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Abstract

In this thesis, we study rigid transformations in the context of computer imagery. In par-

ticular, we develop a fully discrete framework for handling such transformations.

Rigid transformations, initially de�ned in the continuous domain, are involved in a wide

range of digital image processing applications. In this context, the induced digital rigid

transformations present di�erent geometrical and topological properties with respect to

their continuous analogues. In order to overcome the issues raised by these di�erences, we

propose to formulate rigid transformations on digital images in a fully discrete framework.

In this framework, Euclidean rigid transformations producing the same digital rigid

transformation are put in the same equivalence class. Moreover, the relationship between

these classes can be modeled as a graph structure. We prove that this graph has a polyno-

mial space complexity with respect to the size of the considered image, and presents useful

structural properties. In particular, it allows us to generate incrementally all digital rigid

transformations without numerical approximation.

This structure constitutes a theoretical tool to investigate the relationships between

geometry and topology in the context of digital images. It is also interesting from the

methodological point of view, as we illustrate by its use for assessing the topological behavior

of images under rigid transformations.

Keywords: Discrete rigid transformation, digital image, combinatorial

structure, discrete algorithm, topological invariance.





Résumé

Dans cette thèse, nous étudions les transformations rigides dans le contexte de l'imagerie

numérique. En particulier, nous développons un cadre purement discret pour traiter ces

transformations.

Les transformations rigides, initialement dé�nies dans le domaine continu, sont im-

pliquées dans de nombreuses applications de traitement d'images numériques. Dans ce con-

texte, les transformations rigides digitales induites présentent des propriétés géométriques

et topologiques di�érentes par rapport à leurs analogues continues. A�n de s'a�ranchir des

problèmes inhérents à ces di�érences, nous proposons de formuler ces transformations rigides

dans un cadre purement discret.

Dans ce cadre, les transformations rigides sont regroupées en classes correspondant cha-

cune à une transformation digitale donnée. De plus, les relations entre ces classes de trans-

formations peuvent être modélisées par une structure de graphe. Nous prouvons que ce

graphe présente une complexité spatiale polynômiale par rapport à la taille de l'image. Il

présente également des propriétés structurelles intéressantes. En particulier, il permet de

générer de manière progressive toute transformation rigide digitale, et ce sans approximation

numérique.

Cette structure constitue un outil théorique pour l'étude des relations entre la géométrie

et la topologie dans le contexte de l'imagerie numérique. Elle présente aussi un in-

térêt méthodologique, comme l'illustre son utilisation pour l'évaluation du comportement

topologique des images sous des transformations rigides.

Mots clés: Transformation rigide discrète, image numérique, structure

combinatoire, algorithmique discrète, invariance topologique.





Résumé long

Le terme transformation rigide est employé pour décrire les transformations euclidiennes qui

résultent de la combinaison d'une translation et d'une rotation. Une transformation rigide

est, en particulier, dé�nie par une fonction bijective de Rn dans Rn qui conserve notamment

la colinéarité, les distances et les angles. Cette thèse propose une étude dédiée aux trans-

formations rigides digitales, c'est-à-dire celles qui peuvent être concrètement utilisées pour

traiter informatiquement les images dé�nies sur Zn. Même si ces transformations digitales

sont dé�nies de manière très similaire à leurs homologues continues, elles di�èrent néanmoins

par plusieurs aspects. En géométrie euclidienne, souvent présentée comme une géométrie

�de la règle et du compas�, les objets considérés sont idéalisés. Par exemple, une droite

est in�niment �ne et se compose d'un ensemble in�ni de points. En informatique, de tels

objets idéaux n'existent pas. En e�et, les objets sont discrétisés/numérisés et notamment

représentés par un ensemble �ni d'entités élémentaires, les pixels. Sur un écran d'ordinateur,

les objets géométriques observés sont donc issus de notre interprétation psychovisuelle de

ces ensembles de pixels. Une image numérique correspond alors à la représentation d'objets

réels au travers d'un processus de digitalisation. D'un point de vue théorique, les images

numériques sont ainsi modélisées comme des fonctions qui associent à chaque point de Z2

une valeur dans un espace �de couleurs� donné.

Les transformations rigides, lorsqu'elles sont considérées sur l'espace discret Z2 des im-

ages numériques, sont généralement appliquées dans l'espace continu associé (R2) et néces-

sitent ensuite le recours à un procédé de digitalisation a�n d'obtenir un résultat sur Z2.

Ce sont, en particulier, ces transformations rigides suivies d'un processus de digitalisation

qui sont appelées transformations rigides digitales. Dans ce contexte, ces transformations

digitales perdent, dans la plupart des cas, leurs �bonnes� propriétés par rapport à leurs ho-

mologues continues, du fait de la digitalisation. Ainsi, elles sont discontinues, non bijectives,

et ne conservent plus certaines propriétés géométriques fondamentales telles que les angles

et les distances entre les points, ainsi que les propriétés topologiques des objets.

Ces transformations rigides digitales sont néanmoins importantes. Dans le domaine

de l'analyse d'images numériques, elles sont impliquées dans de nombreuses applications,

par exemple, en recalage d'images, en suivie de mouvement, etc. Dans la plupart de ces

applications sur les image numériques, les transformations rigides utilisées s'appuient sur

une phase de traitement continu, suivie d'une numérisation �nale, comme indiqué ci-avant.

Néanmoins, pour d'autres applications comme l'appariement d'images ou la reconnaissance

de motifs, il peut s'avérer nécessaire de générer toutes les images transformées. Si ces

images ont des tailles �nies, le nombre d'images numériques obtenues par transformation
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rigide est intuitivement �ni. Néanmoins, lors du passage au modèle continu, il est impossible

de générer toutes les images transformées en raison de l'in�nité de transformations rigides

possibles. De plus, ces transformations sont basées sur des réels, modélisés informatiquement

sous forme de nombres à virgule �ottante, ce qui induit des erreurs de calcul. Au regard de

ces considérations, nous cherchons à développer une nouvelle approche pour la modélisation

et la manipulation des transformations rigides, adaptée aux espaces discrets des images

numériques, et n'utilisant notamment que des calculs en nombres entiers.

Au cours de ce travail, qui participe à améliorer notre compréhension des transformations

rigides digitales et de leur espace de paramètres, plusieurs questions sont abordées :

(i) Ces transformations peuvent-elles être gérées dans un cadre totalement discret ?

(ii) Combien de transformations rigides digitales existe-t-il dans un sous-ensemble �ni de

Z2 ?

(iii) Comment générer toutes ces transformations ?

(iv) Quelle est la structure de leur espace de paramètres ?

(v) Quelles sont les relations entre les transformations rigides et la topologie sur Z2 ?

Récemment, plusieurs travaux ont été menés a�n de gérer les spéci�cités des transforma-

tions sur Z2. Dans ce cadre, des réponses combinatoires et/ou algorithmiques ont été fournies

pour des classes de transformations telles que les rotations, les changements d'échelle, les

transformations linéaires, a�nes et projectives, etc. À notre connaissance, une approche to-

talement discrète dédiée aux transformations rigides n'a cependant pas encore été proposée.

Nous visons ainsi à combler cette lacune en répondant aux questions ci-dessus.

A�n de mieux comprendre les transformations rigides sur Z2, nous proposons de les for-

muler dans un cadre totalement discret. Pour cela, il convient tout d'abord d'étudier les

propriétés de leur espace de paramètres. Sur la base du concept de rotations discrètes par

des angles charnières [Nouvel 2005, Nouvel 2006b, Thibault 2010] et en nous inspirant de

la technique de discrétisation pour le problème d'appariement d'images proposé par Hundt

et al. [Hundt 2008a, Hundt 2009], nous montrons, dans le chapitre 2, que les transforma-

tions rigides digitales peuvent être modélisées et manipulées directement dans un espace

discret. En e�et, on observe que dans l'espace de paramètres associé, ces transformations se

regroupent en classes d'équivalence dont chacune correspond à une unique transformation

digitale et correspond alors à une seule image transformée. Une telle classe d'équivalence est

appelée une transformation rigide discrète. En conséquence, l'espace de paramètres est sub-

divisable en un nombre �ni de cellules ayant chacune une interprétation discrète homogène.
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Dans le chapitre 3, nous montrons que les relations entre ces classes peuvent être mo-

délisées par une structure combinatoire, et plus précisément par un graphe. Ce graphe,

appélé un graphe des transformations rigides discrètes et noté G, se compose d'un ensem-

ble �ni de sommets et d'arêtes, de telle sorte que chaque sommet correspond à une classe

d'équivalence, et chaque arête à un unique pixel dont la valeur di�ère entre les images trans-

formées associées aux deux sommets incidents. D'une part, nous proposons un algorithme

permettant de construire G par un calcul exact et en temps linéaire par rapport à sa taille.

D'autre part, nous présentons une analyse combinatoire, et prouvons notamment que G

présente une complexité spatiale en O(N9), où N × N correspond à la taille de l'image

considérée. Par ailleurs, nous montrons que cette complexité peut être réduite si l'on induit

des contraintes spatiales sur cette structure.

L'utilisation de ce graphe G permet de décrire toutes les transformations rigides d'un

sous-ensemble �ni de Z2, et ce sans avoir recours à la moindre erreur de calcul. En particulier,

G modélise les �relations de voisinage� entre les transformations rigides sur Z2. Ainsi, l'étude

de ce graphe permet (i) une meilleure compréhension du comportement topologique des

transformations rigides sur Z2, et (ii) la génération de toutes les images obtenues par les

transformations rigides pour une image donnée en modi�ant progressivement (au plus) une

valeur de pixel entre deux images transformées successives. Grâce à cet outil, nous pouvons

ainsi décrire de manière purement discrète des transformations rigides sur Z2, permettant

d'étudier, mettre en ÷uvre et utiliser ces transformations au sein d'un processus unique.

Au-delà de ces aspects combinatoires et algorithmiques, ce nouvel outil peut également être

impliqué dans des tâches de traitement d'image, et en particulier celles basées sur l'analyse

de sous-échantillons [Pennec 2000, Buades 2005, Ngo 2013b].

Dans le chapitre 4, nous étudions plus précisément les relations existant entre la géométrie

et la topologie dans le cadre de l'imagerie numérique, où ces deux notions sont plus étroite-

ment liées que dans le cadre continu, et présentent au demeurant une réelle importance

pour le traitement et l'analyse des images numériques. Dans R2, les transformations rigides

sont des opérations préservant la topologie. Cependant, cette propriété est généralement

perdue quand nous considérons les transformations rigides dans l'espace discret de Z2. En

e�et, comme il a déjà été énoncé ci-avant, du fait de la digitalisation de R2 à Z2, les trans-

formations rigides discrètes ne préservent pas les distances ni les angles entre les points.

Ces changements géométriques conduisent à des modi�cations de topologie dans l'espace

transformé.

Dans cette étude, nous nous sommes concentrés sur des conditions pour lesquelles les

images numériques préservent leurs propriétés topologiques par toutes les transformations

rigides. In particulier, nous considérons le type d'homotopie en tant qu'invariant topologique

pour ces images. D'une part, nous nous appuyons sur le graphe G d'une image I modélisant

toutes les transformations rigides possibles de I et permettant de déformer cette image pro-
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gressivement, c'est-à-dire pixel par pixel. D'autre part, nous tirons pro�t de la notion de

point simple, dé�nie sur les images digitales et permettant de garantir la préservation du

type d'homotopie entre deux images. En combinant ces deux concepts, il est possible de

garantir qu'une image I est topologiquement invariante si toutes ses images transformées

sont obtenues en modi�ant successivement les valeurs de points simples, lors du parcours

exhaustif du graphe G. En particulier, la caractérisation locale des points simples convient

parfaitement à une exploration progressive de G pour évaluer cette invariance topologique.

Cette approche globale présente une complexité directement liée à la taille du graphe G,

c'est-à-dire de l'ordre de N9. En tirant pro�t de la nature locale des tests de caractéri-

sation des points simples, nous proposons �nalement d'élaborer une stratégie de véri�ca-

tion locale basée sur la décomposition spatiale de l'image en motifs autorisant � ou non �

l'invariance topologique. Cette nouvelle approche mène à des conditions su�santes pour

évaluer l'invariance topologique des images en temps linéaire. Elle conduit par ailleurs à

la proposition de stratégies de prétraitement e�caces des images visant à garantir leur in-

variance topologique. Les résultats et méthodes obtenus sont valables pour di�érents types

d'images (binaires, à niveaux de gris, labellisées), ouvrant ainsi la voie à leur utilisation dans

diverses applications de traitement et d'analyse d'images.



Remerciements

Je souhaiterais remercier celles et ceux qui m'ont permis, directement ou indirectement, la

réalisation de ce travail et de devenir ce que je suis aujourd'hui.

J'aimerais avant tout dire un très grand merci à YukikoKenmochi qui m'a accompagnée

dès mes premiers pas dans le monde de la recherche. Pendant ces trois années de thèse,

elle m'a encouragée, aidée avec la plus grande bienveillance, et suivie pas à pas. Ce fut un

véritable compagnonnage, sans cesse stimulant grâce à nos échanges. Je la remercie pour ses

judicieux conseils, son écoute ainsi que ses relectures attentives, sa disponibilité et sa grande

patience face à mon caractère parfois têtu et toutes les autres choses qui seraient trop longues

à énumérer ici. Mes remerciements vont également à Nicolas Passat et Hugues Talbot

pour leur encadrement ainsi que pour toute l'aide qu'ils m'ont apportée pour mes recherches

pendant ces trois années. À Nicolas pour son incroyable organisation et sa considérable

rapidité ainsi que l'e�cacité qui me permet de �nir ma thèse à temps. Plus particulièrement,

sur sa patience et gentillesse pour relire et corriger les détails de mes articles. À Hugues qui

m'a fourni des conseils scienti�ques pour des nombreux choix importants dans mes travaux,

et qui a consacré son précieux temps à la relecture de mes articles. Merci à vous trois pour

m'avoir accordé votre con�ance et m'ont permis de développer mes idées et de mener mes

travaux jusqu'au bout. J'ai eu beaucoup de chance de travailler avec vous qui avez partagé

avec moi vos connaissances et vos enthousiasme.

Je voudrais exprimer ma reconnaissance à Éric Andrès et David Coeurjolly d'avoir

bien voulu être les rapporteurs de ce travail, ainsi qu'à Jean-Pierre Reveillès et Fanny

Buyens de m'avoir fait l'honneur de prendre part à ce jury.

Merci au Professeur Akihiro Sugimoto et son équipe de m'avoir accueillie dans le lab-

oratoire NII à Tokyo durant deux mois et ainsi permis de découvrir le Japon, et la culture

(notamment la gastronomie) japonaise que j'ai bien aimée et qui m'a beaucoup impression-

née.

Je tiens à remercier Mai Quyen Pham, plus qu'une amie mais une s÷ur adorable, sym-

pathique et sincère avec qui j'ai passé de bons moments. Un grand merci à Mai pour

l'organisation et la préparation du pot de thèse. (J'ai beaucoup apprécié les plats viet-

namiens qu'elle a préparé et qui me manquent beaucoup pendant ce temps en France.)

Je remercie également tous les membres de l'équipe de recherche A3SI pour l'excellente

ambiance et les très bonnes conditions de travail qui ont régné tout au long de ma thèse.

Merci pour toutes les discussions constructives et intéressantes (à la cantine, autour du café,



x

ou dans les couloirs) sur les sujets de recherche scienti�que ainsi que de culture générale.

Merci donc à Michel Couprie, Gilles Bertrand, Laurent Najman, Venceslas Biri, Vin-

cent Nozick, Jean Serra, Jean Cousty, Benjamin Perret, Denis Bureau, Jean-claude

Geoges et Thierry Geraud. Merci à tous mes compagnons de bureau, Nobert et Hiroko,

pour votre bonne humeur et votre gentillesse qui ont rendu ma thèse très agréable. Un

merci particulier aux personnes avec qui j'ai partagé de bons moments informels, et scien-

ti�ques : à Ravi pour les discussions sur les sujets très philosophiques hors du travail, les

partages de musiques et de �lms et aussi les repas expérimentaux, à Christophe, pour les

repas �chez bibi� suivis par les jeux de société, à Olena pour ses cartes restaurants riches en

saveurs (ce qui m'a permis de découvrir la cuisine française, indonésienne, coréenne, . . . ),

et à Camille pour son aide, ses multiples encouragements et ses précieux conseils et surtout

pour sa grande gentillesse, à John, Benjamin, Yongchao, Imen et Olivia pour leur sympathie

et leur amitié, et au professeur Jean Paul Boyer pour sa grande gentillesse à mon égard.

Je tiens en�n à remercier du fond du c÷ur mes parents, mes s÷urs, mon copain et mes

amis de leurs accompagnement et de leur soutien pendant toutes ces années.



xi

Et à beaucoup d'autres personnes pour qu'elles soient cités sur

cette simple page . . .





List of enclosed articles

The work exposed in this thesis was mainly presented in the following research articles and

research reports which are enclosed in the manuscript with permission from the publisher:

� [Ngo 2013a] P. Ngo, Y. Kenmochi, N. Passat and H. Talbot. Combinatorial structure

of rigid transformations in 2D digital images. Computer Vision and Image Under-

standing, vol. 117, no. 4, pages 393�408, 2013.

� [Ngo 2013b] P. Ngo, Y. Kenmochi , N. Passat and H. Talbot. Topology-preserving

conditions for 2D digital images under rigid transformations. Journal of Mathematical

Imaging and Vision, 2013. DOI: 10.1007/s10851-013-0474-z.

� [Ngo 2013c] P. Ngo, Y. Kenmochi, N. Passat and H. Talbot. On 2D constrained

discrete rigid transformations. HAL 00838184, 2013. (Submitted in an international

journal.)

The complete list of publications and communications related to this PhD thesis, is provided

in page 45.





List of Figures

2.1 2D (digital) image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 2D (digital) rigid transformation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Image transformation models . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Non-bijectivity of digital rigid transformations . . . . . . . . . . . . . . . . . 11

2.5 Double and null pixels under digital rigid transformations . . . . . . . . . . . 11

2.6 Non-preservation of geometric properties of digital rigid transformations . . . 12

2.7 Discontinuities of digital rigid transformations . . . . . . . . . . . . . . . . . 13

2.8 Critical transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 Tipping surfaces and tipping curves . . . . . . . . . . . . . . . . . . . . . . . 15

2.10 Subdivision of the parameter space of digital rigid transformations . . . . . . 16

3.1 Discrete rigid transformation graph . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Neighboring relationship between discrete rigid transformations . . . . . . . 19

3.3 Generation of images from a discrete rigid transformation graph . . . . . . . 20

3.4 2D arrangement of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 3D arrangement of surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Sweeping method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 Progress of the cut in the sweeping method . . . . . . . . . . . . . . . . . . . 23

3.8 Generation of a partial graph of a discrete rigid transformation graph. . . . . 25

3.9 Pixel-invariance constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.10 Feasible rigid transformation sets . . . . . . . . . . . . . . . . . . . . . . . . 27

3.11 Image generated using a discrete rigid transformation graph . . . . . . . . . 30

4.1 Topological alteration under digital rigid transformations . . . . . . . . . . . 32

4.2 4-neighbors and 8-neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Dual graphs of binary images . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Simple points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Adjacency alterations caused by digital rigid transformations . . . . . . . . . 34

4.6 Interpretation of double and null points in Lagrangian and Eulerian models . 35

4.7 Topological alterations caused by digital rigid transformations . . . . . . . . 36

4.8 Topologically invariant images . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 Local property of digital rigid transformations . . . . . . . . . . . . . . . . . 38

4.10 Topologically invariant patterns . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Multi-scale strategies for discrete rigid transformations . . . . . . . . . . . . 43





Contents

Abstract i

Résumé iii

Remerciements ix

List of enclosed articles xiii

List of �gures xv

Part I: Discrete rigid transformation 3

1 Introduction 3

2 Rigid transformations on digital images 7

2.1 Background notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 2D (digital) image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 2D (digital) rigid transformation . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Transformation models . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Non-bijectivity of digital rigid transformations . . . . . . . . . . . . . . . . . 10

2.3 Non-preservation of geometric properties . . . . . . . . . . . . . . . . . . . . 12

2.4 Partition of the parameter space . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Discontinuity of digital rigid transformations . . . . . . . . . . . . . . 13

2.4.2 Tipping surfaces and tipping curves . . . . . . . . . . . . . . . . . . . 14

2.4.3 Digitization of the parameter space of rigid transformations . . . . . 14

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Combinatorial analysis of discrete rigid transformations 17

3.1 Graph representation of discrete rigid transformations . . . . . . . . . . . . . 18

3.2 Algorithm for discrete rigid transformation graph construction . . . . . . . . 20

3.2.1 Arrangement problem formalization . . . . . . . . . . . . . . . . . . . 21

3.2.2 Sweeping algorithm for discrete rigid transformation graph construction 22

3.3 Discrete rigid transformation graph under constraints . . . . . . . . . . . . . 24

3.4 Space complexity of discrete rigid transformation graphs . . . . . . . . . . . 28

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



xviii CONTENTS

4 Topological image analysis under rigid transformations 31

4.1 Digital topology: background notions . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Topological issues on the discrete structure of images . . . . . . . . . . . . . 34

4.3 Topological invariance of digital images under rigid transformations . . . . . 35

4.4 Topological invariance veri�cation . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 Discrete rigid transformation graph as a topological analysis tool . . . 37

4.4.2 A local analysis for evaluating topological invariance . . . . . . . . . 38

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusion 41

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Publications and communications 45

References 47

Part II: Enclosed articles 55
Article 1: Combinatorial structure of rigid transformations in 2D digital images . 55

Article 2: Topology-preserving conditions for 2D digital images under rigid trans-

formations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Article 3: On 2D constrained discrete rigid transformations . . . . . . . . . . . . . 87



Part I

Discrete rigid transformation





Chapter 1

Introduction

�If we move an object around normally, it will in some sense remain rigid, and will not distort.�

�Bill Casselman�

Rigid transformation is a term generally used to describe Euclidean transformations1 that pre-

serve the same shape and size of any object. The most basic form of rigid transformation that we

can observe in nature is a combination of rotations and translations. Formally, a rigid transfor-

mation is de�ned as a bijective function from Rn to Rn that preserves collinearity, distances and

angles. In this thesis, we have chosen to study digital rigid transformations, namely those that can

be used for computer images. Despite intrinsic similarities, these digital transformations are rather

di�erent from their Euclidean analogues. So, what is a digital rigid transformation? And why do

we study these objects?

The origin of digital transformations lies in computers and images. In Euclidean geometry,

objects are idealized. For instance, a straight line is in�nitely thin and contains an in�nite number

of points. In digital computers, such ideal objects do not exist. Indeed, they are digitized, and

what we see on a computer screen is a �nite collection of small picture elements, namely pixels,

that our eyes and brain put together to recognize objects. These results in digital images that

are a representation of reality, approximated by a digitization process. Rigid transformations

acting on such images � and then also associated to a digitization process � are called digital rigid

transformations.

From a theoretical point of view, if a computer screen is de�ned as a regular orthogonal grid,

then a set of pixels can be considered as a subset of Z2. In such a way, a digital image is simply

de�ned as a function that associates a given value to each point of Z2, i.e., to each pixel. In this

discrete context, (digital) rigid transformations need to be also de�ned as functions from Z2 to

Z2. However, studying and performing digital rigid transformations are not obvious. Indeed, these

transformations lose most of their �good� properties compared to their continuous counterparts.

In particular, they are discontinuous, not bijective, do not preserve distances and angles between

points, and neither do they preserve topology as well. This thesis deals with these speci�c issues.

To this end, the study aims to, �rst, improve our understanding of digital rigid transformations

and their associated parameter space; and, second, consider several questions related to this task

for such transformations in the discrete space of digital images, including the following:

1Euclidean transformations simply because they form the basis of Euclidean geometry.
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Classes of transformations Complexity

Rotations [Amir 2006, Nouvel 2006a] O(N3)

Scalings [Amir 1992, Amir 2009] O(N3)

Rotations and scalings [Hundt 2009] O(N6)

Linear transformations [Hundt 2008a] O(N12)

A�ne transformations [Hundt 2007, Hundt 2010] O(N18)

Projective transformations [Hundt 2008a] O(N24)

Table 1.1: Number of the generated images under di�erent classes of transformations on a subspace of Z2

of size N ×N .

(i) Is it possible to perform digital rigid transformations directly in a discrete space?

(ii) How many digital rigid transformations can we de�ne on a �nite set of Z2?

(iii) How to generate all of these transformations?

(iv) What is the structure of their space?

(v) What are the relationships between rigid transformations and topology in Z2?

In particular, the �continuous-to-discrete� transition induces an �in�nite-to-�nite� transition,

from which the di�culty of these questions arise. Recently, some works have been devoted to

understand the particularity of transformations on Z2. In this context, some combinatorial and

algorithmic answers were provided for several classes of transformations, as shown in Table 1.1.

Despite these e�orts, to the best of our knowledge a fully discrete approach dedicated to rigid

transformation has not been proposed. Throughout this thesis, we seek to contribute to this

research area and provide answers for the above questions.

Following the idea of describing discrete rotations by hinge angles [Nouvel 2005, Nouvel 2006b,

Thibault 2010] and inspired by the discretization technique of the problem of 2D pattern matching

developed by Hundt et al. [Hundt 2008a, Hundt 2009], our goal is to develop a discrete framework

for the class of rigid transformations on digital images. The rest of the manuscript is divided into

two parts: the �rst presents a frame/summary of our contributions and results around the work

presented in the three included articles, appearing in the second part of the manuscript. In this

�rst part, the study is organized as follows.

Chapter 2 presents basic notions related to rigid transformations in the context of computer

imagery, and investigates the e�ects of digitization on these transformations. We observe that

digital rigid transformations are discontinuous because of such digitization, and they subdivide

their parameter space into clusters of transformations � called discrete rigid transformations �

having a same digitized result. In particular, these clusters are computed and handled by only

using exact computation on integers.
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In Chapter 3, we show that this subdivision of the parameter space of digital rigid trans-

formations can be represented as a graph, in which each vertex corresponds to a discrete rigid

transformation. This structure models all the rigid transformations de�ned on a �nite subset of

Z2. In particular, the concept of neighboring relationship between discrete transformations is de-

rived from this graph. Indeed, each edge between two vertices models a �single pixel� di�erence

between the rigid transformations associated to these vertices. We prove that this graph has a poly-

nomial complexity in the order of N9, where N ×N is the size of the considered subset of Z2. Such

complexity presents the number of transformed images under rigid transformations. Moreover, an

algorithm is provided to compute this graph, using only integers and in linear time with respect to

its size.

From a more practical point of view, we show, in Chapter 4, how the investigated graph can be

associated to topological notions in order to develop algorithmic processes that enable to study the

topological behavior of digital images under rigid transformations. More precisely, it is shown that

the elementary modi�cations modeled by this graph can be associated to the topological notion of

simple point to determine classes of topologically equivalent transformed images. This �nal result

highlights the strong links that exist between geometry and topology in the framework of digital

images.

Finally, Chapter 5 concludes this manuscript by a summary of our contributions and some

perspectives.





Chapter 2

Rigid transformations on digital images

Contents
2.1 Background notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 2D (digital) image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 2D (digital) rigid transformation . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Transformation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Non-bijectivity of digital rigid transformations . . . . . . . . . . . . . 10

2.3 Non-preservation of geometric properties . . . . . . . . . . . . . . . . 12

2.4 Partition of the parameter space . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Discontinuity of digital rigid transformations . . . . . . . . . . . . . . . 13

2.4.2 Tipping surfaces and tipping curves . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Digitization of the parameter space of rigid transformations . . . . . . . 14

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

In the continuous space R2, rigid transformations are well-de�ned and have bijective property.

Such transformations, while applied on the discrete space Z2 of digital images, require in addition

a subsequent digitization in order to transfer their results into this discrete space. The rigid

transformations followed by a process of digitization are called digital rigid transformations. They

present very di�erent properties compared to their continuous counterparts, due to this digitization

process. Indeed, digital rigid transformations lose in general their bijectivity. It follows that they

do not preserve some geometric properties such as angles and distances between points.

In order to improve the understanding of rigid transformations in discrete spaces, we propose

to formulate digital rigid transformations in a purely discrete way. To this end, it is necessary to

investigate what happens in their associated parameter space. Recently, some combinatorial and

algorithmic studies of digital transformations have been carried out for 2D pattern matching un-

der rotations [Amir 2006, Thibault 2010], scalings [Amir 1992, Amir 2009], combined scalings and

rotations [Hundt 2008b, Hundt 2009], a�ne transformations [Hundt 2007, Hundt 2010], projective

and linear transformations [Hundt 2008a]. However, there has been very little progress concerning

the class of rigid transformations.
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Figure 2.1: Illustration of an image and its digitization. A 2D image (left), the 2D digital image (center)

obtained by digitizing the left image, and the grid associated to this digital image (right).

In this chapter, we �rst investigate the properties of digital rigid transformations resulting from

the digitization process. Then, we propose a purely discrete formalization of rigid transformations

on Z2. Our main result is to demonstrate that digital rigid transformations can be modeled and

handled directly in their discrete space, by gathering them into equivalence classes leading to the

subdivision of their parameter space.

The work exposed in this chapter was published in [Ngo 2013a].

2.1 Background notions

2.1.1 2D (digital) image

In the 2D continuous space, an image can be de�ned as a set of points in R2 where each point has

a value in a set V, and then formalized as a function I : R2 → V. Depending on the de�nition of

V, I can be considered as a binary, grey-level, label, color image, etc. So far, images are de�ned as

in�nite on R2. Practically, we consider images only inside some �nite area. Under such assumption,

images have a support de�ned on a �nite subset of R2.

In computer vision, images are represented in a pictorial way as discrete sets, and called digital

images. Such discrete sets are obtained by a sampling process, called digitization and denoted by

D. In general, this process relies on a partitioning of R2 into unit squares, namely the pixels. Quite

often, pixels have integer coordinates and their boundaries have semi-integer coordinates. By that

way, a digital image is written as I = D ◦ I : S→ V, where S ⊂ Z2 is a �nite set of integer points.

The digitization function D is a standard rounding operator1.

Figure 2.1 (left) illustrates an image which is the representation of a real object on a �nite

support. After digitizing the given image, we obtain a digital image as a set of pixels appearing on

1The rounding operator considered for D can be the �oor, ceiling, etc. All these operators are equal for

all the points which do not have semi-integer coordinates, and particularly di�er on these last points.
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(a) (b) (c) (d)

Figure 2.2: Digital rigid transformation. (a) A digital image, (b) the associated grid of the image (a), (c) a

rigid transformation applied on the discrete grid of the image (a), and (d) the digital transformed image.

a screen. Digital images are stored in computers as 2D array data structures, in which each pixel

is represented as a point with integer coordinates.

In this work, we will focus on the e�ects of rigid transformations on the support of digital

images. In particular, we will not consider their e�ects on the value set V of such images.

2.1.2 2D (digital) rigid transformation

A rigid transformation is de�ned as a combination of rotations and translations2,

and expressed as a bijection T : R2 → R2. Generally, T is modeled by a triplet of parameters

(a, b, θ), where θ denotes an angle of rotation, and (a, b) denotes a vector of translation. Such

transformation T will sometimes be denoted by Tabθ.

In the discrete framework of digital images (where images are de�ned on Z2), it is however not

possible to apply directly T , since there is no guarantee that T (p) ∈ Z2 for any p ∈ Z2. Based on

the digitization D proposed in Section 2.1.1, a digital rigid transformation T : Z2 → Z2 associated

to T can be conveniently de�ned by setting T = D ◦ T , as illustrated in Figure 2.2.

2.1.3 Transformation models

Two models are usually considered for digital image transformations. The �rst � namely, Lagrangian

model � consists of observing the movement of discrete points of the initial space in the transformed

2 Rigid transformations are composed of re�ections, rotations and translations. While re�ections are

excluded, they are called proper rigid transformations. In this thesis work, we deal with the latter. The

reason for this is twofold. First, any re�ection can be trivially decomposed into a re�ection across a given

axis, combined with two rotations with the same center and opposite angles. Second, re�ections are not as

generally useful in matching and tracking applications, and may needlessly complicate the search space. By

an abuse of language, the term rigid transformation used here refers to proper rigid transformation.
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y
x

T −1

T

(a) Transformation models.

T

D ◦ T
x

(b) Lagrangian model.

D ◦ T −1

T −1

y

(c) Eulerian model.

Figure 2.3: Image transformation models: (a) transformation models in R2, (b) Lagrangian and (c) Eulerian

transformation models in Z2. (a), (b) and (c) left: image support before transformation; right: image support

after transformation. (b) and (c): the digital support S ⊂ Z2 is depicted by white or black dots, and pixels

are depicted by squares.

one (i.e., �nding y = T (x) such that x ∈ Z2). The second � namely, Eulerian model � consists of

doing the inverse (i.e., �nding x = T −1(y) such that y ∈ Z2)3.

