP)

TV amusements - 1h05 1h05 La place du village (TV8)

Radio shows 7h50 3h00 3h00 Un temps de Pauchon, Service Public
Le masque et la plume, Comme on nous parle
Lefou du roi

Total 25h30 8h20 8h20 42h10

Table 4.1: ETAPE dataset composition [55].

4.3 ETAPE Corpus

ETAPE is an evaluation campaign for automatic speech processing [55] (Gravier €
al., 2012). Asillustrated in table 4.1, the ETAPE data are divided into three subsets; train,
development and evaluation data. Note that the number of hours are reported in terms of
recordings, not speech. Asreported, in the ETAPE TV data, about 77% of the recordings
contain speech.

4.4 MOBIO Corpus

In this thesis we are interested by measuring the speech time of paliticians in radio
streams. This task involves two elds of speaker-based processing: speaker identi cation
and speaker diarization. As pointed out before, the speaker diarization system is evaluated
on the YACAST database and during the ETAPE’2011 evaluation campaign. Following
the same spirit, the speaker identi cation system is evaluat ed during the MOBI0’2013
evaluation campaign.

TheMOBIO databaseis a bimodal (face/ speaker) database recorded from 152 people.
The database has a female-male ratio of nearly 1:2 (100 males and 52 females) and was
collected from August 2008 to July 2010 in six di erent sitesfrom vedi erent countries.

In total 12 sessions were captured for each individual. The database was recorded

using two types of mobile devices. mobile phones (NOKIA N93i) and laptop computers
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(standard 2008 MacBook). In this evaluation we will only use the mobile phone data with
a sampling rate of 16kHz.

The MOBIO database is a challenging database since the data is acquired on Mobile
devices possibly with real noise, and the speech segments can be very short (lessthan 2sec).
More technical details about the MOBIO database can be found in [85] (McCool et al.,
2012). Based on the gender of the clients, two di erent evaluation protocols for male and
female were generated. In order to have an unbiased evaluation, the clients are split up into

three di erent sets. training, development and evaluation sets:

* Training set: The data of this set is used to learn the background parameters of
the algorithm (UBM, subspaces, etc.). They can also be used for score normalization
(cohort, etc.). It isworth noting that participants can use external data in their back-

ground training, however they should explicitly precise it in their system description.

» Development set: The data of this set is used to tune meta-parameters of the
algorithm (e.g. number of Gaussians, dimension of the subspaces, etc.). For the
enrollment of a client model, 5 audio les of theclient are pr ovided, and it is forbidden
to use the information of other clients of the development set. The remaining audio
les of the clients serve as probe les, and likelihood scores h ave to be computed
between all probe les and all client models. In systemsthat require score calibration

these scores can be used to train the calibration parameters.

« Evaluation set: The data of this set is used for computing the nal evaluation
performance. It has a structure similar to the development set. Theonly di erenceis
that the le names are anonymized in order to prevent particip ants to optimize their

system on the evaluation set.

Table 4.2 details each of the sets described above. It speci esthe numb er of lesand

the number of targets.
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Background Development Evaluation
Enrollment Test Enrollment Test
Spks | Files | Targets | Files | Spks | Files | Targets | Files | Spks | Files
MALE 37 | 7104 24 120 24 | 2520 38 190 38 | 3990
FEMALE | 13 | 2496 18 Q0 18 | 1890 20 100 20 | 2100
TOTAL 50 | 9600 42 210 42 | 4410 58 290 58 | 6090

Table 4.2: Number of targets and audio les of the training set, the number of targets
and enrollment audio les, and the number of test segments for the development and the
evaluation set, in the MOBIO audio data.

4.5 Laughter Detection Corpus

In order to evaluate the proposed laughter detection system, three publicly available

sources are used. These databases are;

« SEMAINE-DB [86] (McLeown et al., 2012): A large audiovisual database recorded
from 150 participants. The youngest participant is 22, the oldest 60, and the average
age is 32.8 years old. Thirty-eight percent are male. A manual transcriptions of

laughter are available. The total duration of the database is 15h5min.

e AVLaughterCycle[130] (Urbain et al., 2010): An audiovisual laughter database recorded
from 24 subjects. Annotations of the recordings, focusing on laughter description
with more than 1,000 spontaneous laughs and 27 acted laughs. T he laughter duration

ranges from 250ms to 82s.

* Mahnob laughter databases [100] (Petridis et al., 2013): Au audiovisual laughter
databaserecorded from 22 participants. Thetotal duration of the databaseis3h49min.
It contains 563 laughter sequences, 849 speech utterances, 51 posed laughs, 67 speech

laughs episodes and 167 other vocalizations.

4.6 Conclusion

In this chapter, all the corpora used to develop and evaluate our audio indexing

system are described. The radio broadcast corpus is essentially used to train the ALISP



4.6. CONCLUSION 87

HMM models and evaluate the ALISP-based audio identi catio n, audio motif discovery and
speaker diarization systems. While ETAPE and MOBIO databasesarerelated to evaluation
campaigns that we have participated. On the other hand the laughter detection database
are exploited to evaluate the proposed nonlinguistic vocalization detection system.

In the next chapter, the main contributions of our works are presented. These contri-
bution are related to the ALISP segmenter, approximate matching process of ALISP units

and the generic audio indexing system.
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Chapter 5

Contributions to Data-driven

Audio Indexing

5.1 Introduction

This chapter presents our main contributions in this Ph.D, which can be divided into

three parts:

1. Improving the ALISP tools by introducing a simple method to nd stable segments
within the audio data. This technique, referred as spectral stability segmentation, is
replacing thetemporal decomposition used before for speech processing. The main ad-
vantage of this method isits computation requirements which are very low comparing

to temporal decomposition.

2. Proposing an e cient technique to retrieve relevant information from ALISP se-
guences using BLAST algorithm [3] (Altschul et al., 1990) and Levenshtein dis
tance [76] (Levenshtein, 1966), with the goal to speed up the retrieval process without

a ecting the accuracy of the audio indexing process.

3. Proposing a generic audio indexing system, based on data-driven ALISP sequencing,
for radio streams indexing. Thissystem isapplied for di erent eldsof audio indexing

to cover the majority of audio items that could be present in a radio stream:
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- audio identi cation: detection of occurrences of a speci ¢ audio content (mu-

sic, advertisement, jingle) in a radio stream;

- audio motif discovery: detection of repeating objects in audio streams. (mu-

sic, advertisement, and jingle);

- speaker diarization: segmentation of an input audio stream into homogenous
regions according to speaker’s identities in order to answer the question "Who

spoke when?”;

- nonlinguistic vocalization detection: detection of nonlinguistic sounds such

as laughter, sighs, cough, or hesitation;

As pointed out before, ALISP tools have already been used for very low bit-rate
speech coding, speaker and language recognition, and voice forgery.

Theobjectivethrough thisthesisisto exploit high-level information provided by data-
driven unitsin order to build an uni ed data-driven platform f or audio indexing, retrieval
and recognition. To this end, the ALISP method is used as a data-driven segmentation
tool. ALISP method consists in segmenting the audio data in data-driven segments. The
particularity of ALISP toolsisthat notextual transcriptions are needed during the learning
step, and only raw audiodataissu cient. In such away any input audio dataistransformed
into a sequence of arbitrary symbols. These symbols can be used for indexing purposes.

This chapter is divided into three parts according to our contributions. The rst
section deals with the improvements made on the ALISP tools. In the second section a new
technique to retrieve relevant information from ALISP sequences is described. Finally, a
generic audio indexing system, based on data-driven ALISP sequencing, for radio streams

indexing is introduced.

5.2 Improving the ALISP Segmenter

ALISP tools are the basis for the data-driven segmenter we are using in this thesis.
One part of our work isrelated to adapt and improve these tools with regard to the task and

the database we are using for audio indexing. Theimprovementsthat we have made concern
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Figure 5.1: Maximal intersection between two segmentations.

the initial segmentation made by the temporal decomposition. As mentioned before, the
temporal decomposition is used to obtain an initial segmentation of the audio data into
guasi-stationary segments. These segments are clustered using vector quantization. Then,
the boundaries together with labels are used as initial transcription for Hidden Markov
Modéling.

In this section, other segmentation methods (for the HMM models) are explored in
order to study the in uence of the initial segmentation on th e ALISP training process.

These methods are:
» Uniform segmentation;
e Spectral stability segmentation;
» Phonetic segmentation.

A set of ALISP HMM modelsistrained for each initial segmentation technique using
the training database (288 hours) described in the previous chapter, with 65 units (except
for the phonetic segmentation).

In order to compare the proposed segmentation techniques with the temporal decom-
position, the maximal intersection segmentation measure is computed. This measure is
introduced in [66] (Joley et al., 2007) in order to extract the maximal intersection between
two segmentation as shown in gure 5.1.

This comparison is performed at two levels:

1. Theinitial segmentation provided by each of the proposed segmentation techniqueis

compared to the one provided by the temporal decomposition.
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Figure 5.2: Spectrogram of an audio excerpt with two segmentations obtained by temporal
decomposition (below) and the uniform segmentation (above).

2. The segmentation given by the ALISP HMM model using the proposed segmentation

technique is compared to the one given by the ALISP HMM model using the temporal

decomposition. The set of ALISP HMM models is acquired as shown in gure 3.2.

5.2.1 Uniform Segmentation

Generally, the uniform segmentation is the most direct approach to segment audio

data. It consists on segmenting the audio data into an equal size frames, for example

MFCCsare calculated for each 20ms frame. Thisprocessis similar to performing the vector

guantization directly on audio frames. More precisely, after the parameterization step, the

audio signal is divided into an equal size segments. Then a centroid frame (central frame)

is taken as the representative frame of each segment. After that, the vector quantization

and Hidden Markov Modeling are performed, as described in section 3.3, only the centroid

frames are taken to build the dictionary. In thiswork the size of segmentsis equal to 50ms

(5 frames).



5.2. IMPROVING THE ALISP SEGMENTER 92

sl 2| 3 |A|s5| 6 s7 s8 s9 s10 | sl1| sl2 s13 sl4

Figure5.3: Spectrogram of an audio excerpt with two segmentations obtained by the ALISP
HMM models after re-estimation using the temporal decomposition (below) and the uniform
segmentation (above).

Figure 5.2 shows the spectrogram of an audio excerpt with the initial segmentations
obtained by the temporal decomposition and the uniform segmentation. The maximal
intersection between the initial ssgmentations of both methods is equal to 24%. This result
was predictable, since the temporal decomposition aimsto nd quasi-stationary segments
whilein the uniform segmentation, the characteristics of the audio signal are not considered
and the obtained segmentation relies only on the size of the segment.

In addition, ALISP segmentation obtained by the HMM models using the uniform
segmentation is computed and compared with the one obtained by the HMM models using
the temporal decomposition. Figure 5.3 shows an example of these segmentations. The
maximal intersection between the segmentations provided by both HMM models is equal
to 52%. Thisresult shows that the initial segmentation has a signi cant e ect on the nal
ALISP HMM models. On the other hand, the HMM modeling process has increased the

maximal intersection from 24% to 52%, leading to an absolute improvement of 28%.
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5.2.2 Spectral Stability Segmentation

Thegoal of thismethod isto nd the stable regions of the audi o signal. T heseregions
represent the spectrally stable segments of the audio data. This process is performed using
the spectral stability curve obtained by computing the Euclidian distance between two

successive feature vectors as follows:

X

<

d= (Cij Cij+1)? (5.1)

i=1
where Cj; and Cjj+, are two successive feature vectors and n is their size. The local
maxima of this curve represent the segment boundaries while the minima represent the
"stable” frames of the audio signal.

Figure 5.4 shows the spectrogram of an audio excerpt with the initial segmentations
obtained by the temporal decomposition and the spectral stability segmentation. The max-
imal intersection between segmentations provided by the temporal decomposition and the
one obtained by the spectral stability segmentation of the ALISP training database is 78%.
Thisresult showsthat thetemporal decompasition method could be replaced by the spectral
stability segmentation which is much easier to compute.

Figure5.5 showsthe spectrogram of an audio excerpt with the segmentations provided
by the ALISP HMM models using the temporal decomposition and the spectral stability
segmentation. The second comparison between HMM models using both techniques gives a
89% of maximal intersection, which leads to an absolute improvement of 11%. T his result
con rms our previous assumption that the spectral stabilit y segmentation is an appropriate

method to provide the initial segmentation.

5.2.3 Phonetic Segmentation

A phonetic segmentation method consists of usinga HMM phonetic model to initially
segment the audio data. This method isused to nd out wether a phonetic model could be
used for audio indexing purposes such as audio identi cation or audio motif discovery.

The HMM phonetic models are trained using ESTER database (French radio broad-
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Figure 5.4: Spectrogram of an audio excerpt with two initial segmentations obtained by

temporal decomposition (below) and the spectral stability segmentation (above).
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Figure 5.5; Spectrogram of an audio excerpt with two segmentations obtained by the AL-
ISP HMM models using the temporal decomposition (below) and the spectral stability

segmentation (above).
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Figure 5.6: Spectrogram of an audio excerpt with two initial segmentations provided by
temporal decomposition (below) and the phonetic segmentation (above).

cast database) [49] (Galliano et al., 2009). As for ALISP units, each phone (41 phones)
is modeled by a left-right HMM having three emitting states with no skips. The phonetic
segmentation is replacing the temporal decomposition and the vector quantization. In fact,
the phonetic segmentation is used asinitial transcription for Hidden Markov Modeling step
of the ALISP modding.

Figure 5.6 shows the spectrogram of an audio excerpt with the initial segmentations
obtained by the temporal decomposition and the phonetic segmentation. The maximal
intersection between theinitial segmentations provided by both techniquesis equal to 21%.
Thisresult is predictable given that the phonetic models aretrained only on speech. In fact,
using phone models on audio items other than speech (such as music and advertisement)
could lead to a random segmentation.

In the next experience, the segmentations provided by the ALISP HMM models using
both techniques are compared. Figure 5.7 shows the spectrogram of an audio excerpt with

the segmentations provided by the ALISP HMM models using the temporal decomposition
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Figure5.7: Spectrogram of an audio excerpt with two segmentations provided by the ALISP
HMM models using the temporal decomposition (below) and the phonetic segmentation
(above).

and the phonetic segmentation. The maximal intersection between both segmentations is
equal to 32%, which gives an absolute improvement of 9%. This result shows that the use
of a phonetic segmentation as an initial segmentation leads to a di erent ALISP HMM

models.

5.2.4 Comparing Segmentation Techniques

In this part, a comparison between the di erent segmentation techniques is pre-
sented. Table 5.1 shows the maximal intersection between each of the proposed segmen-
tation method and the temporal decomposition for the initial segmentation and HMM
segmentation, using the 288-hours radio broadcast databaseto train the nal ALISP HMM
models.

Thistable shows that the spectral stability technique provides the nearest segmenta-
tion to the one provided by the temporal decompaosition. On the other hand, phonetic and

uniform segmentations are not appropriate to obtain a segmentation of the audio data into
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Method Initial segmentation | HMM segmentation
Uniform segmentation 24 52
Spectral stability segmentation 78 89
Phonetic segmentation 21 32

Table 5.1: Maximal intersection between segmentations provided from each of the pro-
posed methods and the temporal decomposition for the initial segmentation and the HMM
segmentation.

guasi-stationary segments.

In this section, the temporal decompaosition was compared to three di erent segmen-
tation techniquesin terms of initial ssgmentation and HMM modeling. In the next chapter,
the in uence of the four segmentation methods on the perform ances of the proposed audio

indexing system will be carried out.

5.3 Approximate Matching Process of ALISP Sequences

As mentioned before, the proposed audio indexing system is composed of three mod-
ules. automatic acquisition and modeling of ALISP units, segmentation module and com-
parison module. In the previous section, we presented our contributionsrelated to the rst
and second modules. In this section, a new technique for approximate matching of AL-
ISP sequences is proposed. This technique is used to compare relevant information from
ALISP transcriptions using BLAST algorithm [3], (Altschul et al., 1990) and Levenshtein
distance [76] (Levenshtein, 1966).

5.3.1 ALISP Sequencing

ALISP unit recognition involves the transformation of audio data into a sequence of
ALISP units. The most likely ALISP sequence given a sequence of featureY = y;  yr
is found by searching all possible state sequences arising from all possible ALISP units
sequences for the sequence that was most likely to have generated the observed dataY. An
e cient way to solve this problem isto use Viterbi algorithm [137] (Young et al., 1989).

In the previous section, we show that the temporal decomposition could be replaced
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by the spectral stability segmentation. Therefore, a new scheme to acquire and model
ALISP unitsis presented in gure 5.8.

5.3.2 Similarity Measure and Searching Method

An important part of the proposed audio indexing system isthe matching process. As
the main requirement of the proposed audio indexing system is robustness against several
types of signal distortions, the actual ALISP unit sequences extracted from an observed
signal will not be fully identical to the reference database. Two techniques are developed
to perform the approximate matching process of ALISP sequences. The rst oneisrelated
to the basdline method where a full search (or brute search) is applied, while the second
technique is inspired form the Basic Local Alignment Search Tool (BLAST) [3] (Altschul
et al., 1990), widely used in bioinformatics.

5.3.2.1 Full Search

T he full search module comparesthe ALISP sequences extracted from observed audio
signal against reference ALISP transcriptions stored in the reference database. First, the
transcriptions of each reference advertisement (the onesthat we are going to look for in the
newly incoming audio stream) into a sequence of reference ALISP symbols has to be done.
Then the test audio stream is transformed into a sequence of ALISP symbols. Once the
ALISP transcriptions of reference and test data are done, we can proceed to the matching
step.

