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Résumé 

Le besoin en isolation vibratoire des voies ferrées conduit de plus en plus souvent au 

recours à des systèmes d'attache de rail souples avec des designs sophistiqués. Par contre, les 

produits deviennent diversifiés mais leur conception se fait de manière empirique dans la 

pratique. Dans ce travail de thèse, deux systèmes d'attache de rail sont étudiés 

expérimentalement et numériquement: un système qui travaille principalement en cisaillement 

et l'autre en compression. Des essais quasi-statiques et dynamiques sont menés puis les 

résultats sont analysés à l'aide de différents modèles mécaniques. En plus, une série de tests 

sur les élastomères utilisés dans les deux systèmes sont réalisés. Ces tests permettent de 

choisir des modèles hyperélastiques et viscoélastique appropriés, et de déterminer les 

paramètres de propriétés mécaniques des élastomères dans ces modèles par des simulations 

Abaqus. En utilisant également Abaqus, des analyses par élément fini des deux systèmes 

d'attache sont effectués et les résultats sont comparés aux ceux des essais. Des non-linéarités 

d'origine matérielle et géométrique sont ainsi analysées et expliquées. Enfin, des études de 

sensibilité des paramètres sont effectuées, suivies d'études d'optimisation structurale. Cet 

étude devrait être utile pour une meilleure compréhension du comportement mécanique des 

systèmes d'attache de rail sous chargement statique et dynamique, et au final pour une 

meilleure pratique dans la conception et l'optimisation des produits. 

Mots clés: systèmes d'attache de rail, expérience et modèle de mathématique, FEA, 

sensibilité des paramètres, optimisation structurale 

 

 

 

  



 

 

 

Abstract 

Higher demand on vibration isolation of track structure in modern railway track leads 

to a trend of lower stiffness of rail fastening systems, places an increasing need for better 

design approach as well. However the current development status of rail fastening industry is 

dramatically diversified but mainly empirical. In this work, a shear type and a bonded 

compressed type of rail fastening systems are investigated experimentally and numerically. 

Quasi-static and dynamic experiments are carried out and the results are analysed with 

different mechanical models. Besides, a series of fundamental rubber material tests is 

performed to accurately describe the rubber material used in the two fastening systems. The 

most appropriate hyperelastic and hysteresis models are chosen with the help of simulations 

by Abaqus. Also by using Abaqus, finite element analyses are conducted for the two fastening 

systems and the numerical results are compared with those of experiments. Material and 

geometrical nonlinear features observed in the measured displacement-force curves are 

analysed and explained. Finally, parameter sensitivity of the two fastening specimens is 

studied, followed by an optimization process to meet practical optimization objectives. The 

present work is believed to be helpful for understanding the mechanical behaviour of rail 

fastening systems, while enlightening the engineering practice, and eventually improving 

product designing and optimizing measures. 

Key words: Rail fastening systems, nonlinear properties, numerical modelling, FEA, 

parameter sensitivity analysing, structural optimization 

 

 



TABLE OF CONTENTS 

ABSTRACT  ................................................................................................................................ I 

ACKNOWLEDGMENTS ........................................................................................................ IV 

LIST OF ILLUSTRATIONS ................................................................................................... VI 

LIST OF TABLES ................................................................................................................... IX 

Chapter 1 Research background ......................................................................................... 1 

1.1 Track structure .................................................................................................. 1 

1.1.1 Ballasted track structure .............................................................................. 1 

1.1.2 Slab track .................................................................................................... 5 

1.2 Basic concept of vibration isolation ............................................................... 12 

1.3 Research situation of rail fastening systems ................................................... 14 

1.3.1 Current situation of product development ................................................ 14 

1.3.2 Theoretical study situation ........................................................................ 15 

1.4 Scope of the present research ......................................................................... 24 

Chapter 2 Experiment of rail fastening systems ............................................................... 26 

