. Références-bibliographiques-1, P. Dillmann, D. Neff, and D. Féron, Archaeological analogues and corrosion prediction: from past to future. A review, Corrosion Engineering, Science and Technology, issue.6, pp.49-567, 2014.

P. Dillmann, Corrosion of metallic heritage artefacts: Investigation, conservation and prediction of long term behaviour (EFC 48). EFC, 2007.

P. Dillmann, Vers un diagnostic de l'altération des métaux ferreux du patrimoine

D. Féron, D. Crusset, and J. Gras, Corrosion issues in nuclear waste disposal, Journal of Nuclear Materials, vol.379, issue.1-3, pp.16-23, 2008.
DOI : 10.1016/j.jnucmat.2008.06.023

D. David, Matériaux : analogues archéologiques et corrosion Agence nationale pour la gestion des déchets radioactifs-ANDRA, Collection Science et Techniques, 2002.

J. Monnier, Corrosion atmosphérique sous abri d'alliages ferreux historiques -Caractérisation du système, mécanismes et apport à la modélisation, Thèse de doctorat Chimie et Sciences des Matériaux, p.319, 2008.

J. Monnier, A corrosion study of the ferrous medieval reinforcement of the Amiens cathedral. Phase characterisation and localisation by various microprobes techniques, Corrosion Science, vol.52, issue.3, pp.695-710, 2010.
DOI : 10.1016/j.corsci.2009.10.028

H. Antony, Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts, Electrochimica Acta, vol.52, issue.27, pp.7754-7759, 2007.
DOI : 10.1016/j.electacta.2007.04.029

URL : https://hal.archives-ouvertes.fr/hal-00159815

J. Monnier, XAS and XRD in situ characterisation of reduction and reoxidation processes of iron corrosion products involved in atmospheric corrosion, Corrosion Science, vol.78, pp.293-303, 2014.
DOI : 10.1016/j.corsci.2013.10.012

URL : https://hal.archives-ouvertes.fr/hal-00912816

J. Taupin, Le fer dans les cathédrales. Monumental, pp.18-27, 1996.

P. Dillmann, Les métaux ferreux dans les monuments historiques avant le XIXe siècle, structure et propriétés des matériaux. Monumental, pp.92-97, 2007.

P. Dillmann, From Soissons to Beauvais : the use of iron in some French cathedrals. , in The archaeometallurgy of Iron ? Recent Developments in Archaeological and Scientific Research, pp.173-196, 2011.

L. Héritier, M. , and P. Dillmann, Fer ou acier ? Caractérisation des alliages ferreux utilisés dans la construction des églises gothiques au Moyen Âge et à la période moderne. L'exemple de Troyes et de Rouen, in L'acier en europe avant Bessemer, pp.263-281, 2005.

E. Viollet-le-duc, Dictionnaire raisonné de l'architecture française du XIe au XVIe, 10 tomes, pp.1854-1868, 1997.

W. Haas, Die Rolle des Eisens in der vorindustriellen Architektur dargestellt an ostbayerischen Beispielen, Die Oberpfalz ein Europäisches Eisenzentrum 1600 Jahre Grosse Hammereinung, 1987.

F. Foct and J. Gras, Semi-empirical model for carbon steel corrosion in long term geological nuclear waste disposal. in Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems, Proceedings of an International Workshop, pp.206-980, 1965.

D. G. Landolt, G. Henry, and G. Sanz, Corrosion et chimie de surfaces des métaux Le livre de l'acier, 1993.

H. Leidheiser and S. Musi?, The atmospheric corrosion of iron as studied by M??ssbauer spectroscopy, Corrosion Science, vol.22, issue.12, pp.1089-1096, 1982.
DOI : 10.1016/0010-938X(82)90095-6

J. Dünnwald and A. Otto, An investigation of phase transitions in rust layers using raman spectroscopy, Corrosion Science, vol.29, issue.9, pp.1167-1176, 1989.
DOI : 10.1016/0010-938X(89)90052-8

M. Yamashita, Mössbauer spectroscopic study of X-ray amorphous substance in the rust layer of weathering steel subjected to long term exposure in North America, Corrosion Engineering, vol.49, issue.2, pp.133-144, 2000.

S. Oh, D. C. Cook, and H. E. Townsend, Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel, Hyperfine Interactions, vol.112, pp.1-4, 1998.

J. F. Marco, Characterization of the corrosion products formed on carbon steel after exposure to the open atmosphere in the Antarctic and Easter Island, Corrosion Science, vol.42, issue.4, pp.753-771, 2000.
DOI : 10.1016/S0010-938X(99)00090-6

J. T. Keiser, C. W. Brown, and R. H. Heidersbach, Characterization of the passive film formed on weathering steels, Corrosion Science, vol.23, issue.3, pp.251-259, 1983.
DOI : 10.1016/0010-938X(83)90106-3

R. Balasubramaniam, A. V. Kumar, and P. Dillmann, Characterization of rust on ancient indian iron, Current Science, issue.11, pp.85-101, 2003.

P. Dillmann, R. Balasubramaniam, and G. Béranger, Characterization of protective rust on ancient Indian iron using microprobe analyses, Corrosion Science, vol.44, issue.10, pp.44-2231, 2002.
DOI : 10.1016/S0010-938X(02)00028-8

P. Dillmann, F. Mazaudier, and S. Hoerle, Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion, Corrosion Science, vol.46, issue.6, pp.46-1401, 2004.
DOI : 10.1016/j.corsci.2003.09.027

P. Dillmann, Rust Characterisation of Ancient Iron Artefacts Exposed to Indoor Atmospheric Corrosion. in International Workshop: Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems (EFC event 256), 2001.

M. Bouchar, The complex corrosion system of a medieval iron rebar from the Bourges??? Cathedral. Characterization and reactivity studies, Corrosion Science, vol.76, issue.0, pp.76-361, 2013.
DOI : 10.1016/j.corsci.2013.07.007

M. Yamashita, In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays. Corrosion science, pp.47-2492, 2005.

H. Konishi, Synchrotron Radiation Study on Structure of Atmospheric Corrosion Products Formed on Steel Surfaces, Characterization of Corrosion Products on Steel Surfaces, pp.199-222, 2006.
DOI : 10.1007/978-3-540-35178-8_9

T. E. Graedel and R. P. , Corrosion Mechanisms for Iron and Low Alloy Steels Exposed to the Atmosphere, Journal of The Electrochemical Society, vol.137, issue.8, pp.137-2385, 1990.
DOI : 10.1149/1.2086948

E. Sutter, Corrosion atmosphérique, in Corrosion et vieillissement : phénomènes et mécanismes, T.d. l'ingénieur, Editor. 2010, Editions T.I. 36. ISO, Corrosion des métaux et alliages --Corrosivité des atmosphères --Valeurs de référence relatives aux classes de corrosivité. 2012. 37. ISO, Corrosion des métaux et alliages --Corrosivité des atmosphères --Classification, détermination et estimation, 2012.