The similarity measure used to compare ALISP transcriptions is the Levenshtein
distance [76] (Levenshtein, 1966). The Levenshtein distance is a special case of an edit
distance. The edit distance between two strings of characters is the number of operations
required to transform one of them into the other. When edit operations are limited to
insertion, deletion and substitution this distance is called Levenshtein distance. At this
stage the matching component used in our system is very elementary. In each step we move
on by one ALISP unit in the test stream and Levenshtein distance is computed between

reference advertisement transcription and the transcription of the selected excerpt from the
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Figure5.8: lllustration of the di erent steps of the ALISP units acquisition and their HMM
modeling.
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audio stream. At the point when the Levenshtein distance is below a prede ned threshold
it means that we have an overlap with the reference. Then we continue the Levenshtein
distance comparison by stepping on by one ALISP symbol until the Levenshtein distance
increases relatively toitsvaluein the previous step. This point indicatesthe optimal match,
where the entire reference has been detected.

In order to speed up the search stage, an alternative approximate matching method
is developed. Approximate string matching algorithms are a traditional area of study in
computer science. With the huge increase of nucleotide and protein sequence data produced
by various genome projects, fast string matching algorithms are developed. Our approxi-
mate string matching algorithm is based on the BLAST technique [3] (Altschul et al., 1990),

widely used in bioinformatics.

5.3.2.2 BLAST Algorithm

The BLAST [3] (Altschul et al., 1990) algorithm can be summarized as follows. It
is an algorithm for comparing primary biological sequence information, such as amino-acid
sequences of di erent proteins or the nucleotides of DNA sequences. A BLAST search
enables to compare a query sequence with a library or database of sequences, and identify
library sequences that resemble the query sequence above a certain threshold. Note that
BLAST considers that the library is formed by one long string sequence.

Let q be the querying string sequence and D the database. From the string q a
substring w is considered. The rst step in the algorithm ist o build a lookup table (LUT)
for all w-length wordsin D and to let the entries in that LUT point to the position where
w-length word occurs. In the second step, for each w-length substring in g, a list of seedsis
generated using the LUT. This list contains all w-length seeds with a similarity score with
the relative substring greater than a certain threshold T. The nal step of the algorithm
consists of extending each candidate seed on either sideto nd the optimal alignment with
the querying string sequence gq. A candidate is considered as the optimal alignment if its
similarity score with the query qis greater than a certain threshold S.

In our case the query sequence is a long sequence of ALISP symbols where we are
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looking for occurrences of reference advertisements and songs. In order to deal with this,

the BLAST algorithm was adapted as follows.

5.3.2.3 Approximate M atching Process of ALISP Sequences

T he approximate matching process depicted in gure 5.9 isproposed. First, a LUT is
created by all possible ALISP sequences of w units but with an o set of k units that occur
in the ALISP transcriptions of the reference database. T his database contains all the audio
item references that we can identify, such as songs, advertisements, speech segments and
audio motifs.

Each entry in the LUT points to the audio item reference and the position in that
item where the respective ALISP unit sequence occurs. Since an ALISP unit sequence can
occur at multiple positions in multiple audio items the pointers are stored in a linked list.

Therefore one ALISP sequence can generate multiple pointers and positions.

ALISP Query
Transcription LUT Item 1 Iltem N
Abkub5.rs SbkM8..f1 IlvMI2.w3 dn5Hz.18
cl6py..e9 dn5Hz.18 swk32.rq Abku6..rq
| | | |
| | | |
| | Abku6..Tq |
jgo@c..40 | |
I
Abku6..Tqg
jgP@c..4k jgP@c...4k
I
I
I
fd4idi.4v

Figure 5.9: Approximate matching process of an ALISP query transcription using a lookup
table (LUT) and a reference database containing N items.
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Then, the ALISP transcription is computed from the query audio stream, and for each
subsequence of w unitswith an o set of k unitsof that query a set of candidate subsequences
is found using the LUT. In contrast to the original BLAST algorithm, we are not looking
to the exact occurrence of the subsequence of w unitsin the LUT. We are rather searching
the subsequences that have some di erences with w units subsequence. This operation is
motivated by the fact that the assumption that at least one subsequence among the query
audio stream isthe same asitsoriginal, is not respected if the same degradations a ect the
entire block.

From this set of subsequences, a list of candidate references and the position where
the candidat e subsequences occur in that reference is generated for each subsequence of the
query data.

Since our reference database is formed by each ALISP transcription of the reference
audio item (not one string sequence asin BLAST), the nal step of the matching process
is di erent from the BLAST one. It consists of a simple comparison between the ALISP
transcription of the query audio stream and the corresponding candidat esreferenceswith the
Levenshtein distance[76] (Levenshtein, 1966). Thecandidate audioitem selected asthe best
match of the unknown audio stream is the reference having the lowest Levenshtein distance
among all candidates and providing a Levenshtein distance below a certain threshold.

The approximate matching of ALISP sequencesis used to identify an audio items such
as commercial, music, audio motif or speech segment. This module is very crucial since it
de nes whether the proposed audio indexing system follows t he real-time requirements or

not.

5.4 Generic ALISP-based Audio Indexing System

The next main contribution of this thesis is the exploitation of the ALISP approach
and the proposed approximate matching process as an uni ed m ethod for audio indexing
and recognition. There are many existing applications for audio processing, such as song
class cation, advertisement (commercial) detection, spe aker diarization and identi cation,

with various systemsbeing developed to automatically analyze and summarize audio content
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for indexing and retrieval purposes. With these systems audio data are treated di erently
depending on the applications. For example, song identi cation systems are generally based
on audio ngerprinting such as SHAZAM and Philips systems. W hile speaker diarization
and identi cation systems are using cepstral features and m achine learning techniques such
as Gaussian Mixture Models and Hidden Markov Models. The diversity of audio indexing
techniques makes unsuitable the simultaneous treatment of audio streams where di erent
types of audio (music, commercials, jingles, speech, laughter, etc.) coexist. Hence the need
for a generic system portable across domains.

One of the contributions of this thesis is the exploitation of ALISP approach as a
generic method for audio indexing and recognition. As pointed before, ALISP is a data-
driven technique that transforms any input audio data into a sequence of arbitrary symbols.

T hese symbols can be used for indexing purposes.

5.4.1 System Overview

The main purpose of our works isto retrieve and identify the majority of audio items
present in a radio streams. These items are usually: music, commercial, jingle, speech and
nonlinguistic vocalization (laughter, cough, sight,...). To this end, a generic audio indexing
system based on data-driven ALISP technique is developed and exploited for radio streams
indexing and applied for di erent eldsto cover the di erent items that could be present
in aradio stream.

Figure 5.10 shows the proposed ALISP-based system overview. As shown in this
gure, the proposed audio indexing system is composed of fou r sub-systems based on the
same ALISP sequencing method:

* Audio identi cation: detection of occurrences of a speci ¢ audio content (music,

advertisement, jingle) in a radio stream.
* Audio motif discovery: detection of repeating objects in audio streams.

» Speaker diarization: segmentation of an input audio stream into homogenous re-

gions according to speaker’s identities in order to answer the question "Who spoke
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Audio Motif Discovery
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Figure 5.10: ALISP-based audio indexing system.
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when?’

* Nonlinguistic vocalization detection: detection of nonlinguistic sounds such as

laughter, sighs, cough, or hesitation.

Speaker diarization should only be applied to speech data. Therefore, performing
the audio identi cation and audio motif discovery at the begi nning is important to remove
music and advertisement data. The ALISP-based audio indexing system is composed of 4
sub-systems. Although these systems are di erent, they are using a common architecture
based on ALISP method. Thisarchitectureiscomposed of two modules: ALISP sequencing
and approximate matching of ALISP sequences.

5.4.2 Audio Indexing: Fields of Interest

As pointed out before, the audio indexing system, based on ALISP sequencing and
approximate matching technique, is composed of four sub-systems. These systems are
chosen to cover the majority of audio items that could be present is a radio broadcast

stream.

5.4.2.1 Audio ldenti cation

As shown in gure 5.11, the proposed system uses automatically acquired units
provided by ALISP tools to search for advertisements and music pieces in radio broad-
cast streams. In this sense ALISP transcriptions of advertisements and songs, present in
the reference database, are computed using HMM models provided by ALISP tools and
Viterbi algorithm and compared to transcriptions of the radio stream using the BLAST
algorithm [3] (Altschul et al., 1990).

5.4.2.2 Audio Motif Discovery

Radio streams often contain redundant parts. Commercials on radio or television
stations, songs on music channels and jingles broadcasted before a speci ¢ radio or TV

show, are some of the repeating objects in multimedia streams. The ALISP-based audio
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Figure 5.11: Audio identi cation system based on ALISP nge rprinting.
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indexing system isused to detect repeating objectsin audio streams. In order to resolvethis
problem, the ARGOS segmentation framework proposed in [61] (Herley, 2006) isused. This
framework is combined with ALISP sequencing technique to build an audio motif detection
system. The BLAST algorithm is applied to speed up the approximate string matching to
nd the repeating items in the audio streams.

As was previously mentioned, the data-driven ALISP technique converts the raw
audio data into a sequence of symbols. These symbols represent the ngerprint used to
detect the repeating items in audio streams. Thus, the problem of audio motif detection is

transformed into a string matching problem.

5.4.2.3 Speaker Diarization

In our work, we are interested in speaker diarization for TV and radio shows which
include various acoustic sources such as studio/ telephone speech, music, or speech over
music. Usually these shows keep the same structure with same presenters and jingles. This
redundancy is used in order to improve the performance of the speaker diarization system.

The main idea of our system is to compare the show to be segmented with the same
show broadcasted before in order to nd the common audio segm ents. This operation is
performed via audio ngerprinting which involves the extract ion of a ngerprint for each
audio document stored in a reference database. An unlabeled audio excerpt isidenti ed by
comparing its ngerprint with those of the reference databa se.

Thereference database isbuilt from audio segments provided by annotated dat abases.
T hese segmentsrepresent speech sentences, silence, noise, jingles, music and advertisements.
Then ALISP transcriptions of reference segments are computed using HMMs provided by
the ALISP tools and compared to the transcriptions of the TV and radio shows stream

using the BLAST algorithm.

5.4.2.4 Nonlinguistic Vocalizations Detection

Despite the best e orts made over past two decades in speech recognition systems,

detection of nonlinguistic vocalizations such as laughter, sighs, breathing, or hesitation
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sounds is still a challenging task. Such vocalizations are most frequent vocalizations in our
daily conversational speech.

Laughter is one of the complex nonlinguistic vocalizations that conveys a wide range of
messages with di erent meanings. Most of previous studies on automatic laughter detection
from audio are based on framelevel acoustic featuresas parametersto train machinelearning
techniques, such as Gaussian Mixture Models and Support Vector Machines.

A generic methodology to detect nonlinguistic vocalizations using ALISP method
is proposed. Using Maximum Likelihood Linear Regression and Maximum A Posterior
techniques, the proposed method adapts ALISP models, which then facilitate detection of
local regions of nonlinguistic vocalizations with the standard Viterbi decoding algorithm.
Moreover, a simple majority voting scheme, using a diding window on ALISP sequences,
can be helpful in eliminating outliers from the Viterbi-predicted sequence automatically.

The evaluation of the proposed system is performed on laughter detection.

5.5 Conclusion

In this chapter, the main contributions of our works are presented. First we described
how the ALISP segmenter isimproved using other techniquesto provideinitial ssgmentation
toinitialize the ALISP HMM models. These techniques were described and compared with
the temporal decomposition. The comparison of the segmentation attained by the spectral
stability method and the temporal decomposition showed that there is a great correlation
between both segmentations.

In the second part of this chapter, a new technique to extract relevant information
from ALISP sequencesispresented. T heproposed approximate matching processisinspired
form BLAST technique, widely exploited in bioinformatics, and the Levenshtein distance,
used to compare ALISP transcriptions.

The third contribution isrelated to the generic ALISP-based audio indexing system.
This system is composed of four sub-systems which are: audio identi cation, audio motif
discovery, speaker diarization and nonlinguistic vocalizations detection. All these systems

are using a common architecture based on ALISP method.
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In the next chapter we treat the rst task of audio indexing wh ich is audio identi-
cation. Audio identi cation consists of detecting and loc ating occurrences of a speci ¢
audio content (music, advertisement, jingle,..) in audio streams or audio databases. The
proposed ALISP-based system will be evaluated on the radio broadcast corpus and during
the QUAERO project evaluation campaign.
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Chapter 6

Audio Identi cation

6.1 Introduction

In this chapter we present the ALISP-based audio indexing system applied to the
audio identi cation task. Audio identi cation consists of detecting and locating occur-
rences of a speci ¢ audio content (music, advertisement, jin gle,..) in audio streams or audio
databases. Thereare many potential applications of audio identi cation, most have recently
emerged. We can distinguish three categories according the application to which they are
intended [15] (Betser, 2008):

- Seeking information in an audio document: identify the tracks of a CD audio
from a reference database of CDs, or more generally retrieve metadata of an unknown
audio le, delete audio duplicate in a database, identify a” live” song (broadcasted on

the radio) via a mobile phone or any other recording device, etc.

- Audio structuring: search for occurrences like jinglesas a rst step for the analysis

of radio or television contents (information retrieval, summarization).

- M edia monitoring: con rm for advertisersif the planned adve rtisements werereally

broadcasted, detection of illegal use of multimedia content, etc.

Performing the audio identi cation task manually is quite t edious. Moreover, man-

ual methods are slow and prone to errors. In automated systems, audio identi cation
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is typically accomplished by audio watermarking [30] (Cox et al., 1996) or audio nger-
printing [25] (Cano et al., 2005). They are based on two di erent principles. The rst
one is intended to hide the essential information of identi cation in the audio document.
In the second technique a signature (or ngerprint) is extracted from the audio content
and compared to the reference ngerprints stored in a database. An audio ngerprint is
a compact content-based signature that represents an audio recording. We are interested
in methods based on audio ngerprinting, which are more appr opriate for radio broadcast
monitoring [25] (Cano et al., 2005).

This chapter is organized as follows. The ALISP-based audio ngerprinting system
is presented in section 6.2. Then the experimental setup to evaluate the proposed systems
is described in section 6.3. Studies about the number of Gaussian components, number of
ALISP units and the method used for the initial segmentation are, respectively, reported
in section 6.4, section 6.5 and section 6.6. Finally a comparison of the performances of our

system with the systems participating in the 2010 QUAERO evaluation campaign is given.

6.2 ALISP-based Audio Fingerprinting

Radio broadcast monitoring consist on keeping a record of the timing and the oc-
currence of an audio content. It has an important role in the media industry. Generally,
radio stations must pay royalties for the music they play. Even for radio stations which
can play music for free, many companies are interested in detecting these music tracks for
statistics purposes. Moreover advertisers are willing to monitor radio streams to verify the
ful llment of contracts by the broadcast channel for broadc asting the speci ¢ commercial
between the stipulated times. Many commercial systems are providing these services, such
as Broadcast Data System(www.bdsonline.com), Music Reporter(www.musicreporter.net),
Audible Magic (www.audiblemagic.com), and YACAST (www.yacast.fr).

Our proposed system is used to search for advertisements and songs in radio broad-
cast streams. In this sense ALISP transcriptions of advertisements and songs are computed
using HMM models provided by ALISP tools and Viterbi algorithm and compared to tran-
scriptions of the radio stream using the BLAST algorithm [3] (Altschul et al., 1990).
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The ALISP HMM models are rst trained on the ALISP training database (288h),
described in section 4.2, the number of ALISP unitsis 65 (64+ Silence model) and the aver-
age length per model is around 100ms. Compared to [57] (Haitsma and Kalker, 2002) which
extracts 32-bit vector per frame, leading to 5,160 vectors per minute, ALISP methodology
provides a very compact way to represent the audio data with 600 ALISP units per minute.
Moreover our ngerprinting method is as compact asthe audioD NA described in [24] (Cano
et al., 2002) which extracts 800 gens per minute.

Figure 6.1 shows a spectrogram of excerpts from a reference advertisement and two
spectrograms of the same advertisement streamed on two di erent radios with their ALISP
transcriptions. Note the presence of some di erences between ALISP transcriptions of the
three advertisements. These di erences could be explained by the similarity between some

ALISP classes which leads to confusion during the recognition of these classes.

6.3 Experimental Setup

The ALISP-based audio identi cation system isused to searc h for advertisements and
songsin radio broadcasted streams. To evaluate this system, two experimental protocolsare
proposed. The rst protocol, denoted the SurfOnHertz proto col, isused for theidenti cation
of advertisements and songs in radio streams. It corresponds to 12 annotated days of
radio broadcast provided by the framework of the ANR-SurfOnHertz project and divided

in di erent parts as follows:

 Development database: ve days of audio stream are used to st udy the stability
of ALISP transcriptions of advertisements and to set the decision threshold for the

Levenshtein distance.

» Reference database: it contains 2,172 advertisements and 7,000 songs leading to
9,172 reference items. The advertisement references correspond to the whole commer-
cial item while only a one-minute-long excerpts of each reference song is kept. The
position of these signatures within the tracks is unknown. The radio stream from

whom a given reference was extracted is not part of the evaluation set.
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Figure 6.1: Advertisement spectrograms, taken from the radio broadcast corpus, with their
ALISP transcriptions. rst spectrogram is an excerpt from t he reference advertisement,
second one represents the same excerpt from French virgin radio and the last one represent
the same excerpt from French NRJ radio.
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* Evaluation database: seven days of audio stream from three French radios, these
days are di erent from the ones used in the development database and the ALISP

training database. This database contains 1,456 advertisements and 4880 songs.

The experimental protocol described above is also used to x some parameters of the

ALISP-based audio identi cation system:

* Number of Gaussian components. two ALISP HMM models are trained. The rst is
a mono-Gaussian model where each state is modeled with one Gaussian component.
While the second is a multi-Gaussian model trained using the techniques described in

section 3.3.

* Number of ALISP units: theinitial number of ALISP unitswas 65 (64+ silence model).
In order to nd out if the set of possible ALISP units can be red uced, three new sets
of ALISP models are trained and evaluated (using the same data) with 9, 17 and 33

units.