Figure 2.3 illustrates them in both continuous and discrete spaces. These models are equal in

R2, since T is bijective. On the contrary, in Z2, they are actually distinct. Indeed, D ◦ T −1 and

D ◦ T are generally not bijective. Without loss of generality, we are conveniently able to handle

these two models by setting T = D ◦ T|Z2 for the Lagrangian model, and T−1 = D ◦ T −1|Z2 for the

Eulerian ones. All along the chapters of the thesis, the Eulerian model is used to generate the

transformed images under rigid transformation.

2.2 Non-bijectivity of digital rigid transformations

A continuous rigid transformation T establishes a bijection from R2 to itself. By opposition, due to

the discrete nature of the digitization process D, a digital rigid transformation T = D ◦ T is, most

of the time, not bijective from Z2 to itself. Indeed, it is possible that T maps no discrete point of

the initial space into a pixel of the transformed space, as illustrated in Figure 2.4(b). Such a pixel

is called a null pixel, and the existence of null pixels implies that T is not surjective. The digital

rigid transformation T may also map two discrete points of the initial space into a same pixel of

the transformed space, as illustrated in Figure 2.4(c). Such a pixel is called a double pixel, and

3These two models are used in physics to observe the elements in time. In particular, the Lagrangian

model is expressed in (element - time) coordinates and the Eulerian model is expressed in a (space - time)

coordinates. The Lagrangian model is also known as forwards model while the Eulerian model is called

backwards model.
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(a) Original image. (b) Null pixels. (c) Double pixels.

Figure 2.4: Digital rigid transformation is not necessarily bijective. (a) Original image with the associated

grid. (b,c) Rigid transformation applied on the grid de�ned in (a). (b) The blue pixels, containing no images

of any discrete points after a digital rigid transformation T (namely, null pixels) show the non surjectivity

of T . (c) The red pixels, containing two images of two discrete points after T (namely, double pixels) show

the non injectivity of T .

(a) θ = arcsin( 3
5 ). (b) θ = π/12. (c) θ = π/4.

Figure 2.5: Some digital rotations by angles θ of a white square of size 100×100. Double pixels are depicted

in red, and null pixels in grey.

the existence of double pixels implies that T is not injective. (We also use the term single pixel

for the pixels having only one discrete point mapped into it under T .) This issue had already been

identi�ed in [Jacob 1995, Nouvel 2005, Nouvel 2006a, Thibault 2009, Thibault 2010] for rotations

in discrete spaces. Some examples of null and double pixels appearing after some digital rotations

are provided in Figure 2.5.

Any digital transformation T can not map a triplet of points into a same pixel. Indeed, let us

consider three distinct points of Z2 forming a unit right isosceles triangle. In this con�guration, the

maximal Euclidean distance between these three points is
√

2, and the diagonal of a pixel is
√

2 as

well. Therefore, the digitizing result of these three points under any digital rigid transformation

can not be the same. In other words, a pixel can have only three statuses (either null, single or

double) with respect to a digital rigid transformation.
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(a) Distance alterations.

(b) Angle alterations.

Figure 2.6: Digital rigid transformations do not preserve distances (a) and angles (b). Left column (S):
original image with the associated grid. Middle (T (S)): rigid transformation of the grid de�ned in the left

column, where S is the support of the image. Right (T (S) = D ◦ T (S)): result of the induced digital rigid

transformation. (a) Two points in red (resp. blue, green and yellow) are considered for distance alterations

changing from 1 (resp. 1,
√

2 and
√

2) to 0 (resp.
√

2, 1 and 2). (b) Three points in red (resp. blue and

green) are considered for angle alterations changing from π
2 (resp. π and π

4 ) to
3π
4 (resp. 0 and π

2 ).

2.3 Non-preservation of geometric properties

Beyond the issue of bijectivity, the digitization process from R2 to Z2 also causes some geometric

alterations in the digital transformed space with respect to the initial one. Indeed, rigid transfor-

mations in R2 preserve (1) the distance (in particular, the Euclidean one) between any two points,

and (2) the angle induced by any triplet of (distinct) points, but these properties are generally lost

for digital rigid transformations.

Figure 2.6 illustrates both distance and angle alterations. For example, let us consider in the

initial space two integer points (in red) of distance 1. After a digital rigid transformation, their

images are now in the same pixel. Consequently, the distance of the two points in the transformed

space is 0. Similarly, the angle between three points (in red) changes from π
2 to 3π

4 .
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Figure 2.7: Illustration for the discontinuity of digital rigid transformations. Left: Original image with its

associated grid (�rst row) and the associated digital image (second row). Middle: a digital rigid transfor-

mation is applied on the grid of the image (�rst row), the transformed image (second row) is identical to the

original one. Right: another digital rigid transformation is applied on the grid of the image (�rst row) such

that it moves the pixel center over the boundary of the pixel; the transformed image (second row) di�ers

from the original one. The discrete points (center of pixel) are depicted by dots, their associated Voronoi

cells boundary are depicted by lines.

2.4 Partition of the parameter space

2.4.1 Discontinuity of digital rigid transformations

A rigid transformation T in R2 is a continuous function. On the contrary, the digital analogue of T ,
i.e., the digital rigid transformation T = D ◦ T , is discontinuous. Indeed, the digitization function

D decomposes the space of images into pixels, whose boundaries are points having semi-integer

coordinates. The later points, namely the �inter-pixel� elements4, are of great importance in digital

topology [Kovalevsky 1989, Kong 1989]. They are also of �rst importance for understanding the

parameter space of digital rigid transformations. Indeed, the discontinuities of transformations on

Z2 induced by D occur only on these semi-integer points. Examples are shown in Figure 2.7. We

observe that the transition of a pixel p into one of its four adjacent pixels occurs when p crosses a

pixel boundary. In other words, a digital rigid transformation generates a new transformed image if

it moves at least one pixel center over the discrete half-grid H =
(
R× (Z+ 1/2)

)
∪
(
(Z+ 1/2)×R

)
;

otherwise there is no new digital transformed image.

4A 2D digital image can be represented in a cellular model, such that we have: 0-cells, 1-cells and 2-cells

for elements of dimension 0 (points), 1 (lines) and 2 (pixels) respectively. Then inter-pixel elements can be

0-cells or 1-cells.
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(a) Vertical critical transformation. (b) Horizontal critical transformation.

Figure 2.8: Examples of critical transformations Tabθ, each of which moves at least one pixel center onto

its boundary which can be either �vertical� (a) or �horizontal� (b). The pixel centers are depicted by dots,

while their boundary are depicted by lines.

We focus in particular on the triplets (a, b, θ) and their associated transformations Tabθ, each of

which maps at least one discrete point onto the discrete half-grid H. Such transformations, called

critical transformations and exempli�ed in Figure 2.8, characterize the discontinuities in the space

of digital rigid transformations.

2.4.2 Tipping surfaces and tipping curves

Analytically, each critical transformation can be expressed as the mapping of p = (p, q) ∈ Z2 onto

a half-grid point which can be either a horizontal (k + 1
2 , λ) ∈ H or a vertical one (λ, l + 1

2) ∈ H
(with k, l ∈ Z and λ ∈ R) (see Figure 2.8). The sets of parameters (a, b, θ) modeling critical

transformations Tabθ form, in the parameter space, 2D surfaces, called tipping surfaces5. Concretely,

a vertical (resp. horizontal) tipping surface that maps p = (p, q) onto (k + 1
2 , λ) (resp. (λ, l + 1

2))

is modeled by the integer triplet (p, q, k) (resp. (p, q, l)), and then denoted by Φpqk (resp. Ψpql).

These two families of tipping surfaces can be projected on the planes (a, θ) and (b, θ). We then

obtain two families of trigonometric curves, denoted by φpqk and ψpql, and called tipping curves.

Examples of tipping surfaces and tipping curves are given in Figure 2.9. One may notice that the

tipping surfaces Φpqk and Ψpql can be straightforwardly recovered by extrusion of the tipping curves

φpqk and ψpql.

2.4.3 Digitization of the parameter space of rigid transformations

It has been observed that some distinct rigid transformations may have an identical digitization.

This leads us to consider equivalence classes of digital transformations. More precisely, we can

5The term tipping refers to the fact that such surfaces characterize a transition of a grid point from a

pixel to one of its adjacent pixels during a digital rigid transformation.
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(a) Tipping surfaces. (b) Tipping curves.

Figure 2.9: (a) Tipping surfaces in the 3D parameter space (a, b, θ), and (b) their cross-sections, namely

tipping curves, in the 2D planes (a, θ) and (b, θ).

de�ne the equivalence relation ∼ between transformations as
(
Tabθ ∼ Ta′b′θ′

)
⇐⇒

(
Tabθ = Ta′b′θ′

)
.

It should be noticed that this relation is only de�ned for non-critical rigid transformations. From

this equivalence relation, we can de�ne the notion of discrete rigid transformation, that will be

studied in the sequel.

De�nition 1 (Discrete rigid transformation) For a given digital image I : S→ V, each equiv-

alence class of rigid transformations under ∼ (induced by S) is called a discrete rigid transformation

(DRT, for short).

One may observe that the term digital refers to the digitization process of images and trans-

formations for such images, while the term discrete refers to the non-continuous structure of these

transformations.

The parameter space (a, b, θ) of rigid transformations is then partitioned into disjoint sets of

DRTs, in which the function (a, b, θ) 7→ Tabθ = D ◦ Tabθ is piecewise constant. Roughly speaking,

any transformation in a same DRT generates an identical digital transformed image. In particular,

the surfaces bounding these DRTs are tipping surfaces which correspond to discontinuities of the

digital rigid transformations. The subdivision of the parameter space R3 of (a, b, θ) into DRTs is

exempli�ed in Figure 2.10.

In this isomorphic framework, the number of DRTs is thus the number of all possible digital

transformed images of a given image. Since these digital images are de�ned on a �nite support, it

is straightforwardly followed that the set of all DRTs is also �nite.
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Figure 2.10: The parameter space of digital rigid transformations is divided into 3D open cells, and the 2D

(tipping) surfaces bounding these open cells correspond to discontinuities of the digital rigid transformations.

Each 3D open cell corresponds to a DRT and generates one transformed image. Each tipping surface, either

Ψpqk or Φpql, indicates that the pixel p = (p, q) ∈ Z2 will cross the half-grid line, either x = k + 1
2 or

y = k + 1
2 . Thus, two adjacent 3D open cells have their associated transformed images di�ering only at p.

2.5 Summary

In this chapter, we have studied rigid transformations on digital images and shown that digital rigid

transformations have very di�erent properties with respect to their continuous analogues, namely,

discontinuity, non-bijectivity and non-preservation of geometric properties. By investigating the

parameter space of rigid transformations on Z2, it has been observed that this space could be

subdivided into regions, each of which corresponds to a unique digital rigid transformation. This

framework has led to the proposal of a purely discrete formalization of digital rigid transformations.

In the next chapter, we de�ne a combinatorial structure used to represent the subdivision of the

parameter space of digital rigid transformations. It will be shown in particular that this structure

has a polynomial complexity, and can be explicitely constructed in optimal time.



Chapter 3

Combinatorial analysis of discrete rigid

transformations

Contents
3.1 Graph representation of discrete rigid transformations . . . . . . . . 18

3.2 Algorithm for discrete rigid transformation graph construction . . . 20

3.2.1 Arrangement problem formalization . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Sweeping algorithm for discrete rigid transformation graph construction 22

3.3 Discrete rigid transformation graph under constraints . . . . . . . . 24

3.4 Space complexity of discrete rigid transformation graphs . . . . . . 28

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

In this chapter, we introduce a dual structure (namely, a graph) in order to represent the

subdivision of the parameter space of rigid transformations. This graph consists of �nite sets of

vertices and edges, such that each vertex represents a discrete rigid transformation, and each edge

corresponds to a �one-pixel� di�erence between the two associated vertices. This structure describes

all the possible rigid transformations of any subset of Z2 of size N ×N .

On one hand, we propose an algorithm with exact computation for building this graph in

optimal time with respect to its size. On the other hand, we carry out a combinatorial analysis

proving that this graph has a polynomial space complexity with respect to N . In particular, it is

shown that this complexity can be decreased when considering spatial constraints.

With this novel tool, we are able to characterize neighboring relations between rigid trans-

formations on Z2, and to explicitly determine and generate all these transformations. This pro-

vides a contribution to the �eld of combinatorial analysis of image transformations [Amir 2006,

Hundt 2008a, Hundt 2009, Thibault 2010].

The work exposed in this chapter was published in [Ngo 2012, Ngo 2013a, Ngo 2013c].
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Figure 3.1: Parameter space of rigid transformations subdivided by four tipping surfaces (left), and the

associated DRT graph (right).

3.1 Graph representation of discrete rigid transforma-

tions

As observed in the previous chapter, the parameter space of rigid transformations is subdivided

into equivalence classes of transformations (namely, discrete rigid transformations or DRTs), which

are modeled by 3D open cells. These cells are separated by tipping surfaces, modeled by 2D closed

cells, which correspond to critical rigid transformations. This subdivision of the parameter space

can be modeled, in a dual way, as a combinatorial structure. More precisely, we map any 3D cell

onto a 0D point, and any 2D tipping-surface segment (linked to a critical transformation), shared

by two adjacent 3D open cells, onto a 1D edge. The resulting structure is illustrated in Figure 3.1

and de�ned as follows.

De�nition 2 (Discrete rigid transformation graph, DRT graph) Given a set of tipping

surfaces, Φpqk and Ψpql, the graph G = (V,E) associated to DRTs induced by these tipping surfaces

is de�ned such that:

• each vertex v ∈ V models a 3D open cell associated to a DRT;

• each labelled edge e = (u,w, f) ∈ E (where f is either Ψpqk or Φpql) represents the tipping

surface f between two adjacent vertices v, w ∈ V .

This graph G is called a discrete rigid transformation graph (DRT graph, for short).

As mentioned in Section 2.4.3, any rigid transformation associated to a same DRT corresponds

to a same digital transformation. Therefore, each DRT can be considered as a digital transformed
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Figure 3.2: Left: subdivision of the parameter space of rigid transformations by tipping surfaces, and the

associated DRT graph. Let us focus on the edge e = (v, w, f) (in red) which connects two vertices u and v

(in blue and green, respectively), and has the tipping surface Ψ321 as label. Right: two digital images Iu and

Iv associated to the vertices u and v, respectively. The tipping surface Ψ321 encoded on e indicates that the

pixel (in rose) p = (3, 2) will get its value from the one (in blue) after the half-grid line y = 1 + 1
2 , according

to the Eulerian model. Thus, two vertices u and v separated by Ψ321 have their associated transformed

images Iu and Iv di�ering only at p.

image generated by any rigid transformation of the associated DRT. In the sequel, we denote by Iv

the image associated to the DRT v. It should be noticed that a DRT graph does not contain any

geometric parameter (a, b, θ) of the rigid transformations, but only structural information, encoded

on the edges, which model the relationships between the adjacent transformed images. Concretely,

let us consider an edge e = (v, w, f) ∈ E between two distinct vertices v, w ∈ V , where the function
f is either equal to Ψpqk or Φpql. Let p = (p, q) ∈ Z2 and q be the point having as coordinates either

(k, λ) or (λ, l) with respect to f . The function f indicates that the point T−1(p) = q will cross the

half-grid line at coordinates (x, y) ∈ R2, with either x = k+ 1
2 or y = l+ 1

2 for k, l ∈ [[0, N ]]. Let Iv

and Iw be the transformed images corresponding to the vertices v and w, respectively. The value

of p at the vertex v is de�ned by Iv(p) = I(q) where I : S → V is the original image. After the

elementary modi�cation at the edge e, we obtain a new transformed image Iw by simply changing

the pixel value at p as Iw(p) = I(q + δ) where δ = (±1, 0) or (0,±1) with respect to f . In other

words, there is exactly one pixel q di�ering between Iv and Iw. This property is exempli�ed in

Figure 3.2. Typically, such elementary modi�cations allow the incremental manipulation of images,

via pixel-by-pixel modi�cations.

Remark 3 Let I : S → V be an image, and G = (V,E) be its DRT graph. For each elementary

modi�cation at the edge e ∈ V connecting two vertices v and w, two cases can occur:

(i) Iv(p) = Iw(p), i.e., the transformed images of I by the DRTs v and w are equal (Iv = Iw);

(ii) Iv(p) 6= Iw(p), i.e., Iv 6= Iw.

The value of p may then be �ipped from one value to another, and this may constitute the only
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Figure 3.3: Left: a DRT graph in which each vertex/DRT represents a digital transformed image, and each

edge indicates only one pixel whose value is modi�ed between the two associated images. More precisely,

an edge e = (v, w, f) between two vertices v and w indicates that one pixel value is di�erent between the

associated transformed images Iv and Iw (see text). Right: the transformed images associated to the vertices

of the DRT graph, and generated by using the Eulerian model. The images from upper-left to bottom-right

correspond to the path (in red) of the vertices ordered from 1 to 10 in the graph. Along this path, two

consecutive transformed images have one pixel of di�erence, which is depicted by the red frame.

modi�cation between the transformed images of I by the DRTs v and w.

In other words, the case (i) appears when Iw(p) has its value being identical to Iv(p); then the

images Iv and Iw are equal. Otherwise, we have the case (ii) where Iv and Iw are di�erent at p.

A DRT graph models a kind of �neighboring� relationship between DRTs (and between trans-

formed images). Typically, two neighboring digital transformed images di�er in (at most) one pixel

among the N2 ones. This particularity, exempli�ed in Figure 3.3, will open the way to the use of

this combinatorial structure in image processing applications (see Chapter 4).

3.2 Algorithm for discrete rigid transformation graph

construction

In this section, we present a method for computing the DRT graph for a given digital image

I of size N × N . This problem can be formulated as the problem of arrangement of surfaces

[Sharir 1999, Chan 2005]. The algorithm for computing the arrangement of surfaces presents a

complexity of Ω(n4) for general surfaces, where n is the number of surfaces. In our � more speci�c

� case, we propose an algorithm with a better complexity of O(n3) based on the idea of the sweeping

method described in [Edelsbrunner 1991a] using incident graph.



3.2 Algorithm for discrete rigid transformation graph construction 21

face
vertexarc

face

vertex
arc

Figure 3.4: Examples of 2D arrangements of curves: simple (left) and non simple (right).

Figure 3.5: Example of 3D simple arrangement of surfaces.

3.2.1 Arrangement problem formalization

In the 2D space, an arrangement is de�ned as the decomposition of a �nite collection C of

curves in the plane [Edelsbrunner 1987, Snoeyink 1989, Halperin 2004]; these curves have no self-

intersections, and are endless (either closed or bi-�nite). Any two curves intersect in a �nite number

of points. The curves partition the plane into three types of maximally connected regions that are

called cells of dimensions 0, 1 and 2: a 0-dimension cell (a vertex ) is the intersection point of two

curves of C, a 1-dimension cell (an arc) is a maximally connected portion of a curve that is not

intersected by any other curve in C; and a 2-dimension cell (a face) is a maximally connected region

of R2 that is not intersected by any other curve in C. An arrangement of C is a set of those cells and

their relations, denoted by A(C). An arrangement is simple if there are no three curves that inter-

sect at a same point. An example of curve arrangements is shown in Figure 3.4. Various methods

can be used to obtain the arrangement of curves: linear sweep construction [Edelsbrunner 1992],

zone theorem [Edelsbrunner 1991b], topological sweep [Edelsbrunner 1991a], etc. A comprehensive

discussion on the arrangement can be found in [Halperin 2004, chapter 24].
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The problem of arrangement has been extended to the 3D space for the case of surfaces

[Sharir 1999, Chan 2005]. Given a �nite set S of surfaces, this set S partitions the 3D space

into four types of cells: a 3-dimension cell is a maximally connected region that is not divided

by any other surfaces in S, while the other 2-, 1-, and 0-dimension cells are de�ned as above. An

example is shown in Figure 3.5. It is shown in [Sharir 1999] that the surface-arrangement algorithm

has a complexity of Ω(n4) for general surfaces, where n is the number of surfaces. To compute

a DRT graph, we only deal with the tipping surfaces. From Section 2.4.2, we know that tipping

surfaces in the 3D parameter space (a, b, θ) can be fully described from their two cross-sections on

the planes (a, θ) and (b, θ), respectively. These cross-sections are expressed by two sets of tipping

curves. In addition, we are only interested in the information about regions and faces in the ar-

rangement. Therefore, instead of using the basic algorithm of surface arrangement, we propose

a variation of the sweeping method [Edelsbrunner 1991a] for constructing the DRT graph with a

better complexity of O(n3), where n is the number of tipping surfaces.

3.2.2 Sweeping algorithm for discrete rigid transformation graph

construction

Let us formalize the speci�c case � when the surfaces are tipping surfaces � as follows. Given a set

of tipping surfaces S, we would like to construct a graph modeling the subdivision of the parameter

space (a, b, θ) induced by S. Such a graph is called a DRT graph (see De�nition 2) and denoted by G .

We recall that in G , each vertex is associated to a 3D open cell of the subdivision, and each tipping-

surface segment shared by two adjacent 3D open cells, is associated to an edge. When projecting

two families of tipping surfaces on the planes (a, θ) and (b, θ), we obtain the corresponding families

of tipping curves (see Figure 2.9(b) in Section 2.4.2). Based on these relations that link tipping

surfaces and tipping curves, instead of constructing directly the partition graph in the 3D parameter

space (a, b, θ), we �rst consider the structures of graphs in the 2D planes (namely, the (a, θ) and

(b, θ) planes), and then combine them to build a complete DRT graph in the 3D parameter space

(a, b, θ).

The main idea of the sweeping method in 2D is that a cut is swept through all tipping curves

on the plane, and allows us to construct a graph afterwards. We de�ne such a cut for a plane �

either (a, θ) or (b, θ) � denoted by γ, as a monotonic line intersecting exactly once for each tipping

curve in the plane. A cut γ is then represented by its sequence of intersecting tipping curves and

modeled by a directed graph Gγ according to its sequence, as illustrated in Figure 3.6.
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Figure 3.6: Example of a cut γ and its associated graph Gγ .

Figure 3.7: Progress of the cut at an event point e by which the cut γ is updated and the corresponding

graph Gγ is modi�ed.

We assume that the cut γ sweeps from θ = 0 to θ = 2π. While sweeping γ, its sequence changes

in a discrete fashion. Indeed, as we observe in Figure 3.6, the sequence γ changes only at inter-

sections of tipping curves, called event points. Therefore, instead of moving the cut continuously,

we only need to maintain a set of sorted event points with respect to θ, and to progress in their

increasing order to compute the graph incrementally. In particular, when γ reaches an event point,

the algorithm performs an update of its sequence, and generates new vertices and edges in the

graph. We call this an elementary step of the algorithm. The set of event points derives from a

series of elementary steps.

For the simple cases (i.e., when an event point is generated from the intersection of exactly two

tipping curves), each elementary step products one new vertex and the associated cut γ changes after

passing this event point by interchanging the order of the intersecting curves in γ, as illustrated in
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Figure 3.7. There exist however some degenerate cases (or, non-simple cases), such as tangent and

multiple intersections. They can be handled by modifying the simple case; instead of dealing with a

pair of tipping curves, we now deal with a family of tipping curves that go through the intersection

of each event point. The details of degenerate cases handling can be found in [Ngo 2013a].

In the sweeping method, all event points need to be detected and sorted. The coordinates of

event points are irrational numbers whose value can not be computed exactly. Nevertheless, each

value of θ can be represented by a pair of cos θ and sin θ. These values cos θ and sin θ are further

used in order to compute the a and b values. In [Ngo 2013a], we observed that a, b, cos θ and sin θ

are all quadratic irrationals1. It is known in [Rosen 1992] that two quadratic irrationals can be

compared by an exact method2 using periodic continued fraction representation. Moreover, it is

proved in [Flajolet 1998] that the average cost of the comparison of periodic continued fractions is

in constant time. The fact of using integer arithmetic avoids technical problems due to the use of

�oating point representations such as the potential detection of �false� event points that may occur

in degenerate cases.

We now explain the principle of the algorithm for building a DRT graph G in the parameter

space of (a, b, θ). Two cuts are used such that each cut sweeps on either the plane (a, θ) or (b, θ). We

denote these cuts by γa and γb, respectively. For each update of the cuts γa and γb, the associated

graphs, Gγa and Gγb , are respectively modi�ed. By combining the two graphs Gγa and Gγb , we

then generate a part of the DRT graph G , called a partial graph and denoted by δG . Typically,

δG can be seen as a Cartesian product of Gγa and Gγb , as illustrated in Figure 3.8.

Then, at each event point, an elementary step is applied to Gγa or Gγb ; the sweep progresses as

the partial graph δG is generated and integrated in G for constructing the �nal graph. It is shown

in [Ngo 2013a] that the proposed algorithm presents a linear time complexity with respect to the

size of the DRT graph, which is O(N9) where N × N is the image size. More details about the

sweeping algorithm for tipping surfaces can be found in [Ngo 2013a].

3.3 Discrete rigid transformation graph under con-

straints

So far, we know that a DRT graph models the subdivision of the whole parameter space of rigid

transformations. In other words, it models all the possible rigid transformations of a given subset

of Z2 of size N ×N . It has been proved in [Ngo 2013a] that the DRT graph has a polynomial com-

plexity O(N9) (see Section 3.4). Due to this high complexity, it is di�cult to involve directly a DRT

graph in image analysis applications. To tackle this issue, two approaches can be considered. The

�rst consists of using the DRT graph in a local fashion, thus reducing the space complexity of the

research area where it is involved, as proposed in [Ngo 2013e, Ngo 2013b] (see Chapter 4). The sec-

1A quadratic irrational is an irrational number that is a solution of some quadratic equations.
2An exact method employs only integers during the computation.



3.3 Discrete rigid transformation graph under constraints 25

(a) Tipping surfaces in the parameter space

(a, b, θ) with the cuts γa and γb on the planes

(a, θ) and (b, θ) respectively.

(b) Tipping curves on the planes (a, θ) and

(b, θ) with the associated cuts γa and γb.

(c) Generation of δG from Gγa and Gγb .

Figure 3.8: Generation of a partial graph δG from two graphs Gγa and Gγb associated to cuts γa and γb

respectively.

ond consists of providing spatial constraints in order to guide the transformations. Such constrained

search paradigms are often used in image analysis and computer vision, e.g., for matching, registra-

tion and warping purposes [Pennec 2000, Zitová 2003, Amintoosi 2011, Xiao 2011, Jyoti 2012]. In

general, these constraints introduce prior knowledge on transformations that contribute to reduce

the searching space. We now investigate this second approach from a combinatorial point of view.

More precisely, we address the e�ects of geometric constraints, called pixel�invariance constraints.

Pixel�invariance constraints consist of forcing correspondences between points in an initial

(sub)space of Z2 and transformed points � or more generally regions � in the transformed one,

as illustrated in Figure 3.9.
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Figure 3.9: A pixel-invariance constraint establishes a correspondence between points p = (p, q) in the initial

space and p′ = (p′, q′) in the transformed. This leads to a restriction of the authorised rigid transformations

in the parameter space.

De�nition 4 (Pixel-invariance constraint) Let p = (p, q) ∈ A ⊂ Z2 and p′ = (p′, q′) ∈ B ⊂
Z2, such that A and B are of size N ×N . There exists a pixel-invariance constraint between p and

p′ if the authorised digital rigid transformation T between A and B satis�es T (p) ∈ p′+ ]− 1
2 ,

1
2 [ .

More generally, there exist pixel-invariance constraints between two sets {pi}mi=1 ⊆ A and {p′i}mi=1 ⊆
B (m ≥ 1) if T (pi) ∈ p′i + ]− 1

2 ,
1
2 [ for every i ∈ [[1,m]].

In the context of rigid transformations in R2, forcing correspondences between points in the

initial space and in the transformed one leads to a restriction for transformations T (see Figure

3.10(a)). Moreover, forcing correspondences for two or more distinct pairs of points restricts the

number of feasible transformations T to at most one (see Figure 3.10(b)). In Z2, restricting DRTs

under similar constraints is more permissive. Indeed, when forcing correspondences between one

or several pairs of pixels, a larger space of transformations may remain valid, as exempli�ed in

Figure 3.10(c�f).

In absence of constraints, the subdivision of the parameter space (a, b, θ) is represented by a

DRT graph studied in Section 3.1. Therefore, the whole volume of the parameter space models

adequate rigid transformations. By contrast, under pixel-invariance constraints, some DRTs may

become irrelevant. Equivalently, only a part of the parameter space � namely, a subspace of (a, b, θ)

that satis�es these constraints � remains valid.

Geometrically, the subspace induced by a constraint of one pixel pair, is de�ned by the inter-

section of four half-spaces associated to four tipping surfaces related to this constraint. Practically,

it corresponds to a tube-like volume as illustrated in Figure 3.10(c). For two pixel-invariance

constraints, the parameter subspace of feasible transformations is the intersection of such tubes

generated by these constraints, and it is a bounded and connected set, or possibly becomes empty.

Figure 3.10(d) shows the parameter subspace for two given constraints.

In particular, the subspace obtained fromm pixel correspondences, is divided into DRTs induced
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Feasible rigid transformations induced by spacial constraints in continuous (a,b) and discrete

(c�f) frameworks. (a) Transformations with one-point correspondence (red curve). (b) Transformation with

two-point correspondences (red dot at the intersection of the two red curves). (c) Transformations with

one-pixel correspondence (red tube-like volume). (d) Transformations with two-pixel correspondences (red

volume). (e,f) Projection/intersection of the red volume parts of (c,d) respectively on the planes (a, θ) and

(b, θ) with the associated tipping curves.
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by the (N2−m) remaining pixels of the given image of sizeN×N . Thus, the combinatorial structure

of DRTs in this subspace, modeling its subdivision, is a subgraph of the DRT graph of the image

of size N × N . The method presented in Section 3.2 can be modi�ed to build this subgraph in

linear time with respect to the size of the graph. More details on this algorithm can be found in

[Ngo 2013c].

3.4 Space complexity of discrete rigid transformation

graphs

The space complexity of a DRT graph is proportional to its number of vertices and edges. These

values directly depend on the number of event points involved in its construction, and the number

of vertices and edges generated at each event point. As mentioned in Section 3.2, the construction

of a DRT graph G in the parameter space (a, b, θ) is obtained from its projections on the planes

(a, θ) and (b, θ). Therefore, the number of event points is the number of intersecting points on the

plane either (a, θ) or (b, θ). It is proved in [Ngo 2013a] that for a given set of n tipping curves, this

number of event points is at most n(n− 1).

For a subset of Z2 of size N ×N , we have tipping surfaces (resp. curves) Ψpqk and Φpql (resp.

ψpqk and φpql) with p, q ∈ [[0, N − 1]] and k, l ∈ [[0, N ]]. Thus, we have n = O(N3), which is the size

of the cut as well. The number of event points is then O(N6). At each elementary step, there are

one vertex and two edges generated on a plane, either (a, θ) or (b, θ). As mentioned in Section 3.2,

the construction of a DRT graph G is obtained from its projections on the planes (a, θ) and (b, θ)

using two cuts. Since the size of each cut is O(N3), the numbers of vertices and edges generated at

each elementary step is thus O(N3). Finally, (i) the number of event points of the whole space is

O(N6), and (ii) at each elementary step (i.e., for each event point), O(N3) vertices are generated

in the partial graph δGi of G . This justi�es the following result.

Theorem 5 ([Ngo 2013a]) The DRT graph G associated to an image of size N ×N has a space

complexity of O(N9).

Given one pixel-invariance constraint, some DRTs become irrelevant. Following a similar proof

scheme as below, we can show that the number of event points (i) decreases from O(N6) to O(N5)

(see Property 4 in [Ngo 2013a]), and (ii) at each elementary step, O(N2) vertices are generated

instead of O(N3) since δG is generated from two graphs Gγa and Gγb associated to the cuts γa and

γb. Each of the cut intersects at most O(N2) tipping curves on the plane. Then at each intersection,

there are O(N2) vertices generated in δG . This leads to the following result.

Theorem 6 ([Ngo 2013c]) The DRT graph G associated to a digital image of size N ×N under

one pixel-invariance constraint has a space complexity of O(N7).
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For more than one pixel-invariance constraint, we can not use a similar approach to obtain the

theoretical upper bound complexity of G induced by these constraints. This is due to the fact that

the space complexity of the DRT graph under constraints does not only depend on the number

of constraints, but also on the geometric con�guration of the points involved in these constraints.

In the worst case, it is shown in [Ngo 2013c] that the space complexity does not exceed O(N7).

It is however experimentally observed that this complexity tends to decrease when more than one

constraints are considered, and in particular, when the distance between the constraints increases.

Following this observation, in [Ngo 2013c] a conjecture has been proposed in which the complexity

of G is linked to the distance between points of given constraints.

Conjecture 7 ([Ngo 2013c]) The DRT graph G associated to a digital image of size N × N

under two pixel-invariance constraints has a space complexity of O(N5.5d−1.6), where d denotes the

Euclidean distance between two pixel-invariance constraints.

