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A bstract

life. Driven by the developments of digital technologies and the emergence of
new multimedia applications, different communication networks are avail-
able today. The most popular examples are the cellular and wireless sensor networks.

W ireless communication systems are taking an ever growing place in our daily

Practical wireless communication systems are inherently multiuser networks where
several transmitters and receivers share the available wireless resources to exchange their
data. An important issue in such multiuser networks is the multiple access interfer-
ence resulting from the superposition and broadcast properties of the wireless medium.
This interference is commonly treated as nuisance. However, a new technique termed
Physical-Layer Network Coding (PLNC) revealed the advantages of interference in en-
abling more efficient and reliable transmissions. Using PLNC, intermediate nodes in a
wireless multihop relay network including multiple access channels treat interference as
useful information to decode and forward functions of the original source signals. This
new management technique is shown to essentially provide higher transmission rates
among other significant benefits.

Motivated by the promising potential of Physical-Layer Network Coding, we are
interested in this work in the analysis, design and performance evaluation of PLNC-
based communication strategies in practical multiuser network configurations. Studied
strategies include a very promising linear PLNC protocol termed the Compute-and-
Forward (CF), as well as the Analog Network Coding (ANC). Three network topologies
are investigated: the Two-Way Relay Channel (TWRC), the Multi-Source Multi-Relay
(MSMR) Channel and the distributed Multiple-Input Multiple-Output (MIMO) Channel.

The first part of this work is devoted to study the Compute-and-Forward protocol
in the basic multiple access channel. For this strategy, we propose an optimal solution
to design efficient network codes based on solving a lattice shortest vector problem.
Moreover, we derive novel bounds on the ergodic rate and the outage probability for the
CF operating in fast and slow fading channels respectively. Besides, we develop novel
decoding algorithms proved, numerically, to outperform the traditional decoding scheme
for the CF.



vi

The second part of this work is dedicated to the design and end-to-end performance
evaluation of network codes for the CF and the ANC in the TWRC and the MSMR
channel. For each network model we study the decoding at the relay nodes and the
end destination, propose search algorithms for optimal network codes for the CF based
on a modified Fincke-Pohst algorithm, and evaluate, theoretically and numerically, the
end-to-end error rate and achievable transmission rate.

The third and last part of this work is devoted to the distributed MIMO channel. For
this network model, we are concerned with the design of MIMO decoders. In particular,
we study a new architecture of linear decoders termed Integer Forcing (IF) linear re-
ceivers. Inspired by the CF protocol, the IF receivers take advantage of the interference
provided by the wireless medium to decode integer linear combinations of the original
codewords from which the source messages are easily recovered through a matrix in-
version. Motivated by the promising theoretical gains of the IF architecture, we move
in this work a step further towards its practical implementation by developing efficient
algorithms to select optimal IF receivers parameters, and providing a numerical analysis
of their error rate performance.



Contents

Acknowledgments

Abstract

Table of contents

List of Lgures

List of tables

List of abbreviations

List of notations

Resumel Detaillelde la T hese

Introduction

1 Network Coding

1.1

1.2

1.3

1.4

Network Coding: benefits and challenges . . . . . . . ... ... ... ...
1.1.1  Throughput increase . . . . . . . . .. .. ... .. ... ..
1.1.2 Wireless Resources . . . . . . . ... .. .o
1.1.3  Security . . . . . .o
1.1.4 Complexity . . . . . . . e
1.1.5 Challenges . . . . . . . .
Applications of Network Coding . . . . . .. ... .. ... ... .....
1.2.1  Wireless Networks . . . . . .. .. . . o oo
1.2.2  Ad-hoc Sensor Networks . . . . . . . ... ... ... ... ...
1.2.3 Distributed Storage . . . . . . . .. ...
The Main Network Coding Theorem . . . . . . . ... ... ... .....
1.3.1 The Max-Flow Min-Cut Theorem . . . . . . . . .. .. ... ....
1.3.2 The Main Network Coding Theorem . . . . . ... ... ... ...
1.3.3 An Algebraic Statement of the Network Coding Theorem . . . . .
Physical-Layer Network Coding . . . . . . . . . ... ... ... .....
1.4.1 Motivation . . . . . . . ..

vii

Vi

Xii

Xii

Xiv

XVi

xliii



viii

1.5

The
2.1

2.2

2.3
2.4
2.5
2.6

2.7

2.8

2.9

2.10

The
3.1

3.2

1.4.2 Illustrative example
1.4.3 Literature Overview
Conclusion

Compute-and-Forward protocol
Nested Lattice codes
2.1.1 Motivation
2.1.2  Construction of nested lattice codes
Compute-and-Forward in real-valued Channels
2.2.1 Encoding scheme
2.2.2  Decoding scheme
Compute-and-forward in Complex-valued channels
Computation Rate
Selection of receiver parameters
Fast fading channels: Ergodic Rate
2.6.1 Definition
2.6.2 Lower Bound
Slow fading channels: Outage Probability Analysis
2.7.1 Definition
2.7.2  Upper Bound
Optimal Decoders for the CF: Gaussian channels

2.8.1 System Model . . . . . .. ... oL
2.8.2 Discrete Gaussian Distribution of the Sum Codebook
2.8.3 MAP decoder: Error Probability and Design Criterion
2.8.4 Practical MAP decoding Algorithms . . . . . . ... ..
2.85 Numericalresults . . . . . ... ... ... .. ... ...

Optimal Decoders for the CF: fading channels

2.9.1 System Model . . . . .. ... ... ... .........
2.9.2 ML Decoding Metric . . . . . . ... oo
2.9.3 Diophantine Equations: Hermite Normal Form . . . . .
2.9.4 Likelihood Function . . ... .. ... ... .......
2.9.5 Case study: 1-dimensional lattices . . . ... ... ...
Conclusion . . . . . . . . .. e

Two-way Relay channel
Gaussian Two-Way Relay Channels

3.1.1 System Model and Assumptions . . ... .. ... ...
3.1.2  Analog Network Coding Scheme . . .. ... ... ...
3.1.3 Compute-and-Forward Scheme . . . . ... ... . ...
3.1.4 Denoise-and-Forward Scheme . . . . .. ... ... ...
3.1.5 Simulation Results . . . . . ... ... ... .......

Fading Two-Way Relay Channels
3.2.1 System Model and Assumptions
3.2.2  Analog Network Coding Scheme

CONTENTS



CONTENTS

3.3

3.2.3 Compute-and-Forward Scheme . . . ... ... ... ........
3.2.4 Modified Fincke-Pohst for Optimal Network Codes Search . . . . .
3.2.5 Simulation Results . . . . . . ... .. ... ... .. ... .. ...
Conclusion . . . . . . . . . . e

4 The Multi-Source M ulti-Relay channel

4.1
4.2

4.3

4.4
4.5
4.6

System Model and Assumptions . . . . . . . . ... ... L.
Analog Network Coding Scheme . . . . .. ... ... ... ... .....
4.2.1 Processing at therelays . . . . . ... ... ... ...
4.2.2  Processing at the destination and decodability condition . . . . . .
Compute-and-Forward Scheme . . . . . .. ... ... ... ........
4.3.1 Processing at therelays . . . . ... ... ... ... L.
4.3.2 Processing at the destination and decodability condition . . . . . .
4.3.3 FError Probability Analysis at the Destination . . . . . .. ... ..
Efficient Network Codes Search for the CF . . . . .. ... ... ... ...
Simulation Results . . . . . . ... . o
Conclusion . . . . . . . . L

5 Distributed MIM O channel

5.1
5.2

5.3

5.4
5.5
5.6

System Model and Assumptions . . . . . . ... ... Lo
Traditional MIMO receivers . . . . . . . . . . o v v v v v i vt et
5.2.1 ML decoder . . . . . . . . .
5.2.2 Linear Receivers . . . . . . . . . . . ...
5.2.3 Lattice Reduction-aided Linear Receivers . . . . . .. ... .. ..
Integer Forcing Linear Receivers . . . . . . .. .. .. ... ... ... ..
5.3.1 Architecture Overview . . . . . . . . .. .. .. ... ... ...,
5.3.2 Achievable Rates . . . . . . ... ... ... ... .. ...
5.3.3 Diversity Multiplexing Tradeoff . . . . . ... ... ... .. ....
5.3.4 Design criteria for Optimal IF parameters . . . . . ... ... ...
Efficient IF Design Algorithms . . . . . .. .. ... ... ... ......
Numerical Results . . . . . . . . . . .
Conclusion . . . . . . . . . e

Conclusion and perspectives

Appendices

5.A
5.B

5.C
5.D
5.E

Lattice Definitions . . . . . . . . . . . . ... ...
Compute-and-Forward . . . . . . . .. ... ... ... ... ........
5.B.1 Optimal scaling factor forthe CF . . . . . .. ... ... ... ...
5.B.2 Maximum Computation Rate . . . . .. ... ... ... ......
5.B.3 Modified Sphere Decoder for MAP Decoding . . . .. ... ....
MMSE-GDFE preprocessing filters . . . . . ... ... ... ........
Modified Cassel’s Algorithm . . . . . . . ... ... .. ..
Optimal Network Code Search Algorithm for the CF in the TWRC . . .

1X

78
81
82
85

87
88
89
89
90
92
92
93
95
96
101
103

105
106
108
108
110
111
112
112
114
115
115
117
119
121

125

127
127
129
129
129
130
132
134

. 135



X CONTENTS

5F LLL Reduction . . . . . . ... . . 136
5.G Integer Forcing Linear Receivers . . . . . . ... ... .. .. ... .... 139
5.G.1 Optimal Preprocessing IF matrix . . . . ... ... ... ... ... 139

5.G.2 Optimal IF Coeflicient Matrix . . . .. .. ... ... .. ..... 139
Bibliography 142

Curriculum Vitae 155



List of Figures

© 00 ~J O U = W N~

—_ =
—_ O

DN RN NN R P = e
=W N = O O 0o 0 Ui Wi

1.1
1.2
1.3
14
1.5
1.6

2.1
2.2
2.3

Le canal a relais bidirectionnel. . . . . . . . . ... ... oL xvii
Le canal a sources et relais multiples. . . . . . . .. . ... ... ... ... xviii
Le canal MIMO distribué. . . . . . ... ... ... .. ... ... .... xviii
Canal & acces multiples réel. . . . . . . . . .. ... xxi
Histogramme de l'alphabet somme. . . . . . . . ... .. ... ... .... XXV
Probabilité d’erreurs pour n =2;N =2;P =21. . ... ... ... ... xxvii
Probabilité d’erreurs pour n =2;N =5;P =65. . . . .. ... ... .. xxviii
Probabilité d’erreurs pour n=4;,N=2;P=1. . ... .. ... ... .. xxviii
Platitude de la fonction ML.. . . . . .. ... ... ... ... ... .... XXX
Probabilité d’erreurs pour S,y =5. . . . . . ..o xxx1
Canal a relais bidirectionnel implémentant le PLNC. . . . . . . . .. .. xxxii
Débit d’échange moyen par utilisation canal pour le canal Gaussien. . . xxxiv
Taux d’erreurs total pour le canal Gaussien. . . . . . . . ... ... ... XXXV
Taux d’échange pour le canal a évanouissements. . . . . . . .. ... .. XXXVi
Taux d’erreurs total pour le canal a évanouissements. . . . . . . ... .. XXXVil
Canal a sources et relais multiples. . . . . . . .. ... ... ... .. xxxviii
Taux d’erreurs a la destination pour le canal MSMR. . . . . . .. ... .. xl
Débit de transmission moyen pour le canal MSMR.. . . . . ... ... ... xl
Canal MIMO distribué. . . . . . ... ... .. xli
Taux d’erreurs pour le canal MIMO distribué. . . . . ... ... ... ... xlii
Débit total de transmission pour le canal MIMO distribué. . . . . . . . .. xliii
Two-Way Relay Channel. . . . . . ... ... ... ... ... ....... 3
The Multi-Source Multi-Relay Channel. . . . . . .. ... ... ... ... 3
The Distributed MIMO Channel. . . . . ... ... ... ... ....... 3
Example of the butterfly communication network. . . . . .. ... .. .. 11
Multicast in the Butterfly network using traditional routing. . . . . . . . . 12
Network Coding in the butterfly network. . . . . .. ... ... ... ... 13
Bits exchange in the Two-Way Relay Channel. . . . ... ... ... ... 14
Example of linear Network Coding. . . . . . . . ... ... ... ... ... 20
Physical-Layer Network Coding in the TWRC. . . ... ... ... ... .. 23
Example of a nested lattice codebook in Z2. . . . . .. ... .. ... ... 32
Generic Gaussian real-valued MAC. . . . ... ... ... ... ...... 33
Block diagram of the Compute-and-Forward in real-valued MACs. . . . . 35

xi



24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

5.1
5.2
5.3
5.4
9.5
5.6

Block diagram of the Compute-and-Forward in complex-valued MACs. . . 38
Histogram of the codebook induced by the sum of codewords. . . . . . . . 47
Error performance for the casen=2;N =2;P =21. . . . . .. ... ... 53
Error performance forn =2;N =5P =65. . . ... ... ........ 54
Error performance forn=4;,N=2;P=1. .. ... ... ... ...... 55
Example of the Likelihood function. . . . . .. ... ... ... ...... 61
Flatness of the likelihood function. . . . . . . ... .. .. ... ... ... 62
Error Probability for S,y =5. . . . . . . . ..o 64
Error Probability using the Inhomogeneous Diophantine approximation. . 65
Two-Way Relay Channel. . . . . . ... ... ... ... ... ..... 67
Two-phase bidirectional Relaying. . . . .. .. ... ... ... ...... 68
Average achievable rate in bits per channel use for the Gaussian TWRC. . 75

Sum Message Error Rate as a function of the SNR for the Gaussian TWRC. 76

Probability of non-zero entries. . . . . . . .. ... ... L. 83
Average achievable rate in bits per channel use for the fading TWRC. . . 84
Sum Message Error Rate for the fading TWRC. . . . . .. ... ... ... 84
Multi-Source Multi-Relay Channel. . . . . . .. .. ... ... .. ... .. 87
Message Error Rate for the MSMR channel. . . . . . ... ... ... ... 101
Average achievable rate per user for the MSMR channel. . . . . . . .. .. 102
Distributed MIMO Channel.. . . . . .. ... ... ... ... ....... 105
MIMO channel with linear independent encoding and ML joint decoding. 109
MIMO channel with linear independent encoding and Linear Receivers. . 110
Block diagram of IF linear receivers. . . . . . . .. ... .. ... ..... 112
Message Error Rate for the Distributed MIMO channel. . . . . . ... .. 120
Average achievable rates for the distributed MIMO channel. . . . . . . .. 121

Ist of Tables

1.1

PLNC mapping for the in-phase signal components . . . . . . . . .. ... 24

xii



LTE
SHM
P2P
QPSK

PLNC
CF
ANC
DoF
AF
DF

TWRC
MSMR
MIMO
MARC
MAC

AWGN

MAP

ML

ZF

MMSE
MMSE-GDFE
IF

DMT

List of abbreviations

The abbreviations used in this work are summarized in the following.

Long Term Evolution
Structural Health Monitoring
Peer-to-Peer

Quadrature Phase-Shift Keying

Physical-Layer Networ Coding
Compute-and-Forward

Analog Network Coding
Denoise-and-Forward
Amplify-and-Forward
Decode-and-Forward

Two-Way Relay Channel
Multi-Source Multi-Relay
Multiple Input Multiple Output
Multiple Access Relay Channel
Multiple Access Channel

Additive White Gaussian Noise

Maximum A Posteriori
Maximum Likelilhood

Zero Forcing

Minimum Mean Square Error

Minimum Mean Square Error-Generalized Decision Feedback Equalizer

Integer Forcing

Diversity Multiplexing Tradeoff

xiii



LIST OF ABBREVIATIONS

LLL
HNF
IDA

CSI
SNR
iid
bits/c.u

Lenstra Lenstra Lovasz
Hermite Normal Form
Inhomogeneous Diophantine Approximation

Channel State Information
Signal-to-Noise Ratio

independent and identically distributed
bits per channel use

Xiv



List of notations

We consider in this work the following notations. Vectors and matrices are written in
boldface, in lowercase and uppercase respectively.

On Zero vector of dimension n

MnEm Matrix of n rows and m columns

In Identity matrix of dimension n

Fp Finite Field of prime size p

R The real field

Z The integer field

C The complex field

R" The real field of dimension n

()" Regular transpose operation

¢)? Hermitian transpose operation

Re(:) Real part of a complex number
Im(:) Imaginary part of a complex number
IIx]] Eucliean norm of a vector x

E Mathematical expectation

log The logarithm operation to the base 2
In The natural logarithm

|x] Largest integer not greater than x
[X] Smallest integer not less than x

XV



LIST OF NOTATIONS

@ Addition over the finite field Fp
@ Substraction over the finite field Fp
Summation over the finite field Fp

Xvi



Resumel Detaillelde |la T hese

Cette these est dédiée a I’analyse, la construction et I’étude des performances de schémas
de codage de réseaux au niveau physique (PLNC) appropriés a trois principales configu-
rations de systemes de communications multi-terminaux: le canal a relais bidirectionnel
(Two-Way Relay Channel, TWRC), le canal a sources et relais multiples (Multi-Source
Multi-Relay, MSMR) et le canal MIMO distribué. La motivation derriere le choix de ces
configurations est leur application potentielle dans les systémes de communications réels.
En effet, le canal TWRC peut par exemple modéliser les communications satellitaires.
Le canal MSMR modélise parfaitement la communication dans un réseau de capteurs
sans fil et le canal MIMO distribué est approprié au réseau cellulaire en présence de
station de base a antennes multiples.

Le premier réseau étudié, le TWRC présenté en Figure.l, est constitué de deux
nceeuds Nj et N2 communiquant a l'aide du relais R. Tous les noeuds de ce réseau
sont équipés d’une seule antenne. Pour cette configuration, nous proposons de nou-
veaux algorithmes de construction de schémas de codages de réseaux pour le protocole
Compute-and-Forward, et nous analysons les performances, en termes de taux d’erreurs
et de débit de transmission, au niveau des nceuds N1 et N2, du CF, et des stratégies
Analog Network Coding (ANC) et Denoise-and-Forward (DoF).

SR G

N1 Relay R N2

Figure 1: Le canal a relais bidirectionnel.

La deuxiéme configuration étudiée dans cette these est le canal MSMR présenté en
Figure.2 et constitué de N sources indépendantes, N relais et une destination commune
D. Tous les nceuds de ce réseau sont équipés d’une seule antenne. Pour ce scénario,
nous proposons des algorithmes de construction de schémas de codage PLNC pour le
CF et le ANC respectivement. Une analyse numérique des performances des algorithmes
proposés est aussi fournie.

xvil
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@X@RN 5

Figure 2: Le canal a sources et relais multiples.

Finallement, nous nous intéressons au canal MIMO distribué (présenté en Figure.3)
composé de N sources indépendantes équipées chacune d’elles d’une seule antenne, et
d’une destination commune D équipée de M > N antennes. Pour cette derniere config-
uration, nous étudions une nouvelle classe de décodeurs MIMO nommés Integer Forcing
linear receivers (IF'). Nous établissons de nouveaux algorithmes de décodeurs IF prouvés
théoriquement et par simulations numériques, plus performants que les décodeurs MIMO
linéaires existants.

N antennas

sl

Figure 3: Le canal MIMO distribué.

Pour ces trois réseaux de communications, nous supposons que les nceuds sont par-
faitement synchronisés et fonctionnent en mode half-duplex. Dans le cas du TWRC, les
nceuds N1 et N2 ne sont pas en vue directe. La destination sait toujours si les relais
implémentent du PLNC ou non. En plus, nous supposons une connaissance parfaite
du canal seulement en réception, c’est a dire au niveau des nceuds relais ou a la desti-
nation finale. Finalement, les métriques d’évaluation de performances considérées dans
cette these sont le taux d’erreurs par message et le débit de transmission moyen a la
destination finale.

Le premier chapitre de cette these détaillée est une introduction au codage de réseaux
(Network Coding) en multicast dans les réseaux de communications & sources et desti-
nations multiples. Nous introduisons aussi dans ce chapitre le codage de réseaux a la
couche physique et présentons les principaux travaux existants en littérature.

Le deuxieme chapitre est dédié a 1’étude du protocole CF dans le canal a acces multi-
ples (MAC). Nous commengons par la présentation du protocole ainsi que les principaux
résultats théoriques existants. Ensuite, nous présentons nos principales contributions
de ce chapitre. D’abord, nous proposons un critere de construction de codes PLNC en
se basant sur la maximisation du débit du calcul pour le CF. En utilisant des tech-

XViil
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niques de réseaux de points, nous montrons que la solution optimale de ce probleme
de maximisation correspond a la solution d’un probleme du vecteur le plus court dans
un réseau de points donné (shortest vector problem). Ensuite, nous proposons deux
nouvelles bornes du débit du calcul ergodique et de la probabilité de coupure pour le
protocol CF dans le canal a évanouissement ergodique et quasi-statique respectivement.
Nous cloturons ce chapitre avec le développement de nouveaux algorithmes de décodage
efficaces pour le CF. Commencant par le canal MAC & Bruit Blanc Additif Gaussien
(BBAG), nous établissons dans un premier lieu une nouvelle métrique de décodage a maz-
imum a postériori (MAP), qui est le décodeur optimal dans ce cas. En utilisant cette
nouvelle métrique, nous montrons que le probleme de décodage MAP est équivalent
a un probléme de recherche de point le plus proche (closest vector problem) dans un
réseau de points que nous résolvons en moyens du décodeur par spheres. Nos résultats
de simulations montrent le gain de notre algorithme par rapport au décodeur classique
du protocole CF. Pour le canal MAC a évanouissements, nous étudions le décodeur op-
timal & mazimum de vraissemblance (ML). En analysant la métrique de décodage ML,
nous développons un nouvel algorithme se basant sur I'approximation diophantienne de
nombres réels par des entiers. Nos résultats de simulations montrent dans ce cas aussi
que notre algorithme apporte un gain par rapport au décodeur existant du CF.

Dans le troisieme chapitre, nous nous focalisons sur I'implémentation du protocole
CF dans le canal a relais bidirectionnel. Nos principales contributions de ce chapitre con-
cernent le développement de nouveaux algorithmes de construction de codes de réseaux
pour le CF dans le canal a évanouissement se basant sur la méthode d’énumération
Fincke-Pohst [9]. Nos résultats de simulations montrent 'efficacité de nos algorithmes
et mettent en évidence la gain du protocole CF par rapport au protocoles ANC et DoF.

Dans le quatrieme chapitre nous traitons le canal MSMR. Nous proposons une nou-
velle formulation du probleme de recherche de codes de réseaux optimaux pour le CF. En
utilisant une modification de 'algorithme Fincke-Pohst, nous développons des méthodes
pratiques de construction de ces codes optimaux. L’évaluation numérique de notre ap-
proche montre son efficacité et le gain en performances du protocole CF par rapport au
protocole ANC.

Le dernier chapitre est dédié au canal MIMO distribué. Nous présentons dans un
premier lieu les méthodes de décodage classiques, a savoir le décodeur optimal ML, les
décodeurs sous-optimaux linéaires (ZF et MMSE) et les décodeurs linéaires précédés
de prétraitement en utilisant une réduction de la matrice canal. Nous étudions en sec-
ond lieu la nouvelle architecture de décodeurs IF. Nos principaux résultats a cet égard
concernent le développement de nouveaux algorithmes de construction des parametres
optimaux de ces récepteurs permettant la maximisation du débit de transmission, ainsi
que I'analyse numérique de leurs performances utilisant des schémas de codes imbriqués
(nested lattice codes) de dimension finie et a faibles complexités de codage et décodage.
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Chapitre 1: Introduction au Codage de Reseaux

Les techniques de routage actuellement utilisées dans les réseaux de communications sont
basées sur la méme stratégie: les flux de données envoyés par les noeuds sources, sont
dupliqués au niveau des noeuds relais intermédiaires qui envoient par la suite une copie
des données originales au nceud suivant dans la chaine de transmission. En utilisant
cette approche de relayage, le seul traitement autorisé aux relais est la duplication des
flux entrants en maintenant les données indépendantes provenant de sources différentes
du réseau séparées. Cette technique, bien qu’elle soit optimale dans le cas de réseaux
point-a-point, elle ne I'est pas en présence de plusieurs paires d’émetteur-récepteur.
Pour surmonter cette sous-optimalité, le codage de réseaux a été récemment proposé en
littérature. L’idée consiste a autoriser les nceuds relais a combiner les flux de données
indépendants et de transférer ces combinaisons linéaires a travers le réseau. Apres la
réception de plusieurs combinaisons émises par les relais, et sous certaines conditions, la
destination finale peut récupérer les flux indépendants de données originales.

Dans ce contexte, nous décrivons le probleme de multicast dans le réseau papillon, et
nous présentons les principaux avantages du codage de réseaux comme ’augmentation
des débits, I'optimisation des ressources dans les réseaux de communications sans fils et
la sécurité des données. Nous exposons aussi quelques exemples des premieres applica-
tions du codage de réseaux comme les réseaux de capteurs sans fils et le stockage dis-
tribué. En outre, le théoreme de base du codage de réseaux est introduit. Ce théoreme,
prouvé par trois groupes de recherche dans [35-37], stipule l'existence d’un schéma
de codage linéaire permettant, dans tout type de réseau, de communiquer les données
d’informations sources aux destinations appropriées en atteignant la borne supérieure
de I'information mutuelle pour chacune des paires source-destination. Une formulation
algébrique équivalente a ce théoreme est de méme exposée.

Le codage de réseaux ainsi présenté se fait au niveau de la couche réseau: il s’agit de
calculer des combinaisons des bits d’informations indépendants déja décodés. Le codage
de réseaux au niveau physique (PLNC) se base sur le méme principe avec deux princi-
pales différences: le PLNC traite des combinaisons de signaux a la couche physique et
sans décodage de ces derniers séparément. Nous expliquons cette différence a travers
Iexemple du canal a relais bidirectionnel. La technique de PLNC a été développée
en 2006 par deux principaux groupes de recherches: Zhang, Liew et Lam dans [4] et
Popovski et Yomo dans [5, 6]. Dans [4] les auteurs montrent qu’en utilisant un simple
schéma de modulation/démodulation, le PLNC permet, dans le canal & relais bidirec-
tionnel, de doubler les débits de transmission atteignables en moyens des techniques
de routage usuelles. Les premieres stratégies de PLNC ont été par la suite proposées
dans [4]. Inspirées par les techniques de relayage Amplify-and-Forward et Decode-and-
Forward, les auteurs mettent en oeuvre respectivement les stratégies Analog Network
Coding et Denoise-and-Forward toujours en considérant le canal a relais bidirection-
nel. Ces premiers travaux ont suscité une intense activité de recherche tant sur le plan
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théorique que pratique pour étendre ce nouveau concept dans divers contextes, en com-
binaison avec le codage source et le codage canal [7] et dans diverses configurations
de réseaux multi-terminaux comme le canal a relais a acces multiples (Multiple Access
Relay Channel) dans [47, 48], le canal & sources et relais multiples dans [8] et le canal
MIMO [11, 63, 66, 72, 75]. Dans ce travail nous sommes intéressés par une nouvelle
stratégie de PLNC récemment introduite en litérature, le Compute-and-Forward. Ce
protocole se base sur la combinaison de codage canal et codage de réseaux au niveau
physique utilisant les codes en réseaux de points imbriqués (nested lattice codes). Le
concept fondamental du CF consiste a décoder, au niveau des noeuds relais, recevant
la superposition des signaux provenant de différentes sources, une combinaison linéaire
entiere (a coefficients entiers) des mots de codes transmis par les sources. La structure
linéaire des codes imbriquées garantit que la combinaison linéaire soit aussi un mot de
code appartenant au méme réseau de points utilisé par les sources. Depuis I'introduction
de ce nouveau protocole par Nazer et Gastpar, diverses contributions ont été proposées
traitant différents aspects relatifs au CF. Entre autres, les limites théoriques en terme de
débits et de degrés de liberté ont été respectivement analysés dans [8, 56] et [58] et des
algorithmes de décodage pour le CF ont été proposés récemment dans [59-61]. Le point
commun a toutes les contributions citées ce-dessus est I'analyse du protocole CF d’un
point de vue théorique. Nous proposons dans ce travail une implémentation pratique de
cette stratégie dans des configurations de réseaux de communications multi-terminaux.
La premiere partie de notre étude, faisant ’objet du chapitre suivant, est dédiée au
développement d’algorithmes de décodage efficaces pour le CF considérant le canal a
acces multiple.

Chapitre 2: Le protocole Compute-and-Forward

Le modele canal

Nous étudions dans ce chapitre le protocole CF dans le canal a acces multiples de base
composé de N sources indépendantes et un récepteur commun comme le montre la
Figure.4.

W1 £ X1 € R" p .
y= 2. hixj+z
n .
wo—y g [X2€R MAC y D |t
N Receiver R
Wy < XN €ER

Figure 4: Canal & acces multiples réel.
Soit A = {Ar NV} le réseau de points (lattice) imbriqué généré a partir du réseau

poel
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de codage (Fine lattice) Ag et du réseau de mise en forme (Coarse lattice) Ac de région
de Voronoi Vc.

Le schéma de codage pour le CF est basé sur l'utilisation de codes imbriqués au
niveau des sources. Dans ce contexte, chacune des sources génere un message W; € F'F‘,
de dimension k du corps fini Fp de dimension p, p premier. Les messages sont ensuite
codés pour construire les mots de code Xj € A appartenant au méme réseau de points A.
Les sources transmettent apres leurs signaux au récepteur en respectant la contrainte de
puissance définie par:

1 _U Hl
CE |2 <P (1)

Ou P > 0. Supposant une synchronisation parfaite entre les sources, le signal observé
au niveau du récepteur est une superposition bruitée des mots de codes originaux qui
peut s’écrire, pour un modele de canal réel, sous la forme suivante:

X
y = hixi +z (2)

i=1
ou h; € R représente le coefficient d’évanouissement entre la source Sj et le récepteur
et z € R" est un Bruit Blanc Additif Gaussien de moyenne nulle et variance [ 2. Soit
h = [hy;::hy]' le vecteur composé des coefficients d’évanouissements correspondants
a toutes les sources. Nous supposons une connaissance parfaite du canal au récepteur,
c’est a dire le vecteur h est connu seulement a la réception. Soit [1= % le rapport signal
a bruit (Signal-to-Noise Ratio, SNR).

Schema de decodage pour le Compute-and-Forward

Utilisant le protocole CF, I'objectif du récepteur est de décoder une combinaison linéaire
entiere [1des mots de codes originaux sous la forme:

N #

U= aixj mod Ac (3)

i=1
Ou les coefficients @ € Z;i = 1;:::;; N sont choisis par le récepteur et forment le vecteur
du code de réseau a = [ag;::;;an]' € ZN. En pratique, le récepteur est équipé d'un
décodeur D : R" — A qui génére une estimation [l Une erreur de décodage est déclarée
lorsque 0 = [l Pour avoir 'estimation de la combinaison désirée, le récepteur sélectionne
un coefficient [1 € R et un vecteur entier a et implémente les étapes suivantes:

1. Multiplication du signal recu par [

X X X
y=10y = Thixi + [z = aiXj + (Thi —a)x;+ [z (4)
= =z} [—z }
t Bruit Electif

L’intéret de cette étape consiste a réduire I'erreur d’approximation du signal recu
par la combinaison t a coefficients entiers.

xx1i
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2. Quantification au point le plus proche en termes de distance minimale dans le
réseau de point Ag pour avoir t = Q.. (¥). Nous implémentons dans notre étude
le décodeur par spheres pour résoudre ce probleme.

3. Ramener le vecteur décodé au coarse lattice Ac en moyens de 'opération mod pour
obtenir [1= t mod Ac

Debit de calcul pour le Compute-and-Forward

La contribution fondamentale apporté avec le protocole CF consiste a offrir des débits
de transmission plus élevés que ceux que nous pouvons atteindre avec les techniques de
relayage et les stratégies de PLNC existantes. Nazer et Gastpar montrent dans [8] qu’en
utilisant les réseaux de points imbriqués aux sources, le récepteur est capable de décoder
une combinaison linéaire entiere a condition que les débits des messages sources soient
inférieurs & un débit de calcul (computation rate) Reomp donné par:

[ U

()

Reomp = log* -
comp =8 T2 th—a |2

avec [1€ R et log" (x) = max(log(x);0)

Selection des parametres [] et a

Les deux parametres fondamentaux du schéma du décodage du protocole CF sont le
facteur de multiplication [] et le vecteur du code de réseaux a. Comme 1’objectif de ce
protocole est d’augmenter les débits de transmission, le choix optimal de ces parametres
se base sur la maximisation du débit du calcul et se ramene a résoudre le probleme
d’optimisation suivant [8]:

L 0

(6)

(;@)opt = argmax log"t ———
P (Cerra2zv o) P40l th—al?

Selon ce probleme de maximisation, la valeur optimale du facteur de multiplication [ a
été trouvée par Nazer et Gastpar et est donné, pour un vecteur a fixé par [8]:

"hta
Llopt — — (7)
1+ h 2
Le vecteur du code de réseaux optimal est donné par conséquent par le probléeme
d’optimisation suivant: 0 0
aopt = argmin a'Ga (8)
aéo
ol
Hl
G=Ily—————H 9
NIRRT ¥
H = [Hij];Hij; = hihj;1 <i;j <N et G est une matrice symmétrique définie positive

de dimension N. Nous montrons que la résolution de ce probléeme de minimisation

xxiil



RESUME DETAILLE DE LA THESE

est équivalent & chercher le vecteur le plus court dans le réseau de points Ag donné
par la matrice de Gram G. Nous proposons deux approches pour l'implémentation
en pratique de ce probléeme: une méthode optimale qui consiste a utiliser I’algorithme
de Fincke-Pohst, et une deuxieme sous-optimale se basant sur la réduction de réseaux
de points (lattice reduction). Utilisant la réduction LLL, nous développons une borne
inférieure du débit du calcul ergodique et une borne supérieure a la capacité de coupure
pour le canal a évanouissement quasi-statique.

Decodeurs el caces pour le CF: cas du canal Gaussien

En étudiant les étapes de décodage pour le protocole CF original, nous avons constaté
des sous-optimalités dans 1’étape de quantification. Dans cette partie nous étudions le
cas particulier du canal MAC Gaussien ou les coefficients hj = 1;Vi = 1;::;; N. Le signal
recu dans ce cas s’écrit sous la forme:

y= Xi+z (10)
i=1

Le récepteur désire dans ce cas décoder la combinaison donnée par

" #
X
0= Xi mod Ac (11)

i=1

Nous nous intéressonlg en premier lieu au décodage de la somme non bruitée des mots de
code originaux [ = iN=1 Xi. Etant donné que 'opération mod n’a pas d’impact sur les
erreurs de décodage, nous évaluons la probabilité d’erreurs en comptabilisant les erreurs
de décodage de [5. La probabilité d’erreurs est donnée alors par:
O 0
Pe=Pr [k# s (12)
. . PN A s
Soit As l’alphabet somme composé de toutes les sommes [ = ;24 Xj. Grace a la
structure linéaire du réseau de codage Ar, Ag est un sous-ensemble fini de ce dernier
défini par la région de mise en forme (shaping region) Ss traduisant la constrainte de
puissance pour les mots de codes sommes [k.

En utilisant algorithme de décodage traditionnel du CF, I’étape de quantification
au réseau de codage Ar permettant d’avoir une estimation de la somme [ se base sur la
minimisation de la distance euclidienne. Dans ce cadre, nous avons soulevé deux sous-
optimalités fondamentales: le décodeur considere que les mots de codes sommes sont
équiprobables alors que I'alphabet somme, étant obtenu par une superposition des mots
de codes originaux, n’est pas uniforme comme illustré a travers la Figure.5. En plus,
la recherche du point le proche est effectuée en négligeant la contrainte de puissance de
I’alphabet somme. Nous étudions dans ce chapitre le décodeur mazimum a posteriori
(MAP) optimal tenant en compte ces deux sous-optimalités.
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(@) Histogramme pour N=2. (b) Histogramme pour N=5.
Figure 5: Histogramme de 1’alphabet somme.

Metrique de Decodage M AP

Nous commencons par la métrique de décodage MAP donnée par:

Cmap = argmax p((k]y) = argmax p(s)p (Y| (s)

g2 g [s2 s
. | Ty
— argmax — X _——
u%z Os P(ts) (Cyv/20)n P 202
0 ,0
Iy —"Csll

=argmin —In(p(lk)) + (13)

062 Os 202

En utilisant cette métrique, nous développons une nouvelle expression pour la borne de
I'union de la probabilité d’erreurs donnée par ce qui suit:

P, < % p(le)erfc VA + \; (14)
[s20s 52057
d2 .
ou A = 8"}", B = %ln % et dmin représente la distance minimale du réseau de
codage Af.