I. S. Cole, D. A. Paterson, and W. D. Ganther, Holistic model for atmospheric corrosion Part 1 - Theoretical framework for production, transportation and deposition of marine salts, Corrosion Engineering, Science and Technology, vol.1170, issue.2, pp.38-129, 2003.
DOI : 10.1016/0960-1686(91)90050-H

N. T. Lau, A microscopic study of the effects of particle size and composition of atmospheric aerosols on the corrosion of mild steel. Corrosion science, pp.50-2927, 2008.

X. Liu, Paleoenvironmental implications of the guano phosphatic cementation on Dongdao Island in the South China Sea, Marine Geology, vol.247, issue.1-2, pp.1-16, 2008.
DOI : 10.1016/j.margeo.2007.03.014

R. Shahack-gross, Bat guano and preservation of archaeological remains in cave sites, Journal of Archaeological Science, vol.31, issue.9, pp.31-1259, 2004.
DOI : 10.1016/j.jas.2004.02.004

P. Karkanas, Ash bones and guano: a study of the minerals and phytoliths in the sediments of Grotte XVI, Journal of Archaeological Science, issue.7, pp.29-721, 2002.

A. Renoux and D. Boulaud, Physique des aérosols : Partie 2, 2003.

A. Bukowiecki and B. Joshi, Corrosive behavior of salt powders in contact with various metals. Schweiz Arch, Angew. Wissen Tech, vol.32, issue.2, pp.42-54, 1966.

J. Bouchereau and B. Oudart, Lutte contre la pollution atmosphérique transfrontière en Europe : Les nouveaux objectifs de la France, Les données de l'environnement, pp.1-4, 2000.

I. S. Cole, A Study of the Wetting of Metal Surfaces in Order to Understand the Processes Controlling Atmospheric Corrosion, Journal of The Electrochemical Society, vol.151, issue.12, pp.151-627, 2004.
DOI : 10.1149/1.1809596

L. Gall and A. , Effets des dépôts atmosphériques de soufre et d'azote sur les sols et les eaux douces en France, 2004.

S. Reguer, P. Dillmann, and F. Mirambet, Sauvegarde d'objets archéologiques en fer : caractérisation et mécanismes de formation de phases chlorées. Conservation -restauration des biens culturels. Cahier Technique, pp.29-36, 2009.

C. Remazeilles and P. Refait, On the formation of ??-FeOOH (akagan??ite) in chloride-containing environments, Corrosion Science, vol.49, issue.2, pp.844-857, 2007.
DOI : 10.1016/j.corsci.2006.06.003

P. Refait, Chapitre 30 -Anticorrosion en milieu marin, in Prévention et lutte contre la corrosion -Une approche scientifique et technique, Presses Polytechniques et Universitaires Romandes, 2004.

P. Dillmann and P. Fluzin, Analyse des matériaux et histoire de la sidérurgie Apport de la métallographie et de l'analyse à l'étude de l'élaboration et de l'utilisation des fers anciens, pp.20-26, 2003.

P. Dillmann and M. L. Héritier, Slag inclusion analyses for studying ferrous alloys employed in French medieval buildings: supply of materials and diffusion of smelting processes, Journal of Archaeological Science, vol.34, issue.11, pp.34-1810, 2007.
DOI : 10.1016/j.jas.2006.12.022

URL : https://hal.archives-ouvertes.fr/hal-01108333

D. Neff, Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system, Corrosion Science, vol.47, issue.2, pp.515-535, 2005.
DOI : 10.1016/j.corsci.2004.05.029

R. M. Cornell and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses (second edition), 2003.
DOI : 10.1002/3527602097

N. Galvez, V. Barron, and J. Torrent, Effect of phosphate on the cristallization of hematite, goethite, and lepidocrocite from ferrihydrite, Clays and clay Minerals, issue.3, pp.47-304, 1999.

R. A. Eggleton, D. G. Schulze, and J. W. Stucki, Introduction to crystal structures of ironcontaining minerals, in Iron in soils and clay minerals, pp.141-164, 1988.

R. J. Hill, J. R. Craig, and G. Gibbs, Systematics of the spinel structure type, Physics and Chemistry of Minerals, vol.59, issue.4, pp.317-339, 1979.
DOI : 10.1007/BF00307535

M. Fleet, The structure of magnetite, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.37, issue.4, pp.917-920, 1981.
DOI : 10.1107/S0567740881004597

G. Waychunas, Crystal chemistry of oxides and oxyhydroxides., in Oxide Minerals Petrolic and Magnetic Significance, Reviews in Mineralogy, vol.25, pp.11-68, 1991.

T. Misawa, K. Hashimoto, and S. Shimodaira, The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature, Corrosion Science, vol.14, issue.2, pp.131-149, 1974.
DOI : 10.1016/S0010-938X(74)80051-X

V. Drits, Structural Model for Ferrihydrite, Clay Minerals, vol.28, issue.2, pp.185-185, 1993.
DOI : 10.1180/claymin.1993.028.2.02

A. Manceau and V. Drits, Local Structure of Ferrihydrite and Feroxyhite by EXAFS Spectroscopy, Clay Minerals, vol.28, issue.2, pp.165-165, 1993.
DOI : 10.1180/claymin.1993.028.2.01

D. E. Janney, J. Cowley, and P. R. Buseck, Structure of synthetic 6-line ferrihydrite by electron nanodiffraction, American Mineralogist, vol.86, issue.3, pp.327-335, 2001.
DOI : 10.2138/am-2001-2-316

U. Schwertmann and R. M. Cornell, Iron Oxides in Laboratory, Soil Science, vol.156, issue.5, 2000.
DOI : 10.1097/00010694-199311000-00012

F. M. Michel, The structure of ferrihydrite, a nanocrystalline material, Science, issue.5832, pp.316-1726, 2007.

F. Maillot, New insight into the structure of nanocrystalline ferrihydrite: EXAFS evidence for tetrahedrally coordinated iron(III), Geochimica et Cosmochimica Acta, vol.75, issue.10, pp.75-2708, 2011.
DOI : 10.1016/j.gca.2011.03.011

URL : https://hal.archives-ouvertes.fr/hal-01054558

P. H. Refait, M. Abdelmoula, and J. M. Génin, Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions, Corrosion Science, vol.40, issue.9, pp.40-1547, 1998.
DOI : 10.1016/S0010-938X(98)00066-3

J. Genin, Structure and stability of the Fe(II)???Fe(III) green rust ???fougerite??? mineral and its potential for reducing pollutants in soil solutions, Applied Geochemistry, vol.16, issue.5, pp.559-570, 2001.
DOI : 10.1016/S0883-2927(00)00043-3

P. Refait, Formation of 'ferric green rust'and/or ferrihydrite by fast oxidation of iron (II?III) hydroxychloride green rust. Corrosion science, pp.45-2435, 2003.