3.5 Summary

We have introduced in this chapter a combinatorial structure (namely, a discrete rigid transfor-

mation graph or DRT graph) for representing the subdivision of the parameter space of rigid

transformations. Such a structure models all DRTs and their relations for any considered subspace

of Z2 of size N × N , and presents a complexity of O(N9). We have also shown that under pixel-

invariance constraints, this complexity decreases; typically under one constraint, the complexity of

the DRT graph becomes O(N7), and tends to decrease for several constraints. An algorithm has

been proposed to compute such DRT graph in linear time with respect to its size.

In particular, this graph explicitly models the �neighboring� links between DRTs. This con-

tributes to (i) a better understanding of the topological behavior of rigid transformations in Z2,

and (ii) the generation of all transformed images by incrementally modifying (at most) one pixel

value between two successive transformed images (see Remark 3 and Figure 3.11). The DRT graphs

provide a purely discrete description of rigid transformations on Z2 and allow to study, implement

and utilise such transformations as a single process. Beyond these combinatorial and algorith-

mic aspects, this novel tool can also be involved in image processing tasks, e.g., image matching

[Hundt 2009], registration or warping [Pennec 2000, Ngo 2013g]. In particular, the DRT graph

can be used in imaging applications based on sub-sample analysis, e.g., in pattern-based strategies

for analysing the topological invariance of images [Ngo 2013b], or patch-based methods for image

denoising application [Buades 2005].

In the next chapter, we show how it contributes to the understanding of the relationships existing

between geometry and topology in the framework of computer imagery, where both notions are more

strongly linked than in continuous spaces.
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Figure 3.11: The 231 images generated by using the Eulerian model from the part of a DRT graph for

an image of size 3 × 3 where a, b ∈ ] 12 ,
3
2 [ and θ ∈ ]0, π4 [. The �rst image is obtained by the identity

transformation. We do not show pixels that are outside of the image support, and background pixels are

formally colored in black.
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In R2, rigid transformations are topology-preserving operations. This property is generally lost

when such transformations are applied on digital images. Indeed, due to the mandatory digitization

from R to Z, digital rigid transformations, as shown in Chapter 2, do not preserve distances, as

well as angles between points. These geometrical changes lead to the alterations of topology in

the transformed space, as exempli�ed in Figure 4.1. In this chapter, we investigate this speci�c

issue that is of high importance in digital image processing and analysis. Indeed, the topology-

preserving geometric deformations of digital images are involved in various applications such as

atlas-based segmentation [Bazin 2007a, Faisan 2008], clustering analysis [Pham 2001, Bazin 2007b]

and medical imaging [Lam 1992, Tustison 2011]).

In particular, we address the following questions:

(i) Do there exist digital images that preserve their topology under all possible rigid transfor-

mations?

(ii) Is it possible to verify topological preservation for a given image?

(iii) What are the conditions for digital images to preserve their topology?

To this end, we introduce a notion of topological invariance, which characterizes the preservation of

topological properties of digital images under rigid transformations. Based on the notions of DRT

graphs and of simple points [Rosenfeld 1970, Couprie 2009], we provide an approach to evaluate
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Figure 4.1: Left: binary digital image and the grid modeling its discrete structure. Middle: a rigid transfor-

mation applied on this grid. Right: the resulting transformed image, which is not topologically equivalent

to the initial image (for instance, the black component is split if it is considered to be 8-connected).

the topological invariance of an image by scanning its whole DRT graph. Then, we show that this

global approach, which presents a high complexity, can be simpli�ed into a local approach, based on

a spatial decomposition of the image into covering patterns. The study of these patterns provides

su�cient conditions to assess the topological invariance of images in quasi linear time.

For the sake of readability, our study is carried out in the context of binary images. However,

the obtained results remain relevant for other kinds (e.g., grey-level, labeled) of digital images, as

discussed in Section 4.4.

The work exposed in this chapter was presented in [Ngo 2013e, Ngo 2013b].

4.1 Digital topology: background notions

In this section, we recall some basic concepts of digital topology, which studies the topological

properties of discrete objects on Zn. Several frameworks have been proposed to deal with digital

topology, e.g., Khalimsky grids [Khalimsky 1987], abstract cell complexes [Kovalevsky 1989], or

topology de�ned on the Jordan surfaces [Herman 1998]. Most of these frameworks regard the

topological spaces as �nite combinatorial ones. It is shown in [Mazo 2012a] that in Z2, these

frameworks can be conveniently uni�ed within the frequently used graph-based approach proposed

by A. Rosenfeld and J. Pfaltz in [Rosenfeld 1966].

In the context of binary images, the discrete space of images is divided into two graphs, on which

we de�ne the relations between points of foreground (e.g., black points) and those of background

(e.g., white points). These relations are �rst de�ned by adjacencies (that correspond to the edges

of the graphs modeling the image), and then lead to notions of connectedness and connected com-

ponents, associated to these adjacencies. In 2D, we generally use the classical 4- and 8-adjacencies,

which are illustrated in Figures 4.2 and 4.3.

It is well known that, to deal with topological paradoxes [Rosenfeld 1966, Kong 1989] related

to the discrete version of the Jordan theorem1, we generally use a pair of dual adjacency relations

1The Jordan curve theorem, also called separation theorem, asserts that a simple closed curve separates
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Figure 4.2: Left: the four 4-adjacent points (or 4-neighbors) of the center point are its vertical and horizontal

neighbors. Right: the eight 8-adjacent points (or 8-neighbors) of the center point are its vertical and

horizontal neighbors together with the four diagonal ones.

(a) Binary image. (b) (4, 8)-adjacency pairs.

(c) (4, 4)-adjacency pairs. (d) (8, 8)-adjacency pairs.

Figure 4.3: (a) A binary image. (b�d) Adjacency graphs of the black and white points in (a), in which we

use 4- and 8-adjacencies (b), 4- and 4-adjacencies (c) and 8- and 8-adjacencies (d) for black and white points

respectively.

[Duda 1967] for the foreground and the background. More precisely, we consider 4-adjacency for

black points and 8-adjacency for white points, or vice-versa, and we call these con�gurations (4, 8)-

and (8, 4)-adjacency relations, respectively.

Our goal is to investigate the preservation of topological properties � more precisely, the preser-

vation of the homotopy-type � of digital images under rigid transformations. In particular, we

aim to provide conditions on digital images for the preservation of such topological properties.

In digital topology, homotopy-type preservation can be dealt with via the notion of simple point

[Rosenfeld 1970, Couprie 2009]. Indeed, a homotopic transformation can be regarded as a sequence

of deletion and/or addition of (successively) simple points. Practically, a point of a binary image

the plane into exactly two components, which can be interpreted as the interior and exterior of the curve.
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tz

y

x

Figure 4.4: Some simple (x,y) and non-simple (z, t) points. Modifying the value of z would merge two

black connected components, while modifying the value of t would create a white connected component. In

both cases, the homotopy-type of the image would be modi�ed.

(a) (b) (c)

Figure 4.5: Examples of alteration of adjacency pairs between points induced by digital rigid transformations:

(a) an original image with the associated grid; (b) a rigid transformation applied on the grid of (a); (c) the

digitized result of (b). We observe that the two points in blue (resp. green) which were 4-adjacent (resp.

8-adjacent) in (a) become 8-adjacent (resp. 4-adjacent) in (c), and the two points in red (resp. yellow)

which were 4-adjacent (resp. 8-adjacent) in (a) are merged (resp. are neither 4- nor 8-adjacent) in (c).

I is simple if its value can be switched without modifying the topological properties of I (see Fig-

ure 4.4). For various kinds of topological structure [Khalimsky 1987, Kong 1989, Kovalevsky 1989]

mapped on I, and for other kinds of value spaces (grey-level images, label images), the simplicity

of a point can be tested, in constant time, by only studying its 3× 3 neighborhood.

4.2 Topological issues on the discrete structure of images

As observed in Section 2.3, the non-preservation of distances and angles between points, when

applying a digital rigid transformation, results in modi�cations of the adjacency relations between

such points, as illustrated in Figure 4.5. In particular, some connected components may be either

split or merged, as illustrated in the �rst and second con�gurations depicted in Figure 4.7(d).

Beyond alterations of adjacency relations, we can also observe �cardinality-based� issues, due

to the existence of null and double points (see Section 2.2). On one hand, such points can cause

topological alterations, e.g., some connected components may be lost when applying a digital rigid

transformation, as exempli�ed in the third con�guration depicted in Figure 4.7(d). On the other

hand, they can raise topological issues in both Lagrangian and Eulerian transformation models
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?

(a) Lagrangian model. (b) Eulerian model.

Figure 4.6: The e�ects of double (left) and null (right) points are exempli�ed in the context of digital rigid

transformations in the Lagrangian (a) and Eulerian (b) models.

(see Section 2.1.3). Indeed, as illustrated in Figure 4.6, null and double points lead to di�erent

interpretations in the two models. In the Lagrangian model (see Figure 4.6(a)), a double pixel in

the transformed space may receive two di�erent pixel values, and a null pixel receives no value.

This leads to a result being both incomplete and ambiguous in the case of binary images and in

particular for multivalued images. In the Eulerian model (see Figure 4.6(b)), a double pixel of the

initial space may transfer its value to two pixels of the transformed space, while the value of a null

pixel will be lost. This may be conveniently handled in the case where images are considered in a

set-based paradigm; moreover, there are no incomplete and ambiguous issues as in the Lagrangian

model.

In this chapter, we consider the Eulerian model, which allows us to focus on the topological

issues raised by the adjacency alterations. The Lagrangian model implies additional di�culties

that have not been dealt with in this work, and that will be discussed in Chapter 5.

4.3 Topological invariance of digital images under rigid

transformations

Let us consider a 2×2 pixel sample of the transformed space (see Figure 4.7(a)), and all the possible

local pixel con�gurations of the initial space from which the sample is generated (see Figure 4.7(b)).

Despite local alterations among pixels, the topologies of some generated samples may be preserved

(see Figure 4.7(c)). However, such local alterations may also lead to topological alterations in

some samples (see Figure 4.7(d)), and further in the whole image. Consequently, the study of

topological alterations induced by digital rigid transformations must be considered not only as a

transformation-dependent problem, but also as an image-dependent one.

We would like to know if a given image I preserves its topological properties under all digi-

tal rigid transformations, and furthermore what conditions on I to preserve such properties. As

stated above, we focus on the homotopy-type as topological invariant. Let us �rst formalise the

preservation of homotopy-type via the notion of topological invariance.
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Figure 4.7: (a) A 2 × 2 pixel sample with values a, b, c, d. (b) All the local pixel con�gurations (up to

rotations and symmetries) leading to the sample in (a) when applying digital rigid transformations. (c)

Examples of transformations in which the samples preserve the topology of local pixel con�gurations. (d)

Examples of transformations in which the samples are topologically altered.

(a) Topologically invariant image.

(b) Topologically variant image.

Figure 4.8: (a) A topologically invariant 5× 5 image (in blue frame), and all its transformed images (up to

symmetries, in black frames) generated by using its DRT graph. (b) A topologically variant 5× 5 image (in

blue frame), and all its transformed images (up to symmetries) generated by using its DRT graph. Those

whose homotopy-type is equivalent are depicted in black. Those whose homotopy-type di�ers are depicted

in red.
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De�nition 8 (Topological invariance) We say that a digital image I is topologically invariant

if all its rigidly transformed images have the same homotopy-type as I.

Figure 4.8 provides some examples of binary images being topologically invariant and topolog-

ically variant. In the next section, we will develop methods to verify such topological invariance of

a given image I de�ned on S.

4.4 Topological invariance veri�cation

4.4.1 Discrete rigid transformation graph as a topological analysis

tool

An image I is topologically invariant if all its transformed images share the same homotopy-type.

On one hand, from Chapter 3, we know that the DRT graph G of I models all the possible rigid

transformations. It is important to recall that G deforms the image progressively, i.e., pixel by

pixel (see Remark 3 and Figure 3.3). On the other hand, from Section 4.1, we know that the notion

of simple points can be used to characterise the homotopy-type preservation between two images.

It follows that an image I is topologically invariant if all its transformed images are obtained by

successively modifying the values of simple points. The local characterization of simple points is

then compliant with an incremental exploration of the DRT graph of the image I, in order to

evaluate its topological invariance.

More precisely, in the DRT graph G, any elementary modi�cation2 between transformed images

is encoded in an edge. Consequently, by analyzing the edges of the whole DRT graph G, the

topological invariance of I can be veri�ed. Practically, the edges of the DRT graph G = (V,E)

with respect to I can be classi�ed in two categories: those that do not modify the topology of I

(i.e., the edges that correspond to the case (i) and parts of the case (ii) for which the changing pixel

q is a simple point, in Remark 3) and those that do modify the topology (the edges that correspond

to parts of the case (ii) for which q is not simple, in Remark 3). Based on this binary classi�cation,

we can straightforwardly create a partial graph G′ = (V,E′) of G by preserving in E′ ⊆ E only

the edges of the �rst category. In particular, if G′ is connected, then I is topologically invariant.

Otherwise, I is not topologically invariant, and every connected component in G′ corresponds to

a set of transformed images of same homotopy-type. Such an approach presents an algorithmic

complexity that is linear with respect to the (polynomial) space complexity of the DRT graph. The

details of this algorithm can be found in [Ngo 2013b].

Despite the theoretical interest of the proposed approach, its high algorithmic complexity practi-

cally forbids to use it for large images, and therefore to actually evaluate their topological invariance.

In the next section, we show that this problem can however be decomposed spatially, thus leading

to a much lower complexity algorithm.

2The modi�cation of exactly one point between two transformed images.
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(a) N8(p) (b) N20(T−11 (p)) (c) N20(T−12 (p))

Figure 4.9: Any digital transformation maps a 8-neighborhood into at most a 20-neighbohood. (a) In

the transformed space, 8-neighbors of the center point p. (b,c) In the initial space, 20-neighbors of the

transformed point of p, for two digital transformations T1, T2 respectively.

4.4.2 A local analysis for evaluating topological invariance

In the previous section, we have proposed to explore the whole DRT graph of an image I in order

to check its potential topological invariance. More precisely, for each edge of the DRT graph, we

veri�ed if the modi�ed pixel is actually a simple point or not. This test was performed locally,

more precisely in the 3 × 3 neighborhood centered on the considered pixel in the transformed

space [Kong 1989]. We now take advantage of the local nature of this test to develop a spatial

decomposition strategy that leads to a local version of the previously proposed global method.

To this end, we �rst need to introduce basic properties related to the in�uence of DRTs on pixel

neighborhoods.

Property 9 Let p, q ∈ Z2, q ∈ N8(p) and a digital rigid transformation T . We have T−1(q) ∈
N20(T

−1(p)), where N8(x) = {y ∈ Z2 | ||x− y||2 < 2} and N20(x) = {y ∈ Z2 | ||x− y||2 < 2
√

2}.

This property, illustrated in Figure 4.9, derives from the fact that a digital rigid transformation

T implies a possible increase of
√

2 for distances between transformed points, with respect to its

associated rigid transformation T .

Let us now come back to the DRT graph G of I involved in the global process de�ned in the

previous section. Let e = (v, w, f) be an edge of G, Iv and Iw be the associated transformed images

of the vertices v and w, respectively. We assume that Iv and Iw di�er at the pixel p′, and that p

is the pixel corresponding to p′ in the initial image I. On one hand, from Property 9, any edge,

that does not involve any change of pixels in N20(p), has no in�uence on topological modi�cations

in N8(p
′). Therefore, topological modi�cations at p′ in N8(p

′) (and thus of p′ in the whole image)

only depend on the part of the DRT graph that corresponds to the restriction of I to N20(p),

denoted by I|N20(p). On the other hand, thanks to the integer translation invariance of I, it is

plain that the set of all DRTs de�ned on a subset of Z2 does not depend on the way to locate

this subset into Z2. Therefore, the DRT graph G associated to I : S → V is isomorphic to the

DRT graph of any translated image of I by an integer vector. Based on these considerations and

the local characterization of simple points, we then derive that the topological invariance for every
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pixel p of I can be veri�ed locally by using the DRT graph associated to I|N20(p). This leads to the

following su�cient condition that guarantees homotopy-type preservation of an image under rigid

transformations.

Proposition 10 Given a binary image I : S → V, if I|N20(p), for every p ∈ S, is a local binary

sample which is topologically invariant under all digital rigid transformations, then the image I is

topologically invariant.

As a �nite number of binary images can be de�ned on a 20-neighborhood sample, this topological

analysis can be performed beforehand (and only once) for all the images de�ned on such a sample.

Then, these images, stored in a look-up table (LUT), can be used to characterize locally the

topological invariance of I.

Practically, for a given value space V = {0, 1} and a given adjacency (namely, (4, 8) and (8, 4))

we can generate 220 images de�ned on a 20-neighborhood sample, and any image I : N20(0) → V
has to be processed via its DRT graph to generate the LUT. In [Ngo 2013b], we obtain LUTs of 10

643 and 19 446 topologically invariant patterns in (4, 8)- and (8, 4)- adjacency pairs respectively.

Figure 4.10 shows some examples of such LUTs. A full description of the proposed algorithm as

well as experiments can be found in [Ngo 2013b].

So far, the process has been presented for binary images. Nevertheless, from a methodologi-

cal viewpoint the concepts developed can be conveniently extended to other categories of digital

images (e.g., well-composed sets [Latecki 1995], grey-level images [Couprie 2001] and n-ary images

[Mazo 2012b]), since it only requires to have a notion of simple points (or more generally, a local

characterisation of topology preservation). Indeed, on one hand, the proposed approaches rely on

the notion of DRT graphs, which de�nes explicitly the structure of the transformed images, but

does not require any knowledge on the image values. On the other hand, the topological space,

that is mapped on Z2 with respect to the value space, is only considered via the notion of simple

point. The only constraint related to the choice of topology is the necessity to characterize locally

the preservation of homotopy-type with respect to images of S → V. Consequently, the proposed
approach can be parametrized by a couple composed of (i) a value space V, and (ii) a notion of

simple points for the space of images. This matter is discussed in [Ngo 2013b].

4.5 Summary

In this chapter, we have proposed an algorithmic process for determining the topological invariance

of digital images under all discrete rigid transformations. This work is based on the notions of

simple points and DRT graphs. The latters present a polynomial complexity that generally forbids

its practical application on large images. Nevertheless, DRT graphs have been successfully involved

in a local analysis that �nally leads to a low complexity methodology, relying on image spatial

decomposition.
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(a) Topologically invariant patterns in (4, 8)-adjacency pairs.

(b) Topologically invariant patterns in (8, 4)-adjacency pairs.

Figure 4.10: Some binary patterns de�ned on a 20-neighborhood sample, which are topologically invariant

under rigid transformations in the case of (4, 8)-adjacency pairs (a), and (8, 4)-adjacency pairs (b).

This work contributes to the better understanding of the relationships that exist between

geometry and topology in the framework of computer imagery. In [Serra 1983, Heijmans 1992,

Latecki 1998], the notion of regularity has been proposed to assess the preservation of topological

properties during the digitization of an image from R2 to Z2. In the considered framework, the

proposed algorithm may provide an e�cient tool for studying/verifying this notion of regularity

in the discrete space of digital images to guarantee the topological invariance properties of images

under all digital rigid transformations.

This study was carried out in the context of binary images. However, it remains relevant, e.g.,

for grey-level images, and then constitutes a tool that is actually useful in applications in computer

vision [Pham 2001, Bazin 2007b], or medical imaging [Lam 1992, Tustison 2011].



Chapter 5

Conclusion

Contents
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

This thesis focuses on studying rigid transformations on 2D digital images from combinatorial

and algorithmic points of view. We have observed that discrete rigid transformations present

speci�c properties compared with their continuous analogues. In this context, we have developed

a novel framework for studying, implementing and utilizing rigid transformations on Z2. We recall

in Section 5.1 our main contributions, and in Section 5.2, we provide some perspectives related to

this work.

5.1 Contributions

We have proposed a purely discrete formulation for rigid transformations on digital images, and in

particular a graph structure that models the parameter space of these transformations. This formu-

lation allows us to describe all the possible DRTs of any subset of Z2 of size N×N with a complexity

of O(N9). In this context, a new concept related to the neighboring relationship between DRTs has

been introduced to model the transitions by only one pixel between the transformations. Thanks

to this tool, we can generate exhaustively and progressively all transformed images via elementary

image modi�cations. Beyond such combinatorial considerations, this tool also permits the study of

the relationships between rigid transformations and topology in the context of computer imagery.

In particular, we have developed an algorithm allowing to assess the topological behaviors of an

image under rigid transformations in quasi-linear time with respect to the image size, and further

provided su�cient conditions for topological invariance of any image under these transformations.

From a theoretical point of view, this work contributes to improve our understanding of rigid

transformations and their relationships with topology in the discrete space of digital images. It

also provides some combinatorial as well as algorithmic answers in the research �eld of combi-

natorial image analysis. From a practical point of view, the proposed data structure may be

involved in applications of digital image processing, and in particular those based on sub-sample

analysis [Pennec 2000, Buades 2005, Ngo 2013e, Ngo 2013b]. However, for many applications such
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as registration or warping [Pennec 2000, Zitová 2003, Amintoosi 2011], its high-order polynomial

complexity raises methodological challenges.

5.2 Perspectives

The research reported in this thesis has mainly led to theoretical results. A �rst perspective work

could consist of using these results for developing digital image processing tools. As stated above,

this work is quite close from the research �eld of registration, that consists of �nding admissible

transformations between two given digital images. To our knowledge, this problem has not yet

been studied from a purely discrete point of view. Indeed, in computer vision, such registration

problem is generally formulated as an optimization problem using an objective function de�ned in

a continuous space. Despite � and because of � the in�nite nature of rigid transformations, such

registration methods generally discretize the parameter space by using regular sampling intervals.

In the proposed framework, we already have a �nite structure modeling the whole space of rigid

transformations. It may then be relevant to take advantage of the exhaustion of this discrete

framework, and of the e�ciency of combinatorial optimisation, in order to progress toward new

paradigms of image registration.

In order to apply the proposed structure for digital image applications, it seems however manda-

tory to reduce its complexity and computational cost. A solution has been investigated in Section

3.3 which consists of providing spatial constraints. Indeed, by forcing some correspondences be-

tween pixels, the authorised transformations are restricted to a parameter subspace, and then lead

to a sub-structure of the graph with a lower complexity. However, due to the di�culty to satisfy

the isometric properties between di�erent constraints, the problem may be ill posed in most cases.

To deal with this issue, it may be possible to use the graph with a multi-scale strategy. More

precisely, we could consider larger regions of pixels of size [−3n

2 ,
3n

2 ]2 for n ≥ 0 and a resolution of
1
3n . In the parameter space of rigid transformations, this multi-scale strategy introduces a notion

of �o�set� surfaces, as illustrated in Figure 5.1. The appearance of o�set surfaces, when the reso-

lution increases, can lead to develop coarse-to-�ne methods that do not require to build the entire

structure, but to only focus on its relevant parts.

From a methodological point of view, the concepts developed in this thesis for modeling digital

rigid transformations may also be considered for other kinds of transformations, e.g., scalings, a�ne

transformations, etc. Indeed, the parameter space subdivision paradigm, such as its modeling

by a graph structure, remains valid for any such transformations. Beyond the handling of the

spatial complexity induced by other transformations, the main challenge may then consist of �nding

solutions for computing these new graph structures in an exact fashion. Indeed, the hypotheses of

rigid transformations, that allow us to use quadratic irrationals, may be no longer valid for other

transformations. A similar issue also appears when considering a further extension of the proposed

approach from 2D to 3D rigid transformations.
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Figure 5.1: Left: the authorised transformations (in red) induced by partial constraints using larger regions

of size [− 3
2 ,

3
2 ]2, and expressed via �o�set� surfaces. Right: their projections to the planes (a, θ) and (b, θ)

with the associated �o�set� curves.

Going back to the case of 2D rigid transformations, the results regarding the topological in-

variance of digital images under rigid transformations have been studied only in the case of the

Eulerian transformation model. It is then important to seek similar conditions with respect to the

Lagrangian transformation model. As discussed in Section 4.2, for the Lagrangian model, beyond

the topological alterations caused by digital rigid transformations, additional di�culties related to

pixel values are arisen. Typically, double pixels in the transformed space may receive two di�er-

ent values, while null pixels may receive no value (see Figure 4.6). In order to deal with these

supplementary issues, it may be necessary to study more deeply the relations that exist between

the digital images and the continuous ones, as they are linked via the digitization processes. More

precisely, it may be necessary to consider �contour-based� strategies, rather than �pixel-based� ones,

in order to handle the ambiguous cases that can not be solved by relevant topological interpolation

techniques.

Finally, by emphasising the links between discrete geometry and discrete topology in the con-

text of digital images, this thesis work has recently led us to investigate a new discrete notion of

regularity, introduced in [Ngo 2013d]. This work is currently in progress, and it has then been

chosen not to include it in this manuscript. This notion of regularity presents similarities with

the continuous notion of regularity considered in [Serra 1983, Heijmans 1992, Latecki 1998] for as-

sessing the preservation of topological properties during the digitization of an image from R2 to

Z2. With this new discrete notion, it is in particular possible to easily and e�ciently evaluate the

topological invariance of any digital image in linear time with respect to the image size. More

details about this notion can be found in [Ngo 2013d, Ngo 2013f].
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a b s t r a c t

Rigid transformations are involved in a wide range of digital image processing applications. When applied
on discrete images, rigid transformations are usually performed in their associated continuous space,
requiring a subsequent digitization of the result. In this article, we propose to study rigid transformations
of digital images as fully discrete processes. In particular, we investigate a combinatorial structure mod-
elling the whole space of digital rigid transformations on arbitrary subset of Z2 of size N � N. We describe
this combinatorial structure, which presents a space complexity OðN9Þ and we propose an algorithm
enabling to construct it in linear time with respect to its space complexity. This algorithm, which handles
real (i.e., non-rational) values related to the continuous transformations associated to the discrete ones, is
however defined in a fully discrete form, leading to exact computation.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Rigid transformations, (i.e., transformations based on transla-
tions and rotations) are frequently involved in the design of com-
puter vision and image processing techniques (e.g., object
tracking [1], image registration [2]), and considered in applications
related to 2D or 3D images (e.g., remote sensing, medical imaging).
Despite the digital nature of the processed images, such transfor-
mations are generally performed by considering the Euclidean
space ðRnÞ associated to the Eulerian space ðZnÞ of the data. Such
‘‘partially continuous’’ transformations then need to be interfaced
with a subsequent digitization process to finally obtain a result
in Zn.

The purpose of this article is to study rigid transformations of dig-
ital images as fully discrete processes. Discrete processes for the
classes of rotations and affine transformations have been studied
in the literature. One can cite the quasi-shear rotation [3] and
quasi-affine transformations [4] for instance. Their approach con-
sists of decomposing transformations into three shears and then ob-
tain the discrete transformations. From the decomposition, the
transformations preserve their bijectivity. One major drawback of
this approach is that the result obtained after composing the three
shears is not always identical to the discretized result of the initial
transform. Here, we study an approach which preserves such
discretization rather than the bijectivity. Moreover, we consider
several issues related to (i) the number of possible rigid transforma-
tions given a finite subspace of Zn, (ii) the way to generate all of
them, and (iii) the relations between all such transformations. Some

combinatorial and algorithmic answers are provided to these ques-
tions, in the case of Z2. Recently, C. Hundt and M. Liśkiewicz have
proposed in [5–8] a discretization technique under projective trans-
formations and some of its subclasses for the problem of 2D pattern
matching. Our approach is inspired by their discretization technique
and adapted for the classes of rigid transformations.

The contributions of this article are twofold. The first – more
theoretical – consists of the proposal of a combinatorial structure
(namely a graph) modelling the whole space of digital rigid trans-
formations on arbitrary subset of Z2 of size N � N, and the links
between these transformations. These links correspond to the dis-
continuities induced by the digitization of the continuous trans-
formations in R2 associated to those defined in Z2. This
combinatorial structure presents a space complexity OðN9Þ. On
the one hand, this first result provides a contribution to the field
of combinatorial analysis of image transformations (where previ-
ous works, summarised in Table 1, have already been proposed
for rotations [9,10], scalings [11,12], combined scalings and rota-
tions [5], affine transformations [6,7], projective and linear trans-
formations [8]). On the other hand, a new concept related to the
topology of digital transformations is introduced in this structure,
namely a neighbourhood relationship between transformations
induced by their relations.

The second contribution – of a more methodological nature – is
an efficient algorithm enabling the construction of this combinato-
rial structure, with a computational cost linear with respect to its
space complexity. This algorithm, which handles real (i.e., non-
rational) values related to the continuous transformations associ-
ated to the discrete ones, is however defined in a fully discrete
form, allowing for exact computation, and avoiding in particular
any approximations related to floating point arithmetic.
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The article is organised as follows. Sections 2 and 3 restate
background notions and useful concepts. Section 4 introduces
two notions: those of tipping surfaces and tipping curves, which con-
stitute the basis of the proposed combinatorial structure. Section 5
actually defines this structure, while Sections 6 and 7 propose an
algorithm for its construction. Complexity and experiments are
discussed in Section 8. Section 9 presents some applications of
the proposed graph and Section 10 concludes the article.

2. Geometric transformations and digitization

2.1. 2D images and digitization

Let V be a set called value space containing at least two ele-
ments, including one, noted \, corresponding to the ‘‘background’’.
A 2D image is a function I : R2 ! V such that I�1ðV n f?gÞ is finite.
(As examples, if jVj = 2, we say that I is a binary image; if V is
equipped with a total order, we say that I is a grey-level image).
Without loss of generality, we can suppose that
I�1ðV n f?gÞ# E ¼ � 1

2 ;N � 1
2

� �2 for a given N 2 N. The set E is called
the support of I and N is called the size of I .

A 2D digital image is defined as a function I : Z2 ! V such that
I�1(Vn{\}) is finite. Without loss of generality, we can suppose that
I�1ðV n f?gÞ# S ¼ ½0;N � 1�2 \ Z2 for a given N 2 N. The set S is
called the support of I and N is the size of I.

In the sequel, by abuse of notation, we will sometimes set
I : E! V and I : S ? V, instead of I : R2 ! V and I : Z2 ! V .

The 2D digital image I can be seen as a numerical representation
of the 2D image I obtained by a digitization process that associates
I : S ? V to I : E! V , such that S ¼ E \ Z2. It then maps each point
of E to exactly one point of S according to a square grid structure.
This digitization process is defined via the following function:

D : E ! S;

x ¼ ðx; yÞ # p ¼ ðp; qÞ ¼ ð½x�; ½y�Þ;

���� ð1Þ

where [ � ] is the rounding function. Note in particular that we have
I ¼ IjS, that is IðxÞ ¼ IðxÞ for any x 2 S. In other words, we have
DjS = IdjS where Id is the identity function.

Broadly speaking, the real points x 2 E are mapped onto the
integer point p 2 S with respect to the Voronoi diagram of S in E.
This mapping is deterministic everywhere except on the frontier
of the Voronoi cells, that is, for the real points x 2 E presenting at
least one semi-integer coordinate. We call the subset H of E that
consists of all such points the half-grid:

H ¼ E \ R� Zþ 1
2

� �� �
[ Zþ 1

2

� �
� R

� �� �
: ð2Þ

Broadly speaking, the digitization function D decomposes E into
unit (open) squares, namely the pixels, whose centres are points of
Z2. In other words, the half-grid H represents the union of the
boundaries of all pixels.

The correct handling of this half-grid, which can be seen as the
‘‘inter-pixel’’ space in digital imaging is sometimes of great

importance, for instance in (digital) topology [13,14]. However, in
the digital geometry context of this article, the way the points of
H are digitized is not crucial, since they represent an infinitesimal
part of E. Nevertheless, H remains of first importance in the under-
standing of digitization, since the discontinuities induced by this
process will occur on the points located in this set.

2.2. Geometric transformations for digital images

We call geometric transformation any bijective function
T : R2 ! R2. Such a geometric transformation applied on an image
I : R2 ! V provides a new transformed image I � T �1 : R2 ! V .

However it is not possible to apply directly T on a digital image
I in order to define I � T �1, since there are no guarantees that
T �1ðpÞ 2 Z2 for all p 2 Z2. The handling of geometric transforma-
tions for digital images then requires the definition of a function
noted T�1 : Z2 ! Z2 (which is not necessarily bijective) such that
we can define the digital transformed image I � T�1 : Z2 ! V being
correct with respect to T �1. This can be conveniently obtained by
setting:

T�1 ¼ D � T �1 ð3Þ

as illustrated in Fig. 1. Such a transformation T is called a 2D digital
image transformation.