Algorithme de decodage M AP pratique

Nous développons un algorithme de décodage MAP facile & implémenter en moyens d’une
version modifiée du décodeur par spheres. Pour aboutir a cette fin, nous procédons par

XXV



RESUME DETAILLE DE LA THESE

deux étapes: d’abord nous caractérisons la distribution statistique des mots de codes
sommes, ensuite nous développons la métrique MAP définie en (13). Nous modélisons
les mots de codes sommes par des variables Gaussiennes discretes de variance (2 et
montrons que la métrique de décodage MAP est équivalente a:

& . 2 2y o 2-
Cmap = argmin ||y — T [|7 07 [| s || (15)

S& s

ou [ = U;s En utilisant cette nouvelle métrique, nous montrons que le probleme de
décodage MAP revient a résoudre un probléme du point le plus proche dans un nouveau
réseau de points augmenté Aayg de matrice génératrice M g = [M M ]t e R2nEn

suivant notre nouvelle métrique donnée par:

Cap = argmin | Yaug — Xaug |I? (16)
Xaug € Aaug=
Xaug = M aygl's

ol Yaug = [y On]t. Nous montrons de méme que le décodage MAP est équivalent a
effectuer un pré-traitement MMSE-GDFE suivi d’'un décodage & minimisation de la
distance cuclidienne suivant notre métrique suivante:

imap = argmin || Fy — B % 12 (17)

[s20s

ou F € R"M et B € R"" présentent les matrices du prétraitement MMSE-GDFE
correspondant au systeme y = [+ Z tel que B'B = 14 (? I, et FIB = 1,.

Resultats de simulations

Nous évaluons la probabilité d’erreurs du décodeur existant du protocole CF basé sur
la minimisation de la distance euclidienne et la comparons a celle de notre nouveau
décodeur MAP que nous implémentons utilisant ’algorithme de décodage par spheres.
Nous incluons le décodage MAP par recherche exhaustive a titre comparatif. Nous con-
sidérons trois configurations différentes de schémas de codage, de dimensions n du réseau
A et de nombre de sources N. La Figure.6 correspond au casoun = 2 et N = 2. La con-
trainte de puissance dans ce cas est égale a P = 21. Nos résultats de simulations montrent
que notre algorithme MAP a les mémes performances que la recherche exhaustive ce qui
valide, méme pour un nombre faible de sources N, la distribution Gaussienne discrete
des mots de codes sommes sur laquelle se base notre algorithme MAP. Nous soulignons
aussi que le gain du décodeur MAP par rapport au décodeur standard du protocole CF
est limité & 0.5dB pour une probabilité d’erreurs de 10-'1. Les résultats de simulations
tracés dans la Figure.7 correspondant au cas N = 5 confirment aussi la validité de notre
modélisation Gaussienne. La derniére configuration que nous considérons correspond au
cas du réseau entier de dimension N = 4 et de matrice génératrice la matrice identité | 4.
Nos résultats de simulations tracés dans la Figure.8 pour N = 2 montrent d’une part
que notre algorithme atteint les mémes performances que la recherche MAP exhaustive,
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et d’autre part mettent en évidence le gain de notre approche par rapport au décodeur
standard évalué & 1dB pour une probabilité d’erreurs de 103, Ces résultats confirment
Iimportance d’utiliser le décodeur MAP pour cette configuration ayant des gains non
négligeables par rapport a 'approche existante.

10

U
N
©
5
=
o

105

Error Probability

——6— Min. dist. decoding
— - — MAP decoding—Exhaustive
10 | —8— MAP decoding—proposed algorithm

-4 -2 0 2 10 12 14 16

4 6 8
\R (dB)

Figure 6: Probabilité d’erreurs pour n = 2;N = 2;P = 21.
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Figure 7: Probabilité d’erreurs pour n = 2;N = 5;P = 6:5.
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Figure 8: Probabilité d’erreurs pour n = 4;N = 2;P = 1.
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Decodeurs el caces pour le CF: cas du canal a evanouissement

Dans cette partie nous étudions le cas du canal a évanouissements. Nous analysons
le décodeur a Mazimum a Vraisemblance (ML), qui est le décodeur optimal pour ce
modele canal. Nous considérons seulement le cas des réseaux de points entiers pour
des raisons (&9 simplification et nous nous focalisons sur le décodage de la combinaison
entiere t = iN: 1@iXi € A¢. Nous évaluons la probabilité d’erreurs en comptabilisant
les erreurs sur le décodage de cette combinaison.

M etrique de decodage M L

La métrique de décodage ML est donnée par:

t = argmaxp(y]t) (18)
t2 ¢

Nous montrons que ce probleme de maximisation peut s’écrire sous la form suivante:
I

X -1 X
f = argmax exp — ||V — hix; |12 (19)
t2 0 202 -
(xp;mxn)20N = =1
i"‘,laix.—t
Soit la fonction ML suivante
!
X -1 X 2
C(O) = exp o |y = hixi |l (20)
(x1;uxn )20N = =1
Noaixi=t
Pour trouver la solution ML, nous devons maximiser la fonction ML ' . Dans notre

étude, nous traitons d’abord le cas multi-dimensionnels puis le cas de n = 1. Pour le cas
général, nous montrons que le probleme de décodage ML est équivalent a résoudre une
Approximation Diophantienne donnée par:

i = argmax 1()—q P (21)
t20;; q2AL

1 AL est un sous-ensemble fini du réseau de points £ défini par une matrice génératrice
N hiMU;.

En ce qui concerne le cas uni-dimensionnel, nous analysons en détails la fonction
ML. Cette fonction est périodique, dépend du SNR, des coefficients d’évanouissements,
du vecteur du code de réseaux a ainsi que de la contrainte de puissance P. Nous
étudions aussi I'impact de ces parametres sur le comportement de la fonction ML et
explorons le probleme de platitude: pour certaines valeurs des parametres dont dépend
', le maximum de cette fonction peut étre atteint pour différentes valeurs de t, ce
qui résulte en des erreurs de décodage. Un exemple de ce comportement est présenté
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a travers la Figure.9. Comme nous pouvons le constater, la fonction ML atteint son
maximum pour t =5 et t = 6. Le récepteur dans ce cas ne peut pas distinguer la valeur
de t pour laquelle la fonction ' est maximisée ce qui génere des erreurs de détection.

0.9

0.8 : 7

0.6 7

55

t

Figure 9: Platitude de la fonction ML.

o

4 45

(o]
(2]

6.5 7

Pour surmonter le probleme de platitute de la fonction ML, nous proposons une
approximation du décodeur ML qui consiste a résoudre le probléme suivant:

t = argmin | Ck—t— y0 | (22)
k2Z;t2 At
ou k € Z, ,0 = = et yo = —%, avec [1 = [lhquy + [houy 5 [0 = azllhy — axlhy

et (ug;up) vérifient uia; + uray = pged(a;az). Ce probleme de minimisation est
équivalent a la résolution d’une approximation diophantienne inhomogene (IDA). Dans
notre implémentation de ce probléme, nous utilisons une version modifiée de ’algorithme
de Cassel.

Resultats de simulations

Nous évaluons les performances de notre algorithme d’approximation diophantienne et
du décodeur standard du protocole CF en termes de probabilité d’erreurs. Nous con-
sidérons le cas scalaire o N = 1 et des constellations entieres définies par 1’alphabet
[—Sm Sm]. Nos résultats présentés par la Figure.10 pour Sy, = 5 montrent que notre
algorithme atteint les mémes performances que le décodeur a minimisation de la distance
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euclidienne a faible et moyen SNR. Notre approche apporte un gain seulement a fort
SNR ou le décodeur standard du CF présente une platitude.
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Figure 10: Probabilité d’erreurs pour Sy, = 5.

Chapitre 3: Le canal arelais bidirectionnel

Dans ce chapitre nous adressons la premiere application des stratégies de codage de
réseaux dans le canal a relais bidirectionnel présenté par la Figure.11. Les nceuds N1 et
N> désirent échanger leurs messages Wy € Fp et Wp € Fp respectivement. Cet échange
se déroule dans deux phases différentes (orthogonales). Pendant la premiere phase, le
nceud Nj (respectivement Nj) code son message W1 (respectivement Wy) en X3 € A
(respectivement Xp € A) utilisant le méme réseau de codage Ap et respectant la méme
contrainte de puissance définie par le réseau de mise en forme Ac tel que

1_4 P :
ﬁE I xi|c <P; i=1;2 (23)

Les mots de codes sont ensuite transmis simultanément au relais R. Durant la deuxieme
phase, le relais implémente le codage de réseaux et renvoie aux nceuds N1 et N2 un signal
XRr qui est une fonction des mots de codes originaux. Chacun de ces nceuds se sert de
cette fonction et de la connaissance & priori de son message original pour déduire une
estimation du message désiré, W, pour N1 et W1 pour No.
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Figure 11: Canal a relais bidirectionnel implémentant le PLNC.

Nous traitons dans une premieére partie le canal Gaussien et étudions les protocoles
Analog Network Coding, le Compute-and-Forward et le Denoise-and-Forward. Nous
analysons ensuite le canal & évanouissements et étudions les protocoles Analog Net-
work Coding et le Compute-and-Forward. Nous évaluons pour les deux canaux le taux
d’erreurs total défini par la probabilité d’erreurs Pegym donnée par

4 " N
Pesum = Pr (W1 # wy) + Pr (W2 # wa) (24)
Et le débit d’échange défini par:

Rex:Rng N> :RNzy N1 ZmiH(RNll R;RR! Nz) (25)

Cas du Canal Gaussien

Pour ce premier cas, le signal regu au relais s’écrit sous la forme:

YR = X1+ X2+ ZR (26)

ot Zr € R" est un BBAG de variance [3. A partir de cette superposition, le relais

calcule et diffuse un signal Xg =f (X1;X2) a N1 et No. Ce signal dépend de la stratégie
de PLNC adoptée. Nous analysons dans la suite le traitement effectué au niveaux du
relais et des nceuds sources pour chacun des protocoles ANC, CF et DoF.

Schema Analog Network Coding

q__

Le relais dans ce cas multiplie le signal recu par un facteur d’amplification 1= 355~
et diffuse la fonction Xg = [yr. Le noceud Nj (i = 1;2) observe le signal

Vi = XR + Zj = [X1 + [ X2+ [Zr 4+ Z; (27)

Le traitement effectué au niveau du nocud N (i = 1;2) pour obtenir une estimation du
message désiré wj (j = 2;1) est le suivant:
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1. Soustraction du mot de code émis: ¥ =y — [Xj = [Xj + [Zr + z;.
2. Décodage ML de Xj: Rj = argmin , || i — [2.
3. Application de la fonction ("1 wj = (171 (%))

Nous montrons que le débit d’échange utilisant le protocole ANC est donné par:

0 il
1 1
. = —log (1 =1 1 2
Rex:anc 5 og (1+ Eéq) B 0og + 1130 (28)
Schema Compute-and-Forward
Avec le protocole CF, le relais calcule et diffuse la fonction Xxg = [X1 + X2] modAc

suivant les étapes du calcul décrites en détails dans le chapitre précédent. A la réception
de ce signal, le nocud Nj (i = 1;2) effectue les traitements suivants:

1. Décodage ML: Rg;j = argmin , || yi — O ; j =2;1.

2. Application de la fonction (-1 uj = ("1 (Xryj) = w1 @ wo.

3. Soustraction du message connu: Wj = uj o w; (j =2;1).

Le débit d’échange pour le protocole CF a été prouvé dans [60, 67] et est donné par:
[ U

1 P

Tz

3 (29)

N =

Rex;ck = - log

Schema Denoise-and-Forward

L’objectif de décodage au niveau du relais implémentant le protocole DoF est le méme
qu’utilisant le protocole CF. La seule différence est que le relais n’effectue pas ’étape de
multiplication a son signal recu yr. Pendant la deuxieme phase de communication, les
noeuds N et N2 implémentent les mémes traitements que dans le cas du CF. Le débit
d’échange pour le protocole DoF est donné par:

0o

1 P
Rex;poF = QlOg = (30)

Resultats de simulations

Nous évaluons le taux d’erreurs total et le débit d’échange pour les tratégies ANC, CF
et DoF. Commencant par le débit d’échange, nos résultats de simulations présentés en
Figure.12 montrent que le protocole CF est optimal a fort SNR et offre de performances
meilleurs que les protocoles ANC, DoF, le codage de réseaux couche paquets (3-TS
Network Coding) et la stratégie de relayage se basant sur le simple routage.
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Figure 12: Débit d’échange moyen par utilisation canal pour le canal Gaussien.
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Figure 13: Taux d’erreurs total pour le canal Gaussien.
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Le sous-optimalité du protocole DoF par rapport au CF est due a I’étape de multipli-
cation du signal recu au niveau du relais, qui permet d’obtenir des débits de calculs plus
élevés. Dans le cas du ANC, sa sous-optimalité provient de 'amplification du bruit au
niveau du relais. En ce qui concerne le taux d’erreurs total, nos résultats de simulations
tracés en Figure.13 confirment que les protocoles CF et DoF ont le méme taux d’erreurs.
Le gain de ces deux derniers par rapport a la stratégie ANC s’évalue a 3.75dB a un taux
d’erreurs total de 10 2.

Cas du Canal a evanouissements

Pour ce deuxiéme cas de figure, le signal regu au niveau du relais s’écrit sous la forme:
Yr = hiX1 + hax2 + zg (31)

ou hi;hy € R représentent les coefficients d’évanouissements correspondant au canal
entre N1 et R et N2 et R respectivement.

Schema Analog Network Coding

q_ —
Le relais dans ce cas amplifie le signal recu par le facteur [ = ﬁz et le diffuse aux

neeuds sources. Ces derniers observent les signaux suivants:
y1=hixg +21 = ,h%xl + [hihoxo 4+ [hizg + 23 (32)
Yo =hoXg + 25 = :h%Xz + Chihoxy 4+ [hozg + 22 (33)
Le traitement au niveaux de N; et Ny consiste aux étapes suivantes:
1. Soustraction du mot de code connu:
N1 obtient y1 =y1 — ,h%X]_ = [hihoxo 4+ Chizg + 23

N, obtient y, =y, — :h%XZ = [hihox1 + [hyzg + 22

2. Décodage ML:

X2 = argmin || Y1 — Chihy[) H2 ; X1 = argmin || yp — [ ||2 (34)
020 020
3. Mapping au corps fini pour obtenir: W, = (1'% (X2) ; W1 = [ (Ry)

Le débit d’échange pour le protocole ANC est donné dans ce cas par:

1 B h2 [? B
Rex:anc = min_ —log 1 -
ex;ANC mnzllfz 2 08 + 14+ 0(1+ || h ”2)

(35)
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Schema Compute-and-Forward
Le relais dans ce cas décode la combinaison donnée par:
XR = [@1X1 + axX2] modAc (36)
Ce signal est ensuite diffusé aux nceuds finaux qui effectuent le traitement suivant:
1. Décodage ML: Xg:j = argmin . || yi —hi (|2 ; i=2;1
2. Mapping au corps fini: uj = "1 (Rg:i) = QW1 @ Wy ; i = 1;2.
3. Soustraction des messages connus: Ny = U1OHW1 = (W2, N2 = U2ShpWo = hW1.
Na

4. Division par les messages ¢f: Wy = o Wiy =

na

81

Une condition nécessaire de décodabilité aux nceuds finaux consiste & avoir ¢p # 0
au niveau de N1 et (g # 0 au niveau de Ny. Cette condition est équivalente a avoir
[a1] mod p # 0 et [a2] mod p # 0. Nous établissons dans ce chapitre un nouveau lemme
de construction de codes de réseaux pour le CF dans le canal a relais bidirectionnel
tenant en compte cette condition de décodabilité et développons un algorithme pratique
de son implémentation se basant sur la méthode d’énumération Fincke-Pohst [9].

Resultats de simulations

3

> == = Upper bound Y
O Compute-and-Forward+loc.opt /
E 2.5T| —4— Compute-and-Forward+non-zero entries //
Q =—8— Analog Network Coding 7/
£ 7/
g 2f
3]
-
o
QO 15¢ i
s
%
& 1
S
5

0.5 h
=
<

10 15
S\R (dB)

Figure 14: Taux d’échange pour le canal a évanouissements.
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Nous évaluons les performances des stratégies CF et ANC en termes de débit d’échange
et de taux d’erreurs total. Pour le protocole CF, nous étudions notre algorithme met-
tant en oeuvre la condition de décodabilité ainsi que le schéma de codage standard ou
le vecteur du code de réseaux a est construit en maximisant le débit de calcul au niveau
du relais sans considération de la contrainte de décodabilité.

Commencant par le débit d’échange, nos résultats de simulations présentés en Fig-
ure.14 montrent la perte en performances due au non respect de la contrainte de décodabilité.
Notre algorithme apporte un gain considérable par rapport a ’approche existante et a
la stratégie ANC.

——6-— Compute—and—Forward+loc.opt
—@— Compute—and-Forward+non zero entries|
o —#8— Analog Network Coding
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o
-
| —
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Figure 15: Taux d’erreurs total pour le canal a évanouissements.

En ce qui concerne le taux d’erreurs total dont les résultats de simulations sont présentés
a travers la Figure.15, nous soulignons tout d’abord la perte significative en perfor-
mances & cause de la négligence de la contrainte de décodabilité. Notre algorithme
apporte en effet un gain considérable par rapport au CF standard dépassant 15dB a fort
SNR. Nos résultats numériques mettent en évidence aussi que notre algorithme offre
les mémes performances que la stratégie ANC contrairement au cas du canal Gaussien.
Ce comportement est du a ’erreur de quantification ou d’approximation des coefficients
d’évanouissements réels par les les coefficients entiers formant le vecteur du code de
réseaux.
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Chapitre 4: Le canal a sources et relais multiples

Dans ce chapitre nous étudions I'implémentation des stratégies ANC et CF dans le canal
a sources et relais multiples présenté en Figure.16.

[

P
b \ $

Rz—)

: / Dest1nat1on D
BN

Figure 16: Canal & sources et relais multiples.

Les sources Sj;i = 1;::; N désirent communiquer leurs messages Wi a la destination
D. La transmission se deroule en deux phases orthogonales. Dans un premier lieu, les
sources encodent leurs messages en vecteurs Xj € A et les envoient simultanément aux
relais. Le signal recu au relais Ry, s’écrit sous la forme:

ou him € R représente le coefficient d’évanouissement entre la source Sj et le relais Ry,
supposé constant durant la transmission des mots de codes Xj. Zm € R" est un BBAG
de variance (2. Nous supposons une connaissance parfaite du canal au récepteur. Dans
ce contexte, le relais Ry connait uniquement le vecteur canal hy = [hym = hym]t
De plus, nous supposons que la destination a une connaissance parfaite des vecteurs
hi;::;;hy . Pendant la deuxieme phase de transmission, chacun des relais implémente
un codage de réseaux au niveau physique pour calculer le signal [jn;m = 1;::;;N en
fonction des mots de codes originaux. Chacun des relais transmet par la suite sa fonction
a la destination. Les liens relais-destination sont supposés parfaits et orthogonaux. La
destination utilise toutes les fonctions [i;::;; [y pour avoir des estimations des messages
originaux W1;::;; Wy . La probabilité d’erreurs a la destination est définie par:

[

Pp=Pr Wi #W; (38)
i=1
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Schema Analog Network Coding

Le role des relais utilisant la stratégic ANC consiste a amplifier le signal regu. La fonction

calculée au relais Ry, est alors donnée par:
!
B X
Cn = nYm = [h NimXi + Zm (39)
i=1
Le facteur d’amplification relatif au relais Ry, est égal a:
r—...n
L
oo g 40
AT 1)
L’avantage de la stratégie ANC est la facilité d’implémentation. Cependant, un des
inconvénients majeurs est 'amplification du bruit qui résulte en une dégradation des
performances.

Schema Compute-and-Forward

Dans le cas du protocole CF, le relais Ry, décode et transmet la fonction
n #
X
[m = amiXi mod Ac (41)

i=1

Les coefficients am1; ::;; amn € Z forment le vecteur du code de réseaux am = [8m1 X amn ]t
correspondant au relais Ry,. Nous analysons le systéme d’équations recu a la destination
et montrons que ce dernier s’écrit sous la forme:

o .. 1
h
L:% : g:[AX] mod Ac (42)
“t
N

olt les lignes de la matrice A € ZN"N correspondent aux vecteurs aj;:::;;al tel que:

0 0 1
a aiz A2 - AN
'1 g a1 ax - &N
A= : = . . . .
a}\l . . . .
ani an2 - anNnN

En étudiant les étapes de décodage a la destination, nous proposons un nouveau lemme
établissant un critere de construction des vecteurs entiers ai;:::; ay maximisant le débit
de transmission total telle que la matrice A satisfait det (A) # [0Jmodp. Nous développons
aussi des algorithmes pratiques de construction d’une telle matrice en se basant sur

I’algorithme de Fincke-Pohst.

Resultats de simulations
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Figure 17: Taux d’erreurs a la destination pour le canal MSMR.
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Figure 18: Débit de transmission moyen pour le canal MSMR.
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Nous évaluons la probabilité d’erreurs et le débit de transmission total a la desti-
nation. Nos résultats de simulations présentés a travers la Figure.17 et la Figure.18
mettent en évidence I'importance de notre algorithme tenant en compte la contrainte
sur la matrice A et son gain par rapport a la stratégie ANC et au schéma existant du
protocole CF basé sur la recherche de la matrice A qui permet de maximiser les débits
de calculs aux relais d’une facons indépendante.

Chapitre 5: Le canal MIM O distribuel

Nous traitons dans ce dernier chapitre le canal MIMO distribué composé de M sources
équipée chacune d’elle d’une seule antenne, et d’'une destination commune équipée de

N > M antennes.
\ N antennes
/ Destlnatlon D
2

Figure 19: Canal MIMO distribué.

Les messages Wyq;::;; Wy des sources sont encodés et transmis a travers le canal. Le
signal regu a la destination s’écrit sous la forme

Y =HX +Z (43)
ou les matrices
2 t3 2 3 2 3
ht 2
X=9 : Lervn H=§  LervM z-§ : Lervn
XM hy zZy

représentent respectivement la matrice des mots de codes sources, la matrice des coeffi-
cients d’évanouissements et la matrice-du BBAG. Les vecteurs z,, pour m = 1;::;N
sont générés selon la loi normale N 0;[2l, . Nous considérons le cas du canal a
évanouissement quasi-statique et supposons une connaissance parfaite du canal au récepteur.
Dans une premiere partie nous présentons les décodeurs MIMO classiques, commencant
par le décodeur ML optimal ensuite les décodeurs linéraires ZF et MMSE et les récepteurs
linéaires précédés d’un prétraitement a travers une réduction de la matrice canal. Dans
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une seconde partie, nous exposons la nouvelle architecture des décodeurs Integer Forcing.
Le principe de ces derniers consiste a exploiter la structure linéaire des codes correcteurs
d’erreurs afin de simplifier 'architecture du récepteur: au lieu de décoder les mots de
codes sources séparément, il suflit de décoder des combinaisons linéaires linéairement
indépendantes de ces derniers dont les coeflicients sont donnés par une matrice A entiere
et de rang plein. Un critere de sélection de cette matrice a été proposé en littérature
et consiste a maximiser le débit total. En se basant sur ce critere, nous développons de
nouveaux algorithmes efficaces pour la sélection de la meilleure matrice A qui soit de
rang plein.

Resultats de simulations

Nous évaluons les performances en termes de probabilité d’erreurs et de débit de trans-
mission total. Nous analysons le décodeur ML optimal, les récepteurs linéaires ZF et
MMSE, les décodeurs LLL+ZF et LLL-+-MMSE implémentant la réduction LLL, et les
décodeurs IF utilisant nos algorithmes proposés. Nos résultats de simulations présentés
par la Figure.20 et la Figure.21 mettent en évidence le gain apporté par la nouvelle
architecture des décodeurs IF par rapport aux récepteurs linéaires existants.

10 .
10 : ‘
[} . v
T
e
S
L0 107} : : "
& — Joint ML
’ - - ZF
s —¥— MMSE
107} - LLL+ZF
—=— LLL+MMSE
—o—|F
10 : : : ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35
SNR(dB)

Figure 20: Taux d’erreurs pour le canal MIMO distribué.
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Figure 21: Débit total de transmission pour le canal MIMO distribué.

Perspectives

Comme perspectives pour les travaux futurs, nous proposons les directions suivantes:

e Decodeurs Integer Forcing combines avec le codage Espace-temps: notre
étude de I’architecture des décodeurs IF élaborée dans cette these a révélé I'importance
de ces récepteurs et leurs gains significatifs par rapport aux techniques de décodage
sous-optimales existantes. Nous visons dans le futur a étudier les gains possibles de
cette nouvelle architecture dans un systeme MIMO codé, ot un code espace-temps
est implémenté a 1’émission.

e Codage dereseaux pour lescommunications optiques: pour cette direction,
nous visons a étudier I'application des technique de codage de réseaux dans les
systemes de communications optiques.

e Codage de reseaux pour le stockage distribue: 'une des premieres applica-
tions du codage de réseaux est le stockage distribué. Nous visons a travers cette
piste de recherche a explorer la construction de codes de réseaux au niveau physique
afin de concevoir des systemes de stockage efficaces et sécurisés.
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Introduction

widely transformed all aspects of our daily life. Driven by the emergence of new

real-time high-throughput multimedia applications and the success of digital
technologies, several network solutions are available today and are thoroughly used in
all modes of communications. Main examples include cellular networks, wireless ad-hoc
networks and wireless sensor networks.

I ast years have witnessed spectacular developments of wireless networks that have

Practical wireless communication systems are inherently multiuser systems accomo-
dating multiple transmitters and receivers that share the same, often limited, resources
such as bandwidth. This is the case for example of cellular mobile networks where the
task of a base station is to serve many subscribers in the same geographical location
at the same time. The main distinguishing features of such multiuser networks are
the broadcast and superposition. Indeed, as signals of different users, sharing the same
physical resources, travel through the same interface, a signal sent from a transmitter is
broadcast to all nearby users, consequently it reaches both the desired and unintended
receivers. On the other hand, instantaneous transmissions by different users result in a
superposition of signals at the receivers covered by the same transmission range. These
two intrinsic properties of the wireless medium create a multiuser interference or multi-
ple access interference. The design of a reliable wireless system is conditioned on a good
understanding and management of this interference problem which can be detrimental
to the system performance.

Multiple access interference is a widely investigated topic particularly in the realm of
Information Theory. There are essentially two ways to resolve this problem: a single-user
approach and a multiuser technique. The first method aims to provide an orthogonal
access to the channel by allocating and maintaining separate channel resources to each
user, either in time (e.g., Time Division Multiple Access), in frequency (e.g., Frequency
Division Multiple Access) or in signal code (e.g., Code Division Multiple Access). De-
spite the fact that this single-user approach guarantees interference-free transmissions,
there remain drawbacks, essentially a reduced spectral efficiency. Lessons learned from
multiuser Information Theory [1] show that orthogonal multiple access is suboptimal.
The best way to optimally share the spectral resources in a multiuser system is to harness
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the interference and instead of avoiding it, we should consider it as a useful informa-
tion to serve the decoding process of the desired signal. This is the philosophy of the
second multiuser detection [2] approach which deals with the design of multiple access
codes and interference cancellation schemes. From an information-theoretic perspective,
these techniques allow to increase the spectral efficiency [3], however, their high design
complexity make their implementation in practical settings a challenging task.

In this work, we are interested in a new approach to mitigate the multiple access
interference in wireless networks termed Physical-layer network coding (PLNC). This
framework came recently into light with the pioneering works of Zhang et al. in [4] and
Popovski and Yomo in [5, 6]. It has been proposed as a valuable solution to improve
the way to manage interference in wireless networks including multiple access channels.
The philosophy of this new approach is to enable intermediate nodes in a given wire-
less network, observing a signal resulting from multiple access interference, to decode
and forward functions of the interfering signals. Treating interference as useful informa-
tion under PLNC is proved to offer higher transmission rates and several noteworthy
advantages.

Physical-Layer Network Coding can operate in conjunction to physical layer tech-
niques such as source coding and channel coding [7]. Joint source-network coding arises
particularly in networks where the sources are correlated such as sensor networks. In
general settings where the sources are uncorrelated, integrating channel coding and net-
work coding has attracted a particular research attention and several works have been
developed in this context. In this scope, a very promising linear Physical-Layer Net-
work Coding protocol termed the Compute-and-Forward (CF) has emerged in the last
few years. Introduced by Nazer and Gastpar in [8], the CF scheme allows to harness
the multiple access interference through the use of lattice-based channel coding. This
new framework is applicable to any network configuration accomodating source nodes,
relays and destinations that communicate through linear additive white Gaussian noise
channels. Main primary works on the CF are information theoretic and show its promis-
ing potential particularly in terms of transmission rates that go highly beyond those
permitted by existing relaying strategies based on interference avoidance. However, sev-
eral relevant issues related to the implementation of the CF in practical communication
scenarios have been overlooked.

Objectives, Assumptions and Considered Scenarios

Motivated by the promising gains of PLNC, this work is dedicated to the analysis, design
and performance evaluation of Physical-Layer Network Coding strategies in multiuser
wireless communication systems including multiple access channels. We focus on PLNC
joint to lattice-based channel coding and study the end-to-end implementation and per-
formance of the CF, the Analog Network Coding (ANC) and the Denoise-and-Forward
(DoF) strategics. For practical implementation reasons, we study for the CF protocol
missing issues related to the network codes design and optimal decoding algorithms at
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the level of the relay nodes and end destinations. We study the three following network
configurations:

1. The Two-Way Relay Channel (TWRC, depicted in Figure 22) with two commu-
nicating nodes N1, N2 and a relay node R. All nodes are equipped with a single
antenna. For this setting, we aim to analyze the design and end-to-end error
performance of the ANC, the DoF and the CF strategies.

SR G

N1 Relay R N2

Figure 22: Two-Way Relay Channel.

2. The Multi-Source Multi-Relay Channel (MSMR, depicted in Figure 23) with N
independent sources, N relays and a common destination D. All nodes in this
network are equipped with a single antenna. For this setting we aim to study the
design and end-to-end performance of network codes for the CF and the ANC.

@X@RN/ $

Figure 23: The Multi-Source Multi-Relay Channel.

3. The Distributed Multiple Input Multiple Output (MIMO) Channel (depicted in
Figure 24) with N independent single antenna sources and a common destination
D equipped with M > N antennas. For this setting, we aim to study a new
architecture of MIMO decoders inspired by the CF protocol termed Integer Forc-
ing linear receivers (IF) and compare its performance to the traditional MIMO
decoders.

N antennas

Lk

Figure 24: The Distributed MIMO Channel.
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For these three network models, we assume that all nodes operate in a half-duplex mode
and are perfectly synchronized. The sources and the destination for the TWRC and
MSMR channel are not in line of sight. The destination for these two scenarios is always
aware whether the relays use PLNC or not. In addition, we assume perfect channel state
information (CSI) at the receiver: relays, when they receive signals from the sources,
and the destination have perfect CSI. Finally, the performance metrics considered in this
thesis are the message error rate and the average achievable rate at the destination.

The choice of the above described network topologies is driven by their potential
application in practical communication systems. The TWRC, for example, can model
sattelite communications. The MSMR channel can model a communication over a wire-
less sensor network and the distributed MIMO channel fits cellular uplink networks with
multiple antenna base stations. Although we use similar tools in our analysis that make
some results redundant, we found that the three networks should be separately studied
since they represent distinct network codes design constraints and decodability condi-
tions at the end destinations. Moreover, it is important to point out that some of the
addressed topics in this thesis were simultaneously (and independently) studied by other
research groups. Our novel contributions are clearly stated in the following.

Thesis Outline and Contributions

This dissertation is composed of five main chapters. The contents and the contributions
of each one of them are summarized in the following.

Chapter 1: Network Coding This chapter is devoted to address the fundamentals
of Network Coding and to give some insights into its applications, advantages and chal-
lenges. In section 1.1 we illustrate the basic concept of Network Coding and outline its
most acknowledged benefits and challenges. Section 1.2 is dedicated to layout some ap-
plications of Network Coding. The main Network Coding theorem is provided in section
1.3. It establishes the necessary and sufficient condition on the design of maximum infor-
mation achieving network codes in multicast networks. In the last section 1.4 we delve
into the principle of Physical-Layer Network Coding and present a literature overview
on this topic.

Chapter 2: The Compute-and-Forward Protocol This chapter is dedicated to
analyze the CF protocol in the basic multiple access channel. As a starting point, we de-
scribe in section 2.1 nested lattice coding which is the key ingredient of the CF encoding
and decoding schemes. In section 2.2 we outline the decoding steps in the case of real-
valued channels. This channel model will be used as a building block for complex-valued
channels addressed in section 2.3. The main information-theoretic results regarding the
achievable rate will be presented in section 2.4. Our novel results in this chapter include

e A Proposition, in section 2.5, of an optimal solution to design network codes for the
CF. By maximizing the achievable rate at the receiver, we show that this solution
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is related to a shortest vector problem that can be solved using lattice reduction
and decoding techniques.

e A Derivation, in section 2.6, of a novel lower bound on the ergodic rate for the CF
operating in fast fading channels.

e A Derivation, in section 2.7, of a novel upper bound on the outage probability for
the CF in the case of slow fading channels.

e A Derivation, in section 2.8, of a novel mazimum a posteriori (MAP) decoding
metric for the CF operating in Gaussian channels and development of practical
decoding algorithms shown to outperform the traditional decoding scheme for the
CF.

e An analysis, in section 2.9, of optimal decoders for the CF operating in slow fading
multiple access channels and development of a practical decoding algorithm based
on Diophantine Approximation.

Chapter 3: The Two-Way Relay Channel This chapter is devoted to analyze the
end-to-end performance of the most aknowledged Physical-Layer Network Coding strate-
gies, mainly, the Denoise-and-Forward, the Analog Network Coding and the Compute-
and-Forward. Section 3.1 will be devoted to the Gaussian channels case. First, we will
describe the system model and assumptions as well as the performance tools. Process-
ings related to the ANC, DoF and CF will be detailed and the corresponding end-to-end
error rate performance and achievable rate using a nested lattice code scheme will be
addressed. The fading channels case will be the subject of section 3.2. We will start with
introducing the system model and assumptions. Then, we will describe the end-to-end
processing related to the ANC and the CF schemes. Our novel results in this chapter
include:

e A lemma stating a novel design criterion for optimal network codes search for the
CF in the fading TWRC.

e A proposition of a search algorithm for efficient network codes based on a mod-
ified version of the Fincke-Pohst algorithm [9]. Numerical results evaluating the
performance of the proposed approach are provided and show the effectiveness of
our method.

e An analysis of the end-to-end performance of the ANC and the CF. We show that
for the Gaussian channels case, the CF outerperforms the ANC, however, for the
fading channel case, due to channel approximation errors, both strategies achieve
almost same error performance. The gain of the CF over the ANC is only reported
in terms of the average achievable rate.

ot
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Chapter 4: The Multi-Source M ulti-Relay Channel We aim in this chapter to
study the network codes design and the end-to-end performance of the ANC and CF in
the real-valued Multi-Source Multi-Relay channel. In section 4.1 we describe the system
model and assumptions. Sections 4.2 and 4.3 are dedicated respectively to the ANC and
the CF schemes. Our novel results in this chapter include:

e A study of the end-to-end communication based on ANC and analysis of the con-
ditions for successful decoding at the destination.

e A formulation of the optimization problem to search for the optimal network codes
for the CF that allow to maximize the overall message rate at the destination.

e A proposition, in section 4.4, of algorithms to design efficient network codes for
the CF based on a modified version of the Ficke-Pohst algorithm. Numerical
results evaluating the performance of our approach are provided in section 4.5 and
demonstrate the effectiveness of our method.

e A comparison of the end-to-end performance for the CF and the ANC. We show
that the former achieves better performance than the latter.

Chapter 5: The Distributed MIM O Channel Inspired by the CF protocol, a new
architecture of decoders in MIMO systems termed Integer Forcing linear receivers has
been recently introduced in literature by Zhan et al. in [10-12]. The promising potential
of this new architecture over traditional linear receivers such as the Zero-Forcing (ZF)
and the Minimum Mean Square Error (MMSE) detector has been proved under a the-
oretical capacity achieving perspective. Motivated by the theoretical promising gains of
the IF linear receivers, we aim in this chapter to go one step further towards practice by
developing practical and efficient algorithms to design the IF receivers parameters and
providing an evaluation of their error rate performance using finite length nested lattice
coding schemes. As a starting point, we describe in section 5.1 the system model and
assumptions. Section 5.2 is dedicated to review the basic optimal and suboptimal MIMO
decoders studied in literature, namely the Maximum Likelihood (ML) decoder, linear
receivers through the ZF and the MMSE and lattice reduction-aided linear receivers.
Following, we study the Integer Forcing architecture. An overview on this new design is
provided in section 5.3 and the main information theoretic results concerning their the
achievable rate and Diversity Multiplexing Tradeoff (DMT) are overviewed. Our novel
results for this chapter include:

e A development, in section 5.4, of novel algorithms to find the optimal IF receivers
parameters based on the sum rate maximization criterion.

e A performance evaluation of our methods and comparison to the traditional MIMO
decoders in section 5.5 using a finite length nested lattice coding scheme. Our
numerical results demonstrate the effectiveness of our algorithms and confirm the
outerpformance of the new IF architecture over the existing MIMO linear receivers.
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Finally, the results of this work and some future research perspectives are summarized
in a general conclusion.
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Chapter 1

Network Coding

systems exist today and are thoroughly used in all modes of communications.