P. Refait, The anionic species competition in iron aqueous corrosion: Role of various green rust compounds, Corrosion Science, vol.39, issue.9, pp.1699-1710, 1997.
DOI : 10.1016/S0010-938X(97)00076-0

K. Shinoda, Local Structure of Ferric Hydroxide Fe(OH)<SUB>3</SUB> in Aqueous Solution by the Anomalous X-ray Scattering and EXAFS Methods, Materials Transactions, JIM, vol.35, issue.6, pp.35-394, 1994.
DOI : 10.2320/matertrans1989.35.394

U. Schwertmann and H. Thalmann, The Influence of [Fe(II)], [Si], and pH on the Formation of Lepidocrocite and Ferrihydrite During Oxidation of Aqueous FeCl2 Solutions, Clay Minerals, vol.11, issue.3, pp.189-200, 1976.
DOI : 10.1180/claymin.1976.011.3.02

U. Schwertmann, J. Friedl, and H. Stanjek, From Fe(III) Ions to Ferrihydrite and then to Hematite, Journal of Colloid and Interface Science, vol.209, issue.1, pp.215-223, 1999.
DOI : 10.1006/jcis.1998.5899

U. Schwertmann and E. Murad, Effect of pH on the Formation of Goethite and Hematite from Ferrihydrite, Clays and Clay Minerals, vol.31, issue.4, pp.277-284, 1983.
DOI : 10.1346/CCMN.1983.0310405

E. Pons, Corrosion à long terme du fer et des aciers non ou faiblement alliés dans les sols à dominante argileuse -Caractérisation physico-chimique et étude électrochimique d'analogues archéologiques, Thèse de doctorat, 2002.

P. Refait and J. M. Génin, The mechanisms of oxidation of ferrous hydroxychloride ??-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite, Corrosion Science, vol.39, issue.3, pp.539-553, 1997.
DOI : 10.1016/S0010-938X(97)86102-1

M. Descostes, Evaluation d'une perturbation oxydante en milieux argileux : mécanisme d'oxydation de la pyrite, Thèse de doctorat, 2001.

R. K. Raman, Characterisation of ???rolled-in???, ???fragmented??? and ???red??? scale formation during secondary processing of steels, Engineering Failure Analysis, vol.13, issue.7, pp.1044-1050, 2006.
DOI : 10.1016/j.engfailanal.2005.07.011

D. C. Cook, Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments, Corrosion Science, vol.47, issue.10, pp.2550-2570, 2005.
DOI : 10.1016/j.corsci.2004.10.018

J. L. Jambor and J. E. Dutrizac, Occurrence and Constitution of Natural and Synthetic Ferrihydrite, a Widespread Iron Oxyhydroxide, Chemical Reviews, vol.98, issue.7, pp.98-2549, 1998.
DOI : 10.1021/cr970105t

S. A. Crosby, Surface areas and porosities of iron(III)- and iron(II)-derived oxyhydroxides, Environmental Science & Technology, vol.17, issue.12, pp.17-709, 1983.
DOI : 10.1021/es00118a004

P. G. Weidler, Oberflächen und porositäten synthetischer Eisenoxide, 1995.

M. Stratmann and K. Hoffmann, In Situ Mössbauer spectroscopic study of reactions within rust layers, Corrosion Science, vol.29, pp.11-12, 1989.

J. Chivot, Sélection de données thermodynamiques concernant le système Fe-H2O, CEA/FAR SCECF, 1998.

J. Majzlan, A. Navrotsky, and U. Schwertmann, Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (???Fe(OH)3), schwertmannite (???FeO(OH)3/4(SO4)1/8), and ??-Fe2O3, Geochimica et Cosmochimica Acta, vol.68, issue.5, pp.68-1049, 2004.
DOI : 10.1016/S0016-7037(03)00371-5

D. Neff, Corrosion of iron archaeological artefacts in soil: Estimation of the average corrosion rates involving analytical techniques and thermodynamic calculations, Corrosion Science, vol.48, issue.10, pp.48-2947, 2006.
DOI : 10.1016/j.corsci.2005.11.013

URL : https://hal.archives-ouvertes.fr/hal-00157950

J. Yu, Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage, Geochimica et Cosmochimica Acta, vol.63, issue.19-20, pp.63-3407, 1999.
DOI : 10.1016/S0016-7037(99)00261-6

U. Schwertmann, Transformation of Hematite to Goethite in Soils, Nature, vol.39, issue.5313, pp.624-625, 1971.
DOI : 10.1038/232624a0

U. Schwertmann and H. Fechter, The Point of Zero Charge of Natural and Synthetic Ferrihydrites and Its Relation to Adsorbed Silicate, Clay Minerals, vol.17, issue.4, pp.471-476, 1982.
DOI : 10.1180/claymin.1982.017.4.10

P. R. Anderson and M. M. Benjamin, Effect of silicon on the crystallization and adsorption properties of ferric oxides. Environmental science & technology, pp.19-1048, 1985.

M. Ohmori and E. Matijevi?, Preparation and properties of uniform coated colloidal particles. VII. Silica on hematite, Journal of Colloid and Interface Science, vol.150, issue.2, pp.594-598, 1992.
DOI : 10.1016/0021-9797(92)90229-F

F. Hingston, Specific Adsorption of Anions, Nature, vol.15, issue.5109, pp.1459-1461, 1967.
DOI : 10.1021/j100862a014

F. Hingston, Specific absorption of anions on goethite Phosphate adsorption and desorption by goethites differing in crystal morphology, Int Soc Soil Sci Trans Soil Science Society of America Journal, vol.54, issue.4, pp.1007-1012, 1968.

R. L. Parfitt, R. J. Atkinson, and R. S. Smart, The mechanism of phosphate fixation by iron oxides, pp.837-841, 1975.

M. Nanzyo, Infrared spectra of phosphate sorbed on iron hydroxide gel and the sorption products. Soil science and plant nutrition, pp.51-58, 1986.