* Method of initial segmentation: as described in section 5.2, di erent methods for
the initial segmentation of the ALISP training database are compared: temporal
decomposition, uniform segmentation, spectral stability segmentation and phonetic

segmentation.

Like the majority of the evaluations of audio ngerprinting systems, the evaluation
protocol described above is applied on private corpora. Therefore a second experiment
is done using a public evaluation framework for audio ngerp rinting technologies. This
framework is proposed by Ramona et al. [108] (Ramona et al., 2012) during the 2010
evaluation campaign of the QUAERO project (http://www.quaero.org). It is based on a
scenario involving the detection of songsexcerptsin broadcast radio streams. Theevaluation

protocol for this experiment on the QUAERO database is the following:
» Reference database : it contains only the 7,309 one-minute-long excerpts of songs.

» Evaluation database: It consists of the recording of 7 days of the French radio stream

RTL captured and saved on disk in 5 minutes chunks. Therefore, the total duration
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Day | Number of tracks
67
63
71
66
63
120
101

N OO W NP

Table 6.1: Number of music track present in each day in the QUAERO evaluation set.

reaches 7 days x 24 hours per day = 168 hours. All of it was annotated by manually
checking the output of an audio identi cation engine (with p recision around 1 second).

This database contains 459 music tracks distributed as it shown in table 6.1.

It isimportant to remind that all the sets of ALISP HMM models are trained on the
ALISP training database which contains 288 hours from 12 French radios.

6.4 Number of Gaussian Components

In order to evaluate the contribution of the dynamic mixture splitting described in
section 3.3.4, two sets of ALISP HMM models are trained with mono and multi-Gaussian
models. The number of ALISP units for both modelsis 65 and temporal decomposition is
used for initial segmentation. For the multi-Gaussian HMM model the number of Gaussian
components per mixture is shown in gure 6.2. The mean value of Gaussian components
used per mixtureis 6.

The evaluation of the proposed audio identi cation system i s performed using both
ALISP HMM modelsto nd out whether the use of multi-Gaussian models could improve
the accuracy of the system. But before that, the stability of ALISP transcriptions of
advertisement is studied. As shown in gure 6.1, the ALISP transcriptions of the same
advertisements broadcasted on di erent radiosisdi erent. Therefore a comparison between
advertisements present in the development data set isperformed to x thedecision threshold

of the Levenshtein distance.
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Figure 6.2: Number of Gaussian components used per mixture for the multi-Gaussian HMM
model trained on the ALISP training database (288h).
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6.4.1 Threshold Setting

To study the stability of ALISP transcriptions and determine the decision threshold,
two experiments are realized on the mono and multi-Gaussian models obtained after the

dynamic split of states mixtures on the development database:

e Compare ALISP transcriptions of the reference advertisements to the commercials in

the radio recording (intra-pub experience).

e Compare ALISP transcriptions of reference advertisements to data that does not

contain advertisements (extra-pub experience).

Figure 6.3 shows the distribution of the Levenshtein distances between ALISP tran-
scriptions of references and advertisements in the radio recordings (denoted as mono-intra-
pub and multi-intra-pub) and the distribution of the Levenshtein distances between ALISP
transcriptions of references and data that do not contain advertisements (denoted as mono-
extra-pub and multi-extra-pub).

Note that for both sets of HMM models, the two distributions (intra-pub and extra-
pub) for the Levenshtein distance are digoint. This result means that by choosing an
appropriate decision threshold for the Levenshtein distance, there is a big chance that all
advertisements in the radio streams can be detected.

As commonly observed for speech recognition systems, at a phone-like level with
current ALISP models the transcriptions of audio data are not perfect. Therefore, when
two di erent repetitions of the same advertisement are analyzed there are di erences (that
isthe reason why we need to apply the Levenshtein distance). The number of transcription
errorsis proportional to the length of the advertisement. For long advertisement, there is
a larger risk to nd more transcription errors that lead to a b igger Levenshtein distance.
On the other side, this study shows that ALISP transcriptions made with multi-Gaussian
models are more precise than those made with mono-Gaussian models.

Once we have tuned the threshold of the Levenshtein distance on the development
set, we can proceed to evaluate the proposed audio identi cation system with mono and

multi-Gaussian models.
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Figure 6.3: Distribution of the Levenshtein distance between ALISP transcriptions of refer-
ences and advertisementsin the development radio recordings for the mono-Gaussian model
(denoted as mono-intra-pub) and the multi-Gaussian model (denoted as multi-extra-pub)
and distribution of the Levenshtein distance between ALISP transcriptions of references
and data that do not contain advertisements for mono-Gaussian model (denoted as mono-
extra-pub) and multi-Gaussian model (denoted as multi-extra-pub).
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Item R% P% Missed item | False alarms
Expl | Exp2 | Expl | Exp2 | Expl | Exp2 | Expl | Exp2
Advertisement | 98 98 93 100 27 27 102 0
Songs 92 92 96 100 | 389 | 389 176 0
All 93 93 95 100 | 416 | 416 | 278 0

Table 6.2: Precision (P%), recall value (R%), number of missed ads and number of false
alarms found for each audio item. Results for the SurfOnHertz protocol (Seven days of
audio stream for 3 French radios, containing 1,456 advertisements and 4,880 songs from
YACAST database) with a threshold of 0.75 for mono-Gaussian model (Expl) and 0.65 for
multi-Gaussian model (Exp2).

6.4.2 Experimental Results

To detect commercials and songs in the test database we proceed as follows:

» Transcription of referenceitems by 65 ALISP HMM models (acquired from the ALISP
development data set).

e Transcription of the test data to obtain its ALISP sequences.

» Setting the decision threshold on the development set of the Levenshtein distance to
0.75 for mono-Gaussian model and 0.65 for multi-Gaussian model to be sureto detect

all items.

» Searching for each ALISP transcription of audio itemsin the ALISP transcriptions of
each test audio stream using the proposed approximate matching process describesin

section 5.3.

In order to evaluate the detection performance precision (P%) and recall (R%) rates

are given in table 6.2:

* Recall : The number of items correctly detected / The number items that should be
detected.

* Precision : The number of items correctly detected / Total number of detected items.

Table 6.2 shows that for both sets of HMM models, the system was not able to detect

416 audio items. These missed items belong to 389 songs and 27 commercials.
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For music identi cation, 372 tracks are related to songs that have a di erent version
from the one present in the reference database. For example, 302 live version songs from
the test radio stream correspond to the studio version in the references. For commercial
identi cation, the 27 missed advertisementsaredi erent from thereference ones. For exam-
ple, there are 9 commercials spoken by di erent speakers who say the same things. These
results show that the proposed system allows usto nd errors in the manual annotations
of songs and advertisements.

Moreover, we note the presence of 278 false alarms for the mono-Gaussian HMM
models, while with the multi-Gaussian HMM models we observe no false alarms. This
result proves that using one Gaussian per state to model 288 hours of audio data is not
su cient and could lead to many errors of identi cation. Hence, the dynamic split of the
states mixtures during the HMM modeling step of the ALISP units is a good solution to
overcome this problem.

Related to the processing time, the computational complexity of the system is mainly
limited tothe search for the closest ALISP sequencethrough the Levenshtein distance. With
the 7,000 songs and 2,172 commercials database, the system runs at a speed of 0.57 per
second of signal using the 65 ALISP modelson a 3.00GHz Intel Core2 Duo 4GB RAM, while
for the brute search described in section 5.3.2.1 the systems runs at a speed of 6 seconds per
second of signal. It’'simportant to note that the approximate matching technique algorithm

speeds up the ALISP transcriptions search without a ecting the identi cation scores.

6.5 Number of ALISP Units

In the previous section, the number of ALISP units was 65 (64+ silence model). In
order to nd out if the set of possible ALISP units can be reduc ed to speed up the matching
process, three new sets of ALISP models are trained and evaluated (using the same data)
with 9, 17 and 33 units. All these modelsaretrained using the multi-Gaussian con guration.

The rst part of this section deals with the stability of the A LISP transcriptions for
each set of ALISP models. Then the results obtained in terms of precision and recall are

presented.
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6.5.1 Threshold Setting

Asfor the setting of the number of Gaussian components, two experiences are realized
in order to study the stability of the ALISP transcriptions for each set of ALISP models.

Figure 6.4 shows the distribution of the Levenshtein distance between ALISP tran-
scriptions of references and advertisements in the radio recordings (denoted as intra-pub)
and the distribution of the Levenshtein distance between ALISP transcriptions of references
and data that do not contain advertisements (denoted as extra-pub), for the four sets of
ALISP models.

Note that for 17, 33 and 65 ALISP models, the two distributions (intra-pub and
extra-pub) for the Levenshtein distance are digjoint. This result means that by choosing
an appropriate decision threshold for the Levenshtein distance, there is a big chance that
all items in radio streams can be detected. Whereas, for the 9 ALISP models the two
distributions overlap. From theses distributions, the Levenshtein distance thresholds were
set to 0.35, 0.45, 0.55 and 0.65 respectively for the sets constituted from of 9, 17, 33 and 65
ALISP models.

6.5.2 Experimental Results

In order to evaluate the ALISP-based audio identi cation sy stem performance recall
(R%) and precision (P%) rates are used. Table 6.3 shows that same results are obtained
in terms of missed items as for the mono/ multi-Gaussian system described in the previous
section. In fact, the ALISP-based systems were not able to detect 416 audio items using
the four ALISP sets. These missed items belong to 389 songs and 27 commercials.

| ALISP Set | Threshold | R% | P% | Missed Items | False Alarms |

AL-65 0.65 93 | 100 416 0
AL-33 0.55 93 | 100 416 0
AL-17 0.45 93 | 96 416 129
AL-9 0.35 93 | 92 416 334

Table 6.3: Recall (P%), Precision (R%) values, number of missed item and number of false
alarms found for the SurfOnHertz protocol with a threshold of 0.65, 0.55, 0.45 and 0.35
respectively for 65, 33, 17 and 9 ALISP models.
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Distribution of the Levenshtein Distance unsing the ALISP 9 models Distribution of the Levenshtein Distance unsing the ALISP 17 models
350 T T T T T T T T T T 350 . . T T T T T T T T
[ Jintrapub [ intrapub
300 | NI extra pub ] 3001 | [N extra pub 1
2501 1 2501 4
9] 9]
Qo e}
£ E
2 2001 1 2 200t f
g £
o 9]
£ £
& i 8
2 150 ] £ 1501 H 1
$ ¢
g g

-
o
S

T
L
=
1=}
1S
T
L

501 1 501 4
0 . . . . . . 0 . . . . .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Mean Levenshtein Distance Mean Levenshtein Distance
Distribution of the Levenshtein Distance unsing the ALISP 33 models Distribution of the Levenshtein Distance unsing the ALISP 65 models
450 T T T T T T T T T T 400 T T T T T T T T T T
aoo | Jintrapub 3500 |[_Jintra pub 4
I extra pub I v pub
307 3001 ]
& 300( °
£ £ 250} |
2 2
= 2501 =
=4
g £ 200r 4
8 200 2
g £ 150¢ f
2 150 <
1001 1
100+
501 1
501
0 . . . . . 0 ! ! ! ! !
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Mean Levenshtein Distance Mean Levenshtein Distance

Figure 6.4: Distribution of the Levenshtein distance for the intra-pub and extra-pub expe-
riences using the four sets of ALISP models, corresponding to 9, 17, 33 and 65 units.
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Furthermore, the presence of 129 false alarms for 17 models and 334 false alarms
for the 9 models were predictable given the decision threshold for the Levenshtein distance.
T his value was chosen to ensure the detection of all items even if false alarms have occurred.

Related to the processing time, the system runs at a speed of 0.49 per second of signal
using the 33 ALISP models on a 3.00GHz Intel Core 2 Duo 4GB RAM, while for the 65
ALISP models the systems runs at a speed of 0.57 per second of signal.

6.6 Method of the Initial Segmentation

At this point, the temporal decomposition is used to obtain an initial segmentation
of the audio data into quasi-stationary segments. Then, these segments are clustered using
vector quantization. After that, boundaries together with labels will be used as initial
transcription for Hidden Markov Modeling. However, other methods to provide an initial
segmentation of the audio data are used. These methods are described in section 5.2.

In this section, the in uence of the initial segmentation on the performances of the
audio identi cation process is studied. Four di erent techniques to obtain an initial seg-
mentation of the ALISP training database are used: temporal decomposition, uniform seg-
mentation, spectral stability segmentation and phonetic segmentation. These techniques
combined with the vector quantization are used to initialize the HMM models. All the
acquired modes are multi-Gaussian with 33 ALISP units.

The rst part of this section involves the in uence of the initi al segmentation on the
stability of the ALISP transcriptions of advertisements. Then the results obtained in terms

of precision and recall are reported for each method of segmentation.

6.6.1 Threshold Setting

Same experiences used to study the stability of ALISP transcriptions and determine
the decision threshold are realized. Figure 6.5 shows the distribution of the Levenshtein
distances between ALISP transcriptions of references and advertisementsin theradio record-
ings (denoted as intra-pub) and the distribution of the Levenshtein distances between AL-

ISP transcriptions of references and data that do not contain advertisements (denoted as
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| System | R% | P% | Missed Items | False Alarms |
Temporal decomposition | 92 | 100 416 0
Spectral stability 92 | 100 416 0
Uniform segmentation N | 95 623 301
Phonetic segmentation 85 | 87 942 806

Table 6.4: Recall (P%), Precision (R%) values, number of missed item and number of false
alarms found for the SurfOnHertz protocol for the di erent techniques of segmentation.

extra-pub), for the four techniques of segmentation.

Note, that the use of uniform segmentation, spectral stability segmentation and tem-
poral decomposition leads to digoint distributions (intra-pub and extra-pub) for the Lev-
enshtein distance. Furthermore, this study showsthat ALISP transcriptions obtained using
the spectral stability segmentation and temporal decomposition are more precise than those
with uniform segmentation.

On the other side, for the phonetic segmentation the two distributions overlap. This
result is predictable given that the phonetic models are trained only on speech. In fact,
the phonetic segmentation of audio data are used to initialize the ALISP HMM models,
however the nal ALISP models still vulnerableto distortion s occurred in audio data which
leads to many errors. From theses distributions, the Levenshtein distance thresholds were
set to 0.55, 0.55, 0.65 and 0.65 respectively for temporal decomposition, spectral stability

segmentation, uniform segmentation and phonetic segmentation.

6.6.2 Results

Table 6.4 showstherecall (R%) and precision (P%) rateswhen thedi erent techniques
of initial segmentation are used.

ALISP models using spectral stability segmentation perform as well as the models
using temporal decomposition. Thisresult con rms what is o btained in section 5.2.2, when
maximal intersection between both models is computed.

For the uniform segmentation, the obtained results are dlightly worse than those
obtained with temporal decompaosition and spectral stability segmentation. This could be
explained by the fact that uniform segmentation don't take into account the audio signal
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characteristics which a ects the HMM modeling of the data.

As shown in the study of ALISP transcriptions stability of advertisements, the pho-
netic segmentation leads to many errors of identi cation an d especially to a higher false
alarms than the other techniques. This result con rmsthat p honetic segmentation are not

appropriate to treat songs and advertisements.

6.7 Comparative Study

In this section, the ALISP-based audio identi cation system is evaluated using the
QUAERO evaluation protocol in order to compare the performance of the proposed sys-
tem with the systems provided by the participants of the 2010 QUAERO evaluation cam-
paign [108] (Ramona et al., 2012), which are:

* Fenet et al. [44] (Fenet et al., 2011) developed a ngerprinting system based on the
SHAZAM approach [133] (Wang, 2006).

* Ramona et al. [109] (Ramona et al., 2011) provided a system based on spectral mod-

eling of bark-bands energy and synchronization through onset detection.

* YACAST implemented an audio ngerprinting system based on thePhilipssystem [58] (Haitsma
and Kalker, 2003)

Note that in this protocol the recognition of di erent versions of the same song title
is considered outside the perimeter of audio identi cation . Therefore the number of music
tracks to be detected is reduced to 459 tracks.

Theset of ALISP HMM models used in this evaluation campaign is trained using the
multi-Gaussian con guration with 33 ALISP units and the spectral stability method for
the initial segmentation. The choice of spectral stability segmentation is motivated by its
simplicity compared to the temporal decomposition.

Sincethe position of music signatureswithin thetracksisunknown, our task islimited
only in detecting the music track in the test audio stream. For each detection of a reference,

the system provides the name and the date of the song in the radio stream. If the date of
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| System [ R% | P% | Missed Items | False Alarms |
Our system 100 | 100 0 0
Fenet et al. 97.4 | 100 12 0
Ramona et al. | 96.9 | 99 15 2
YACAST 95.9 | 99 17 0

Table 6.5: Precision (P%), recall rate (R%), number of missed tracks and number of false
alarms found for the Quaero protocol (7 days of radio streams containing 459 songs to be
identi ed).

detection is between the annotated start and end date of the same song, this song will be
considered as detected.

Results are shown in table 6.5.

Table 6.5 clearly shows the relevance of our ALISP-based ngerprint, when compared
to the other systems. However this protocol considers only one radio for evaluation which
is not a real-world use-case. However, it gives an idea about the positioning of our system

in the state of the art of audio ngerprinting.

6.8 Conclusion

In this chapter, the ALISP-based audio ngerprinting system was described. This
system uses automatically acquired units provided by ALISP models to search for adver-
tisements and music pieces in radio broadcast streams. In this sense ALISP transcriptions
of advertisements and songs are computed using HMM models provided by ALISP tools
and Viterbi algorithm and compared to transcriptions of the radio stream using the an
approximate matching algorithm based on BLAST technique.

After that, many experiences were realized to determine the best con guration of
ALISP HMM models. It was found that using the multi-Gaussian con guration with 33
ALISP units and the spectral stability method for the initial segmentation ensure the best
performances of the proposed audio ngerprinting system. T hese models will be used in
the following chapters to extract the ALISP units from audio data.