For example, beyond computer networks and the world wide web, wireless net-
works such as cellular networks, wireless ad-hoc networks (e.g., IEEE 802.11) and sensor
networks have become ubiquitous. Routing mechanisms currently used in these network
systems share mostly the same philosophy: data replication and forwarding. In such
networks, data delivered by a source node is independently transmitted to the intended
destination through a chain of relay nodes using a store-and-forward architecture. The
role of an intermediate node is to clone the information flow it receives via an input link,
and to forward a copy to the next node in the chain for subsequent transmission. Using
this approach, independent data streams are processed in a separate way and apart from
data replication, no additional processing is allowed at intermediate nodes.

N etworks are taking an ever-growing place in our day-to-day life. Different network

In a communication scenario involving a single source-destination pair, the store-and-
forward architecture is adequate to achieve the network capacity. Nevertheless, there
is evidence that in a communication network accomodating multiple users and deal-
ing with many source-destination pairs this strategy can be detrimental to the system
performance. Indeed, the store-and-forward implies in this case to dedicate the whole
network resources to process a single source packet at a time unit which evidently comes
at the cost of more latency, more power consumption at the relay nodes and results in a
data rate loss. Recently, a new coding perspective termed Network Coding has been in-
troduced to enhance the network throughput and improve the system performance. This
approach breaks from the traditional routing paradigm by observing that intermediate
nodes in a communication network can be allowed to not only forward but also perform
some coding operations and processing on the content of the incoming independent data
flows. For example, at the network layer, this consists in executing binary operations
on the independent bit streams (e.g., bitwise exclusive-OR), while at the physical layer,
Network Coding is made at the signal space level and more general linear or non linear
combinations can be made on the independent incoming electromagnetic waves.
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CHAPTER 1. NETWORK CODING

Although Network Coding capitalizes on a very simple idea of mixing independent
information flows, its generality and vast application potential have motivated an in-
tensive research in several communities, most notably in the realm of Information and
Coding Theory, Computer Science, wireless communications, cryptography and matrix
theory. Several areas started to benefit from Network Coding and numerous applica-
tions continue to emerge ranging from distributed storage, cooperative communications,
to network monitoring, management and security. Network Coding is expected to greatly
deal with the future design of Information Technology systems and networking protocols.

This chapter is devoted to address the fundamentals of Network Coding and to give
some insights into its applications, advantages and challenges. In section 1.1 we illustrate
the basic concept of Network Coding and outline its most acknowledged benefits and
challenges. Section 1.2 is dedicated to layout some applications of Network Coding. The
main Network Coding theorem is provided in section 1.3. It establishes the necessary
and sufficient condition on the design of maximum information achieving network codes
in multicast networks. In the last section 1.4 we delve into the principle of Physical-Layer
Network Coding (PLNC) and present a literature overview on this topic.

1.1 Network Coding: benelts and challenges

Network Coding is a new research field brought up in the turn of the millenium. Research
works on this area date back to the paper of Yeung et al. [13] where the basic concept of
Network Coding was first proposed for satellite communication networks. Later on, in
2000, Ahleswede et al. in [14] have completely developed the idea of Network Coding and
showed its first potential gains over the traditional routing approach in a single source
multicast transmission over a noiseless wireline network. Since this pioneering work, a
vast portion of the literature [15-19] has been devoted to investigate the possible gains
of this new concept as well as its applications [20] and limits [21].

We will in the following depart from the multicast scenario in wireline networks to
explain the concept of Network Coding, and through simple examples we will exhibit
its most recognized benefits, mainly throughput increase, significant savings of wireless
resources, and security. Then we proceed to discuss the main challenges that arise when
dealing with the applicability of Network Coding in real systems, such as integration
in present infrastructures and complexity. But before we embark in our illustration, we
provide the following definitions for convenience.

Delhnition 1.1. A communication network is represented by a finite directed graph G,
where several edges from one node (vertice) to another can be assigned. A node without
any incoming edges is termed a source node, while any other node is called a sink node.
A directed edge from a node i to a node j is denoted as (i;j) and is called a channel.
The capacity of a direct communication from a node i to another node j is given by the
multiplicity of independent channels between them. In practice, this graph model may
represent a physical network, typically wireline networks (such as computer networks).
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Delnition 1.2. A communication network is said to be cyclic if it contains a directed
cycle, otherwise, it is called acyclic.

Delnition 1.3. A multicast transmission refers to the communication of a message or
an information from a source node to a group of independent destinations simultaneously.
In practice, the multicast scenario can correspond to a particular application such as a
video-conference call.

Example 1.1. Consider the example of the network illustrated in Figure 1.1(a) com-
posed of computers that are interconnected via several wires. The communication ob-
jective here is to transmit data from the computer PC-S to the computers PC-D1 and
PC-D2. To this network we associate the directed acyclic graph depicted in Figure 1.1(b)
in which vertices correspond to nodes and edges to channels. The node S is the source
of the graph, nodes D1 and D2 are the final sink nodes (or destinations). All the direct
transmissions in this network are of unit capacity.

-
———

1| \ / T
PC-W

B D1 D2

(a) A wireline computers network. (b) Graph model.

Figure 1.1: Example of the butterfly communication network.

This network is a very famous example in the Network Coding literature known as
the butterfly network.

1.1.1 Throughput increase

The first gain of Network Coding manifests in terms of throughput increase in a multicast
transmission involving a single source [14] or multiple sources [16].

To demonstrate this benefit we consider a multicast scenario in the butterfly network
described in Example 1.1. Assume that the source S emits two different information bits
b, and b, and desires to send them simultancously to the destination nodes Dy and Do.
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If the network resources were allocated to the destination node Dj only, it could
receive the desired bits by and by from the paths {ST;D1} and {ST,W X D1} respectively
as illustrated in Figure 1.2(a). The same scenario happens if the destination D, uses
the network resources alone, it could get the bit by via the path {ST{WX D3} and b,
through {SToD>} as shown in Figure 1.2(b).

(a) Routingto D;. (b) Routing to D».
Figure 1.2: Multicast in the Butterfly network using traditional routing.

Now consider the case where the network resources are shared by both destinations
D1 and Dy. A first way to multicast the desired bits is to use the traditional store-and-
forward routing approach. According to this strategy, the independent bit streams are
kept separate in the network, and having in mind that every channel in the network can
carry a single bit per time unit, the node W, receiving both bits at a same time slot,
needs to make a decision to forward either by or bp. If the decision is taken in favor of
the bit by, the destination D1 receives by and D2 gets by and bp. Alternating the decision
in favor of the bit bp during a second time unit allows to achieve the multicast objective
and results in a multicast rate of 1:5 bits per time unit. This rate is the maximum
possible under the store-and-forward strategy based on bit replication and forwarding.

A different way to perform the multicast over the butterfly network is based on
Network Coding as illustrated in Figure 1.3. The basic idea is to enable the node W
to mix the bits by and by and forward the resulting combination to the node X . Under
this perspective, the node W performs the exclusive-OR bit by &by and sends it over the
channel {WX }. The node X replicates thus by & by to reach both destinations. This
way, destination D1 receives the bit by and by @ Iy from which it can decode the bit
. In like manner, destination D, can decode for the bit by from the received bits by
and by @ bp. This Network Coding-based approach results in a multicast rate of 2 bits
per time unit. It performs strictly better than the simple replication-based strategy by
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permitting higher multicast rate, lower latency and improved network resources share
between the destination nodes D1 and Do.

(X2

Figure 1.3: Network Coding in the butterfly network.

The exclusive-OR, bit operation considered previously is a very basic and simple form
of coding which can be generalized. For instance, linear Network Coding [15] in which
output packets are linear combinations of the received independent packets, provides
a linear framework that facilitates the coding and decoding operations and allows to
achieve the optimal throughput when multicasting using polynomial time algorithms
compared to the NP-hard conventional routing techniques.

The butterfly network example illustrates a fundamental result: Network Coding
allows to achieve the optimal data rate when multicasting over lossless wired networks.
This main finding was proved by Ahlswede et al. in [14] using information theoretic tools.
This result opened the way to investigate throughput advantages of Network coding in
other network types and traffic patterns. It was then proved that Network Coding offers
a throughput benefit also in the case of unicast (transmission from a single source to a
single destination node) in lossless wired networks [19] and in the case of broadcast [22]
and multicast [23] in wireless networks.

1.1.2 Wireless Resources

Wireless networks face several problems that do not exist in their wireline counterparts.
A first challenge is the resources allocation. Indeed, such networks are inherently mul-
tiuser environments. A difficult task is then to efficiently share the available resources
in order to satisfy the users’ different demands under the constraints of the wireless net-
work. In addition, with the evolution of wireless applications and services, the number
of connected users is continuously increasing. On the other hand, spectral resources are
being scarce and are not sufficient to satisfy all the demands. Moreover, a relevant re-
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quirement and crucial design parameter in wireless networks is energy efficiency. Indeed,
compared to the wired case, wireless devices are power-limited and have to operate in
an energy efficient way to maximize the network lifetime. For example, sensor nodes in
a wireless sensor networks or user equipments in cellular networks are battery operated.
Then, it is of fundamental importance to efficiently and reliably design communication
protocols that require as low as possible processing and transmission powers.

All these problems result in performance loss and require more efficient routing mech-
anisms. We show through Example 1.2 that Network Coding can be a solution to the
above listed drawbacks leading to improvements in the system performance.

Example 1.2. Consider the wireless communication network composed of two source
nodes S; and Sy and an intermediate node R, known as the Two-Way Relay Channel
(TWRC). In this network, S; and Sy send respectively the bits by and by and desire to
exchange them. In absence of a direct link between the source nodes, the intermediate
node R acts as a router (or relay).

& e &R &
& B & B
=R

(a) Traditional routing. (b) Network Coding.

Figure 1.4: Bits exchange in the Two-Way Relay Channel.

Using the traditional store-and-forward method, the sources are able to exchange
their bits within 4 time slots as illustrated in Figure 1.4(a): the relay node simply
replicates the information bit it receives then sends a copy to the intended destination.

Now, consider a Network Coding-based relaying using the simple exclusive-OR. bit
coding depicted through Figure 1.4(b). We refer to this scheme as straightforward Net-
work Coding [24]. In this scope, the relay node decodes each bit separately during the
two first time slots, then computes the bit by & by and brodcasts it to S; and Sy. Af-
terwards, based on the side information available at the sources, the latters decode the
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received combination to recover the desired bit. For example, given that S; has a copy
of the bit by, it can decode from by @ by the bit bp. This way, only 3 time slots are
necessary to perform the bits exchange.

The example of the Two-Way Relay Channel shows that Network Coding allows
to perform a reliable transmission while realizing significant savings on the network
resources: energy consumption is reduced (the relay R operates once rather than twice),
batteries of wireless terminals are saved which results in a network lifetime enhancement,
latency is reduced (bits exchange takes three time slots instead of four) and bandwidth
is more efficiently used (the wireless medium is busy for shorter period).

1.1.3 Security

From a security point of view, Network Coding has both pros and bottelnecks depending
on the application and the network scenario.

Looking at the security benefits, coding at intermediate nodes can offer a considerable
protection against eavesdroppers. As an example, consider the butterfly network studied
previously and assume that an eavesdropper manages to wiretap the channel {WX }. If
the node W implements the traditional routing, the adversary can obtain either the bit
by or the bit b,. However, when applying Network Coding, the eavesdropper, obtaining
only the coded bit by @ by, is unable to decode any of the source bits. Then it is
clear that Network Coding allows a secure communication. More discussions about the
impact of Network Coding on the security in wireline and wireless networks are addressed
respectively in [19] and [25].

1.1.4 Complexity

It has been shown in various scenarios that Network Coding offers a complexity ad-
vantage over the conventional routing mechanism. This is the case of applications like
gossip-based data dissemination [19] in wireless sensor networks, where low-complexity
suboptimal solutions are required for practical reasons.

1.1.5 Challenges

The implementation of Network Coding in real systems requires to solve a plethora of
practical challenges related to the network architecture and physical resources.

From a system design standpoint, the integration of Network Coding in already
present infrastructures comes with the challenge to adapt the network architecture with-
out radically changing the existing software and equipments. In the case of wireless
networks for example, this necessitates to rethink of the protocol stack design to set up
coding-aware layers, for instance the medium access control and routing layers.

From a physical resources perspective, the main challenge concerns the complexity
cost. Indeed, in order to warranty the deployment of Network Coding particularly

Asma Mejri 15



CHAPTER 1. NETWORK CODING

for real-time and high throughput applications such as audio and video, the coding
operations and decoding algorithms need to have linear complexity, consume low-power,
meet the memory requirements imposed by the system devices and support the quality
of service specifications.

1.2 Applications of Network Coding

We give in this section some insights into the most acknowledged applications of Network
Coding in wireless networks, ad-hoc sensor networks and distributed storage systems.

1.2.1 Wireless Networks

Wireless networks such as cellular networks present a natural ground for Network Coding
application due to the broadcast nature of the wireless medium that makes independent
information flows naturally mix.

Motivated by the throughput benefits in the wireline networks, several works in-
vestigated the opportunities that Network Coding may offer in wireless networks and
showed that this mechanism is beneficial in several ways. First of all, it allows to in-
crease the network throughput by redundancy reduction and data compression [26]. The
COPE architecture, the first practical deployment of Network Coding-based opportunis-
tic algorithms, shows that Network Coding performs better than the traditional IEEE
802.11 routing mechanisms [27] and improves the network throughput. Moreover, Net-
work Coding is an efficient error-control tool used to reduce the retransmission time. Its
advantages over traditional Automatic-Repeat reQuest schemes are proved in terms of
bandwidth efficiency [28].

The gains that can be offered using Network Coding in this particular type of net-
works depend on several practical issues such that packet arrival asynchronization, un-
balanced traffic and channel fading and changing conditions. A reliable design of Net-
work Coding-based wireless systems is conditioned by the careful consideration of these
practical issues.

1.2.2 Ad-hoc Sensor Networks

With the declining costs of electronics and the emergence of computing technologies,
ad-hoc sensor networks are being essential components of wireless monitoring systems
used for example to supervise a civil engineering structure, or to ensure a remote medical
assistance.

Network Coding can be used in several applications for ad-hoc sensor networks.
A first addressed application is to use it as a routing mechanism to cope with the
unreliability of the wireless medium and take advantage of the throughput increase and
energy consumption reduction [29]. In addition, Network Coding can be used in ad-
hoc sensor networks to enhance the efficiency of data collection [21]. Among the most
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interesting encoding functions on the data measurements, the mean, mode, max and min
functions were studied in [30]. Additionally, Network Coding can be used to improve the
performance of sensor networks with untuned radios (where each sensor in the network
transmits at a randomly selected frequency) [20].

In this Ph.D thesis, we were involved in the european project Smart Management for
Sustainable Human Environement (SmartEN) [31] which aims to develop smart wireless
sensor technologies for structural health monitoring (SHM). Our focus was related to
the communication limitations in wireless sensor networks used for the SHM of bridges.
In this application, a network of wireless sensor nodes is deployed to ensure a continu-
ous bridge inspection in order to understand the performance of the bridge, detect its
weaknesses and predict its remaining life time. Sensors gather physical properties under
interest (e.g., the operating vibration of the bridge, wind power, humidity) and trans-
mit their measurements to a remote control center via a gateway node in a multihop
relay fashion. In this scope, we addressed the use of Network Coding to mitigate the
interference problem occuring when the sensors broadcast their measurements. For more
discussions about this specific appplication, we refer readers to our work [32] in which
we provide an overview on SHM of bridges from civil and communication engineering
perspectives and survey the main design challenges and communication requirements.

1.2.3 Distributed Storage

Due to their scalability, availability and performance, distributed storage mechanisms
are revolutionizing the data storage and management techniques. Peer-to-Peer (P2P)
distributed storage systems rely on a client-server architecture in which data files are
splitted into several blocks and replicated through the network to create a redundancy
that guarantees a reliable access to different blocks even if several nodes in the network
are unavailable. Despite the fact that this data replication-based strategy is reliable, it
is not efficient in terms of the required storage and maintenance bandwidth.

The first novel experience with a P2P system based on Network Coding was brought
by Microsoft and is known as Awvalanche [33]. It is shown that Network Coding copes
with the above listed drawbacks by allowing the server to distribute a randomly coded
version of the original information blocks. Similarly, peer nodes produce and send out
linear combinations of the fragments they already hold. Network coding in this case
allows to reduce the bandwidth use and offers more efficient and reliable access to data.
More recent line of research combining replication and coding for distributed storage
applications is proposed by Dimakis in [34].

1.3 The Main Network Coding Theorem

The main Network Coding theorem is about the existence of network codes that allow
to achieve the maximum data flow in a multicast network.
In optimization theory, the maximum information that can be transported through
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a given network is fundamentally characterized by the max-flow min-cut Theorem. In
the following, we will first state this theorem, then we will expose the network multicast
problem and the main Network Coding theorem.

1.3.1 The Max-Flow Min-Cut Theorem

Consider the network represented by the directed acyclic graph G = (V;E) where V
refers to the set of vertices (nodes) and E CV x V is the set of edges (channels).

Let S € V be a source node delivering information to a sink node D € V through
different edges where the capacity of an edge (i;j) € E is represented by a non-negative
real number Rj;. We provide the following definitions for convenience.

Delnition 1.4. A cut between S and D is a set of vertices B such that S € B and
D €B, i.e. if the cut B is removed, S and D become disconnected.

Delnition 1.5. The value of a cut v is the sum of the capacities of the edges in the
cut. Let Eg = {(i;]) € E:ieB;je B} be the set of edges in the cut. Then the value
of a cut is given by v="";,y,g, Rij. A min-cut is a cut with the minimal value.

The maximum information flow that the source can transmit to the intended desti-
nation in a given network is known as the maz-flow and is given by the min-cut value
according to the Max-Flow Min-Cut theorem stated in the following.

Theorem 1.1. Consider a graph G = (V;E) and a source node S € V sending infor-
mation to a destination D. If B is a cut between S and D and Eg is the set of edges in
the cut, then X

maz-flow (S — D) = min Rij (1.1)

° (i3)2Es

If the cut value is equal to R, then the source S can send information to D at a maximum
rate R. In the graph model, this is equivalent to the existence of exactly R edge-disjoint
routes from S to D.

The Max-Flow Min-Cut theorem was proved in independent works, initially by
Menger in [35] and later by Fulkerson [36] and Elias et al. in [37].

1.3.2 The Main Network Coding Theorem

Let S be the source node and D = {d;;1 <i < N} be a set of N destination nodes. The
node S is associated to an information source U that delivers R bits per unit time, i.e.,
the source sends out symbols Sy;::;; SR ; Sj € Fq, of size q over the finite field Fg.

Consider now a multicast scenario where S transmits information simultaneously to
the N destinations. The value of the min-cut between the source node and each one of
the destinations is R. We assume in addition that the transmissions over the network
are synchronous, i.e. during every time unit, all nodes receive their inputs and send out
their outputs simultaneously.
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The multicast problem is to conceive a coding scheme which allows to send the source
information bits to all destinations at the same rate R.

Using information-theoretic tools, the main Network Coding theorem states that the
max-flow rate for multicast is achievable provided that intermediate nodes perform linear
processing on the received independent information flows using suitable linear network
codes. By linear operations, we mean additions and multiplications over the finite field
Fg. This theorem is stated in the following.

Theorem 1.2. Consider a directed graph G = (V;E), a source node S producing R bits
per unit time, and N destinations. Assume that the min-cut value from the source to
each one of the destinations is R. Then, with an appropriate selection of linear network
code coefficients, there exists a multicast transmission scheme over a large enough finite
field Fq that supports all destinations simultaneously at a rate equal to R.

Given that the value of the min-cut from the source to each destination is R, if the
network resources were allocated to a single destination, the latter can receive the orig-
inal information at the rate R. Nevertheless, in a multiuser environment, the network
resources should be shared between the different destinations which leads to a rate loss.
The Network Coding theorem states that if intermediate nodes operate a linear process-
ing on their incoming information flows, each destination can receive the maximum rate
as if it was using the network resources only by itself.

1.3.3 An Algebraic Statement of the Network Coding Theorem

The main Network Coding theorem states that linear network codes are sufficient to
achieve the max-flow for multicast and shows the existence of such codes over finite
field Fq of large enough dimension. We aim in the following to provide the equivalent
algebraic formulation of this theorem.

Assume that P intermediate nodes in the network are engaged in moving the symbols
S1; i1 Sr delivered by the source S to the N destinations.

In linear Network Coding, each node produces a new packet which is a linear com-
bination of its input symbols. Each edge e in the network transports thus a lin-
ear function of the source symbols with finite field coeflicients given by the vector
cle) = [ci(e) i cr(e)] € Fé:R, called the coding vector. The information flow carried
by edge e can be writen as:

2 3
S1
x S2
p(e) =  ci(e)si = [ci(e) ca(€) i Cr (e)]g :
i=1 .

SR

Given that the linear combinations are operated in the finite field, the encoded
packets belong to the same field and have the same size as the original source symbols.

Asma Mejri 19



CHAPTER 1. NETWORK CODING

After computing the linear combination, each node forwards the calculated packet
along with the coding vector to the next hops. A similar output is produced at each
node. At a destination node, this yields a system of linear equations from which the
destination can decode the original source symbols. For example, consider a destination
node Dj with R input edges and let p’I denote the packet flow carried by the i input
edge. In addition, let Aj be the matrix whose rows correspond to the coding vectors
associated with the input edges of the destination Dj. Then, in order to recover the
original symbols, the destination Dj needs to solve the linear system given by:

2p'13 2313
R R
o s

which imposes that the matrix A should be full rank. In order to enable all destination
nodes to successfully decode the desired symbols, the network code vectors should be
selected such that all the matrices Aj, 1 <j <N are full rank.

As an example, consider the network depicted in Figure 1.5 where the received equa-
tions at the destinations D; and D2 are defined by the matrices A1 and A, given by:

U U (]

1 0 U4 lally [l
A= _ o Ao =
! g+ Dl Lol 2 0 1

S1 S
(Ao x ©)
F—E) (02)

3( 1S1 + 252)+ 451

Figure 1.5: Example of linear Network Coding.
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The multicast requirements imply for this scenario to select the coefficients ;1 <
k < 4 such that the matrices A1 and A, are full rank. For a general setting, this network
coding design problem is expressed by the following theorem.

Theorem 1.3. In linear Network Coding, there exists an enough large finite field Fq
and values of the coding vectors coefficients {Ux}, such that all the coefficients matrices
Aj;1<j <N at the destination nodes are full rank.

This main Network Coding theorem was proved by Ahlswede et al. in [14] and Li et al.
in [15]. It states the existence of linear network codes that allow to achieve the maximum
multicast flow that we can transport over a given network. In particular, it specifies the
necessary and sufficient conditions to multicast at a certain rate in this network. The
challenging task that arises from this theorem is to design low-complexity encoding and
decoding schemes combined with good performance and applicability in various network
types (wireline, wireless, lossless and lossy) and traffic patterns (multicast, unicast and
broadcast).

These design issues have been the subject of several research works. For example, the
construction of algebraic network codes was investigated independently by Koetter and
Medard in [38] and Jaggi et al. in [39]. The main limitation of such deterministic codes is
the requirement of a complete knowledge of the network, which is not avilable in general.
To remedy to this impediment, several contributions have been particularly interested
in random linear Network Coding, where random coding operations are performed in-
dependently by each node with no global network-knowledge need. The asymptotic
optimality of random coding is proved in [40] where authors show that random linear
codes can achieve the max-flow min-cut capacity using large code lengths. Additionally,
the effectiveness of random distributed linear coding is demonstrated in both lossless
[27, 41] and lossy [42] networks, especially in wireless networks with correlated sources
(typically sensor networks).

More discussions and an update on the literature on these issues are available on the
Network Coding Homepage [43].

1.4 Physical-Layer Network Coding

1.4.1 Motivation

In practical wireless communication systems, multiple transmitters and receivers in the
same geographical location share the same spectrum. This is essentially because the
system designs are constrained by the physical resources, often limited and finite such
as bandwidth, and the most economical system is the one that permits several users to
efficiently share these available resources. This is the case for example of cellular mobile
networks where the task of a base station is to serve many subscribers at the same time.

The main distinguishing features of such multiuser networks are the broadcast and
superposition. Indeed, as signals of different users travel through the same air interface,
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a signal sent from a transmitter is broadcast to all nearby users, consequently it reaches
both the desired and unintended receivers. On the other hand, instantaneous transmis-
sions by different users result in a superposition of signals at the receivers covered by the
same transmission range. These two intrinsic properties of the wireless medium create a
multiuser interference or multiple access interference. The design of a reliable wireless
system is conditioned on a good understanding and management of this interference
problem which can be detrimental to the system performance.

Multiple access interference is a widely investigated topic particularly in the realm
of Information Theory. There are essentially two ways to resolve this problem. The
first is a single-user approach and aims to provide an orthogonal access to the channel
by allocating and maintaining separate channel resources to each user, either in time
(e.g., Time Division Multiple Access), in frequency (e.g., Frequency Division Multiple
Access) or in signal code (e.g., Code Division Multiple Access). Despite the fact that this
single-user approach guarantees interference-free transmissions, there remain drawbacks,
essentially a reduced spectral efficiency.

Lessons learned from multiuser Information Theory [1] show that orthogonal mul-
tiple access is suboptimal. The best way to optimally share the spectral resources in
a multiuser system is to harness the interference and instead of avoiding it, we should
consider it as a useful information to serve the decoding process of the desired sig-
nal. This is the philosophy of the second multiuser detection [2] approach which deals
with the design of multiple access codes and interference cancellation schemes. From
an information-theoretic perspective, these techniques allow to increase the spectral ef-
ficiency [3], however, their design complexity make their implementation in practical
settings a challenging task.

Recently, Physical-Layer Network Coding (PLNC) has been introduced as a valuable
solution to improve the way of interference management in wireless networks including
multiple access channels. PLNC turns the broadcast and superposition properties of the
wireless media into boosting characteristics to achieve higher end-to-end transmission
rates. The aim of this new framework is to allow simultaneous transmissions from distinct
wireless agents in the network and enable intermediate nodes to decode and forward
functions of the interfering signals. PLNC ressembles to the straightforward Network
Coding with two main differences: i) PLNC is performed at the physical layer of the
protocol stack, i.e. decoded functions at a given node are performed at the signal space,
while Network Coding as described in the previous schemes is executed at the network
layer and applies on the bit space, ii) using PLNC, intermediate nodes decode and
forward a function of the original signals without decoding each one of them separately
in contrast to straightforward Network Coding which mixes the already decoded bits.

PLNC is a new tool to cope with the interference problem always considered tough.
It has grabbed particular attention in multi-hop relay-based networks, where relay nodes
do not need to decode original signals separately. PLNC in this case can bring promising
performance improvement provided that the following conditions are satisfied [4]:
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1. A relay node must be able to appropriately transform the superimposed interfer-
ing signals into intrepretable output functions to be forwarded to the intended
destinations.

2. A destination must be able to decode the desired information from the network
coded functions it receives from the relays.

In order to better explain how does PLNC work, we provide in the following an
illustrative example.

1.4.2 Illustrative example

Consider the Two-Way Relay Channel described in Example 1.2 where two source nodes
S1 and Sy exchange their bits with the assistance of an intermediate relay node.

Common to the store-and-forward and the straightforward Network Coding strategies
studied previously is the interference avoidance. Indeed superposition of the source
bits at the relay was prevented by time scheduling: S; and S; had to transmit their
data in two different time slots. The best throughput performance was obtained with
straightforward Network Coding which makes the bits exchange last three time slots,
while it lasts four time slots using the traditional routing approach.

Now, equipped with the basics of PLNC, we will investigate a simple relaying scheme
in which the source nodes are authorized to send their data to the relay at the same time
slot as illustrated in Figure 1.6. We assume that the sources modulate their bits using
a Quadrature Phase-Shift Keying (QPSK) modulation such that the source Sj sends at
a given time symbol sj(t) such that

si(t) =Re[(i +] ) exp(j!t)] = Licos(! t) — [ sin(! 1) (1.2)

where [ € {—1;1} and [} € {—1;1} represent the corresponding modulated QPSK
bits with the mapping that associates [j = 1 to the bit 70” and [j = —1 to the bit
717, similar mapping is assumed in the quadrature phase where [ is used. In addition
we assume that the source signals arrive at the relay with a symbol and carrier phase
synchronization and with the same amplitude and phase. Noise-free links from the
sources to the relay are also assumed for ease of presentation.

S N =

Gy——R—()

Figure 1.6: Physical-Layer Network Coding in the TWRC.
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Looking at the physical layer, when the sources transmit their signals, the relay
observes during one symbol period the addition of the original bandpass signals as:

YR (t) = s1(t) + sa(t)
= [hcos(! t) — [ysin(! t)] + [ cos(! t) — [psin(! t)]

= (h+ p)cos(1t) — (4 + [p)sin(! t) (1.3)
where yg) = [ + [ and y’(?Q) = [} + [b are respectively the corresponding base-band

in-phase (1) and quadrature (Q) components.

Due to the superposition of the original signals, the relay is not able to separate out
each of them. Alternatively, the relay will help the data relaying by performing Network
Coding at the source signals already combined. The key ingredient of this scheme is to
map the received signal yg () into an interpretable signal Sg(t) that will be broadcast to
S1 and S; during a second phase of the communication scheme. The mapping presented
here was proposed by Zhang et al. in [4]. Accordingly, the relay produces the following
signal:

srR)=hd o+ () =k+]LR (1.4)

where [l = [J1 @ [l and [R = [4 @ [» are obtained respectively from yg) and yéQ)

according to the modulation/demodulation mapping defined in the Table. 1.1 and ap-
plicable to both in-phase and quadrature components.

Table 1.1: PLNC mapping for the in-phase signal components

Symbol Symbol Received combina- | Mapping to the symbol
from S;: Uy | from Sp: [y | tion at the relay || at the relay L
yS) =l1+10h
1 1 2 1
1 -1 0 -1
-1 1 0 -1
-1 -1 -2 1

In other words, this PLNC mapping consists in the following demodulation scheme:

(
—1 ifyS) =0 1 ity =0
R = e (1) ; = e Q) (1.5)
1 if yp' = —2or2 1 if yg*' = —2or 2

After deriving the correspoding values of (g and LR, the relay broadcasts the signal
SR to the nodes S; and Sy, which given the side information, can recover the desired
information bits.

Although the described PLNC scheme here is based on a very simple modula-
tion/demodulation mapping, it demonstrates how, thanks to Physical-Layer Network
Coding, it is possible to convey the same amount of information in the TWRC within
only two time slots.
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1.4.3 Literature Overview

Works on Physical-Layer Network Coding were first developed in 2006 by different re-
search groups: Zhang, Liew and Lam in [4], Popovski and Yomo in [5, 6].

In [4], authors show that Network Coding at the physical layer allows to increase
the throughput over the TWRC with Additive White Gaussian Noise (AWGN) links
by 100%. Authors use the scheme described in the previous paragraph and provide
extended mappings suitable to more general linear network topologies. First discussions
on the implications of Physical-Layer Network Coding on the processing and tasks of
the upper layers like the medium access control and routing were proposed also in this
work.

Popovski and Yomo introduced in [5, 6] new PLNC strategies for the TWRC inspired
by the very known Amplify-and-Forward (AF) and Decode-and-Forward (DF) relaying
techniques. In the AF-based approach, the relay node amplifies and broadcasts the
received combination of the source signals. This strategy was later studied by Katti
et al. in [44] and implemented in software defined radios under the name of Analog
Network Coding (ANC). This technique is advantegeous in the sense that it is easy
to implement, however, particularly in noisy networks, its main drawback is the noise
accumulation given that the relay node amplifies in this case the received combination
without cleaning up the noise. The DF-based strategy is known as Denoise-and-Forward
(DoF) and in contrast to the ANC, it is a noiseless PLNC technique. The idea behind
DoF is to find the optimal mapping that transforms the received noisy signal to a noise-
free combination of the source signals. This strategy was investigated for both the
AWGN and Rayleigh fading TWRC, and subsequent works were developed in this topic
in [45, 46] with a particular focus on the design of optimized modulation and mapping
schemes.

Since these works, PLNC has been developed in different directions and applied
in various commmunication network scenarios ranging from the Multiple Access Relay
Channel (MARC) [47, 48], the Multi-Sources Relay Channel (MSRC) [8] to the TWRC
[49-51] with a particular focus on the last topology.

From a physical layer point of view, Network Coding can operate in conjunction to
physical layer techniques essentially source coding and channel coding [7]. The need to
design a joint source-network coding scheme arises particularly in networks where the
sources are correlated such as sensor networks. In general settings where the sources are
uncorrelated, integrating channel coding and Network Coding has attracted a particular
research attention and several works have been developed in this context. We distinguish
in literature two main frameworks that deal with channel coding joint to Physical-Layer
Network Coding: a lattice coding-based framework where channel coding is done using
lattice codes, and a linear-coding framework with channel coding schemes that do not
result in lattice structures.

The first framework dates back to the works of Nazer and Gastpar [52-55] which were
further developed in [8, 56, 57] with the introduction of a new PLNC strategy termed the
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Compute-and-Forward (CF). In this scheme, source nodes encode their messages into
lattice codewords. The role of a relay node observing the output of a multiple access
channel is to decode and forward an integer linear combination of the original codewords.
The lattice structure guarantees that this combination is also a codeword from the same
coding lattice used at the sources. Due to its promising potential, the CF has received a
significant attention and has been extensively studied in the last few years. Among many
other issues, the analysis of the achievable degrees of freedom [58] and the construction
of efficient decoding algorithms [59] have been addressed. Later, the original work on the
CF was followed by several contributions based on lattice coding and distinct decoding
approaches. Among the important works, Narayanan et al. in [60, 61] developed a
PLNC scheme based on spherical lattice coding and minimum angle decoding, and Feng
et al. in [62] proposed an algebraic approach as an extention of the primary work of
Nazer and Gastpar and provided a codes design based on lattice partitions and module
theory .

For what concerns the second framework, it includes a variety of contributions based
on linear coding schemes that do not result in a lattice structure. The most acknowledged
contributions are brought by [63] with Repeat Accumulate coding scheme, by [64] with
a multilevel coding scheme, by [65] with a low densily parity check codes and [66] with
convolutional codes.

Most of the above cited contributions are in the form of information-theoretic results.
In particular, a vast portion of works focused on the information exchange rate over the
TWRC with AWGN channels and demonstrated that PLNC mappings such that the CF
outperform the traditional relaying strategies and can achieve rates within 1=2 bit of
the cut-set upper bound which is asymptotically optimal [60, 67-69]. In order to make
real wireless systems take advantage of these exciting findings and promising gains,
several research works are currently focused on the implementation challenges of PLNC
strategies which consist mainly in the synchronization and channel estimation issues.
To the best of our knowledge, these practical constraints were first addressed in [70]
where a PLNC-based prototype for bi-directional relaying in the TWRC is successfully
implemented in a software defined radio platform.

Common to the previously mentioned works is that the network nodes are equipped
with a single antenna. However, it is worth mentioning that PLNC has been also devel-
oped for networks with multiple antennas. In this case, PLNC can provide two favors:
enhance the system throughput or/and turn down the processing complexity. A variety
of PLNC schemes have been developed to combine these advantages with the diversity
gain brought by the MIMO channel. Among the proposed solutions are [71] with a lin-
ear detection-based scheme, [72] with ML decoding-based XOR mapping, and [73] with
Analog Network Coding. Besides, PLNC has been used in conjuction to Space-Time
codes such as the Alamouti code in [74] and structured codes using lattices in [75].
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1.5 Conclusion

This chapter was devoted to introduce the concept of Network Coding. Through simple
examples, we gave insights into its benefits, challenges and most famous applications.
In addition, we outlined the main Network Coding theorem and its equivalent algebraic
formulation. The last part of the chapter was dedicated to explain the principle of
Physical-Layer Network Coding and expose the most notable research works achieved in
this context.

In this work, we are interested in PLNC joint to lattice-based channel coding. In
particular, we aim to design and analyze the performance of the CF, the ANC and the
DoF strategies in different multiuser network configurations. As a starting point, we
dedicate the next chapter to study the Compute-and-Forward protocol. After reviewing
the original work of Nazer and Gastpar, we provide criteria to design optimal network
code functions for the CF and propose novel decoding algorithms which outperform the
standard decoding scheme for the CF. Following chapters are devoted to the end-to-
end implementation and performance analysis of the above mentioned PLNC strategies
in the TWRC, the Multi-Source Multi-Relay Channel and the Multiple Input Multiple
Output (MIMO) channel.
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Chapter 2

The Compute-and-Forward
protocol

Layer Network Coding protocol termed Compute-and-Forward. Introduced by

Nazer and Gastpar in [8], this scheme allows to harness the multiple access
interference resulting from the broadcast and superposition properties of the wireless
channel to achieve higher transmission rates. This new framework is applicable to any
network configuration accomodating source nodes, relays and destinations that commu-
nicate through linear additive white Gaussian noise channels. In a nutshell, source nodes
deliver messages from a finite field, map them onto codewords from a lattice and transmit
them accross the network. The role of a relay node observing the output of a multiple
access channel is to take advantage of the noisy supersposition of these lattice points to
decode a linear noiseless integer combination of them. The computed function is then
forwarded to the next relays for subsequent transmissions. Upon receiving enough linear
combinations, the end destination in the network can ideally recover the original source
messages. The CF protocol owes its success to the potential algebraic and structural
properties of lattice codes as well as to their capacity achieving capabilities.