Remark 1. In the ‘‘nearest neighbour’’ digitization paradigm
considered in Section 2.1 (see Eq. (1)), we can consider two
models for image transformations. Given a transformation T , the
first (the Lagrangian model) consists of determining T ðxÞ for any
point x in the initial space, while the second (the Eulerian model)
consists of determining T �1ðyÞ for any point y in the deformed
space. Both models are equal for a transformation T : R2 ! R2,
since T is bijective. In the digital case, these models are actually
distinct, since D � T �1 and D � T are not bijective, in general. In the
current work, and without loss of generality, we focus on the
Lagrangian model (see Fig. 2). The results shown in this article
remain however valid for both models. Still without loss of
generality (due to symmetry considerations), we will consider in
the sequel T and D � T instead of T�1 and D � T �1 (see Eq. (3)).
Moreover, we focus our study on the effects of rigid transforma-
tions on the support of digital images. We do not consider their
effects on the actual image values in this article.

Table 1
Space complexity of different classes of transformations on a subspace of Z2 of size
N � N.

Classes of transformations Complexity

Rotations [9,10] OðN3Þ
Scalings [11,12] OðN3Þ
Rotations and scalings [5] OðN6Þ
Linear transformations [8] OðN12Þ
Affine transformations [6,7] OðN18Þ
Projective transformations [8] OðN24Þ

Fig. 1. Geometric transformation and the associated digital image transformation
(see text). First row: image support before transformation. Second row: image
support after transformation.

394 P. Ngo et al. / Computer Vision and Image Understanding 117 (2013) 393–408



3. Rigid transformations for digital images

3.1. Digital rigid transformations

From this point on, we only consider 2D rigid transformations
which are composed of translations and rotations. Formally, a rigid
transformation T : R2 ! R2 transforms any point p ¼ ðp; qÞ 2 R2

into a point p0 2 R2 according to the following relation:

T ðpÞ ¼ p0 ¼
cos h � sin h

sin h cos h

� �
p

q

� �
þ

a

b

� �
; ð4Þ

where a; b; h 2 R.
If we consider T : Z2 ! Z2, from Eqs. (1), (3) and (4), the trans-

formed point T(p) = p0 = (p0,q0) associated to p 2 Z2 is then defined
as:

TðpÞ ¼
p0

q0

� �
¼
½p cos h� q sin hþ a�
½p sin hþ q cos hþ b�

� �
: ð5Þ

This transformation is called a 2D digital rigid transformation. Note
that any rigid transformation (resp. digital rigid transformation)
can be represented by a triplet of parameters (a,b,h), noted T abh

(resp. Tabh). We note T (resp. Td) the set of all rigid transformations
(resp. digital rigid transformations):

T ¼ fT abhjða; b; hÞ 2 R3g; ð6Þ
Td ¼ fTabhjða; b; hÞ 2 R3g: ð7Þ

Remark 2. A digital rigid transformation T (resp. a rigid transfor-
mation T ) maps the support S (resp. E) –of size N– of a digital
image I (resp. an image I) onto a set T(S) (resp. T ðEÞ) that is
included in a finite (resp. bounded) part of Z2 (resp. R2) corre-
sponding to a disc of diameter N

ffiffiffi
2
p

. In the following discussion, as
the complexity is expressed as an order of N, the multiplicative
constant factor

ffiffiffi
2
p

does not matter. Without loss of correctness, we
can assume that both S and T(S) (resp. E and T ðEÞ) are of size N such
that N is ‘‘sufficiently large’’ with respect to S (resp. E) and the

ffiffiffi
2
p

factor.

3.2. Discontinuities of digital rigid transformations

Let us define the function T (resp. Td), which associates to each
triplet of parameters (a,b,h) the rigid transformation (resp. digital
rigid transformation) modelled by these parameters (see (4) and
(5)):

T : R3 ! T

ða; b; hÞ # Tða; b; hÞ ¼ T abh;

����� ð8Þ

Td : R3 ! Td

ða; b; hÞ # Tdða; b; hÞ ¼ Tabh:

����� ð9Þ

The function T is continuous on R3. In other words, for any
value d > 0, there exists � > 0 such that for all
ða1; b1; h1Þ; ða2; b2; h2Þ 2 R3

kða1; b1; h1Þ � ða2; b2; h2Þk < �) kTða1; b1; h1Þ � Tða2; b2; h2Þk < d

ð10Þ

for given norms k � k on R3 and ðR3ÞR
3
¼ fF : R3 ! R3g (for instance

the N1 and pointwise N1 norms, respectively).
Due to the digitization involved in the definition of T in Eq. (5),

the function Td is piecewise constant on R3. For the same reason,
Td presents discontinuities. More precisely, there exist some points
c 2 R3 such that for any ball Bðc; �Þ of centre c and radius � > 0,
there exist ða1; b1; h1Þ; ða2; b2; h2Þ 2 Bðc; �Þ such that for some values
d > 0 (for instance d = 1), we have

kða1; b1; h1Þ � ða2; b2; h2Þk < � ^ kTdða1; b1; h1Þ � Tdða2; b2; h2ÞkP d:

ð11Þ

Such points c 2 R3 are critical points in the parameter space of the
digital rigid transforms. They characterise, in particular, some trans-
formations which map at least one point onto the half grid (see
Fig. 3). These considerations lead to the following definition.

Definition 1. Let ða; b; hÞ 2 R3, and T abh be the associated rigid
transformation. We say that T abh is a critical transformation if

9p 2 Z2; T abhðpÞ 2 H: ð12Þ

We denote by Tc the set of all critical transformations.
The set Tc of the critical transformations obviously corresponds

to the part of R3 inducing discontinuities in Td.

3.3. Discrete rigid transformations

As a result of the discontinuity of digital rigid transformations,
it is possible for the digitization D of two rigid transformations of
a digital image to be identical. This leads to the following consider-
ation about the equivalence between transformations.

Definition 2. Let I : S ? V. Two elements T ; T 0 2 T are considered
equivalent, and we write T � T 0, iff D � T ðpÞ ¼ D � T 0ðpÞ; 8p 2 S.

Then an equivalence class in T under � is a set of rigid transfor-
mations that provides the same digital transformed image.

Definition 3. For a given digital image I : S ? V, each equivalence
class in T (induced by S) is called a discrete rigid transformation
(DRT).

Note that the term discrete thus refers to the non-continuous
structure of transformations for digital images. In this way, the
parameter space of the rigid transformations is partitioned into
the disjoint sets of the equivalence classes, such that each of which
associates exactly to one DRT.

Fig. 2. Image transformation models: (a) Lagrangian and (b) Eulerian. (a and b) Left: image support before transformation; right: image support after transformation. The
digital support S � Z2 is depicted by white dots. The Voronoi cells of E associated to the points of S are depicted by squares.
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4. Tipping surfaces and tipping curves

In this section, we introduce two notions, that allow us to study
the decomposition of the parameter space into the DRTs. As stated
in the preceding section, the digital rigid transformations present a
discontinuous property, which is characterised by the critical
transformations. The later transformations are actually related to
the structure of DRTs in the parameter space, since they represent
the boundaries of the equivalence classes. We propose the two fol-
lowing notions: tipping surfaces and tipping curves which are, in
fact, analytical expressions of critical rigid transformations.

4.1. Tipping surfaces

According to Definition 1, a critical rigid transformation T abh

moves at least one integer point p ¼ ðp; qÞ 2 Z2 into a half-grid
point which can be either a vertical half-grid point kþ 1

2 ; k

 �

or a
horizontal half-grid point k; lþ 1

2


 �
for k; l 2 Z and k 2 R, or both.

The set of values ða; b; hÞ 2 R3 associated to these critical transfor-
mations form surfaces in the parameter space, called tipping sur-
faces. Note that a tipping surface can be represented by an
integer triplet associated to such a vertical or horizontal half-grid
point.

Definition 4. Given an integer triplet (p,q,k) (resp. (p,q, l)), we
define a vertical (resp. horizontal) tipping surface as the function
Upqk (resp. Wpql) such that

Upqk : R2 ! R;

ðb; hÞ # a ¼ kþ 1
2þ q sin h� p cos h;

����� ð13Þ

Wpql : R2 ! R;

ða; hÞ # b ¼ lþ 1
2� p sin h� q cos h:

����� ð14Þ

The set of all tipping surfaces defined by Formulae (13) and (14)
clearly corresponds to the discontinuities of digital rigid transfor-
mations. They divide the parameter space (a,b,h) into equivalence
classes. In each of these classes, any rigid transformation leads to
an identical digital transformed image. We restate that each equiv-
alence class is represented by a DRT. As the number of critical
transformations is limited by the size of a given digital image I,
the number of tipping surfaces and DRTs in the parameter space
are both finite. Fig. 4 visualizes the DRTs as regions separated by
tipping surfaces Upqk and Wpql in the parameter space, for
p,q 2 [0,2] and k, l 2 [0,3].

4.2. Tipping curves

We remark that the tipping surface Upqk in Formula (13) is inde-
pendent of b. Consequently, the cross-sections of Upqk orthogonal

to the b-axis are identical for any b 2 R, and each has the form of
a trigonometric curve. We call these tipping curves, and we denote
them by /pqk. This means that Formula (13) defines a tipping curve
as well if it is observed in the plane (a,h). Similarly, Formula (14) is
also considered as a tipping curve on the plane (b,h), denoted by
wpql.

Definition 5. Given an integer triplet (p,q,k) (resp. (p,q, l)), we
define a vertical (resp. horizontal) tipping curve as a function /pqk

(resp. wpql) such that

/pqk : R ! R;

h # a ¼ kþ 1
2þ q sin h� p cos h;

����� ð15Þ

wpql : R ! R;

h # b ¼ lþ 1
2� p sin h� q cos h:

����� ð16Þ

The sets of all tipping curves /pqk and wpql provide two families
of critical rigid transformations projected on the planes (a,h) and
(b,h) respectively.

Definition 6. Two families of tipping curves are defined for h 2 R

by

F/ðhÞ ¼ f/pqkðhÞ jp; q; k 2 Zg; ð17Þ
FwðhÞ ¼ fwpqlðhÞ jp; q; l 2 Zg: ð18Þ

Note that an operation applied to a family of curves means that
it is applied to all tipping curves belonging to the family. For in-
stance, �F/(h) = {�/pqk(h) j /pqk(h) 2 F/(h)}.

Fig. 5 illustrates a part of F/ for p,q 2 [0,4] and k 2 [0,5].

(a) (b)
Fig. 3. Examples of critical transformations T abh , which map at least one integer value onto a ‘‘horizontal’’ (a) or ‘‘vertical’’ (b) half-grid point. The digital support S � Z2 is
depicted by white dots. The Voronoi cells of E associated to the points of S are depicted by squares.

Fig. 4. Discrete rigid transformations (DRTs) are observed as regions separated by
tipping surfaces.
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4.3. Properties of tipping curves

So far we have studied the definitions of tipping surfaces and
tipping curves. We now discuss the combinatorial structure of dis-
crete rigid transformations by using the sets of tipping surfaces and
curves. Before this, we state some properties about tipping curves.
From Definition 5, we remark that F/ and Fw have similar forms. In-
deed, if we translate Fw by p

2 with respect to h, then we obtain F/.
For simplicity, we will thus show the properties for F/ that are va-
lid for Fw as well.

The first property concerns the unique representation of tipping
curves. This is a direct result of the fact that the three functions {1,
cos, sin} involved in Formula (15) are linearly independent.

Property 1. There exists a unique integer triplet ðp; q; kÞ 2 Z3 for each
tipping curve.

The next property shows the relationships between two tipping
curves. This will be used in the algorithm of construction of the
combinatorial structure of discrete rigid transformations. Geomet-
rically, two tipping curves can relate to each other in four different
ways (see Fig. 6): they can be identical, intersecting,1 tangent2 or
not intersecting. Analytical interpretation of these relationships is
expressed as follows.

Property 2. Let /pqk and /p0q0k0 be two tipping curves.
Setting K = k � k0, P = p � p0, Q = q � q0, D1 = P2(P2 + Q2 � K2),
D2 = Q2(P2 + Q2 � K2) and D = D1 + D2, we have the following rela-
tions between /pqk and /p0q0k0 :

	 if P = Q = 0,
(i) if K = 0 then /pqk and /p0q0k0 are identical,

(ii) if K – 0 then they have no intersection,
	 otherwise,

(iii) if D = 0 and jKPj 6 P2 + Q2 and jKQj 6 P2 + Q2 then they are
tangent,

(iv) if D > 0 and jKP 

ffiffiffiffiffiffi
D1
p
j 6 P2 þ Q2 and jKQ 


ffiffiffiffiffiffi
D2
p
j 6 P2 þ Q 2

then they intersect, (note that ± means ‘‘+ or �’’)
(v) otherwise, they have no intersection.

Proof. (i) is easily induced by Property 1. Assume that two tipping
curves /pqk and /p0q0k0 are different. The solution set satisfying both
equations /pqk and /p0q0k0 determines the nature of the relationships
between two curves; it provides either the tangent point (iii), the
intersection points (iv) or the empty set (ii), (v). Supposing the
equation system has a solution, then we can find a value h satisfy-
ing the following:

kþ 1
2
� p cos hþ q sin h ¼ k0 þ 1

2
� p0 cos hþ q0 sin h:

Replacing K = k � k0, P = p � p0 and Q = q � q0, then we have

K � P cos h ¼ �Q sin h: ð19Þ

Squaring both sides of Eq. (19), we obtain

K2 � 2KP cos hþ P2 cos2 h ¼ Q 2 sin2 h:

Because cos2 h + sin2 h = 1, we have

ðP2 þ Q2Þ sin2 h� 2KQ sin hþ K2 � P2 ¼ 0; ð20Þ
ðP2 þ Q2Þ cos2 h� 2KP cos hþ K2 � Q 2 ¼ 0; ð21Þ

which are quadratic equations if P2 + Q2 – 0. As we assume that
/pqk and /p0q0k0 are different, either P, Q or K are not equal to 0. If
P = Q = 0 and K – 0, then Eq. (19) has no solution (ii). Otherwise,
P2 + Q2 – 0 so that the discriminants D1 and D2 of Eqs. (20) and

Fig. 5. A part of the family of tipping curves F/.

(a) (b) (c) (d) (e)
Fig. 6. Relationships between two tipping curves, which are identical (a), intersecting (b), tangent (c) and not intersecting (d and e).

1 Two tipping curves intersect if they cross each other at a point.
2 Two tipping curves are tangent if both share the same tangent line at a point, i.e.,

the curves touch but do not cross each others.
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(21) determine the number and nature of the roots. There are three
cases; the curves are:

	 tangent (iii): each of Eqs. (20) and (21) has one solution, if D = 0
(namely, D1 = D2 = 0) and jKPj 6 P2 + Q2 and jKQj 6 P2 + Q2, since
�1 6 sin h 6 1 and �1 6 cos h 6 1,
	 intersecting (iv): at least one of Eqs. (20) and (21) has more than

one solution, if D > 0 (namely, either D1 P 0 ^ D2 > 0 or
D1 > 0 ^ D2 P 0) and jKP 


ffiffiffiffiffiffi
D1
p
j 6 P2 þ Q2 and jKQ 


ffiffiffiffiffiffi
D2
p
j

6 P2 þ Q2, since � 1 6 sin h 6 1 and �1 6 cos h 6 1,
	 otherwise, there are no intersections (v). h

Given two curves /pqk and /p0q0k0 , we can find out their relation-
ship by evaluating the integer triplets (p,q,k) and (p0,q0,k0) exactly,
i.e., by using only integers during computation. Indeed, the values
P, Q, K, D1, D2 and D are all integers, while the inequalities
jKP 


ffiffiffiffiffiffi
D1
p
j 6 P2 þ Q2 and jKQ 


ffiffiffiffiffiffi
D2
p
j 6 P2 þ Q2 can be verified by

using squaring procedures. The proof of Property 2 implies the fol-
lowing corollary.

Corollary 1. Let us consider the same notations as in Property 2.
Given two tipping curves /pq k and /p0q0k0 , if they are

	 tangent, the tangent point satisfies sinh ¼ KQ
P2þQ2 and cosh ¼ KP

P2þQ2,

	 intersecting, the intersection points satisfy sinh ¼ KQ

ffiffiffiffi
D1

p
P2þQ 2 and

cosh ¼ KP

ffiffiffiffi
D2

p
P2þQ2 . Note that there are four possible combinations for

sin h and cos h, but only two of them are valid for intersections
(see Corollary 2).

Since Eq. (19) has at most two solutions in [0,2p[, we also have
the following corollary.

Corollary 2. Two distinct tipping curves have at most two intersec-
tions in [0,2p[.

As the tipping curves have the form of trigonometric functions
with sin h and cos h, they inherit the properties of the trigonometric
functions as follows.

Property 3. The family of tipping curves F/ is symmetric:

F/ðhÞ ¼ �F/ðhÞ;

F/ðhÞ ¼ F/ �hþm
p
4

� 

; 8m 2 Z:

Property 4. The family of tipping curves F/ is periodic:

F/ðhÞ ¼ F/ hþm
p
2

� 

; 8m 2 Z;

F/ðhÞ ¼ F/ðhÞ þm; 8m 2 Z:

So far, we have considered a digital image support as a set of
points of Z2. Under this assumption, the subdivision of the param-
eter space into DRTs is infinite. However a digital image is finite in
practice, and we can then consider S instead of Z2. Given a digital
image I of size N � N, we define the set of tipping surfaces with re-
spect to I as Upqk and Wpql for 0 6 p, q 6 N � 1, 0 6 k, l 6 N and
p; q; k; l 2 Z. Thus we have 2N2(N + 1) tipping surfaces partitioning
the parameter space. Tipping curves /pqk and wpql are correlated
to the tipping surfaces, since they are the projections of Upqk and
Wpql respectively on the planes (a,h) and (b,h) of the parameter
space.

5. Graph representation of discrete rigid transformations

As discussed in the previous section, the parameter space of ri-
gid transformations is divided into DRTs, whose boundaries are the
tipping surfaces. This subdivision can be represented by a graph
which is defined as follows.

Definition 7. Let V be a set of vertices and E be a set of labelled
edges, such that

	 a vertex v 2 V corresponds to a DRT, and
	 an edge e = (u,w, f) 2 E, where f = Upqk or Wpql, connects a pair of

DRTs {u,w} 2 V separated by the tipping surface f, which is con-
sidered as the label of the edge.

Fig. 7. Four tipping surfaces in the parameter space (a,b,h) (left) and its DRT graph
(right).

Fig. 8. Four tipping curves on the plane (a,h) (left) and the associated 2D DRT graph (right).
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The graph G = (V,E) is called a discrete rigid transformation graph
(DRT graph) (see Fig. 7).

In order to distinguish between the integer triplets of vertical
and horizontal tipping surfaces, we use an integer quadruple
(p,q,k, i) for modelling each tipping surface, where i = 0 or 1 indi-
cates respectively the vertical or horizontal set.

Strictly speaking, each vertex in V represents one digital trans-
formed image generated by the corresponding DRT. Each labelled
edge in E that links two vertices represents a set of critical transfor-
mations. This transformation links a digital image to a neighbour-
ing one, such that they differ by only one pixel. Note that the DRT
graph G = (V,E) does not contain any geometric information, such
as the parameter (a,b,h) of rigid transformations, but only the inte-
ger quadruples (p,q,k, i) representing the tipping surfaces.

The construction of a DRT graph can be performed with the help
of surface arrangements [15]. However this implies a complexity of
X(n4) for general surfaces, where n is the number of surfaces. In
this article, we propose an algorithm with a better complexity of
Oðn3Þ by using the properties of tipping surfaces described in Sec-
tion 4. We know that while projecting two families of tipping sur-
faces on the planes (a,h) and (b,h), we obtain the corresponding
families of tipping curves defined by Formulae (13) and (14). The
combinatorial structure of DRTs in a 2D parameter space is called
a 2D DRT graph. This graph is built from tipping curves on the
planes (a,h) or (b,h). The DRT graph can be reconstructed by com-
bining these two 2D DRT graphs. For this, we will first describe an
algorithm for building a 2D DRT graph. Then we extend it to 3D to
reconstruct the complete DRT graph.

6. Construction of 2D discrete rigid transformation graph

This section presents a method for constructing a 2D DRT graph
of a set of tipping curves generated from a given digital image I of
size N � N.

6.1. Problem formalisation

A finite set of n tipping curves C partitions the plane into three
types of regions: a vertex is an intersection point of curves, an arc is
a largest connected portion of a curve that is not intersected by any
other curve, and a face is a largest connected region that is not
intersected by any other curve in C. We define as follows an inci-
dent graph represented by the partition C.

Definition 8. Given a set of tipping curves C, the 2D DRT graph
GC = (VC,EC) of C consists of a set VC of vertices and a set EC of
labelled edges, such that:

	 each vertex v 2 VC corresponds to a face, and
	 each edge e = (u,w,/) 2 EC corresponds to an arc that connects

two faces {u,w} 2 VC sharing a boundary tipping curve /.

Note that the tipping curve / is considered as a label of the edge
e 2 EC. Fig. 8 illustrates a 2D DRT graph.

The problem of the construction of GC is related to curve
arrangements [16]. Various methods have been proposed including
incremental construction [16], sweeping line [17] and others. A
comprehensive discussion on arrangements can be found in
[16,18]. Since our curves are tipping curves, many degenerate cases
can present themselves, such as tangent and multiple intersec-
tions. In addition, we are only interested in the information about
faces and arcs in the arrangement. Therefore, instead of using the
basic algorithm of curve arrangement, we propose a variation of
the sweeping line method for constructing the graph GC. The main
idea of the algorithm is that a (vertical) cut is swept throughout tip-
ping curves, and stops at some points to construct GC incremen-
tally. The details of algorithm and its implementation are
explained in the sequel.

6.2. Principles of incremental 2D DRT graph reconstruction

Let C be a set of n tipping curves and GC denotes the 2D DRT
graph of C. We define a (vertical) cut, noted c, as a monotonic line
intersecting each tipping curve in C exactly once [17]. Note that c is
an unbounded simple curve and is represented by a sequence of
tipping curves which c intersects from top to bottom, as illustrated
in Fig. 9. We assume that c starts at h = 0 and ends at h = 2p. While
moving c, its sequence of tipping curves changes, but not continu-
ously. Indeed, c changes only at intersection points, called event
points. When c reaches an event point, the algorithm updates c
and constructs a part of GC. This is called an elementary step of
the algorithm. As a set of event points forms a series of elementary
steps, we need to maintain a sorted set of event points and make
the cut c go through them in their increasing order.

In fact, the cut c can be also represented as a directed graph such
that each edge corresponds to a tipping curve in c and each vertex
corresponds to a face bounded by two consecutive tipping curves inc.

Definition 9. Let c = (/1,/2, . . . ,/n) be the cut. The partial graph
dGC = (dVC,dEC) with respect to c is defined as a directed graph, such
that

	 dVC = {v0,v1, . . . ,vn} is the set of vertices,
	 dEC = ((v0,v1,/1), (v1,v2,/2), . . ., (vn�1,vn,/n)) is the ordered set of

edges.

In practice, elements of dEC are also ordered in the same way as
c.

At each elementary step, the partial graph dGC is updated with
respect to the change of c. If such an operation is applied, then
the sweep progresses such that dGC is partially modified and inte-
grated in the final graph GC.

Proposition 1. Let GC be the 2D DRT graph. Then we have

GC ¼
[m
i¼0

dGC
i ; ð22Þ

where dGC
i is the partial graph at the i-th elementary step and m is the

total number of ordered event points.
Note that a partial graph is a directed graph because we need

edge directions during the update. However the final graph GC is
not directed, so that we do not keep directions while integrating
dGC

i into GC.

6.3. Initial graph construction

The initialization step provides the graph dGC
0 with respect to

the initial cut c0. In fact, c0 is a sequence of tipping curves in C with
the order defined by the following relation �0.

Fig. 9. Event points and a vertical cut c = (/2,/1,/3).
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Definition 10. For any pair of tipping curves /pqk(h) and /p0q0k0 ðhÞ, a
relation �0 is defined as /pqkðhÞ�0/p0q0k0 ðhÞ iff

	 /pqkð0Þ < /p0q0k0 ð0Þ, or
	 /pqkð0Þ ¼ /p0q0k0 ð0Þ and the first derivatives verify

/0pqkð0Þ < /0p0q0k0 ð0Þ, or
	 /pqkð0Þ ¼ /p0q0k0 ð0Þ and /0pqkð0Þ ¼ /0p0q0k0 ð0Þ and /pqkðpÞ < /p0q0k0 ðpÞ.

From Definition 9, we can generate the initial graph dGC
0 of c0.

Note that dGC
0 corresponds to the cut at h = �, where � is some very

small positive value. The 2D DRT graph GC is then initialized by dGC
0 .

6.4. Incremental 2D DRT graph construction for simple cases

We first present the construction algorithm in simple cases, i.e.,
such that any intersection consists only of two crossing tipping
curves (Fig. 10(a)). We call the other cases degenerate or non-simple
(see Fig. 10(b)). We will discuss how to deal with such degenera-
cies in Section 6.5.

6.4.1. Detecting and ordering event points
The following question arises in the sweeping algorithm: how

to detect event points, or how to discover when an elementary step
is applied? Since event points are intersections of two tipping
curves, the answer is linked to Property 2 (iv). More precisely, gi-
ven two tipping curves /pqk and /p0q0k0 modelled by the integer trip-
lets (p,q,k) and (p0,q0,k0), they intersect if the following relation is
satisfied: D1 + D2 > 0 and jKP 


ffiffiffiffiffiffi
D1
p
j 6 P2 þ Q2 and jKQ 


ffiffiffiffiffiffi
D2
p
j

6 P2 þ Q2, where P = p � p0, Q = q � q0, K = k � k0, D1 = P2(P2 + Q2

� K2) and D2 = Q2(P2 + Q2 � K2).
All event points need to be sorted and then stored in a queue, to

be handled one by one. We call this queue of event points an event
queue. It is defined asQ ¼ ðE;�EÞwhere E is a set of all event points
and�E is a binary relation defined on E. The event points are sorted
by �E as follows.

Definition 11. For any pair of event points u ¼ ðux; uyÞ and
v ¼ ðux; uyÞ in E, a relation �E is defined as u�Ev iff ux < vx or
ux = vx and uy < vy.

Sorting event points can be performed with exact computation.
We know that the coordinates (h,a) of event points are typically
irrational numbers and that we generally cannot compute an exact
value for h. Nevertheless, in order to sort event points with respect
to h 2 [0,2p[, we can use the values cos h and sin h which are cal-
culated from Corollary 1. We can also easily obtain the value a
from Formula (15) with cos h and sin h. Note that a, cos h and sin
h are all quadratic irrationals.3 Therefore, sorting event points then
relies on the capacity to compare quadratic irrationals. It is known in
[19] that two quadratic irrationals can be compared by an exact
method. In fact, a quadratic irrational can be represented exactly
using a periodic continued fraction modelled by a sequence of inte-
gers, and this representation is unique. Moreover the comparison of
periodic continued fractions can be performed in constant time [20]
(see Appendix A for more details), so that sorting all event points re-
quires OðjQj log jQjÞ times of such a comparison, where jQj is the
event queue size.

Using integer arithmetic avoids the technical problems due to the
use of floating point representations. Most importantly, this allows
us to prevent detecting false event points that would arise from
the limited precision of floating-point representation supported in
computer implementations. This would be likely to occur in degen-
erate cases such as multiple tangent and/or intersecting points.

Each event point is represented by the intersecting tipping curves
at that point, but not its coordinates, since they are more important

for constructing GC. In simple cases, any event point in Q is thus
stored as two tipping curves, represented by the integer triplets.

6.4.2. Elementary step
An elementary step corresponds to a transposition of two

curves in a cut c around an event point, as illustrated in Fig. 11. Fol-
lowing a change in c, the partial graph dGC is modified.

Formally, given an event point q = {/u,/v}, if the cut on the left
of q is denoted by ci ¼ ð/i1 ; . . . ;/u;/v ; . . . ;/in Þ, then after q we have
ciþ1 ¼ ð/i1 ; . . . ;/v ;/u; . . . ;/in Þ. Let dGC

i and dGC
iþ1 denote the partial

graph of ci and ci+1 respectively. We can generate dGC
iþ1 from dGC

i

according to the following four steps:

1. finding the current vertex w bounded by /u and /v;
2. deleting two edges that are adjacent to w;
3. replacing w by a new vertex w0;
4. creating two new edges that are linked to w0.

This procedure is called an i-th elementary step, by which the
partial graph of a cut is modified. The implementation is given in
Procedure 1, which requires the following two functions:

	 #(e) returns two adjacent vertices of the edge e in dVC
i ;

	 e(/) returns the edge corresponding to the tipping curve / in dEC
i .

Procedure 1. Elementary step for simple cases.

6.4.3. Algorithm

We now present an algorithm for incremental 2D DRT graph
construction. The algorithm builds GC by picking event points in
Q one by one. Each iteration consists of modifying the partial graph
dGC according to the current cut c (see Section 6.4.2), and then
integrating dGC into GC.

Algorithm 1. Incremental construction of a 2D DRT graph in
simple cases.

3 A quadratic irrational is an irrational number that is a solution of some quadratic
equations.
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6.5. Incremental 2D DRT graph construction for degenerate cases

As real data with tipping curves have degeneracies, we now dis-
cuss how to deal with such cases. The algorithm for constructing a
2D DRT graph with degeneracies is similar to Algorithm 1 except
for two modifications. The first of these – in step 2 – consists of
detecting and sorting degenerate event points to generate an event
queue Q (see Section 6.5.1). The second modification – in step 5 –
is, despite dealing with a pair of tipping curves in simple cases,
dealing with a family of tipping curves; thus the elementary step
needs to be modified (see Section 6.5.2).

6.5.1. Detecting and sorting event points
According to their natures, the degeneracies can be classified

into the following three cases, illustrated in Fig. 12. More than
two tipping curves can be:

(i) intersecting at a single point (multiple intersection);
(ii) tangent at a single point (multiple tangent point);

(iii) tangent and/or intersecting at a single point (multiple mixed
point).

In fact, those degeneracies can be detected by using Property 2
(iii), (iv), and Corollary 1 as mentioned in Section 6.4.1. More pre-
cisely, comparing the intersections allows us to detect degenerate
event points since they have the same coordinates4 at the point.
Such a degenerate event point is now represented by a family of tip-
ping curves that go through the intersection point (see Fig. 13).

6.5.2. Elementary step for degenerate event points
Based on the classification of degenerate event points, we can han-

dle each case explicitly. For a multiple intersection, we swap the or-
der of all intersecting tipping curves in the cut c before and after this
event point. A multiple tangent is not considered as an event point
because there is no change of c around this point. The last case, a mul-
tiple mixed point, is more complicated. Observing carefully Fig. 12,
we remark that tipping curves are decomposed into sets sorted by
tangent values; each set contains tipping curves with the same tan-
gent. When c passes this point, only the order of these sets of curves
are reversed while the order of curves in each set is preserved. In fact,
this provides the general procedure for multiple intersection cases in
which each tipping curve is seen as a set of equal tangent curves.

At each event point, the elementary step consists of modifying
the partial graph dGC according to the change of c in a similar
way to Procedure 1. Note that in degenerate cases, each event point
contains a family of tipping curves instead of a pair as in simple
cases. Let q be an event point, then q = {s0,s1, . . . ,sm} is a family
of tipping curves where each sj ¼ f/j1

;/j2
; . . .g is a set of tipping

curves with the same tangent at q. Let dGC
i and dGC

iþ1 be respec-
tively the partial graphs with respect to ci and ci+1, which go
through on the left and right of the event point q. The construction
of dGC

iþ1 from dGC
i proceeds following these steps:

1. Generating two lists of tipping curves which give the orders of
tipping curves before and after q and storing them into two
Last-In First-Out (LIFO) stacks S1 and S2 respectively. Details
are given below.

2. Finding the initial and terminal vertices u and v for an event
point q, between which dGC

i changes.
3. Finding the current vertices and edges between u and v.
4. Replacing the current vertices and edges by the new vertices

and edges between u and v.

While creating new edges in the last step, each edge is given a
label of a tipping curve taken from S2.

We now explain how to fill two LIFO stacks S1 and S2 according
to the orders of tipping curves before and after the event point q.
For this, we first need to sort the sets sj and the tipping curves /
in each set sj of q with the order obtained from dEC

i . After sorting,
we assume that q = (s0,s1, . . . ,sm) and each sj ¼ ð/j1

;/j2
; . . .Þ with

respect to dEC
i . The stacks S1 and S2 are generated by using the re-

verse sequences of sj, which is �sj ¼ ð. . . ;/j2
;/j1
Þ, as follows.

for j = 0 ? m do
for each / 2 �sm�j do

S1 push(/);
end for
for each / 2 �sj do

S2 push(/);
end for

end for

Note that in S1, tipping curves have the same order as in dEC
i ,

and in S2 the order of sets of tipping curves are reversed while
the order of curves in each set is preserved. Procedure 2 generates
dGC

iþ1 from dGC
i at the event point q.

Procedure 2. Elementary step for degenerate cases.

4 Note that we do not know the exact value of h but only the values sin h and cos h.
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7. Construction of a discrete rigid transformation graph

In this section, we present an algorithm to construct a DRT
graph from a set of tipping surfaces. The basic idea is quite similar
to the algorithm for constructing a 2D DRT graph, which is based
on sweeping a cut and updating the DRT graph G at event points.
At each elementary step, we build an additional part DG and then
integrate it into G.