2.1 Introduction .................................................................................................... 26 

2.2 Test apparatus and specimens ......................................................................... 27 

2.2.1 Test apparatus ........................................................................................... 27 

2.2.2 Specimens ................................................................................................. 27 

2.3 Test operating conditions ................................................................................ 30 

2.3.1 Quasi-static loading .................................................................................. 30 

2.3.2 Dynamic loading ....................................................................................... 34 

2.4 Testing results and analysing .......................................................................... 36 

2.4.1 Quasi-static test ......................................................................................... 36 

2.4.2 Dynamic test ............................................................................................. 37 

2.5 Summary ......................................................................................................... 46 

Chapter 3 Modelling of the rail fastening systems ........................................................... 48 

3.1 Introduction .................................................................................................... 48 

3.2 Presented model I ........................................................................................... 51 

3.2.1 Modelling .................................................................................................. 52 

3.2.2 Determination of model parameters ......................................................... 54 

3.3 Presented model II .......................................................................................... 58 

3.3.1 Modelling .................................................................................................. 59 

3.3.2 Determination of model parameters ......................................................... 62 

3.4 Presented model III ......................................................................................... 67 

3.4.1 Modelling .................................................................................................. 67 

3.4.2 Determination of model parameters ......................................................... 73 

3.5 Summary ......................................................................................................... 77 

Chapter 4 Fundamental rubber material tests and simulation ....................................... 79 

4.1 Introduction .................................................................................................... 79 

4.2 Test details and results .................................................................................... 80 

4.2.1 Specimens preparation and test apparatus ................................................ 80 

4.2.2 Testing procedure and results ................................................................... 86 

4.3 Hyperelastic models and simulation ............................................................... 94 



 

 

 

4.3.1 Hyperelastic constitutive models .............................................................. 94 

4.3.2 Simulation results and discussion ............................................................. 98 

4.4 Viscoelastic model simulation and analysing ............................................... 103 

4.4.1 Prony series ............................................................................................. 103 

4.4.2 Bergstrom-Boyce model ......................................................................... 105 

4.5 Summary ....................................................................................................... 107 

Chapter 5 Finite element modelling and experiment-simulation comparison ............. 109 

5.1 Introduction .................................................................................................. 109 

5.2 Boundary nonlinearity .................................................................................. 111 

5.2.1 Supplementary test .................................................................................. 112 

5.2.2 FE simulation and analysis ..................................................................... 115 

5.3 Geometric nonlinearity ................................................................................. 120 

5.3.1 Definition of geometric nonlinearity ...................................................... 121 

5.3.2 Geometric nonlinearity of the compressed type specimen ..................... 124 

5.4 Material nonlinearity .................................................................................... 126 

5.5 Viscoelastic property .................................................................................... 130 

5.5.1 Rate-dependent loading-unloading curves .............................................. 130 

5.5.2 Transient effect ....................................................................................... 132 

5.5.3 Hysteresis loops ...................................................................................... 135 

5.6 Summary ....................................................................................................... 135 

Chapter 6 Parameter sensitivity analysing and structural optimization ..................... 137 

6.1 Introduction .................................................................................................. 137 

6.2 The shear type fastening specimen ............................................................... 139 

6.2.1 Parameter sensitivity analysis ................................................................. 139 

6.2.2 Structural optimization ........................................................................... 152 

6.3 The compressed type fastening specimen..................................................... 163 

6.3.1 Parameter sensitivity analysis ................................................................. 163 

6.3.2 Product optimization ............................................................................... 167 

6.4 Summary ....................................................................................................... 170 

GENERAL CONCLUSION .................................................................................................. 171 

APPENDIX  ........................................................................................................................... 176 

REFERENCES ....................................................................................................................... 192 

 

 



 

I 

 