T he last few years have witnessed the emergence of a very promising linear Physical-

Since the pioneering work of Nazer and Gastpar and thanks to the promised merit of
this protocol, the CF has emerged as an essential tool in several of the most relevant and
challenging issues in Network Information Theory, including interference alignment [76—
78], secrecy [79] and relay-based communications for which various network scenarios
have been treated such as the TWRC [76], the Multi-Way Relay Channel [80], the
Multiple Access Relay Channel [81, 82], and distributed MIMO channels [10, 11].

Our objective in this chapter is twofold: review the CF protocol as proposed in the
original work of Nazer and Gastpar and expose our novel results related to the design
of network codes and practical decoding algorithms. For this purpose, we will consider
the basic multiple access channel model composed of N sources and a receiver. As
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a starting point, we describe in section 2.1 the nested lattice coding which is the key
ingredient of the CF encoding and decoding schemes. In section 2.2 we outline the
decoding steps in the case of real-valued channels. This channel model will be used
as a building block for complex-valued channels addressed in section 2.3. The main
information-theoretic results regarding the achievable rate will be presented in section
2.4. After these overviewing sections, our results are organized as follows: in section 2.5,
we investigate an optimal solution to design network codes for the CF. By maximizing
the achievable rate at the receiver, we show that this solution is related to a shortest
vector problem. In section 2.6 we introduce the ergodic rate for the CF operating in fast
fading channels and derive a novel lower bound using the complex LLL reduction. The
same tool is used in section 2.7 to derive a novel upper bound on the outage probability
in the case of slow fading channels. Besides, in sections 2.8 and section 2.9 we develop
practical decoding algorithms for the CF in the case of Gaussian and fading channels
respectively. Numerical results evaluating the performance of the proposed algorithms
are also provided. A concluding section summarizes the outcomes of the present chapter.

2.1 Nested Lattice codes

2.1.1 Motivation

The problem of multicasting over the Gaussian butterfly network including both point-
to-point and multiple access channels is behind the Compute-and-Forward protocol [55].
The challenge was to find good linear error correcting codes that allow to take advantage
of the interference provided by the multiple access channels to reproduce functions of
original sources and therefore generate higher transmission rates.

Inspired by the lattice construction developed by Erez, Litsyn and Zamir in [83],
nested lattice codes have been adopted by Nazer and Gastpar who showed that this
lattice design allows to increase the multicast rate in the studied network. These codes
satisfy the linear structure requirement, allow to achieve the AWGN channel capacity,
and more interestingly, they have salient structural properties well suited to the natural
function performed by multiple access channels. The added value of these codes is
twofold: allow to take advantage of the interference to design more efficient network
codes and protect against the channel noise (see Appendix 5.A for the basic definitions
in lattices).

The considered nested lattice design A = (Af; Ac) involves a fine lattice Ag and
a coarse lattice A¢c of fundamental voronoi region V. The nested lattice codebook is
C, = {Vc N Ar} composed of the Fine lattice points that fall within the fundamental
voronoi region of the coarse lattice. These codes are constructed using linear codes over
finite fields Fp of prime size p. The idea behind this design is to conserve linearity
while mapping from the finite field to the real field. This means that messages from
the finite field can be mapped onto the codebook and back without losing linearity.
Mathematically, this is expressed by the existence of a bijective mapping [J from the
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finite field Fp to the nested lattice code C;; = {Vc N Ag} such that:

i Fp = Co= {Vo N A}

Encoding :[(wj) = X;

Decoding :["'? ([agxq + =1 4 ay Xm | mod Ac) = W1 @ 23 B Gy X
for aj € Z;g € Fpii =1, M:

where the finite field coefficients G are related to the integer coefficients @ by:
g =9 (ajmod p); i =1;:;M (2.1)

and g: Fp — {0;::5;p — 1} denotes the one-to-one mapping that associates each element
in the finite field to an integer in Z. .

The existence of asymptotically-good high-dimensional nested lattice codes and the
corresponding bijective mapping [ was proved in [8].

2.1.2 Construction of nested lattice codes

Several lattice constructions are studied in literature particularly for lattice dimensions
up to 29 [84]. The most known are Construction A for dimensions up to 15, Construction
B for dimensions 8 to 24, and Construction C for lattice dimensions that are power of
2. For what concerns the CF, the fine lattice is generated by shifting a linear code using
Construction A. Consider a linear code C over Fp and let L € F'SD” be its generator
matrix. Construction A consists of the following steps [83]:

O] UJ
1. Construct the discrete codebook C = ulL;u € F'S from the code C.

2. Construct the lattice A" by projecting the codebook into reals using the embedding
function g(:), dividing by p and copying over Z": A" = p-'1g(C) + Z"

3. Construct the Fine lattice by rotating A- by the generator matrix of the coarse
lattice M ¢, Ap = M cA-

Any lattice generated using Construction A is of full rank [85].

In practical settings, the field Z=pZ also noted Z, (which is a ring and for p prime,
a field) can be used to generate low-complexity (in the encoding and decoding senses)
fine lattice codes. This field represents the set of integers from 0 to p — 1 with integer
addition and multiplication modulo p. The corresponding mapping g is equal to the
identity function.

A coarse lattice with low-complexity encoding and decoding operations can be just
a scaled version of Z" by the size of the field p, i.e., Ac = pZ".

Example 2.1. We give here an example of a nested lattice code. We consider the field
Z11 with addition and multiplication modulo 11. Additionally, we consider k = 1 and
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n = 2. In order to build the fine lattice, we consider the linear code C over Z%, of a
generator matrix G = [2 3]. The codebook corresponding to step 1. in Construction A
is then C = u:[2 3] mod(11);u € Z2, . Given that g = id in this case, the fine lattice
is the set of points in A = C + 11Z%,. For the coarse lattice we choose Ac = 11Z2.
The nested lattice code is then given by A = {Vc N Ag}. We illustrate in Figure 2.1 a
portion of the fine and coarse lattices as well as the nested lattice code points. In this
graph, green bold points correspond to the code C, small blue points are the fine lattice
points, the coarse lattice points are the red crosses. Voronoi regions of the coarse lattice
are drawn in dashed red lines. Elements of the nested lattice code are the points of the
fine lattice inside the fundamental voronoi region of the coarse lattice.

ax

-5r, o

-1QL - B .
(k‘ . % . 3¢ %
-10 -5 0 5 10 15 20

Figure 2.1: Example of a nested lattice codebook in Z2.

Equipped with the nested lattice coding scheme, we describe in the next section the
CF protocol. We will consider a nested lattice design A = (Ag; Ac) involving a fine
lattice Ap and coarse lattice Ac.

2.2 Compute-and-Forward in real-valued Channels

As a starting point, we consider the case of a real-valued fading Multiple Access Channel
(MAC) composed of N sources Si;::;; Sy and a receiver R as depicted in Figure 2.2.

Each source delivers a message that can be represented as a string of bits. The
information vector produced by each source Sj;i = 1;::;;N is represented by a length-
k finite field message w; € FE drawn independently and uniformally from the set of

possible values.
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Wiy & X1 € R" P .
y= iz hixi+z
n R
Wo—f & X2ER MAC Y D"
N Receiver R
Wy < XN ER

Figure 2.2: Generic Gaussian real-valued MAC.

2.2.1 Encoding scheme

Each source is equipped with a same encoder £ that maps the finite field message w;j to
a real-valued n—dimensional lattice codeword Xi:

£:Fy—R"

Wi — Xj (2.2)

More precisely, the encoders implement the same mapping [ defined previously to
map the messages onto codewords from the same nested lattice A. The lattice codewords
are subject to a symmetric power constraint given by:

1 [ 0
CExi P <P (23)

for P > 0. The fine lattice corresponds to the coding lattice from which are carved the
codewords while the coarse lattice acts to satisfy the power constraint P. The codewords
are assumed to be independent and uniformally distributed over A.

The message rate r, defined as the length of the message in bits normalized by the
number of the channel uses, is the same for all sources and is equal to:

1 1 k
= —log|A = —logpt = —1 2.4
r nOg! FN Vel Jlogp® = _logp (2.4)

2.2.2 Decoding scheme

After encoding their messages, the sources transmit the codewords X1;:::; XN simultane-
ously across the channel. The receiver observes therefore a noisy linear combination of
the sent codewords as the ouput of a multiple access channel in the form:

X
y= hx+z (2.5)
i=1

where h; € R denotes the fading channel from the source S to the receiver and z € Rﬂ
denotes the additive white Gaussian noise of zero-mean and variance (%, z ~ N 0; [?l,, .
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Let h = [hy;:;hy]' denote the vector of the channel coefficients to the receiver. In
this section we assume fixed channel vector, fast fading and slow fading channels will
be addressed in sections 2.6 and 2.7 respectively. We assume also that channel state
information (CSI), i.e., the knowledge of h, is available only at the receiver, sources
need only to know their target message rates. Additionally, let [ = % denote the
Signal-to-Noise Ratio (SNR).

When receiving the noisy superposition of the original codewords, the receiver at-
tempts to decode a noiseless integer linear combination [Jin the form:

" #
X
LU= aixj mod Ac (2.6)

i=1

where the coefficients a; € Z;i = 1;:::; N are chosen by the receiver and form the network
code vector a = [ag;:;an]t € ZN.

Using Physical-Layer Network Coding, the receiver does not need to perform a joint
Maximum Likelihood (ML) decoding to decode each codeword separately Xi;::i;Xn -
Instead, it attempts to decode L] as a regular codeword from the same nested lattice A.
This is because the linear structure of the lattice guarantees that any integer combination
of lattice codewords is also a lattice codeword.

By mapping the desired combination (I to the finite field using (1'%, the decoding
objective is equivalent to recover a linear combination u of the finite field source messages
in the form:

u=r"1()= W GW;i (2.7)
i=1

where the coefficients ¢ € Fp are given by ¢ = g1 ([aj] mod p).

The relay is equipped with a decoder D : R™ — A, that recovers an estimate Clof [

A decoding error occurs if [1# [ and the desired equation with a coefficient vector a is
decoded with an average probability of error Lif

ni

Pr [#£0 <[] (2.8)

A computation rate R(h;a) is said to be achievable if for any [J> 0 and n large
enough, there exist an encoder £ and a decoder D, such that for any channel fading
vector h € RN and network code vector a € ZN | the receiver can recover the desired
equation with an average probability of error [Jas long as the source message rate r
satisfies:

r<mR(h;a) (2.9)
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Remark 2.2. Step 2 in the decoding process is based on minimum distance decoding
through the lattice quantizer Q.. The input of this quantizer Igan be seen as a single
user additive noise channel with desired vector t and noise zegg = ;=4 (Uhj — &) X; + L[z,
The problem here is that the effective noise Zeq includes a non-Gaussian part, resulting
from the channel quantization, that makes minimum distance decoding in this case
suboptimal compared to ML decoding, and for the Gaussian channel case, suboptimal
compared to mazimum a posteriori (MAP) decoding. In order to make the effective
noise independent of the original signals, Nazer and Gastpar propose in [67] to add to
the encoded codewords some randomness using dither vectors that are known at both
the sources and the receiver. The sources transmit dithered version of their mapped
vectors. Using this tool, authors show in [67] that the density of the effective noise can
be upper bounded by the density of an i.i.d Gaussian vector given by:

2 =1P?+P | th—-al? (2.11)

Although this theoretical tool solves the dependence between the effective noise and the
desired signal, it does not give practical insights particularly into the performance gap
between the minimum distance decoder and the optimal decoders (ML decoding for the
fading channels and MAP decoding for the Gaussian channels). In this chapter, we
dedicate sections 2.8 and 2.9 to study the optimal decoders for the CF in the Gaussian
and fading channels respectively. We develop novel practical decoding algorithms for
the MAP and ML criteria and provide numerical results evaluating and comparing the
performance of our algorithms to the conventional minimum distance decoder.

Remark 2.3. As most of the Physical-Layer Network Coding strategies, the CF capi-
talizes on the assumption that the transmitted codewords arrive at the receiver at the
same time. In this work, we make this synchronism assumption and refer readers to
a recent line of research [89] where the impact of symbol-asynchronism on the CF is
investigated.

2.3 Compute-and-forward in Complex-valued channels

In narrowband communications, the wireless channel is uniquely complex-valued. Then,
in order to warranty the deployment in practical wireless networks, it is of fundamental
importance to extend the CF to the case of complex-valued channels. This is the goal
of this section.

As far as the encoding part is concerned, each source in this case generates two
finite field messages of identical lengths k: W(Re) and Wi(lm). Equipped with the en-
coder £ and the mapping [, the sources encode each one of the resulting messages onto
n—dimensional codewords from the same nested lattice code A such that:

R - R . I - Im)
x(R& — o Wl My () (2.12)
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The channel input from the source Sj is then the codeword x; € C" given by:

(Re)

xi = xR 4 jx{m (2.13)

And the message rate in this case is r = % log p.

The baseband representation of the multiple access channel output is:

X
y = hixi +z (2.14)
i=1
where in this case the channel fading vector h € CN and z € C" is drawn i.i.d according
to CN 0; [Pl .

The decoder in this case treats the real and imaginary parts of the channel output
separately. These two components are given by:

y(Re) _ X hhi(Re)Xi(Re) _ hi(lm)Xi(Im)I + Z(Re) (2.15)
1
h i
y(Im — h{Mx(RE o p(Rey Im) - Z(Im) (2.16)
i=1

where hi(Re); hi(lm) - z(Re). Z(Im) correspond to the real and imaginary parts of the channel
vector and the noise vector respectively.

Looking at the real and imaginary parts separately, they can be seen as the outputs
of real-valued multiple access channels with 2N sources. Given these two real signals
independently, the receiver selects a scaling parameter [ and a coefficient vector a €
{Z +jZ}N and implements separately the steps described previously for the real-valued
channel case. From y(R® the receiver decodes the combination

|
RO _ R RY _gim ()| 217)
and from y(™ the decoder attempts to decode

i
[pm) _ a‘i(lm)xi(Re) +ai(Re)X(Im) mod AC (2.18)

Finally, by mapping these equations back to the finite field using (1’1, the receiver
can recover the real and imaginary parts of a linear combination U of the source messages
as:

N 0 0 0
u(Re) — gROwRd g _gIm w (™ (2.19)
1
L L
ulm — q"™w R g gRy (™ (2.20)
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where for i = 1;::;; N the finite field coefficients satisfy

(Re) _ 01 h (Re)I -
G =9 a; ~ modp (2.21)
0 i O
q(Im) — gt ai(|m) mod p (2.22)
We summarize in Figure 2.4 the decoding steps for the complex-valued channel case.
(Re) R
Re(:) 2 (@, ()] modAc -5 1010 L u(Re
ecC
y e C"
(Im) |
Im() X [Q . (1)) modAc - 1y Ly uim)

Figure 2.4: Block diagram of the Compute-and-Forward in complex-valued MACs.

2.4 Computation Rate

The fundamental contribution brought by the CF framework is information theoretic
and amounts to enabling higher transmission rates that go beyond those permitted by
earlier relaying strategies existing in literature. Nazer and Gastpar showed in [8] that a
successful computation of a desired lattice equation is possible as soon as the message
rates are less than a computation rate Rcomp defined in Theorem 2.1.

Theorem 2.1. The computation rate is defined as the number of bits of the linear
function that are reliably computed per channel use. A receiver observing an ouput of a
complez-valued multiple access channel given by the channel vector h € CN | can recover
any set of non-zero equations with coefficients vector a € {Z +jZ}N if the message rates
are less than the computation rate Reomp given by:

U U U U

R log* P log* -
comp = 1l0g — —log
P 2, |02 +0) th —al?

(2.23)

for 1€ C and log® (x) = max(log(x); 0)

For complex-valued channels, the vectors a;j a and a” lead to the same computation
rate. For real valued channels, the computation rate is multiplied by a factor %

The computation rate is different from the usual sense of rates. Once achieved, it
means that the desired lattice equation can be reliably decoded. However, this single
equation does not allow to decode the original messages separately. This task requires
a full rank set of equations which can be originated from a successive Compute-and-
Forward performed at a single receiver as long as the message rates are satisfied, or from
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a distributed computation at different receivers (different relays in a general network
configuration) that have access to the same original messages.

Besides, it is worth to mention that the rate expression is the result of an asymptotic
optimization problem based on the premise of the existence of high dimensional nested
lattices that have good properties in terms of coding and shaping gains. For instance,
the fine lattice is assumed to be AWGN good and the coarse lattice is required to be
good for covering, quantization and AWGN. Although this construction promises high
transmission rates, the complexity of such good lattice codes makes these theoretical
gains hard to achieve in practical settings.

Remark 2.4. The computation rate is derived by approximating the effective noise
term by an i.i.d Gaussian random vector of variance Dé: as mentioned in Remark.2.2.
If the components of the effective noise term were white Gaussian and independent, the
minimum distance decoding would be equivalent to ML decoding and the achievable rate
would be equal to Reomp;mL:

U
R ML =log 1+ — — 2.24
omet =108 1 T35 Ch—a 2 22

Remark 2.5. The computation rate depends on the scaling factor used to reduce the
approximation gap of the real (complex) channel vector by integer vector. The highest
the value of this parameter, the lowest the approximation error and thus the highest the
achievable rates. On the other hand, the scaling introduces an additional penalty by
amplifying the noise, which results in performance degradation. There is a tradeoff then
between noise enhancement and integer approximation of reals. This tradeoff is known
as the Diophantine Approximation Tradeoff.

2.5 Selection of receiver parameters

The two fundamental parameters of the decoding process are the scaling factor and the
network code vector a. The receiver is free to choose them, however the choice needs to
be carefully made since it greatly impacts the performance.

In literature, there are essentially two optimization criteria to find the optimal values
of the receiver parameters. The first criterion, proposed by Nazer and Gastpar in [67],
is based on the maximization of the computation rate according to:

U U

((ha)opt =  argmax  log" (2.25)

(12C7:a2Z[i]N n0) | ]2+ h —al?

The second criterion, proposed by Feng et al. in [62], assumes hypercube shaping lattice
designs and asks for the minimization of the probability of decoding error under minimum
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distance decoding according to:
U H

d2
(L;a)opt = argmin Kexp —
(12C?:a2Z[i]N no) 42(] U240 Uh —a|2)

(2.26)

where d stands for the minimum inter-coset distance of the nested lattice design, and K
denotes the number of shortest vectors in the set Ap — Ac.

According to these two optimization criteria, the optimal value of [ corresponds
to the Minimum Mean Square Error (MMSE) factor expressed by (Proof in Appendix
5.B.1):

"h?a

T30 2 e (2.27)

“opt =

By replacing in the rate expression the scaling factor by the optimal MMSE param-
eter we get (see Appendix 5.B.2):
I

e Oln7a ot
R h;a)=1o alcF—-— 2.28
Then the optimal network code vector satisfies:
!
ih?al t
aopt = argmax log* lal]? - ————— (2.29)
» a2Z[i]N no L+ h |2
Remark 2.6. The computation rate can be equivalently written as
U U U U
Reomp =log 1+ h |2 —log [[all®>+{|[h |?|a]*-|h%al*} (2.30)

The first part represents the rate of a MAC with channel vector h and the second
term is the loss in rate due to the channel quantization [58]. The maximization of
the computation rate imposes a minimization of the loss in rate term. To do that,
we should align a to h which corresponds to increase || @ ||2. Authors in [58] show
that this diophantine approximation problem and the loss in rate term are behind the
limited achievable degrees of freedom for the CF which are lower than 2 for any network
configuration involving N sources and N receivers (relays).

According to the optimization problem in (2.29), the optimal network code vector
that allows simultaneously to maximize the computation rate and minimize the error
probability is a solution of the integer optimization problem stated in the following
theorem.

Theorem 2.2. For a given channel coefficient vector h € CN | the optimal non-zero
network code vector a € {Z +jZ}N is solution of the integer minimization problem as:

aopt = argmin {a’Ga} (2.31)
ago
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where 0

IN———— _H
AT
H = [Hij];Hij = hihj?;l <i;j <N and G is a Hermitian definite positive matriz of
dimension N .

G = (2.32)

Proof. The minimization problem in (2.31) follows from the fact that maximizing the
computation rate (and minimizing the decoding error probability) are equivalent to
minimize Q(a) given by:

Tl h%al?
Qa)=llal*—
L+OIh IR
2 2?2 2?2
—a'a— ———— hhi a’a;
L+ 0fhE e
' I 0 1
—a’a - o h?a @)U h; alA
= B TR i i i 4
1+ 0] h - =1
2 u 2?2 2?2
=—a‘a—- ———a‘hh’a
1+ 0] h|?
2 : B 2
=a’ | -—H a=a'Ga 2.33
1+ 0] h |2 ( )

Now, in order to prove that the matrix G is definite positive, we look at its eigenvalues.
According to the expression of this matrix, for [j;i = 1;:;;N eigenvalues of H, the

eigenvalues of G are equal to [ = 1 — ;72 [i. Given that H admits (3 =| h | 2 =
. 2 .

0;1 = 2;::;;N, G has N strictly positive eigenvalues: [ = 1—%; G=11=2;25N.

Then it is definite positive. O]

The optimization problem in Theorem 2.2 has no closed-form. Nevertheless, using
lattice theory tools, we show in Proposition 2.1 that solving for the optimal network
code vector reduces to solve a shortest vector problem in a lattice. This result was also
independently proved by Feng et al. in [62] and Osmane in his PhD dissertation [90].

Proposition 2.1. The optimal network code vector a corresponds to the coordinates of
the shortest vector in the lattice Ag of Gram matriz G.

Proof. Given that G is definite positive, it can be considered as a Gram matrix of a
lattice Ag. Let the full rank matrix M denote a generator matrix of the underlying
lattice, then we can write: G = M ?M . The quadratic form Q can then equivalently be
written as:

Qa)=a’M’Ma=|Ma|? (2.34)

The minimization of Q requires then to find the lattice vector with the shortest length.
The coordinates of this shortest vector correspond to the non-zero vector a in {Z+jZN
(in ZN for the real-valued channel case). 0l
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In practice, there are essentially two ways to solve this shortest vector problem. The
first approach is suboptimal and relies on lattice reduction techniques [91] such as the
complex LLL (C-LLL) reduction [92] (or LLL reduction [93] for real lattices). Given a
generator matrix M of the lattice Ag, the C-LLL reduction computes a reduced matrix
M eg = MU where U is a unimodular matrix. The first column of the reduced matrix
corresponds to the shortest vector u of the underlying lattice and satisfies:

lu <2 (vol (Ag))¥ (2:35)
q Oy — M [L._
where vol (Ag) = P det (G) = .0 = 1+0]h 27 is the volume of the

lattice Ag.

The second approach is optimal and is based on using the Fincke-Pohst algorithm
[9] to search for the integer vector that minimizes the quadratic form Q. In order to
reduce the computation complexity, the search space can be limited to the coefficients
vector that satisfies:

Jal?’<1+0|h|? (2.36)

since the computation rate is equal to zero otherwise [67].

Remark 2.7. The optimal MMSE scaling parameter as well as the network code vec-
tor require the knowledge of the channel state information at the receiver which is a
commonly considered assumption. Readers can find in [94] a recent work where authors
propose a blind CF without the CSI requirement. Additionally, it is of fundamental
importance to stress that the considered criteria to find the optimal network code vector
are based on optimization problems at the receiver. However, the receiver in practice is
a relay node taking part of a communication scenario within a global network configu-
ration. Consequently, these local optimization criteria need to be adapted to take into
account the network level constraints.

2.6 Fast fading channels: Ergodic Rate

So far, we considered that the channel gains are fixed during the whole transmission
period. In this section we draw our attention to the case of fast fading channels. We
define for this channel model the ergodic rate for the CF and derive a novel lower bound
by the means of the complex LLL reduction.

2.6.1 Delhition

In fast fading channels, transmission is achieved through a number of independently
faded channel realizations. The rate in this case is obtained by averaging over all channel
realizations.
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Let R(h;a) be the maximum computation rate achievable for fixed network code

vector a using the optimal MMSE scaling:
_

O 0 h?a o U1’
Rh:a) % max log" a2 — —— "2l

—_— 2.37
a2Z[i]N no 1+ 0] h |2 (2.37)

We define then the ergodic rate [95] as:

Dellnition 2.1. The ergodic rate Re for the Compute-and-Forward is defined as:
Re = En{R (h;a)} (2.38)

where the mathematical expectation averages over the realizations of the channel vector.

2.6.2 Lower Bound

When the complex LLL reduction is used to find the optimal network code vector a, we
obtain a lower bound on the ergodic rate as stated in Theorem 2.3.

Theorem 2.3. The ergodic rate of the Compute-and-Forward is lower bounded by:
1
Re > ﬁEh (Ch) —C (2-39)

when the Cﬁnplex LLL ﬁduction is used to find the optimal network code vector a.

Ch = log 1+ 0| h|? is the instantenous capacity of the multiple access channel

(MISO) with fading channel vector h, and ¢ = % An upper bound on the ergodic

capacity for h ~CN (0;1y\) is given by [95]:

z 1
tN
E(Ch)E  log(1+ e e (2.40)

0

Proof. By definition, the ergodic rate is given by

Re = En (R (h; ) .

Ll o U 1°
+ 2 —l h’a |2 :
R R e Y
= Ep max log* (a’Ga)?
a2Z[i]N no -
[ D:l. :
+ : ?
En log azgﬁl}lNan (a’Ga) (2.41)

Let agpt denote the optimal network code vector that allows to maximize R (h;a) in
(2.37), then we have:

min a’Ga =|| M agp |2 (2.42)
a2Z[i]N n0
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When agpt is obtained using the complex LLL reduction, the upper bound on the
shortest vector provided in (2.35) allows to write:

U (1
1 N
Magy [2<2° 2 — 2.43
Then we get
O BEVER
e N T
_ 22 _
1 il 0 N -1
>En gy log” 1+ 0 h |2 -
1_ O U N -1
= —Ep log" 1+0|h|2 ——— (2.44)
N 2
The proof follows by considering ¢ = Y1 and Cp =log 1+ 1] h ||? . O

2.7 Slow fading channels: Outage Probability Analysis

The Compute-and-Forward protocol is also applicable to slow fading channels. In this
case, the channel vector h is generated according to some probability distribution and
then remains constant during the whole transmission time. For this channel model, we
define the rate outage probability and derive a novel upper bound using the complex
LLL reduction.

2.7.1 Delhition

Consider a multiple access channel where N sources operate with a computation rate
RC. We define the rate outage probability as,

Delnition 2.2. A rate outage event occurs if the maximum achievable rate Reomp is
lower than the fixed rate R®. The rate outage probability is then given by

0 .0 0 O
Pout R® =Pr Reomp (h;a) < R (2.45)

2.7.2 Upper Bound

When the complex LLL reduction is used to find the optimal network code vector, the
outage probability of the Compute-and-Forward is upper bounded as stated Theorem
2.4.

Theorem 2.4. For a system operating with a computation rate RO, the rate outage
probability of the Compute-and-Forward is upper bounded by,
0.0 [ U
Pout RO <Pr 1+ 0] h |2< 2N(R%¢) (2.46)
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when the complex LLL reduction is used to solve for the optimal network code vector.
The upper bound, is similar to the outage probability of a multiple access channel under
a target rate N RO+ .

Proof. The maximum achievable rate R (h;a) given in (2.37) is equivalent to:

. |
LJ DDll
R(h:a) = log" i a’Ga
(h;a)=log”  min (a’Ga)
O, O
= log" d.i

where dmin stands for the minimal distance of the lattice Ag and corresponds to the
length of the shortest vector in this lattice. The rate outage probability is equivalent to:

N l il 0 il
Pout R® = Pr ulogJr d#izn < R°

- Pr dm|n > 2DRO:27 (247)

When the complex-LLL reduction is used to solve for the shortest vector problem, the
minimal distance is upper bounded according to (2.43). Then we get:

O .0 U u s 0
Pot RO <Pr 274 14 )l h |2 JI=N 5 0R0=2
O ) -
=Pr 140 h ||2[%L_2N < 9RO=2+ N2
. 0
=Pr 140 h[?< 2N (70 (2.48)

this ends the proof.

2.8 Optimal Decoders for the CF: Gaussian channels

The conventional decoding scheme for the CF consists of two main parts: decoding a
point from the fine lattice through the scaling operation and minimum distance decoding
described in steps 1 and 2 in section 2.2.2, and a modulo operation with respect to the
coarse lattice (step 3 in the decoding scheme). The problem is that in presence of the
non-Gaussian effective noise as indicated in Remark.2.2, minimum distance decoding is
suboptimal. Optimal decoders for the CF are the MAP decoder in the case of Gaussian
channels, and the ML decoder in the case of fading channels.

Although the conventional decoder is proved to be optimal in asymptotic regime and
for high dimensional lattices, its performance gap to the optimal decoders is not known
particularly in practical settings using finite-dimensional lattices. We aim in this section
to study the optimal MAP decoding in the Gaussian MAC. We dedicate the next section
to the analysis of the ML decoding in the fading MAC. For ease of presentation, we will
consider the case of real-valued channels. Extension to the complex-valued channels case
follows using the same techniques at the real and imaginary parts of the channel output
separately.
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2.8.1 System M odel

Consider a real n—dimensional nested lattice design A = (Ag; Ac) and let M denote a
generator matrix of the fine lattice Ar.

The system we are interested in within this section is the Gaussian multiple access
channel composed of N sources and a receiver. Transmitted vectors are N—dimensional

nested lattice codewords Xi;::;;Xn carved from A according to the power constraint
%E | xi > <P;i =1;::;N. The channel output is given by:

y= Xi+z (2.49)
i=1

where z € R" stands for the AWGN generated i.i.d according to a normal distribution
N 0; 2l . From this observed vector, the receiver attempts to decode a noiseless sum
of the original codewords in the form:

" #
X
0= X mod Ac (2.50)

i=1

We are interested in the following in decoding [ = |N= 1 Xi. Given that modulo-
lattice operation is done separately, it does not impact the decoding error. We define
then the error probability at the receiver as

U H
Pe — PI‘ LLS # Ls (2.51)

Let Ag denote the sum codebook which is the set of all [ = P iN:lXi. Given the
linear structure of the coding lattice, Ag will be a subset of the fine lattice Ag restricted
to a sum shaping region Ss such that all sum codewords [k fall within this region. In
addition, given that Agis obtained through a superposition of the originally transmitted
codewords, its distribution is no more uniform.

Using the conventional CF decoder, the receiver decodes [ = iN=1Xi using an
MMSE scaling followed by minimum distance decoding to the nearest point in the fine
lattice. This method has two fundamental limitations: it ignores the shaping region
of the sum codewords Ss, and does not take into account the non-uniform distribution
of the sum codebook As. Our goal in this section is to analyze the optimal decoding
approach that takes into account these two constraints and develop practical decoding
algorithms.

2.8.2 Discrete Gaussian Distribution of the Sum Codebook

The original codewords are drawn uniformally and independently from the nested lattice
code, they are modeled by uniform random variables of zero-mean ([y = 0) and variance
2=1E ||xi |2 <P fori=1;u;N.
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Consider now the sum codewords [k = P iNz 1 Xi obtained through the superposition of
the vectors sent by the sources. Given the uniform distribution of the original codewords,
The Central Limit Theorem states that [ is a random variable of mean [ =Nk =0
and variance [2 = N [2. Particularly, for increasing number of sources N, the sum
codewords converge to a normal distribution ' [; LEI n .

In order to be able to use this result to approximate the vectors [s by random
Gaussian variables, we need in addition to take into consideration the fact that the sum
codewords are discrete and correspond to lattice points. For this purpose we introduce
the lattice Gaussian distributions. This tool arises in several problems in coding theory
[96], mathematics [97] and cryptography [98].

2, . TR o Lo oo,
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(a) Histogram for N=2. (b) Histogram for N=5.

Figure 2.5: Histogram of the codebook induced by the sum of codewords.

Let f -, (x) denote the Gaussian distribution of variance [2 centered at the zero vector
such that for [s> 0 and all x € R":

1 i ‘%k;
— 2 2.52
() Sx/ﬁe (2.52)

Consider also the Ap—periodic function f (Ag) defined by:

fA = A
= = e 2 S 2.53
S(AF) ey WJSZUF (2.53)

[s2 g

Then the sum codewords can be modeled by the discrete Gaussian distributions over Ag
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centered at the zero vector according to:

fro(ls)
P05 = ¢ “ar) (2.54)

We illustrate in Figure 2.5 two examples of the statistical distribution of the sum
codebook resulting from the superposition of N = 2 and N = 5 codewords carved from
the nested lattice code described in Example 2.1. These examples show that the discrete
Gaussian distribution fits our settings. As a proof of concept, we will show by numerical
results that this Gaussian model is well justified in the context of lattice network coding
even for low number of sources.

2.8.3 MAP decoder: Error Probability and Design Criterion

Under the non-uniform distribution of the sum codebook, the optimal decoder that
minimizes the probability of decoding error at the receiver is the mazimum a posteriori
decoder given according to the following:

“map = argmax p (I kly)

Usz s
= arg;niax p( 75) p (y | US)
s2 s D 1 : 2 :D
= argmax P(Ls)——==—exp _M
[s2 s (7 27)” 20
: by -5 2"
= aggznéin —In(p(Ls)) + o2 (25)

Notice that the MAP decoder does not involve a scaling step as the case of the conven-
tional decoder.

Using this optimal MAP decoder, we derive in the following theorem a union bound
estimate on the decoding error probability.

Theorem 2.5. Consider a nested lattice design A = (Ag; Ac) and a receiver computing
a noiseless sum of N source codewords in a Gaussian multiple access channel using the
optimal mazximum a posteriori decoder. Then the union bound estimate of the probability

of decoding error is
X X B
VA

il
P < p(Ls)erfc VA + (2.56)

Us2ls  f52nig
U

2
where A = %"“Diz” , B = %ln % and dmin denotes the minimum distance of the fine

lattice Af.

O DO | =

Proof. The proof of our theorem is based on the pairwise error probability defined as
the probability that the sum codeword Lk has a larger MAP decoding metric in (2.55)
than [k given that [k is transmitted. Its expression is formulated as follows

Asma Mejri 48



2.8. OPTIMAL DECODERS FOR THE CF: GAUSSIAN CHANNELS

O O a2 2
Pr(ll— [5) =Pr —In p(lk) —I—HyQDSSH< —ln(p(_s))—l-HyZ;S”
! !
. . ot 2 M 2
—Pr In p(fs) n ly 7;5 1< Iy 7;5 I <0
p(Ls) | 200 20 |
! D e !
p("s)
. Hl
=Pr(G<0)=Q -2
) G ]
ls — L Hl L
~-Q | Cs SH+ N p(AS)
20 | B = sl p(Cs)
Where Q(:) denotes the Q function and it is easy to prove that
!
92 p(Ls) r2 .
G=2fIln —— +|G-K|“+2< k-[kz>
p(Ls)
is a random Gaussian variable of mean [ and variance [ given by:
!
o =) e T5 P +42m PL) (2.57)
p(Ls)
g =4 | s (2.58)
Using the union bound, we get,
X X .
Pe < p(lk) Pr(ls — [)
[s2 s %52 Osnls -
X X Mk — 0 )
S p(LB)Q || 52 S ” _ In p(A )
s rp e oY
We can therefore, using the relation Q(x) = %erfc(p%), write:
1
1 X X I 55— s O p(Ls)
Pe< = p([s)erfe + ———In -
°T2 2200 V2| = s p(ls)

"s20s M52 050
The last step to prove our theorem is based on two facts:

o || k- :s |> dmin, for all [k; Lg € As. This inequality results from the linear
structure and the geometrical symmetric properties of the fine lattice Af.
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e the function erfc(X + %); 1€ R is a decreasing function with respect to x [99].
The proof follows then by considering A and B as defined above. O
Given the derived upper bound, we propose a lattice design criterion as follows.

Proposition 2.2. Minimization of the error probability under MAP decoding requires
to design nested lattices A = (Ag; Ac) such that the minimum distance of the Fine lattice
s mazimized.

Proof. The upper bound on the error probability is a strictly decreasing function of A
[99], thus a decreasing function of the minimum distance of the lattice Ag. Then in order
to make the error probability small, the coding lattice A has to have a large minimum
distance dmin- O

The construction of such good codes is out of the scope of this work. Even though,
we point out that for lattices built using Construction A over linear codes, this criterion
requires to design linear codes with minimum euclidean weights.

2.8.4 Practical M AP decoding Algorithms

We aim in this section to develop practical decoding algorithms that allow to reliably
find the optimal MAP estimate of the optimization problem in (2.55). For this purpose
we use the Gaussian distribution of the sum codewords. Accordingly, the MAP decoding
rule in (2.55) is equivalent to:

0 .

s . _ 1 1 P
“map = argmin In (f  (Ap)) +nln (06v20) + o5 | 6 2 +55 1y — 6
[s2Us 243 203

The first and second terms in this optimization problem are independent of the
variable [, they can be disregarded in the optimization over [s. Then we define a new
MAP decoding metric given by:

B . 2 2 2n
Cmap = argmin ||y — L |7 +07 || Ds | (2.59)

2 g

where [J = —. Using this new metric, we show in Proposition.2.3 that MAP decoding
reduces to solve for a closest vector problem.

iny
s

Proposition 2.3. The MAP decoding metric in (2.59) is equivalent to find the closest
vector in the lattice Aaug of generator matriz M qug = [M LM ]t € RN to the vector
Yaug = Y On]' according to the following metric:

ADnap = argmin | Yaug — Xaug 12 (2.60)
Xaug € MNaug=
Xaug = M augl’s
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Proof. The decoding metric in (2.59) can be written as:

(m o o | nnY
ST T A M
e =argin = J 5
= al‘g;nin I Yaug — Taugs |12 (2.61)
[s2 s
where layg = [In Ul n]t € RN ig a full rank matrix. On the other hand, given that

the sum codewords belong to the fine lattice according to the shaping region Ss, any
codeword L can be written in the form [ = M U where u € A5 C Z" and Ag translates
the shaping constraint imposed by Ss and can be deduced from the shaping boundaries
limited by the transmission power constraint P. Consequently the optimization problem
in (2.61) is equivalent to solving

~

Cmap = argmin || Yaug — laugM U |2
UZAS:US: Mu
= argmin || Yaug — M aygu |° (2.62)
UZAS:US:M u

M aug is a full rank matrix and u is an integer vector, then solving (2.62) consists in
finding the closest vector Xayg = M aygu to Yaug in the n—dimensional lattice Aaug of
a generated matrix M aug. After finding the optimal integer vector Ugpt that minimizes
the metric in (2.62), the optimal MAP estimate is deduced by A[Lnap = M Uogpt. O

In practice, the Sphere Decoder can be used to solve the closest vector problem.
We propose in this work a modified version of this algorithm to take into account the
shaping constraint as described in Appendix 5.B.3.