Regarding the results, on a set of 6,336 audio items (4,880 songs and 1,456 adver-

tisements) 5,920 were detected without false alarms. 399 missed items are relative to songs
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and commercials that are di erent from their references. Moreover, a comparative study
showed that our system performs better than other audio ngerprinting systems on the task
of music identi cation.

After all these studies and results, a legitimate question could be raised: "What if a
song or a commercial is streamed for the rst timein radio bro adcast and do not have its
signaturein the reference database?’. The next chapter will be dedicated on identifying au-
dio items without references by extracting salient partsor by nding all repetitions of audio
sequencesin the entire database which should lead to automatic discovery of advertisements

and songs.
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Chapter 7

Audio Motif Discovery

7.1 Introduction

This chapter isa continuation of our work on indexing radio streams. In the previous
chapter an audio identi cation system based on ALISP segmen tation was described. The
rst step in the proposed system is the automatic acquisitio n and Hidden Markov Modeling
(HMM) of ALISP audio models. Then a ngerprint database is cr eated from a reference
database using the automatically acquired units provided by ALISP tools. A reference
database contains audio les (songs, jingles, advertisements,...) which the system can iden-
tify. In the last step an unlabeled audio excerpt is identi ed by comparing its ngerprint
with those of the reference database using the BLAST algorithm.

In the case where an audio item is not in the reference database, the audio iden-
ti cation system could not detect it. An example of such a case is when a new song or
advertisement is broadcasted by radio stations. These new items are usually played many
times. Therefore the detection of repetitions of audio items in radio streams should lead
to the automatic discovery of advertisements and songs without the need of a reference
database.

Thetask of detecting repeating audio objectsis also referred as audio motif discovery
or near-duplicate discovery. As explained in [115] (Sandve and Drablos, 2006), the term

"motif” is borrowed from comparative genomic, where it designates a family of symboal
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sequences (each symbol representing a nucleotide or amino-acid). In our work, the term
"motif” denotestherepeating objectsin audio streams which are songs, advertisements and
jingles. We are not dealing with motif discovery in speech data.

Performing thistask isusually based on audio ngerprintin g which involves a compact
content-based signature that represents an audio recording. In thisthesis, ALISP tools are
used to convert the heterogeneous audio stream (containing music, jingles, commercials,
speech, etc.) into a sequence of symbols. These symbols represent the ngerprint needed
to detect the repeating itemsin audio streams. Therefore, the problem of repeating objects
detection is transformed into a string matching problem.

This chapter is organized and structured in the following manner. The rst section
deals with related work to audio motif discovery. Then the ALISP-based near-duplicate
discovery system is presented. In section 7.4, the evaluation of the proposed system is

given.

7.2 Related Work

Theamount of audio data available, such asbroadcast news archives, radio recordings,
music and songs collections, podcasts, etc, has increased exponentially in the past decades.
However, most of these data have limited label information, or worse yet, have no labe
information.

Therefore, it isnot easy for usersto locate a desired song or speaker in such databases,
or to skip unwanted contents. To overcometheselimitations, various systemswere developed
to rapidly analyze and summarize audio content for indexing and retrieval purposes.

Oneof the purposes of these systemsisto detect repeating itemsin audio streams, also
refereed as audio motif discovery. Locating repetitions of unknown audio objects is useful
for many reasons. Herley mentions in [61] (Herley, 2006) many applications for repeating

objects detection such as:

« Commercial skipping: the detection of repeating objectsin radio (or TV) streams

allows the deletion of all unwanted contents (such as advertisements).
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« Compression and archiving: therepeating objects might be used to compress the

audio streams e ciently [7] (Apostolico et al., 2006).

* Broadcast monitoring: conrm for advertisers if the adverti sement was broad-

casted, detection of illegal use of multimedia content.
e Audio structuring: search for repeated occurrences, like jingles, as a rst step for
the analysis of radio or television contents.
7.2.1 Problem Formulation

Detecting repeating audio objects in audio streams consists of nding all pairs of

digoint audio segments [x y] and [u v] which verify these three conditions:

D([x y] [u v]) < thr (7.2)
X Y| < Lmin (7.2)
X<y<u<yv (7.3)

Condition 9.1 is relative to the similarity constraint. It considers that two audio
segments are similar if their distance D is below a certain threshold thr. The second
condition is used to de ne the minimum length (L nin) of the repeating item. The last

condition is there to avoid the detection of two overlapping segments.

7.2.2 Literature Review of Audio Motif Discovery

Most of audio motif discovery systems rely on the same principle: audio ngerprint-
ing [95] (Ogle and Ellis, 2007) [21] (Burges et al., 2005) [43] (Fenet et al., 2012) [121] (Sinit-
syn, 2006) [90] (Muscariello et al., 2011). We review in this section the most representative
works of audio motif discovery.

In [95] (Ogle and Ellis, 2007), a framework to identify repeating sound eventsin long-

duration personal audio recording is proposed. This system adapts the sparse landmark
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ngerprint and hashing technique proposed in [ 133] (Wang, 2006) to search and retrieve
the repeating sound events. The system is evaluated on 40 hours of personal recording
containing 30 songs and 45 telephoneringsthat arerepeated 10 times. The system achieves
arecall rate of 97% and a precision rate of 85 for songs while 69% and 100% are obtained,
respectively, for recall and precision in the case of telephone rings. However, this method
do not perform well with organic sounds, such asimpact transients, machinery, door closure
and speech.

Another framework for the detection of repeating objects in multimedia streams is
described in [43] (Fenet et al., 2012). First, a ngerprint is extracted from each frame
present in the audio stream. Then, each ngerprint is compar ed to the database containing
the past frames ngerprints. Based on this comparison a repetition detection decision is
taken. In case of positive match, the storage database, which contains all the processed
ngerprints, is updated so that it will not store repeated fr ames in the database. Two
audio motif discovery systems are used for this framework. The rst system is based on the
Congtant-Q-Transform (CQT) [44] (Fenet et al., 2011) where a 2-dimensional peak-peaking
in CQT spectrogram is extracted for each frame. Then, the extracted peaks are clustered
in pairs. The time occurrences of these pairs are given by the temporal localizations of
the rst peaks in the pairs. The second system exploits a nge rprint based on a sparse
decomposition of the signal in a redundant dictionary using the Matching Pursuits (MP)
algorithm proposed in mallat-sp-1993 (Mallat and Zhang, 1993). The two systems are
evaluated on a 24-hours radio stream that contains 191 repetitions of songs. For the CQT -
based system, all the repetitions are detected without false alarms, while the MP-based
system misses 13 repetitions and records one false alarm.

A di erent algorithm to detect duplicate songsisproposed in [21] (Burgeset al., 2005).
The system is based on the Robust Audio Recognition Engine (RARE) audio ngerprinting
system [22] (Burges et al., 2003). It consists on transforming an audio segment into 64
oating-point numbers and using a weighted Euclidean distance to search for repeating
songs. The system is evaluated on 21,322 songs for which one or more duplicates should be

detected. 259 mismatches are found leading to a detection rate of 98.8%. T his framework is
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also exploited for audio thumbnail generation, wherethetask isto nd ashort representative
summary of the music track. The proposed system isused to nd repeating parts within
the audio clip. In fact, if a song has a similar chorus segments, the system will be able
to exploit that redundancy to generate a good thumbnail which outperforms the use of a
random thumbnail.

In [90] (Muscariello et al., 2011), the authors adapt an existing system to identify
short and highly variable patternsin speech to detect repeating songs in radio stream. The
proposed system is based on the Automatic RepeatinG Object Segmentation (ARGOS)
framework and Segmental Locally Normalized Dynamic Time Warping (SLNDTW)-based
pattern matching of audio sequences. The ngerprint used in this system is a ssimple con-
version of raw data to MFCC features. In order to speed up the search of repetitions a
regular downsampling of MFCC sequences is integrated in the framework. The system is
evaluated on 6 days of radio streams that contain 1,742 songs. For a set of 208 repeating
songs a precision rate of 100% with the corresponding recall value of 70% are achieved.

Audio motif discovery has also been applied to analyze the musical structure and
perform audio thumbnail generation. As explained in [33] (Dannenberg and Hu, 2002), the
audiodataare rst transcribed into a sequences of represen tations such as monophonic pitch
estimation [32] (Dannenberg, 2002), chroma representation [14] (Bartsch and Wake eld,
2001), and polyphonic transcription [83] (Marolt, 2001). Then similar segments are searched
within the piece of music. After that, the obtained segments are grouped into classes in
order to analyze the structure of the song.

Most of the system described above are evaluated on repeating songs with long du-
ration (about 5min). In the next section, the ALISP-based audio motif discovery system is
described and evaluated on advertisements and songs where the duration could vary from
few seconds (3s) to some minutes (7min). This system usesthe ALISP symbolsto represent

the audio data and the BLAST algorithm to search for repetitions.
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Figure 7.1: Main architecture of the ARGOS segmentation framework.

7.3 ALISP-based Audio Motif Discovery System

In order to detect repeating objects, the ARGOS segmentation framework proposed
in [61] (Herley, 2006) is combined with ALISP tools. The main advantages of the ARGOS
framework is its ability to work in a streaming mode (where the future data are not avail-
able). The architecture of the ARGOS framework isillustrated in gure 7.1. It consists of a
sequential algorithm to nd repetitions in audio stream. Th e query is an audio segment to
be searched in the motif library and the received stream (bu er stream). If a positive match
is found, an extension of the query matching is performed to nd the entire audio item.
Thisitem is considered as a repetition if it meets the conditions described in section 7.2.1.

This framework is combined with the ALISP-based audio identi cation system to
build a new audio motif detection system. As previously mentioned, the data-driven ALISP
technique convertsthe raw audio data into a sequence of symbols. These symbols represent
the ngerprint used to detect the repeating itemsin audio st reams. Therefore, the problem
of audio motif detection is transformed into a string matching problem. Asin the ALISP-
based audio indexing system described in section 5.3, the BLAST algorithm isimplemented
to speed up the approximate string matching. This algorithm is used in the ALISP-based

audio motif detection system to accelerate the query search in the motif library and the
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bu er stream.

7.4 Experimental Setup and Results

In our work, we are interested by detecting repeating songs and advertisements in
radio streams. Comparing di erent motif detection systems remains impossible, since no
public evaluation framework or corpus has been proposed. Therefore, the ALISP-based
motif detection system is evaluated on the SurfOnHertz protocol previously used for audio
identi cation.

The rst part of thissection dealswith the experimental set ups. Then, studiesrelated
tothe stability of the ALISP transcriptionsto set the decision threshold for the Levenshtein

distance are presented. Finally results obtained in terms of precision and recall are exposed.

7.4.1 Experimental Protocol

In the previous chapter, we showed that the optimal con guration of ALISP HMM
models is the one using the multi-Gaussian modeling with 33 ALISP units and the spectral
stability method for the initial segmentation. These models were trained on 288 hours
of audio data and already exploited for audio identi cation as described in the previous
chapter. They will be also exploited in this chapter and the following to compute the
ALISP transcription of audio data.

The ALISP-based motif detection system isevaluated the SurfOnHertz protocol where

seven days of audio stream from three French radios (21 days) are considered.

7.4.2 Threshold Setting

To study the stability of ALISP transcriptions and determine the decision threshold,

two experiments are realized:

» Compute the Levenshtein distance between the ALISP transcriptions of repeating

songs (rep-song experience).
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* Computethe Levenshtein distance between the ALISP transcriptionsof di erent songs

(di -song experience).

These experiences realized on one day of audio from "Radio Nostalgie” with 347
broadcasted songs. Among these songs, 47 are repeated.

Figure 7.2 shows the distribution of the Levenshtein distances between ALISP tran-
scriptions of repeating songs (denoted as rep-song) and the distribution of the Levenshtein
distances between ALISP transcriptions of di erent songs (denoted as di -song). Note that
the two distributions (rep-song and di -song) for the Levenshtein distance are disjoint. The
mean Levenshtein distance for rep-song experience is 0.32 while for di -song experiencethis
valueisequal to 0.85. Thisresult meansthat by choosing an appropriate decision threshold
for the Levenshtein distance, thereis a big chance that all repeating itemsin radio streams

can be detected.

7.4.3 Results

7 days of audio stream from 3 French radios (leading to 21 days) are used to evaluate
the proposed system. These data contain 4,880 songs and 1456 advertisements, yielding,
respectively, to an average duration of 210 seconds and 29 seconds. T he shortest song and
advertisement have, respectively, a duration of 59 seconds and 5 seconds, while the longest
ones has, respectively, a duration of 411 seconds and 43 seconds.

Among all songs in the evaluation database, 348 are repeated with a total number
of 3081 repetitions. The most repeated motif occurs 24 times while the average number
of repetitions is 4. For advertisements, the most repeated motif occurs 16 times while the
average number of repetitionsis 2. The total number of repeated advertisements is 1315.

In order to evaluate the ALISP-based motif detection system performance precision

(P%) and recall (R%) rates are used:
* Precision: the number of motifs correctly detected / Total number of detected motifs

* Recall: the number of motifs correctly detected / The number of motifs present in

the audio stream
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Figure 7.2: Distributions of the Levenshtein distance between ALISP transcriptions of
repeating songs (denoted as rep-song) and di erent songs (denoted as di -song).
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The evaluation database contains various repeating objects other than songs and
advertisements, such as jingles and speech segments. Since the manual annotations relative
to these objects are not available, the detection of these itemsis considered to be out of the
scope of this work.

The evaluation process is de ned as follows. When the system detects a repetition,
it gives its detection time to be checked if it does actually correspond to a repeating song.
If a detected motif does not match any annotated repeating song, it will be considered as

a false alarm. The results of the experiments are summarized in table 7.1.

Rep | R% | P% | MD | FA
Songs | 3081 | 99 [ 100| 21 | O
Ads | 1315| 98 | 9 | 14 | 6

Table 7.1: Number of repetitions (Rep), precision (P%), recall value (R%), number of
missed detection (MD) and number of false alarms (FA), found in the evaluation database
for songs and advertisements

For songs, thesystem isnot ableto detect 21 repetitions. Theserepetitionsarerelated
to songs overlapped with speech which disturbs the detection process. On the other hand,
the absence of false alarms con rmsthe results obtained on t he development database where
the Levenshtein distance distributions of rep-song and di -song experiences are disjoint.

For the advertisements, the system is not able to detect 14 repetitions and leads to
6 false alarms. In fact, these errors are related to the detection of two repetitions of two
successive advertisements and one repetition of three successive advertisements. In the
manual annotation these repeated advertisements are annotated as separate motif. Thisis
the origin of this errors.

Moreover, this evaluation database was also used for the audio identi cation task and
a mean precision rate of 100% with the corresponding recall value of 95% were achieved.
These results show that the ALISP-based audio indexing system is generic and could be
applied on di erent tasks for the same radio streams.

It’simportant to note that the ALISP-based motif detection system performs as well
asthetwo systems described in [43] where the evaluation database is a 24 hours of a French

radio. The rst system used a ngerprint based on the Shazam s ystem while the second
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one used a sparse decomposition-based ngerprint.

7.4.4 Runtime

The computation timerequired to detect the repeating objectsisan important param-
eter to be considered. Thereforethe BLAST algorithm isused to speed up the approximate
ALISP symbols matching.

For the ALISP ngerprinting computing the processing time i s 0.04s per second of
signal. Accordingly, the computational complexity of the system is mainly limited to the
search for the closest ALISP sequence through the Levenshtein distance. Using the BLAST
algorithm, the system needs 15 hours to process 24 hours of radio streams using 33 ALISP
models on a 3.00GHz Intel Core 2 Duo 4GB RAM, while for the brute search the runtime
is estimated at 10 daysto process 1 day of radio stream.

It’simportant to notethat the BLAST algorithm speeds up the ALISP transcriptions

comparison without a ecting the detection scores.

7.5 Conclusion

In this chapter a motif discovery system to detect repeating songs and advertisements
in radio streamswas described. Asfor theaudio identi cati on, the proposed system is based
on ALISP sequencing to represent the audio data and BLAST algorithm to accelerate the
approximate ALISP units matching. As pointed before, this architecture is common for all
the audio indexing systems presented in this thesis.

The ALISP-based audio motif discovery system was evaluated on 6 days broadcast
corpus of 4 radios. On a set of 975 motifs a mean precision rate of 100% with the corre-
sponding recall value of 97% were achieved. Moreover, BLAST algorithm was able to speed
up the searching step without a ecting the detection scores.

In the next chapter, wewill focuson the speaker diarization task, that aimsto segment
an input audio stream into homogenous regions according to speaker’s identities in order
to answer the question "Who spoke when?’. In our work, we are interested in speaker

diarization for TV and radio shows. Usually these shows keep the same structure with
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same presenters and jingles. This redundancy is used in order to improve the performance
of the speaker diarization system. The main idea of our system isto compare the show to
be segmented with the same show broadcasted before in order to nd the common audio

segments. This operation is performed using the ALISP sequencing and BLAST algorithm.
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Chapter 8

Speaker Diarization

8.1 Introduction

In this chapter, the proposed audio indexing system is applied to speaker diarization
on TV and radio shows, wherethe goal isto segment an input audio stream into homogenous
regions according to speaker’sidentitiesin order to answer the question " Who spoke when?”.

Speaker diarization is also known as a speaker segmentation and clustering. The
speaker segmentation step aims to detect the boundaries of speech segments by nding
the speaker change points or more generally the acoustic change points. Then, speaker
clustering is applied to group together the speech segments that seem to be pronounced by
the same speaker. The general architecture of a speaker diarization system isillustrated in

gure 8.1 [41] (EIKhoury, 2010). It is generally composed of four steps:

» Parameterization.

» Voice Activity Detection (VAD).
* Speaker segmentation.

e Speaker clustering.