ABSTRACT 

Since the beginning of railways industry, principle of ballasted track structure has not 

changed substantially. Important developments since II World War includes introduction of 

continuous welded rail (CWR), use of concrete sleepers, heavier rail-profiles, innovative 

elastic fastenings, mechanization of maintenance, and introduction of advanced measuring 

equipment and maintenance management systems. However, slab track structure was 

introduced due to its low maintenance, high availability, low structure height and relatively 

low structure weight. As a consequence, the introduction of continuous welded rail (CWR) 

track and concrete sleepers, especially in case of slab track gives rise to more and more urgent 

need for fastenings with great flexibility. As heavy freight axle loads increases and high-speed 

railway development, in addition to the increased service demands, the improved performance 

of high elastic rail fastening system is becoming increasingly necessary. However the current 

development status of rail fastening industry is dramatically diversified but mainly empirical. 

Except a few leading companies in the worldwide, such as Pandrol of UK, Vossloh of 

Germany, Delokor in Australia and so on, nearly most products especially in the developing 

countries are imported or imitative. Though rail fastening systems play a more and more 

important role in present railway track structures in nowadays, hundreds of products were 

newly introduced with only a few simple specifications and nearly no thorough theoretical 

analysis can be found and documented studying on the rail fastening systems. Furthermore, 

there is even no a generally accepted standard for rail fastening products‘ designing and 

selecting. This work aims at enhancing understanding of two typical kinds of fastening 

systems and to provide a few reasonable product optimization objects and measures. 

Initially, a set of quasi-static and dynamic experiments of the two rail fastening 

specimens was carried out. This serves two purposes. Firstly, quasi-static and dynamic 

mechanical behaviour, such as nonlinear elasticity at large deformation, hysteresis loss during 

dynamic loading and pre-load dependent, frequency as well as amplitude dependent 

properties, can be observed and compared to other vibration isolation system; secondly, the 

measured results will be used for fitting the numerical model parameters proposed later on.  



 

II 

 

Additionally, three mathematical models are presented and discussed. Since it is 

extremely difficult to implement a model considering all applications with wide range of 

working conditions in the mean while considering all complex mechanical properties, the 

three models were used respectively emphasizing on different characteristics. The models 

presented herein benefits in enhancing understanding and predicting the mechanical 

properties and how they are influenced by certain working conditions, also providing 

theoretical basis for product design, optimization and production. In addition to the models, 

which concentrate on the general mechanical properties, finite element analysis is also 

employed in analysing the detailed performance of the rubber components in the two 

fastening specimens.  

A family of fundamental rubber material experiments is therefore followed. Uniaxial 

tension, uniaxial compression and planar tension measurements are carried out to describe the 

hyperelasticity of the present rubber; a set of dynamic experiments (DMA) are presented in 

order to decide the viscoelasticity of the rubber material Different hyperelastic and 

viscoelastic models are compared according to the measured data and, at last, the most 

suitable model is selected. Model parameters are determined by using the measured results.  

Furthermore, each nonlinear feature existing in the working curves of the two 

fastening specimens are explained. By using the selected material models and parameters the 

two fastening systems are modelled in Abaqus. Quasi-static experiment and the dynamic 

measurement under different loading conditions are simulated. Simulated results are 

compared to the measured results, and all the nonlinear features observed in the working 

curves, such as geometric nonlinearity, material nonlinearity, boundary nonlinearity as well as 

nonlinear dynamic properties, are analysed in this virtual environment. The different 

nonlinear properties of the shear type and compressed type rail fastening systems are also 

proposed and interpreted.  

At last, parameter sensitivity analysing of the present shear type and the compressed 

type rail fastening systems are introduced, followed by an optimization process to meet 

different demands. Nonlinear properties discussed above are taken good use or avoided 

during the optimization. Optimization objectives include isolation efficiency, displacement 

response, vertical and lateral stiffness match, free surface rationalization and material cost, etc. 
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An important term ―shear-compression ratio‖ is firstly proposed in present research in order 

to meet the expecting vibration isolation capability and the vertical-and-lateral stiffness ratio 

with the lowest cost.  