N. Barrow, L. Madrid, and A. Posner, A PARTIAL MODEL FOR THE RATE OF ADSORPTION AND DESORPTION OF PHOSPHATE BY GOETHITE, Journal of Soil Science, vol.39, issue.3, pp.399-408, 1981.
DOI : 10.1111/j.1365-2389.1981.tb01715.x

R. Strauss, G. Brümmer, and N. Barrow, Effects of crystallinity of goethite: II. Rates of sorption and desorption of phosphate, European Journal of Soil Science, vol.39, issue.1, pp.101-114, 1997.
DOI : 10.1006/jcis.1995.1466

I. R. Willett, C. J. Chartres, and T. T. Nguyen, Migration of phosphate into aggregated particles of ferrihydrite, Journal of Soil Science, vol.21, issue.2, pp.275-282, 1988.
DOI : 10.1111/j.1365-2389.1988.tb01214.x

V. Lair, Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron, Corrosion Science, vol.48, issue.8, pp.2050-2063, 2006.
DOI : 10.1016/j.corsci.2005.06.013

URL : https://hal.archives-ouvertes.fr/hal-00157871

H. Antony, Etude électrochimique des composés du fer -Apport à la compréhension des processus environnementaux, Thèse de doctorat, p.213, 2005.

D. Neff, Apport des analogues archéologiques à l'estimation des vitesses moyennes et à l'étude des mécanismes de corrosion à très long terme des aciers non alliés dans les sols

P. Dillmann, P. Bernardi, and P. Fluzin, Use of iron for the building of medieval monuments. The Palais des Papes in Avignon and other French buildings, Archaeometallurgy in Europe, issue.1, pp.199-208, 2003.

E. Vega, P. Dillmann, and P. Fluzin, Contribution à l'étude de fers phosphoreux en sidérurgie ancienne. Revue d'archéométrie, pp.197-208, 2002.

J. Stewart, J. Charles, and E. Wallach, Iron???phosphorus???carbon system: Part 3 ??? Metallography of low carbon iron???phosphorus alloys, Materials Science and Technology, vol.81, issue.3, pp.291-303, 2000.
DOI : 10.1007/978-1-4684-6075-9

E. Provent and . Saclay, Etude de la corrosion atmosphérique et dans la pierre des armatures métalliques du 18ème siècle de la cathédrale d'Orléans, 2010.

M. Yamashita, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corrosion Science, vol.36, issue.2, pp.283-299, 1994.
DOI : 10.1016/0010-938X(94)90158-9

M. Yamashita, H. Miyuki, and H. Nagano, Corrosion resistance of weathering steel and its application, Sumitomo Search(Japan), vol.57, pp.12-17, 1995.

D. De-la-fuente, Long-term atmospheric corrosion of mild steel, Corrosion Science, vol.53, issue.2, pp.604-617, 2011.
DOI : 10.1016/j.corsci.2010.10.007

M. Takemura, The protectiveness of Rust on weathering steel in an atmosphere rich in airborne chloride particles, Corrosion Engineering, vol.49, issue.2, pp.111-122, 2000.

T. Nishimura, Effect of NaCl-MgCl2 Complex on the Corrosion Behavior of Carbon Steel in Wet/Dry Environment, Zairyo-to-Kankyo, vol.49, issue.1, pp.85-96, 2000.
DOI : 10.3323/jcorr1991.49.45

E. Vega, Altération des objets ferreux archéologiques du site de Glinet (Seine-maritime, France, XVIe siècle)

M. Yamashita, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corrosion Science, vol.36, issue.2, pp.283-299, 1994.
DOI : 10.1016/0010-938X(94)90158-9

S. J. Oh, D. C. Cook, and H. E. Townsend, Atmospheric corrosion of different steels in marine, rural and industrial environments, Corrosion Science, vol.41, issue.9, pp.41-1687, 1999.
DOI : 10.1016/S0010-938X(99)00005-0

T. Misawa, The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel, Corrosion Science, vol.14, issue.4, pp.279-289, 1974.
DOI : 10.1016/S0010-938X(74)80037-5

Y. Chen, Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions, Corrosion Science, vol.47, issue.4, pp.1001-1021, 2005.
DOI : 10.1016/j.corsci.2004.04.009

T. Misawa, The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels, Corrosion Science, vol.11, issue.1, pp.35-48, 1971.
DOI : 10.1016/S0010-938X(71)80072-0

K. Kashima, Evaluation of Protective Ability of Rust Layers on Weathering Steels by Potential Measurement, Zairyo-to-Kankyo, vol.49, issue.1, pp.15-21, 2000.
DOI : 10.3323/jcorr1991.49.15

D. Neff, Raman imaging of ancient rust scales on archaeological iron artefacts for long-term atmospheric corrosion mechanisms study, Journal of Raman Spectroscopy, vol.33, issue.10, pp.37-1228, 2006.
DOI : 10.1002/jrs.1581

URL : https://hal.archives-ouvertes.fr/hal-00159091

R. Balasubramaniam, On the corrosion resistance of the Delhi iron pillar, Corrosion Science, vol.42, issue.12, pp.2103-2129, 2000.
DOI : 10.1016/S0010-938X(00)00046-9

L. Bellot-gurlet, Raman Studies of Corrosion Layers Formed on Archaeological Irons in Various Media, Journal of Nano Research, vol.8, issue.8, pp.147-156, 2009.
DOI : 10.4028/www.scientific.net/JNanoR.8.147

URL : https://hal.archives-ouvertes.fr/hal-00477440

J. Monnier, A methodology for Raman structural quantification imaging and its application to iron indoor atmospheric corrosion products, Journal of Raman Spectroscopy, vol.18, issue.45, pp.23-42, 2011.
DOI : 10.1002/jrs.2765

M. Bouchar, P. Dillmann, and D. Neff, Atmospheric corrosion of iron-based reinforcement of gothic cathedrals -Overview of possible corrosion systems and influence of the structure and composition of the corrosion layers on the corrosion diagnosis, Proceedings of the Interim Meeting of the Metal Working Group METAL 2013, 2013.

E. Burger, Use of the gold markers method to predict the mechanisms of iron atmospheric corrosion, Corrosion Science, vol.53, issue.6, pp.2122-2130, 2011.
DOI : 10.1016/j.corsci.2011.02.030

J. Monnier, X-rays absorption study on medieval corrosion layers for??the??understanding of very long-term indoor atmospheric iron corrosion, Applied Physics A, vol.66, issue.2, pp.399-406, 2010.
DOI : 10.1007/s00339-010-5638-8

E. Vega, P. Berger, and P. Dillmann, A study of transport phenomena in the corrosion products of ferrous archaeological artefacts using 18O tracing and nuclear microprobe analysis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, pp.554-558, 2005.