As mentioned before, speaker diarization provides useful information related to the
speaker identities. Coupled with automatic speech recognition this knowledge is useful in

many applications, such as:
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Figure 8.1: General architecture of a speaker diarization system.
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* Rich transcription: speaker diarization is performed as a preliminary step in every
task of information retrieval such as the speech duration of politicians during an elec-
tion campaign or the tracking of a particular person for summarization and indexing

pUrposes.

* Automatic speech recognition: the main goal of speaker diarization isto identify the
speech segments pronounced by the same speaker. These segments are exploited for

speaker adaptation to enhance the automatic speech recognition performance.

» Speaker-based algorithms: speaker diarization isthe basis of several applications such
as, speaker tracking, speaker veri cation, speaker identi cat ion and other speaker-
based algorithms.

In this work, we are interested in speaker diarization for TV and radio shows which
include various acoustic sources such as studio/ telephone speech, music, or speech over
music. Usually these programs tend to keep the same structure with same presenters,
reporters, sound e ects, jingles, etc. This redundancy is used in order to improve the
performance of the speaker diarization system.

This chapter is organized as follows. The rst section presents the state of the art of
speaker diarization. In section 8.3, the ALISP-based speaker diarization system is detailed.

Section 8.4 presents the experiments and the results.

8.2 State of the Art of Speaker Diarization

Many speaker diarization systems are described in [124] (Tranter and Reynolds, 2006)
and [5] (Angueraet al., 2012). As previously mentioned, these systems are composed of four
modules; acoustic features extraction, speech detection, speaker segmentation and speaker
clustering. This section is organized as follows. In section 8.3.1, some of the acoustic
features that are suitable for speaker diarization are listed. In the next section, a review of
speech detection algorithms is presented. Then, the di erent techniques used for speaker
segmentation and speaker clustering are respectively introduced in sections 8.3.3 and 8.3.4.

Finally the main recent search directions for speaker diarization are described.
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8.2.1 Acoustic Features

As for speaker and speech recognition systems, the parameterization in speaker di-
arization system is based on frame-level features such as the Mel Frequency Cepstrum Co-
e cients, the Linear Frequency Cepstrum Coe cients, the Linear Predictive Coding and
Perceptual Linear Predictive.

Moreover, in the eld of VAD, other features are proposed such as energy, spectrum
divergence between speech and background noise, 4 Hertz modulation energy, pitch and
zero crossing rate. In addition, for music detection other features like the number and the
duration of the stationary segments obtained from a forward/ backward segmentation are

used. In the following part, some of these acoustic features are described:

» Mée Frequency Cepstrum Coe cients (MFCC): The MFCCs[88] (Mermelstein, 1976)
are by far the most frequent featuresfor speech processing. The MFCCsare commonly
extracted as show in gure 8.2. First, the audio signal is windowed using a Hamming
function. Then the Fourier transform is applied on each window. After that, the pow-
ers of the spectrum obtained above are transformed to the MEL scale using triangular
overlapping windows. Finally, the Discrete Cosine Transform of the obtained powers

are calculated. The MFCCs are the amplitudes of the resulting spectrum.

* 4 Hertz modulation energy: The speech signal has a characteristic energy modulation
peak at 4Hz syllabic rate. The 4Hz modulation energy is exploited in [105] (Pinquier
et al.,, 2003) in order to segment speech and music. To compute this feature, the
audio signal istransformed into 40 perceptual channels according to the same process
used to compute the MFCCs features. Then the energy of each band is Itered by a
bandpass Iter with a center frequency of 4Hz. After that, the ltered energies are
summed and normalized. Finally, the desired feature is obtained by computing the

variance of the Itered energy.

» Zero Crossing Rate (ZCR): The ZCR is the rate at which the sign of the audio sig-

nal changes. This feature is often extracted for speech/ music segmentation. It is
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Figure 8.2: Extraction method of MFCC features.

computed for each frame as follows:
!

X!
ZCR() = 5o Isign(xa(i)) sign(x n 1 ()] (81
n=1

Where x,(i) is the nth sample in the frame i and N is the size of framei.

* Energy: The energy is a temporal feature commonly used in signal processing. It is

computed as follows:

X
E(i)=  xa(i) (8.2)
n=1

After the parameterization, the next module in a speaker diarization system is the

voice activity detection which allows the detection of the speech partsin the audio signal.

8.2.2 Voice Activity Detection

Voice activity detection involves the labeling of speech and non-speech segments in
theaudio signal. This module have a signi cant impact on spea ker diarization performance.
If a speaker segment is not labeled as speech, it is counted as a missed detection. On the
other hand, a non-speech segment, which is labeled as speech, can a ect negatively the
speaker diarization process. Many di erent approaches and studies of such a system are
proposed in the literature [106] (Ramirez et al., 2007). These systems are generally divided
into two categories.

The rst category concerns the model-based approaches. The se approaches rely on a

two-class detector, with modelstrained on external speech and non-speech data [6] (Anguera
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et al., 2005) [42] (EIKhoury et al., 2009). The models are usually based on Gaussian Mix-
tures or Hidden Markov Modéls. Speech and non-speech models are usually adapted to spe-
ci ¢ conditions such as noise and channel. The main drawback of model-based approaches
is their dependency on the training data.

The second category isrelated to unsupervised methods. T hese methods use acoustic
features such as 4Hz modulation energy, energy or the number and the duration of seg-
ments, described in the previous section, to discard non speech regions [107] (Ramirez et
al., 2003) [105] (Pinquier et al., 2003). The main drawback of these methodsis the use of a
threshold decision to detect speech. Generally, this threshold is determined empirically on
a developmental corpus.

Hybrid approaches have been developed to overcome these limitations. Generally,
a threshold-based method is rst applied to detect speech an d non speech segments with
high con dence of classi cation. Then, the labeled data is e mployed to train speech and
non-speech models. These models are then exploited to obtain the nal segmentation of
the audio signal [4] (Anguera et al., 2006) [42] (EIKhoury et al., 2009).

Oncethe voice activity detection is performed, the next step in the diarization process

is the speaker segmentation.

8.2.3 Speaker Segmentation

During speaker segmentation (also referred as speaker change detection) the audio
stream is split into homogeneous segments by detecting changes in speakers. Each segment
should contain the speech of one speaker and two consecutive segments should contain
the speech of two di erent speakers. Two main types of speaker segmentation systems
can be found in the literature. The rst category concerns th e metric-based segmentation
methods. Whilethe second category involves other methods which rely on non metric-based
segmentation approaches. In this works, we are only interested in metric-based speaker
segmentation methods that are exposed in this section

Metric based speaker segmentation is the most common technique used to detect
speaker changes in audio streams [5] (Anguera et al., 2012). It relies on the computation of
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a distance between two adjacent segments, usually in overlap, to gure out if they belong
to the same speaker. Most of the distances computed for speaker segmentation are also
applied to speaker clustering.

Metric-based speaker segmentation systems are divided into two category. The rst
type of systems performs a single processing pass to detect the speaker turns boundaries. In
the second class, a two-pass method is carried out. The rst p assyields many change points
with a high false alarm rate, in the second pass the detected change points are reconsidered
to enhance the speaker segmentation out put.

The most used distances are described in the following sections. These distance are
calculated in the speaker segmentation step for either a single processing pass or two-pass

processing method.

8.2.3.1 Generalized Likelihood Ratio

The Generalized Likelihood Ratio (GLR) isintroduced by [52] (Gish et al., 1991). It

considers that for each audio segment there are two possible hypotheses:

* Hp: Thishypothesis supposesthat thesegment X = x; Xy isproduced by a single
speaker. Therefore, the segment X is modeled by a multi-Gaussian distribution.

e Hi: This hypothesis supposes that the segment X = x; Xy is produced by two
di erent speakers representing two di erent segments:. X; = X3 X; and X, =
Xit+1 XN - In this case, the segment X is modeled by two multi-Gaussian distribu-

tion.

As described in [65] (Jin et al., 2004) and [59] (Han and Narayanan, 2008), the GLR
is determined to estimate the ratio between the probabilities of the hypothesis Hg and the

hypothesis H; as follows:

P(Ho)
P(H1)

GLR = (8.3)
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In terms of likelihood, the previous equation is given by:

L(X M)
L(X1 M1)L(X2 M2)

where M, M1 and M are, respectively, the estimated model of X, X; and X, and L() is

GLR =

(8.4)

the likelihood function. By considering a Gaussian distribution of the models, the previous

expression becomes:

: N N N
R()= log(GLR) = Zlog] x| S logl x,| = logl x,l (85)

where x, x, and x, are, respectively, the covariance matrices of X, X1 and X5 and N,
N; and N2 , are respectively the size of X, , X1 and X,. The estimated value of the point
of change is given by:

i= argmax R(i) (8.6)

Finally, a threshold T is dened in order to detect the point of speaker change. In
fact, ifA(i) is greater that the threshold T, the segment X belongsto two di erent speakers
and i is designed as the change point.

The main drawback of the GLR measure is the existence of the threshold T. This

threshold is determined empirically using some external data.

8.2.3.2 Bayesian Information Criterion

TheBIC distanceisthe most common approach for speaker segmentation [5] (Anguera
et al., 2012), it is given by:

BIC(M) = logL(X M) EnlogN (8.7)

where n represents the number of feature vectors used to build the model M. The BIC
value is composed of two terms. The rst one gives the log-likel ihood of the data given
the model. While the second term represents the complexity of the data.  is a penalty

coe cient, theoretically set to 1 [112] (Rissanen, 1989).
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By considering the two hypothesis Hp and H;1 dened in the previous section, the

di erence between BIC measures related to the two hypothesis is:

BIC(i)=R(i) P (8.8)

where R(i) isthelikelihood ratio de ned in equation 8.5 and P isthe data complexity term:

p= %(d+ %d(d+ 1)) logN (8.9)

where d is the size of the feature vector. The larger the value of B C(i), the less similar

the two segments is. Therefore, if:

max BIC(i)> 0 (8.10)

The time index corresponding to this maximum value is considered as a speaker change
point. Unlike the GLR criterion, the BIC segmentation method do not require a threshold
and the penalty coe cient is xed theoretically to 1. However, other studies suggest th at
thisvalue is not necessarily equal to 1 [125] (Tritschler and Gopinath, 1999) [35] (Delacourt
et al., 1999) [80] (Lopez and Ellis, 2000). Moreover, BIC-based speaker segmentation are
computationally more expensive than other metrics. Therefore, some systems propose to
consider a two-pass processing method, where the BIC metric in employed in the second
pass, while a faster metric is performed in the rst pass [ 36] (Delacourt and Wellekens,
2000).

8.2.3.3 Kullback-Leibler Divergence

Like the GLR and the BIC metrics, The Kullback-Leibler (KL) divergence [72] (Kull-
back and Leibler, 1951) is a distance between two random probability distributions. Given
two probability distribution P and Q, the KL divergence is given as follows:

KL(P Q) = " P p(x)dx (8.11)

a(x)
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As shown in the previous equation, the KL divergence is an asymmetric distance
which make its use unsuitable for speaker segmentation. Therefore a symmetric version of

the KL divergence, denoted as KL2, is proposed [139] (Zhu et al., 2006):

KL(P Q)+ KL(Q P)
2

By considering two adjacent windows of the audio signal with the Gaussian distribu-

KL2=

(8.12)

tionsNy (M1 1) and N, (M2 2) the previous equation becomes:

1 2 2 >, 1 1
KLZZE St S5+t M2 S+ — (8.13)
2 1 2

where ; and ; are, respectively, the mean and the covariance of the Gaussian distribution
N;. Thelocal maximaof the KL2 metric correspond to the speaker change points[119] (Siegler
et al., 1997).

8.2.4 Speaker Clustering

As pointed out before, a speaker segmentation system aims to determine if two ad-
jacent segments belong to the same speakers. While, for a speaker clustering system, the
goal is to group the segments that seem to be pronounced by the same speaker. Unlike
the speaker segmentation, these segments could be localized anywhere in the audio signal.
T he problem of measuring a distance between segments for the speaker clustering remains
the same. Therefore, all the distance presented in section 8.3.3 are also used for speaker
clustering.

As shown in gure 8.1, the optimal output of the speaker clustering system is a
single cluster for each speaker. Since the number of clusters and the speakers identities
are unknown, the speaker clustering process is considered as an unsupervised class cation
problem that is commonly solved with hierarchical clustering.

The hierarchical clustering is applied to iteratively agglutinate together a set of el-
ements that belong to the same class. Figure 8.3 shows the two mostly used methods to

perform hierarchical clustering: top-down clustering and bottom-up clustering.
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Figure 8.3: Hierarchical bottom-up or top-down clustering.

The bottom-up clustering method, also known as agglomerative hierarchical cluster-
ing, is by far the most common in the literature. In this method, each segment provided
by the segmentation step is considered as a single cluster. Then a merging procedure is ap-
plied iteratively to reach the optimal number of clusters. On the other hand, the top-down
clustering technique assigns the whole data to a single cluster. Then a splitting procedure
is performed in order to obtain the optimum number of clusters.

Thenext subsectionsdeal with the main systemsfor speaker clustering. T hese systems
are developed for an o ine con guration where the whole audio document is availabl e.
However, some of these systems are adapted for an online scenario where only the streamed

data is available.

8.2.4.1 BIC-based Clustering Approach

As previously mentioned, all the distances applied to detect speaker changes remain
useful for speaker clustering. The most commonly found distance is Bayesian Information
Criterion [89] (Moraru et al., 2005). As shown in [124] (Tranter and Reynolds, 2006),
the Agglomerative Hierarchical Clustering using a BIC-based distance is composed of the
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following steps:

1. Each segment provided by the speaker change detection step is assigned to an inde-

pendent cluster.
2. Compute the pair-wise distance matrix between each cluster using the BIC metric.
3. Merge the pair with the lowest B C distance.
4. Update the pair-wise distance between the remaining clusters and the merged one.

5. Iterate from step 2 to 4 until all pairshavea BIC > 0.

8.2.4.2 Hidden Markov M odel Approach

A HMM-based approach for speaker clustering is introduced in [2] (Ajmera et al.,
2002). An ergodic HMM model is proposed, where each state represents a cluster with a
Gaussian distribution and the transitions matrix re ect th e changes between speakers. The
clustering process is performed by merging the closest clustersin terms of the log-likelihood
ratio distance. Then the HMM are re-trained according to the new topology (one less state)
and the overall likelihood is computed. When this likelihood decreases, the merging process
is stopped.

An alternativeHMM approach, called Evolutive-HMM training, isproposed in [87] (Meignier
el al., 2001) and [46] (Fredouille et al., 2009). This method belongs to the top-down clus-
tering category, where the segmentation and the clustering module are uni ed in a common
step. First the whole speech le is assigned to a single speaker and modeled by a 1-state
HMM model. Then a new state, representing a new speaker, is estimated from few feature
vectors that maximize the likelihood ratios of the initial model. After that, each cluster
(represented by aHMM state) isiteratively adapted and a Viterbi algorithm is performed to
obtain the new segmentation. The stop criterion is reached when the recognition likelihood

of theiteration m 1 isgreater than the one of the iteration m .
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8.2.4.3 Cross Likelihood Ratio Approach

The Cross Likelihood Ratio (CLR) method is generally performed after a rst clus-
tering based on the BIC metric [140] (Zhu et al., 2005). In the BIC clustering step, the
acoustic features are not normalized in order to keep the background information which are
useful to di erentiate between speakers. However these information could lead to several
clusters belonging to the same speaker. T herefore, a second step of Cross Likelihood Radio
clustering is performed to overcome this problem.

In the CLR clustering step, the background environment e ects are removed by nor-
malizing the acoustic features. Then an universal background model istrained and adapted
to each cluster provided by the BIC clustering step. After that, a pair-wise distance matrix
is computed using the CLR metric and the closest clusters are merged.

The CLR metric is expressed as follows:

1 L(C1 My)

a1 1, LMy
CLR(C1 C2) = {-100( e “gamy) * N, "X (c, UBM)

where N1 and N, are the sizes of the clusters C; and C,. M1 and M 2 are respectively the

) (8.14)

adapted models of the clusters C1 and C, and L(.) isthelikelihood function. The clustering
stops when CLR(C; C;) gets higher than a prede ned threshold.

8.2.5 Recent Research Directions

In thissection, arecent research direction for speaker diarization are described. T hese
works did not con rm their robustness yet, but they show a considered potential to improve
thediarization performances. Two directionsare explored in thissection: the use of prosodic

information and the overlapping speech detection.

8.2.5.1 Prosodic Information Exploitation

For many years, speaker diarization systems were based on cepstral features, such as
MFCC, LFCC, etc., to represent the audio signal. However some works propose to exploit

the prosodic information to improve the performance of the diarization process.
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In [47] (Friedland et al., 2009), a framework to study the e ects of 70 di erent long-
term features is described. These features belong to ve di erent categories. pitch, energy,
formants, harmonics-to-noise ratio, and long-term average spectrum. The authors demon-
strate that by combining the 10 top ranked features, in terms of speaker discriminability,

with the MFCC features the diarization performance increases dramatically.

8.2.5.2 Overlapping Speech Detection

Speech overlaps involve audio segments where simultaneous speakers are active. For
many years, speaker diarization systems were designed for audio contents where speech
overlapsarerare. However, it was shown in [63] ( (Huijbregts et al., 2012)) that overlapping
speech is one of the main source that decreases the performance of speaker diarization
system. In fact, assigning an overlapping segment to a particular speaker could perturb the
modeling of its cluster. Moreover, when an overlapping segment is missed by the diarization
system, the error is accounted twice. Many works propose to detect overlapping speech in
order to improve the performances of the speaker diarization. The main approaches are
based on HMM/ GMM modeling of overlapping and non-overlapping speech.