The presented work is thus believed to be helpful for understanding the mechanical 

behaviour of rail fastening systems in detail, while enlightening the theoretical basis of the its 

engineering practice, and eventually improve product designing and optimizing measures 

more than imitation and empirical method.  
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Chapter 1 Research background 

1.1 Track structure 

1.1.1 Ballasted track structure 

 Ballasted track structure which is also called ―classical track‖ or ―conventional track‖ 

consists basically of a flat framework made up of rails and sleepers supported on ballast [1]. 

Since the beginning of the railways, principle of the ballasted track structure has not changed 

substantially. Important developments since II World War includes introduction of continuous 

welded rail, use of concrete sleepers, heavier rail-profiles, innovative elastic fastenings, 

mechanization of maintenance, and introduction of advanced measuring equipment and 

maintenance management systems. As a result, the traditional ballasted track structure still 

can satisfy the demands in nowadays, as demonstrated by the TGV in France. France is the 

country mostly admires the ballasted superstructure in the new era of railway system all over 

the world due to their advanced maintenance instruments. The main advantages of ballasted 

track are, for examples: proven technology, relatively low construction costs, simple 

replacement of track components, relatively simple correction of track geometry, i.e. 

maintenance, small adjustments of track curves possible, good drainage properties, good 

elasticity and good damping of noise and vibrations. Generally in a ballasted track structure, 

ballast bed rests on a sub-ballast layer which forms the transition layer to the formation. The 

rails and sleepers are then connected by fastenings. These components and other structures 

such as switches and crossings are all considered as part of the track. Since the ballast bed 

consists of a layer of loose, coarse grained material which, as a result of the internal friction 

between the grains, can absorb considerable compressive stress, but no tensile stress. The 

bearing strength of the ballast bed in the vertical direction is considerable, but in the lateral 

and longitudinal direction it is clearly reduced. In addition, the thickness of the ballast bed 

should be such that the subgrade is loaded as uniformly as possible. The optimum thickness is 

usually 25-30 cm measured from the lower side of the sleeper.  
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1.1.1.1 Concrete sleepers 

In ballasted track the rails rest on sleepers and together form the built-up portion of the 

superstructure. Timber and concrete and to a limited extent steel sleepers are used. In general, 

the general functions and requirements of sleepers are: to provide support and fixing 

possibilities for the rail foot and fastenings, to sustain rail forces and transfer them uniformly, 

to preserve track gauge and rail inclination, to provide adequate electrical insulation and to be 

resistant to mechanical influences and weathering over a long time period, etc.  

Due to the scarcity of wood, the introduction of CWR track and the improvements in 

concrete technology and pre-stressing techniques, concrete sleepers became significantly 

developed and used in the newly constructed ballasted track structures. Generally speaking, 

concrete sleepers have such advantages as heavy weight which is useful in connection with 

stability of CWR track, long service life and can be replaced easily, as well as relatively 

simple to manufacture. Moreover, climatic influences have little effect on the concrete 

sleepers which also significantly enhances its service life compared with the timber sleepers.  

However, concrete sleepers still have such many drawbacks as being less elastic than 

wood, susceptible to corrugations and poor quality welds, even risk of damage from impacts. 

In addition, dynamic loads and ballast stresses could even be as much as 25% higher. At this 

situation, elastic properties of whole track structure needs to be supplemented by such 

measures like continuous ballast bed and sleepers and the innovative fastening systems, 

especially on non-moveable bridges and viaducts. In order to improve the structural behaviour 

of ballasted track with concrete sleepers, other developments are also discussed in section 

1.1.1.2 and 1.1.1.3.   