7.1. Principles of incremental DRT graph construction

As explained before, the graph of the parameter space can be
constructed from its projections into the planes (a,h) and (b,h).
We denote Ga = (Va,Ea) (resp. Gb = (Vb,Eb)) the projection DRT graph
into the planes (a,h) (resp. (b,h)). From Formulae (13) and (14) of
tipping curves, we derive the following proposition:

Proposition 2. Let Ga (resp. Gb) be a 2D DRT graph constructed from
a set of tipping curves F/ (resp. Fw). Ga and Gb are isomorphic, denoted
by Ga � Gb.

Proof. Translating Formula (14) by p
2 with respect to h, we obtain a

set of tipping curves that corresponds to the set of Formula (13), so
that there exists exactly one correspondence between /pqk and
wpql:

b hþ p
2

� 

¼ lþ 1

2
� p sin hþ p

2

� 

� q cos hþ p

2

� 


¼ lþ 1
2
� p cos hþ q sin h ¼ aðhÞ:

As the sets F/ and Fw are periodic with period p
2 (Property 4), the 2D

DRT graphs in the two planes (a,h) and (b,h) are isomorphic. h

Since Ga � Gb, we need to construct only one graph, Ga for exam-
ple, and by the correspondence of tipping curves between /pqk and
wpql we can induce the other. The proof of Proposition 2 implies the
following lemma.

Lemma 7.1. Let Ea � R2 (resp. Eb � R2) be the set of event points for
the set of tipping curves F/ (resp. Fw). We have Ea ¼ Eb.

If Qa (resp. Qb) denotes the event queue corresponding to Ea

(resp. Eb), then jQaj ¼ jQbj. Note that we store an event point as a
list of tipping curves which generates this event point, but not as
its coordinates; thus Qa – Qb even if their event points have the
same coordinates.

In order to construct a DRT graph G we use two vertical cuts,
each of which sweeps the plane either (a,h) or (b,h) respectively.
Thus an elementary step is performed for each pair of event points
on the two planes to generate the additional part D G of G by com-
bining the partial graphs dGa and d Gb of Ga and Gb respectively. The
construction of d Ga and dGb was described in Section 6.

7.2. Initial graph construction

The initial DRT graph G0 = (V0,E0) is generated from
dGa

0 ¼ dVa
0; dEa

0


 �
and dGb

0 ¼ dVb
0; dEb

0

� 

as follows:

	 V0 ¼ ðva;vbÞ jva 2 dVa
0;vb 2 dVb

0

n o
;

	 E0¼ ððu1;vÞ;ðu2;vÞ;/uÞju1;u2 2 dVa
0;v 2 dVb

0;ðu1;u2;/uÞ 2 dEa
0

n o
[ ððu;v1Þ;ðu;v2Þ;/vÞjv1;v2 2 dVb

0;u2 dVa
0;ðv1;v2;/v Þ

n
2 dEb

0g.

(a) (b)
Fig. 10. Illustration for simple (a) and non-simple (b) cases.

Fig. 11. Illustration of a progress of a cut by which the partial graph dGC
iþ1 is modified from dGC

i in simple case.
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Therefore G0 contains (n + 1)2 vertices and 2n(n + 1) edges, where
n is the number of tipping curves of each of F/ and Fw (see Fig. 14).

7.3. Elementary step

The additional part DGi at each elementary step is constructed
by Procedure 3, from dGa

i and dGb
i in a similar way to the initializa-

tion. The difference being that a new vertex is generated from a
pair of a new vertex in dVa

i and one of the vertices in dVb
i or vice

versa. Thus a new edge connects two vertices sharing an edge in
dEa

i and dEb
i . Procedure 3 requires the additional parts DVa

þ and
DVb

þ of dGa
i and dGb

i respectively. We modify Procedure 2 and obtain
Procedure 2’, such that it returns not only a partial graph dGC

iþ1 but
also an adding vertex set DVC

þ, which is already calculated in Pro-
cedure 2 as an intermediate parameter.

Procedure 3. Elementary step for DRT graph construction.

7.4. Algorithm

The final algorithm (Algorithm 2) builds a DRT graph G by tak-
ing two event points qa 2 Qa; qb 2 Qb, whose coordinates are iden-
tical. At each iteration, we generate DG simply by using Procedure
3 and then integrate it into G.

Algorithm 2. Construction of DRT graph.

8. Complexity analysis and experiments

8.1. Space complexity of DRT graph

The complexity of a 2D DRT graph, i.e., the numbers of its ver-
tices and edges, is obtained by counting the number of event
points.

Proposition 3. Given a set C of n tipping curves,

(i) the number of event points is at most n(n � 1);
and the generated 2D DRT graph GC has

(ii) at most n2 + 1 vertices;
(iii) at most 2n2 � n edges.

Proof. (i) The number of event points is the number of intersec-
tions of two curves in C. Since two tipping curves meet at most
in two points (Corollary 2), the number of event points is less than

or equal to 2 n
2

� �
¼ nðn� 1Þ. (ii) The vertices of GC correspond to

the faces of the arrangement of tipping curves. If n = 1, the number
of faces is 2 = 12 + 1, such that the curve forms the boundary
between two faces. Let us now assume that there are (n � 1)2 + 1
faces for n � 1 tipping curves. When adding the n-th curve, this
curve will be divided into at most 2(n � 1) + 1 arcs by the n � 1
other curves, and each of these arcs will split at most one face into
two. Therefore, at most 2(n � 1) + 1 new faces will be created.
Thus, the total number of faces (i.e., that of vertices in the 2D
DRT graph) is at most (n � 1)2 + 1 + 2(n � 1) + 1 = n2 + 1. The result
follows by induction. (iii) If n = 1, there is one curve and thus we
obtain 1 = 2 � 12 � 1 edge. Let us now assume that for n � 1 curves
there are at most 2(n � 1)2 � (n � 1) edges. When adding the n-th
curve, this curve will intersect at most the n � 1 previous curves.
Since there are at most two intersections for each one, this creates
at most 2(n � 1) edges. Moreover, the n-th curve itself will create
at most 2(n � 1) + 1 new edges as it has intersected at most
2(n � 1) points. Thus, the total number of created edges is at most
2(n � 1)2 � (n � 1) + 2(n � 1) + 2(n � 1) + 1 = 2n2 � n. The result
follows by induction. h

The following property allows us to study the complexity of F/ for
a digital image I with finite size. This property induces the fact that
the number of possible DRTs is finite and bounded by the size of sup-
port S of I. We say two tipping curves are vertically offset if one can be
obtained by translating the other vertically. In fact, the case of two
vertically offset curves is a special case of two tipping curves with
no intersection, which corresponds to (ii) in Property 2.

Property 5. Given a support S of size N � N of a digital image, the
family F/ has

(i) N2(N + 1) tipping curves;
(ii) N2 sets of vertical offset tipping curves;

(iii) N + 1 vertically offset tipping curves in each set; and
(iv) 2N intersections at h ¼ p

2 d for d 2 Z.

Proof. (i) The number of tipping curves /pqk is simply the possible
combinations of integer triplets (p,q,k). Since 0 6 p, q 6 N � 1 and
0 6 k 6 N, there are N2(N + 1) tipping curves. (ii, iii) From (ii) of
Property 2, two trigonometric curves /piqiki

and /pjqjkj
are vertically

offset if and only if they have pi = pj, qi = qj and ki – kj. We thus
obtain N2 sets of vertically offset tipping curves, such that each
set contains N + 1 curves with different values of k. (iv) Thanks to
Property 4, we only need to evaluate Formula (15) at h = 0 and
we have að0Þ ¼ kþ 1

2� p. The number of intersections is the num-
ber of different sums of q and k, which is 2N. h
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In practice, the various numbers of event points, vertices and
edges are all lower than their upper-bound Oðn2Þ, due to the
degenerated cases in the arrangement of n tipping curves. From
Property 5, we know that n ¼ OðN3Þ for an image of size N � N.
Then, those complexities such as the numbers of event point, ver-
tices and edges can be re-expressed as OðN6Þ.

As mentioned in Section 7, the construction of a DRT graph G is
obtained from its projections on the planes (a,h) and (b,h) using
two cuts. Then we notice that the initial graph has a complexity
OðN3Þ � OðN3Þ. We also know that at each elementary step, there
are OðN3Þ vertices generated. As the number of event points is
OðN6Þ, in total there are OðN6Þ � OðN3Þ vertices added in G. This
justifies the following theorem.

(a) (b) (c)
Fig. 12. Degenerate cases: multiple intersection (a), multiple tangent point (b) and multiple mixed point (c).

Fig. 13. Illustrating the progress of a cut by which the partial graph dGC
iþ1 is modified from dGC

i in a degenerate case.

Fig. 14. Illustration of construction of an initial DRT graph G0 from two 2D DRT partial graphs dGa
0 and dGb

0 on the planes (a,h) and (b,h).

Table 2
Numbers of DRT graph vertices and edges with respect to image sizes of N � N.

N 2D DRT graph DRT graph

Vertices Edges Vertices Edges

1 1 0 1 0
2 49 144 1033 5040
3 431 1472 29,631 160,512
4 2277 8144 357,421 1,993,696
5 8371 30,304 2,487,053 13,978,176
6 25,033 92,176 12,550,225 71,310,320
7 62,199 229,184 48,604,267 276,284,416
8 139,661 518,096 160,554,101 916,648,928
9 282,731 1,049,344 457,270,393 2, 612,082,816
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Theorem 1. The DRT graph G associated to an image of size N � N
has a space complexity of OðN9Þ.

8.2. Run-time complexity of construction algorithm

First, in Step 1 of Algorithm 2, the partial graphs dGa
0 and dGb

0 are
initialized with a time complexity of OðN3 log NÞ, when tipping
curves are sorted as explained in Section 6.3. Note that the number
of tipping curves is OðN3Þ. Then in Step 2, since each of dGa

0 and dGb
0

has OðN3Þ vertices and edges, from Section 7.2 we can generate G0

in OðN6Þ. For Step 3, firstly a OðN6Þ time complexity is needed to
detect all the intersections of tipping curves, Secondly, from Prop-
osition 3, we know that the total number of event points is OðN6Þ,
thus sorting the event points takes OðN6 log NÞ. As explained in
Section 6.4.1, to compare any two event points we use their corre-
sponding continued fractions. Practically, this comparison is exe-
cuted in constant time [20] so that this does not increase the
time complexity of sorting event points. The sweep of a cut, in
Steps 4 to 10, has OðN6Þ iterations, for each of which Procedure
2’ and Procedure 3 are executed in OðN3Þ operations respectively.
Finally, the DRT graph is constructed in OðN9Þ time.

8.3. Experiments

We have implemented our algorithm in C++. From the experi-
ments, the numbers of vertices (and edges) of the DRT graphs have

been computed for images of sizes varying from 1 � 1 to 9 � 9. The
experiments were carried out on a personal computer equipped
with a processor 3.0 GHz Intel� Core™ 2 Duo and 4 GB of memory.
The results, shown in Table 2 and Fig. 15, validate the theoretical
OðN9Þ space complexity stated in the previous theorem.

9. Applications

This section illustrates the practical applicability of our pro-
posed combinatorial structure for DRTs.

9.1. Generation of all digital transformed images

Given a digital image I of size N � N, we firstly show how to
generate all possible transformed images of I under rigid transfor-
mations. We know that the DRT graph models the whole space of
digital rigid transformations on any subset of Z2 of size N � N. It
should be mentioned that this graph does not contain any geomet-
ric parameters (a,b,h) for the rigid transformations but only the
topological information, which gives the relationship between
any neighbouring transformed images. Indeed, each edge of the
DRT graph is labelled by an integer quadruple (p,q,k, i) indicating
that the pixel ðp; qÞ 2 Z2 will cross the half-grid line, either
x ¼ kþ 1

2 if i = 0 or y ¼ kþ 1
2 if i = 1. Using this information, when

we move from one vertex –a transformed image– to its neighbour,
only one pixel (p,q) changes. Thus, we can provide incrementally

Fig. 15. The relation between image size and number of elements, (i.e., vertices or edges) in Table 2 for 2D DRT graphs (left) and DRT graphs (right).

Fig. 16. The 231 images are generated by using the Eulerian model from the part of a DRT graph for a given image of size 3 � 3 where a; b 2 1
2 ;

3
2

� �
and h 2 0; p4

� �
. The first image

is the identity transformation. In the transformed images, we do not show pixels that are pushed out of the image support. Also, formerly background pixels are ‘‘filled’’ with a
black colour.
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all possible images under any rigid transformations of I. Fig. 16
shows all generated digital transformed images by using the Eule-
rian model5 from the part of the DRT graph for an image of size 3 � 3
where a; b 2 1

2 ;
3
2

� �
and h 2 0; p4

� �
.

9.2. Discrete representation of the transformation of an image: discrete
transition path

Given an image I and its transformed image I0, we define a tran-
sition path between I and I0 as the (possibly non-unique) locus of
rigid transformations transitioning I to I0 in the parameter space
(a,b,h). By using the DRT framework, such a transition path can
be represented as a connected path in the DRT graph G, called a dis-
crete transition path. Indeed, we can find a discrete transition path
in G between I and I0 using the topological information of G provid-
ing the neighbouring relations of DRTs. Fig. 17 shows a discrete
transition path between two vertices of G and the sequence of
transformed images corresponding to the vertices through the
path. This representation of such a sequence illustrates the fact
that only one pixel is changed between two incident transformed
images. This allows us to define a metric on the DRT graph for mea-
suring similarity between different transformed images, simply by
counting the number of pixel changes, i.e., the length of the path.

9.3. Evaluation of discrete transition paths

Given two DRT graph vertices, it is observed in Fig. 18 that their
discrete transition paths are not unique. Assuming the existence of
several different transition paths, we would like to find the best
path which preserves some additional criteria such as topology
and geometry of our object of interest in images. We know that
for any two consecutive images in a discrete transition path only
one pixel changes and thus it may be easy to verify our criteria
incrementally along the path by checking only this pixel. By using
the DRT framework, it may be possible to propose a new evaluation
strategy for discrete transition paths.

10. Conclusion

In this article, we have introduced a combinatorial structure
represented as a graph for modelling the parameter space of digital
rigid transformations. This graph consists of finite sets of vertices
and edges. In this graph, each vertex represents a digital trans-
formed image, and each edge linking two vertices represents a
transition changing only one pixel between two transformed
images. This structure presents a space complexity of OðN9Þ, where
N � N is the size of any considered subspace of Z2. An algorithm
has also been proposed in order to define this structure in linear
time with respect to this space complexity.

Fig. 17. A discrete transition path of the DRT graph in the parameter space (a,b,h) (left) and a sequence of transformed images (right). Each vertex of the path represents a
DRT which gives a digital transformed image. The first image corresponds to the identity transformation and the images from left to right and from top to bottom correspond
to the vertices ordered in the path.

5 The Eulerian model of a given rigid transformation T consists of determining
T �1ðyÞ for any point y 2 Z2 in the deformed space (see Remark 1 in Section 2.2).

Fig. 18. Illustration of two different discrete transition paths with the same starting and ending vertices in a DRT graph: the two paths (left) and their sequences of images
(right). The first row images correspond to the red path and the bottom ones correspond to the blue path. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

406 P. Ngo et al. / Computer Vision and Image Understanding 117 (2013) 393–408



Experiments performed on a standard computer emphasise
both the correctness of the algorithm, and the estimated time/
space polynomial complexities. Due to these complexities, it re-
mains however hardly tractable to compute the proposed combi-
natorial structure for large images.

However, this size limitation is not a crippling default in the
case of several applications. Indeed, image processing techniques
based on sub-image/sample analysis can take advantage of the
proposed approach, e.g., in the context of pattern matching, non-
local image processing [21], or marker-based registration [22].

From a methodological point of view, further work will now in-
volve studying ways to use the proposed combinatorial structure
in multiscale strategies, most importantly in order to process large
images without computing the whole data structure. Furthermore,
for image registration, most existing methods [2] provide no guar-
antee to find a global optimal solution in general. With our ap-
proach, we may define a new graph based metric using
neighbouring relations between discrete rigid transformations,
which may lead to a global optimal solution. From a theoretical
point of view, extensions of the presented results to 3D digital
images (following some connected works related to 3D pattern
matching [23]) will also be investigated.
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Appendix A. Exact comparison of quadratic irrationals

This appendix describes an algorithmic process enabling to
compare two quadratic irrationals without numerical approxima-
tion. In [19,24], it was proved that a quadratic irrational can be
rewritten as a periodic continued fraction. More formally, for any
quadratic irrational Q ¼ pþ ffiffiqp

r where p; q; r 2 Z; q > 0; r – 0 we
have a periodic continued fraction:

ðA:1Þ

where a0 2 Z and ai 2 N for i = 1, . . ., n. Such a periodic continued
fraction is unambiguously modelled by a finite sequence of integers
(a0,a1, . . . ,an), denoted by [a0;a1,a2, . . . ,an]. Based on this formula-
tion, the comparison between two quadratic irrationals can be per-
formed as follows.

Given Q 1¼
p1þ

ffiffiffiffiffi
q1
p

r1
¼ ½a0;a1;a2; . . .� and Q 2¼

p2þ
ffiffiffiffiffi
q2
p

r2
¼ ½b0;b1;b2; . . .�;

let k 2 N be the smallest index for which ak – bk. If Q1 – Q2 (the
equality can be easily checked by comparing the values pi, qi and
ri), the order between Q1 and Q2 is characterised by the sign of
the value E = (�1)k(ak � bk). In particular, we have Q1 < Q2 (resp.
Q1 > Q2) if E < 0 (resp. E > 0) (see Algorithm 3). Note that for a qua-
dratic irrational Q ¼ pþ ffiffiqp

r , it is proved in [25] that the length of
repeating block for Q is O ffiffiffi

q
p

ln q

 �

. In the worst case, all terms of

the repeating block are compared, i.e., we have O ffiffiffi
q
p

ln q

 �

compar-
isons. However, it is proved in [20] that the comparison of contin-
ued fractions has an average-case complexity of Oð1Þ.

Algorithm 3. Comparison of two quadratic irrationals
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Abstract In the continuous domainRn, rigid transforma-
tions are topology-preserving operations. Due to digitiza-
tion, this is not the case when considering digital images,
i.e., images defined onZn. In this article, we begin to inves-
tigate this problem by studying conditions for digital images
to preserve their topological properties under all rigid trans-
formations onZ2. Based on (i) the recently introduced no-
tion of DRT graph, and (ii ) the notion of simple point, we
propose an algorithm for evaluating digital images topolog-
ical invariance.

Keywords Rigid transformation· 2D digital image·
discrete topology· simple point· DRT graph

1 Introduction

Rigid transformations (i.e., rotations composed with transla-
tions) are involved in numerous 2D and 3D image process-
ing and analysis tasks, for instance in registration [1] and
tracking [2]. In such applications, the images are necessarily
digital, and can then be considered as functionsI : S → V
from a finite subsetS ⊂ Zn to a value spaceV.

Rigid transformations are topology-preserving inRn. By
“topology-preserving”,we mean that they do not alter intrin-
sic structural properties, generally modeled by topological
invariants (e.g., Euler characteristic, homotopy-type, funda-
mental groups, etc.). Unfortunately, this property, whichis
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Tel.:+33-145926737
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Fig. 1 Left: binary digital image and the grid modeling its discrete
structure. Middle: a rigid transformation applied on this grid. Right:
the resulting transformed image, which is not topologically identical
to the initial image (for instance, if considered 8-connected, the black
component was split).

highly desirable in image analysis and processing, is gener-
ally lost in Zn. Typically, digital rigid transformations (i.e.,
rigid transformations followed by a digitization process)al-
ter, in most cases, the topological properties of digital im-
ages, such as the homotopy-type, as exemplified in Fig. 1.
This is due to the sampling effects induced by the manda-
tory digitization process fromRn to Zn.

Several works have been devoted to topology-preserving
transformations, in particular in the context of image warp-
ing [3,4], and atlas-based segmentation [5], where topology
preservation is a crucial issue. However topology topology-
preservation in the case of rigid transformations in images
has not yet been considered. In this article – that is an ex-
tended and improved version of the conference paper [6] –
we study this specific issue. More precisely, we focus on the
2D case, and on defining some conditions for digital images
such that their homotopy-type is preserved under all rigid
transformations.

To this end, we consider the notion of DRT graph, that
we recently introduced and studied from a theoretical point
of view in [7]. It defines a combinatorial model of all the
rigid transformations of a 2D digital image. We also con-
sider the classical notion of simple points, which can be
used to guarantee the preservation of homotopy-type, and
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has been extended to several categories (binary, grey-level,
labeled) of digital images. By combining these two notions,
we provide a combinatorial analysis of 2D digital image
topology under rigid transformations. The basic idea of the
proposed method is to generate all the transformed images
using the DRT graph, and simultaneously evaluate their ho-
motopy-type preservation using the notion of simple points.
This analysis finally leads us to an efficient algorithm for
evaluating the homotopy-type preservation of digital images
under all rigid transformations.

The article is organized as follows. The state of the art
in both digital rigid transformation and topology preserva-
tion is exposed in Sec. 2. Basic definitions and notations are
provided in Sec. 3. In Sec. 4, we introduce the main issues
related to topology alterations induced by the embedding of
rigid transformations into digital spaces. Our contribution is
exposed in Secs. 5–7. Specifically, in Sec. 5, we introduce
the DRT graph [7] as a tool for studying the behaviour of
rigid transformations on digital images from a topological
point of view. In particular, we propose a first algorithm for
assessing the topological invariance of a digital image under
all possible rigid transformations, with a superlinear time
and space complexity, corresponding to that of the associ-
ated DRT graph. In Sec. 6, we refine this first approach, by
spatially decomposing the image analysis process, leading
to an equivalent algorithm that presents a low complexity
with respect to the image size. In Sec. 7, this method is ex-
perimentally assessed in terms of complexity and correct-
ness. Sec. 8 finally summarizes the contributions and pro-
poses some future work.

2 State of the art

2.1 Rigid transformations on digital images

To reach our stated goal of finding conditions for topology
preservation of digital images under all rigid transforma-
tions, it is necessary to compare the topological properties of
the initial image and all of its transformed images. Studying
the problem in the continuous domain is however unfeasible
due to the uncountable number of transformations inR2, and
so a discrete method must be devised, preferably involving
only integer operations for exactness.

Over the last two decades, several methods were pro-
posed to study transformations on digital images as fully
discrete processes. In particular, different studies in combi-
natorial analysis for the problem of 2D pattern matching un-
der different classes of geometric transformations have been
considered for: rotations [8,9]; scalings [10,11]; combined
scalings and rotations [12]; affine transformations [13,14];
projective and linear transformations [15]. To the best of our
knowledge, fully discrete approaches devoted to rigid trans-
formations are in quite limited number.

Digital rigid transformations include discrete rotations.
For this class, one can cite the quasi-shear rotations [16,17]
which were introduced to preserve bijectivity. The approach
consists of decomposing a rotation into three horizontal or
vertical quasi-shears in order to obtain a discrete transfor-
mation. Based on this strategy, this quasi-shear composition
however trades bijectivity for transitivity. As a consequence,
the result obtained by a quasi-shear rotation is not always
identical to the result obtained by applying a Euclidean ro-
tation followed by a discretization.

In this article, we propose an alternative approach that
provides the same discretized result as the Euclidean dis-
cretized method, but we do not guarantee bijectivity. For
this purpose, a discrete formulation of rotations based on
hinge angles has been proposed in [18–21]. Informally, for
a discrete finite set, rotations around a fixed center and with
“small” angle variations will not result in any change. Con-
versely, some larger angle rotations will indeed result in pixel
modifications. The notion of hinge angles formalizes this
property. In particular, hinge angles (represented by integer
triplets) hold sufficient information for incrementally gener-
ating and performing all rotations.

Following the idea of rotations by hinge angles and in-
spired by the discretization technique of the problem of 2D
pattern matching, we have recently studied in [7] the combi-
natorial aspects and properties of the class of rigid transfor-
mations, by simultaneously considering the parameter space
for both translations and rotations. Our approach discretizes
the induced parameter space of rigid transformations on 2D
digital images, and models this space by a combinatorial
structure, namely a graph. This structure presents a space
complexity ofO(N9) for any subset ofZ2 of size N × N.
Moreover, an algorithm to build this graph withexact com-
putation (i.e., using only integers), in linear time with re-
spect to its space complexity is proposed in [7].

2.2 Topology-preserving digital image transformations

The study of discrete deformations involving topological al-
teration, relies mostly – but not exclusively [22] – on the
notion of simple point, which provides conditions for the
preservation of strong topological invariants, and in particu-
lar the homotopy-type. Intuitively, a point is called simple if
its value can be modified without changing the digital topol-
ogy of the associated image.

Simple points were initially defined for binary images on
Z2 [23]. This notion was later formulated in the framework
of digital topology [24], and was recently shown [25,26] to
extend to richer discrete frameworks that explicitly describe
cubic grids as topological spaces [27,28]. Several extensions
have then been proposed during the following forty years, in
terms of dimensions (3D [29] and 4D [30] simple points); of
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cardinality (deletable sets [31], P-simple points [32], mini-
mal simple sets [33]); and in terms of image value spaces
(grey-level images [34], label images [35–37]).

On the applicative front, simple points have been inten-
sively used in the development of various pattern recogni-
tion methods, for instance in the field of medical image anal-
ysis [38]. In particular, many such methods have been de-
fined in monotonic transformation paradigms [39] (i.e., re-
duction, skeletonization, region-growing) or in – continuous
[40] or discrete [36] – deformation model paradigms.

Only a few works have involved topology preservation
notions combined with geometric transformations, for in-
stance in the field of digital image warping [41,4] based
on continuous deformation fields obtained from registration
procedures. In particular, the question of digital topology
preservation in the case of rigid transformations has – to the
best of our knowledge – not been considered until now.

3 Background notions

3.1 Digital images

In the continuous domain, a (2D) image can be formalised as
a functionI : R2→ V, whereV is a value space. We assume
thatV contains at least two elements, including one, noted
⊥, corresponding to the “background” value. In particular:

– if |V| = 2, thenI is a binary image;
– if |V| ≥ 3 and is equipped with a total order, thenI is a

grey-level image;
– if |V| ≥ 3 and is not equipped with a total order, thenI is

a label image.

A (2D) digital image associated toI can be defined as
I : Z2 → V, by samplingI on the discrete spaceZ2. In
other words, we haveI = I|Z2, and for eachp ∈ Z2, the
value I (p) of the digital image models the value ofI on
the associated pixelp + [− 1

2 ,
1
2]2, namely the Voronoi cell

of R2 induced byZ2 aroundp. This paradigm relies on the
digitization functionD defined as

∣∣∣∣∣∣
D : R2 −→ Z2

(x, y) 7−→ ([x], [y])
(1)

where [· ] is a standard rounding function (for instance, the
floor functionx → ⌊x + ( 1

2 ,
1
2)⌋). We assume that a digital

image is actually defined on a subset ofZ2, namelyI−1(V \
{⊥}), which is finite. Then, it is plain thatI−1(V \ {⊥}) ⊆ S =
[0,N − 1]2 ∩ Z2, for a givenN ∈ N. The setS is called the
support ofI andN × N is the size ofI . By abuse of notation
– and without loss of generality – we will sometimes note a
digital image asI : S→ V instead ofI : Z2→ V.

3.2 Digital rigid transformations

In the continuous framework, a rigid transformation (com-
posed of translations and rotations) is expressed as a bijec-
tionT : R2→ R2 defined, for anyx = (x, y) ∈ R2 by

T (x) =

(
cosθ − sinθ
sinθ cosθ

) (
x
y

)
+

(
a
b

)
(2)

wherea, b ∈ R andθ ∈ [0, 2π[. Such a transformation is un-
ambiguously modeled by the triplet of parameters (a, b, θ),
and will sometimes be notedTabθ.

It is not possible to apply directlyT on a digital image
I : S → V, since there is no guarantee thatT (x) ∈ Z2, for
anyx ∈ Z2. The correct handling ofdigital rigid transforma-
tions then requires to define a digital analogueT : Z2 → Z2

of T . By considering the digitization paradigm proposed in
Equation (1), this can be conveniently performed by setting

T = D ◦ T|S (3)

In other words, the transformationT is obtained by apply-
ing T and then digitising the result by the functionD, as
illustrated in the diagram below.

S ⊆ Z2
T=D◦T|S−−−−−−→ T(S) ⊆ Z2

yId

xD

S ⊆ R2 T−−−−−−→ T (S) ⊆ R2

(4)

The functionT : Z2→ Z2 is then explicitly defined, for any
p = (p, q) ∈ Z2, by

T(p) = D ◦ T (p) =

(
[pcosθ − qsinθ + a]
[psinθ + qcosθ + b]

)
(5)

In R2, the transformationT : R2 → R2 is bijective. Con-
sequently, determiningy ∈ R2 such thatT (x) = y, and de-
terminingx ∈ R2 such thatT −1(y) = x, are equivalent ques-
tions. The first issue corresponds to the forwards model for
image transformation, while the second issue corresponds to
the backwards model (Fig. 2(a)).

In general, the bijectivity hypothesis is no longer veri-
fied in the digital case, forT = D ◦ T|S : Z2→ Z2. In such a
context, the forwards model (namely the Lagrangian model,
illustrated in Fig. 2(b)) can be correctly handled, but not the
backwards model (namely the Eulerian model). However,
by settingT−1 = D ◦ T −1

|Z2 : Z2→ Z2, we can define a trans-

formed digital imageI ◦ T−1 : Z2 → V that conveniently
enables to handle the Eulerian model (Fig. 2(c)). (Note that
T−1 is not the inverse function ofT in general.)

In the sequel, we only focus on the Eulerian model (the
justification of this choice will be discussed in Sec. 8). From
this point on – for the sake of readability and without loss
of correctness – we will noteT instead ofT−1, due to the
bijectivity of T andT −1.
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y
x

T −1

T

(a)

T

D ◦ T
x

(b)

D ◦ T −1

T −1

y

(c)

Fig. 2 (a) Forwards and backwards transformation models inR2. (b)
Lagrangian and (c) Eulerian transformation models inZ2.

3.3 The topology of digital images

In the context of digital image transformations, the preser-
vation of the image topology is often required, that is the
preservation of given topological invariants. Among these
topological invariants, the homotopy-type [42] is generally
considered. As stated in Sec. 2.2, such homotopy-typepreser-
vation can be conveniently handled thanks to the notion of
simple point, as described in the following property.

Property 1 ([23]) Let I : Z2 → V be a digital image. Let
p ∈ I be a simple point of I. Then, the modified image I′,
obtained from I by modifying the value of I atp into a licit
value (depending onV and I) has the same homotopy-type
as I.

Some examples and counter-examples of simple points are
provided in Fig. 3.

Remark 2 The notion of simplicity can be extended to sets
of (successively) simple points between the initial image I
and a final image I′, that still preserves the homotopy-type
between I and I′. This leads to a notion ofsimple-equi-
valence[43] between images.

Independently from the kind of topological structure [24,
27,28] mapped onZ2, and from the value spaceV, simple
points have the virtue of being characterizable by consider-
ing their immediate neighbourhood.

Property 3 Let I : Z2 → V be a digital image. Letp ∈
Z2 be a point of I. The characterization ofp as a simple
point can be computed locally and in constant time by only
considering the pointsq ∈ Z2 such that||p − q||∞ ≤ 1.

tz

y

x

Fig. 3 Examples of simple (x, y) and non-simple (z, t) points in a bi-
nary image. Modifying the value ofz would merge two black con-
nected components, while modifying the value oft would create a
white connected component. In both cases, the homotopy-type of the
image would be modified.

(a) N4(p) (b) N8(p) (c) N20(p)

Fig. 4 The neighbourhoodsN4, N8 andN20 of a pointp.

Based on these considerations, the concepts developed
in the sequel of this article require only the following two
hypotheses related to the considered imagesI : Z2→ V:

(H1) Z2 is equipped with a standard topological structure [24,
27,28]; and

(H2) for this topological structure and the value spaceV, a
notion of simple point is available (this is, for instance,
the case for binary, grey-level or label images).

For the sake of readability – but without loss of generality
– we will hereafter focus on binary images endowed with
the digital topology [24]. In this framework, the topological
notions derive from a graph structure induced by two dual
adjacency (i.e., irreflexive and symmetric) relations, namely
the 4- and 8-adjacencies, which are defined as follows. How-
ever, it is important to note that the results stated hereafter
remain valid whenever hypotheses (H1) and (H2) are satis-
fied, as discussed in Sec. 6.3.