Remark 2.8. The MAP decoding metric in (2.59) involves two terms each one of them
is glven by an euchdean distance. When the first term is dominant, which is the case
when [ = 7 = ‘z < 1, the MAP decoding rule reduces to ML decoding (which is
equivalent to minimum distance decoding in this case since we don’t perform a scaling
step). Given that (2 depends on the power constraint P, we deduce that this case of
figure is likely to happen either at high Signal-to-Noise Ratlo or when N [2 is sufficiently
higher than the noise variance [2. We expect then that the MAP decodlng and the
conventional decoder achieve similar performance at high SNR range. Adversely, at the
low and moderate SNR regime and when the product N (2 is small, the second term in
the decoding metric applies an incremental constraint that considers the non-uniform
distribution of the sum codewords in Ag which is not taken into account under the
conventional decoder. In this case, we expect that the MAP decoder outperforms the
minimum distance decoding-based one.

We provide in the following proposition an equivalent formulation of the MAP de-
coding metric related to perform MMSE-GDFE preprocessing followed by minimum
euclidean distance decoding.
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Proposition 2.4. [Equivalence between MAP decoding and MMSE-GDFE preprocessed
lattice decoding] The MAP decoding metric in (2.59) is equivalent to MMSE-GDFE
preprocessed minimum euclidean distance decoding according to the metric:

Cinap = argmin || Fy —B L I (2.63)
[s2 s

where F € R"'" and B € R"'" denote respectively the forward and backward filters of
the MMjQE—GDgE preprocessing for the channel y = s + z given in (2.49) such that
B'B= 1+(2 Iy and F'B = I,,.

Proof. Let N ([s) denote the metric we aim to minimize in (2.59), we have the following:
N(s) =y = 2+ Lo |f?
=YY =2yt s+ P
= 1+ % this+y'y —2y's
= [B'Blk+y'y — 2y'F'BLs

0 O
=[IB'BIs+ y'FIFy —2y'F'Bis+Vy! I, = F'F 2.64
ELIRE LR AU T A S
kFy (1B [kk2 o(y)

where F € R""'" and B € R""'" are chosen such that: BB = 1+ (2 |, and F'B = Ip.
Given that I'(y) > 0 and independent of [, minimization of N ([k) is equivalent to
minimize || Fy —B [k ||2. The last piece to our proof is to show that the matrices F and
B correspond to the filters of the MMSE-GDFE preprocessing in the system y = [+ 2z
of input [ and AWGN z. This proof is provided in Appendix 5.C. O]

In order to find the MAP estimate according to the decoding metric in (2.63), the
receiver, given the channel output, first performs MMSE-GDFE preprocessing, then
performs minimum euclidean distance decoding to find the nearest point to Fy in the
lattice of generator matrix BM according to the shaping constraint imposed by the
subset Ag.

The first step of this method requires to derive the expressiops of the matrices F

. . . I :
and B. For this purpose consider the augmented matrix laug = *In . Let its QR
=in
decomposition as:
S0, -
R
Q2

where Q € R?Y" is an orthogonal matrix and R € R"" is upper triangular. The
expressions of the desired filters are given by [100-102]:

|aug =QR =

F=Q! ; B=R (2.65)
With the QR decomposition of the augmented matrix we have

t b 725 t t

Asma Mejri 52



2.8. OPTIMAL DECODERS FOR THE CF: GAUSSIAN CHANNELS

And we can write |, = Q1R which leads to the relation between the two filters as

F'B =1, (2.67)

2.8.5 Numerical results

In this section we evaluate the performance of the conventional decoder (based on MMSE
scaling and minimum distance decoding) and the proposed MAP decoding algorithm im-
plementing a modified Sphere Decoder. In addition, in order to validate the Gaussianity
law assumption we considered to derive our MAP decoding metric, we include a naive
exhaustive search to solve (2.55). Using this approach, no assumptions on the sum
codebook distribution is considered. The receiver, given the number of sources and the
original codebook associated to the nested lattice A, derives the statistics of the sum
codebook to compute the corresponding values of p(['s) for all codewords [k € Asg, then,
it exhaustively seeks the codeword which maximizes the decoding metric in (2.55). We
studied in our analysis two lattice examples as described below.

10

l
N

Error Probability

——6— Min. dist. decoding
— &~ — MAP decoding-Exhaustive
10 "F| ——8— MAP decoding—proposed algorithm

-4 -2 0 2 4 6 8 10 12 14 16
S\R (dB)

Figure 2.6: Error performance for the case n = 2;N = 2;P = 21.

Example 1: 2-Dimensional lattice (n = 2) for this first example we have chosen
the 2-dimensional lattice A described in Example 2.1 and considered the cases of N = 2
and N = 5 which correspond to the statistical distribution in Figure 2.5. The shaping
constraint in this case is given by P = [2 = 6:5. Given the number of sources and the
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power constraint imposed by the coarse lattice, we calculated for each case the bounds
requirements to be considered in the decoding process.

10
>
— _
=10
o)
@]
o
o
o)
- 9.7-9.8 9.9 10 10.1
=10 : , : : ;
L
—©— Min. dist. decoding
— &~ — MAP decoding—Exhaustive
=—8— MAP decoding-proposed algorithm
-3
10 Il Il Il Il Il Il Il Il

-4 -2 0 6 8 10 12

2 4
R (dB)
Figure 2.7: Error performance for n = 2;N = 5;P = 6:5.

Numerical results concerning the first case, depicted in Figure 2.6, show that our pro-
posed algorithm achieves almost identical performance as the exhaustive search, which
confirms the effectiveness of our metric as well as the validity of the Gaussianity law
assumption considered to model the sum-codewords even for the case of low number
of sources N. Moreover, plotted curves show that the MAP decoder outperforms the
conventional minimum distance decoding (Min. dist. decoding). The gain for this 2-
dimensional lattice case is not huge, and is limited to 0:5dB for an probability equal to
10", Results for the case of N = 5 plotted in Figure 2.7 confirm the previous findings
and show that the performance gap between the MAP and the Minimum distance de-
coder is not also high. Common to these two settings is the high value of N (2, which
joins our analysis in Remark. 2.8.

Example 2: 4-Dimensional lattice (n =4) In this second example we have chosen
the 4-dimensional integer lattice A of a generator matrix the identity |4 together with
a cubic shaping region according to P = 1. The aim of considering this example is
to analyze the performance of the MAP decoder when the lattice dimension increases.
Simulation results depicted in Figure 2.8 show that our proposed MAP algorithm allows
to achieve a gain of 1dB at a codeword error rate of 10" over the minimum distance
decoder while keeping a small gap to the exhaustive search. This case shows the merit of

Asma Mejri 54



2.9. OPTIMAL DECODERS FOR THE CF: FADING CHANNELS

applying the MAP decoding in settings where the product N Lg% is small. In addition, we
notice that the gap between the MAP decoder and the conventional one is independent
of the lattice dimension, it rather increases in settings involving small N [2.

10

=
o
iR

i
= I

Error Probability

|
w

10 E
—0— Min. dist. decoding
— €~ — MAP decoding—Exhaustive
=8 MAP decoding—proposed algorithm
10" : :
-5 0 10

S\R (dB)

Figure 2.8: Error performance for n =4;N = 2;P = 1.

2.9 Optimal Decoders for the CF: fading channels

We study in this section the case of fading channels. The tools we will use in our analysis
are valid only in the case of integer lattices, thus we will consider an Nn—dimensional
nested lattice code A C Z" involving a fine lattice Ap C Z" of a generator matrix M
and a coarse lattice Ac C Z". For this case, M is an integer full rank matrix. We will
start with the multi-dimensional case then we provide more in depth analysis regarding
the one-dimensional case.

2.9.1 System M odel
The real-valued multiple access channel output is written as,

X
y= hx+z (2.68)
i=1
where Xj € A C Z" are the lattice codewords sent by the sources according to the power
constraint in (2.3), hj € R denote the fixed channel gains and z € R" stands for the
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AWGN. Recall that the decoding objective is to recover an estimate of
mn #
X
L= aiXj mod Ac (2.69)

i=1
where a = [ay; :::;i:’tN]t e ZN is the network code vector. We are cBncerned with
the optimal ML decoding for recovering the integer combination: t = INz 1@ Xj, the
modulo-lattice operation is performed in a second stage separately. The decoding error
probability is defined then as: 0 0
Pe=Pr t #t (2.70)

In order to decode an estimate of t, the receiver first selects the parameters [ € R and
ac ZN. Given the vector a and the shaping boundaries for the original codewords, it is
known that the searched vector t belongs to a subset A¢ in the fine lattice Ar. However,
in contrast to the Gaussian channels case, it is difficult in this setting to characterize the
distribution of the combinations t in Af since it depends on the channel vector h, the
network code vector a and the Signal-to-Noise Ratio. We will assume then a uniform
distribution and analyze its corresponding decoding rule based on Maximum Likelihoood
criterion. To the best of our knowledge, this decoding approach was also independenly
investigated by Belfiore and Ling in [103].

Accordingly, the optimal receiver parameters [] and a are selected under ML decoding-
based criterion by maximizing the rate Reomp:mi defined in (2.24). Nevertheless, one
can easily observe that the maximization of this rate is equivalent to the optimization
problem in (2.25) and (2.26) for which the optimal scaling parameter is the MMSE factor
and the optimal network code vector corresponds to the shortest vector in the lattice
Ag defined in Theorem.2.2.

After selecting [J and a, the receiver scales the channel output to get:
X ) AN O

aiXj + hi —a Xi+2 (2.71)
i=1 i=1

y
o ) P\
where hj = [h;i =1;::;; N and Z = [z, and attempts to decoder t = ;2 ; @jX;.

2.9.2 ML Decoding Metric

The decoding metric of the ML criterion is based on maximizing the conditional proba-
bility p (¥ |t) over all possible values of t € As according to

t = argmaxp (y]t) (2.72)
t2 ¢
. PN . .
Given that t = 7, &X;, we can equivalently write (2.72) as:
X
£ = argmax P(Y] (X155 XN ) P (X125 XN ) (2.73)
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The transmitted codewords are assumed to be uniformally distributed over the nested

lattice code A, i.e., X1; ;XN are equiprobable. On the other hand, we have,
I

) D
PYIxuinxn)  oxexp o |V = hixi 12 (2.74)
i=1
where T2 = [2[?. Combining (2.74) and (2.73), we get:
!

X -1 X
£ = argmax exp — ||y —  hix |? (2.75)
t2 00 QDZ i=1
(xgpmxy)20N =
i"‘_laixi—t
Let I
X -1 X 2
C(D) = Xp 573 ly - hixi| (2.76)
o i=1

Our objective in the following is to express ' as a function of the desired equation t. To

this end, we need to express the codewords Xj;i = 1;::;N as functions of t. Given the
integer nature of the vector a gnd the codewords X;, this task requires to solve the system
of diophantine equations t = iN=1 aXj. For n—dimensional vectors (xj;i = 1;::;;N and

t), this can be done using the Hermite Normal Form (HNF) of integral matrices [104, 105]
as explained in the following.

2.9.3 Diophantine Equations: Hermite Normal Form
Define the integer-valued matrix M € Z"""N ag,
M =[asM aM ::ayM]
The Hermite Normal Form of M is suchhthat: i
MU = o"/(N'Dnig (2.77)

Znun

where U € Z"NU"N g 5 ynimodular matrix, and B € is an invertible matrix.

Futhermore, we decompose the maté“ix U in the form:

U: Vi
U, Vo

u-8 - (2.78)
Un Vn

where V; € Z""'" and U; € Z"""N"1) Then, the solution of the system of diophantine
equations is,

Xi =dj + Vi (2.79)
where vi = MV;B"1t and d; belong to the lattice of a generator matrix M U; for
i=1;:;N.
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2.9.4 Likelihood Function

We go back now to the ML decoding rule defined in (2.75) and replace the vectors Xj by
the solution of the diophantine equations given in (2.79), we obtain
0 1 0
f =argmax  exp — ||! (t)—q]? (2.80)
t2 00 2D2
g2L
PN . . PN ¢

where q = pi-1 hid; belongs to the lattice £ of a generator matrix 2, hiMU; and
)=y — N,hiMV;B"'t.

Then, in order to find the ML solution, we need to find the maximum of the likelihood
function: 0 O
X -1
W= e M) -al? (281)
q2L

This function is a sum of Gaussian measures, it is periodic and depends on the
Signal-to-Noise Ratio. Additionally, its most important characteristic is that it can be
flat, which means that for some values of the channel coefficients, the network code
vector and the Signal-to-Noise Ratio, the maximum of ' can be achieved by several
values of t, which makes the ML decision rule ambiguous and results in decoding errors.
This flatness behavior is characterized by Belfiore and Ling in [103] by the so called the
Flatness Factor defined below.

Delnition 2.3. Let £ be a n—dimensional full rank lattice and define the function:
o X -1 2
(y; 1) = exp ﬁlly—qll
q2L

The flatness factor of the lattice £ is defined by:

4 E/(C(y;D)
O R0 (2.82)

and satisfies: 0 < [j ([J) < 1. The mathematical expectation Ey (' (y;[J))) is given by,
z
1

Ey (" (y;0) = Vol (Z) V(L)' (y; C)dy

where V(L) corresponds to the Voronoi region of the lattice L.

For the ML decoding rule, we should minimize the flatness factor of the lattice £ over
which is performed the sum of the Gaussian measures in order to be able to distinguish
the maximum values of the likelihood function and perform a correct decoding decision.

Beyond this implication on the lattice design, solving the ML decoding metric re-
quires more reseach on the sum of Gaussian measures. Alternatively, authors in [90, 103]
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propose an approximation of ML decoding based on Diophantine Approzimation and
consists in the optimization problem given by:

t = argmax ||! (1) —q|>? (2.83)
t20¢5 q2AL
Where AL is a finite subset of the lattice £ fixed by the boundaries of the original
codewords according to the transmission power constraint. For one-dimensional lattices,
there are several algorithms pertaining to the resolution of the diophantine approxi-
mations of reals. However, solving the multi-dimensional case, requires additionally to
develop efficient algorithms to handle simultaneous diophantine approximations.

2.9.5 Case study: 1-dimensional lattices

In order to better explain the previous results, we analyze in this subsection the case
of one-dimensional lattices in Z. Additionally, we consider the case of two sources. In
this scheme, transmitted codewords X; and X» are just integer scalars drawn i.i.d from
the integer constellation over Z defined by A = [-Sm Sm] = [-Sm; —Sm + 1;::1; S| for
Sy € Z*. This integer codebook can be seen as a nested lattice code in Z involving the
fine lattice Ag = Z and the coarse lattice Ac = 25,,Z.

The channel output in this scenario is given by:
y = hiXy +hoxo + 2 (2.84)

with hj € R and z ~ N(0; [?). Given the channel state information, the receiver selects
the optimal scaling parameter and the optimal network code vector a = [a; ap|' and
attempts to decode the integer combination t = aijxi1 + axXz from the integer set A;
determined by Sp, and the values of the coefficients a; and ap. The scaled channel
output is given by:

¥ = a1X1 + aXo + Dﬁl—al_ler _ﬁg—azmxz+2 (2.85)
where hj = (hi;i = 1;2 and Z = [ z.
Under these settings, the ML solution is given by:
L L
t = argmax * exp ;12 | ¥ — hax1 — hoxo |2 (2.86)
t2A¢ 1 0 2A 2 20

aixitazxpy=t

And the likelihood function is given by:
L L
. X S SIS
(t) = exp TDZ || y — hix1 — haXxo || (287)
(x1ix2)2A%=

aixXi+azxpy=t
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Our aim now is to express ' as a function of t only. Therefore, we need to solve the
Diophantine Equation t = aiX1 + axX». Let g = a; A az denote the greatest common
divisor (ged) of a; and ap.

If the desired scalar t is a multiple of the greatest common divisor of the coefficients
a; and ap, the diophantine equation admits an infinite number of solutions in the form:
(
Xy = Yt + 2k
tTe e ) (2.88)
where k € Z and (u1; Uz) is a particular solution of the equation ajX; + axx, = g that
can be derived using the Extended Euclid Algorithm [106].

If t is not a multiple of g, then the diophantine equation has no solutions. For what
concerns our case, the network code vector a corresponds to the coordinates of a lattice
shortest vector, then the coefficients a; and a; are coprime. Thus, the diophantine
equation under question has always infinite solutions given by the system in (2.88) with
g = 1. This result is also applicable to the general case of N > 2 sources.

Accordingly, we can write the ML solution in (2.86) as

X1 L 1 0
o - . 2
t = argmax exp S [y —t+ k| (2.89)
t2A¢ =01 20
f {z }
(1)

where []= |’~11U1 + |’~12U2, U= alFlz — azF]]_ and k € Z.

2.9.5.1 Properties of the likelihood function

is a sum of gaussian functions, it is periodic and has the following properties:

e mean M =Y

e period p= %
: _ O
o width W = 522

In addition, ' depends on the SNR, the channel coefficients, the coefficient vector a and
obviously on the constellation bounds defined by Sy. We illustrate in Figure 2.9 an
example of the likelihood function obtained for Sy, = 5, X3 = 3, X = 4 at SNR = 10dB
and h = [—1:191 1:189]'. The optimal network code vector for this case is equal to
a = [-1 1]'. Accordingly, the desired combination should be equal to t = 1. The
corresponding likelihood function depicted in Figure 2.9 is well maximized at = 1. In
this case, it is easy to decode the maximum of ' (t) since we can distinguish a peak
corresponding to the unique t for which this function is maximized.

Asma Mejri 60



2.9. OPTIMAL DECODERS FOR THE CF: FADING CHANNELS

0 L I

[ TN DU BT I U A T L
-7 6 -5 -4-3 -2-1 01 23 45

t

Figure 2.9: Example of the Likelihood function.

- Impact of h and a: The choice of the network code vector a can greatly impact the
behavior of the likelihood function. Particularly, when this integer vector is aligned to
the channel vector h (they become colinear), the period p = alﬁlz*%zﬁz of the likelihood
function becomes small and results in a flatness of ' and impossibility of decoding
the right f since the maximum can be obtained for different values. This result is
demonstrated through Figure 2.10(a) obtained at SNR = 60dB Sy, = 5;X1 = —5;X2 =
—4;h = [1:3681 — 0:2359]';a = [—1 0]'. The maximum of the likelihood function is
obtained for two integer values t1 = 5 and t, = 6 while the correct decodable value must
be t = 5 for the corresponding values of X1 and X». This case is likely to happen at high
SNR range for which the maximization of the computation rate Reomp;mL requires to
align a to h.

- Impact of the constellation size: The likelihood function depends of the con-
stellation size and the values of Sy,. When the size of the codebook increases, the set
Ayt over which the desired combination t should be searched becomes large. Conse-
quently, the width of ' becomes large and the likelihood function is made flat. Thus,
decoding the maximal value of t becomes ambiguous. An example of this scenario is
illustrated in Figure 2.10(b) obtained for Sy, = 10; SNR = 10dB; x5 = —2;X2 = —4;h =
[1:4741 —0:2839]';a = [—1 0]'. We can see that the likelihood function attains its max-
imum for t = 2 and t = 3 while the correctly decoded value is t = 2. This ambiguity
leads to decoding errors.
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Figure 2.10: Flatness of the likelihood function.

2.9.5.2 Diophantine Approximation

The sum of Gaussian functions in the likelihood function makes the ML decoding hard
to handle in practice. Our aim in the following is to find a quasi-ML solution easy-to-
implement. For this purpose, we study the possible values of t that allow to maximize
the likelihood function:

e Fort € R: ' is maximized for t satisfying ¥ — [t 4+ [k = 0, which is equivalent to:

+ -7 (2.90)

+Dk:fe
0

t=

<
<

e Fort e Z:"' is maximized for t which minimizes |y — [t + [k |.

Since we are interested in integer-valued combinations, the solution corresponds to the
minimization of | y — [t 4+ [k |. Given this observation, we define a new optimization
problem equivalent to (2.89) by:

f = argmin |y — [t + (K | (2.91)
k2Z;t2 A
Let [ = % and y0 = —%, then the minimization problem is equivalent to:
~ . 0 0
t=argmin | [k—t—y | (2.92)
k2Z;t2 At
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This problem corresponds to solving the Inhomogeneous Diophantine Approxzimation
in the absolute sens (IDA) [107], F(t;k), defined as,

Ft;k)=| 'k—t—y’| (2.93)

It consists in finding the best rational approximation %; k € Z of the real number
assumed an additional real shift yo. In the general settings for such problems, the error
approximation function F (t;K) is considered and it is stated that a rational number t=k
is the best Diophantine Approximation if, for all other rational numbers t%k°

K<k =F(k*tY > F(k;t)

and
F(K%tY <F(k;t) = k°>k

For what concerns our settings, in addition to the error approximation function,
the set of the diophantine approximations is determined by the limits imposed by the
shaping boundaries A;.

In literature, there exist simple and easy-to-implement algorithms to solve Diophan-
tine Approximations of reals. The best known one is the Cassel’s Algorithm [108]. In
this work we adopt a modified version of this algorithm to take into consideration the
shaping constraint and ensure that the resulting solution (t;k) satisfies t € A;. The
proposed algorithm is given in Appendix 5.D.

2.9.5.3 Simulation results

In this section we address the performance of the conventional decoder (based on MMSE
preprocessed minimum distance decoding) and the proposed Inhomogenous Diophantine
Approximation (IDA). We consider the same settings analyzed previously involving two
sources transmitting integer symbols X1 and Xz drawn i.i.d from the constellation set
A = [=Sm Sm] to a common receiver interested in recovering an integer combination
t = aixy + azx2. We analyze the error probability as a function of the SNR, for which
a decoding error counts if f # t.

For what concerns the conventional decoder, given the channel state information, the
receiver solves for the best network code vector a solution of the shortest vector problem,
scales the channel output, then decodes to the nearest integer value. For the IDA, given
the vector a, the receiver first implements the Eztended FEuclid algorithm to solve the
Diophantine equation ai;Xj +aX2 = g, then uses the modified Cassel’s algorithm to find
the best inhomogeneous Diophantine approximation.

In Figure 2.11 minimum distance decoding and IDA decoding are compared. We
plot the decoding error probability as a function of the SNR for the case of Sy = 5.
This figure shows that both decoding methods achieve same performance in low and
moderate SNR values. The importance of the IDA method rises asymptotically, since
for this case, the conventional decoder presents a floor in the error probability.
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Figure 2.11: Error Probability for Sy, = 5.

In Figure 2.12, we analyze the performance of the proposed IDA decoding for three
values of the constellation interval, defined by Sy, = 5;7;10. This is to understand the
impact of the constellation size on the diversity order. Figure 2.12 illustrates that for
Sm = 5 or less, the system has a diversity order equal to 1 for real symbols (which would
correspond to a diversity order equal to 2 with complex-valued symbols). However,
for higher constellation size, e.g., for S, = 7 and Sy = 10, the diversity order is
limited to 1=2. This is because when the constellation range increases, the likelihood
function becomes flat, which makes the error function F (t; k) subject to the diophantine
approximation flat. This result confirms our previous analysis on the impact of the
constellation on the likelihood function.
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Figure 2.12: Error Probability using the Inhomogeneous Diophantine approximation.

2.10 Conclusion

In this chapter we were interested in the Compute-and-Forward protocol. After an
overview on the basic encoding and decoding scheme for this stragey, we provided deeper
insights into the practical aspects covering the design of network codes and more impor-
tantly optimal decoding approaches. We showed that the design of the optimal network
code vector reduces to solve a shortest vector problem. We proposed the complex LLL
reduction to solve this problem which allowed as to derive novel bounds on the ergodic
rate for the CF and the outage probability. Besides, we focused on the optimal decoding
approaches. For the Gaussian channels case we proposed a novel MAP decoding met-
ric using Gaussian lattice distributions and proposed a practical algorithm based on a
modified Sphere Decoder. Our numerical results show the effectiveness of the proposed
methods and its outperformance compared to the conventional decoder of the CF. For the
fading channels, we analyzed the case of multi-dimensional lattices and gave a detailed
analysis of the one-dimensional case for which a quasi-ML decoding algorithm based
on diophantine approximation was developed and showed to outperform the traditional
decoding scheme for the CF.

In this chapter we dealt with the main information-theoretic and communication
aspects for the CF scheme considering a basic multiple access channel. The next chapter
will be devoted to the implementation of this protocol in a first network scenario which
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is the Two-Way Relay Channel. We will be interested in the design of efficient network
codes for the CF in this particular network as well as to its end-to-end performance in
addition to the Analog Network Coding and Denoise-and-Forward strategies.

Asma Mejri 66



Chapter 3

The Two-way Relay channel

the Two-Way Relay Channel. In this network, as shown in Figure 3.1, two nodes

N1 and Nj desire to exchange their messages via a relay node R. This network

model is considered as a basic building block of general wireless networks. It has been

extensively studied in literature due to its simple structure, and helped to widen the

investigation of the benefits of Network Coding in more general network configurations.

In practice, this network can model the communication between two mobile users via an
access point or the information exchange between two earth stations via a satellite.

" i

I n this chapter, we delve into the first network topology we aim to explore in this work,

Haul\sl 1W 1 Relay R Hal\sl 2W 2
Wants wo Wants wq

Figure 3.1: Two-Way Relay Channel.

Works on two-way communication between two nodes without a relay node date
back to the work of Shannon [109]. In this setting, the two nodes act as transmitters
and receivers at the same time to exchange their messages. Main results concerning this
setup are information theoretic and provide only inner and outer bounds on the capacity
region which is not known in general. Later on, the two-way communication in presence
of a relay node without direct links between the nodes has been introduced by Wu et al.
in [24]. Two-way relaying with direct links has been investigated subsequently in several
contributions [110-113]. In this work we are interested in the bidirectional relaying in
absence of direct links between the communicating nodes. In this setting, a relay node
in the middle, that can receive from and transmit to both nodes, intervene to support
the end-to-end communication. Transmission from the nodes to the relay is refered to
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as the uplink, while transmission from the relay to the nodes is refered to as downlink.

The traditional routing and relaying protocols require four time slots to achieve the
data exchange. The uplink phase lasts two times slots during which each node sends its
data to the relay separately. Similarly, the downlink phase lasts two time slots to convey
the original data to the nodes. With the introduction of Network Coding, savings in the
downlink phase have been allowed. The relay in this case takes only one time slot to
broadcast a combination of the original data to both nodes. More interestingly, using
Physical-Layer Network Coding, savings at both phases are possible and enable a two-
time slots data exchange. In such settings, during the uplink phase, the nodes transmit
their data simultaneously to the relay and the latter computes and broadcasts, during
the downlink phase, a combination of the original messages. Due to the concurrent
transmission from the nodes to the relay, the uplink phase is modeled by a multiple
access channel. Conversely, the downlink phase is modeled by a broadcast channel with
recewwer side information as depicted in Figure 3.2

Vylzigjx—l{Multiple Acgess Channel | X2 [ﬁg ( wo
W1 Wo

YR

0

Y1 | *r y2
—[ Broadcast Channel]

Figure 3.2: Two-phase bidirectional Relaying.

These two channel models have been widely studied over the last few decades. Major
contributions are information theoretic and concern the capacity region for conveying
messages over a MAC which has been completely characterized in [114, 115] and the
capacity region of the broadcast channel identifyied in [116] in the case of stochas-
tically degraded channels. These results have been combined to Physical-Layer Net-
work Coding techniques to derive the achievable rate regions in two-phase bidirectional
relaying considering different relaying strategies (Amplify-and-Forward, Denoise-and-
Forward, Compute-and-Forward) in the premise of full-duplex nodes [68, 69, 117—120)]
and half duplex-nodes considering uncoded modulations in [110, 121-123], linear codes
in [63, 64, 66, 124, 125] and lattice-based coded schemes in [60, 67]. These contributions
provide an upper bound on the capacity of the two-way relay channel and demonstrate
that the use of the above cited strategies allow only to approach this bound at high
Signal-to-Noise Ratio. The exact capacity of this network is still an open problem.

Motivated by the promising theoretical gains of the lattice based-schemes, we focus
on this chapter in the two-phase bidirectional relaying using an n—dimensional nested
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lattice design A = (Af; Ac) involving a fine lattice Ag C R" and a coarse lattice Ac C R"
and consider half-duplex nodes and real-valued channels. Our objective is to analyze the
end-to-end performance of the most aknowledged PLNC strategies, mainly, the Denoise-
and-Forward (DoF), the Analog Network Coding (ANC) and the Compute-and-Forward.
These strategies have been studied previously in literature. However, previous works
looked only at the related issues from an information theoretic perspective. We aim in
this work to analyze in addition the error performance and to design efficient network
codes for the CF strategy. For a complete analysis, we consider the Gaussian and fading
two-way relay channels.

The chapter will be organized as follows: section 3.1 is devoted to the Gaussian
channels case. First, we will describe the system model and assumptions as well as the
performance tools. Processings related to the ANC, DoF and CF will be detailed and
the corresponding end-to-end error rate performance and achievable rate using a nested
lattice code scheme will be addressed. The fading channels case will be the subject of
section 3.2. We will start with introducing the system model and assumptions. Then, we
will describe the processing related to the ANC scheme. Afterwards, we focus on the CF
scheme. For this protocol, we propose a novel design criterion for optimal network codes
in the fading TWRC. Then, we propose a search algorithm based on a modified version
of the Fincke-Pohst algorithm [9]. Numerical results evaluating the performance of the
proposed approach are provided and show the effectiveness of our method. Finally, a
concluding section is dedicated to summarize the results of the present chapter.

3.1 Gaussian Two-Way Relay Channels

3.1.1 System Model and Assumptions

All nodes in the TWRC are equipped with a single antenna and operate in half-duplex
mode. The uplink and downlink phases are assumed orthogonal, then they do not
interfere with each other.

Nodes N; and Nj deliver respectively length—Kk messages wq € F'F‘, and wy € F'S
drawn i.i.d from a finite field Fp of prime size p.

Each node is equipped with an encoder £ : Fy — A that implements the function [
to map the finite field messages onto N—dimensional codewords x; € R" and X, € R"
from the nested lattice A according to a symmetric power constraint given by:

1_1 HU .

ﬁE Ixi|© <P; i=1;2 (3.1)
During the uplink phase, the nodes transmit their codewords simultaneously to the relay.
Under the assumption of a perfect synchronization, the sent vectors arrive at the same

time to the relay which observes the output of a MAC in the form:

YR = X1+ X2+ ZR (3.2)
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where zg € R" stands for the AWGN generated according to A' 0; (21, .

Due to the superposition of the original codewords, the relay is not able to detect each
one of them separately. Rather, using Physical-Layer Network Coding, it will compute
a function of them xg = f (X1;X2) satisfying the same power constraint P as the end
nodes. This function is afterwards broadcast to N7 and Ny during the second phase.
Received signal at node Nj for i = 1;2 is given by:

Vi = XR + Zj (3.3)

where zj € R" for i = 1;2 denote the zero mean Gaussian noise of variance (2. We
assume that the uplink and downlink channels are symmetric, then we have Q% = [gz =

(2. In addition, we denote by [1= % the Signal-to-Noise Ratio.

From the channel output and given the available side information, node N1 (respec-
tively N2) attempts to recover the desired message w2 (repectively wi). In practice, node
Ni (i = 1;2) is equipped with a decoder Dj that outputs an estimate of W; (j = 2;1) of
the original messages Wj. A decoding error occurs if either W1 # w1 or Wo # wp. The
end-to-end probability of error is given then by:

Pe £ Pr({W1 # W1} U{Wz #ws}) (3.4)

For coherence with existing works, we will consider the Sum message error rate to
evaluate the performance of the studied strategies. This performance metric is defined
in [126] as the sum of the message error rates at the two nodes and is obtained by the
error probability:

4 R N
Pesum = Pr (W1 # wq) + Pr (W2 # wy) (3.5)
And is related to the end-to-end error probability by: Pesym > Pe.

From an information theoretic persective, the exchange rate characterizes the max-
imum information that can be reliably exchanged. For a given relaying scheme, the
exchange rate Rex:scheme 1S defined as the achievable rate per source node per channel
use (a channel use signifies the use of the uplink and downlink phases). Assuming sym-
metric rates for both nodes N1 and Ny, the exchange rate is equal to the minimum rate
between the one achievable during the uplink Ry;1 r and that achievable during the
downlink RRi n; according to:

Rex:scheme = RNt N» = RNyt Np = min (Rngr r;RR1 N,) (3.6)

The exchange capacity Cex is the supremum of the exchange rates Rex:scheme Over all
possible encoding and decoding schemes.

In literature, a vast portion of works has been devoted to find the exchange capacity
of the two-way relay channel. However, research outcomes succeeded only in deriving

an upper bound Ce.yp using the cut set bound given by [60]:

1 U p U
Cex:us = 510g 1+ = (3.7)
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In the following paragraph, we will describe in details three strategies used to compute,
in the downlink phase, the function Xgr. We will also analyze the recovery of desired
messages at the end nodes and provide the corresponding exchange rates.

3.1.2 Analog Network Coding Scheme

The Analog Network Coding strategy was studied in several works [5, 6, 117, 121]. Its
principle is similar to the amplify-and-forward protocol with the difference that, under
Physical-Layer Network Coding, the relay amplifies the superposition of the original
codewords. In this case, the relay selects a scalar [1 € R and computes the function:

XR = YR (38)

0 is chosen such that the network code vector Xr satisfies the power constraint P.
Accordingly, its value is given by:

T 1+20 (39)

After computing the function Xg, the relay broadcasts it together with the value of [ to
the end nodes. Node N;j (i = 1;2) receives, during the downlink phase, the signal:

Vi = XR + 2 = [X1 + [X2 + [IZR + Z (3.10)

Now, given this channel output and the receiver side information, each node will first
substract each transmitted codeword (scaled by []). Node N1 gets then:

yi=Yi1—[X1=[IX2+[Zr+21 (3.11)
Similarly, N2 obtains:

Y2=Y2— [X2=[X1+[Zr +22 (3.12)
Then, the decoders Dy and D2 implement ML decoding to estimate respectively X1 and
X7 according to:
oo

; X1 = argmin || Yo — [} ||2 (3.13)

X = argmin || Y1 —
020 020

Finally, the decoded codewords are mapped to the finite field to get:
Wo =071 (%2) 5 Wy = 71 (Xy) (3.14)

Now, in order to derive the exchange rate under Analog Network Coding strategy, con-
sider the effective Signal-to-Noise Ratio Lgq at end nodes after substraction of codeword
side information. Dividing the power of the desired signal by the power of the effective
noise in (3.11) and (3.12), we get:

S A
T RO+ ®) 1430

(3.15)
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Then, the achievable exchange rate is given by:

1 1 B
Rex:ANC = 3 log (14 Leg) = 3 log 1+ (3.16)

1430
Remark 3.1. In order to derive the exchange rate for the Analog Network Coding,
the capacity of a single user AWGN is used with effective Signal-to-Noise Ratio [g.
This is possible in this case for two reasons: first because the downlink channels after
substraction of the codewords side information can be modeled by single users AWGN
with Gaussian effective noises, second because we perform ML decoding in the downlink
phase, which is equivalent to minimum distance decoding in this case.

The Analog Network Coding strategy is simple and easy-to-implement, nevertheless,
due to the noise amplification, it may not be the best technique to use particularly in
noisy networks. We move in the next paragraph to a noiseless Physical-Layer Network
Coding strategy based on the Compute-and-Forward protocol.