W. Chitty, Long-term corrosion of rebars embedded in aerial and hydraulic binders ??? Mechanisms and crucial physico-chemical parameters, Corrosion Science, vol.50, issue.8, pp.50-2117, 2008.
DOI : 10.1016/j.corsci.2008.03.017

N. Bangoy and A. Gerenton, Etude de la diffusivité à l'oxygène de rouilles prélevées à l'Eglise de Saint-Sulpice. Note interne CEA Marcoule, 2012.

J. Kärger and D. M. Ruthven, Diffusion and Adsorption in Porous Solids, in Handbook of Porous Solids, pp.2087-2173, 2008.

J. Monnier, Corrosion of iron from heritage buildings: proposal for degradation indexes based on rust layer composition and electrochemical reactivity, Corrosion Engineering, Science and Technology, vol.52, issue.27, pp.45-375, 2010.
DOI : 10.1016/j.electacta.2009.01.036

E. Burger, The long-term corrosion of mild steel in depassivated concrete: Localizing the oxygen reduction sites in corrosion products by isotopic tracer method, Journal of Materials Research, vol.16, issue.24, pp.26-3107, 2011.
DOI : 10.1016/j.matchar.2005.06.004

J. Monnier, Localisation of oxygen reduction sites in the case of iron long term atmospheric corrosion, Corrosion Science, vol.53, issue.8, pp.53-2468, 2011.
DOI : 10.1016/j.corsci.2011.04.002

R. Balasubramaniam and A. V. Kumar, Corrosion resistance of the Dhar iron pillar, Corrosion Science, vol.45, issue.11, pp.2451-2465, 2003.
DOI : 10.1016/S0010-938X(03)00074-X

O. Benali, Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite, Geochimica et Cosmochimica Acta, vol.65, issue.11, pp.65-1715, 2001.
DOI : 10.1016/S0016-7037(01)00556-7

M. Stratmann, The Atmospheric Corrosion of Iron - A Discussion of the Physico-Chemical Fundamentals of this Omnipresent Corrosion Process Invited Review, Berichte der Bunsengesellschaft f??r physikalische Chemie, vol.47, issue.6, pp.626-639, 1990.
DOI : 10.1002/bbpc.19900940603

M. Stratmann, The atmospheric corrosion of iron and steel. Metallurgica I Odlewnictwo, pp.46-52, 1990.

M. Stratmann and J. Müller, The mechanism of the oxygen reduction on rust-covered metal substrates, Corrosion Science, vol.36, issue.2, pp.327-359, 1994.
DOI : 10.1016/0010-938X(94)90161-9

M. Stratmann, K. Bohnenkamp, and H. Engell, An electrochemical study of phase-transitions in rust layers, Corrosion Science, vol.23, issue.9, pp.969-985, 1983.
DOI : 10.1016/0010-938X(83)90024-0

A. Cox and S. B. Lyon, An electrochemical study of the atmospheric corrosion of mild steel-I. Experimental method, Corrosion Science, vol.36, issue.7, pp.1167-1176, 1994.
DOI : 10.1016/0010-938X(94)90141-4

M. Stratmann and H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers???I. Verification of the experimental technique, Corrosion Science, vol.30, issue.6-7, pp.6-7, 1990.
DOI : 10.1016/0010-938X(90)90032-Z

S. H. Zhang and S. B. Lyon, The electrochemistry of iron, zinc and copper in thin layer electrolytes, Corrosion Science, vol.35, issue.1-4, pp.1-4, 1993.
DOI : 10.1016/0010-938X(93)90207-W

M. Yamashita, H. Nagano, and R. A. Oriani, Dependence of corrosion potential and corrosion rate of a low-alloy steel upon depth of aqueous solution, Corrosion Science, vol.40, issue.9, pp.40-1447, 1998.
DOI : 10.1016/S0010-938X(98)00041-9

A. Nishikata, Influence of Electrolyte Layer Thickness and pH on the Initial Stage of the Atmospheric Corrosion of Iron, Journal of The Electrochemical Society, vol.144, issue.4, pp.1244-1252, 1997.
DOI : 10.1149/1.1837578

R. N. Parkins, Corrosion processes Applied Science. Sole distributor in the USA and Canada, 1982.

M. Justo and M. Ferreira, The corrosion of mild steel in simulated SO2 containing atmospheres, Corrosion Science, vol.29, issue.11-12, pp.1353-1369, 1989.
DOI : 10.1016/0010-938X(89)90124-8

A. Disser, Production et circulation du fer en Lorraine (VIe s. av. J.-C.-XVe s. ap, Thèse de doctorat, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01224171

J. Barralis and G. Maeder, Précis de métallurgie. 6ème édition, 1993.

R. Guinebretière, Diffraction des rayons X sur échantillons polycristallins, 2006.

J. Als-nielsen and D. Mcmorrow, Elements of modern X-ray physics, 2011.
DOI : 10.1002/9781119998365

F. Kergourlay, Étude des mécanismes de déchloruration d'objets archéologiques ferreux corrodés en milieu marin. Cas des traitements en solutions alcalines aérée et désaérée Thèse de doctorat, Sciences, Ingénierie et Environnement. 2012, p.235

N. Colthup, L. Daly, and S. Wiberley, Introduction to infrared and Raman spectroscopy, 1990.

E. Smith, G. Dent, and J. Wiley, Modern Raman spectroscopy: a practical approach, W.O. Library, 2005.
DOI : 10.1002/0470011831

. Renishaw, . Raman, and . Renishaw, Streamline (TM), generate chemical images rapidly. http://www.renishaw.com/en/streamline-generate-chemical-images-rapidly--9449, 2015.

M. Wojdyr, : a general-purpose peak fitting program, Journal of Applied Crystallography, vol.101, issue.102, pp.1126-1128, 2010.
DOI : 10.1107/S0021889810030499

K. Levenberg, A method for the solution of certain problems in least squares, Quarterly of applied mathematics, issue.2, pp.164-168, 1944.

D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics, vol.11, issue.2, pp.431-441, 1963.
DOI : 10.1137/0111030

L. Wielunski and L. Wieczorek, Detection of submonolayer 18 O on a gold surface by nuclear reaction analysis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, pp.352-355, 1994.

J. Liu, Depth resolution and dynamic range of 18 O (p, ?) 15 N depth profiling. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, pp.1306-1311, 1998.

P. Berger, Oxygen diffusion studies in oxide scales thermally grown or deposited on mechanically loaded metallic surfaces (MS-P2). Nuclear Instruments and Methods in, Physics Research B, issue.181, pp.382-388, 2001.