Definition 4 ([24]) Given a pointp = (p1, p2) ∈ Z2, we
consider the two neighbourhoods N4 and N8, which are de-
fined forp as sets of pointsq = (q1, q2) ∈ Z2 such that

N4(p) = {q ∈ Z2 | ‖p − q‖1 =
2∑

i=1

|pi − qi | ≤ 1} (6)

N8(p) = {q ∈ Z2 | ‖p − q‖∞ = 2
max
i=1
|pi − qi | ≤ 1} (7)

We say that the pointq is 4- (resp. 8-) adjacentto p if q ∈
N4(p) \ {p} (resp.q ∈ N8(p) \ {p}).
Remark 5 For reasons that will be justified in Sec. 6.1, we
introduce a third neighbourhood for pointp, namely N20, as
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well as the induced adjacency relation: the20-adjacency. It
is defined by

N20(p) =
{
q ∈ Z2 | ‖p−q‖2 =

( 2∑

i=1

(pi −qi)2
)1/2
< 2
√

2
}

(8)

From the adjacency relations induced by these neigh-
bourhoods (illustrated in Fig. 4), we define the notion of
paths and derive important topological concepts from con-
nectedness to fundamental groups. In this framework, the
characterization of simple pointsp (which are either 4- or
8-simple, according to the chosen adjacency for the point
value) can be made by only consideringN8(p) (see Prop-
erty 3).

4 Digital rigid transformations: Topological issues

As stated in Sec. 3.2, going from rigid transformations inR2

(Equation (2)) to digital rigid transformations inZ2 (Equa-
tion (5)) requires considering a digitization function (Equa-
tion (1)) that discretizes both the space and the transforma-
tion. In this section, we investigate such digitization effects
on the topological properties of digital images during rigid
transformations.

4.1 Non-preservation of geometric properties

In R2, rigid transformations are isometries and so preserve
distances (in particular the Euclidean distance) between any
pair of points, as well as the angles induced by any triplet
of (distinct) points. However, when rigid transformations
are digitised fromR2 to Z2, these properties are often lost.
Indeed, let us consider a pointp ∈ Z2 and a pointq ∈
N8(p)\{p}. Letp′ andq′, obtained from a digital rigid trans-
formation ofp andq, respectively. We have

d2(p, q) = 1 =⇒ d2(p′, q′) ∈ {0, 1,
√

2} (9)

d2(p, q) =
√

2 =⇒ d2(p′, q′) ∈ {1,
√

2, 2} (10)

whered2 denotes the Euclidean distance. Similarly, alter-
ations related to the angles between points can be derived as
well.

Remark 6 The fact that we may have d2(p′, q′) = 0 when
d2(p, q) = 1 also implies that digital rigid transformations
are non-injective in general. Due to the discrete nature ofZ2,
this also implies that such transformations are non-surjective.

We show, in the remainder of this section, how such
alterations can raise topological issues in the transformed
spaces. To this end, we will first study some properties of
pixels related to the influence of digital rigid transformations
on their neighbourhoods.

(a) θ = arcsin(35 ) (b) θ = π/12

(c) θ = π/5 (d) θ = π/4

Fig. 5 Some digital rotations by anglesθ of a white square of size
100× 100. Double points are depicted in red, and null points in grey.

4.2 Topological alterations due to digitization

From Remark 6, a digital rigid transformationT is gener-
ally not bijective. It is plain that for any three distinct points
p1, p2, p3 ∈ Z2, we have maxi, j∈{1,2,3}{d2(pi , pj )} ≥

√
2. From

Equation (10), we derive that the three pointsp′
1
, p′

2
, p′

3
ob-

tained by a digital rigid transformationT of p1, p2, p3 can
not be mapped into the same pixel by the associated rigid
transformationT . It follows that we can characterise the
statusof a pointp ∈ Z2 with respect toT by using the set
PT(p) = {q ∈ Z2 | T(q) = p} containing all pointsq ∈ Z2

whose images byT is p. In particular, there exist only three
possibilities.

Definition 7 Let us consider a pointp ∈ Z2, and a digital
rigid transformation T.

– If |PT(p)| = 0, thenp is called anull point.
– If |PT(p)| = 1, thenp is called asinglepoint.
– If |PT(p)| = 2, thenp is called adoublepoint.

From Definition 7, a digital rigid transformationT be-
haves like a bijection for single points, while the possible
existence of null and double ones generally forbidsT to be
a surjection and an injection, as already evoked in Remark 6.
This is a well-known issue, which has already been identi-
fied in the literature dealing with rotations in discrete spaces,
for instance [8,44,19,21,45]. Some examples are provided
in Fig. 5.

The existence of null and double points is a major source
of topological alterations. Indeed, some connected compo-



6

Fig. 6 A part of the parameter space subdivided by four 2D surfaces bounding the DRTs (left), and the associated (part of the) DRTgraph (right).

nents may be lost when applying a digital rigid transforma-
tion, in particular the one-pixel components.

In addition to such cardinality-based problems, some ad-
jacency-based issues are derived from the geometric alter-
ations evoked in Sec. 4.1. Indeed, the non-preservation of
distances between points, when applying a digital rigid trans-
formation, has a direct interpretation in terms of modifica-
tion of the adjacency relations between such points. The ad-
jacency relations between points may change from 4- to 8-
adjacency orvice versa, or could even lead to a loss of adja-
cency between points initially 8-adjacent. In such situations,
some connected components may be either split or merged.

Remark 8 Some topological alterations of the discrete struc-
ture of a subsetS of Z2 do not necessarily lead to topologi-
cal modifications of an image I defined onS. Consequently,
the study of the potential topological alterations inducedby
digital rigid transformations must be considered not only as
a transformation-dependent problem, but also as an image-
dependent one.

5 DRT graphs and image topology

In this section, we briefly recall the notion of DRT graph
proposed in [7], which is used to model the subdivision of
the parameter space (a, b, θ) of rigid transformations. Then,
we discuss how to use this structure as a topological analysis
tool for rigidly transformed images.

5.1 A brief presentation of the DRT graph

Contrarily to rigid transformations inR2 (see Equation (2)),
digital rigid transformationsare not continuously defined

with respect to the parametersa, b (controlling the “trans-
lation” part) andθ (controlling the “rotation” part). More
precisely, the parameter spaceR3 of (a, b, θ) is divided into
3D open cells, in which the transformationsTabθ are equal,
while the 2D surfaces bounding these open cells correspond
to discontinuities of the digital rigid transformations, induced
by the digitization process (see Equation (5)).

From a theoretical point of view, each 3D open cell of
the parameter space (a, b, θ) can be seen as an equivalence
class of rigid transformationsT of R2 that lead to a same
transformationT = D ◦ T in Z2. Such an equivalence class
is called adiscrete rigid transformation1 (DRT) [7]. Each
3D open cell can also be considered as the resulting digital
transformed space generated by any digital rigid transforma-
tion of the associated DRT. Moreover, the existence of a 2D
surface between two cells indicates that the two associated
transformed images differ by exactly one pixel. By mapping
any 3D cell onto a 0D point, and any 2D surface onto a 1D
edge, the combinatorial structure of the parameter space can
be modeled, in a dual way, as a (connected) graph, namely a
DRT graph(see Fig. 6).

Definition 9 ([7]) Let G= (V,E) be the graph defined such
that:

– any vertex v∈ V models a 3D open cell associated to a
DRT;

– any edge e= (v,w) ∈ E models a 2D surface between
two distinct vertices v,w ∈ V.

The graph G= (V,E) is called aDRT graph.

A DRT graph models the subdivision of the whole rigid
transformation parameter space; therefore, it modelsall the

1 The termdigital refers to the digitization process of numeric im-
ages and transformations for such images, while the termdiscrete
refers to the non-continuous structure of these transformations.
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1
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4

5

6

7
8

9

10

Fig. 7 Left: part of a DRT graphG in which each vertex is a DRT representing a digital transformed image, and each edge indicates theonly
value modification of a pixel between two connected vertices. More precisely, if an edgee= (v,w, (p, p′)) connects two verticesv andw, then the
associated imagesIv and Iw of v andw differ at thesinglepixel p′, andp is the pixel corresponding top′ in the original image (see text). Right:
the transformed images associated to the vertices of the DRTgraphG and their relations according to the edges inG. The images from left to right
and from top to bottom correspond to the path from the vertices 1 to 10 (in red), in which the differing pixelp′ between two transformed images
of the consecutive verticesIvi andIvi+1 is depicted by the black frame inIvi , and the first image corresponds to the original image.

possible rigid transformations of a given setS. Despite the
fact that the space of these transformations is infinite, the
DRT graph is actually defined as afinitestructure. In [7], the
space complexity of the DRT graph for any setS of sizeN×
N has been proved to be polynomial. An exact computation
algorithm also exists to build this graph in linear time with
respect to its size.

Property 10 ([7]) The DRT graph associated to a setS of
size N× N has a space complexity ofO(N9).

DRT graphs do not depend on the values that are as-
signed to the pixels ofS. In other words, their structure is
invariant for any image defined on a same supportS. In the
sequel, we will however consider – without loss of general-
ity – a DRT graph with respect to a given imageI defined
on S. In this context, any edgee = (v,w) ∈ E of the DRT
graph can be “enriched” ase = (v,w, (p, p′)), wherep′ is
the only pixel where the transformed images differ with re-
spect to the DRTsv andw, respectively, whilep is the pixel
corresponding top′ in the initial imageI .

The DRT graph relies on geometric information pro-
vided by (a, b, θ). However, it does not explicitly model such
geometric information. Indeed, it only provides structural
information, that models the relationship between any “neigh-
bouring” transformed images. In particular, the label (p, p′)
of each edgee is implicitly associated to a function indi-
cating the value modification of the pixelp′ that differs be-
tween the transformed images corresponding to the DRTsv
andw. More precisely, the rigid transformation associated
to the 2D surface of the edgeemodifies only the pixel value
of p′ (which is initially equal to the value ofp), such thatp′

will get its value from one of the 4-neighbouring pixels ofp.
This property is exemplified in Fig. 7. Practically, letIv and
Iw be the transformed images corresponding to the vertices
v andw respectively. The value ofp′ at the vertexv is de-
fined byIv(p′) = I (p) whereI : S→ V is the original image
function. After the elementary modification at the edgee,
we obtain a new transformed imageIw by simply changing
the pixel value atp′ as Iw(p′) = I (p + δ) whereδ = (±1, 0)
or (0,±1). In this way, one can generate all the transformed
images ofI by incrementally and exhaustively scanning the
associated DRT graph.

Remark 11 Let G= (V,E) be a DRT graph associated to a
given image I: S → V. For each edge e= (v,w, (p, p′)) ∈
E, two cases can occur:

(i) Iv(p′) = Iw(p′), i.e., the transformed images of I by the
DRTs v and w are equivalent (Iv = Iw);

(ii ) Iv(p′) , Iw(p′), i.e., Iv , Iw.

In the case of binary images, the value ofp′ may then be
flipped from white to black orvice versa, and this may con-
stitute the only modification between the images ofI by two
consecutive DRTs. Such a value change may consequently
alter the topological property of the binary images. In the
sequel, we will show how to verify whether this actually oc-
curs, for any arbitrary transformations, using a DRT graph.

5.2 DRT graph as a topological analysis tool

On the one hand, we would like to know if a given image
I defined onS preserves its topological properties under all
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digital/discrete rigid transformations. Let us first formalise
this preservation, via the notion oftopological invariance.

Definition 12 A digital image I istopologically invariantif
all its transformed images have the same homotopy-type as
I.

On the other hand, as mentioned in Sec. 5.1 the DRT
graph allows us to generate exhaustivelyall the transformed
images ofI . From the definition of the DRT graph and from
Remark 11, this can be achieved by incrementally modify-
ing (at most) one pixel value between two successive trans-
formed images. Moreover, from Property 1, the notion of
simple point can be used to handle the topological-invariance
concept (in particular, the homotopy-type) between two im-
ages that differ in exactly one point. We also know from Re-
mark 2 that this preservation of the homotopy-type is also
guaranteed via the notion of simple-equivalence, that con-
sists of considering successively simple points. The local
characterization of simple points and the incremental notion
of simple-equivalence are therefore compatible with an in-
cremental exploration of the DRT graph of imageI , in order
to evaluate its topological invariance.

Practically, the edges of the DRT graphG = (V,E) of I
can be classified in two categories: those that do not modify
the topology of the transformed images and those that do.
The first category contains the edges that correspond to the
case (i) in Remark 11 as well as those that correspond to
the case (ii ) for which p′ is a simple point; and the second
one contains the edges that correspond to the case (ii ) in
Remark 11 for whichp′ is not simple.

Based on this binary classification, we can straightfor-
wardly create a partial graphG′ = (V,E′) of G by preserving
in E′ ⊆ E only the edges of the first category. In particular,
if G′ is connected, it is plain thatI is topologically invari-
ant. Otherwise,I is not topologically invariant, and every
connected component inG′ corresponds to a set of simple-
equivalent transformed images. It should be noticed that if
there exist at least 3 such connected components, there is
no guarantee of maximality of this simple-equivalence prop-
erty. In other words, two separate (and non-adjacent) con-
nected components inG′ may be composed of images that
all present the same topology. This property derives from the
fact that the DRT graph does not model all the possible paths
associated to transformations between two images, but is re-
stricted to those that have a rigid transformation semantics.

Such an approach presents an algorithmic complexity
that is linear with respect to the (polynomial) space com-
plexity of the DRT graph. It is however possible to reach
a better (mean) complexity by using a standard spanning-
tree algorithm (see Algorithm 1), that provides two outputs:
a Boolean evaluating the topological invariance ofI , and
a (non-necessarily maximal) set of simple-equivalent trans-
formed images with respect to the image associated to the

Algorithm 1: Generation of simple-equivalent images
and topological invariance verification.

Input : A DRT graphG = (V, E) associated to an imageI .
Input : An initial vertexu ∈ V corresponding to the imageI .
Output : A partial sub-graphG′′ = (V′′, E′′) of G such that, for

anyv ∈ V′′, the imagesIv are simple-equivalent toI .
Output : A BooleanB that indicates ifI is a topologically

invariant image.
1 (V′′ , E′′)← ({u}, ∅)
2 S← {u}
3 while S , ∅ do
4 Let v ∈ S
5 S← S \ {v}
6 foreach e= (v,w, (p, p′)) ∈ E, such that w< V′′ do
7 if (Iv(p′) = Iw(p′)) or ((Iv(p′) , Iw(p′)) and (p′ is a

simple point in Iv)) then
8 (V′′, E′′)← (V′′ ∪ {w}, E′′ ∪ {e})
9 S← S ∪ {w}

10 B← (V = V′′)

initial vertexu in the DRT graph (e.g., I or any other trans-
formed image ofI ). In Algorithm 1, the graphG′′ providing
the set of simple-equivalent images is in fact a partial sub-
graph ofG′ (and ofG as well).

Nevertheless, the high algorithmic complexity of this ap-
proach practically forbids the generation the whole graph for
large images, and therefore to consequently verify topolog-
ical invariance. In the next section, we show that this prob-
lem can however be decomposed spatially, thus leading to a
much lower complexity algorithm.

6 A local approach for analyzing topological invariance
under DRTs

In the previous section, we have proposed to explore the
whole DRT graph of a given imageI in order to evaluate
its topological invariance for all DRTs. More precisely, for
each edgee = (v,w, (p, p′)) of the DRT graph, this explo-
ration consists of verifying thatp′ is a simple point between
the transformed imagesIv andIw with respect to the DRTsv
andw, if Iv , Iw. From Property 3, we know that this verifi-
cation can be carried out locally, more precisely in the neigh-
bourhoodN8(p′) of the transformed image space(s). We now
propose to take advantage of the local nature of these tests to
develop a space decomposition strategy that leads to alocal
version of the previously proposedglobalmethod.

6.1 From global to local DRTs

On the one hand, it is plain that the set of all DRTs defined
on a subset of sizeN×N of Z2, does not depend on the way
to locate this subset intoZ2. In other words – provided that
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we choose a setS ⊂ Z2 “sufficiently large” to include the in-
formative part ofI – the DRT graphG = (V,E) associated to
an imageI : S → V is isomorphic to the DRT graph of any
translated image ofI (this isomorphism actually concerns
the vertices/edges that involve at least one point with a value
distinct from⊥). In particular, for a givenp ∈ Z2 let us con-
sider the imageIp such that for anyq ∈ Z2, Ip(q) = I (q−p).
Then, any edgee= (v,w, (p, p′)) of the DRT graphG of I is
equivalent to the edgee′ = (v′,w′, (0, p′)) (also denoted by
e′ = (v′,w′, (o1, p′)) in the following) of the DRT graphGp

of Ip andv′,w′ are the DRTs corresponding tov,w, respec-
tively, up to the translation of vector−p.

On the other hand, let us consider an edgee= (v,w, (p, p′))
of the DRT graphG of I . For a givenp′ ∈ Z2, we can have
two imagesIv′ and Iw′ with respect toIv and Iw such that,
for any q ∈ Z2, Iv′(q) = Iv(q − p′) and Iw′(q) = Iw(q −
p′). Therefore, any edgee = (v,w, (p, p′)) is considered to
be equivalent toe′ = (v′,w′, (p, 0)) (also denoted bye′ =
(v′,w′, (p, o2)) in the following), wherev′,w′ correspond to
v,w, respectively, up to the translation of vector−p′.

From the two above paragraphs, we derive the following
statement.

Remark 13 The study of any edge of label(p, p′) in the
DRT graph G= (V,E) associated to an image I: S → V
can be carried out by considering the edge of label(o1, o2)
in the equivalent DRT graph Gp = (Vp,Ep) associated to a
translated image Ip of I.

In order to establish our local strategy, we now state
some lemmas related to the behaviour of DRTs with respect
to the 8-neighbourhood. Our first lemma, derived from Def-
inition 4 and Equation (5), deals with the extension of a 8-
neighbourhood induced by digital rigid transformations.

Lemma 14 Let p ∈ Z2 andq ∈ N8(p). For any digital rigid
transformation T: Z2→ Z2, we have T(q) ∈ N20(T(p)).

From the result of Remark13 and the local character-
ization of simple points (Property 3), we then derive the
following lemma where we considerTv as the digital rigid
transformation associated to a DRTv, thanks to Lemma 14.
Our next lemma states that it is sufficient to consider a local
neighbourhood to evaluate simple points under rigid trans-
formations.

Lemma 15 Let I : S → V be a digital image. Let I′ :
N20(p) → V be the restriction of I to N20(p) for anyp ∈ S.
Let v,w (resp. v′,w′) be two adjacent vertices of the DRT
graph G (resp. G′p) associated to I (resp. I′) such that the
DRTs Tv,Tw (resp. Tv′ ,Tw′) differ only inp′ and Tv(p′) = p
(resp. Tv′ (p′) = p). Let Iv, Iw : S → V (resp. I′v′ , I

′
w′ :

N20(p) → V) be the transformed images of I (resp. I′) with
respect to v,w (resp. v′,w′), according to the Eulerian model.
Thenp′ is a simple point in Iv (and Iw) iff p′ is a simple point
in I ′v′ (and I′w′).

In the DRT graphG of an imageI , we can define an
equivalence relationbetween the edges ofG as follows.

Definition 16 Let G= (V,E) be the DRT graph associated
to an image I, and E(p,p′) ⊂ E be the set of edges with
(p, p′) as their label. Two edges e1 = (v1,w1, (p, p′)) and
e2 = (v2,w2, (p, p′)) in E(p,p′) are equivalent, and denoted
by e1 ∼ e2, iff Tv1 | N8(p′) = Tv2 | N8(p′) (and Tw1 | N8(p′) =

Tw2 | N8(p′)).

In other words, an equivalence class of anye= (v,w, (p, p′)) ∈
E(p,p′) under∼, denoted by [(v,w, (p, p′))]∼, contains the set
of Tv that provide the same transformed image in the restric-
tion of I to N20(p). Let us consider the DRT graphG′p asso-
ciated to the 20-neighbourhood ofo1 in the translated image
Ip. According to the Eulerian model and Lemma 14, this
DRT graphG′p contains edges (v′,w′, (o1, o2)) that “summa-
rize” the edges (v,w, (p, p′)) of the DRT graphG associated
to I .

Proposition 17 Let E(p,p′) (resp. E′p (o1,o2)) be the set of edges
with (p, p′) (resp.(o1, o2)) as their label of the graph G=
(V,E) (resp. G′p = (V′p,E

′
p)) associated to I (resp. I′p, the

restriction of Ip to N20(o1)). We have E(p,p′)/∼ equivalent to
E′p (o1,o2), by associating each equivalence class[(v,w, (p, p′))]∼ ∈
E to the edge(v′,w′, (o1, o2)) ∈ E′p (o1,o2) such that Tv | N8(p′) =

Tv′ and Tw | N8(p′) = Tw′ .

Sinceo1 ando2 are the origins0 of the imagesI andI ′p
respectively, the relations betweenI , G, E(0,0) and I ′p, G′p,
E′p (0,0) are illustrated in Figs. 8 and 9.

Based on Lemma 15 and Proposition 17, it follows that
the “topological” behaviour of any edge of [(v,w, (p, p′))]∼
in the DRT graphG associated to imageI can be deter-
mined from the edges (v′,w′, (o1, o2)) in the DRT graphG′p.
In other words, the study of thelocal DRT graphG′p asso-
ciated to the partial images ofI defined onN20(p) directly
provides access to a subset of the requiredglobalknowledge
related to the topological invariance ofI under any DRTs.

In particular, from Remark 13, Lemmas 14, 15, and Propo-
sition 17, it becomes possible to develop a local approach
for the topological invariance verification of digital images
under all rigid transformations.

6.2 LUT-based algorithm

Practically, an imageI is topologically invariant with re-
spect to all DRTs if all its transformed images share the
same homotopy-type, and in particular if they are simple-
equivalent (Remark 2). This simple-equivalence can be lo-
cally determined using the notion of simple point (Prop-
erties 1 and 3). In particular, any elementary modification
between transformed images is encoded in an edge of the
DRT graphG of I , and such an edge models the modifica-
tion of exactly one point between two transformed images.
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Fig. 8 (a) A cross-section in the plane (a, θ) of the 2D surfaces bounding the DRTs (see Sec. 5.1) associated to the imageI , and inducing the DRT
graphG = (V, E). (b) A cross-section in the plane (a, θ) of the 2D surfaces bounding DRTs associated toI ′ = I |N20(0), and inducing the DRT graph
G′ = (V′, E′) (see text). In both figures, the red segments correspond to the edges of label (0, 0) (i.e., E(0,0) andE′(0,0)), while the blue ones are the
edges inE′ and the black ones are the edges inE \ E′.

(a) (b)

(c) (d)

Fig. 9 (a,b) Zoom in the curves of Fig. 8. (c,d) Illustration of the dual structures of (a,b) for the part of the DRT graph corresponding to the edges
with label (0, 0). By Definition 16, the green edges in (c) form an equivalenceclass [(v,w, (0, 0))]∼ ∈ E. From Proposition 17, the equivalence class
[(v,w, (0, 0))]∼ can be associated to the blue edge (v′,w′, (0, 0)) in (d).

This point can in particular be characterised as simple or
not. Consequently, by analysing the edges of the whole DRT
graphG, the topological invariance ofI can be determined.
This is the strategy developed in Algorithm 1, that processes

these edges in a exhaustive fashion, leading to a computa-
tional cost directly linked to the size of the DRT graph.

In the previous section, it was observed that any edge of
the DRT graphG of I : S → V is equivalent to an edge in
a smaller DRT graphG′p, associated to the restriction ofI in
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Algorithm 2: LUT generation for topological invari-
ance verification.

Input : The DRT graphG′0 = (V′0, E
′
0) associated toN20(0).

Input : The setC of all different imagesI : N20(0)→ V
(computed in a greedy fashion).

Output : The setP ⊆ C of topologically preserving samples for
the center point0.

1 P← ∅
2 foreach I ∈ C do
3 B← true
4 S← E0

5 while (S , ∅) and(B = true) do
6 Let e= (v,w, (p, p′)) ∈ S
7 S← S \ {e}
8 if p = 0 then
9 if ((Iv(p′) , Iw(p′)) and (p′ is not a simple point

in Iv)) then
10 B← f alse

11 if B = true then
12 P← P∪ {I }

Algorithm 3: Local verification of the topological in-
variance of a digital image.

Input : A digital imageI : S→ V.
Input : The setP (computed from Algorithm 2).
Output : A Boolean valueB evaluating the topological

invariance ofI .
1 B← true
2 S← S
3 while (S , ∅) and(B = true) do
4 Let p ∈ S
5 S← S \ {p}
6 B← (I |N20(p) ∈ P) (up to a translation of−p)

the 20-neighbourhood of a given pointp ∈ S (Remark 13
and Proposition 17). In particular, the characterization of
this edge as topologically preserving is algorithmically the
same inG and inG′p (Lemma 15 and Proposition 17).

From these facts, we deduce that the topological invari-
ance ofI can be equivalently analyzed fromG or from the
set{G′p}p∈S of all the local DRT graphs in the 20-neighbour-
hoods of the pointsp ∈ S. In particular, in any of these local
DRT graphsG′p, it is sufficient to focus on a (strict) subset
of edges, namely those that involvep.

Moreover, since only a finite number of images can be
defined on a 20-neighbourhood, this topological analysis can
be performed exhaustively just once for all the images de-
fined on a 20-neighbourhood; these images can then be used
to characterize the topological invariance ofI . This pre-com-
putation, formalised in Algorithm 2, leads to the definition
of a look-up table (LUT)P that contains all the 20-neighbour-
hood images that authorize topological invariance in a larger
image, for a given value spaceV, and a given topology.

(a) (b)

Fig. 10 (a) A 20-neighbourhood image, centered onp (in blue), that
belongs to the LUTP, and an (overlapped) image, centered onq (in
red), that does not belong toP. (b) Two 20-neighbourhood images,
centered onp andq, respectively, that both belong to the LUTP. (See
Remark 18.)

Remark 18 The LUT P obtained from Algorithm 2 poten-
tially constitutes astrict supersetof the actual set of the20-
neighbourhood images that authorize in the LUT some pat-
terns that necessarily imply the existence of neighbouring
patterns that are not themselves in the LUT (see Fig. 10).
Algorithm 2 can then be optimised by a post-processing that
removes from P some non-relevant configurations. Such a
post-processing, that leads to a smaller LUT, presents a time
complexity O(|P|3).

We discuss in more details experimental results obtained
with this LUT in the case of binary images in Sec. 7.2. Once
the LUT P has been computed, any imageI : S → V can
be characterized by a simple pixelwise process, that checks,
for everyp ∈ S, that the restriction ofI to N20(p) belongs to
P. This LUT-based approach is formalised in Algorithm 3.

6.3 Parametrisation of the approach

The proposed approach for evaluating the topological invari-
ance of digital imagesI defined onS, under all DRTs, has
been presented – for the sake of readability – in the classical
framework of digital topology [24],i.e., by considering bi-
nary images (|V| = 2), equipped with a standard pair of dual
(8, 4)- or (4, 8)-adjacencies. Nevertheless, the nature (and
thus the cardinality) ofV, such as the topological space used
to equipS with respect toV, can be conveniently modified
without loss of generality, making the proposed approach
parametric from both the structural and the spectral points
of view.

Indeed, on the one hand, the proposed algorithms (and
in particular Algorithms 2 and 3) rely on the notion of DRT
graph, that defines explicitly the structure of the transformed
spaces, but neither the transformed images nor their associ-
ated value spaceV, which are implicitly handled.

On the other hand, the topological space that is mapped
on S (and more generally onZ2) with respect toV, is only
considered via the notion of simple point. More precisely,
the only constraint related to the choice of the topology is the
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necessity to characterise locally the preservation of homotopy-
type, with respect to the images ofS→ V.

Consequently, the proposed approach can be parametrized
by a couple composed of (i) a value spaceV, and (ii ) a no-
tion of simple point for the space of the images ofS→ V.

Based on this assertion, several topological frameworks
that provide different notions of simple point can be consid-
ered, including the following:

– binary images, equipped with the digital topology [24],
deriving from the dual (4, 8)- or (8, 4)-adjacencies (pro-
posed in this article);

– binary images, defined as well-composed sets [46], de-
riving from the (4, 4)-adjacencies;

– label images, defined as well-composed sets [35,36], de-
riving from the (4, 4)-adjacencies;

– label images, equipped with the notion of digitally sim-
ple Xels [26] defined from the topology of cubical com-
plexes;

– label images, equipped with the notion of simple point
in covering images [47];

– grey-level images, equipped with the notion ofλ-des-
tructible point [34].

7 Analysis and experiments

In this section, we first analyse the complexity of the pro-
posed algorithms. We then provide experiments devoted to
validate the behaviour of the developed approach.

7.1 Theoretical complexity analysis

Given a digital imageI of size N × N, the first algorithm
(Algorithm 1, in Sec. 5.2) relies on the DRT graph ofI , and
scans it entirely in the worst case. Consequently, both space
and time complexities of this algorithm areO(N9), due to
the space complexity of the DRT graph (Property 10).

The second algorithm (Algorithm 3, in Sec. 6.2) relies
on (i) a LUT P of topology-preserving 20-neighbourhood
images; and (ii ) the verification of the compliance ofI with
P for any point of I . The generation ofP (Algorithm 2,
in Sec. 6.2), for a given value spaceV and a given adja-
cency, has a time complexityO(59 |V|20) = O(|V|20), since
the complexity for generating the DRT graph for an image
defined on a 20-neighbourhood isO(59) [7], and any image
I : N20(0)→ V has to be processed via its DRT graph. Note
however that this process has to be carried out only once,
if P – that has a space complexity ofO(|V|20) – is stored.
The topological invariance verification (Algorithm 3) then
presents a quasi-linear time complexity with respect to the
sizeN × N of imageO(N2 log2(|P|)) = O(N2 |V|), since the
LUT P can be ordered and processed as a tree structure. One

(a) P in (4, 8)-adjacency (samples).

(b) P in (8, 4)-adjacency (samples).

Fig. 11 Some samples defined on 20-neighbourhoods which are topol-
ogy preserving, computed from Algorithm 2, in the case of (4, 8)-
adjacency (a), and (8, 4)-adjacency (b). The foreground pixels are de-
picted in black, while the background pixels (⊥) are depicted in white.

may notice that this algorithm can trivially be parallelized,
leading in particular to a constant time complexityO(|V|),
when processed asN2 subtasks.

7.2 Computational and space cost: The binary case

In this section, we experimentally assess the actual cost of
the algorithm, previously discussed from a theoretical point
of view. To this end, we consider the case of binary images,
i.e., images defined on a set of valuesV such that|V| = 2.

Let C be the set of all the binary images defined on
N20(0), that is used to buildP via Algorithm 2. We have,
in particular,|C| = 220. However, from Remark 11, we only
have to consider the images such that at least one point in
the 4-neighbourhood of0 has a distinct (binary) value from
the one of0. By using this fact, plus considerations related
to invariance up to rotations and symmetries, the setC can
be reduced, without loss of completeness to a subsetC′ ⊂ C
such that|C′| = 124 260≪ |C|.

Using Algorithm 2 on this setC′, we obtain some sets
P of 10 643 and 19 446 elements, in the (4, 8)- and (8, 4)-
adjacency, respectively. Fig. 11 provides some samples ofP
in both cases.
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(a)

(b)

Fig. 12 (a) The 14 samples of digital lines of length 5, and (b) the
half-planes generated by these lines in a 20-neighbourhood.

Fig. 13 Some examples of half-planes rigidly transformed from an im-
age of size 20× 20. All transformed half-planes images are simple-
equivalent.

7.3 Experiments: The binary case

We now propose some experiments to illustrate the behaviour
of the algorithms on images representing different kinds of
objects using the (4, 8)-adjacent relations. We first consider
basic geometric primitives, namely half-planes and disks,
the evolution of which is (in theory) predictable with respect
to rigid transformations. Then, we consider more generally,
arbitrary shapes, whose topological invariance is not easily
predictable.

7.3.1 Topological (in)variance of geometric primitives

We define a discrete half-plane as the set of all discrete points
on one side of a digital straight line. The number of dig-
ital line segments was studied in [48]. In particular, it is
known that there exist 14 digital segments of length 5 inside
a pattern of size 5× 5 (see Fig. 12(a)). From this knowl-
edge, we can generate all the possible half-planes in a 20-
neighbourhood, as illustrated in Fig. 12(b). By using Algo-

(a)

(b)

Fig. 14 (a) Some disks of radius 5, generated in a image of size 20×
20. Some of them are topologically invariant (in black frames), while
the others (in red frame) have been characterised as not topologically
invariant by Algorithm 3. (b)Concerning the four non topologically
invariant disks in (a), the pixels detected by our algorithmare those
that alter the topology of the four disks. The frame of the picture that
surrounds them is coloured in red or blue according to the colour of the
pixel for which the topology changes.

rithm 2 to study the properties of these patterns, we find that
all of them are topologically invariant. Therefore, we can
conclude that any discrete half-plane preserves homotopy-
type during digital/discrete rigid transformations. Some ex-
amples of rigidly transformed half-planes are illustratedin
Fig. 13.