1.1.1.2 Ballast mats and soffit pad 

Installing resilient mats between the bottom of the ballast and the subgrade surface 

(normally tunnel floor and bridge deck) has been employed as an elasticity-improved method 

for ballasted track. No matter which type of ballast mats such as profiled mats, granular mats 

and foam mats, the top layer consists of a hard protection layer preventing ballast grans to 

penetrate into the mat surface. Generally speaking, the mat‘s thickness is approximately 3cm 

in total. The rubber layer produces damping by changing the motion of the ballast; while it is 
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not as a result of significant energy absorption within the layer itself. In other words, the 

object of inserting the rubber layer is to introduce resilience and hence generate a mass-spring 

effect carrying away energy. Brief, the softer the mats are the larger and faster the vibrations 

are attenuated.   

Another way to attenuate track vibrations is to use a sleeper soffit pad which is similar 

as the ballast mats, while the soffit pads are placed between the sleeper and the ballast. The 

composite pad comprises 22mm of rubber bonded cork normally, also with a hard facing to 

prevent damage by ballast particles.   

1.1.1.3 Innovative fastening system 

The term ―fastening system‖ was considered as an integration including all 

components together forming the structural connection between rail and sleeps. There are a 

great variety of fastening systems worldwide and they are introduced in order to keep up with 

the changes in requirements and options; the choice of fastening also greatly depends on the 

properties of sleepers. Generally speaking, the rail fastening systems have such functions and 

requirements as: to ―absorb‖ the rail force elastically and transfer them to the sleeper, to damp 

vibrations and impacts cause and to provide electrical insulation between the rails and 

sleepers especially in the case of concrete sleepers. In the long history of ballasted structure 

with concrete sleepers, a lot of innovative fastening systems have been introduced to meet the 

new requirement such as anti-vibration requirement on bridge or in tunnels, track geometry 

accurate keeping for high speed railway and so on. Examples of the first group of innovative 

fastening systems include those with resilient baseplate and/or resilient rail pad.  

Though the rail can be fastened to the sleepers with or without the use of steel 

baseplates which provides sloping upper surfaces and upright ribs between which the rail can 

be well locked, the baseplate has the following advantages: vertical load can be distributed 

over much larger area of the sleeper and this may lengthen the sleeper‘s service life; 

horizontal load can be absorbed much better due to friction effect and also because it is 

distributed over all the fastening anchored in the sleeper; baseplates are also excellent for 

sustaining larger lateral forces if large cant deficiencies are provided; they also have a higher 

bending stiffness and grooves in the ribs can also provide good fastening locations of the rail; 
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baseplates also gives extra weight to the sleepers, etc. Noteworthy that this kind of rail 

fastening systems with a resilient pad underlying baseplate (sometimes there are more than 

one layer of the baseplate and baseplate pad) are not only used in the ballasted track structures 

but also can be seen in slab track. Similar, the function of rail pads is to transfer the rail load 

to the sleeper while filtering out the high frequency force components. Modern rail pads vary 

considerably in material properties (rubber or foam structured) and in appearance such as with 

grooved surfaces or studded surface. Traditionally, the rail pads are relatively stiff in order to 

effectively reduce sleeper strains arising from the high frequency wheel-rail load; while softer 

rail pads are used in a lot of new railway lines with stiffness of about 70-90kN/mm, especially 

if combined with concrete sleepers.  

Given the advantages of resilient baseplate and rail pads, the drawbacks of this type of 

rail fastening systems on the other hand are relatively high price because a typically classic 

in-direct fastening system consists of a baseplate fixed to the sleeper using coach screws and 

clip bolts, rigid sleeper clips, spring washers and nuts to rails. The clip bolt is inserted into the 

holes in the plate. Besides the expensive cost, the elasticity of the baseplate type rail fastening 

systems are also not enough, sometimes, to meet the resilience requirements since the 

fastening derives its vertical elasticity only from the two or more layer of resilient pads in 

compression.  