G. Amsel and D. Samuel, Microanalysis of the stable isotopes of oxygen by means of nuclear reactions, Analytical Chemistry, vol.39, issue.14, pp.1689-1698, 1967.
DOI : 10.1021/ac50157a027

H. Khodja, The Pierre Süe Laboratory nuclear microprobe as a multi-disciplinary analysis tool. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, pp.83-86, 2001.

P. Berger and G. , Microsonde nucléaire -Principe et appareillage, pp.1-16, 2005.

P. Trocellier and P. Trouslard, Spectrométrie de collisions élastiques et de réactions nucléaires, Théorie. Techniques de l'Ingénieur, pp.1-31, 2002.

P. Trocellier and P. Berger, Nuclear Reaction Spectroscopy, in Encyclopedia of Analytical Chemistry, 2006.

C. Mayer, SIMNRA user's guide. Rapport technique IPP 9, Max-Planck-Institüt für Plasma physik Garching, 1997.

J. Daïan, Equilibre et transferts en milieux poreux : I-Etats d'équilibre, <hal-00452876v1>, p.183, 2010.

J. N. Israelachvili, 15 -Solvation, Entropic, Structural, and Hydration Forces, Intermolecular and Surface Forces, pp.341-380, 2011.

J. N. Israelachvili, 17 -Adhesion and Wetting Phenomena, Intermolecular and Surface Forces, pp.415-467, 2011.
DOI : 10.1016/b978-0-12-375182-9.10017-x

H. D. Lutz, H. Möller, and M. Schmidt, Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe, Cd) ??? IR and Raman spectra, neutron diffraction of Fe(OH)2, Journal of Molecular Structure, vol.328, issue.0, pp.328-121, 1994.
DOI : 10.1016/0022-2860(94)08355-X

A. Demoulin, The evolution of the corrosion of iron in hydraulic binders analysed from 46- and 260-year-old buildings, Corrosion Science, vol.52, issue.10, pp.52-3168, 2010.
DOI : 10.1016/j.corsci.2010.05.019

Y. Zhao, Y. Wu, and W. Jin, Distribution of millscale on corroded steel bars and penetration of steel corrosion products in concrete, Corrosion Science, vol.66, issue.0, pp.66-160, 2013.
DOI : 10.1016/j.corsci.2012.09.014

A. Navrotsky, L. Mazeina, and J. Majzlan, Size-Driven Structural and Thermodynamic Complexity in Iron Oxides, Science, vol.319, issue.5870, pp.319-1635, 2008.
DOI : 10.1126/science.1148614

Y. Arai and D. L. Sparks, ATR???FTIR Spectroscopic Investigation on Phosphate Adsorption Mechanisms at the Ferrihydrite???Water Interface, Journal of Colloid and Interface Science, vol.241, issue.2, pp.317-326, 2001.
DOI : 10.1006/jcis.2001.7773

H. G. Karge, Adsorption and diffusion, p.400, 2008.
DOI : 10.1007/978-3-540-73966-1

S. Koneshan, Solvent Structure, Dynamics, and Ion Mobility in Aqueous Solutions at 25 ??C, The Journal of Physical Chemistry B, vol.102, issue.21, pp.102-4193, 1998.
DOI : 10.1021/jp980642x

E. L. Cussler, Diffusion: mass transfer in fluid systems, 2009.
DOI : 10.1017/CBO9780511805134

L. E. Fox, The solubility of colloidal ferric hydroxide and its relevance to iron concentrations in river water, Geochimica et Cosmochimica Acta, vol.52, issue.3, pp.771-777, 1988.
DOI : 10.1016/0016-7037(88)90337-7

W. L. Lindsay, Chemical equilibria in soils, 1979.

J. Zhao, Binary iron oxide catalysts for direct coal liquefaction, Energy & Fuels, vol.8, issue.1, pp.38-43, 1994.
DOI : 10.1021/ef00043a006

D. Postma, The reactivity of iron oxides in sediments: A kinetic approach, Geochimica et Cosmochimica Acta, vol.57, issue.21-22, pp.5027-5034, 1993.
DOI : 10.1016/S0016-7037(05)80015-8

P. Schindler, W. Michaelis, and W. Feitknecht, Lösigkeitsprodukte von Metalloxiden und hydroxiden . 8. Mitt.: Die Lösigkeit gealterter Eisen(III)-hydroxid-Fällungen, Helvetica Chimica Acta, issue.46, pp.444-451, 1963.

U. Schwertmann, Solubility and dissolution of iron oxides, in Iron Nutrition and Interactions in Plants, pp.3-27, 1991.

W. Chitty, Long-term corrosion resistance of metallic reinforcements in concrete???a study of corrosion mechanisms based on archaeological artefacts, Corrosion Science, vol.47, issue.6, pp.47-1555, 2005.
DOI : 10.1016/j.corsci.2004.07.032

G. S. Duffo, A study of steel rebars embedded in concrete during 65 years, Corrosion Science, vol.46, issue.9, pp.2143-2157, 2004.
DOI : 10.1016/j.corsci.2004.01.006

E. Burger, In situ structural characterisation of non-stable phases involved in atmospheric corrosion of ferrous heritage artefacts, Corrosion Engineering Science and Technology, issue.5, pp.45-395, 2010.

U. Wilensky and . Netlogo, Center for Connected Learning and Computer-Based Modeling, Northwestern University Random walks and diffusion: Lecture notes, Massachusetts Institute of Technology, Mathematics Department, 1999.

C. Kittel, P. Mceuen, and P. Mceuen, Introduction to solid state physics

W. Feitknecht and P. Schindler, Lösigkeitskonstanten von Metalloxiden, -hydroxiden, und hydroxydsalzen in wässrigen Lösungen, Pure Applied Chemistry, issue.6, pp.125-199, 1963.

. Ferreux-du-chaînage-de-la-cathédrale, Amiens (500 ans) [7] Triangle blanc : barre en fer de la cathédrale d'Orléans (250 ans), Losange blanc : tirant en alliage ferreux de la cathédrale de Bourges (800 ans), p.54

. G=goethite, . L=lépidocrocite, . A=akaganéite, . F=ferrihydrite, and M. Mh=maghémite, un tirant en fer de la cathédrale de Bourges [30] : résultats moyens de semi-quantification sur plusieurs cartographies en micro-spectroscopie Raman. *: la magnétite (Mn) détectée correspond à des résidus de calamine (cf.Chap.1- D.2.c) Notations, p.61

P. Dillmann, From Soissons to Beauvais: the use of iron in some French cathedrals The Archaeometallurgy of Iron ? Recent Developments in Archaeological and Scientific Research, pp.173-196, 2011.