3.1.3 Compute-and-Forward Scheme

In the case of the CF strategy, the network code function of the relay is a noiseless sum
of the original codewords and consists of:

XR = [X]_ + Xz] modAc (3.17)

Thanks to the modulo operation with respect to the coarse lattice, the decoded function
in not only a codeword from the same lattice A, but also meets the transmit power
requirement at the relay. As described in the previous chapter, in order to decode the
desired sum, the relay selects the MMSE scaling factor [1 € R and performs the following
steps:

1. Scale the channel output: Ygr = LyR.

2. Decode to the nearest point in the fine lattice to get an estimate of the sum of the
codewords Xs = X1 + X2: Xs = Q¢ (VR)-

3. Perform modulo-operation with respect to the coarse lattice to get Xg = [Xs] modAc.

In this Gaussian channel case, the MMSE parameter is given by:

20]
0= 3.18
1+ 20 ( )

During the downlink phase, the relay broadcasts its decoded function Xg to the nodes
N; and Nj. In this case, these nodes will first decode, from their channel outputs y1
and Y2, the codeword Xr using ML decoding according to:

Xr;i = argmin || y; — U] ;i =2;1 (3.19)
2
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Next, given that the decoded vectors belong to the nested lattice code, their mapping
back to the finite field generates estimates of the addition of the original finite field
messages as:

U=0tRpi)=widwy; i=2;1 (3.20)

Finally, each node substracts its message to get the desired one according to:
Wo=U6W71; Wy =U; S W> (3.21)

Now, for what concerns the exchange rate, it has been shown in [60, 67], that the
CF strategy allows to achieve the following rate:

Although the exchange rate in this scenario allows to approach the upper bound of
the exchange capacity at high Signal-to-Noise Ratio, it is still not understood why is
the % inside the log missing. Two hypotheses were proposed in [60] to explain the
origin of this suboptimality: this is due either to the structure of the nested lattice code
or to the decoding approach at the relay based on minimum distance decoding which
is suboptimal compared to the optimal MAP decoding as discussed in the previous
chapter. The first hypothesis was rejected in [60] where authors analyzed the exchange
rate of a spherical-shaping lattice design using minimum angle decoding at the relay
and Slepian-Wolf coding at the downlink phase arﬁl proveﬁl that also using this lattice
coding scheme, the exchange rate is equal to % log % + % . The second hypothesis has
not been investigated so far due to the difficuly of the MAP decoder. In our ongoing
research we are investigating this research avenue and believe that the tools developed
in the previous chapter related to the novel MAP decoding metric, could open the way
towards new results and answers to this rate issue.

Remark 3.2. End-to-end decoding errors for the CF scheme depend both on the cor-
rectness of the decoding of the sum of codewords at the relay, and the decoding of Xg;j in
the downlink phase at end nodes. The first error type may result from the suboptimality
of the minimum distance decoding compared to the MAP decoding as discussed in the
previous chapter. The second case is likely to happen since the two downlink channels
are perturbed by different noises z; and z,. Then, although end nodes use optimal ML
decoding, they may not decode the same combination estimated at the relay’s level.

Remark 3.3. The side information at end nodes is used at the messages’ level. How-
ever, it can be also made at the codewords’ level. In this case, after decoding Xg:
in (3.42), node Ni(i = 1;2) substracts its transmitted codewords X; from Xg: to get
Xj = [Xr:i — Xi]modAc; (j =2;1), then it maps to the finite field to get W; = [171(x;).
Given that the mapping to the finite field does not impact the decoding correctness, this
way to recover the original messages achieves similar performance as the method based
on the messages side information.
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3.1.4 Denoise-and-Forward Scheme

Similar to the CF, the Denoise-and-Forward strategy is a noiseless Physical-Layer Net-
work Coding technique. It consists of finding the mapping that transforms the received
signal at the relay to a noise-free combination of the source signals. Considering the
nested lattice coding scheme, the aim is to compute the noiseless addition of the original
codewords as:

XR = [Xl + Xz] modAc (3.23)

Notice that this decoding objective is similar to the CF relaying scheme. Nevertheless,
the decoding at the relay is different. In this case, the relay does not scale the channel
output by the MMSE factor. Rather, it just performs the following steps:

1. Decode to the nearest point in the fine lattice to get an estimate of the sum of the
codewords Xs = X1 + X2: Xs = Q¢ (YR)-

2. Perform modulo-operation with respect to the coarse lattice to get Xg = [Xs] modAc.

The processing in the downlink phase is similar to the case of the CF strategy.

The reason to introduce this scheme is to show the impact of the MMSE scaling step
distinguishing the DoF from the CF. Indeed, the scaling step allows to achieve higher
exchange rate. This can be seen from the exchange rate using the DoF equal to:

1 U p U

Rex:poF = B} log = (3.24)
From an information theoretic point of view, the DoF' is expected to perform like the CF
in the asymptotic regime and represent suboptimal performance at low Signal-to-Noise
Ratio. From an error rate perspective, the DoF may achieve better performance since
in this case, given that the relay does not perform the MMSE scaling, decoding to the
nearest point in the fine lattice through step 1 is equivalent to ML decoding, while in
the case of the CF, due to the non-Gaussian effective noise resulting from the scaling of
the channel ouput, this decoding step is done using minimum distance decoding which
is suboptimal compared to the ML decoder. Nevertheless, according to the obtained
results in the previous chapter using finite dimensional nested lattice codes, the gain is
not expected to be very significant.

3.1.5 Simulation Results

In this section we delve into the numerical results obtained through Monte-Carlo simula-
tions and evaluating the exchange rate and the sum message error rate of the described
schemes as functions of the Signal-to-Noise Ratio. We consider the nested lattice coding
scheme described in Example 2.1 in the previous chapter. For comparison reasons, we
include the exchange rates for the traditional routing that requires 4 time slots refered
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to as Rex;routing and the one corresponding to the straightforward Network Coding based
on 3 times slots transmission refered to as Rex:netcod given respectively by:

1 - P - 1 - P -
Rex:routing = 4 log 1+ 2 ; Rex;netcod = 3 log 1+ 2 (3.25)

Notice that the %1 and % factors result respectively from the use of four and three time
slots to perform the messages exchange.
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Figure 3.3: Average achievable rate in bits per channel use for the Gaussian TWRC.

Starting with the rate performance depicted in Figure.3.3, numerical results show that
the CF allows to approach the upper bound at high Signal-to-Noise Ratio. The ANC
however, represents a constant gap to the upper bound. This suboptimality is explained
by the noise amplification at the relay’s level. In addition, comparing the CF to the
DoF, we observe that the former outperforms the latter at low and moderate SNR range.
This shows the role played by the MMSE scaling considered in the CF scheme. These
numerical results demonstrate also the suboptimality of the traditional routing and the
3-TS Network Coding. This shows the importance of using Physical-Layer Network
Coding techniques beyong the standard ways of relaying.

For what concerns the error rate performance, we compare in Figure 3.4 the sum
message error rate of the CF, DoF and ANC. Our results show that the CF and the
DoF achieve almost the same performance. This result shows that for this setting, the
minimum distance decoding and ML decoding are almost similar. Numerical results

4
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show also that the CF outperforms the ANC. The former presents a gap of 3:75dB over
the latter at a sum message error rate equal to 10”2, This result confirms again the
promised potential of the CF and its outperformance compared to the ANC scheme.
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Figure 3.4: Sum Message Error Rate as a function of the SNR for the Gaussian TWRC.

3.2 Fading Two-Way Relay Channels

For what concerns the fading Two-Way Relay Channel, we will study the Analog Network
Coding and the CF strategies. Single antenna half-duplex nodes assumptions are also
considered in this channel model.

3.2.1 System M odel and Assumptions

After encoding their finite field messages w1 and W, onto nested lattice codewords X1
and Xz according to the transmit power defined in (3.1), these vectors are transmitted
simulateneously to the relay. The channel output at the relay is written as:

YR = hiX1 + hoXo 4+ zR (3.26)

where hi;hy € R denote the real-valued fixed channel gains from-the node N1 and N»
to the relay R respectively and zg € R" according to N 0; [%I n - Let h = [hy hy]t be
the channel vector. We assume that channel state information is only available at the
receiver, i.e. during the uplink phase, the relay knows the channel vector h.
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During the downlink phase, the relay computes a network code function Xg =
f (X1;X2) according to the same transmit power and broadcasts it to the nodes N1
and N»2. Received signal at node N;j (i = 1;2) is written as:

Vi = hiXr + z (3.27)

where z; € R" denotes a zero mean AWGN of variance [gz. The uplink and downlink
channels are assumed symmetric, i.e., the nodes are subject to the same transmit power
requirements, the channel fading coefficients are identical and the noises have the same
variances 4% = ng = [ 2. Given the channel state information at the receiver, during the
downlink phase, node N1 (respectively N2) is assumed to know hj (respectively hy). In

addition, we define the Signal-to-Noise Ratio as [1= %.

End nodes use their side information to estimate from their channel outputs the
desired messages. Performance tools to be used in this channel model are the same we
considered in the previous section for the Gaussian channel case. For what concerns the
exchange capacity, it is also unkown for the fading channel case. Only an upper bound
is provided using the cut set bound as:

L 0

, P
Rexus = min log 1+ h2, = (3.28)
We will in the following describe the schemes based on the ANC and the CF.

3.2.2 Analog Network Coding Scheme

Under the ANC scheme, the computed network code at the relay is a scaled version of its
channel input Xg = [yr where []is chosen according to the transmit power constraint
P. For the fading channel case, its value is equal to:

r

0= (3.29)

1+ 0 h|?
After computation of Xg, the relay broadcasts during the donwlink phase both this
function and the factor [ to the end nodes. Channel outputs at node N1 and N> are
given as:

y1=hixg +2z1 = :h%Xl + Chihoxo 4+ Thizg + 23 (3.30)

Yo = hoXg + 25 = :h%X2 + Chihoxy 4+ [hozg + 22 (3.31)

Given these channel outputs, the codeword side information, the knowledge of the chan-
nel gains hi at the node N1 and hy at N2 and the knowledge of [, end nodes will first
substract their transmitted codewords (weighted by the values of [ and the correspond-
ing channel coefficients). N1 gets then:

Vi=VY1— :h%Xl = [hihoxo + [hizg + 71 (3.32)
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Similarly, N, obtains:
Y2 =Y2 — Chxa = Chihoxy + Chazg + 25 (3.33)

Next, decoders Dy and D2 available at the nodes N1 and N> respectively, implement ML
decoding to recover estimates of the original codewords according to:

X2 = argmin || ¥1 — Chiho 0|2 5 X = argmin || yo — 00| (3.34)
020 20

Finally, the decoded codewords are mapped to the finite field to get:
Wo = 171 (%2) 5 Wy = 71 (Xy) (3.35)

By computing the effective Signal-to-Noise Ratio in the downlink phase after substraction
of the codewords side information, it is easy to show that the exchange rate under the
ANC scheme is equal to:

U
h2 (2

1+ 0(1+ | h [|2)

. O
Rex:anc = min —log 1+
m=1,;

)5 (3.36)

3.2.3 Compute-and-Forward Scheme
3.2.3.1 Processing at the relay

Under the CF strategy, the relay exploits the linear structure of the lattice design and
computes XR as an integer linear combination of the original codewords in the form:

XR = [a1X1 + a2X2] modAc (3.37)

where the coefficients a;;a; € Z form the network code vector a = [a; ap]'. Given the
integer nature of these coefficients, the combination a;X; +axx2 € Ag belongs to the fine
lattice, and with the modulo-lattice operation, it is ensured that the vector Xg satisfies
the transmit power requirement imposed by the coarse lattice. In the finite field, this
combination is associated to the sum u of the original messages such that:

U= " (Xr) = hX1 @ X2 (3.38)

where the finite field coefficients are related to the integer network code coefficients by:
G =9 '([a] modp) ; i =1;2. In order to compute the function Xg, the relay selects
a scaling factor [J and a network code vector a and performs the following steps:

1. Scale the channel output: Yygr = [YR.

2. Decode to the nearest point in the fine lattice to get an estimate of the integer
combination X¢ = aiX1 + azx2 : X¢ = Q¢ (YRr)-

3. Perform modulo-operation with respect to the coarse lattice: Xg = [X¢] mod Ac.
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As discussed in the previous chapter, the optimal relay’s parameters are chosen such
that the computation rate at the relay is maximized. The optimal scaling parameter is
the MMSE factor equal to:

< hta>

0= ———— 3.39

T+ O (339

This value results in a computation rate in the uplink phase Rn;1 r equal to:
!

Olhtaz ot

1
Rnp R =log"  laf? - 1+0h|?

> (3.40)

Accordingly, the optimal network code vector that allows to maximize the computation
rate at the relay is a solution of the minimization problem given by:

aopt = argmina'Ga (3.41)
a0
where G = 1, — mzhht is a definite positive matrix in R%~2 studied in previous

chapter in Theorem 2.2. The optimal network code vector corresponds to the coordinates
of the shortest vector in the lattice Ag of Gram matrix G.

3.2.3.2 Processing at end nodes and decodability condition

During the downlink phase, the relay broadcasts both the network code vector a and
the computed function Xg to the end nodes. Upon receiving the channel output, N and
N> first decode the codeword xr using ML decoding according to:

XR; = argmin || y; —hiO|? ;i=2;1 (3.42)
Then, given that the estimated codewords belong to the nested lattice, N7 and N> use
the mapping ['! to map them back to the finite field in order to get estimates on the
finite field combinations such that:

Ui =0 1Rpi) = w1 @ gpwy 5 i = 1;2 (3.43)

where qp = g% ([a;] mod p);p = g"'*([az] mod p) are known at both nodes from the
values of the network code vector a broadcast during the downlink phase. Next, each
node substracts its message side information weighted by finite field coefficient. N1 gets:

Ng=U1O QW1 = GphW> (3.44)
Similarly, N> deduces:
N2 = U2 © (W2 = uW1 (3.45)

Finally, nodes recover estimates of their desired messages by inverting (divisions are
performed over the finite field Fp.) by the opposite finite field coefficient such that:
niq o E

Wy = W 3.46
2= 1= (3.46)

Asma Mejri 79



CHAPTER 3. THE TWO-WAY RELAY CHANNEL

It is clear that in order to enable both nodes N1 and N recover the desired messages,
the finite field coefficients ¢y and ¢ should be non-zero, meaning that the network code
vector a should satisfy: [a;] mod p # 0 and [a2] mod p # 0 at the same time. However,
the optimization problem in (3.41) rejects only the values in the form [a; 0]' or [0 a]'
which are not sufficient to guarantee recovering both messages at the two nodes. In order
to adapt this local optimization problem to the Two-Way Relay network, we propose in
Lemma 3.1 a new optimization problem for finding the optimal network code vector for
the CF taking into account the non-zero condition over the finite field.

Lemma 3.1. For the real-valued fading Two-Way Relay Channel using the Compute-
and-Forward strategy, the optimal network code coefficient vector is a solution to the
minimization problem:

Aopt = argmin a'Ga (3.47)
[a1] mod p# 0
[a2] mod p# 0

It corresponds to a shortest vector in the lattice Ag of Gram matriz G having non-zero
entries modulo the field size p.

If the network code vector satisfies this non-zero entries condition, the exchange rate
for the CF is equal to:
|
u .
Olhtalz "t

1
Rev-or = - log™t a2 - —1 "<
ex;CF 2 0g || || 1+ :H h ||2

(3.48)

Otherwise, it is equal to 0. In addition, we know from (2.36) that the exchange rate is
equal to zero for integer vectors satisfying:

) > 1+ f|h|1? (3.49)

In the previous chapter, we suggested two tools to solve for the shortest vector
problem: lattice reduction techniques and the Fincke-Pohst algorithm. Under the Two-
Way Relay Channel settings, lattice reduction techniques are not well suited since they
do not guarantee the additional non-zero constraint. We propose then in the following
to use the Fincke-Pohst algorithm.

Solving the optimization problem in (3.47) consists in finding the integer vector
a € Z? having non-zero coordinates modulo p such that the metric alGa is minimized.
Let G = R'R be the Cholesky decomposition of the definite positive matrix G where
R is an upper triangular real matrix. Minimization problem in (3.47) is equivalent to:

Aopt = argmin |Ral? (3.50)
[a1] mod p#0
[a2] mod p# 0
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Given that the exchange rate is equal to zero for the condition mentioned in (3.49), the
search space can be limited to the set I'y = {a € Z?; ||a|> < 14 []/h||?}.

The obvious method to solve the minimization problem in (3.50) is to perform an
exhaustive search over I'y and seek the integer vector that minimizes ||Ra||? under the
non-zero condition. However, this search method leads to an increasing complexity
specially at high SNR values. The idea is to reduce the search space to the sphere
of radius C > 0 such that |[Ral/?> < C. This is the philosophy of the Fincke-Pohst
algorithm. In our settings, we will include to the standard Fincke-Pohst approach the
non-zero constraint and the search space condition taking into consideration only the
integer vectors in I'y. Our proposed algorithm is developed in the next paragraph.

3.2.4 Modilled Fincke-Pohst for Optimal Network Codes Search
Let Rijj;i;j = 1,2 denote the entries of the matrix R, then we can write:
a'Ga=|Ra?

= (Ruay + Rpzap)? + (Rapan)?

= U1 (81 + U1282)° + U283 (3.51)
where Ujj = Rjj;i =1;2 and u;p = E—ﬁ. Accordingly, to satisfy ||Ral|?> < C is equivalent

to consider the following inequalities:

u22a§ <C

, ) (3.52)
U11 (a1 + U12@2)“ 4+ uxpa; < C

These conditions lead to the following boundaries requirements on the coefficients az

and ap: r r
C C
- —<a<s — (3.53)
Uz2 U22
S S
C - Uzzag C - Uzzag
- ——f—upm<ap< - ———2 —Uupa (3.54)
Ui U1

After choosing the sphere radius C, we start with searching the coefficient a,. Refering
to (3.53) and given the integer nature of a, we get:

LBy, <a, <UB» (3.55)

with $ r % &r !

C C
2 uz2 2 uz2 ( )
Then, the value of @y is chosen such that the bound requirements in (3.55)-(3.56) are
satisfied and that [az] mod p # 0.
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Once the values of ay is found, we proceed by seeking the value of the coefficient a;.
From (3.54) we get:

LB: <a; <UB;: (357)
with
e -
C — uxa3 C — uxa3
LB, =4- ~ 2% _yp,a ;UBlzg— ﬁ—unaz% (3.58)
Uiz Uiz

Accordingly, the coefficient a; is chosen such that the bounds requirements in (3.57)-
(3.58) are satisfied and [a;] mod p # 0.

The coefficients a; and ay are then selected as follows: first we choose the coefficient
ay satisfying the bounds requirements in (3.55)-(3.56) and [az] mod p # 0. For this value,
we choose the coefficient a; that meets the bounds in (3.57)-(3.58) and [a;] mod p # 0. If
such coefficient does not exist, we repeat the previous step and select another coefficient
ap. The process is repeated until we find a coefficient a; fulfilling the required conditions.
When both coefficients are found, we check if the resulting vector a belongs to the set
I'a. If this condition is satisfied, a candidate to our optimization problem is found.
Afterwards, we select among the obtained candidates the one that results in the smallest
value of the quadratic form alGa. We summarize our proposed algorithm to find the
optimal network code vector for the two-way relay channel in Appendix 5.E.

Remark 3.4. An importance parameter in our proposed approach is the initial sphere
radius C. In order to guarantee the existence of at least a lattice point inside the sphere
over which is searched the integer vector a, we consider C according to [127] such that:

C = min (diag (G)) (3.59)

3.2.5 Simulation Results

We move now to the numerical results to evaluate the performance of the ANC strategy
and the proposed algorithm to find the optimal network code vector for the CF strategy.
First of all, in order to demonstrate the importance of our Lemma 3.1 and the necessity
to take the non-zero contraint into account while looking for the optimal network code
vector for the CF, we studied, through averaging over 10000 random channel realizations,
the probability of having zero entries. Obtained results depicted in Figure 3.5 show
indeed that the non-zero constraint is not negligeable. For example, for SNR < 15dB,
the probability of zero-entries is always higher than 0:4.

Besides, we evaluated the exchange rate and the sum message error rate for the ANC,
the CF with network code vector found according to the local optimization problem in
(3.41) and the CF based on our proposed algorithm to find the optimal network code
vector such that non-zero entries contraints are satisfied. For the coding scheme, we
considered the nested lattice code described in Example 2.1. Numerical results plotted
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Figure 3.5: Probability of non-zero entries.

in Figure 3.6 and Figure 3.7 confirm the performance degradation when the non-zero
condition is not respected. The efficiency of our proposed algorithm is also demonstrated.
Our method brings a rate gain of about 0:5 bits/c.u and a gain of more than 15dB at
high SNR values over the CF based on the local optimization criterion at the relay’s
level. Besides, our method allows to approach the upper bound on the exchange rate.
For what concerns the ANC, our results confirm the outperformance of the CF over
this strategy as far as the exchange rate is concerned. Nevertheless, we note that both
protocols achieve almost same error performance unlike the Gaussian channel case. This
difference in the perfromance gap is due to the main issue regarding the CF in fading
channels: the channel quantization or approximation. Indeed, the approximation errors
impact the performance of this strategy. This issue was studied in recent works [86, 87]
where the sensitivity of the CF to channel quantization errors have been studied and an
alternative solution based on precoding at the transmitters assuming a global channel
state information has been proposed to remedy to the impact of approximation errors.
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3.3 Conclusion

This chapter was dedicated to study Physical-Layer Network Coding strategies in the
Two-Way Relay Channel. For what concerns the Gaussian channels case, we analyzed
the end-to-end performance of the ANC, DoF and CF. Our numerical results show
the outperformance of the CF over other strategies and demonstrate the potential of
PLNC techniques over the traditional routing strategies. For what concerns the fading
channel case, we provided a new lemma to design efficient network codes for the CF and
developed a search algorithm based on a modified Fincke-Pohst version. Effectiveness
of the proposed method is confirmed by numerical results.

The two-way relay channel has been widely studied in literature. Further research
effort should be put to extend the Physical-Layer Network Coding techniques, that have
been mainly studied in the case of the TWRC, to other network topologies. This is the
objective of the next chapter through the investigation of the Multi-Source Multi-Relay
channels configuration.
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Chapter 4

The Multi-Source M ulti-Relay
channel

second network topology, the Multi-Source Multi-Relay channel (MSMR). In this
network, as shown in Figure 4.1, N source nodes Sy;::;; Sy desire to communicate
their messages to a common destination D via N intermediate relay nodes Ry;::;; Ry .

sy, ]
Has'w;

@Rl
b \ $

I n this chapter we aim to explore Physical-Layer Network Coding strategies in a

S R
Has 2W 2 2

: Destination D
Wants W1, i WN
SN RN

Has wy

Figure 4.1: Multi-Source Multi-Relay Channel.

This network model arises in several practical communication systems such as cellu-
lar networks (e.g., LTE advanced and 802.16j standards) and wireless sensor networks
(WSNs). In the first example, relay stations help to forward information from mobile
stations (User Equipments) to a common eNode-B (Base station) allowing effective ex-
tension of the service coverage and enhancement of the system throughput. In the second
example, and particularly for long distance transmissions in WSNs, several intermediate
sensors are configured to act as relays to communicate the data measured by source
sensors to a common remote central processor in an energy efficient way allowing to
prolong the network lifetime.
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In contrast to the two-way relay channel, the MSMR channel has not been widely
investigated in literature. We aim in this chapter to study the network codes design
and the end-to-end performance of the ANC and CF in the real-valued fading Multi-
Source Multi-Relay channel considering lattice-based coding schemes. In section 4.1 we
describe the system model and assumptions. Then, in section 4.2 we analyze the end-
to-end communication based on ANC. We proceed in section 4.3 with the CF scheme.
For this protocol, we propose a novel optimization problem to search for the optimal
network codes that allow to maximize the overall message rate at the destination and
propose in section 4.4 search algorithms based on a modified version of the Ficke-Pohst
algorithm. Numerical results evaluating the performance of our approach are provided
in section 4.5 and demonstrate the effectiveness of our method. Finally, a concluding
section will be dedicated to summarize the present chapter.

4.1 System Model and Assumptions

All nodes in the network are equipped with a single antenna and operate in half duplex
mode. In absence of direct links from the sources to the destination, messages transmis-
sion is performed in two phases: a multiple access phase and an orthogonal access phase.
The first phase concerns the transmissions from the sources to the relays. Interested in
PLNC techniques, we enable the sources Si;::; Sy to transmit at the same time, this
phase lasts then one time slot. Each relay, observing the superposition of source signals,
computes a network code function and transmits it during a separate time slot to the
destination assuming perfect point-to-point link from each relay to the destination, i.e.,
the destination obtains exactly the computed functions at the relays. The second phase
lasts then N time slots.

During the first phase, each source S; delivers a length-k message w; drawn i.i.d from
a prime size field Fp according to a uniform distribution. Each source is equipped with
an encoder £ that implements the one-to-one function [1to map the message w; to an
n—dimensional lattice codeword X; from the nested lattice A = (Ag; Ac) involving a fine
lattice Ar € R" and a coarse lattice Ac € R". Af is the coding lattice from which are
carved the codewords, and Ac acts to satisfy the shaping region imposed by the power
constraint given by:

1 [ U
E |2 <P (4.1)

for P> 0 and i = 1;::;; N. The message rate is equal to r = %log p.

After encoding their messages, the sources transmit simultaneously their codewords
through the channel. This concurrent transmission together with the broadcast nature
of the wireless medium makes the codeword of each source reach all the relay nodes.
Fach relay Rpy, receives thus a superposition of the original codewords modeled as an
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output of a multiple access channel in the form

X
i=1

where hjm € R denotes the real channel coefficient between the source S and the relay
Rm assumed fixed during the transmission of entire codewords, zm € R" is a zerojmean
Additive White Gaussian Noise of variance generated i.i.d according to N' 0; (21, . We
assume that channel state information is available only at the receiver, i.e. each relay
Rm knows only its corresponding channel vector hy = [hym 2 hym]t. In addition, we
assume that the destination knows all the channel vectors hy;::;;hy. Furthermore, we
denote by [Jthe Signal-to-Noise Ratio equal to = UPZ.

The second phase concerns the transmissions from the relays to the destination.
Using Physical-Layer Network Coding, each relay decodes, from its channel output ypm,
a linear network code as a function of the original codewords iy, = f (X1;:;; XN ) such
that the transmit power at the relays P is satisfied. Assuming an orthogonal access to the
destination, after computation, each relay forwards its function to the destination during
a separate time slot. Given an enough set of equations ([4;:::; [ly) with appropriate
conditions, the destination D can recover the original messages.

The destination is equipped with a decoder D : R" — Fp that outputs estimates
W1; Wy of the desired messages. A decoding error occurs if Wi # wi;Vi = 1;::;;N.
We say that a message W; can be recovered at rate r; if for any [1> 0 and n large enough,
there exist a decoder D such that:

The message error probability at the destination is defined as:
!
r
PD =Pr W 75 W (4-4)
i=1
We are interested in this work in two PLNC schemes not studied previously in the
Multi-Source Multi-Relay channel model: the Analog Network Coding and the Compute-

and-Forward. We will analyze in the following the processing at the relays and the
destination for each scheme.

4.2 Analog Network Coding Scheme

4.2.1 Processing at the relays

The role of a relay node under the ANC strategy is to amplify and forward its received
signal. The network code function in this case is a scaled version of the superposition
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of the original codewords. For this purpose, each relay Rn, selects a parameter [}, and
computes the function [, as:
!
X
o = nmYm = I NimXi + Zm (4.5)
i=1
The value of the scaling factor is chosen such that the resulting function Ly, satisfies the
power constraint P. Accodingly, the scaling parameter for relay Ry, is given by:
r..
R R |
After computation, each relay transmits both its decoded function and the amplification
parameter to the destination in a separate time unit.

4.2.2 Processing at the destination and decodability condition

Assuming perfect links from the relays to the destination, the latter receives at the end of
the second transmission phase all functions [;::;; [y and parameters [4;:::; [y. Given
the expressions of the network code functions, we can write the following system at the

destination

1 0 1 O
hhiy  Chhor o - T Zt

TR T

|_{LL} NN 2?87 oty }|_{XL} |JZzL}

where the rows of the matrix L € RN " are the functions (transposed) computed at the

different relays, the matrix X € RN"" is composed of the codewords sent by the source
nodes, Z € RN'"'" is the real matrix whose rows correspond to the scaled noise vectors
at the relays and the matrix B € RN"N. Given these definitions, system (4.7) can be
written in a matrix form as:

L =BX +2Z (4.8)

Assuming that the noise vectors at the different relays z1;:::;zN are independent, it is

easy to show that the noise Z is Gaussian of covariance matrix X equal to:
0

:12_:2|n On A On
0 (212 0

2:% " 2 " § (4.9)
O Q%an

Additionally, given the availibility of the coefficients [,;m = 1;::;;N and the vectors
h1;:::;hy, the matrix B is known at the destination. Based on that, recovery of original
messages is performed in two steps as follows:
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1. Solve for the codewords matrix X in the system (4.8) and get estimates of the
original codewords X1; i} XN -

2. Map the obtained vectors to the finite field using the mapping [1'! to get estimates
on the desired messages as: W; = [I'1(&;), for i = 1;::;;N.

For the first step, the destination performs a simple inversion by the matrix B to
get:
X =B"L (4.10)

This operation requires that the matrix B be of full rank (invertible). This is possible if
its determinant is non-zero over R . Let Bj;; (i;j = 1;::;N) denote the elements of the
matrix B. Then we have :

X W
det(B) = "(s) Bsyi (4.11)
28, =1

where S, denotes the set of all permutations in {1;::;;N } and "(S) is the signature of
the permutation s which is equal to 1 if it is an even permutation and —1 if it is an odd
permutation. According to the expression of B, we have Bj;; = [jhj;;i;j = 1,55 N,
then (4.11) is equivalent to:

det (B) = "(5)_ Hhsgiyi

i=1 | s2 Sy i=1
= i det(H) (4.12)
i=1

where the rows of the matrix H € RN"N are the vectors h! that correspond to the
channel gains between the sources and relay R;j for i = 1;::;;N. Given that these vectors
are independent, the matrix H is full rank with high probability (close to one). And
since [} # 0;Vi = 1;::;; N, we deduce that the full rank condition on the matrix B is
satisfied.

This way to estimate the original codewords is advantageous in the sense that it
is easy to implement, however, as we can observe, the inversion by the matrix B re-
sults in amplification of the noise Z which is already an amplified version of the noise
accumulated at each relay node. We expect that this noise enhancement lead to poor
performance at the destination. Additionally, compared to the case of the Two-Way
Relay Channel where the processing at the destination under the ANC strategy is based
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on ML decoding, we expect that the performance gap between the ANC and the CF will
be more significant in the Multi-Source Multi-Relay channel case based on a suboptimal
decoding approach at the destination.

4.3 Compute-and-Forward Scheme

4.3.1 Processing at the relays

Using the CF strategy, each relay Ry, attempts to compute, from the channel output
Ym, a linear integer combination of the original codewords in the form:

" #
X
[ = amiXi mod Ac (4.13)

i=1

where the coefficients am1; ::;; ann € Z form the network code vector am = [am1 @ @amn ]t
for relay Ry,. Given the integer nature of these cogﬁcients and the linear structure of the
lattice coding scheme, the combination [ = iN: 1@miXj belongs to the fine lattice
Ar. The modulo-lattice operation guarantees that the computed functions meet the
transmit power constraint P at the relays. In the finite field, [}, is associated to the
finite field combination U, of the original messages in the form:

3
i=1

where the coefficients gmi € Fp are given by: gmi =g ! ([ami] mod p).

Each relay Ry, is equipped with a decoder Dy, that decodes an estimate i of the
desired combination. After selection of a scaling factor [y and a network code vector
am € ZN | the decoder performs the following steps:

1. Scale the channel output: ¥m = UnYm-

2. Quantize to the fine lattice to get an estimate on Lin:r @ Lin;e = Qe (Ym)-

3. Take modulo-operation with respect to the coarse lattice to get: im = [[m:F] mod Ac.

A decoding error occurs at the relay Ry, if O =% [n. The probability of error at the

relay Ry is then equal to: 0
PR, =Pr (i # [ (4.15)
Given the network coding vector am, the following computation rate Ry, is achievable
at the relay Ry: 0 0
1 0
Rm = = log* 4.16
mT 2% 2 [mhm — am|2 (4.16)
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For what concerns the selection of the scaling factor and the network code vector,
since the objective of the CF is to reliably decode an integer combination with the highest
possible rate, each relay Ry, selects its parameters [ and ay such that its computation
rate Ry is maximized. As discussed in chapter 2, according to this local optimization
criterion, the optimal scaling parameter chosen locally at the level of each relay Ry, is
given by:

< hi;a>
Oy = —— M7 4.17
" T 2 )
Which results in a computation rate Ry given by:

!

1 - Ol htam |27
Rm (am) = = log* am|? - ——o-m 4.18
m(m) 20g || m” 1+:||hm ||2 ( )

Under the same local rate maximization criterion, the optimal network code vector
for each relay Ry, for m = 1;::1; N is found according to the integer optimization problem
given by:

am argmin  al ,Gmam (4.19)
am2ZN ;am 6 0y
where 0
Gm=In————Hm; Hn =hyh! 4.20

After the computation of the desired combinations, each relay transmits its decoded
function [}, and network code vector am to the destination.

4.3.2 Processing at the destination and decodability condition

At the end of the second transmission’s phase, the destination collects the combinations

Chs o [N and the integer vectors aj;::;;an . With this input, the destination forms the
following system:

0 ~t
i
L= : X =[AX] mod Ac (4.21)
:t
where the rows of the network code coefficients matrix A € ZN'N are the vectors
aj; i af such that:
1 0 1
t ai; a2 - AN
dp1 ax@p - AN
A= E % 7 ;
an1 aNz “++  AaNN

Based on the knowledge of the matrix L and the network code matrix A, recovery of
the original messages at the destination is performed in two steps as follows:
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1. Map the system (4.21) to the finite field using [1'1 to get:
U=QwW (4.22)

where U = (71 (L) e FY '™, Q € F) "N such that its finite field elements are given
by gj = g1 ([a;j] mod p) fori;j =1;:5N, and W = 71 (X) € FB‘D” such that
its rows correspond to the transpose of the original finite field messages Wi; ::;; Wy .

2. Invert the ﬁmtrix Q in system (4.22) and get estimates of the original messages:
W wl =W = QYMU, where Q" denotes the inverse of Q over the finite
field Fy and can be implemented in practice using the Gaussian elimination.

Detailing the processing at the destination as described in the above steps allowed as to
establish an important decodability condition at the destination that has been overlooked
in previous works: the destination is able to reliably recover the original messages if and
only if the finite field coefficients matrix Q is full rank over Fp. Given the relation
between Q and A, this condition is equivalent to require that the determinant of the
network code coefficients matrix A over R be non-zero modulo p.

If the full rank condition at the destination is satisfied, the destination is able to
recover the original messages with a rate Rp limited by the minimum achievable rate
at the relays Ry;:::;; Ry such that:

Rp = min{Ry1;::;; RN } (4.23)
Otherwise, the rate Rp is equal to 0.

However, the local optimization problem in (4.19) based on which are selected the
network code vectors that constitute the matrix A does not take into consideration the
network level full rank condition. Indeed, each relay in the network selects locally and
independently its network code vector under a local optimization criterion to maximize
its computation rate. Consequently, there is no guarantee that the full rank constraint
at the destination is satisfied. In order to combine the full rank requirement and the
computation rate maximization at the relays, the network code vectors aj;::;;ay should
be selected according to the following criterion:

(a1;nan) = argmax Ro (4.24)
ap;nay € zZN
[det (A)] mod p#0
= argmax min{Rq;::; Rn } (4.25)
ap;nay € zZN
[det (A)] mod p#0
With this design criterion, it is ensured that the full rank condition is met jointly to a

maximization of the computation rate at the level of each relay node which leads to the
maximization of the rate at the destination. Given the expressions of the computation
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rates Rq;::;; RN, we propose in Lemma 4.1 a new optimization problem for finding the
optimal network code vectors for the CF taking into account the full rank condition over
the finite field while maximizing the computation rate at each relay.

Lemma 4.1. For the real-valued fading Multi-Source Multi-Relay channel using the
Compute-and-Forward strategy, the optimal network code vectors that allow simultanously
to maximize the computation rate at each relay and guarantee full rank condition at the
destination are solutions of the minimization problem:

(ag;nan) = argmax min . al,Gmam (4.26)
a;;;nay € zZN
[det (A)] mod p#0

where Gy is defined in (4.20).

Before we embark in the description of the algorithms we propose to solve this opti-
mization problem, we provide in the following paragraph an analytical analysis on the
impact of the full rank condition on the end-to-end performance by deriving an upper
bound on the error probability at the destination operating with the CF.

4.3.3 Error Probability Analysis at the Destination

Recall from equation (4.4) that the probability of decoding error at the destination Pp
counts the errors on the original messages such that Pp = Pr iN: 1 Wi # w; . However,

under the CF scheme, errors on the detection of the original messages at the destination
depend both on the correctness of decoding the linear combinations Thinn O at the
relays and the probability that the matrix Q is full rank. Then, the probability of error
Pp depends on the probabilities of errors Pr,;m = 1;::;;N and the probability Py of
Q to have a rank failure over Fp according to:

Pp =Pr (det(Q)= 0)[ Pr r Cm # O (4.27)
m=1 |
N !
< Pr(det(Q)=0)+Pr Cm # U (4.28)
m=1
X0 0
< Pr(det(Q)=0)+ Pr [y # U (4.29)
m=1
X
= Py + Pr,, (4.30)
m=1

In addition, we know from [128] that the probability that the N x N matrix Q over
a finite field of size p is not full rank is given by:
W L L

Pr(det(Q)=0)=1—  1-= (4.31)
i=1 p
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Therefore assuming additionally equal error probabilities at the relays Pr,, = Pr;m =
;N which holds since the transmissions from the sources to the relays are made
1ndependently, we obtain an upper bound on the error probability at the destination as:

Pp <1-— 1-— +NPg (4.32)
i=1

The error probability at the destination depends then on the finite field size p, the
number of relays N as well as the error probability at the relays Pr. Whereas, it does
not depend on the Signal-to-Noise Ratio. This observation will be confirmed later by
numerical results.