The digital disks, defined onZ2 and studied,e.g., in [49],
can be defined as the sets of all discrete points lying inside
a real disc (defined onR2). It is plain that the digitization
of a disc depends on its size (i.e., its radius) but also on
its position (i.e., the position of its centre) with respect to
the discrete grid. Some examples of digital disks with the
same radius are shown in Fig. 14. In the continuous domain,
the real disks are – of course – topologically invariant un-
der rigid transformations. In contrast to the half-planes,this
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(a)

(b)

Fig. 15 (a) A topologically invariant 5× 5 image (in blue frame), and
(some of) its transformations (in black frames). (b) A topologically-
variant 5×5 image (in blue frame), and (some of) its simple-equivalent
(in black frames) and non-simple-equivalent transformations (in red
frames).

property is lost in the digital case. Indeed, Algorithm 3, per-
formed on the images of Fig. 14, detects that some of them
are not topologically invariant. This emphasizes the influ-
ence of the position of the disk center for this property. It
also sheds light on the influence of the differential proper-
ties of the object boundaries – and in particular their curva-
ture – on the potential preservation of image topology. From
a methodological point of view, it can motivate the use of
image simplification procedures that decompose boundaries
into discrete line segments, since such approach may present
more desirable topological properties.

7.3.2 Topological (in)variance of arbitrary shapes

To complete these experiments, we finally exhibit some ex-
amples of arbitrary binary images that have been charac-
terised by Algorithm 3 as being topologically invariant (Figs. 15(a)
and 16), or not (Figs. 15(b) and 17).

8 Conclusion

In this article, we have considered geometrical and topo-
logical concepts, to propose an approach for studying the
topological behaviour of rigid transformations inZ2. More
precisely, we combined the notion of simple point with the
notion of DRT graph, leading to algorithmic processes that
can characterise the topological invariance of digital images
underall rigid transformations. In particular, by taking ad-
vantage of the respective strengths of both notions, it has

(a) (b) (c) (d)

Fig. 16 (a–d) Examples of topologically invariant character images.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 17 (a–d) Examples of non topologically invariant character im-
ages. (e–h) Detection of pixels (in red) which potentially change
homotopy-type of (a–d) during DRTs. (i–l) Non-simple-equivalent
transformed images of (a–d).

been possible to develop an efficient algorithm, able to eval-
uate this topological invariance in a quasi-linear time with
respect to the image size.

Beyond its algorithmic aspects, this work may contribute
to the better understanding of the relationships between ge-
ometry and topology in the framework of digital imaging,
where both notions are less strongly linked than in the con-
tinuous space. In particular, the proposed algorithm may pro-
vide an efficient tool for further studying the notion of reg-
ularity [50–52], that is currently used to assess the preser-
vation of topological properties during the digitization of an
image fromR2 to Z2. In particular, adiscretenotion of reg-
ularity may be derived from the continuous one, in order to
assess the topological behaviour of image transformations
in a fully discrete framework.

In this article, we have considered the specific case of
the Eulerian transformation model (see Sec. 3.2). Further
work may consider the case of the Lagrangian transforma-
tion model. In the context of topological alterations induced
by rigid transformations of digital images, this latter model
comes with some additional difficulties. Indeed, while in
the Eulerian model, a double (resp. null) point transfers its
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value to two (resp. no) point(s) in the transformed image
(Sec. 4.2), in the Lagrangian case, a double (resp. null) point
in the transformed image will receive two (resp. no) values;
this leads to a result that is both incomplete and ambiguous.
In order to deal with these supplementary issues, it may be
necessary to study more deeply the relations that exist be-
tween the digital images, defined onZ2, and the continuous
ones, defined onR2, as they are linked via the digitization
processes.
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In a recent work [18], we have proposed to alternatively study rigid transfor-
mations1 on Z2 as a fully discrete process, similarly to previous contributions
related, e.g., to rotations [3,14,20,21,23,24] or quasi-affine transformations
[6]. In this context, two main questions were considered: (i) How many rigid
transformations can be defined on a finite subspace of Z2? (ii) How to generate
all these transformations? The difficulty of these questions derives from the
infinite number of rigid transformations in R2. Recently, some combinatorial
studies have been devoted to 2D pattern matching under different classes of
transformations such as rotations, scaling, affine and projective transforma-
tions. In particular, some discretization techniques were developed by Hundt
et al. [11–13]. Inspired by these works, we provided in [18] some combinatorial
and algorithmic answers to the above two questions, and then contributed to
the state of the art in this research area [2,11–13,27].

More precisely, in [18], a combinatorial structure, namely a discrete rigid
transformation graph (or DRT graph), was introduced to model the param-
eter space of 2D rigid transformations on Z2. This DRT graph describes all
the possible rigid transformations on a digital image. We showed that there
exist in the order of N9 such transformations, if N×N is the number of pixels
in the image. In addition, the DRT graph explicitly models the “topological
links” between such digital transformations, and thus allows the incremental
construction of discrete rigid transformations via elementary image modifica-
tions pixel by pixel. The DRT graph can be used in a local fashion, e.g., in
pattern-based strategies, as proposed in [19] for analysing the topological in-
variance of digital images under arbitrary rigid transformations. Beyond the
theoretical aspects of the DRT graph, its high-order polynomial complexity
makes it difficult to generate the whole graph for large images, and to use it
directly in imaging applications such as registration or warping [1,9,22,29].

To reduce the complexity of this graph, we propose to provide spatial
constraints in order to guide the computation of such transformations. Indeed
these constraints introduce prior knowledge that contribute to reducing the
search space. In this article – that is an extended and improved version of
the conference paper [17] – we investigate such constrained search paradigms
from the combinatorial and algorithmic points of view. We focus in particular
on the effects of geometric constraints on discrete rigid transformations, via
the analysis of the DRT graph. More precisely, we investigate pixel-invariance
constraints, which consist of enforcing the correspondence between points in an
initial subspace of Z2 and points (or more generally regions) in a transformed
space.

This article is organised as follows. Section 2 briefly introduces some basic
notions of rigid transformations on digital images. Section 3 describes pixel-

1 In fact, rigid transformations are composed of reflections, rotations and translations,
while combinations of only translations and rotations are called proper rigid transformations.
In this article, as in [18], we focus on the latter, since reflections are not as generally useful
in matching and tracking applications, and may needlessly complicate the search space.
By an abuse of language, we will continue to refer to proper rigid transformations as rigid
transformations.



On 2D Constrained Discrete Rigid Transformations 3

invariance constraints in the associated parameter space of rigid transforma-
tions. In Section 4, we develop an algorithmic process for generating a com-
binatorial structure modeling all the discrete rigid transformations and their
relationships under given constraints. This section is completed by an algorith-
mic appendix, provided at the end of the manuscript. Complexity analyses of
the proposed algorithm and the induced structures are described in Section 5.
A concluding discussion is finally provided in Section 6.

2 Background notions

2.1 Digital images and digital rigid transformations

In a 2D continuous space, an image can be defined as a function I : R2 → V,
where V is a given value space. In computer imaging, such images are repre-
sented as discrete functions obtained through a sampling process, and then
called digital images. In general, the sampling process relies on partitioning
R2 into Voronoi cells induced by a square grid structure. It associates every
point in R2 to a unit grid square (namely, a pixel), and equivalently to a point
in Z2. Such a sampling process, also referred as digitization, is often carried
out by the following function

∣∣∣∣
D : R2 −→ Z2

x = (x, y) 7−→ p = (p, q) = ([x], [y])
(1)

where [ . ] is a rounding operator. Consequently, a digital image associated to
I can be formalized as I : Z2 → V. In other words, we have I = I|Z2 , and
for each p ∈ Z2, the value I(p) models the value of I on the associated pixel
p+ [− 1

2 ,
1
2 ]

2, namely the Voronoi cell of R2 induced by Z2 around p.
A 2D rigid transformation is defined as a rotation followed by a translation.

In the continuous framework, such a transformation can be formally expressed
as a bijective function T : R2 → R2 such that for any x = (x, y) ∈ R2, the
transformed point T (x) has the form

T (x) =

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
a
b

)
(2)

where the parameters a, b ∈ R represent the translation, while θ ∈ [0, 2π[
is the rotation angle. In particular, such a transformation is unambiguously
modeled by a triplet of parameters (a, b, θ), and will be often denoted by Tabθ.
When applied to an image I : R2 → V, it provides a new transformed image
I ◦ T : R2 → V.

It is not possible to apply directly T to a digital image I : Z2 → V, since
there is no guarantee that T (x) ∈ Z2 for x ∈ Z2. In the discrete framework, the
handling of digital rigid transformations requires to define a function Tabθ :
Z2 → Z2, which is a discrete analogue of Tabθ. Following the digitization
paradigm D proposed above, a digital rigid transformation T associated to
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T can be conveniently performed by setting T = D ◦ T , as illustrated in the
following diagram.

Z2 T=D◦T−−−−−→ Z2

yId

xD

R2 T−−−−→ R2

(3)

The function T : Z2 → Z2 is then explicitly defined for p = (p, q) ∈ Z2 by

T (p) = D ◦ T (p) =

(
[p cos θ − q sin θ + a]
[p sin θ + q cos θ + b]

)
(4)

In general, this function is not bijective. However, by setting T−1 : Z2 → Z2

as T−1 = D ◦ T −1, i.e., by considering the standard backward mapping, it is
possible to define the digital transformed image I ◦T−1 : Z2 → V with respect
to T . In the sequel of this article, we focus on such digital rigid transformations.
From this point on – for the sake of readability and without loss of correctness
– we will note T instead of T−1, due to the bijectivity of T and T −1.

From a theoretical point of view, the above notions (images, rigid trans-
formations) are defined on Z2 and R2. Practically, our purpose is however to
study rigid transformations on images of finite size. Under this hypothesis,
only some digital rigid transformations are relevant, namely those that actu-
ally have an effect on such finite images. We focus on this finite case, and
we assume that digital images are defined on subsets of Z2 of size N × N .
Without loss of generality, a digital image I is then written as I : S → V for
S = [[0, N ]]2 ⊂ Z2.

2.2 Discontinuities of digital rigid transformations

In R2, any rigid transformation Tabθ is a continuous function (see Equa-
tion (2)). However, this notion of continuity is lost once the function is digi-
tized. Indeed, due to the digitization process involved in the definition of digital
rigid transformations (see Equation (4)), the parameter space (a, b, θ) of rigid
transformations is divided into 3D open cells, in each of which the function
(a, b, θ) 7→ Tabθ = D ◦ Tabθ is constant. In particular, these 3D open cells are
separated by 2D closed cells corresponding to rigid transformations that map
at least one integer coordinate point onto a half-grid point (see Fig. 1). Such
transformations, which lead to discontinuities within the parameter space, are
called critical transformations.

Definition 1 (Critical transformation [18]) Let (a, b, θ) ∈ R2 × [0, 2π[,
and Tabθ : R2 → R2 be its associated rigid transformation. We say that Tabθ is
a critical transformation if there exists p ∈ Z2 such that Tabθ(p) ∈ H, where
H is the half-grid defined by

H =
[
R×

(
Z+

1

2

) ]
∪
[ (

Z+
1

2

)
× R

]
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(p, q) ∈ Z2

Tabθ

(k + 1
2, λ) ∈ H

(a)

(p, q) ∈ Z2

Tabθ

(λ, l + 1
2) ∈ H

(b)

Fig. 1 Examples of critical transformations Tabθ, each of which maps at least one integer-
coordinate point onto a “vertical” (a) or “horizontal” (b) half-grid point. The integer-
coordinate points in Z2 are depicted by dots, while the half-grid points are depicted by
lines.

Note that the half-grid H corresponds to the boundaries of the Voronoi cells
of R2 induced by Z2.

More precisely, for each p = (p, q) ∈ Z2 that is mapped onto a half-grid
point which can be either vertical (k + 1

2 , λ) ∈ H or horizontal (λ, l+ 1
2 ) ∈ H,

we have a set of critical transformations, denoted either Φpqk or Ψpql, defined
by the set of (a, b, θ) that satisfies one of the following formulas:

∣∣∣∣
Φpqk : R× [0, 2π[ −→ R

(b, θ) 7−→ a = φpqk(θ) = k + 1
2 + q sin θ − p cos θ

(5)

∣∣∣∣
Ψpql : R× [0, 2π[ −→ R

(a, θ) 7−→ b = ψpql(θ) = l + 1
2 − p sin θ − q cos θ

(6)

The 2D surfaces Φpqk (resp. Ψpql) defined in the parameter space (a, b, θ) are
called tipping surfaces [18]. Their respective cross-sections φpqk (resp. ψpql)
on the 2D plane (a, θ) (resp. (b, θ)) are called tipping curves. These tipping
surfaces/curves, which correspond to the discontinuities of the digital rigid
transformations, expressed in the parameter space (a, b, θ), are illustrated in
Fig. 2. It is important to remark that the tipping surfaces Φpqk and Ψpql can
be straightforwardly recovered by extruding the tipping curves φpqk and ψpql,
respectively.

2.3 Partition of the parameter space and DRT graph

As a result of the discontinuity of digital rigid transformations induced by
the digitization process (Equation (1)), it is possible that some distinct rigid
transformations (Equation (2)) be mapped onto a same digital rigid transfor-
mation (Equation (4)). This leads to considering equivalence classes between
transformations, which are defined by the following relation

(
Tabθ ∼ Ta′b′θ′

)
⇐⇒

(
Tabθ = Ta′b′θ′

)
(7)

It has to be noticed that this equivalence relation is only defined between
non-critical rigid transformations. As stated above, it is possible to identify
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(a) (b)

Fig. 2 (a) Tipping surfaces in the 3D parameter space (a, b, θ), and (b) their cross-sections,
namely tipping curves, in the 2D planes (a, θ) and (b, θ).

a rigid transformation with its triplet of parameters (a, b, θ). In this context,
the equivalence classes of transformations, called the discrete rigid transfor-
mations2 (DRTs), can be modeled by 3D open cells in this parameter space,
whose boundaries are 2D tipping surfaces defined above (see Fig. 2(a)). In
other words, the parameter space (a, b, θ) of rigid transformations is parti-
tioned into disjoint sets of non-critical transformations, each of which is as-
sociated to exactly one DRT, and bounded by the surfaces modeling critical
transformations.

We have shown in [18] that the subdivision of this parameter space could
be modeled by using a dual combinatorial structure, that maps each 3D cell
(i.e., each DRT) onto a 0D point and each 2D tipping-surface segment (linked
to a set of critical transformations) onto a 1D edge. The resulting structure is
called a DRT graph (see Fig. 3).

Definition 2 (DRT graph [18]) Given a set of tipping surfaces, Φpqk and
Ψpql, the graph G = (V,E) associated to DRTs induced by those Φpqk and Ψpql

is defined in the following way:

– each vertex v ∈ V models a 3D open cell associated to a DRT;
– each labelled edge e = (u,w, f) ∈ E (where f is either Φpqk or Ψpql) models

the tipping surface f between two adjacent vertices v, w ∈ V .

This graph G is called a DRT graph.

In [18], we have proved that the space complexity of the DRT graph for any
set S of size N×N is polynomial. An exact computation algorithm is proposed
to build this graph in linear time with respect to the size of the graph.

Property 3 ([18]) The DRT graph associated to a digital image of size N×N
has a space complexity of O(N9).

2 Contrarily to the terminology frequently used in the literature, the term digital refers
here to the digitization process D defined in Equation (4), while the term discrete refers to
the combinatorial structure induced by this operator D.
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(a) (b)

Fig. 3 (a) The parameter space of rigid transformations subdivided by four tipping surfaces,
and (b) the associated DRT graph.

The DRT graph models “neighbouring” relationships between DRTs. In-
deed, by associating a resulting digital transformed image to each 3D open
cell/DRT, the existence of a 2D surface between two cells indicates that the
associated transformed images differ in exactly one pixel among the N2 ones.
More precisely, let us consider an edge e = (v, w, f) ∈ E between two distinct
vertices v, w ∈ V . The function f (that is either equal to Φpqk or Ψpql) indi-
cates that exactly one point p = (p, q) ∈ S differs between the transformed
images corresponding to the DRTs v and w. Practically, let q be the point
with coordinates (k, l) with respect to f . Let Iv and Iw be the transformed
images corresponding to the vertices v and w respectively. The value of p at
the vertex v is defined by Iv(p) = I(q) where I : S → V is the original image.
After the elementary change along edge e, we obtain a new transformed image
Iw by simply setting the pixel value at p to Iw(p) = I(q+δ) where δ = (±1, 0)
or (0,±1) with respect to f . In this way, one can generate all the transformed
images of I by incrementally and exhaustively scanning the associated DRT
graph. This property, exemplified in Fig. 4, was used in [19] for verifying the
topological invariance of digital images under rigid transformations.

3 Constraints and feasible rigid transformation sets

The DRT graph is highly complex in space and time, which makes its practi-
cal construction and handling challenging for large images. In the sequel, we
investigate how the use of constraints may reduce these complexities. More
precisely, we focus on pixel-invariance constraints which consist of enforcing
correspondence between points in the initial and transformed image. In par-
ticular, we expect these constraints to reduce the size of the parameter space
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1

2
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4

5
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8

9

10

Fig. 4 Left: a part of a DRT graph in which a vertex/DRT represents a digital transformed
image and an edge e = (v, w, f) between two vertices v and w indicates that one pixel value
is different between the associated transformed images Iv and Iw (see text). Right: the
transformed images associated to the vertices of the DRT graph (in left). The images from
upper-left to bottom-right correspond to the vertices ordered from 1 to 10 in the graph.

partition, in terms of the number of 3D cells, and therefore the size of the
associated DRT graph.

3.1 Pixel-invariance constraints and interpretation in the parameter space

In the context of rigid transformations in R2, enforcing the correspondence
between two points p and p′ in the initial and in the transformed spaces
respectively, leads to restricting the number of authorised transformations.
More precisely, from Equation (2) we obtain, for a given pair of corresponding
points, two equations representing 2D trigonometric surfaces, that intersect to
provide a 1D trigonometric curve, which models an (affine) space of rotations
(see Fig. 5(a)).

A unique constraint then leads to an infinite space of transformations, that
we call feasible transformations. In order to obtain a finite space of feasible
transformations, we then need two (distinct) constraints, i.e., two pairs of cor-
responding points (p,p′) and (q, q′). If these pairs are well chosen, i.e., they
satisfy the isometric properties of rigid transformations (‖p−p′‖2 = ‖q−q′‖2),
then the space of feasible transformations is restricted to a unique transforma-
tion (see Fig. 5(b)) that corresponds to the intersection of the two 1D curves
induced by these constraints. Otherwise, the space of feasible transformations
is empty. More generally, setting the correspondence between k ≥ 2 distinct
couples of points (pi,p

′
i), for i ∈ [[1, k]], restricts the authorised transformations

to at most a single feasible one.
In contrast, in the context of digital rigid transformations (see Equa-

tion (4)), the way to restrict transformations under similar constraints is more
permissive. Indeed, when setting the correspondence between one or several
pairs of points (pi,p

′
i) of Z2, a larger space of rigid transformations remains
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Feasible rigid transformations induced by geometric constraints in the continuous
(a,b) and discrete (c–f) frameworks. (a) Transformations with one point correspondence
(red curve). (b) Transformation with two point correspondences (red dot at the intersection
of the two red curves). (c) Transformations with one pixel correspondence (red tube-like
volume). (d) Transformations with two pixel correspondences (red volume). (e,f) Projec-
tion/intersection of red volume parts of (c,d) respectively to the planes (a, θ) and (b, θ) with
the associated tipping curves.
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valid (see Fig. 5(c,d)). Such constraints, which rely on the pixel decomposition
of the image, are called pixel-invariance constraints and are defined as follows.

Definition 4 (Pixel invariance constraints) Let p = (p, q) and p′ = (p′, q′)
in S ⊂ Z2, where S is of size N×N . There exists a pixel-invariance constraint
between p and p′ if the authorised digital rigid transformations T between p
and p′ satisfy the equality T (p) = p′, i.e., if

p′ − 1

2
< p cos θ − q sin θ + a < p′ +

1

2
(8)

q′ − 1

2
< p sin θ + q cos θ + b < q′ +

1

2
(9)

More generally, there exist pixel-invariance constraints between two sets {pi}mi=1

and {p′
i}mi=1 (m ≥ 1) if T (pi) = p′

i ( i.e., if Inequalities (8)–(9) are satisfied)
for every i ∈ [[1,m]].

In the absence of constraints, the 3D parameter space (a, b, θ) induced by
the subset of size N×N where the image is defined, is divided into cells whose
boundaries are the tipping surfaces Φpqk and Ψpql, with p, q ∈ [[0, N − 1]] and
k, l ∈ [[0, N ]]. In this case, the whole parameter space models adequate rigid
transformations.

Under a pixel-invariance constraint, some of the digital rigid transforma-
tions may become unfeasible. In other words, only a part of the parameter
space – namely the subspace of the parameters (a, b, θ) that satisfy this con-
straint – remains valid. From the definition of pixel-invariance constraint, pro-
vided by Inequalities (8)–(9), this parameter subspace is defined by the inter-
section of four half-spaces associated to four tipping surfaces. This is visually
illustrated in Fig. 5(c,e). The graph modelling the subdivision of such subspace
is in particular a part of the whole DRT graph, induced by the pixel-invariance
constraint.

3.2 Feasible rigid transformation sets

More generally, if a set P of m pixel-invariance constraints is provided, the
parameter subspace of relevant transformations is defined as the intersection
of m 3D regions induced by these constraints, i.e., as the intersection of 4m
half-spaces defined by Inequalities (8)–(9).

Let p, q ∈ [[0, N − 1]] and k, l ∈ [[0, N ]]. Let us consider the functions
Vpqk, Hpql : R× [0, 2π[ → R respectively defined by

Vpqk(a, θ) = a− φpqk(θ) (10)

Hpql(b, θ) = b− ψpql(θ) (11)

where φpqk and ψpql are two tipping curves (see Equations (5)–(6)). We then
define the half-spaces induced by the associated tipping surfaces Φpqk and Ψpql
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with respect to inequalities (8)–(9) as

V +
pqk = {(a, b, θ) | Vpqk(a, θ) > 0} (12)

V −
pqk = {(a, b, θ) | Vpqk(a, θ) < 0} (13)

and

H+
pql = {(a, b, θ) | Hpql(b, θ) > 0} (14)

H−
pql = {(a, b, θ) | Hpql(b, θ) < 0} (15)

The notion of a feasible rigid transformation set is then defined as follows.

Definition 5 (Feasible rigid transformation set) Let P = {(pi,p
′
i)}mi=1

(m ≥ 1) be a set of pixel-invariance constraints with pi = (pi, qi) and p′
i =

(p′i, q
′
i) in S ⊂ Z2. The feasible rigid transformation set (FRTS) associated to

P is the subspace R ⊂ R2 × [0, 2π[ of the parameter space (a, b, θ) defined by

R =
⋂

i∈[[1,m]]

(
V +
piqip′

i
∩ V −

piqip′
i+1 ∩H+

piqiq′i
∩H−

piqiq′i+1

)
(16)

For a single pixel-invariance constraint (i.e., for m = 1), the FRTS forms a
“tube” in the parameter space (a, b, θ) (see Fig. 5(c)). For two – or more –
pixel-invariance constraints (i.e., for m ≥ 2), the FRTS forms a bounded and
connected set (see Fig. 5(d)), or possibly becomes empty.

The FRTS is generated by m pixel-invariance constraints, and divided into
3D cells whose boundaries are the tipping surfaces induced by at most (N2−m)
unconstrained pixels of the given image of size N×N . It has to be recalled that
each cell contains a set of rigid transformations that provide the same digital
transformation, namely a discrete rigid transformation (DRT). In particular,
the combinatorial structure modeling the subdivision of an FRTS into DRTs
is represented by a part of the DRT graph, as defined in Section 2.3, and is
called a feasible discrete rigid transformation graph (FDRT graph, for short).
More explanation as well as the construction of this graph is given in Section 4.

We now recall the notion of directional convexity, and show that any FRTS
is directionally convex. This property will be used in the next section to study
the combinatorial structure of DRTs under pixel-invariance constraints.

Definition 6 (Directional convexity [16]) A region R ⊆ Rn in an n-varia-
ble space (x1, . . . , xn) is xk-convex (with 1 ≤ k ≤ n) if, for any two points
p1,p2 ∈ R such that the segment [p1p2] = {αp1 + (1 − α)p2 | α ∈ [0, 1]} is
parallel to the xk-axis, [p1p2] is included in R.

Property 7 Any FRTS is both a- and b-convex in the space (a, b, θ).

Proof This is a direct consequence of the fact that any FRTS is the intersec-
tion of half-spaces which are both a- and b-convex (see Equation (16)). �

Based on the relations that link tipping surfaces and tipping curves (see
Equations (5)–(6) and Figs. 2 and 5(c–f)), it is plain that an FRTS, defined
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in the parameter space (a, b, θ) by Equation (16), can be fully described from
its two projections RV and RH on the planes (a, θ) and (b, θ) respectively,
defined as

RV =
⋂

i∈[[1,m]]

(
v+piqip′

i
∩ v−piqip′

i+1

)
(17)

RH =
⋂

i∈[[1,m]]

(
h+piqiq′i

∩ h−piqiq′i+1

)
(18)

where v∗pqk (resp. h∗pql) is the cross-section of v∗pqk (resp. h∗pql) with the plane

(a, θ) (resp. (b, θ)). In this context, v+∗ , h
+
∗ are called upper half-planes3 and

v−∗ , h
−
∗ lower half-planes.

From Property 7, it is obvious that RV (resp. RH) has a pair of upper and
lower half-planes (v+, v−) (resp. (h+, h−)) as the upper and lower parts of the
boundary for each θ. Thus, the boundary of RV (resp. RH) consists of two
sets of half-planes:

– the upper boundary set U containing only upper half-planes;
– the lower boundary set L containing only lower half-planes.

From Property 7, we can also derive the following corollary for RV ; a
similar corollary is established for RH as well.

Corollary 8 Let RV be the projection of an FRTS R (as defined in Equa-
tion (17)), and U (resp. L) be the upper (resp. lower) boundary of RV . Then
U (resp. L) always contains at least one upper (resp. lower) half-plane.

We now derive the following result related to the connectedness of an FRTS,
which will be useful in the following section. Here, instead of the parameter
space R2 × [0, 2π[ of (a, b, θ), we consider – without loss of correctness – the
quotient space R3/∼ where (a, b, θ) ∼ (a, b, θ + 2π).

Property 9 An FRTS is connected in the quotient space R3/∼ of the param-
eter space (a, b, θ).

Proof If m = 1, Inequalities (8)–(9), imply that the FRTS is the Minkowski
addition between a 1D (connected) trigonometric curve – defined as a func-
tion from the (a, b) space to the θ one – and a (connected) square pattern
] − 1

2 ,
1
2 [

2 ⊂ R2 defined in the (a, b) space. The FRTS is then necessarily
connected.

Let us now suppose that m = 2. Let (pi,p
′
i), for i = 1, 2, be the two pixel-

invariance constraints that generate the FRTS R. As explained above, R can
be described from its two projectionsRV andRH on the planes (a, θ) and (b, θ)
respectively by tipping curves. Let us first consider RV ; from Equation (17),
RV has two upper half-planes U = {v+p1q1q′1

, v+p2q2q′2
} and two lower half-planes

3 Note that the term half-space is used for 3D regions induced by the tipping surfaces in
the parameter space (a, b, θ), while the term half-plane is used for 2D regions induced by
the tipping curves in the plane either (a, θ) or (b, θ).
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L = {v−p1q1q′1+1, v
−
p2q2q′2+1}. Then, any pair of upper and lower half-planes of

RV , (v
+, v−) ∈ U×L, has the intersection v+ ∩ v− that is connected in R2/∼

of the parameter space (a, θ), where (a, θ) ∼ (a, θ + 2π), as the associated
tipping curves have at most two intersections for θ ∈ [0, 2π[ (see [18, Prop. 2,
Cor. 2]). For instance, each of v+p1q1q′1

∩ v−p2q2q′2+1 and v+p2q2q′2
∩ v−p1q1q′1+1 is

a connected region in the quotient space R2/∼. However, the intersection
of these two regions, i.e. RV , may give at most two connected regions in
the quotient space R2/∼. A similar result is obtained for RH . We now show
that the 3D intersection of (the extrusion of) RV and RH gives only one
admissible connected region in the quotient space R3/∼. As we know that
the intersection of RH and RV , i.e. R, is never empty, there always exist
(ri, si) ∈ ]p′i − 1

2 , p
′
i +

1
2 [ × ]q′i − 1

2 , q
′
i +

1
2 [ for i = 1, 2 such that

r1 = p1 cos θ − q1 sin θ + a (19)

s1 = p1 sin θ + q1 cos θ + b (20)

r2 = p2 cos θ − q2 sin θ + a (21)

s2 = p2 sin θ + q2 cos θ + b (22)

At any intersection between (19) and (21) in the plane (a, θ), the following
equation must be satisfied:

K − P cos θ +Q sin θ = 0 (23)

by setting P = p1 − p2, Q = q1 − q2 and K = r1 − r2. Similarly, at any
intersection between (20) and (22) in the plane (b, θ), the following equation
must be satisfied:

L− P sin θ −Q cos θ = 0 (24)

by additionally setting L = s1−s2. The system of linear equations (23),(24) has
a determinant equal to P 2+Q2 6= 0, since the two pixel-invariance constraints
are distinct. It then admits exactly one solution for the pair of unknowns cos θ
and sin θ, and thus at most one solution for θ in [0, 2π[ . Since the FRTS R
contains such a solution, R must be connected. The same result for m > 2
follows by induction. �

4 Combinatorial structure of feasible discrete rigid transformations

An FRTS contains the rigid transformations that satisfy some given pixel-
invariance constraints. It can then be subdivided into DRTs (see Section 2.3).
This section presents a method for constructing the combinatorial structure
of DRTs in an FRTS (namely, the FDRT graph) based on the idea of the
sweeping algorithm [18] recalled in Section 4.1. This algorithm is used for
building a graph modeling a subdivision of the parameter space from a given
set of tipping surfaces without considering the FRTS. Then, the construction
of a FDRT graph is performed by following these three successive steps:
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(i) finding the boundaries of the FRTS in the parameter space (Section 4.2);
(ii) finding the tipping surfaces passing through this FRTS (Section 4.3) and

their intersecting points (Section 4.4);
(iii) constructing the associated DRT graph (Section 4.5).

In this FDRT graph construction algorithm, the sweeping method (Section 4.1)
is required for the step (i) and (iii) with some modifications.

4.1 Incremental construction of a discrete rigid transformation graph based
on a sweeping method

In [18], we showed how to build a DRT graph using an incremental algorithm,
that mainly relies on the algorithmic notion of surface arrangement [5,26]. A
surface arrangement is defined as a decomposition of the space R3 into cells by
a finite set of surfaces. Such a decomposition generates four types of cells: 0D
vertices, 1D arcs, 2D surfaces and 3D regions. Surface arrangement algorithms
present a polynomial complexity Ω(n4) [26], where n is the number of surfaces.
However, we are only interested in the information of regions (3D cells) and
faces (2D cells) in the arrangement. In this specific case – when the surfaces
are tipping surfaces – a better complexity for building the DRT graph in O(n3)
can be achieved [18]. We now first describe a DRT graph construction method,
in which the input and output are as follows:

• Input: a set of tipping surfaces S;
• Output: the DRT graph modeling G, the subdivision of the parameter
space (a, b, θ) induced by S.

As described in Section 2.2, while projecting two families of tipping sur-
faces on the planes (a, θ) and (b, θ), we obtain the corresponding families of
tipping curves defined by Formulae (5)–(6) (see Fig. 2). Relying on this prop-
erty, the subdivision of the parameter space (a, b, θ) by these surfaces can be
fully described from their two cross-sections in the planes (a, θ) and (b, θ),
respectively expressed by two sets of tipping curves [18]. This leads to a con-
structive algorithm with a better complexity. More precisely, we first consider
the structure of the graphs in the 2D planes (a, θ) and (b, θ), and then combine
them to build the complete DRT graph G. In the sequel, we first recall the
principles of this algorithm and its implementation for building G in the 2D
planes. Then, we extend it to the 3D parameter space to compute the complete
DRT graph.

4.1.1 2D sweeping method

The sweeping method in 2D then consists of sweeping a cut across all tipping
curves in the plane – either (a, θ) or (b, θ) – from θ = 0 to 2π. Such a cut
is denoted by γ and defined as a monotonic line [7] intersecting exactly once
each tipping curve in the plane. The monotonicity with respect to θ of the cut
is a result of a- and b-convexity in the space (a, b, θ) (see Property 7). A cut is
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Fig. 6 Example of a cut γ and its associated graph Gγ .

Fig. 7 Progress of the cut at an event point by which the cut is updated and the corre-
sponding graph is modified.

then modeled by its sequence of intersecting tipping curves (see Fig. 6). This
sequence can be conveniently represented as a directed graph as follows.