P. Dillmann, F. Mazaudier, and S. Hoerle, Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion, Corrosion Science, vol.46, issue.6, pp.1401-1429, 2004.
DOI : 10.1016/j.corsci.2003.09.027

J. Monnier, P. Dillmann, L. Legrand, and I. Guillot, Corrosion of iron from heritage buildings: proposal for degradation indexes based on rust layer composition and electrochemical reactivity, Corrosion Engineering, Science and Technology, vol.52, issue.27, pp.375-380, 2010.
DOI : 10.1016/j.electacta.2009.01.036

T. Misawa, K. Hashimoto, and S. Shimodaira, The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature, Corrosion Science, vol.14, issue.2, pp.131-149, 1974.
DOI : 10.1016/S0010-938X(74)80051-X

M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, and T. Misawa, The long-term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corrosion Science, pp.36-283, 1994.

M. Yamashita, T. Misawa, S. J. Oh, R. Balasubramanian, and D. C. Cook, Mössbauer spectroscopic study of X-ray amorphous substance in the rust layer of weathering steel subjected to long term exposure in North America, Corrosion Engineering, pp.49-133, 2000.

K. Suda, S. Misra, and K. Motohashi, Corrosion products of reinforcing bars embedded in concrete, Corrosion Science, vol.35, issue.5-8, pp.1543-1549, 1993.
DOI : 10.1016/0010-938X(93)90382-Q

S. Oh, D. C. Cook, and H. E. Townsend, Characterization of iron oxides commonly formed as corrosion products on steel, Hyperfine Interactions, vol.112, issue.1/4, pp.59-66, 1998.
DOI : 10.1023/A:1011076308501

G. S. Duffo, W. Morris, I. Raspini, and C. Saragovi, A study of steel rebars embedded in concrete during 65 years, Corrosion Science, vol.46, issue.9, pp.2143-2157, 2004.
DOI : 10.1016/j.corsci.2004.01.006

D. C. Cook, Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments, Corrosion Science, vol.47, issue.10, pp.2550-2570, 2005.
DOI : 10.1016/j.corsci.2004.10.018

A. Demoulin, C. Trigance, D. Neff, E. Foy, P. Dillmann et al., The evolution of the corrosion of iron in hydraulic binders analysed from 46- and 260-year-old buildings, Corrosion Science, vol.52, issue.10, pp.52-3168, 2010.
DOI : 10.1016/j.corsci.2010.05.019

S. Reguer, P. Dillmann, and F. Mirambet, Buried iron archaeological artefacts: Corrosion mechanisms related to the presence of Cl-containing phases, Corrosion Science, vol.49, issue.6, pp.2726-2744, 2007.
DOI : 10.1016/j.corsci.2006.11.009

U. R. Evans, Electrochemical Mechanism of Atmospheric Rusting, Nature, vol.39, issue.4988, pp.980-982, 1965.
DOI : 10.1039/tf9514701121

U. R. Evans and C. A. Taylor, Mechanism of atmospheric rusting, Corrosion Science, vol.12, issue.3, pp.227-246, 1972.
DOI : 10.1016/S0010-938X(72)90671-3

M. Stratmann and H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers???II. Experimental results, Corrosion Science, vol.30, issue.6-7, pp.30-697, 1990.
DOI : 10.1016/0010-938X(90)90033-2

M. Stratmann and H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers???I. Verification of the experimental technique, Corrosion Science, vol.30, issue.6-7, pp.30-681, 1990.
DOI : 10.1016/0010-938X(90)90032-Z

M. Stratmann, The Atmospheric Corrosion of Iron - A Discussion of the Physico-Chemical Fundamentals of this Omnipresent Corrosion Process Invited Review, Berichte der Bunsengesellschaft f??r physikalische Chemie, vol.47, issue.6, pp.626-639, 1990.
DOI : 10.1002/bbpc.19900940603

M. Stratmann and J. Müller, The mechanism of the oxygen reduction on rust-covered metal substrates, Corrosion Science, vol.36, issue.2, pp.327-359, 1994.
DOI : 10.1016/0010-938X(94)90161-9

C. Leygraf and T. E. , Atmospheric Corrosion, 2000.

R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, second ed, 2003.
DOI : 10.1002/3527602097

H. Antony, L. Legrand, L. Maréchal, S. Perrin, P. Dillmann et al., Study of lepidocrocite ??-FeOOH electrochemical reduction in neutral and slightly alkaline solutions at 25??C, Electrochimica Acta, vol.51, issue.4, pp.51-745, 2005.
DOI : 10.1016/j.electacta.2005.05.049

V. Lair, H. Antony, L. Legrand, and A. Chausse, Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron, Corrosion Science, vol.48, issue.8, pp.2050-2063, 2006.
DOI : 10.1016/j.corsci.2005.06.013

URL : https://hal.archives-ouvertes.fr/hal-00157871

H. Antony, S. Perrin, P. Dillmann, L. Legrand, and A. Chaussé, Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts, Electrochimica Acta, vol.52, issue.27, pp.7754-7759, 2007.
DOI : 10.1016/j.electacta.2007.04.029

URL : https://hal.archives-ouvertes.fr/hal-00159815

A. Navrotsky, L. Mazeina, and J. Majzlan, Size-Driven Structural and Thermodynamic Complexity in Iron Oxides, Science, vol.319, issue.5870, pp.1635-1638, 2008.
DOI : 10.1126/science.1148614

J. Monnier, D. Neff, S. Réguer, P. Dillmann, L. Bellot-gurlet et al., A corrosion study of the ferrous medieval reinforcement of the Amiens cathedral. Phase characterisation and localisation by various microprobes techniques, Corrosion Science, vol.52, issue.3, pp.52-695, 2010.
DOI : 10.1016/j.corsci.2009.10.028

J. Monnier, Corrosion atmosphérique sous abri d'alliages ferreux historiques ? Caractérisation du système, mécanismes et apport à la modélisation, Chemistry and Material Science, p.319, 2008.