In [27] (Charlet et al., 2013), two systems are introduced. The rst one combines a
Gaussian Mixture Model classi cation system and a multi-pi tch features detection approach.
Three classes are considered: non-speech, non-overlapping speech and overlapping speech
using the Perceptual Linear Predictivefeatures. The multi-speech detection method isbased
on the pitch estimation algorithm proposed in [34] (De Cheveigng, 2006). In the second
system three Gaussian modelsaretrained, representing male non-overlapping speech, female
non-overlapping speech and overlapping speech. Then, the obtained models are used to
build a 2-class HMMs for overlapping and no-overlapping speech.

Two strategies are proposed to e ciently handle the overlapping speech information
in a speaker diarization system:

» Discard the detected overlapping speech from the diarization process.

» Assign the overlapping speech segments to the two temporal closest speakers.
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An oraclestudiesin [63] (Huijbregtset al., 2012) [120] (Sinclair and King, 2013) shows
that by assigning an overlapping segment to at least one right speaker the error is halved
and if the labeled second speaker is correct the error is halved again.

8.3 The ALISP-based Speaker Diarization System

The main goal of thisthesisisto identify the majority of audio items that could be
found in a radio broadcast streams using data-driven ALISP segmentation. In the previous
chapters, the case of music and advertisement was treated and good performances of the
ALISP-based system were showed. In this section, the generic audio indexing system is
applied to speaker diarization.

As showed in the previous section, the most systems of speaker diarization involve
the acoustic features extraction, the speech activity detection and the speaker segmentation
and clustering. A new module based on ALISP toolsis proposed at the top of the chain.

In this work, we are interested in speaker diarization for TV and radio shows which
include various acoustic sources such as studio/ telephone speech, music, or speech over
music. Usually these programs tend to keep the same structure with same presenters,
reporters, sound e ects, jingles, etc. This redundancy is used in order to improve the
performance of the speaker diarization system.

The main idea of our system is to compare the show to be segmented with the same
show broadcasted before in order to nd the common audio part s, represented by speech
sentences, silence, noise, jingles, music and advertisements. This operation is performed via
audio ngerprinting which involves the extraction of the ALISP symbols, which constitutes
a compact audio ngerprint, for each audio document stored i n a reference database. An
unlabeled test audio excerpt is identi ed by comparing its A LISP ngerprint with those
of the reference database using our approximate matching of ALISP units. Then, these
common segments are labeled according to their nature and the output pre-labeled signal is
processed with a speech activity detection, GLR-BIC speaker segmentation, BIC clustering,
Viterbi re nement and Normalized Cross Likelihood Ratio (NC LR) clustering.

This section is organized as follows. In the next part, the general architecture of the
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proposed ALISP-based speaker diarization system is presented. Then each module of the
proposed system is described individually.

8.3.1 System Architecture

The general architecture of the proposed system is illustrated in gure 8.4. The
system is composed of the following steps:

1. ALISP-based audio sequencing and identi cation.
2. Voice activity detection.

3. GLR-BIC segmentation.

4. BIC clustering.

5. Viterbi re nement.

6. Normalized Cross Likelihood Ratio clustering.

Theprinciplemodulein thisarchitectureis ALISP-based audio sequencing and identi-
cation. The main contribution of this moduleisto help the d iarization process by labeling

the audio partsthat were broadcasted before.

8.3.2 ALISP-based Audio Sequencing and Identi cation

The proposed system uses the transcriptions provided by ALISP tools to search for
recurrent segments in TV and radio shows. As a reminder, the generic audio indexing
system consists of three main modules: ALISP unit acquisition and modeling, ALISP tran-
scription and approximate matching to nd recurrent segments. The set of ALISP models
is automatically acquired through parameterization, spectral stability segmentation, vector
guantization, and Hidden Markov Modeling. This set of HMM ALISP models is used to
transform a new incoming audio data into a sequence of ALISP symbols. And the ap-
proximate string matching algorithm is based on the Basic Local Alignment Search Tool
(BLAST) [3] (Altschul et al., 1990), widely used in bioinformatics.
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Figure 8.4: General architecture of the proposed ALISP-based system.
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spk 1 unknown spk 2 nonspeech unknown

N
>

Figure 8.5: Example of an output le provided by ALISP-based audio sequencing and
identi cation.

spk 1 sp nosp spk 2 nonspeech sp

N
>

Figure 8.6: Example of an output le provided by the voice acti vity detection system.

This audio indexing system is applied on speaker diarization as follows. First, a ref-
erence database is built from audio parts provided from previously annotated emissions.
T hese parts represent speech sentence excerpts, silence, noise, jingles, music and advertise-
ments. Then, the ALISP module for transcriptions of reference segments are computed
using ALISP HMM models and compared to the transcriptions of the TV and radio shows
stream using our approximate matching module.

This module could be seen as a pre-processing step that helps the diarization process.
In fact, instead of treating an unlabeled data, the proposed system is supposed to identify
all the audio segments that were streamed before. This will provide a rst segmentation of

the audio signal with three types of labels:

» "spk” label: represents a sentence or an excerpt of sentences of a particular speaker
that was seen before. These segments are, generally, relativeto TV and radio presen-

ters, reporters, politicians, artists, etc.

* "non-speech” label: represents the non-speech audio segments which could be: noise,

silence, advertisement, jingles and music.

» "unknown” label: represents the signal parts that are not recognized by the ALISP
module. These partswill betreated by the speech detection module and the GLR-BIC

segmentation modules.
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An example of the output le provided by the ALISP module is sh own in gure 8.5.
The "spk” label is related to a speech sentence detected in the reference database, while
the "unknown” label is relative to the signal parts which are not detected in the reference
database.

It isimportant to note that ALISP tools are speaker-dependent. The ALISP tran-
scriptions of identical sentences spoken by di erent speakers are very di erent, while the
ALISP transcriptions of identical sentences spoken by the same speaker are very similar.

Three main contributions of the ALISP-based audio sequencing and identi cation

module are proposed to improve the performances of the speaker diarization system:

» Discarding the non-speech segments limits the errors caused by the false alarms and

missed speech detection.

* Assigning an audio segment to a single speaker improves the puri cation of ther

models in the clustering step.

* When dealing with a long audio le (such as one day of a radio broadcast), the

processing time is reduced using the approximate matching process.

8.3.3 Speech Activity Detection

Thenext step in the system is the voice activity detection. The goal isto remove the
non-speech segments whose duration is above a prede ned threshold. Our voice activity
detection system operates only on the portions of the signal labeled as ”unknown” by the
ALISP recognizer. It relies on a two-class detector, with Gaussian Mixture Model trained
on speech and non-speech data. The parameterization is done with MFCCs, calculated on
20 ms windows, with a 10 ms shift. For each frame, a cepstral vector of dimension 12 is
computed and appended with rst and second order deltas and t he Zero Cross Ratio. A
minimum duration of 0.5 sis de ned for speech and non-speech segments. In fact each class
is modeled as a concatenation of 50 one-state HMM models.

An example of the output le provided by the voice activity det ection moduleis shown

in gure 8.6. The”nosp” label isrelative to a non-speech segment, while the” sp” isrelative
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to speech segment.

8.3.4 GLR-BIC Segmentation

The GLR-BIC segmentation is a two-step algorithm that consists of a rst pass to
determine the speaker change point candidates using the GLR criteria and a second pass
based on a BIC distance to validate or discard these candidates.

This step is only performed on signal parts that were labeled as ” sp” by the voice
activity detection module. On the other hand, the segments that were identi ed by the
ALISP module and labeled as " spk” are not processed by this module.

The GLR-BIC segmentation consists of two main steps:

1. GLR segmentation: Theaudio signal is split into equal size sliding windows. Then the
speaker change candidates are determined for each window. These candidates corre-
spond to the local maxima of the GLR measure. Therefore there is no need to de ne

a threshold as for the conventional GLR segmentation described in section 8.2.3.1.

2. BIC segmentation: In the previous step, all the local maxima of GLR criterion are
considered as speaker change points, which leads to many false alarms. The BIC
measureis used to validate the real change points and to discard the false alarms. For
each candidate, the BI1C distance is computed between the Gaussian distributions
of the two adjacent windows. If the maximum of the BIC is positive the change

point is con rmed, otherwise the two segments are merged.

8.3.5 BIC Clustering

Whereas the BIC segmentation operates on neighboring segments in order to detect
whether or not they correspond to the same speaker, BIC clustering is performed to group
together all the segmentsthat belong to the same speaker. Asfor the segmentation process,
at each iteration the closest clusters are merged until BI1C > 0. At this point, all the
labeled segments as ” spk” whether by the ALISP module or by the GLR-BIC segmentation
module are processed by the BIC clustering.
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8.3.6 Viterbi Re nement

The cluster boundaries produced by the BIC clustering are not perfect. Thus, a
Viterbi decoding is performed to adjust these boundaries. Each cluster is modeled by
a single-state HMM with an 8-component GMM trained using the EM algorithm. The
speaker change points are represented by the transitions between HMMs.

8.3.7 NCLR Clustering

Aswas mentioned in section 8.2.4.3, a nal step of clustering is performed in order to
remove the background environment e ects. The MFCCs features are normalized using the
warping technique. Then, duetothegreat length of clusters, arobust speaker model is mod-
eled using an universal background model. Unlike the system described in section 8.2.4.3,
a normalized version of the CLR metric is used [74] (Le, 2007). This metric demonstrates
a better performance than its original version. The Normalized Cross Likelihood Ratio

(NCLR) is given by:

L(Ci My, 1 L(C2 Mp)
L(Cy Mz)) Nzlog(L(Cz M)

WhereN1 and N, arethesizes of theclustersC; and C,. M1 and M 2 arerespectively
the GMM adapted models of the clusters C; and C, and L(.) is the likelihood function.
The clustering stops when NCLR(C; C») gets higher than a prede ned threshold. At the

NCLR(Cy Cy) = Ni log( ) (8.15)
1

end of this step, the nal diarization of the audio leis prov ided. The next section deals
with the experimental results obtained for the proposed system.

8.4 Experiments and Results

In this section, the contributions of the ALISP-based module to speaker diarization
are evaluated. Two main evaluations are carried out. The rst one deals with the ETAPE
(Evaluations en Traitement Automatique de la ParolE) evaluation campaign 2011 in order

to measure our contributions within a publicly available framework. While in the second
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evaluation, the ALISP-based speaker diarization system is combined with a speaker veri -

cation system to measure the speech time of politicians in radio streams.

8.4.1 ETAPE Evaluation Campaign

ETAPE is an evaluation campaigns for automatic speech processing [55] (Gravier €

al., 2012). It was held in spring 2012 and considered four tasks:

1. Multiple speaker detection: It isthe task of overlapping speech detection, where the
goal is to provide for each audio lethe start and end times of segments containing

speech from multiple speech

2. Speaker turn segmentation: It is the speaker diarization task. Two subtasks are
considered, depending on whether the diarization process is performed on each audio

le independently or on all audio lestogether.

3. Lexical transcription: It isrelated to the automatic speech recognition. The system

should provide a start and end times for each word associated with its speaker.

4. Named entity detection: It consistsin detecting all direct mentions of named entities
and in categorizing the entity type.

This works addresses the speaker diarization task where each audio le is processed
independently. The ETAPE evaluation campaign targets the TV and radio shows with
various level of spontaneous speech and multiple speaker speech. Unlike the ESTER eval-
uation campaigns [48] (Galliano et al., 2005) and [49] (Galliano et al., 2009) the ETAPE

evaluation set did not focusin a particular type of show.

8.4.1.1 Corpus

The ETAPE 2011 evaluation campaign provides the participants with 13.5 hours of
radio data and 29 hours of TV data. This corpus was selected to contain spontaneous
speech and a reasonable proportion of multiple speaker data. A detailed description of this

corpus is given in section 4.3
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8.4.1.2 Evaluation M easure

In order to evaluate the speaker diarization system, the Diarization Error Rate (DER)
isused. The DER isthe sum of three errors: missed detection rate, false alarm rate and

the speaker error rate:

* The missed detection rate is expressed as:

i §=l,q,ur(s) x (NRef (S) N Sys(S))

MD = P (8.16)
s=1dur(s) x Nres (S)
* The false alarm rate is given by:
'S dur(s) x (Nsye(s) N ger (s
FA= o1 @9 X (Nsys(S) N ra(9) (8.17)
s=1dur(s) x Ngef (s)
* The speaker error rate is computed as follows:
P S .
SER = s=1 dur(s) x I,gnm(NRef (S) Nsys(s)) N correct(S)) (8.18)

ledur(s) X NRef (S)

where S is the total number of speaker segments, dur(s) denotes the duration of speaker
S. NRef (S) and Nsys(s) indicate the number of speakers present in segment s provided,
respectively, by the ground truth and the diarization system. Ncorrect(S) is the number of
speakers in segment s that have been correctly matched between the ground truth and the
proposed system. The DER is obtained by a one-to-one mapping of all the labeled speakers

between the system and reference les. It could directly be c omputed as follows:

7S dur(s) x (max(Neet (5) Nsys(S)) N coreat(s))

SER = P
Szldur(s) x NRef (5)

(8.19)

8.4.1.3 Threshold Setting

The proposed speaker diarization system contains four thresholds values which need
tobe xed. Thesethresholdsarerelated tothe Levenshtein d istance, the BIC segmentation,
the BIC clustering and the NCLR clustering.
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# les | Avg spk | Avg turn duration (sec) | % silence | % ovlp
BFMTV 1 21 10 32 2
LCP 6 7.8 2 28 4
TV8 2 9 8 22 7
EST2BC 6 125 5 35 3

Table 8.1: Number of audio les (# les), average number of spe aker (Avg spk), average
duration of turnsin seconds (Avg turn duration), percentage of silence (% silence) and the
percentage of overlapping speech (% ovlp) of the evaluation corpus.

Asexplained in section 6.3, some experiences are conducted in order to x the Leven-
shtein distance threshold in the context of audio identi cation where the goal isto identify
advertisements and songs in radio streams. These experiences consist of computing the
Levenshtein distance between ALISP transcriptions of the reference advertisements and
their broadcasted occurrences in the radios and between ALISP transcriptions of the refer-
ence advertisements and data that does not contain advertisements. This study leadsto a
Levenshtein distance threshold of 0.55.

In order to x the other three thresholds, an automatically t uning, by trying various
combinations of thresholds, is performed on the ETAPE development corpus. Each gen-
erated segmentation is scored against the reference segmentation and the thresholds that

gave the lowest DER are chosen in the evaluation.

8.4.1.4 Results

The evaluation dataset provided by ETAPE is composed of 9 TV shows and 6 radio
shows. Table 8.1 gives some statistics about the evaluation corpus.

BFMTYV, LCP and TV8 are relativeto TV shows while EST2BC is relative to radio
shows. In addition, table 8.1 shows the diversity of the evaluation corpus which make the
task of speaker diarization more complicated. In order to evaluate the contributions of the
ALISP-based module to the diarization results, a second experience is performed without
that module.

Table 8.2 gives the DER values for the baseline system (without the ALISP module)
and the ALISP-based system.
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Show name Baseline ALISP

BFMTV-BFMStory-175900 19.30 15.87 (-17.77%)
L CP-CaVousRegarde-235900 20.70 12.60 (-39.13%)
LCP-EntreLesLignes-192800-1 24.77 17.31 (-30.11%)
LCP-EntrelesLignes-192800-2 27.19 18.48 (-32.03%)

LCP-PilesEt Face-192800 28.42 | 19.76 (-30.04%)
LCP-TopQuestions-000400 3546 | 29.55 (-16.66%)
LCP-TopQuestions-213800 1587 | 2.44 (-84.62%)

TV8-LaPlaceDuVillage-201300 | 37.86 22.27 (-41.22%)
TV8-LaPlaceDuVillage-172800 | 35.82 20.40 (-43.04%)

EST 2BC-FRE-FR-1000 14.55 13.75 (-5.49%)
EST2BC-FRE-FR-1750 39.41 22.93 (-41.81%)
EST2BC-FRE-FR-2152-1 41.83 27.34 (-34.64%)
EST2BC-FRE-FR-2152-2 29.91 23.93 (-19.99%)
EST2BC-FRE-FR-0910 8.73 8.26 (-5.38%)

EST2BC-FRE-FR-2004 21.13 15.48 (-26.73%)

ETAPE-2011 (whole data) 24.73 | 16.23 (-34.37%)

Table 8.2: Diarization Error Rate for the baseline and ALISP system on the ETAPE 2011
evaluation set.

Note that the ALISP-based module improves the diarization results for all TV and
radio shows. However, these improvements are not signi cant f or all audio les. For "LCP-
TopQuestions-213800" TV show the relative improvement of the DER is 84.62% while for
the "EST 2BC-FRE-FR-0910" radio show it is only is 5.38%. This is essentially related to
the structure of the radio or TV show, and whether there are repeating audio parts that
can be detected by the ALISP-based module.

The main contribution of the ALISP module is essentially the puri cation of the
clusters, which leads to more robust speaker models. Moreover, the ALISP method is able
to detect recurrent audio excerpts such as commercials and jingles, decreasing the missed
detection rate and the false alarms. Overall, the introduction of the ALISP module in the
speaker diarization system has relatively decreased the DER by 34.37%, while the absolute
improvement is 8.5%.

Since the proposed system did not deal with overlapping speech, many errors have
occurred especially in TV8 shows and radio shows (EST2BC). By using the ground truth
to label the overlapping speech segments, the DER decreases from 16.23% to 12.02%.
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Participant | DER
Our system | 16.23
System1 | 19.01
System 2 | 21.18
system 3 | 22.45
system 4 | 22.73
System 5 | 27.27
system 6 | 29.32

Table 8.3: Diarization Error Rate for the all the participantsin the ETAPE 2011 evaluation
campaign.