The obtained upper bound on the error probability shows again that the full rank
condition plays a key role in the determination of the end-to-end error performance of
the CF strategy. For this purpose, we propose in the following efficient algorithms to
search for network code vectors taking into account the full rank constraint according

0 (4.26). Then, we will analyze numerically the impact of the full rank failure both on
the achievable rate and the message error probability at the destination.

4.4 Ellcient Network Codes Search for the CF

Solving the optimization problem in (4.26) consists in finding the integer vectors am € Z"
such that the metrics a',Gmam are nﬁmmlzed for all m = 1;::;;N and the vectors
ap; . ay form a matrix A = at : of determinant non-zero rnodulo the field size
p. Lookmg at the first mlmmlzatlon problem separately, we know that the optimal vec-
tor that allows to minimize the metric al,Gmam corresponds to the coordinates of the
shortest vector in the lattice of Gram matrix G . Combining this minimization problem
to the full rank condition, our idea is based on a cooperation between the relay nodes
and consists of two steps as follows:

Step 1 : in the first step, instead of searching at each relay Ry, the optimal integer
vector am that minimizes its own metric atm G nam and maximizes the computation rate
Rm, we attempt to find a candidate set

7;[’1\lmax — {a%),ag)’ nn ag\lmax)} (433)

of size Nmax composed of the best integer vectors a( ). poana %\lm“) coordinates of the lat-
tice points in Ag,, with shortest lengths which correspond to the maximum computation
rates achievable for the underlying relay Ry. The length Npyax is initialized to N and
modified according to numerical results obtained by simulations. We propose in (4.4) a
Fincke-Pohst based algorithm to the search of the sets 7TNmax for m = 1;::;N.

Step 2 : in the second step, given the candidate sets 7'1N"‘aX ; 7'2N"‘ax; :::;mNmax, we
pick up the best integer vectors a; € 7, ", ap € ’TszaX,...,aN € mNmaX to construct
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the matrix A = aj :: aj t such that [det (A)] mod p # 0 and the minimum of the
corresponding rates R1;Ro;::;; Ry is maximized. This way, the minimum achievable
rate at the destination gets maximized while the full rank requirement is satisfied.

We detail in the following paragraph the processing corresponding to the first step
of our proposed strategy.

Searching Candidate Set for each relay

We aim to find for a given relay Ry the candidate set Thmax = {afnl); afnz); nn ag\lmaX)}

of fixed length Nmax with minimum values of the metric a},Gmam corresponding to
maximum values of the computation rate Rpy. In order to find the desired set TNmax,
we proceed with the following steps:

Step 1 : First, we enumerate all non-zero integer vectors t such that t'Gpt is
minimized. In order to reduce the complexity of this enumeration step, we consider the
Fincke-Pohst algorithm to limit the search space to the sphere of radius C such that
only integer vectors that satisfy t'Gnt < C are considered. With the obtained vectors
we form the set:

Tm = {t €ZN;t #0y;t'Gpt < C} (4.34)

We adjust the radius C defining the search space to get at least Nmax vectors in Tmax,
i.e., to guarantee that |7Tm| > Nmax.

Step 2 : Sort the vectors t1;t2;:5tj1, j in a descending order corresponding to their
achievable rate values Ry (tj) in (4.18) for i = 1;:::;|Tm| such that:
U H
Step 3 : Select the first Npax vectors of Ty to form the desired set Tn'}""ax.

The first enumeration step aiming to find the integer vectors t € ZN \ 0y is based on
the Fincke-Pohst algorithm as follows.

Let Gy, = R'R be the Cholesky decomposition of the definite positive matrix G,
where R € RN"N is an upper triangular matrix. Let Rij;i;J = 1,25 N denote the
elements of the matrix R and t = [t tp i ty ]t. Then the metric t'Gpt is equivalent
to:

X Lo
t'Gpt = ||Rt||2 = @ Rijtj + RiitiA
i=1 j=i+1
0 2
X X
= pi @+ pij A (4.36)
i=1 j=i+1
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where p;j = Rﬁ;i =1:5N, pj = E—‘iji;j =i+1;:;N. Then, solving for t'Gnt < C for
C > 0 is equivalently to solve for:
0 1,
X X
pii @t + pitA <C (4.37)
i=1 j=i+1
Using (4.37), we derive bounds for each component tj;i = 1;:::; N for the searched vector

t. We start our search with the N'" component. Refering to (4.37) and given the integer
nature of the searched vector we have the following bounds:

LBy <ty < UByp (4.38)
with $ s %
C
LBy = - —— (4.39)
PN
&S '
C
UBN = — (4.40)
PN N

Once the value of ty is chosen, we proceed with evaluating the (N — 1) component
tn o1 Refering to (4.37) we can write:

PuN tE +pNul;N,l(tN,lerNul;NtN)zSC (4.41)
which leads to the following bounds:
LBni:r <tnir <UBni (4.42)
with
$ s Py %
C —pnnt
LByii= — ——— N —pyornty (4.43)
PNOLN D2
&8 '
C —punti
UBN1 = M_pN:l;NtN (4.44)
PnoOLND1

Note that the bounds for the component ty 1 depend only on the sphere radius C
and the values of the previously evaluated component ty. Then, we proceed with the
evaluation of the remaining components for i = N — 2;:::;1 in a similar fashion. Based
on (4.37) we derive similar computation to the following bounds for any element t; for

i=N —2;::1:

Y —o 0 151
H X X
V]
-t — - pn @ + pitA A — pijtj <t
Pii I=i+1 j=1+1 j=i+1
‘é 0 0 151
01 X! X
— - pi @t + ptiA A — pijtj >t
Pii I=i+1 j=1+1 j=i+1
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Let

X
S = Pij tj
j=i+1
0 1,
XN X
T =C— pu @ + Pt A =Ting +pi(S+t)?
I=i+1 j=1+1

then the bounds are equivalent to

LB; <tj < UB; (4.45)
with
$ s %
Ti
LBi= — —+S5 (4.46)
Pii
& '
Ti
UB; = F + S (4.47)
i

The components ty ;tn 1) 00 t1 of the searched vector t are then selected as follows:
first we choose the coefficient ty satisfying the bounds requirements in (4.38)-(4.39). For
this value, we choose a coefficient ty 1 according to the bounds requirements in (4.42)-
(4.43). If such coefficient does not exist, we repeat the previous step and select another
coefficient tn . The process is repeated until we find the two coefficients ty and tn1
fulfilling the required conditions. When both coefficients are found, we proceed with the
same fashion to search the coefficient ty 2 according to the bounds (4.45)-(4.46) and
so on until we find the N components ty;tn1; 1 t1 meeting the desired conditions on
the bounds. A candidate vector t = [ty ty g1 i t1]t that satisfies t'Gmt < C is then
obtained. The value of the sphere radius C is then updated and the search process is
repeated to record all the non-zero vectors in Tp.

A fundamental parameter to the Fincke-Pohst-based enumeration step is the initial
value of the sphere radius C. As we proceeded in chapter 3, we fix this parameter to:

C = min (diag (Gn)) (4.48)

By setting the value of C this way, it is big enough to have at least one candidate vector
t within, and small enough not to have many vectors inside.

We summarize in the following the steps of our proposed method to search the
candidate set T\max for a relay Rp.
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Algorithm 1 Candidate set search algorithm

Input: radius C, matrix G, Nmathrmmax, fixed parameter g.

Output: The set of integer vectors TNma and their corresponding rates set Yhmax
Step 1 : Perform Cholesky decomposition of G, = R'R, and set pjj = Rﬁ for i =
1;:5 N and pij = E—‘iji forj =i+1;:;N.

Step 2 : Search the set Ty = {t € ZN:t £ 0N tiGpt < C} according to the procedure:

1. (Initialization) Set i =N;d=C;T; =C;S; =0, T = 0.

2. (Compute bounds for tj) Set Z = JTii;UBi =|Z —-Si];LBj = [-Z — Sj] and set
ti =LB; — 1.

3. (Increase tj) Set t; =t; + 1, if t; < UBj go to, else go to.
4. if i = N terminate and output the searched set Tm, else set i =i + 1 and go to.
P
5. (Decrease i ) For i = 1 go to 6), else set i =i —1,S = jN:i”pijtj;Ti =
Tior+pii (ti + Si)2 and go to step 2).
6. If t = Oy terminate, else record the vector t as candidate and update the set

Step 3 : Adjust the sphere radius: if |Tm| < Nmax, set C = gC and repeat Step 2.
Step 4 : Sort the vectors tq;tp; it Tmj D @ descending order corresponding to their
achievable rate values Ry (tj) in (4.18) for i = 1;:::;|Tm| such that:

U U

Step 5 : Select the first Nmax vectors of Ty to form the desired set 7,Nmax and the
corresponding rates set YNmax such that:
ToNma = Lttt b (4.50)
TNmax — (R (t1);Rm (t2; 25 R (tnmad )} (4.51)
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4.5 Simulation Results

We address in this section the performance evaluation and analysis of the two studied
PLNC schemes. We consider the case of N = 2 where there are two sources, two
relays and a destination. Monte-Carlo simulations have been carried out to evaluate
two performance metrics at the destination: the message error rate given by the error
probability Pp, and the average achievable rate per user given by Rp = min (R1;R2).
Numerical results are related to the nested lattice coding scheme described in chapter
2 in Example 2.1. In addition, for the average achievable rate, we included a Decode-
and-Forward strategy for comparison. In this scenario, relay R1 receives y1 = h1iX1 +
h2iX2 + z1 from which it decodes the codeword X1 and considers the interfering signal
X2 as noise. Then R forwards its decoded signal to the destination. Similarly, relay R»
decodes X5 from its channel output Y, = hioX1 + hooXo + 2o and treats X1 as noise. The
corresponding rates Rq1 and R, are given by:

[ [ ] ]
1 "h? 1 "h2
Ri=—-log 14+ —1 - Ro=_"log 1+ 22 4.52
1=l g 2= ylog 147 (4.52)

Compute—and-Forward+loc.opt
—o— Compute—and-Forward+full rank matrix Q
—&— Analog Network Coding

Message Error Rate at the destination

10” I I I I I
0 5 10 15 20 25 30 35 40 45

R (dB)

Figure 4.2: Message Error Rate for the MSMR, channel.

Starting with the message error rate, we compare in Figure 4.2 the performance of the
Analog Network Coding scheme, the Compute-and-Forward scheme with local optimiza-
tion in which the network code vectors are selected without taking into consideration the
full rank condition of the finite field coefficients matrix Q over the finite field Fp, and the

Asma Mejri 101



CHAPTER 4. THE MULTI-SOURCE MULTI-RELAY CHANNEL

compute-and-forward scheme using our proposed algorithms to solve for the optimiza-
tion problem in (4.26) under the system level full rank constraint. First result to report
in the light of Figure 4.2 is the impact of the full rank failure on the error probability
at the destination under the CF strategy. Our analytical analysis we made previously
in section shows that the overall error probability at the destination depends on N, the
error probability at the relays and the probability of full rank failure of the matrix Q
which is independent of the SNR. This explains the obtained performance concerning
the CF scheme based on local optimization criterion which does not guarantee the full
rank condition. Indeed, the probability of error for this scheme decreases as function
of the SNR until a certain point when it becomes flat, i.e., independent of the SNR. In
the decreasing part of the curve, the error probability at the destination is comparable
to the error probability at the relays 2Pr. Starting from the point where the curve
becomes flat, the error probabilities at the relays become insignificant compared to the
probability of full rank failure, therefore, the overall errror probability at the destination
is dominated by the full rank failure probability Pj which is a constant for fixed N and
size field p.

N

Compute-and-Forward+loc.opt
—o— Compute—and-Forward+full rank matrix Q
—v— DF with interference as noise ‘

[y
®
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o
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Figure 4.3: Average achievable rate per user for the MSMR channel.

In addition, numerical results depicted in Figure 4.2 show the effectiveness of our pro-
posed algorithms to find efficient network code vectors for the CF strategy under the
full rank requirement. Our method brings a gain of more than 10dB over the CF with
local optimization-based network codes design at a message error rate equal to 101 and
a gain of more than 15dB over the Analog Network Coding strategy at a message error
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rate of 210" 2,

Now, moving to the average achievable rate performance, results depicted in Figure
4.3 join the previous findings. The penalty of the full rank failure on the average achiev-
able rate is also significant. Satisfying this system level condition using our proposed
algorithms brings for example a gain of 2dB for a target rate of 1bits/c.u. In addition,
Figure 4.3 demonstrates the outperformance of the CF over the Decode-and-Forward
scheme, again this proves the importance of such PLNC techniques and their potential
to make the interference resulting from the superposition of different users’ signals a
boosting characteristic to achieve higher transmission rates.

4.6 Conclusion

This chapter was dedicated to study the ANC and the CF strategies in the Multi-Source
Multi-Relay channel. We analyzed the processing at the relay nodes and the destination
for each scheme. In addition, for the CF, we pointed out the full rank condition for
possible decoding at the destination, analyzed its impact on the end-to-end performance
and proposed a new lemma to design efficient network codes for the CF taking this
decodability condition into account. Further, we developed practical search algorithms
based on the Fincke-Pohst approach. Effectiveness of the proposed method as well as the
outperformance of the CF over the ANC are confrmed by numerical results considering
a nested lattice coding scheme.

Common to the previously studied networks, namely the TWRC and the MSMR
channel, is that the relays are equipped with a single antenna. In the next chapter
we aim to explore the multiple antennas case. We will consider the distributed MIMO
channel and study the novel class of receivers termed Integer-Forcing Linear Receivers
inspired from the Compute-and-Forward strategy.
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Chapter 5

Distributed MIM O channel

of the successful wireless communication systems due to their potential to in-

crease the spectral efficiency and the transmission data rates. Several wireless
standards such as the LTE and the WiMAX (IEEE 802.16) have incorporated MIMO
communications to enhance the network performance and take advantage of the diversity
brought by multiple antennas. In this context, we introduce the last network topology
we aim to investigate in this work, the Distributed MIMO channel. In this network,
as shown in Figure 5.1, M single antenna source nodes Si;::i; Sy desire to communi-
cate their messages to a common destination D equipped with N > M antennas. Data
streams are independently encoded at the sources and sent concurrently to the destina-
tion which implements a MIMO decoder to recover all the original information messages.

M ultiple antenna technologies play a fundamental role in the design of most

Has W N antennas

Destination D
Wants W1, W

Figure 5.1: Distributed MIMO Channel.
In practice, this network can be used to model any M x N MIMO system with indepen-

dent encoding at the transmit antennas (e.g., V-BLAST setting) or a communication
from different single antenna wireless devices to a common multiple antenna receiver, a
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scenario we encouter in cellular uplink networks with multiple antenna base stations.

What concerns us in this network topology is the design of the MIMO decoders.
Particularly, we aim to investigate a new architecture of linear receivers termed Inte-
ger Forcing Linear Receivers (IF). Inspired by the Compute-and-Forward protocol, this
architecture has been recently proposed by Zhan et al. in [10-12] and is based on its
essence of the use of structured codes for channel coding. Briefly, source nodes use in-
dependently a same lattice code to encode their messages. At the receiver, instead of
creating interference-free independent data streams as is the case of the traditional linear
receivers (Zero-Forcing (ZF) and Minimum Mean Square Error (MMSE) detector), both
interference and code’s linearity are exploited to decode integer linear combinations of
the original codewords. Upon decoding a full rank set of such combinations according
to an integer full rank coefficient matrix, original messages can be recovered by a simple
matrix inversion with rates that go highly beyond those attainable using the traditional
linear receivers.

Based on the Compute-and-Forward original framework, the potential of the new IF
architecture has been proved under a theoretical capacity achieving perspective and its
benefits have been also demonstrated in the case of inter-symbol interference channels
[129, 130] and multiuser MIMO channels [131]. Motivated by the theoretical promising
gains of the IF linear receivers, we aim in this work to go one step further towards
practice by developing practical and efficient algorithms to design the IF receivers pa-
rameters and providing an evaluation of their error rate performance using finite length
nested lattice coding schemes. As a starting point, we describe in section 5.1 the sys-
tem model and assumptions. For ease of presentation, we will consider the real-valued
MIMO channel case. Extension of the results follow easily using the complex-to-real
transformation described in chapter 2. Following, in section 5.2 we review the basic
optimal and suboptimal MIMO decoders studied in literature, namely the ML decoder,
linear receivers through the ZF and the MMSE and lattice reduction-aided linear re-
ceivers. The integer forcing architecture is introduced in section 5.3. For this decoders,
we will review the main information theoretic results concerning the achievable rate and
Diversity-Multiplexing Tradeoff (DMT). Based on the sum rate maximization criterion,
we develop in section 5.4 novel algorithms to find the optimal IF receivers parameters.
Performance of our methods are numerically evaluated and compared to the traditional
MIMO decoders in section 5.5 using a finite length nested lattice coding scheme. Finally,
the results of this chapter are summarized in a concluding section.

5.1 System Model and Assumptions

Each source S; in the network delivers a data stream that can be represented as a
length—k message w;j drawn i.i.d from a prime size field Fp according to a uniform
distribution. In order to be able to use an Integer Forcing linear receiver, two key
requirements need to be satisfied: a same nested lattice code is used for channel coding
at the sources and encoding of the data streams is done independently. Accordingly,
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each source §j is equipped with a separate encoder & : Fy — A that implements the
one-to-one mapping [] to map the message W; to an n—dimensional lattice codeword
Xj from the nested lattice A = (Af; Ac) involving a fine lattice Ap C R" and a coarse
lattice Ac C R". Encoded vectors satisfy a symmetric power constraint given by:

10 [
E xil? <P (5.1)
for P> 0 and i = 1;:::;;M . Each of the sources transmit at the same message rate
k
r=_ logp (5.2)

And the total rate of the studied network is given by:
Rtot =Mr (53)

After encoding their messages, the sources transmit their codewords simultaneously
to the destination. Assuming a perfect synchronization between the transmitters, the
MIMO channel ouput at the destination can be expressed as:

Y =HX +Z (5.4)
where the matrices
2 . 3 2 ; 3 2 ; 3
X1 hi ) Z; )
x =9 : LerMn . H =9 : LerVM 79 : £ cRNON (5.5)
X hi zy

denote respectively the matrix of the transmitted codewords, the MIMO channel matrix,
and the additive Gaussian noise matrix. The vectors ht, = [hm1 hm2 = hyn] for
m = 1;::;; N represent the fading coefficients from the sources to the receive antenna
m and have entries generated i.i.d according to a normal distribution A (0;1). The
vectors Zmfor m = 1;::5 N are generated i.i.d according to the normal distribution
N 0; [Pl . In addition, we consider a slow fading channel model for which the channel
realizations remain constant during the entire transmission of a codeword and we assume
that channel state information is available only at the receiver. Additionally, we denote
by U= UPZ the Signal-to-Noise Ratio.

According to the matrix notation in (5.4), received signal at the mt" antenna can be
expressed by:
yi, =hi X + 2z (5.6)

The destination is equipped with a decoder D that generates estimates of the original

messages such as,

DRV EM (5.7)
Y »D(Y)=(Wq; W)
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A decoding error occurs if Wi # wj; Vi = 1;::;; M. We say that the sum rate Rscheme (H)
is achievable using the decoding technique Scheme?, if for any " > 0 and n large enough,
there exist encoders £1;::5; Em and a decoder D such that:

(Wl;:::;WM)‘l:D(Y)

Pr((Wq;inWn ) # (We;ihwy ) < [ (5.9)
and the total rate Rior is lower than Recheme (H ),
Riot < Rscheme (H) (5.10)

The message error probability at the destination is defined as:
!

M
Pe="Pr Wi #Wi (5.11)
i=1

In addition to the rate and error probability performance, we will review the Diversity
Multiplexing Tradeoff of the studied MIMO receivers including the new IF architecture.
The DMT characterizes the asymptotic performance of a MIMO transmission scheme
[132]. We say that a family of codes achieve a multiplexing gain r and diversity gain d
if the total rate R and the average error probability Pe satisfy:

R(SNR) . Pe(SNR)

I St 7N < —d 12
sNRi'1 log (SNR) = ' ' snRi'1 log (SNR) = (5:12)

5.2 Traditional MIM O receivers

In this section we provide a brief overview of the most known decoding techniques,
starting with the optimal ML decoder, then proceeding with suboptimal linear receivers
and lattice-reduction aided linear receivers.

5.2.1 ML decoder

Traditional decoders for MIMO systems aim to decode original codewords separately.
The optimal approach is the joint Maximum Likelihood decoding illustrated in Figure
5.2.

Implementing the ML criterion, the decoder D solves, jointly, for the most likely set

of codewords X1;:::; Xy composing the matrix X according to the ML metric:

~

X = argmin Y —HX|? (5.13)
(Xl;:::;LP(tM ) etA“ﬂ
X = Xj Xy
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Z3
n
Wi & X1 €R % Y1
H : D | Wi o5 Wy
ZN
X R"
Wn——f Em LIS —>C—|5y—N>

Figure 5.2: MIMO channel with linear independent encoding and ML joint decoding.

After solving for the original codewords, the estimated vectors are mapped back to the
finite field to recover estimates on the original messages from:

Wi =0"1%) ;i=1:5M (5.14)
The achievable sum rate under ML decoding is given by [133]:

1
-1

O [
= i ———logdet Ig+ [HgH! 5.15
S,f:EIZI;?:;Mg|S|2 & s st's ( )

RmL (H)

Where Hg denotes the submatrix of H constructed from the columns of indices in
S C{1;2;::;;M }. Notice that the achievable sum rate in this case is upper bounded by
the channel sum capacity given by:

M O O
C=7logdet In +HH! (5.16)

which is achievable with joint encoding at the transmit antennas.

For what concerns the DMT, we know from [132] that, for MIMO systems with
independent encoding of data streams at the transmit antennas, the optimal DMT is
obtained under ML decoding and is given by:

0 r L
dML(I’)ZN 1—M (517)

where r € [0;M ].

ML decoding offers optimal performance. However, its main drawnback is the high
complexity which increases exponentially as the length of the transmitted codewords
and the number of antennas increase. Several ML decoding algorithms are proposed
in literature to reduce this complexity [88, 134—137]. The most known approaches use
sequential decoding such as the Sphere Decoder we consider in our implementation.
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5.2.2 Linear Receivers

Motivated by their low computational complexity, linear receivers such as the Zero-
Forcing and the Minimum Mean Square Error detectors ar deployed in wireless systems
limited by processing and computation capabilities. Based on such decoders, the receiver
creates first interference-free data flows then decodes each information stream indepen-
dently as depicted in Figure 5.3.

Z;
n _
W1 51 XlER H(i)& Y1 'Dl —>W1
H B
ZN
n -
W Em Xm €R —>(—+Dy—N> Yu Dwm |—Wm

Figure 5.3: MIMO channel with linear independent encoding and Linear Receivers.

Interference elimination is made through a projection of the channel output Y with a
preprocessing matrix B € RM N gsuch that:

Y =BY =BHX +BZ (5.18)

The outputs ¥1;:::;;¥m of the projection step are then treated separately by the inde-
pendent decoders D1;::;; Dy . Each input vector Y, is treated as a noisy version of the
codeword X, from which an estimate X, is decoded and mapped back to the finite field
to get an estimate of the message Wy, such that Wy, = [1'1 (X).

The objective of the processing step in this case is to eliminate the interference
generated by the MIMO channel. In the case of the ZF receiver, the preprocessing
matrix B zg is equal to the pseudo-inverse of the channel matrix given by:

Hlet

Bz = H'H (5.19)

The noise amplification induced by the ZF preprocessing leads to performance degrada-
tion. In order to overcome this shortcoming at low SNR values, an MMSE receiver can
be applied. In this case, the projection matrix is given by:
N Una
Bumse = H' HHt+1|N (5.20)

Although simple, these linear receivers have poor performance in tems of both achievable
sum rate and DMT [138]. Let bt, denote the mt™" row vector of the preprocessing matrix
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B. Then, the achievable rate for the mt" data stream under linear receivers is given by:
!

1 B H 2
Rmitin(H)= =1 1+ I 5.21
miin (H) =5 lo8 L+ e 07 b |2 (5:21)

The achievable sum rate is dictated by the minimum achievable rate over the M streams
and is given by,

For what concerns the DMT, it is showed in [132] that the ZF and MMSE linear
receivers achieve the following diversity:
[l r Hl
diin(r) = 1— — 5.23
Lln( ) M ( )

for r € [0;M].

5.2.3 Lattice Reduction-aided Linear Receivers

In order to enhance the performance of linear receivers, lattice reduction (LR) techniques
can be used as a preprocessing step to improve the orthogonality of the channel matrix.
A lattice reduction of H gives a near orthogonal matrix H, € RN'M related to the
former by: Hy = HT with T € ZM"M is a unimodular matrix, i.e., of integer entries
and determinant equal to £1. Given this relation, the channel output can be written as:

Y =HX +Z (5.24)
=HT)T X +2Z
=H, T"X +Zz
Let U = T"1X, then we get
Y=HU+2Z (5.25)

Given the integer nature of the matrix T, row vectors of the matrix U are also codewords
from the original fine lattice Ap. Accordingly, solving for X in the system (5.24) is
equivalent to solve for U in the system (5.25) with the near-orthogonal equivalent channel
matrix H,. After decoding U, estimate on the codewords matrix is deduced by the
relation X = TU.

For LR-aided linear receivers, the decoding is similar to the detection performed
using simply linear receivers with two main differences: the channel matrix is the new
reduced matrix H,, and the decoding is made with respect to the codewords matrix U
from which the original matrix X are deduced. Accordingly, for LR-aided ZF decoding,
the projection matrix is given by:

L
BLRuZF— HH, H (5.26)
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In the case of LR-aided MMSE receiver, the processing matrix is expressed as:
:tmltu 0, i
Blrommse = T'T "Hy H T'T “H;+ I (5.27)

The achievable rate for the mt" data stream for the case of LR-aided linear receivers is
then given by:

1 Ol bymHy |2
RmiLroLin (H) = -log 1+ P (5.28)
" " 2 [ bhm 2+ g [ bEiH (2

where bf.., denotes the m'" row vector of the projection matrix after lattice reduction.

The achievable sum rate in this case is given by,
_____ Rm:LroLin (H) (5.29)

RiroLin(H) = .

Several lattice reduction techniques exist in literature. For what concerns our study,

we consider the low-complexity LLL reduction [93]. In our M x N MIMO channel

settings, this technique allows to achieve the full receive diversity of [139]
(5.30)

diriLin =N

We provide in Appendix 5.F a detailed description of the LLL reduction algorithm.

Integer Forcing Linear Receivers

5.3
5.3.1 Architecture Overview
- Z;
n ~ A
Wis & X1 €R éh Vi1 D, a1
H B acr
M Wp
ZN
n ~ A~
Wna Ey Xm €R éyN Ym Dy Um

Figure 5.4: Block diagram of IF' linear receivers.

In both linear receivers and LR-aided linear receivers, the interference provided by
the channel is elimintated by creating and decoding interference-free independent data
112
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streams at the receiver. But what if this interference was exploited? The philosophy
of the new Integer Forcing Linear Receivers architecture is exactly to take advantage
of the linear structure of the lattice codes to make the interference a boosting charac-
teristic of the wireless MIMO channel. The idea is to decode at the destination integer
linear combinations of the original codewords including both desired and interfering sig-
nals. Given the linear structure of the used lattice codes, these combinations are also
codewords from the same lattice. After decoding a full rank set of linear combinations,
original codewords are recovered by a simple matrix inversion and the original messages
are estimated via a simple mapping of the decoded codewords to the finite field.

For this purpose, the receiver selects a real matrix B ¢ RM "N

rank matrix A € ZM "M and performs the following steps:

and an integer full

1. Scaling of channel output: the first processing step under the IF design is to
scale the received signal the preprocessing matrix B such that

Y =BY =BHX +BZ=AX +(BH —A)X +BZ (5.31)

This step is necessary to move the channel output closer to the desired full rank set
of integer linear combinations of the original codewords with coeflicients matrix A .
In the resulting scaled signal, the equivalent channel matrix is A and the effective
noise term is composed of the scaled channel additive noise and the approximation
error of the channel matrix by the integer coefficient matrix. The m" output of
the scaled signal can be written as,

gt t O t t b t
ut

where a, and bl correspond respectively to the mt" row vectors of the IF coeffi-
cients matrix A and the preprocessing matrix B. At this level, given the integer

nature of the vectors am, the combinations Uy for m = 1;::;; M correspond to
points from the fine lattice Afg.

2. Decoding of linear combinations: the outputs yi;::;;¥ym of the scaling step
are afterwards passed through separate decoders Dj;::;; Dy . In this case, decoder
Dm treats interfering signals as useful information and attempts to decode the
combination u!, = al{,X. Given that these desired combinations correspond to
points from the fine lattice, the decoders use the quantizer Q. to get estimates

of Uy such that:

LAlm = Qup (ym) (5-33)

Note that in this case, the original codewords are not decoded separately. The
decoders recover only linear combinations of them.

3. Recovering original codewords: the decoded combinations (q;U2;::;; Un are
then gathered to form the system U = AX. Given the full rank matrix A, this
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system is solved to decode the matrix of the original codewords as
X =A"1U (5.34)

The row vectors of the obtained matrix form estimated of the original codewords
X4 xg,

4. Recovering original messages: the decoded vectors are finally mapped back to
the finite field to get estimates of the desired original messages as

Wi =01 i=100M (5.35)

These decoding steps are summarized in the block diagram in Figure 5.4.

Remark 5.1. The ZF receiver and the Lattice Reduction-aided ZF can be seen as
particular cases of the Integer Forcing architecture. Given the projection matrices B z¢
and BRrizF, it is easy to see that these decoders match the IF design with equivalent
channel matrices giveny by Azr = Iy and A rizr = T 1 in the case of the ZF and the
LR-aided ZF respectively. Through an example, authors in [11] show the suboptimality
of restricting the equivalent channel matrix to be unimodular. As a proof of concept, we
will implement in this work the LLL reduction and analyze its performance compared
to the Integer Forcing receivers.

5.3.2 Achievable Rates

The fundamental contribution brought by the Integer Forcing Linear receivers is in-
formation theoretic and amounts to enabling higher rates that go highly beyond those
permitted by the standard linear receivers. The acheivable sum rate under the IF archi-
tecture proved by Zhan et al. showed in [11] is stated in the following theorem.

Theorem 5.1. Consider the MIMO channel with channel matric H € RN"M and a
decoder operating with the Integer Forcing architecture. Then the following sum rate is
achievable:

Rie (H)ZM minM Rm;”:(H;bm;am) (536)

m=1;::;
with 0 [
Rm:iF (H;bm;am) =

1
3 log* (5.37)

I'bf (12 +01 biH —aly |12

For any fized preprocessing matriz B € RM "N of row vectors bt,;m = 1;::; M and any
full rank integer matriz A € ZM UM of rows a}n m=1::M.

An upper bound to the achievable sum rate using integer forcing linear receivers is
found in [11] according to:

M O , U
Rigus = -5 log 14 [Lax (5.38)
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where [jhax denotes the maximal singular value of the channel matrix H. In addition, we
know from [11] that the achievable rate is equal to zero for coeflicient vectors satisfying:

lamll > 1+ (T2 (5.39)

5.3.3 Diversity Multiplexing Tradeo!(]

In addition to the rate benefits offered by the new integer forcing architecture, the
advantage of this design manifests in terms of the Diversity Multiplexing Tradeoff. Zhan
et al. showed in [11] that integer forcing linear receivers allow to recover the optimal
DMT as stated in the following theorem.

Theorem 5.2. Consider the MIMO fading channel with M transmit antennas and
N > M receive antennas. The achievable Diversity Multiplexing Tradeoff under the

IF architecture is given by: 0 0

die (1) = N 1—ML (5.40)

forr e[0;M].

5.3.4 Design criteria for Optimal IF parameters

The two fundamental parameters of the IF architecture are the preprocessing matrix
B and the full rank integer matrix A. The receiver has the freedom to select them,
however, the choice needs to be carefully done since these parameters play a key role in
the determination of the total achievable rate.

In order to build the IF architecture and find the best preprocessing matrix B and
the IF coefficients matrix A, authors in [12] propose a design criterion based on the
maximization of the total sum rate R g (H) according to:

(B;A) argmax Rie (H) (5.41)
BecRMN
AczZMIM-I A £

opt —

Given the rate expression provided in (5.37), this optimization problem is equivalent to
consider:
Hl [l

(bm;am) M argma in log" -
m:am = —argmax min
opt jAjg0 mM=LisM [ bt 12 +0] bt H —at, |12

(5.42)

Based on this, the optimal preprocessing vector by for a fixed integer coefficient vector
am, was found in [12] as (see Proof in Appendix 5.G.1):

u Uoy

1
bh.opt = amH' HH'+ Iy (5.43)

m;op
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Accordingly, the optimal preprocessing matrix B is given, for a fixed integer full rank

matrix A by, 0
Uoa

1
Bopt =AH' HH'+ —Iy (5.44)
By replacing in the expression of the rate Ry:.jg (H;bm;am) in (5.37) the preprocessing
vector by its optimal value, we obtain (see Proof in 5.G.2):

_ _1 Dt t N 4

where V. € RNUN s the unitary matrix whose columns are the right singular vectors of
H and D € RM"M js a diagonal matrix with elements

(
1 . .
—— if i <rank(H
Dij= 7~ ) (5.46)
1 if i > rank(H)
where [} is the i singular value of the channel matrix H. The maximum achievable
sum rate is then equal to:

1
Rig=—max min log —————
IF 2 jAjBOM=1;:;M & al,VDV'tany

(5.47)

The optimal coefficient vectors are then selected such that the total achievable sum
rate Ry is maximized under the full rank condition of the integer coefficient matrix A.
Taking into account the conditions in (5.39) the optimal integer vectors aj;::;;ay are
solution of the integer optimization problem stated in the following lemma.

Lemma 5.1. The optimal coefficients vectors for the integer forcing linear receivers are
found by the mazimization of the achievable sum rate under the full rank condition such
that

(@15 5am )opt = argmin _max al,Gan (5.48)
[Alzo M
lam 12 < 1+ [
where
G =VDV! (5.49)
is symmetric definite matriz in RM M |

Proof. The proof follows from the fact that searching for the integer linearly independent
vectors ap;::;;am such that the sum rate in (5.47) is maximized is equivalent to find the

vectors am(m = 1;:::; M) for which the minimum of the function log m is

maximized, which is also equivalent to seck the integer linearly independe vectors such
that the maximum of the function af,V DV 'ay is minimized. O
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This optimization problem was only proposed in literature and no methods to solve
it have been investigated so far. In the following section we aim to propose practical al-
gorithms that allow to find the optimal linearly independent coefficient vectors such that
the total sum rate is maximized. Performance evaluation of the developed algorithms is
addressed afterwards.

5.4 Elcient IF Design Algorithms

Solving the optimization problem in (5.48) consists in finding the linearly independent
integer vectors am;m = 1;::;;M such that the maximum value of the quadratic form
Q(am) = al,Gay, is minimized. Our proposed search method is based in two steps as
follows:

Step 1 : the objective of this first step is to enumerate the top M nax integer vectors
t1; 0 tM e that minimize the quadratic form Q in a set € (| Q |= Mmax). This enumer-
ation step is performed using the Fincke-Pohst algorithm as discussed later. Parameters
of the Fincke-Pohst enumeration, for instance the sphere radius C defining the search
space, are set up such that we have Mpax > M.

Step 2 . Given the candidate set €2, we pick up the M best linearly independent
vectors am €  for m = 1;::;; M such that the corresponding maximum value of Q(an)
is minimized. For this purpose, we order first the set ) into (2gq based on the lengths
of the vectors t1; 15 tm,,., such that

Q(t1) <1< Q(tMma)

Then, given the ordered set (orq, we select the top M linearly independent vectors
t1;::5tmw and form the searched vectors as a; = tj;i = 1;::;;M . In the meantime, the
value of the sphere radius C of the Fincke-Pohst algorithm is adjusted to guarantee that
| S |> M (repeat the search of the set €2).

For what concerns the enumeration step, we adopt the Fincke-Pohst algorithm to
limit the search space to the non-zero integer vectors t such that t'Gt < C where C > 0
is a fixed parameter.