Definition 10 Let γ = (ψ1, ψ2, . . .) be a sequence corresponding to a cut,
where ψ1, ψ2, . . . are tipping curves. A graph Gγ = (Vγ , Eγ) with respect to γ
consists of:

– a set of vertices Vγ = {v0, v1, . . .} each of which corresponds to an interval
on γ separated by tipping curves; and

– a set of labelled edges Eγ = {(v0, v1, ψ1), (v1, v2, ψ2), . . .}, for which each
edge (u,w, f) ∈ Eγ connects two vertices u,w ∈ Vγ separated by the tipping
curve f , which is considered as an edge label.

From an algorithmic point of view, the graph Gγ is directed, since the edge
direction information is necessary for updating the sequence of γ during its
progression with respect to the θ-axis from left to right (i.e., form 0 to 2π).
In this context, the edge direction in Gγ is specified by the sequence order of
γ (see Definition 10); e.g., the elements of Eγ are ordered in the same way as
γ as illustrated in Fig. 6.

While moving the cut γ, its sequence changes only at intersections of tip-
ping curves, called event points. When a cut reaches an event point, the al-
gorithm performs an update of its sequence, and generates new vertices and
edges in the graph (see Fig. 7). This constitutes an elementary step of the
algorithm. Practically, it is only required to maintain a set of sorted event
points with respect to θ, and to progress the cut in their increasing order to
build the graph incrementally.
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(a) (b) (c)

Fig. 8 Examples of a simple event point generated by only two tipping curves (a), and
degeneracies (b,c) generated by more than two tipping curves.

In the context of tipping curves, the event points can be classified into

– simple cases: only two tipping curves intersect at an event point (Fig. 8(a));
– degenerate or non-simple cases: more than two tipping curves intersect (or,

are intersecting and/or tangent) at an event point (Fig. 8(b,c)).

In the sequel, we only deal with the simple cases. A way to deal with the
degenerate cases and other details can be found in [18].

4.1.2 3D sweeping method

For building a DRT graph G in the 3D parameter space (a, b, θ), two cuts are
used such that each cut sweeps in either the plane (a, θ) or (b, θ). We denote
those cuts by γa and γb respectively. For each update of the cuts, γa and γb,
the associated graphs, Gγa and Gγb

, are respectively modified, so that a part
of G is generated. We call such a part of G a partial graph, denoted by δG. In
fact, δG is a combination of the two graphs Gγa and Gγb

as follows (and also
see Fig. 9).

Definition 11 The partial graph δG = (δV, δE) is generated from Gγa =
(Vγa , Eγa) and Gγb

= (Vγb
, Eγb

), such that:

– δV = {(va, vb) | va ∈ Vγa , vb ∈ Vγb
}, and

– δE = {((u1, v), (u2, v), ψu) | u1, u2 ∈ Vγa , v ∈ Vγb
, (u1, u2, ψu) ∈ Eγa} ∪

{((u, v1), (u, v2), ψv) | v1, v2 ∈ Vγb
, u ∈ Vγa , (v1, v2, ψv) ∈ Eγb

}.

When the i-th elementary step is applied to Gγa or Gγb
, the sweep pro-

gresses as the partial graph δGi is generated and integrated in G for construct-
ing the final graph as well. The following proposition was originally proposed
in [18].

Proposition 12 ([18]) Let S be a set of tipping surfaces, e be the total num-
ber of ordered event points, and G be a DRT graph modeling the subdivision
of the parameter space by S. We have

G =
⋃

i∈[[1,e]]

δGi (25)

where δGi is a partial graph at the i-th elementary step.
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(a) (b)

(c)

Fig. 9 Generation of a partial graph δG from two graphs Gγa and Gγb associated to cuts
γa and γb respectively.

Note that a partial graph δGi is a directed graph by construction. However
the final graph G is not directed, so that we do not keep directions while
integrating δGi into G. More algorithmic details on the sweeping algorithm
for tipping surfaces can be found in [18].

4.2 Finding the boundary of a feasible rigid transformation set

It is possible to describe an FRTS R defined from a set P of pixel-invariance
constraints using a set of half-spaces constituting only the boundary of R,
instead of using all the half-spaces from P in Definition 5. This section explains
how to find such a set of half-spaces, by using the above sweeping algorithm.
We have here the input and output as follows:

• Input: A set of m pixel-invariance constraints P = {(pi,p
′
i)}mi=1.

• Output: The boundary set B = U ∪ L of the FRTS R induced by P .
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(a) (b)

Fig. 10 (a) Progression of a cut γ in the cross-section RV of an FRTS R (in red) on
the plane (a, θ). The initial cut is γ1 = (v+1 , v−1 , v+2 , v−2 ). When it crosses RV , it becomes

γ2 = (v+1 , v+2 , v−1 , v−2 ), and finally γ3 = (v+2 , v−2 , v+1 , v−1 ) after leavingRV . (b) Cross-sections
of the constraints on the planes (a, θ) and (b, θ) via the use of tipping curves.

As explained in Section 3.2, an FRTS R induced by P in the parameter
space (a, b, θ) can be fully described from its two cross-sectionsRV and RH on
the planes (a, θ) and (b, θ) as defined in Equations (17)–(18), and illustrated in
Fig. 5. Relying on the similarity ofRV and RH , hereafter we consider only RV

(the same argument stands for RH). Our problem is then specified as follows:
given a constraint set P of half-planes of RV , report the set of half-planes
constituting the boundary of RV . From Corollary 8, Properties 7 and 9, we
recall that RV contains two non-empty sequences of half-planes:

– a upper boundary sequence UV = (v+piqiq′i
, . . .) that contains only the upper

half-planes; and
– a lower boundary sequence LV = (v−piqiq′i+1, . . .) that contains only the

lower half-planes.

The 2D sweeping algorithm4, presented in Section 4.1.1, is used to find
the U and L sequences of RV in which the input set of tipping curves is
obtained from the constraints in P . Note that no FDRT graph is built at this
stage; we only need to observe the sequence of the cut γ during its update
in order to obtain all the elements of UV and LV . Indeed, while sweeping γ,
its sequence changes at event points. We remark that γ intersects with RV

when its sequence of half-planes is separated into two subsequences, γ+ and
γ−, such that γ = γ+γ− where γ+ contains only the upper half-planes and γ−

contains only the lower half-planes. Moreover, we see that the last element of
γ+ and the first element of γ− correspond respectively to the upper and lower
half-planes of UV and LV constituting the boundary of RV . The cut is moved
out of RV when there is no longer any such separation. Under the change of
γ in RV , an upper or lower half-plane is progressively added in UV and LV at

4 This algorithm can easily be modified to deal with the quotient space R3/∼.
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each event point, as illustrated in Fig. 10(a). Similarly, we can obtain the sets
UH and LH constituting the boundary of RH for the plane (b, θ).

By using two cuts γa and γb sweeping in the two planes (a, θ) and (b, θ),
we can find the boundary of an FRTS R, B = U ∪ L where U = UV ∪ UH

and L = LV ∪ LH . Indeed, at each event point either on (a, θ) or (b, θ), the
algorithm updates and checks the sequence of the corresponding cuts. We start
getting the boundary segments of R from the first θ at which both sequences
of γa and γb are separated in two parts. Similarly, we stop collecting the
boundary segments of R at the first θ at which there is no longer any such
separation in neither γa nor γb, as illustrated in Fig. 10(b). Moreover, from
this procedure we can also obtain the lowest and greatest values of θ of R,
denoted respectively by θmin and θmax, which are needed in the next stage of
the algorithm. From Properties 7 and 9, we know that these values θmin and
θmax of R are unique.

4.3 Finding tipping surfaces passing through a feasible rigid transformation
set

In order to compute an FDRT graph modeling the subdivision of an FRTS R
into DRTs, we require not only the tipping surfaces constituting the boundary
of R but also those passing through R. In this section, we explain how to find
these tipping surfaces.

So far, we know that an FRTS R contains all the rigid transformations sat-
isfying given pixel-invariance constraints. R is partitioned into DRTs as well
as the whole parameter space of rigid transformations, as explained in Sec-
tion 2.3; the subdivision of R is induced by the tipping surfaces existing in R
(see Fig. 11(a)). Therefore, we need to determine these surfaces among all the
tipping surfaces in the parameter spaces (a, b, θ) of the rigid transformations
associated to the image of size N ×N , i.e., all vertical and horizontal tipping
surfaces Φpqk and Ψpql, respectively, for p, q ∈ [[0, N − 1]] and k, l ∈ [[0, N ]].

• Input: The boundary set B = UV ∪ UH ∪ LV ∪ LH of R.
• Output: The set of tipping curves P passing through R.

This problem is equivalent to finding the set PV (resp. PH) of tipping
curves φpqk (resp. ψpql) passing throughRV (resp.RH), the cross-sections ofR
on the plane (a, θ) (resp. (b, θ)) (see Fig. 11(b)). Then, we have P = PV ∪PH .

Let us consider the cross-section RV of R. We call a segment of tipping
curves that constitutes the boundary of RV a boundary segment. Any tipping
curve φpqk passes through RV if it intersects one of the boundary segments
of RV ; without loss of generality, we denote such a boundary segment φp′q′k′ .
This is easily detected by verifying the relationship between φpqk and φp′q′k′ ,
and the intersection is on a boundary segment of RV as follows:
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(a) (b)

Fig. 11 (a) Example of tipping surfaces passing through R (in red) and not passing through
R (in blue) in the parameter space (a, b, θ). (b) Its cross-sections RV and RH of (a) on the
planes (a, θ) and (b, θ) respectively.

(i) verify if φpqk and φp′q′k′ intersect; this is true iff the following relations
are satisfied [18, Property 2]:

∆1 +∆2 > 0 (26)

|KP ±
√
∆1| ≤ P 2 +Q2 (27)

|KQ±
√
∆2| ≤ P 2 +Q2 (28)

where P = p− p′, Q = q − q′, K = k − k′, ∆1 = P 2(P 2 +Q2 −K2) and
∆2 = Q2(P 2 +Q2 −K2);

(ii) if they intersect, then calculate the following values at the intersection
[18, Corollary 1]:

sin θ =
KQ±√

∆1

P 2 +Q2
(29)

cos θ =
KP ±√

∆2

P 2 +Q2
(30)

and verify if θmin ≤ θ ≤ θmax
5, where θmin and θmax are obtained from

Section 4.2;
(iii) if (ii) is verified, then calculate

aupper = max
V +
pqk∈U

{φpqk(θ)} (31)

alower = min
V −
pqk∈L

{φpqk(θ)} (32)

and verify if aupper ≤ a ≤ alower, where the value a at the above inter-
section θ is calculated from Equation (5).

5 Note that there are four possible combinations for sin θ and cos θ. However, from [18,
Corollary 2] and Property 9, only one of them is valid for the value of θ at the intersection.
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Fig. 12 Examples of boundary event points (in black), interior event points (in yellow) and
intersections of tipping curves but not event points (in red) for computing a FRTS graph.

Note that the values cos θ and sin θ are used to represent θ. Since all cos θ,
sin θ, cos θmin, sin θmin, cos θmax, sin θmax, a, amin and amax are quadratic
irrationals6, they can be compared exactly in average constant time [25].

We have φpqk passes through RH , i.e., φpqk ∈ PH , if all (i), (ii) and (iii)
are satisfied. Then, the verification is performed for all tipping curves on the
plane (a, θ) for computing PH . A similar approach is applied for the plane
(b, θ) to compute PH .

4.4 Determination of event points in a feasible rigid transformation set

When carrying out the sweeping algorithm, it is mandatory to know how to
detect event points in R or, equivalently, when to perform an elementary step.
Due to the similarity of RV and RH , in the following we consider only the
cross-section RV of R. In the sweeping method for building a FDRT graph,
event points are intersections of tipping curves at which the sequence of the
cut γ in RV is changed, as illustrated in Fig. 12. More precisely, event points
in RV are intersections of the tipping-curve segments which constitute the
boundary of RV , i.e., BV = UV ∪ LV (see Section 4.2), or pass through RV ,
i.e., PV (see Section 4.3). Note that event points generated by these tipping
curves can be either on a boundary segment or in the interior of RV , and are
called boundary event points or interior event points, respectively (see Fig. 12).
We denote the set of boundary event points as Eb, and this of interior event
points as Ei. This distinction of event points is necessary in the next step for
computing a FTRS graph. The procedure for handling event points in RH is
explained in Section 4.5. We here focus on how to detect these event points.

• Input: A set of tipping curves C = BV ∪PV .
• Output: The set E = Eb ∪Ei of event points of RH generated by C.
6 A quadratic irrational is an irrational number that is a solution of some quadratic

equations.
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(a) (b) (c)

(d) (e) (f)

Fig. 13 Classification of simple boundary event points. An event point generated by two
tipping curves φu and φv: (a,b) changes the boundary from φu to φv, (c,d) φv goes in and
out by crossing the upper boundary φu, and (e,f) φv goes in and out by crossing the lower
boundary φu.

Similarly to the previous method in Section 4.3, if an intersection coordi-
nate (θ, a) satisfies θmin ≤ θ ≤ θmax and alower(θ) ≤ a ≤ aupper(θ), then it
is an event point in RH . The algorithm described in Section 4.1.1 deals with
interior event points in Ei. In contrast, boundary event points in Eb must be
treated separately as follows.

According to their nature, the boundary event points in Eb can be classified
into the following six types. Let q ∈ Eb be presented as the set of tipping
curves intersecting at q [18], i.e., in simple case q = {φu, φv}. As illustrated
in Fig. 13, q is a boundary event point in the following cases:

– the boundary segment, which is either upper (type (a)) or lower (type (b)),
changes from φu to φv;

– the boundary segment does not change, such that the tipping curves φv
– goes into (resp. out) R by crossing the upper boundary segment φu

(type (c) (resp. type (d)));
– goes into (resp. out) R by crossing the lower boundary segment φu

(type (e) (resp. type (f))).

Following this classification, the type of a boundary event point can be easily
detected during the sweeping of the cut γ as follows. Let q = {φu, φv} ∈
Eb. Let γ(φ1, φ2, . . . , φn−1, φn) be the cut on the left of q. Let U and L be
respectively the upper and lower boundary sequences, and φ1 ∈ U and φn ∈ L
be respectively the current upper and lower boundaries. Then a type of the
boundary event point q is detected by verifying:

– if φu, φv ∈ U ∪ L, then q is in:
– type (a), if (φu = φ1 and φv 6= φ2) or (φv = φ1 and φu 6= φ2);
– type (b), if (φu = φn and φv 6= φn−1) or (φv = φn and φu 6= φn−1);

– otherwise, if either φu ∈ U ∪ L or φv ∈ U ∪ L, then q is in:
– type (c), if φu = φ1 and φv 6= φ2;
– type (d), if φu = φ1 and φv = φ2;
– type (e), if φu = φn and φu 6= φn−1;
– type (f), if φu = φn and φu = φn−1.
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4.5 Feasible discrete rigid transformation graph construction

In order to build the FDRT graph in an FRTS, we use the sweeping algorithm
described in Section 4.1. This algorithm can be extended to deal with sup-
plementary constraints. The resulting graph G actually extends the notion of
DRT graph initially introduced in [18].

• Input: The boundary set B = U ∪ L of the FRTS R, the set of event
points E = Ei ∪Eb, θmin and θmax of R.

• Output: The FDRT graph G in R.

In this part, the cut γ sweeps from θmin to θmax instead of [0, 2π[, and
contains only the tipping surfaces belonging to R. As described in Section 4.1,
an elementary step at each event point consists of the two following steps:

(i) update the graphs Gγa and Gγb
according to the change of the cuts γa

and γb respectively, and
(ii) build the partial graph δG from Gγa and Gγb

.

As Step (ii) directly derives from Definition 10 and Section 4.1.2, we here
explain how to perform Step (i). For the sake of concision, we restrict ourselves
to the handling of event points for simple cases; the degenerate cases are
obtained by modifying the procedure of this simple case, as detailed in [18].
Given the similarity between RV and RH , with no loss of generality, we only
show the cases for Gγa of RV in the sequel.

We recall that at each elementary step for an event point, the sequence of
the cut γa is changed. According to this change, the associated graph Gγa is
modified. Note that the procedure for handling with interior event points is
similar to that given in [18, Procedure 1]. However the procedure for boundary
event points requires some modifications.

We here explain only how to update the cut at boundary event points.
We first deal with the types (a) and (b). Without loss of generality, let q =
{φu, φv} be a boundary event point generated by two tipping curves φu, φv
where φu ∈ UH or LH , and γ, γ′ be the cuts before and after q respectively.
Assuming γ = (φ1, φ2, . . . , φn−1, φn), if q is on:

– the upper boundary of RH , i.e., φu = φ1 and φv 6= φ2, then γ′ =
(φv, φ2, . . . , φn−1, φn) (type (a));

– the lower boundary of RH , i.e., φu = φn and φv 6= φn−1, then γ′ =
(φ1, φ2, . . . , φn−1, φv) (type (b)).

Similarly, the procedures for updating the cut for types (c) and (d) are given
as follows. Let q = {φu, φv} be an event point on the upper boundary, such
that φu = φ1. We have two cases:

– when φv goes into RH , such that φv 6= φ2, then γ
′ = (φ1, φv, φ2, . . . , φn);

– when φv goes out from RH , such that φv = φ2, then γ
′ = (φ1, φ3, . . . , φn).

The procedures for types (e) and (f) can be considered in the same way. Fig. 14
illustrates the elementary steps for these boundary event points.

These procedures are more formally detailed in Appendix A.
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(a)

(b)

(c)

(d)

Fig. 14 Illustrations of elementary steps – update γ and generate its graph Gγ – for a
tipping curve changing (a) an upper or (b) a lower boundary, and going (c) in or (d) out of
an upper boundary.

5 Complexity analysis

5.1 Space complexity of feasible discrete rigid transformation graphs

5.1.1 Theoretical results

The space complexity of an FDRT graph corresponds to the numbers of its
vertices and edges. These values directly depend on the number of event points
involved in its construction, and the number of vertices generated at each
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event point. Using a similar approach to [18, Proposition 3], we obtain that
the number of edges is in the same order as the number of vertices. The
following discussions, dealing only with vertices, then provide results for the
space complexity of FDRT graphs including those for edges.

As mentioned in Section 4.1, the construction of a DRT graphG is obtained
from its projections on the planes (a, θ) and (b, θ). In the absence of constraints,
it was shown in [18] that there are O(N3) tipping curves in each plane. Since
any two tipping curves intersect in at most two points for θ ∈ [0, 2π[ , the
number of event points is at most in O(N6). Moreover, at each elementary
step, i.e., at each event point, the number of generated vertices is in O(N3).
The number of vertices in G is then in O(N9), and thus this justifies the result
already stated in Property 3. For one pixel-invariance constraint, we have the
following property.

Property 13 The FDRT graph G associated to a digital image of size N×N
under one pixel-invariance constraint has a space complexity O(N7).

Proof The complexity analysis scheme remains similar to the non-constrained
case. However, for one pixel-invariance constraint, some of the DRTs (i.e., some
of the vertices of the DRT graph) become infeasible, and the number of event
points decreases from O(N6) to O(N5), due to periodicity properties (see [18,
Property 4]). Moreover, we derive from Property 5 in [18] that the number
of tipping curves in the projection on the plane either (a, θ) or (b, θ) of the
FRTS associated to the given constraint, is O(N2) instead of O(N3). Thus at
each elementary step, associated to each event point, the number of generated
vertices is O(N2). In total, there are O(N5)×O(N2) = O(N7) vertices added
to the FDRT graph. �

Geometrically, the associated FRTS correspond to a tube-like volume as illus-
trated in Fig. 5(c).

For more than one pixel-invariance constraint, the space complexity of the
DRT graph does not only depend on the number of constraints, but also on
the geometric configuration of the points involved in these constraints. This
implies that the space complexity may not necessarily decrease, and so remains
the same as with the one pixel-invariance constraint in the worst case.

Property 14 The FDRT graph G associated to a digital image of size N×N
under two pixel-invariance constraints has a space complexity of O(N7) in the
worst case.

Proof Let us consider the two pixel-invariance constraints induced by the set
of points {p1,p2} and {p′

1,p
′
2}, with p1 = p2 + (0, 1) and p′

1 = p′
2 + (0, 1).

While the first constraint reduces the space complexity of G from O(N9) to
O(N7) as stated in Property 13 (see also Fig. 5(c)), the second reduces the
θ part of the FRTS from [0, 2π[ to ]0, π[ . With these constraints, the size of
G is only divided by a constant factor of 2. As a consequence, the complexity
remains O(N7). �
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N
FDRT Graph

Vertices Edges
1 1 0
2 147 700
3 2 256 11 616
4 14 651 78 140
5 80 289 430 752
6 265 899 1 445 986
7 842 137 5 314 904
8 2 076 029 13 190 632
9 5 103 633 32 291 768
10 10 244 909 65 204 024

Fig. 15 Space complexities of FDRT graphs expressed as the numbers of vertices and edges
in FDRT graphs under one pixel-invariance constraint, for images of size N ×N .

However, we show in Section 5.1.2, that the actual space complexities of
FDRT graphs under multiple pixel-invariance constraints are generally lower
than this worst case.

5.1.2 Experimental results

We now describe some experiments and results obtained with the proposed
algorithm for FDRT graph construction under pixel-invariance constraints.
This algorithm was implemented in C++. Experiments were carried out on a
personal computer equipped with a 3.0GHz Intel R© CoreTM 2 Duo processor
and 4GB of memory. The aim of these experiments is to validate the proposed
algorithm with respect to the theoretical complexity results established above,
but also to investigate practical complexities for tighter constraints.

The first experiments, illustrated in Fig. 15, deal with FDRT graphs for one
pixel-invariance constraint. They confirm the theoretical results established in
Property 13. One may notice that in previous works dealing with discrete
rotations [2,27], a complexity of only O(N3) was established. In those works,
no translation was considered. In the current case, we allow translations due
to the pixel-invariance formulation. As a result, for a given constraint, we
obtain a set of feasible transformations forming a tube which contains arbitrary
rotations and their associated translations whose regions forms a pixel, as
illustrated in Fig. 5(c).

As discussed in Section 5.1.1, the space complexity of G under two pixel-
invariance constraints is also O(N7) (see Property 14) if we consider a pair of
pixels separated by a distance of 1. This constitutes however an extreme case.
In practice, the complexity of an FDRT graph is generally lower, since the
distance between two constraint points is likely to exceed 1 (see Fig. 18(a)).
It is reasonable to infer that the longer the distance between these points,
the more constrained the feasible transformations, and therefore the lower the
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Fig. 16 Experimental space complexities of FDRT graphs in the two pixel-invariance con-
straints case. The complexities are measured over 676 experiments as a function of image
size, varying from 8 × 8 to 15 × 15, and varying distances between two given constraints
limited by the image sizes. Left: 3D log plot of distance, image size and space complexity.
Right: least-squares best plane fit (colored in blue).

complexity of G. Following this intuition, we propose the following conjecture
which links the complexity of G with the distance between points of given
constraints.

Conjecture 15 The FDRT graph G associated to a digital image of size N ×
N under two pixel-invariance constraints has a space complexity of Θ(Nαd−β),
with α, β > 0, where d denotes the Euclidean distance between two pixel-
invariance constraints.

The α and β values are assumed to be constant, and we propose to estimate
them experimentally (see Fig. 16). To this end, we synthesized images of sizes
varying from 8 × 8 to 15 × 15. For each image size, we set several distances,
and randomly chose several two pixel-invariance constraints for each distance.
The estimation of α and β is interpreted as a plane fitting estimation in the
3D space induced by N , d and the space complexity c by taking log for both
side of c = sNαd−β , i.e., log c = log s+α logN−β log d, where s is a constant.
By using the least-squares method, we obtained α = 5.5 and β = 1.6 with a
residual standard error for derived parameters of 0.1244 on 676 experiments
performed and the adjusted multiple correlation coefficient of 0.9993, which
corresponds to an accurate fit.

We now consider more than two constraints. We may have expected the
FDRT graph G associated to these constraints to be reduced. Nevertheless,
this is not always true. Indeed, the space complexity of G then depends on
the geometric configuration of the pixel-invariance constraints, as illustrated
by the following examples. Let us consider two pixel-invariance constraints (in
red and blue in Fig. 17(a)). When a supplementary constraint is added (for
instance the yellow one in Fig. 17(a)) we can see in Fig. 17(c) that the FRTS is
strictly reduced, and so is the FDRT graph G. On the contrary, let us consider
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(a) (b)

(c)

(d)

Fig. 17 For two given pixel-invariance constraints (in red and blue), there exists a supple-
mentary pixel-invariance constraint (in yellow) that contributes to reducing the associated
FRTS (a). There also exists a supplementary pixel-invariance constraint (in green) that does
not (b). (c) and (d) illustrate the cross-sections of the FRTS, on the planes (a, θ) and (b, θ),
induced by the constraints given in (a) and (b) respectively.

the supplementary constraint determined by green pixels in Fig. 17(b). We
can observe that such a constraint does not reduce the FRTS, and the FDRT
graph G then remains unchanged (see Fig. 17(d)).

However, in practice, the higher the number of constraints, the lower the
complexity of the FDRT. This is illustrated in Figure 18(b–d) that corre-
sponds to experiments for 3, 5 and 10 random pixel-invariance constraints,
respectively.
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(a) (b)

(c) (d)

Fig. 18 Experimental results of space complexities of FDRT graphs for two (a), three (b),
five (c) and ten (d) pixel-invariance constraints.

5.2 Time complexity of feasible discrete rigid transformation graph
construction

From Section 4, we know that the construction of an FDRT graph is obtained
from its projections on the planes (a, θ) and (b, θ), and can be performed in
three successive steps:

1. finding the boundary of the FRTS R;
2. finding the event points in R, more precisely, in the projections RH and

RV of R on the planes (a, θ) and (b, θ) respectively; and
3. building the FDRT graph G associated to R.

In each of the (a, θ) and (b, θ) planes, the event points are generated by
2m tipping curves, induced by the m given constraints (with 0 ≤ m ≤ N2).
Moreover, it is proved in [18] that the number of event points for 2m tipping
curves is O(m2). In Step 1, the event points need to be sorted, then at each
event a verification of the cut separation is done. This sorting and verification
lead to a complexity of O(m2 logm) and O(m3) respectively. Therefore, Step
1 requires a time complexity of O(m3), which is equivalent to O(N6).

In Step 2, the process of detecting whether a tipping surface passes through
R can be done in linear time with respect to the number of boundary segments



30 Phuc Ngo et al.

a

a

b

b

(a) Two pixel-invariance constraints.

a

b

(b) Static vs. non-
static pixels in the
left image of (a).

a

b

c

a

b

c

(c) Three pixel-invariance constraints.

c

a

b

(d) Static vs. non-
static pixels in the
left image of (c).

Fig. 19 (a,c) Pixel-invariance constraints (denoted by the arrows). (b,d) Classification of
the remainder pixels in the image under constraints given in (a,c) respectively. The green
pixels are static and the purple ones are not (see text).

of R, i.e., O(m). Since there are O(N3) tipping surfaces, the time complexity
of this sub-step is O(mN3). Then, we search the event points in R. Due to the
periodicity of tipping curves [18, Property 4], we know that the total number
of event points in R is O(N5), and thus the mandatory sorting of these event
points needs a time complexity of O(N5 logN).

The sweep of a cut, in Step 3, requires O(N5) iterations (one for each event
point), and at each iteration, O(N2) vertices are generated. Therefore, Step
3 requires a time complexity of O(N7), which is the most costly step in the
algorithm.

Finally, the FDRT graph G for a given image of size N × N under m
constraints is then constructed with a time cost of O(N7).

6 Conclusion

This article continued the study initiated in [17,18] by investigating the effects
of geometric constraints on rigid transformations, applied to digital images.
By enforcing the correspondence between one or several pairs of pixels, we
restricted allowable transformations to a parameter subspace, called a feasible
rigid transformation set (FRTS), in which all such constraints are satisfied.
A proposed algorithm allowed us to build a combinatorial structure (namely
a graph) for modeling the subdivision of the FRTS on a subset of Z2 of size
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N ×N . We theoretically analysed the complexity of this graph with one given
pixel-invariance constraint to be O(N7). For two constraints, the complexity
could not be theoretically given. However, we experimentally evaluated its
complexity as Θ(N5.5d−1.6), where d denotes the Euclidean distance between
two pixel-invariance constraints.

From the discussion of Section 5.1.2 regarding the complexity of the FDRT
graph under more than two constraints, it appears that pixels can be classified
into two categories: those which can be involved in supplementary constraints
that reduce the FRTS, and those that cannot (see Fig. 19). The later ones
are called static pixels. Based on this classification, it may be possible to
choose only those which actually reduce the FRTS when iteratively defining
constraints. This strategy may be investigated in further works.
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A – Procedures for modifying a graph associated to a cut at
boundary event points

Let Gγa = (Vγa , Eγa ) (resp. Gγb = (Vγb , Eγb )) be the graph associated to the cut γa (resp.
γb) at Step i. At each event point of Step i+1, the algorithm updates the status of the cuts
γa and γb, by which their associated graphs Gγa and Gγb are respectively modified (see
Fig. 14). The partial graph δG is then generated from the modified graphs Gγa and Gγb ,
and integrated in the final DRT graph G. This is called an elementary step of the algorithm
(see Sections 4.1 and 4.5). Due to the similarity between γa and γb, in the sequel we deal
with γa and a similar result is obtained for γb.

The procedure for modifying the graph Gγa with respect to the change of γa at boundary
event points is as follows. Let q = {φu, φv} be a boundary event point which changes the up-
per (resp. lower) boundary from φu to φv, i.e., type (a) (resp. (b)). Let γa = (φu, φ2, . . . , φn)
(resp. γa = (φ1, . . . , φn−1, φu)) be the cut on the left of q, then after q we have γa =
(φv, φ2, . . . , φn) (resp. γa = (φ1, . . . , φn−1, φv)). We can generate the modified graph of
Gγa at q according to the following steps:

– finding the current edge e of the boundary tipping surface φu;
– deleting e and replacing by a new edge e′ having the same vertices as e and φv as its

label;

The implementation is given in Procedure 1, which requires the following functions:

– ϑ(e) returns the two adjacent vertices of the edge e in Vγa .
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Procedure 1: Modification of the graph associated to a cut with respect to a

boundary event point of either type (a) or (b).

Input: A graph Gγa = (Vγa , Eγa) associated to a cut γa = (φ1, φ2, . . . , φn−1, φn)
and a boundary event point q = {φu, φv}.

Output: The modified graph of Gγa at q.
1 if (φu = φ1 and φv 6= φ2) or (φv = φ1 and φu 6= φ2) then
2 e1 ← ε(φ1) ; e2 ← ε(φ2)
3 {w} ← ϑ(e1) ∩ ϑ(e2)
4 {φ′} ← {φu, φv} \ {φ1} // φ′ = {either φu or φv} is a new upper boundary

5 E−
γa ← {(w0, w, φ1)} // {w0} = ϑ(e1) \ {w} is a top vertex

6 E+
γa ← {(w0, w, φ′)}

7 if (φu = φn and φv 6= φn−1) or (φv = φn and φu 6= φn−1) then
8 e1 ← ε(φn) ; e2 ← ε(φn−1)
9 {w} ← ϑ(e1) ∩ ϑ(e2)

10 {φ′} ← {φu, φv} \ {φn} // φ′ = {either φu or φv} is a new lower boundary

11 E−
a ← {(w,wn, φn)} // {wn} = ϑ(e1) \ {w} is a bottom vertex

12 E+
γa ← {(w,wn, φ′)}

13 Eγa ← Eγa \ E−
γa ∪E+

γa // No new vertex is generated at q

Procedure 2: Modification of the graph associated to a cut with respect to a

boundary event point of either type (c) or (d).

Input: A graph Gγa = (Vγa , Eγa) associated to a cut γa = (φ1, φ2, . . . , φn−1, φn)
and a boundary event point q = {φu, φv}.

Output: The modified graph of Gγa at q.
1 if φu = φ1 then
2 if φv 6= φ2 then
3 eu ← ε(φu)
4 {w} ← ϑ(eu) \ {w0} // w0 is a top vertex

5 E−
γa ← {(w0, w, φu)}

6 V +
γa ← {w′} // w′ is a new vertex

7 E+
γa ← {(w0, w′, φu), (w′, w, φv)}

8 if φv = φ2 then
9 eu ← ε(φu) ; ev ← ε(φv)

10 {w} ← ϑ(eu) ∩ ϑ(ev)
11 {w′} ← ϑ(ev) \ {w} // w′ is an adjacent vertex of w

12 V −
γa ← {w} // w is a removed vertex

13 E−
γa ← {(w0, w, φu), (w,w′, φv)}

14 E+
γa ← {(w0, w′, φu)}

15 Vγa ← Vγa \ V −
γa ∪ V +

γa

16 Eγa ← Eγa \ E−
γa ∪E+

γa

– ε(φ) returns the edge corresponding to the tipping curve φ in δEγa .

Similarly, we have in Procedure 2 the algorithm for modifying the graph Gγa at a

boundary event point q = {φu, φv} which has φv goes in and out by crossing the upper

boundary φu, i.e., type (c) and (d).
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