J. Monnier, L. Bellot-gurlet, D. Baron, D. Neff, I. Guillot et al., A methodology for Raman structural quantification imaging and its application to iron indoor atmospheric corrosion products, Journal of Raman Spectroscopy, vol.18, issue.45, pp.23-42, 2011.
DOI : 10.1002/jrs.2765

G. Gouadec and P. Colomban, Raman spectroscopy of nanostructures and nanosized materials, Journal of Raman Spectroscopy, vol.39, issue.6, pp.598-603, 2007.
DOI : 10.1002/jrs.1749

URL : https://hal.archives-ouvertes.fr/hal-00152010

D. R. Lide and T. J. Bruno, CRC Handbook of Chemistry and Physics, 2012.

S. J. Oh, D. C. Cook, and H. E. Townsend, Atmospheric corrosion of different steels in marine, rural and industrial environments, Corrosion Science, vol.41, issue.9, pp.1687-1702, 1999.
DOI : 10.1016/S0010-938X(99)00005-0

R. K. Raman, Characterisation of ???rolled-in???, ???fragmented??? and ???red??? scale formation during secondary processing of steels, Engineering Failure Analysis, vol.13, issue.7, pp.1044-1050, 2006.
DOI : 10.1016/j.engfailanal.2005.07.011

E. Zitrou, J. Nikolaou, P. E. Tsakiridis, and G. D. Papadimitriou, Atmospheric corrosion of steel reinforcing bars produced by various manufacturing processes, Construction and Building Materials, vol.21, issue.6, pp.1161-1169, 2007.
DOI : 10.1016/j.conbuildmat.2006.06.004

Y. Zhao, Y. Wu, and W. Jin, Distribution of millscale on corroded steel bars and penetration of steel corrosion products in concrete, Corrosion Science, vol.66, pp.160-168, 2013.
DOI : 10.1016/j.corsci.2012.09.014

Y. Zhao, J. Yu, Y. Wu, and W. Jin, Critical thickness of rust layer at inner and out surface cracking of concrete cover in reinforced concrete structures, Corrosion Science, vol.59, pp.316-323, 2012.
DOI : 10.1016/j.corsci.2012.03.018

B. Beverskog and I. Puigdomenech, Revised pourbaix diagrams for iron at 25???300 ??C, Corrosion Science, vol.38, issue.12, pp.2121-2135, 1996.
DOI : 10.1016/S0010-938X(96)00067-4

C. W. Spicer, Patterns of atmospheric nitrates, sulfate, and hydrogen chloride in the central Ohio River Valley over a one-year period, Environment International, vol.12, issue.5, pp.513-518, 1986.
DOI : 10.1016/0160-4120(86)90145-5

A. Askey, S. B. Lyon, G. E. Thompson, J. B. Johnson, G. C. Wood et al., The corrosion of iron and zinc by atmospheric hydrogen chloride, Corrosion Science, vol.34, issue.2, pp.34-233, 1993.
DOI : 10.1016/0010-938X(93)90004-Z

A. Neville, Chloride attack of reinforced concrete: an overview, Materials and Structures, vol.23, issue.2, pp.63-70, 1995.
DOI : 10.1007/BF02473172

T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida, Composition and protective ability of rust layer formed on weathering steel exposed to various environments, Corrosion Science, vol.48, issue.9, pp.48-2799, 2006.
DOI : 10.1016/j.corsci.2005.10.004

S. Hoerlé, F. Mazaudier, P. Dillmann, and G. Santarini, Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet???dry cycles, Corrosion Science, vol.46, issue.6, pp.1431-1465, 2004.
DOI : 10.1016/j.corsci.2003.09.028

J. Monnier, E. Burger, P. Berger, D. Neff, I. Guillot et al., Localisation of oxygen reduction sites in the case of iron long term atmospheric corrosion, Corrosion Science, vol.53, issue.8, pp.53-2468, 2011.
DOI : 10.1016/j.corsci.2011.04.002

E. Burger, M. Fénart, S. Perrin, D. Neff, and P. Dillmann, Use of the gold markers method to predict the mechanisms of iron atmospheric corrosion, Corrosion Science, vol.53, issue.6, pp.2122-2130, 2011.
DOI : 10.1016/j.corsci.2011.02.030

R. Balasubramaniam and R. , On the corrosion resistance of the Delhi iron pillar, Corrosion Science, vol.42, issue.12, pp.2103-2129, 2000.
DOI : 10.1016/S0010-938X(00)00046-9

E. Burger, M. Fénart, S. Perrin, D. Neff, and P. Dillmann, Use of the gold markers method to predict the mechanisms of iron atmospheric corrosion, Corrosion Science, vol.53, issue.6, pp.2122-2130, 2011.
DOI : 10.1016/j.corsci.2011.02.030

I. S. Cole, D. A. Paterson, and W. D. Ganther, Holistic model for atmospheric corrosion Part 1 - Theoretical framework for production, transportation and deposition of marine salts, Corrosion Engineering, Science and Technology, vol.1170, issue.2, pp.129-134, 2003.
DOI : 10.1016/0960-1686(91)90050-H

R. M. Cornell and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses, 2003.
DOI : 10.1002/3527602097

P. Dillmann, F. Mazaudier, and S. Hoerle, Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion, Corrosion Science, vol.46, issue.6, pp.1401-1429, 2004.
DOI : 10.1016/j.corsci.2003.09.027

P. Dillmann, From Soissons to Beauvais: the use of iron in some French cathedrals, The Archaeometallurgy of Iron ? Recent Developments in Archaeological and Scientific Research, J. Hosek, Henry Cleere, and L. Mihok, 2011.

N. Galvez, V. Barron, and J. Torrent, Effect of Phosphate on the Crystallization of Hematite, Goethite, and Lepidocrocite from Ferrihydrite, Clays and Clay Minerals, vol.47, issue.3, pp.304-311, 1999.
DOI : 10.1346/CCMN.1999.0470306

M. Garcia-vallès, M. Vendrell-saz, J. Molera, and F. Blazquez, Interaction of rock and atmosphere: patinas on Mediterranean monuments, Environmental Geology, vol.36, issue.1-2, pp.137-149, 1998.
DOI : 10.1007/s002540050329

H. Kihira, S. Ito, and T. Murata, The behavior of phosphorous during passivation of weathering steel by protective patina formation, Corrosion Science, vol.31, pp.383-388, 1990.
DOI : 10.1016/0010-938X(90)90135-R

T. Misawa, T. Kyuno, W. Suetaka, and S. Shimodaira, The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels, Corrosion Science, vol.11, issue.1, pp.35-48, 1971.
DOI : 10.1016/S0010-938X(71)80072-0

J. Monnier, D. Neff, S. Réguer, P. Dillmann, L. Bellot-gurlet et al., A corrosion study of the ferrous medieval reinforcement of the Amiens cathedral. Phase characterisation and localisation by various microprobes techniques, Corrosion Science, vol.52, issue.3, pp.695-710, 2010.
DOI : 10.1016/j.corsci.2009.10.028

J. Monnier, B. Gurlet, L. Baron, D. Neff, D. Guillot et al., A methodology for Raman structural quantification imaging and its application to iron indoor atmospheric corrosion products, Journal of Raman Spectroscopy, vol.18, issue.45, pp.773-781, 2011.
DOI : 10.1002/jrs.2765