Let G = R!'R be the Cholesky decomposition of the definite positive matrix G where

R € RM"M g an upper triangular matrix. Let R;jj;i;j = 1;::;;M denote the elements
of the matrix R and t = [t; t I ty ]t. Then the metric t'Gt is equivalent to:

0 1,
b4 b
t'Gt = |Rt]?= @ Rijtj + RiitiA
i=1 j=i+1
0 2
W X
= i@+ A (5.50)
i=1 j=i+1
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where pij = R%;i = 1;:5 M, pjj = I;—‘iji;j =i+ 1;:;M. Then, solving for t'Gt < C for

I
C > 0 is equivalently to solve for:

0 1,
b pd
pi @ + pitA <C (5.51)
i=1 j=i+1
Using (5.51), we derive bounds for each component tj;i = 1;:::;; M for the searched vector

t. We start our search with the M " component. Refering to (5.51) and given the integer
nature of the searched vector we have the following bounds:

LBy <ty <UBnm (5.52)
with $ s %
C
LBy = -— (5.53)
Pm m
&S '
C
UBy = (5.54)
Pmm

Once the value of ty is chosen, we proceed with evaluating the (M — 1)'" component
tm 1. Refering to (5.51) we can write:

Pyt + P M o1 (v o1+ Puoam tm )2 < C (5.55)
which leads to the following bounds:
LBmo1 <tuo1 <UBmma (5.56)
with
$8 o—— %
C - t
LBmi1= — M—Pm RERYALY (5.57)
Pv oM o1
& '
C - t2
UBmi1= M—DM SERYAYY (5.58)
Pv oMo

Note that the bounds for the component ty 1 depend only on the sphere radius C
and the values of the previously evaluated component ty . Then, we proceed with the
evaluation of the remaining components for i = M — 2;:::;1 in a similar fashion. Based
on (5.51) we derive similar computation to the following bounds for any element t; for
i=M —2;::1:

‘é 0 0 15t
o1 X pd
-t — - pn @ + pitA A — pijtj <t
Pii I=i+1 j=1+1 j=i+1
‘é 0 0 151
01 X X
— - pi @t + ptiA A — pijtj >t
Pii I=i+1 j=1+1 j=i+1
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Let

hd
Si = Pij ¢
j=i+1l
0 1,
hd hd
T =C - pi @y + pit A =Ting+pi (S +t)?
I=i+1 j=l+1

then the bounds are equivalent to
LB; <tj < UB; (5.59)

with
$ s % & '
Ti Ti

Pii Pii

The components ty ;ty o1; 5t of the searched vector t are then selected as follows:
first we choose the coefficient ty satisfying the bounds requirements in (5.52)-(5.53). For
this value, we choose a coeflicient ty 11 according to the bounds requirements in (5.56)-
(5.57). If such coefficient does not exist, we repeat the previous step and select another
coefficient ty . The process is repeated until we find the two coeflicients ty and ty 1
fulfilling the required conditions. When both coefficients are found, we proceed with the
same fashion to search the coefficient ty 2 according to the bounds (5.59)-(5.60) and
so on until we find the M components ty ;tm o1; 3 t1 meeting the desired conditions on
the bounds. A candidate vector t = [ty tm 1 i tl]t that satisfies t'Gt < C is then
obtained. The value of the sphere radius C is then updated and the search process is
repeated to record all the non-zero vectors in 2. For what concerns the choice of the
inital value of the sphere radius, we fix this parameter to:

C = min (diag (G)) (5.61)

5.5 Numerical Results

We address in this section performance evaluation of the studied MIMO decoders. We
consider the case of M = N = 2 with two sources and a 2-antenna destination. Monte-
carlo simulations have been carried out to evaluate both average achievable rates and the
message error probability at the destination for the different studied receivers: the joint
ML, the ZF and MMSE, the LLL-reduced ZF (LLL+ZF), LLL-reduced MMSE, and the
integer forcing linear receivers using our proposed algorithms. Numerical results concern
the nested lattice coding scheme described in chapter 2 in Example 2.1.

Starting with the achievable rates plotted in Figure 5.5, we first point out that LR-
aided linear receivers perform better than the linear receivers. A gain of 5—dB of the
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Figure 5.5: Message Error Rate for the Distributed MIMO channel.

LLL+ZF over the ZF is reported for a target rate of 2 bits/channel use. In addition, nu-
merical results confirm that the Integer Forcing receiver outperforms the ZF and MMSE
and even Lattice-Reduction aided linear receivers. The proposed algorithm allows to
achieve a gain of 1:4dB over the LLL4+MMSE and 2dB over the LLL+ZF for a target
rate of 3 bits/channel use. This result confirms the suboptimality of restricting the
equivalent channel matrix A in lattice reduction aided receivers to be unimodular. Fur-
thermore, the proposed algo@thm allox@ to approach the upper bound of the Integer
Forcing receiver given by log 1+ (12, , and reduces the loss to 1:4dB. However, com-
pared to the ML decoder the proposed architecture presents a considerable gap to the
joint ML that overtakes 6dB for SNR values greater than 16dB.

Now as far as the error probability is concerned, same deduction can be made as il-
lustrated in Figure 5.6: Integer Forcing Linear receivers outperform both linear receivers
and LR-aided linear receivers. For a codeword error rate equal to 10”2 the gain of the
IF over the LLL+ZF and LLL+MMSE is 5dB and about 17dB over the ZF. The gap
between the proposed IF algorithm to the ML joint decoder counts 5dB. Numerical re-
sults demonstrate the effectiveness of our algorithms and confirm the theoretical findings
regarding the potential of the new IF architecture.
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Figure 5.6: Average achievable rates for the distributed MIMO channel.

5.6 Conclusion

This chapter was devoted to study the distributed MIMO channel. In particular, we
investigated a new architecture of MIMO receivers termed Integer Forcing Linear Re-
cetvers. This design is based on the premise of using structured codes at the transmit
antennas in an independent fashion, i.e., without joint encoding at the sources. We
reviewed the basic theoretical results regarding the IF receivers and developed novel
algorithms to design the optimal parameters of the IF architecture. Numerical results
are a proof of concept of the outperformance of the IF-based MIMO receivers over the
existing linear receivers and lattice-reduction aided linear receivers.

Future research directions include the combination of the integer forcing receivers

design with Space-Time Coding.
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Conclusion and perspectives

Conclusion

Motivated by the emergence of Physical-Layer Network Coding as a new tool for multiple
access interference management, this thesis was dedicated to the analysis, design and
performance evaluation of physical-layer network coding-based communication strategies
in multiuser wireless communication systems including multiple access channels.

A first part of the thesis was devoted to study the Compute-and-Forward protocol in
the basic fading multiple access channel. We made an overview on the encoding scheme
based on nested lattice codes, and the decoding scheme based on suboptimal minimum
distance decoding. Then, we investigated the optimal solution to design network codes
for the CF. By maximizing the achievable rate at the receiver, we showed that the opti-
mal solution is related to a shortest vector problem that can be solved using the complex
LLL reduction or the Fincke-Pohst algorithm. Further, we introduced the ergodic rate
for the CF operating in fast fading channels and proposed a novel lower bound using
the complex LLL reduction. The same tool was used to derive a novel upper bound
on the outage probability for the CF operating in slow fading channels. Besides, we
investigated optimal decoders for the CF protocol. Starting with the Gaussian multiple
access channel where the optimal decoder is based on the maximum a posteriori (MAP)
criterion, we developed first a new MAP decoding metric. Then, we showed that MAP
decoding is equivalent to MMSE-GDFE preprocessed minimum euclidean distance de-
coding. Given the new metric, we developed a practical decoding algorithm and showed
by numerical simulations its effectiveness and gains over the standard decoding scheme
for the CF protocol. For what concerns the fading channel case, we studied the optimal
maximum likelihood (ML) decoding. Starting with the multi-dimensional lattice case,
we studied the ML decoding metric and showed that the optimal ML solution is related
to solve a system of simultaneous diophantine equations. Then, we provided a deeper
analysis for the one-dimensional integer-valued lattice case. We developed the decoding
metric and studied theoretically and numerically its behavior as function of the chan-
nel fading coefficients, the network code vector coefficients and the signal-to-noise ratio.
Moreover, we proposed an approximation of the ML decoder which reduces to solve an
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Inhomogenous Diophantine Approximation of reals and proposed a practical algorithm
based on the Cassel’s algorithm. Numerical results evaluating the error performance of
the proposed algorithm demonstrate its gain over the traditional decoding scheme for
the CF particularly at high signal-to-noise ratio range.

A second part of the thesis was dedicated to study the implementation, design and
performance evaluation of PLNC strategies, including the CF and the Analog Network
Coding in practical multiuser communication network topologies including multiple ac-
cess channels. The first network model we studied is the two-way relay channel consid-
ering both Gaussian and fading channels. This network is the most known and most
studied in the Network Coding literature. Starting with the Gaussian model, we in-
vestigated the end-to-end communication considering a relay node operating with the
ANC, the Denoise-and-Forward and the CF. We analyzed the error rate and achievable
rate performance of these PLNC strategies. Our results showed that these techniques
achieve better performance than the traditional relaying strategies that avoid multiuser
interference by transmission time scheduling. In addition, among the three studied tech-
niques, the CF is the best one. For what concerns the fading channels case, we proposed
a new lemma stating a novel design criterion for the CF operating in the TWRC, then
we proposed a practical search algorithm to design efficient network codes based on the
Fincke-Pohst enumeration. Our numerical results demonstrated the effectiveness of our
approach and show the outerpformance of the CF over the ANC. The second network
topology we have been interested in is the Multi-Source Multi-Relay channel. In con-
stract to the TWRC, physical-layer network coding strategies have not been studied in
this network model. In this thesis we studied the end-to-end communication in this
topology where the relay nodes operate with PLNC. In particular, we analyzed the cases
of the ANC and the CF. For the first strategy, we analyzed the processing at the relays
and the decodability condition et the end destination. Similarly, for the CF we studied
the condition on the network code vectors for successful decoding at the destination,
based on which we derived a novel lemma on the optimization problem for the selection
of the optimal network codes for the CF. For practical reasons, we proposed Fincke-
Pohst-based algorithms to solve for the optimization problem. Our numerical results
evaluating the error rate and the achievable transmission rate at the destination demon-
strate the effectiveness of our algorithms and show that the CF outperforms the ANC
strategy.

The third and last part of the thesis was dedicated to the distributed MIMO channel.
In this setting, we were concerned with the design of MIMO decoders. In particular, we
studied a new architecture of linear receivers termed Integer Forcing (IF') linear receivers.
This new design has been proposed recently in literature. Inspired by the Compute-and-
Forward framework, the IF receivers aim to take advantage of the interference provided
by the wireless medium to first decode a full rank set of integer linear combinations of
the original codewords assumed to be carved from the same lattice (i.e., users sharing
the same wireless channel use the same channel coding scheme). Then, given such
combinations according to an integer full rank matrix, original source messages can be
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recovered by a simple matrix inversion. Motivated by the theoretical potential of these
decoders, we were interested in this work in the practical implementation of the IF
receivers. We developed practical and efficient algorithms to design the IF parameters
and provided a numerical evaluation of their error rate performance using practical
finite length lattice coding schemes. Our simulation results confirm the outperformance
of this new architecture over the traditional MIMO systems linear receivers and show
the reliability of our developed approach.

Perspectives

For future, we propose the following research directions:

Integer Forcing architecture combined to Space-Time Coding IF linear re-
ceivers are proved to offer significant gains in terms of DMT and error probability and
to outperform existing linear receivers provided that independent linear encoding is
performed at the transmit antennas. For this line of research we aim to explore the com-
bination of the IF architecture with lattice-based Space-Time Coding and investigate
the possible benefits in terms of decoding complexity and diversity gains.

PLNC in Optical Communications PLNC is proved to significantly improve the
end-to-end performance in wireless communication networks. In this line of research, we
aim to explore the possible gains of this new coding strategy in optical networks that
become popular and rapidely developed to provide to the end users high data rates with
the best quality of service.

PLNC for Distributed Storage Distributed storage and cloud computing solutions
are among the main applications that started to benefit from Network Coding. With
the increasing demand for cloud services, it is of fundamental importance to develop
robust, efficient and secure storage techniques. In this line of research, we aim to explore
reliable distributed storage approaches based on Network Coding at the physical layer
using structured codes.
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Appendices

5.A Lattice Delnhitions

We provide in this appendix the basic definitions in lattice theory. For more details and
deeper analysis in this topic, we refer readers to [83, 84].

Delnition 5.1 (Lattice). An n-dimensional lattice A is a discrete group of rank p,
p < n of the euclidean space R". It is the set spanned by the p linearly independent
vectors Vq;::5;Vp of R™. Explicitly, A is given by the set of integer linear combinations

as: ( 50 )

A= x= avVvi;, a €Z
i=1
p is called the lattice dimension and the vectors vi;::;Vp represent a non-unique basis
of the lattice A. Any vector X € A can be written in the form:

X=Ms;se2zZ"

where M is called a generator matrix of the lattice. The main characteristic of A is
linearity, i.e. for any a;b€ Z and X;y € A, ax +by € A. The matrix given by G = M 'M
is called the Gram matrixz of the lattice.

Delnition 5.2 (Fundamental Volume). The parallelotope consisting of the points:
thva+ i+ Lpvp, 0 0i< 1

is called the fundamental parallelotope or fundamental region for the lattice A. The fun-
damental volume vol(A) of the lattice 6 is the volume of the fundamental parallelotope

and is given by: vol(A) =|det (M) |= " det (G).

Dellnition 5.3 (Lattice Quantizer). A lattice quantizer @ is the mapping that takes
a real vector X to the nearest point in A in Euclidean distance as

Q- (X) = argmin || x — [J]|
20
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The set of points that quantize to a given lattice point is called the Voronoi Region.
The fundamental Voronoi Region V', of a lattice A corresponds to the voronoi region
of the zero vector.

Delnition 5.4 (Modulus operation). The mod — [ operation returns the quantization
error with respect to A. For x € R": [Xx]modA =X — @ (X).

Delnition 5.5 (Nested Lattice Codes). A nested lattice code A is the set of all points
of a lattice A (termed the Fine lattice) that fall within the fundamental Voronoi Region
of a lattice Ac (termed the Coarse lattice) as:

A= {DZ [DF] modAc; [k € AF}
The rate of a nested lattice code is given by:
vol(V.)
vol(Vi )

Dellnition 5.6 (Minimum Distance). The minimum distance dmin of a lattice A is the
minimum distance between any two distinct lattice points from A. It is equal to the
length of the shortest non-zero lattice vector as:

dmin = min{[[x —y| :x #y € A} = min{[[x[| : x € A\ {0}

Delnition 5.7 (Moments). The second moment of a lattice A is defined as the second
moment per dimension of a uniform distribution over the fundamental Voronoi region V

1 1
r=—log|Ag NV = —1
nOgI FNVel - log

as: 1 Y4
5= nvol(V) v I P
The normalized second moment of the lattice A is given by:
uZ
G(A) = .

(vol(1)="

Delhnition 5.8 (Quantization goodness). A sequence of lattices A(M C R" is good for
mean-squared error quantization if:

1
2le
Delnition 5.9 (AWGN goodness). Let z denote-an n—dimensional random vector
generated according to the Gaussian distribution A” 0; (I, . The volume-to-noise ratio
of the a lattice A is given by:

U U
lim G A(M =
nl 1

(vol(V))>™"
2

The variance [ is selected such that Pr(z € V) = Pe. A sequence of lattices A(" is
Tim AM:P. =20 VPee (0;1)

and the probability of error decreases exponentially in n for fixed volume-to-noise ratio
greater than 2[e.

Asma Mejri 128



5.B. COMPUTE-AND-FORWARD

5.B Compute-and-Forward

5.B.1 Optimal scaling factor for the CF

In this appendix we will show that the computation rate in (2.23) is uniquely maximized

by the MMSE scaling factor
"h%a

Lopt = ———7—5 5.62
RSN 502

For this purpose, define f (1)) as
U Uqe

f(0) = =|| th —a\|2+—: (5.63)

24+ 0] h—a|?

then the computation rate in (2.23) is equal to Reomp = log™ (1=f (1J)). Maximizing the
computation rate is equivalent then to minimize f with respect to U for a fixed vector
a. We have the following:

f(0) = Lo+ (th —a)’ (Lh — a)

To find the argument which minimizes f we compute the derivative of this function with
respect to [

@) 20 o 2
@_U—i_h (_h a)+(_h a) h
= % +0h’h —h%a—h’h —a’h

O [
=2 —+1h’h—h’a

The optimal scaling parameter satisfies %{;"tt) = 0 which is equivalent to:

o h?a L ‘h%a
N S R

This ends the proof.

5.B.2 Maximum Computation Rate

In this appendix we will show that the optimal computation rate corresponding to the
optimal MMSE scaling factor is equal to:
I
Ll o [ 01’
Ol h%a|?
R h;a) = log* al|? — _dfh'a]®
comp( ) g || || 1 i D“ h “2

(5.64)
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With the definition of the function f in Appendix 1, we know that the maximum com-
putation rate is equal to: Reomp(h;a) =log™ (1=f (Tgpt)). Let us compute f (Copt):

L oL [
1 ?|h%? - h’a 7
f(Copt) = = - + — h—a-
S L A e Ty e
O h%a? ?|h%a? O h%al?
. L .t T LR PP ik S
o DY AT FOlh

O h%a2+2|h%?|h|2—-20 1+ h|? |h?%|?
(1+ 0] h [[2)?
| h?%a|?
140 h 2

+1lal?

=|lal?
The proof follows by setting Reomp(h; @) = log* (1=Ff ([opt)).

5.B.3 Modilled Sphere Decoder for MAP Decoding

In this appendix we provide a modified version of the sphere decoder to find the optimal
MAP estimate solution of the optimization problem given in (2.62). Recall that the
objective is to find the integer vector Ugpt in Asg such that || Yaug—M augU || is minimized.
The idea behind the sphere decoder is to reduce the search space to the sphere of radius
C centered in Yayg. Then the optimal integer vector satisfies

| Yaug — M augul [°< C? (5.65)

We include the shaping constraint in the search process such that only points correspond-
ing to the integer vectors that belong to the region Ag are visited inside the sphere.

Let M ayg = QR, be the QR decomposition of M 3¢ where R is upper triangular

of coefficients rjj;i;j = 1;::5;n, and let %= M Eungaug be the zero-forcing vector and

1= %— u. Inequality (5.65) can then be written as

IRC|Z < C?
1,
X X
pi @ + pjGA <C? (5.66)
i=1 jzi+l
where pij = r% ;i = 1;:5n; pj = 2 ;] =i+ 1;::5n. Using (5.66), we derive bounds

rii '
for every component U; of the desired vector u. Starting with the the
get the following bounds,

nth component we

C C

_ <[} < 5.67
V pnn == V pnn ( )
and given that [1= %— u, we obtain
C C
% — <un <% + 5.68
v/Pnn i v/Pnn ( )
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For the remaining components for i = n — 1;:::; 1, we derive similar computation using
(5.66) to get the following bounds:

\9 0 0 151
1 X x X
-t f@cz— P @+ pi A A+ %+ pij b < ui
Pii I=i+1 j=1+1 j=i+1
vV - - o
¥ 0 0 15t
1 x X B X
Pf@cz— p||@4+ plj—}AA+%+ pij § > u
Pii I=i+1 j=1+1 j=i+1
Let
X
S =%+ Pij 4
j=i+1
1,
, X X .
T =C° — py @ + pi A =T +pi(S —u)
I=i+1 j=1+1

then the bounds are equivalent to

S S
T; T;
- L4s<u< —L+5 (5.69)
i i
Due to the integer nature of the vector u, we define the upper and lower bounds for
the searched components as follows

& s '
Ti
Bnfi = — —+S (5.70)
Pii
$s %
Ti
Bsup;i = —+S (5.71)
Pii
which leads to
Bingsi < Ui < bsypis 1 =1;:5n (5.72)

In addition to these bounds requirements obtained from the metric minimization, we
add the shaping constraint. Given that the vector u € As, we define for each component
Ui, the bounds ¢ .\ and c ., such that: c .. < u <d,,. Thus we get a new interval
I; for each element u;j including both bound and shaping requirements such that:

li = 7max(hnf;i;cimin);min(bsup;i;cimax)u (5'73)

Given these intervals, the search of the n components is done as follows: we first choose
the component Sy in the interval I, then we search for the candidate syj1 satisfying
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requirements of (5.72) inside | 1. If no value for u, 1 exists, we go back to select another
candidate for u,. The same process is repeated until obtaining the set of N components
Un;Upo1; i Ug for which all bounds and shaping requirements are satisfyied. Once a
corresponding point is found, the intervals |; and the radius of the searching sphere are
updated and the process continues until finding the nearest point to yaug.

We summarize below the different steps of our algorithm.

Algorithm 2 Sphere decoder-based MAP Decoding algorithm

Input: Y aug; M aug; C; Crin; Cmax: 1 = 151151

Output: Sept

Step 1: Precoding phase: perform QR decomposition M 5, = QR, calculate %=
M LigYaug and set d = C; Ty = CZS =%:;k=1;::n

Step 2: Search phase:

1. (Index initialization) Set i = n.

2. (Computing bounds for si) Calculate Binti; bsup;i, set LB (uj) = max (Binf ;i; Chin)+
UB(uj) = min(bsup;i;c'max) and set uj = LB(sj) — 1.

3. Set uj = u; + 1. If uy <UB(u;) go to v), else go to iv).
4. If i = n, terminate and output Ugpt = U, else set i =i + 1 and go to iii).

5. Fori=1go toFyi),else seti=i—land 1 =%1—Si, Tir1 =T —pii (Si —ui)z,
Siii=% 1+ =Py lj then go to ii).

6. Set d? = Tn—T1+p11(S1—u7)? Ifd < d, thenset 0 = uj;i =1;:;n;d=d; T, =d
and go to ii), else go to iii).

5.C MMSE-GDFE preprocessing [lters

In this appendix we aim to show that the matrices F and B in the equivalent MAP
decoding metric given in (2.63) by the relations

B'B= 142 1,; F'B=I, (5.74)
correspond respectively to the forward and backward filters of the MN@E—GDFE pre-

processing in the channel y = [s+z with input [ such that *E || (5 || = [2. For this
purpose, let F, and B, be the filters of the MMSE-GDFE preprocessing such that:

Fmy =Fmls+Fmz
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Let the effective noise w = (Fy — Bm) [s+ Fnz. The MMSE-GDFE filters correspond

to the minimization of the variance of the effective noise " given by:
1 U b1 _ 0o [
" = —E WtW = *E tI‘ WWt
n n _
1o t - T tet
n
0 1

1 (] Hl 0 .0

= —tr@Fm—B L (Fn—Bm)' +F z' Fl
n %( m m) F_{%ES (Fm m) m F_{ZZ_} m2

Dgln [Pl

2«

_ t —2 tD
:Ftr (Fm—Bm)(Fm—Bm) + [ FmFm

2
_ %tr FuFly — FmBY — BmFl + BmBl, + (PR FY,

2 [ l [ O
:%tr Fm In+ Ply FLEmBL —BnFY +BnBL

Let the matrix T such that TT! = (1 + [?)l, and G such that G = F, T, then " is
equal to:

2 00 0 o g _.og,H U
":%tr G-BmT ' G'-T'BY +Bm In— TT' * B
[l L

LE L L0 . L B3
Sn G-BaT !l GI-T B 4 BBy

(5.76)

For fixed backward filter B, we seek first the optimal forward matrix Fy which mini-

mizes ". This minimization requires to have G = BT ! which results in:
1

The corresponding minimum effective noise variance is equal to:

2 [ | O @ | 0
"min %1_'_52131‘ BmBEn :%mtr BE-an (578)

U U
According to (2.67), the backward filter satisfies B{,Bm = 1+ [? |, wich leads to the
minimum variance:

Now, we will show that F = F, and B = Bp,. First, notice from (5.74) that the
relations satisfied by the processing matrices F and B are similar to the ones satisfied
by the MMSE-GDFE filters. The missing piece to prove the equivalence then is to prove
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that F and B allow to minimize the variance of the effective noise w. We compute then
the corresponding variance refered to as "eq as:

2 [ U
“eq = %tr (F—B)(F - B)' +[PFF

2 [ [] U
z%tr 1+ FF'—~FB' - BF' + BB!

2 o o0 o .o o o o .
@% (1+2)tr FF' —tr FB' —tr BF' +tr BB!
2 O, O 0. 0O o, O U
® 5 (1+®)tr F'F —tr B'F —tr F'B +tr B'B
n 0 1

2 L
éi%1+u2tr FIF —2¢r F'B_ +tr B&
| —{z—} I—{
n (1+u2)n

0 oo O, .0 0
(1+9tr F'F + (0 =1)n

S [

where (a) follows from linearity of trace, (b) follows from commutativity of trace of ma-
trices (tr(AB) =tr(BA)), (c) follﬁws using tr(A) = tr(A'), Filﬁxlly, we use the relation
FIB = I, to deduce that F'IF = B'B ' which gives tr F'F = 1. Consequently
we get:

||eq — 22 — "mm (580)

This ends the proof.

5.D Modilled Cassel's Algorithm

In this appendix we provide a modified Cassels’s algorithm to solve the Inhomogenoues

Diophantine Approximation in (2.92). The algorithm requires as inputs: the real values
y0 = —1, 0 = % and the shaping limit A;. The algorithm outputs the pair (t; R) €
(At; N) as the best approximation of the real [Ogiven the additive shift y® The constraint
in line (5) allows to restrict the search in the finite set Ay.

La=-1=01H=—y"

22 tg=0;t1=1;T1 =0
3 kg=1;ky =0;K1 =0;

4 n=2

5. while Lhiy1 ZO0A L1 #0ATho1 € A; do
6 an = L’Ehu' 12J;

I8 th =tho2 +antnig; Kn = Knioz + ankng;
8: ‘n=lno2+antnog

9 if Knglgknmlthen

10: b, = qumj,luj 2,
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TWRC
11 Th = TnD1+tnD2+thtn:l§Kn = KnD1+kn:2+bnkn:l§
12: th=lhor+ Choz +balhog;
13: else
14: Th=Thor —tho Kn =Knu1_knu1;
15: Lh = Lhor — Lo
16: end if

17: n=n-+1;
18: end while
19: f = Tp;

20: Ran;

5.E Optimal Network Code Search Algorithm for the CF
in the TWRC

Algorithm 3 Optimal Network Codes Search algorithm for the CF in the TWRC
Input: radius C, matrix G.
Output: the optimal network code vector agpt for real-valued fading TWRC

Step 1 Perform Cholesky decomposition of G = R'R, and set Ujj = Rﬁ fori =1;2 and

R
Ui = —Rii .

Step 2: Search the candidate vector @ minimizing a'Ga according to the procedure:

1. (Initialization) Set i = 2;T; =C;S; = 0.

2. (Compute bounds for &) Set Z = JTii;UB(ai) =|Z-S|;LB(a)=[-Z - Si]
and set & = LB (&) — 1.

3. (Increase @a;) Set @ = @ + 1, if [@j] modp =0, go to & = 1. For a < UB(aj) go
to 5), else go to 4).

4. if i = 2 terminate and output the searched vector agpt = [a1 az]t, elseseti =1i+1
and go to 3).
5. (Decrease i ) Fori =1 go to 6), else set i =i —1;S; = uppap;T1 =C — uzzag and

go to step 2).

6. Test for a € I'a. If condition satisfied update agyt = a and if alGa < C update
the radius C = a'Ga and go to 3).
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5.F LLL Reduction

Lenstra, Lenstra and Lovasz introduced in 1982 a new reduction approach called LLL
reduction [93]. This algorithm was applied in different fields, from integer polynomial fac-
torization [93], resolution of linear and non-linear programming problems [91], diophan-
tian equation resolution, to cryptography problems. From an application to another,
the original algorithm LLL has been modified and led to many algorithm variantes. The
most known example is the LLL with Deep insertions [104] whose complexity is not
polynomial [140]. Let B = (b1;::;;bp) denotes a basis of a lattice A. In order to reduce
this basis, three main steps are considered: orthogonolization, size reduction and vector
swap as follows.

e Orthogonalization

The principle methods which can be applied to achieve orthogonolization are: Gram
Schmidt process, Givens’ rotations, Householder reflections and Cholesky decomposition.
In our study we use often the Gram Schmidt orthogonolization which is the simplest
one. This iterative process, constructs from a basis B = (by;:::;;by), the basis B? =
(b7;::;b?) defined as:

b? =b;
b" -b )@1 b? Vi =
i — M 7|j j ’ | _21 !n
=1
(bi ;b7)

Where (:;:) denotes the scalar product. Thus, the basis B? is an orthogonal basis [104].
e Size reduction

This step consists on reducing the size of a given basis vectors in order to make them as
short as possible and the most orthogonal between them. The used parameters in this
step are the Gram Schmidt coefficients [jj. A basis B = (by;::1;by) is said size-reduced
if these coeflicients satisfy the following inequality:

1 .
|ui,- |§§, 1<i<j)j<n

A single basis element is called size-reduced if | [; [< % The choice of the upper
bound % comes from the fact that only unimodular transformations bring an equivalent
basis of the same lattice. Each coefficient [jj is quantized by its floor value and is then
decremented by this value. The obtained vector bj is reduced by this quantity multiplied
by the vectors bj; j =i —1;::;;1. We detail in the following algorithm the steps of the
size—redﬂction phase.

Lif | Lk > %_then
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2 q+ [OZ5+ ,k;|J
3 by < bk — C]b|
4: Lk < ko —Q
5; for i=1tol—1do
6: Lk;i < Dkgi — dbkigi
7: end for

8: end if

e Swap

This unimodular transformation is generally applied in reduction algorithms since it
allows a better size-reduction. The most used operation consists of swapping two vectors
bi and b; when the vector b; has bigger euclidean norm.

Here we have the Swap procedure algorithm.

[

: bx <> byo1  (Swap by an by )
if (k>2)then

forj =1tok—2do

uk;j < Lo ( Swap Ck;j and ukfl;,— )

end for
end if
4= Dok
B « By + [®By 1

Bki1

D Dkekor < U B
: Bk + Bkul%k
: Ble B

© N>R WD

=
= O

The LLL-algorithm considers the vectors of the basis by pair. Indeed, for 2—dimensional

lattice, the basis (b;b2) is LLL-reduced (Gaussian-Reduced), where b; = b? and
b, = Dnbi + b;, if we have:

(b1 ;b2) <

1
S8 < 2 by [12<] bz |2 5.82
Tbir < g llbrlP<ibe (552)

To guarantee polynomial time termination, the second constraint of (5.82) is released
and replaced by:

4
IbylP< 5 [l b2 |2 (5.83)

To generalize to a basis by;:::; bp, we should recall the Gram-Schmidt Orthogonolization
and then proceed as below. The lattice defined by a pair of vectors b; and bj+ 1 projected
orthogonally to bq;:::;bj 1 has basis:

bi(i) = b? (5.84)

bi+1(i) = b;?+1 + :i+1;ibi? (5.85)
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the LLL basis reduction conditions are the following;:

IN

1 . .
| Gij | 5;1SI<JSH

Sl ek

N

| bi?+1 + Ui+1;ibi? |2

The second condition is equivalent to the following one:

| bi?+1 ’2 Z 7:_ Di2+ 1;i 7| bl'7 |2

(5.86)

If the first condition is satisfied, the basis is called size-reduced. The second condition is
called Lovasz condition, and as we can notice, it concerns only adjacent pairs of the basis

4

bi;bi+1. In practice, the used value is [1= 3. The different steps of the LLL-reduction

algorithm are summarized in the following.

Require: basis B = (b1;:::;bp) of n—dimensional real lattice.

1: I. Computation of the Gram Schmidt coellcients of the basis vectors

bi;i=1;:;n
2 bz ~—bq
3 By« ( z,bz>
4: fori =2tondo
5: bi? < bj
6: forj =1toi—1do
7 Lij < (bi;bj?>
8: b?(—bi?—uij bj?
9 end for
100 Bj« (b7;b7)
11: end for
12: 11. Verilcation of conditions i) et ii)
13: kK« 2
14: while k < n do
15: RED(k;k —1) 0
16: if By > (% — ui;kml)Bku]_ then
17: for|=k—2to1ldo
18: RED (k;I)
19: end for
20: K+ k+1
21: else
22: SWAP (k)
23: K+ max(2;k — 1)
24: end if

25. end while
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5.G Integer Forcing Linear Receivers

5.G.1 Optimal Preprocessing IF matrix

In this appendix we will show that the sum total achievable rate in (5.42) is uniquely
maximized by the preprocessing vector

U 1 Up1
b, =al,H' HHt—i—DIN (5.87)
For this purpose, define f (by) as:
1
f(bm) = = [[bml|*+ [IbmH — &y | (5.88)
(] U

+

Then we have Ry g (H;bm;am) = %log
respect to by, is equivalent then to minimize f with respect to the same vector for fixed
am. Then we have the following:

ﬁ . Maximizing the achievable rate with

1 H ud H
f(bm):abﬁnbm-l‘ bEnH _aE'n H'bm — am (5.89)
1
:—ubtmbm—kbththm—2btham+atmam (5.90)
U H
1

Then, to find the argument which minimizes f, we compute the first derivative with
respect to the variable by, we get:

[ [
@ (bm) t 1
=2 HH —| bm —2Ha 5.92
@m + 0 N m m ( )
The optimal preprocessing vector satisfies %ﬁt) = 0, which is equivalent to have:
L ;o 1
brnopt =amH' HH'+ =Iy (5.93)

5.G.2 Optimal IF Coellcient Matrix

In this appendix we will show that the rate maximum rate Ry r (am) corresponding to
the optimal preprocessing vector by, is given by:

1
We have the following:
Hl Hl
R (am) = ~log* ——— (5.95)
m;IF m) — 2 g f (bm;opt) .
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Let us then start with computing f (Bm;opt):
1
f (bm:opt) = ib}'n;optbm;OPt + bE‘n;optH H'bm;opt — bEn;optH am — apH'bm;opt + amam
- U 1 U
:bETI;Opt 7IN +HHt bm;opt _bﬁn;optHam _a?nthm;opt +a:-nam (5-96)

Combining (5.93) and (5.96) we get:

1 =01
f (bmiopt) = @mam — apH' DIN +HH' Ham (5.97)

Let H = UXV ! be the singular value decomposition of H where U € RN "N is orthonor-
mal, i.e., Ut = U % € RN'M 5 composed of elements %jj = [? with [} is the ith
singular value of the matrix H, and ¥j; = 0 for i # j. The matrix V € RM“M s unitary
and composed of the eigenvectors of the matrix H'H. Accordingly, (5.97) is equivalent
to:

01

2l 0
0O 0 0 Oy
=ala, —alL.vXiut U 1| wyot oyt uxvt
— dm9m m —IN + am
O O
0ol 1 01
—alay —al ViUt Ut 't Sy +3st UlunViag

L U
_at | _at t 1 t t
=aplmam amVE —|In + XX ¥V am

Hl [l
t t t t 1 t o t
=a,VVan—a,V¥ =Iy+XX ¥V am
n |:| 1 T ::l #
=al, vvi-vst “Iy+=xt nvtoa,
m u 1 uDl #
=a,Vv Iy -3 ZIy+23t ¥ Viay (5.98)
Let 0, u,l
D=Iy-X “Iy+Xx! X (5.99)
Given the values of the elements of ¥, it is easy to show that the matrix D € RM "M g
diagonal such that its components satisfy:
(
1 e
—— if i <rank(H
Dijj= o (H) (5.100)
1 if i > rank(H)
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Finally we get:

1
f(bm;opt)

And the desired result follows then by setting Rpy:ir (am) = %log
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Systémes de Communications Multi-utilisateurs : de la Gestion
d’'Interférence au Codage de Réseaux

RESUME : Ce travail est dédié a I'analyse, la conception et I'évaluation des performances
de schémas de codage de réseaux pour les systemes de communications multi-termniaux.
Nous étudions en premier lieu le protocole Compute-and-Forward dans le canal a accés
multiples. Nous proposons un critére de construction de codes de réseaux efficaces pour
cette stratégie basé sur la résolution d'un probléme du vecteur le plus court d'un réseau

de points. En addition, nous développons de nouveaux algorithmes de décodage prouvés
numériquement plus performants que le décodeur existant du CF. La deuxiéme partie

de ce travail concerne I'implémentation du protocole CF dans le canal a relais bidirectionnel
et le canal a sources et relais multiples. Nous développons des algorithmes de construction
de schémas de codage pour le CF et évaluons théoriquement et par simulations numériques
leurs performances. La derniére partie concerne le canal MIMO distribué et en particulier
une nouvelle architecture de décodeurs Integer Forcing inspirés par le CF. Nous proposons
de nouveaux algorithmes de constructions des paramétres optimaux de ces décodeurs et
montrons par simulations qu'’ils apportent un gain significatif par rapport aux récepteurs
linéaires existants.

Mots-Clés : Codage de réseaux au niveau physique, Compute-and-Forward, codage
et décodage en réseaux de points.

Multi-user Communication Systems : From Interference
Mitigation to Network Coding

ABSTRACT : This work is dedicated to analysis, design and performance evaluation of
Physical-Layer Network Coding (PLNC) strategies in multiuser communication systems.

The first part is devoted to study the Compute-and-Forward protocol in the basic multiple
access channel. For this strategy, we propose an optimal solution to design efficient network
codes based on solving a lattice shortest vector problem. Moreover, we derive novel bounds
on the ergodic rate and the outage probability for the CF operating in fast and slow fading
channels respectively. Besides, we develop novel decoding algorithms proved numerically to
outperform the traditional decoding scheme for the CF. The second part is dedicated to the
design and end-to-end performance evaluation of network codes for the CF and the Analog
Network Coding in the Two-Way Relay Channel and the Multi-Source Multi-Relay channel.
For each network model we study the decoding at the relay nodes and the end destination
propose search algorithms for optimal network codes for the CF and evaluate, theoretically
and numerically, the end-to-end error rate and achievable transmission rate. In the last part
we study new decoders for the distributed MIMO channel termed Integer Forcing (IF). Inspired
by the CF, IF receivers take advantage of the interference provided by the wireless medium
to decode integer linear combinations of the original codewords. We develop in our work
efficient algorithms to select optimal IF receivers parameters allowing to outperform

existing suboptimal linear receivers.

Keywords : Physical-Layer Network Coding, Compute-and-Forward, lattice codes, lattice
decoding.
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