The global DER value for each submitted system are presented in table 8.5. Seven
participants have submitted results for the speaker diarization task in ETAPE 2011, which

are:

 Institut Mine Telecom-Téelecom ParisTech-T elecom SudParis (Our System)
» Centre de Recherche Informatique de Montreal (CRIM) [56] (Gupta et al., 2008)
» Eurecom [20] (bozonnet et al., 2010)

» Laboratoire d’'Informatique de I'Universite du Maine (LIUM) [113] (Rouvier and
Meignier, 2012)

» Laboratoire Informatique d’Avignon (LI1A) [87] (Meignier et al., 2001)
* Orange Labs [27] (Charlet et al., 2013)

» Laboratoired’Informatique pour laMecaniqueet les Sciencesdel’Ingenieur (LIMSI) [13] (Bar-

ras et al., 2006)

Asshown in the table 8.3, the proposed ALISP-based speaker diarization system has
obtained the best results in the ETAPE 2011 evaluation campaign among 7 participants.
These results attest that the exploitation of the common structure of the radio and TV
shows by the ALISP techniques, leads to great improvements of the speaker diarization

process.
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Related to the processing time, the system without the ALISP-based module runs at
a speed of 10 seconds per minute on a 3.00GHz Intel Core 2 Duo 4GB RAM. When the
ALISP-based module is added, the runtime increased to 40 seconds per minute of speech
processed.

8.4.2 Speech Time Measure of Politicians

Thetask of measuring the speech time of politiciansinvolves two disciplines of speaker-
based processing: speaker identi cation and speaker diariz ation. Given one day of radio
stream, the goal is to identify all the politicians and to measure the time of their speech.
In order to achieve thisgoal, rst the ALISP-based speaker diarization system is applied to
segment the audio data into homogenous clusters according to speaker’s identities. Then,
a speaker identi cation system is performed to determine whether a cluster belongs to a
politician.

The speaker identi cation system is an UBM-GMM system [111]. The Gaussian
Mixture Model-GMM approach isused to build models from the speaker data. An Universal
gender-dependent Background Model-UBM is trained with the Expectation-Maximization
algorithm. Then, each speaker modéd is built by adapting the parameters of the UBM
using the speaker’s training feature vectors and the Maximum A Posteriori criterion. The
similarity scoreis the estimation of the log-likelihood ratio between the target (politician)
and UBM mods.

We use the open source speaker veri cation system described in [103] (Petrovska-
Delacretaz et al., 2009) and available at [40] (EIHannani et al., 2009). This system was
originally developed for speaker veri cation and adapted for speaker identi cation. In fact,
the major di erence between veri cation and identi cation lies in the dec ision process.
In veri cation, the decision is accepting or reecting the id entity claim of a speaker. In
identi cation, the goal isto determine which registered sp eaker provides a given utterance.
Thus, the same algorithms and techniques are used for speaker veri cation and speaker
identi cation.

T he performances of the speaker identi cation system are eva luated during the com-
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petition on speaker recognition in mobile environment using the MOBIO database [85] (Mc-
Cool et al., 2012). Moreover, a second evaluation is carried out on the YACAST database
to measure the speech time of politicians in radio streams. Unlike the rst evaluation, the

second one involves the speaker diarization and identi cation systems.

8.4.2.1 MOBIO Evaluation Campaign

Following the same spirit asthe NIST SRE, the Biometric Group at the ldiap Research
Institute organized the evaluation on text independent speaker recognition. It is performed
on the MOBIO database, which consists of videos of talking faces that were Imed with
mabile devices. A detailed description of the MOBIO database is given in section 4.4.

The proposed primary system is an UBM-GMM system. It is based on the repro-
ducible BioSecure Speaker reference system described in [103] (Petrovska-Delacretaz et al.,
2009) and available at [40] (EIHannani et al., 2009). The main parameters of the proposed
system are: 32 MFCC coe cients + deltas + delta energy, energy based voice activity de-
tector, feature warping normalization and 512 Gaussians. The particularity of the system
istojoin the MOBIO training dataset and the Voxforge ! dataset to train the UBM model.

Two additional systems were also submitted in this evaluation. The secondary sys-
tem has the same con guration as the primary one, except that the UMB-GMM training
was performed only MOBIO training data. Its performances are slightly worse than the
primary system. For the third submission, the sampling frequency as xed to 8 Khz and
the NIST 2003-04 along with MOBI O training data are used to build the UBM model. This
con guration changes do not seem to degrade drastically the performances of the system.

In total, 12 institutions participated in the speaker veri cation evaluation, and pro-
vided 21 valid submissions (12 primary and 9 secondary submissions). These institutions
areillustrated in table 8.5.

In order to evaluate the performances of the speaker veri cati on systems, two measure
are used: Equal Error Rate (ERR) and Half Total Error Rate (HTER).

Table 8.5 shows the EER on the development set and the HTER on the evaluation

L http:/Avw.repository.voxforgel.org/downloads/Speec hCorpus/Trunk/Audio/Main/16kHz_16hit
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Institution System Identi er
Alpineon Ltd., Slovenia Alpineon
ATV S Biometric Recognition Group ATVS
Universidad Autonoma de Madrid, Spain

Centre de Developpement des Technologies Avancees, Algeria CDTA
CpgD, Brazil CPgD
GIAPSI, Universidad Politecnica de Madrid, Spain GIAPS
GTTS - University of Basque Country (UPV/EHU), Spain EHU
Idiap Research Institute, Switzerland IDIAP
L2F/INESC-ID, Portugual L2F
Joint submission of L2F/INESC-ID and UPV/EHU L2F-EHU
Institut Mines-Telecom M ines-Telecom
(Telecom ParisTech-Telecom SudParis), France

Phonexia s.r.o. , Czech Republic Phonexia
Radboud University Nijmegen, The Netherlands RUN

Table 8.4: The institutions and the identi ers of their subm itted primary system (by al-
phabetic order).

set for both genders.

On the evaluation set, our proposed system obtains the best simple system perfor-
mance on Female. Obviously, the use of additional suitable data (Voxforge database) for
training the UBM is helpful. Additional experiment that combines NIST SRE data (03 and
04) and MOBIO data are carried out to train the UBM model. The EER on the DEV set
are 14.80% for Female and 13.62% for Male, respectively.

8.4.2.2 YACAST Evaluation

As previously mentioned, the measuring of speech time of politicians is divided into
two subtasks: speaker diarization and speaker identi cation. YACAST database contains
the record of 26 days of radio streams from three di erent French radio: France Culture
France Info France Inter. This database contains 283 paliticians with a total duration of
42h46min. To ensure a good training of models, a politician is considered as a target if he
spoke more than 10 minutes which leads to a set of 72 target speakers.

In order to ensure an objective evaluation of the speaker diarization and identi cation

systems, the YACAST database was divided into 5 subsets:
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System Female Male
DEV EVAL DEV | EVAL
Alpineon* 7.982 | 10.678 | 5.040 | 7.076

ATVS 16.836 | 17.858 | 14.881 | 15.429
CPgD* 14.348 | 15.987 | 11.824 | 10.214
CDTA 19471 | 22.640 | 12.738 | 19.404
GIAPSI 11.590 | 12.813 | 9.683 | 8.865
EHU 17.937 | 19.511 | 11.310 | 10.058
IDIAP 12.011 | 14.269 | 9.960 | 10.032
L2F* 13.484 | 22.140 | 10.599 | 11.129

L2F-EHU* | 11.005 | 17.266 | 7.889 | 8.191
Our System | 11.429 | 11.633 | 10.198 | 9.109
Phonexia 8.364 | 14.181 | 9.601 | 10.779
RUN 25405 | 23.112 | 24.643 | 22.524

Table 8.5: Equal error rate (EER %) on the development (DEV) set and half total error
rate (HTER %) on the MOBIO evaluation (EVAL) set.

e Training corpus: It isusedtotrain the UBM model used for both speaker diarization
and speaker identi cation. It contains speech segments of no n-target speakers. The
total duration of the training set is 7h28min. The number of speakers in this corpus
is 182.

* Adaptation corpus: It servesto adapt the UBM model to thetarget speakers. This
corpus contains 1min30s speech for each of the 72 target speaker.

» Evaluation corpus: Two days of each radio are chosen to evaluate the systems.

T hese two days contain the maximum time of the target speakers.

* Development corpus I: It isused to set the thresholds of di erent metrics of the

speaker diarization system. For this corpus, two days of each radio are selected.

* Development corpus |Il: It isused to set the threshold of the speaker identi cation

system. The average length of speech for each target speaker in this corpusis 4min.

The estimation of the speech time of politicians is evaluated on two levels. The rst
level isrelative to speaker diarization and uses the DER as described in the section 8.4.1.2.
The second level isrelated to the speaker identi cation. The p erformances of the speaker

identi cation system is evaluated as the sum of three errors:
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Radio Day DER
France-Inter-30-06-2010 18.98
France-Inter-21-04-2010 16.03

France-1nfo-29-06-2010 18.33
France-1nfo-21-04-2010 18.12
France-Culture-27-06-2010 | 13.11
France-Culture-20-04-2010 | 16.32
All data 17.01

Table 8.6: Diarization Error Rate for each day of the YACAST evaluation corpus.

* Substitution error (Esyp): It occurs when the system assigns a speech segment to a

target speaker X when it is pronounced by a di erent target speaker Y.

e False alarm (Efa): It isthe error due to the detection of a target speaker segment
when it really belongs to the non-target speaker set.

» False rgection (EgR): It isthe error due to the detection of a nontarget speaker
segment when it really belongs to the target speaker set.

Table 8.6 shows the DER values for each day of the radio stream in the evaluation
set. It indicates an overall DER of 17.01%, close to that obtained in ETAPE evaluation
campaign, which proves the robustness of the proposed system. As for the audio identi ca-
tion evaluation described in section 6.4.2, many annotation errors are found in the ground
truth. These errors are related to segments boundaries that were not precise and to some
confusions in the labels (speaker names) of speech segments.

Table 8.7 reports the performances of the speaker identi cation system in terms of
substitution errors, false alarms and false rgjections. Thistable reportsan overall error rate
of 22.55%. These errors are essentially due to the errors caused by the diarization process.
In fact, by using a perfect diarization system (DER=0%), the global error rate decreases
to 13.25%. Moreover, as for the speaker diarization system, the errors found in the ground
truth have a direct impact on the performances of the speaker identi cation system. In fact
these errors lead to impure speaker models, which causes some degradations in the results

of the speaker identi cation system.
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Radio day Esun(%) | EFa(%) | EFr(%) | Global(%)
France-Inter-30-06-2010 10.23 9.56 11.22 31.01
France-Inter-21-04-2010 6.33 9.02 10.33 25.68

France-1nfo-29-06-2010 2.88 2.9 6.78 12.56
France-Info-21-04-2010 13.74 7.22 6.51 27.47
France-Culture-27-06-2010 9.63 451 7.28 21.42
France-Culture-20-04-2010 4.99 11.11 1.08 17.18
All data (Mean) 7.97 7.38 7.2 22.55

Table 8.7: Substitution error (Egyp), false alarm (EFa) and false reection (Egr) for the
speaker identi cation system computed on the YACAST evaluat ion corpus.

Once the speaker diarization and identi cation process are p erformed, the speech
duration of politicians is measured. The ratio between the speech duration detected by the
proposed system and the speech duration extracted from the ground truth is 79%. This

result can be improved by correcting the ground to purify the speaker models.

8.5 Conclusion

In this chapter, the state of the art of speaker diarization is reviewed. Speaker di-
arization process is generally composed of speech activity detection, speaker segmentation
and speaker clustering. A new module based on data-driven segmentation using ALISP
techniques is added in order to improve the performance of the diarization process. This
module compares the show to be segmented with the same show broadcasted beforein order
to nd the common audio parts.

The system is evaluated during the ETAPE 2011 evaluation campaign and obtained
a DER of 16.23%, which is the best result among all participants. We also demonstrate
that by adding the ALISP module to the speaker diarization system the DER decreased by
8.5%.

A second evaluation relative to the estimation of the speech time of paliticians is
performed. First, the speaker recognition system is evaluated during the MOBIO 2013
evaluation campaign an obtained a HTER of 11.633% for female and 9.109% for male

speakers. Then the speaker diarization and identi cation systems are evaluated using the
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YACAST database. For the speaker diarization system the obtained DER value is 17.01%.
While the global error rate for the speaker identi cation system is 22.55%.

In the next chapter, a di erent category of audio events, denoted as nonlinguistic
vocalization, will be studied. The generic audio indexing system will be applied to laughter

detection.
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Chapter 9

Nonlinguistic Vocalizations

Detection

9.1 Introduction

As pointed before, one of the contributions of thisthesisisto identify the majority of
audioitemsthat could be present in aradio broadcast streamsusing the same audio indexing
principles. In previous chapters, the ALISP-based audio indexing system was applied to
audio identi cation and audio motif discovery, to detect son gs and advertisementsin radio
streams, and speaker diarization to segment the audio data into homogeneous segments
according to speaker identities. In this chapter, adi erent category of audio events will be
studied, which is referred as nonlinguistic vocalization.

Despite the best e orts made over past two decades in speech recognition systems,
detection of nonlinguistic vocalizations such as laughter, sighs, breathing, hesitation sounds
isstill a challenging task [135] (Weninger et al., 2011). Such vocalizations are more frequent
in radio and TV shows, meetings or our daily conversational speech.

Detection of the presence of these vocalizationsis useful in several disciplines. In Au-
tomatic Speech Recognition the detection of nonlinguistic vocalizations could give relevant
information to decide which parts of audio data should be treated for recognition, thereby

improving the performance of speech recognition systems. Traditional speech recognition
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frameworks have not been adequately focused on detecting nonlinguistic vocalizations under
a common and generic framework. One of the main reasons could be the complexity behind
obtaining phonetic representations or a pronunciation dictionaries (i.e. phonetic lexicon)
for such vocalizations.

One of the most obvious nonlinguistic sounds is laughter. Laughter is one of the
complex nonlinguistic vocalizations that communicates a wide range of messages with dif-
ferent meanings [23] (Campbell et al., 2005). Moreover, it was shown in [9] (Bachorowski
et al., 2001) [126] (Trouvain, 2003), that laugher sound is a highly variable signal whose
characteristics are not yet revealed.

In this thesis, the use of ALISP-based indexing framework is proposed to detect non-
linguistic vocalizations. Given the high variability of this category of sounds both between
and within speakers, we decided to use a di erent approach to search for these sounds from
the one used in the previous systems. Our method rst adapts A LISP models, previously
trained on 288 hours of radio broadcast, using Maximum Likelihood Linear Regression-
MLLR [75] (Leggetter and Woodland, 1995) and Maximum A Posterior-MAP [50] (Gauvain
and Lee, 1994) techniques. The resulting adapted models can then be used to detect local
regions of nonlinguistic vocalizations, using the standard Viterbi algorithm [137] (Young et
al., 1989). Experiments on a laughter-annotated audio corpus show the usefulness of the
proposed method.

This chapter is organized as follows. Section 9.2 presents a literature of nonlinguistic
vocalizations sound detection. Then, the proposed methodology to detect any type of
nonlinguistic vocalizations is explained in section 9.3. In Section 9.4, empirical evaluation

of the proposed method, on an laughter-annotated corpus, is exposed.

9.2 Related Work

Most of the previouse orts on automatic laughter detection from audio exploit frame
level acoustic features as parametersto train machine learning techniques, such as Gaussian
Mixture Models and Support Vector Machines. These systems are composed of two steps:

feature extraction and modeling.
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9.2.1 Feature Extraction

Two categories of feature are used to represent the laughter signal: frame-level and
utterance-level features.

Frame-level features refer to features extracted from each frame of the audio signal,
which leadsto a variable length of feature vector that dependson the length of the processed
audio le. Themost popular feature belongingtothiscategory isMFCC. Thesefeaturesare
used in [69] (Kennedy and Ellis, 2004) [73] (Laskowski and Schultz, 2008) to represent the
laughter signal. Moreover, Perceptual Linear Prediction Coding features [62] (Hermansky,
1990) are exploited to model the spectral properties of laughter [127] (Truong and Van
Leeuwen, 2005) [128] (Truong and Van Leeuwen, 2007). Prosodic information are also used
to discriminate between laughter and no laughter sounds. In [9] (Bachorowski et al., 2001),
it isfound that the mean pitch for laughter is considerably higher than in speech. Therefore,
pitch feature, associated with energy are used in many systemsto locate regions of laughter
in audio les[ 71] (Knox and Mirghafori, 2007) [127] (Truong and Van Leeuwen, 2005).

Utterance-level features are relative to global features computed on the whole utter-
ance, which leads to xed length feature vectors. In addition to the pitch computed for
each frame, some authors proposeto extract the pitch from the whole sentence and compute
some statistics such as, the standard deviation, the mean, or the maximum and the mini-
mum [128] (Truong and Van Leeuwen, 2007). Furthermore, it is shown in [17] (Bickley and
Hunnicutt, 1992), that the ratio between unvoiced and voiced frames is higher for laughter
than for speech. Thus, statistics such as the number of unvoiced frames divided by the
number of total frames are introduced in [129] (Truong and Van Leeuwen, 2007) to detect
laughter. Moreover, the modulation spectrum feature is chosen to exploit the fact that
syllable rates are greater for laughter than for speech [17] (Bickley and Hunnicutt, 1992).

In addition to frame-level and utterance-level features, other parameterization meth-
ods are recently introduced. In [135] (Weninger et al., 2011) [117] (Schuller and Weninger,
2010), the authors show that integrating likelihood features derived from Nonnegative Ma-
trix Factorization into Bidirectional Long Short-Term Memory Recurrent Neural Networks

provide better results in terms of discriminating nonlinguistic vocalizations from speech.
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In addition, phonetic transcription of laughter could be used to extract useful features to

model the laughter sounds [131] (Urbain et al., 2011).

9.2.2 Machine Learning Techniques

The features described in the previous section are exploited as an input for the dif-
ferent machine learning techniques to model laughter and speech. Mainly, four modeling
techniques are used which are: Gaussian Mixture Model-GMM, Hidden Markov Model-
HMM, Neural Network, and Support Vector Machine-SVM.

Generative modeling methods such as GMM and HMM are trained on laughter and
non-laughter data as explained in [73] (Laskowski and Schultz, 2008), then they are used to
label an unknown audio les according to the likelihood score of each frame. On the other
hand, discriminative classi ersare also exploited to segme nt the audio data [135] (Weninger
et al., 2011) [69] (Kennedy and Ellis, 2004).

In [128] (Truong and Van Leeuwen, 2007), the authorsinvestigate fusion of GMM and
SVM methods to improve the performance of the laughter detection system. T he reason of
thisfusion isto exploit the strength of each approach. The fusion is performed on the score
level by summing and weighting the output score obtained from each classi er.

Recent works [101] (Petridis and Pantic, 2008) [116] (Scherer et al., 2009) [110] (Reud-
erink et al., 2008), exploit visual information to detect laughter in videos. These methods
are used to build a multimodal system to locate nonlinguistic vocalizations within audiovi-
sual data.

In this section, nonlinguistic vocalizations detection system were described. These
systems are generally based on machine learning techniques using frame-level and utterance-
level features. However, segmental approaches that capture higher-level information have

not been adequately focused due to the nonlinguistic nature of laughter.

9.3 ALISP-based Laughter Detection System

This section describes our generic framework to detect nonlinguistic vocalizations

using ALISP sequencing. The main purpose behind the proposed methodology is to adapt
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ALISP Sequencing

Laughter
Corpus

Nonlaughter
Corpus

Model Adaptation
MLLR+MAP

Laughter Specific Model Nonlaughter Specific Model

Figure 9.1: Work ow of the proposed methodology for ALISP-b ased acoustic model adap-
tation to detect nonlinguistic vocalizations ('Laughter’ is used as an example for a speci ¢
set of nonlinguistic vocalizations).

ALISP HMMsin order tofacilitate Viterbi decoding algorithm to detect similar regions from
audio. The proposed framework is illustrated in gure 9.1, which shows the work ow of
the proposed methodology for the speci ¢ example of detecti ng laughter vocalizations from
audio. Laughter vocalizations are used asadaptation data to model laughter speci c HMMs,
while non-laughter audio (i.e. audio excluding laughter vocalizations) is used for getting
non-laughter speci c HMMs. Finally, a combined set of HMMs are used to discriminate
laughter from audio with the help of Viterbi decoding algorithm.

9.3.1 ALISP Segmentation and Model Adaptation

As pointed out before, the acquired ALISP models can be used for pseudo-phonetic
sequencing. Inthecurrent step, ALISP models are adapted to detect local regions of nonlin-
guistic vocalizations by providing some supervised adaptation data. Firstly, ALISP models
segment the adaptation data and acquire segment labels as shown in gure 9.1. Next, using
the segment labels and adaptation data, MLLR adaptation approach is applied to estimate

a set of linear transformations for the mean and variance parameters for reducing mismatch
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between the initial ALISP models and the adaptation set. Finally, the model is further
adapted using MAP approach considering MLLR adapted model as a prior knowledge.
Therefore, adaptation of ALISP models uses MLLR followed by MAP approaches.

We propose to adapt ALISP models for speci ¢ nonlinguistic vo calizations that need
to be detected aswell as for the remaining data excluding the vocalizations. In thisway, the
models are expected to deviate from each other in discriminating nonlinguistic vocalizations
from speech. Figure 9.1 considers laughter as one of the nonlinguistic vocalizations. As
shown in the gure, the adaptation is performed on the annotated laughter vocalizations

as well as on the non-laughter part of audio corpora excluding laughter vocalizations.

9.3.2 Viterbi Decoding and Symbolic-level Smoothing

The Viterbi algorithm, a well-established technique for decoding an HMM sequence
of states, isused in order to transform an observed sequence of speech featuresinto a string
of recognized ALISP units. In thiswork, a combined set of adapted ALISP models are used
to discriminate nonlinguistic vocalizations from speech. Therefore, the labels of ALISP
sequences that are generated from the Viterbi decoding are expected to follow a naming
convention in order to support symbolic level post processing.

The other main advantage of ALISP HMM modelsis the possibility to operate on the
level of symbols and sequences. The outliers in the Viterbi decoded sequence can be post-
processed using contextual label information. This method proposes a simple voting scheme
that uses a sliding window on the ALISP sequence to eliminate outliersin Viterbi-predicted
sequence automatically. T he sliding window counts ‘yes/ no’ votes depending on whether or
not a symbol belongs to target vocalization. The window length is always expected to be
an odd number and the result of majority votes decides if the middle segment is a part of

nonlinguistic vocalization.

9.4 Experiments and Results

In this section, the experimental evaluation of the proposed method is compared

to global acoustic models in discriminating laughter from speech. Firstly, the laughter-



9.4. EXPERIMENTS AND RESULTS 180

annotated experimental corpus is described. Secondly, global HMMs (i.e. laughter versus
non-laughter models) are modeled and ALISP HMM models are adapted, as described in
section 9.3.1, on laughter and non-laughter training datasets. In addition, a combined set of
laughter and non-laughter ALISP HMM models are used together to segment the test data
set using the Viterbi algorithm. Consequently, the symboalic-level smoothing is applied to
eliminate outliers from the predicted ALISP sequences. Finally, the results of our method
are analyzed.

9.4.1 Experimental Corpus

The proposed laughter detection system requires supervised training material for non-
linguistic vocalizations that has manual annotation. A combined audio corpus is used, it
containslaughter annotationsfrom three publicly available sources SEMAINE-DB [86] (McLe-
own et al., 2012), AVLaughterCycle [130] (Urbain et al., 2010), and Mahnob laughter
databases [100] (Petridis et al., 2013). More details about these database are given in
section 4.5. The corpus is an appropriate mix of hilarious and conversational laughter vo-
calizations. The data is uniformly divided into approximately 80% for training and 20% for
testing. Table 9.1 shows the size of laughter and non-laughter audio (in seconds) used for

training and testing.

9.4.2 Laughter Modeling

In order to detect laughter vocalizations from speech, we have trained global acoustic
models such as GMMs, serial HMMs and ergodic HMMs with di erent HMM topologies,

asshown in gure 9.2. All of the above global acoustic models include an additional silence

Laughter [sec] | non-laughter [sec]
Training 3943 4957
Test set 853 1206
Total 4796 6163

Table9.1: Training and test data setsused totrain the speci cHMM modelsand to evaluate
the ALISP-based system.
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Figure 9.2: Global HMM topologies: (a) Simple GMM; (b) Serial (left-to-right) HMM; (c)
Ergodic (fully-connected) HMM.

model.

In this work, the unlabeled audio corpus is modeled by the set of 32 ALISP HMM
model (i.e. pseudo-phonetic HMMs) along with a silence model (The same ALISP model
used on previous chapter). Thisset can be considered asan universal acoustic model because
of its training database includes all possible sounds like music, laughter, advertisements
etc. It can be used not only for segmenting any audio, but also for getting pseudo-phonetic
(symbolic) transcription.

In order to represent ALISP segments, the segmentation system uses 32 ALISP sym-
bols (such as HA, HB and H4), referring each to an ALISP HMM model, in addition to a
silence label (Hsil ). Figure 9.3 shows an example of the segmentation task performed by
the ALISP segmental HMMs on an unseen laughter vocalization.

In the next step, we adapt the generic ALISP HMM models into:

» Laughter speci ¢ ALISP HMMs by using laughter vocalization s as adaptation data.

» Non-laughter speci ¢ ALISP HMMs considering non-laughter vocalizations (audio

excluding laughter vocalizations) as adaptation data.

In order to facilitate combining the two sets, laughter-speci ¢ adapted models are
renamed such that HAto LHA H4to LH4, and so on. On the other hand, non-laughter speci ¢
adapted models keeps the same names such as HA, H4, HB, etc. The combined set of the
models (referred as ALISP-adapt) are used to discriminate local regions of laughter. As
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O

Figure 9.3: Segmentation task performed on an unseen laughter vocalization by: (i) generic
ALISP HMMs before model adaptation (top row labelsthat arein Red); (ii) Combined set
of speci ¢ (or adapted) ALISP HMMs after MLLR+ MAP adaptation (i.e. ALISP-adapt)
(bottom row labels that are in Blue). The marked symbol with a circle is an outlier which
can be automatically found using proposed smoothing scheme on ALISP sequences.

shown in Figure 9.3, laughter speci ¢ regions seemed to be detected by the model except
some outliers. In order to eliminate these outliers a majority voting scheme has been
proposed in section 7.4.2. The smoothing scheme is experimented using sliding window size
3 (referred as ALISP-adapt-sm3) and 5 (referred as ALISP-adapt-sm5). According to the
scheme, for example, the outlier (H4) in gure 9.3 obtains majority ‘yes’ votes in case of
laughter detection if sliding window size is either 3 or 5. Such a way, we can automatically

detect and eliminate the outliers.

9.4.3 Results

Table 9.2 shows the precision, recall and F-measures obtained from di erent ap-

proaches to detect laughter on test set. The F-measures is computed as follows:

_ 2(precision x rappel)
"~ precision + rappel

(9.2)

Among the global acoustic models, ergodic HMMs perform better than GMMs and
serial (left-to-right) HMMs. Ergodic HMMs show high precision (92.8%) in locating laughter
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regions, whereas serial HMMs are relatively good in recall (86.3%) rates. When compared
with adapted ALISP segmental HMMs (ALISP-adapt), global ergodic HMMs are still 4.2%
better in precision. However, the ALISP HMM models (ALISP-adapt) perform better in
terms of overall accuracy (F-measure) when compared to global HMMs.

Adapted ALISP HMM models provide an additional exibility t o nd outliers with
the help of a simple majority voting scheme. Therefore, ALISP-adapt-sm3 and ALISP-
adapt-sm5 show improvement in terms of F-measure when compared to ALISP-adapt by
2.9% and 4.4% of respectively. Overall, ALISP-adapt-sm5 show 94.3% precision and 93.9%
recall rates and perform relatively better than all other approaches experimented in this

work.
[%0] Precision | Recall | F-measure
GMMs 70.8 78.6 74.5
Serial HMMs 85.7 86.3 86.0
Ergodic HMMs 92.8 84.5 88.5
ALISP-adapt 88.6 90.9 89.7
ALISP-adapt-sm3 92.4 92.7 92.6
ALISP-adapt-sm5 94.3 | 93.9 94.1

Table 9.2: Precision, Recall and F-measure values computed on the evaluation set for the
di erent systems of laughter detection.

9.5 Conclusion

In this chapter, we proposed a generic approach for detecting nonlinguistic vocaliza-
tions using ALISP sequencing. In fact, thisisthe rst timet hat a data-driven approach is
applied for the detection of nonlinguistic vocalizations.

The proposed methodology was evaluated against global acoustic models such as
GMMs, left-to-right HMMs and ergodic HMMs on a laughter-annotated audio corpus. The
results show that the proposed methodology yields an increase of 19.6%, 8.1% and 5.6% on
F-measure against the three methods compared respectively.

With this work, we argue that the adaptation of ALISP HMM models is useful in

detecting local regions of nonlinguistic vocalizations. This method has further facilitated us
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to improve the performance using symbolic-level smoothing such as majority voting scheme

with dliding window approach.
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Chapter 10

Conclusions, Discussions and

Perspectives

10.1 Conclusions

In this thesis, we propose a generic audio indexing system to retrieve and recognize
the majority of the audio items present in a radio streams. These items are usually: music,
commercial, jingle, speech and nonlinguistic vocalization (such as laughter, cough, sight,...).
To his end, an audio indexing system based on data-driven ALISP technique is exploited
for radio streams indexing and used for di erent elds to cover all the items that could
be present in a radio stream. The proposed audio indexing system is composed of three

modules;

- Automated acquisition (with an unsupervised machine learning methods) and Hidden

Markov Modeling (HMM) of ALISP acoustic models.

- Segmentation module (also referred as sequencing) that transformsthe audio datainto

a sequence of symbols (using the previously acquired ALISP Hidden Markov Models).

- Comparison and decision module, including approximate matching algorithms in-
spired from the Basic Local Alignment Search (BLAST) tool widely used in bioin-

formatics and the Levenshtein distance, to search for a sequence of ALISP symbols of
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unknown audio data in the reference database (related to di erent audio items).

Throughout thisthesis we have shown that the proposed ALISP data-driven approach
can be used to extract high-level information for audio indexing. Our major contributions

can be summarized as follows:

1. Improving the ALISP tools by introducing a simple method to nd stable segments
within the audio data. This technique, referred as spectral stability segmentation, is
replacing the temporal decomposition used before for speech processing. The main
advantage of thismethod isits computation requirementswhich arevery low compared

to those of temporal decomposition.

2. Proposing an e cient technique to retrieve relevant information from ALISP se-
guences using BLAST algorithm and Levenshtein distance. This method speeds up

the retrieval process without a ecting the accuracy of the audio indexing process.

3. Proposing a generic audio indexing system, based on data-driven ALISP sequencing,
for radio streams indexing. This system is applied and evaluated for di erent elds of
audio indexing to cover the majority of audio items that could be present in a radio

Stream:

- audio identi cation: detection of occurrences of a speci ¢ audio content (music,
advertisement, jingle) in a radio stream;

- audio motif discovery: detection of repeating objects in audio streams. (music,
advertisement, and jingle);

- gpeaker diarization: segmentation of an input audio stream into homogenous
regions according to speaker’s identities in order to answer the question "Who
spoke when?”;

- nonlinguistic vocalization detection: detection of nonlinguistic sounds such as

laughter, sighs, cough, or hesitation;

The evaluation of the proposed audio identi cation system, in the 2010 QUAERO

evaluation campaign, shows the relevance of our ALISP-based ngerprint compared to the
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other systems. Moreover, it was shown that the best con gurat ion of ALISP HMM models
is the one using the multi-Gaussian con guration with 33 ALI SP units and the spectral
stability method for the initial segmentation. The choice of spectral stability segmentation
is motivated by its simplicity compared to the temporal decomposition.

For the audio motif discovery the experimental results showsthat the proposed system
performsaswell asthe systemsusing audio ngerprintingto detect repeating objectsin radio
streams. Furthermore, our system shows its ability to detect long repeating objects, such
as songs and short repeating objects, such as advertisements, using the same con guration.

The ALISP-based speaker diarization system was evaluated during the 2011 ETAPE
evaluation campaign and has obtained the best results in the ETAPE 2011 evaluation
campaign among 7 participants. Moreover, a speaker identi cation system was developed
to measure the speech time of politicians in radio streams. This systems has obtained the
best simple system performance on Female gender in the MOBIO 2010 evaluation campaign.

Finally, for the nonlinguistic vocalization detection, the segmental HMMs provided
by ALISP tools outperformed the global acoustic models (GMM, serial HMM, ergodic
HMM). Actually, the proposed system showed a 94.3% precision and 93.9% recall rates and
performed relatively better than all other approaches experimented in laughter detection.

10.2 Discussions

This thesis opened the way of exploiting high-level information for audio indexing
using data-driven approaches. Nevertheless, there are still many points to discuss.

First, the proposed audio identi cation system was not able to recognize di erent
versions of a song (such as live and studio versions). This problem raises the question of
how we could improve the ALISP HMM models to take into account this variability and to
use the proposed framework for cover song detection.

Second, we showed that the proposed audio motif discovery system performed very
well in the case of repeating songs and advertisements. But what about detecting repeating
worlds or sentences in speech data? It was shown in our work that ALISP segmenter is

speaker-dependent. It means that, ALISP transcriptions of identical sentences spoken by
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di erent speakers are very di erent, while the ALISP transcription of identical sentences
spoken by the same speaker is very similar. This could be an interesting point to explore
in order to train a new set of ALISP HMM models that are speaker-independent.

Third, our speaker diarization system is based on the assumption that we dispose of
an annotated previous broadcasted copy of the show to be segmented, which is not always
the case. Moreover our system is not appropriate for meetings and other type of spoken
document that we cannot have an annotated previous copy.

Finally, we should evaluate the performances of the proposed framework to retrieve
all the audio items simultaneously. This evaluation is requiring an audio corpus with a
detailed annotations of music, jingle, advertisement, speaker turn, nonlinguistic vocaliza-
tions. However disposing of such a corpusis not obvious which make the realization of this

evaluation very complicated.

10.3 Perspectives
Many perspectives could result from this work:

* An extension of our work to the visual context. The main idea is to train an au-
diovisual data driven model and exploit them to build a generic audiovisual indexing
system. To this end, a coupled data-driven HMM models will be used to characterize
the state asynchrony of the audio and visual observations features while their natural
correlation over time is preserved. This technique was used before for audio-visual
speech recognition and showed better results than multissream HMM [93] (Ne an et
al., 2002).

» Improving the speaker diarization system by using the semantic information derived
from an automatic speech recognition system. The resulting transcriptions will be
used to locate the current, previous or next speaker. Transcripts such as, ”bonjour et
bienvenue, Romain” and "bienvenue atoutes et atous, c'est Christophe Ruaults”

could be exploited to correct the output segmentation of the diarization system.
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* A parallel processing can be done in order to speed up the processing computation.
The proposed audio indexing system will be integrated in a car radio engine which
require a simultaneous treatment of several radio stations. Moreover, MFCCs compu-
tation and Viterbi algorithms along with the approximate matching of ALISP units
will be studied in order to detect the part that could be parallelized and implemented

using Graphic Processor Unit (GPU) architecture.

» Exploiting the framework used in the nonlinguistic vocalizations detection to domestic
sounds such as door closure, impact transients, machinery that could be used to pro-
vide speci ¢ voice controlled home care and communication services people su ering

from chronic diseases and persons su ering from ( ne) motor skills impairments?.

L http:/Avassist.cure.at/project_overview/
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