In a word, with ballasted track vibrations may be reduced by increasing the ballast 

depth, installing resilient mats between the bottom of the ballast and structure surface, 

inserting sleeper soffit pads with the pads between sleepers and ballast, or introducing 

innovative fastening systems with resilient baseplate pad and rail pad and some other highly 

elastic fastening systems according to special anti-vibration requirements. Studies show that a 

reduction of 6 dB at frequencies below 10 Hz by increasing the ballast depth from 30 to 75 

cm, however this is definitely not an attractive solution because of the costs, the weight and 

the extra height. This is why the resilient mats, sleeper pads as well as a great varies of 

innovative fastening systems are more and more dominated in the newly constructed ballasted 

rail way lines.  
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1.1.2 Slab track 

Though most of the current track structures are still of traditional ballasted type, 

amplifications tend more and more towards non-ballasted track (slab track) whose major 

advantages are low maintenance, high availability, low structure height and relatively low 

structure weight. Of the most important, slab track is very competitive from the cost point of 

view since maintenance for ballasted track structures is much more intensive. According to 

research literatures, night time possessions often last no longer than 5 hours or even less on 

European networks, whose intensive traffic becomes more and more difficult to carry out the 

maintenance and renewal work. In a word, one of the severe problems of ballasted track is the 

high cycle costing besides investment costs; another prominent problem is the slow 

deterioration of the ballast material since ballast loose grain wandering and breaking up may 

cause increasing geometrical unevenness and ballast bed clogging may cause drainage 

problems. However, slab track can provide much higher lateral and longitudinal stability and 

deviation of the track is less likely to happen. The condition of the track geometry is therefore 

good enough and also will improve passenger comfort and decreases considerably the amount 

of maintenance. Specifically, in comparison to ballasted track structure slab track is to a large 

extent maintenance free since for which tamping and ballast cleaning as well as track lining is 

nearly unnecessary (amounting to 20% to 30% of the maintenance costs of ballasted track); as 

a result, slab track system has nearly the maximum availability and there is hardly any 

hindrance to residents; service life of the slab track is also largely increased; the excess of 

superelevation and cant deficiency at special cases, such as the mixed use of freight and 

passenger trains, does not cause altering of the track position; adjustment up to 26mm in 

vertical direction and 5mm in horizontal positions are also possible to counteract small 

deformations. Besides, relatively reduced height and weight, track accessibility to the road 

vehicles and bicycles, preventing the release of dust from the ballast bed into the environment 

and so on are all incidental advantages of slab track systems.    

Slab track is well acceptable either in high-speed railway lines or metro networks also 

civil structures like bridges and tunnels currently. There is a large variety of existing 

superstructure designs of slab track system [2-4] which can be generally derived into three 

main types except the continuous rail support applied primarily for tramway, sleepers or 

blocks embedded in concrete or top of asphalt-concrete roadbed, prefabricated concreted slabs, 
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concrete slabs and sleepers with high elastic fastening systems. Brief description of each kind 

will be discussed in the following sections. 

1.1.2.1  Sleepers or blocks embedded in concrete  

Concrete sleepers embedded in concrete bed are most commonly used in Germany for 

newly constructed  high speed railway lines, such as the famous Rheda system since 1970 [3-

7] and Zublin system since 1974 [3-4,8]. Other examples of concrete sleepers embedded in 

slab bed are low vibration track (LVT) and the Stedef system [9]. This type of embedded 

elastic blocks has proved to be one of the perfect solutions for all types of slab track systems, 

irrespective if that is a high-speed line where accurate track geometry is required, or within 

the city centre in the metro system where vibration attenuation is of primary importance. It is 

therefore not surprising that three of the four longest tunnels in the world are included in over 

100km of the LVT system installed. The LVT system consists of a concrete block, a resilient 

pad and a rubber boot surrounded by unreinforced concrete. Except a piece of rail pad nearly 

no extra demands are required on the rail fixation system.  

1.1.2.2 Prefabricated slabs  

Prefabricated slabs have already applied in a lot of different places all over the world 

which considerably contributes to track structure qualities. Moreover, the high level of 

mechanization, labour-saving construction and a lot of other advantages make it very 

competitive in slab track structure. The most well-known example of the prefabricated slabs is 

the one used in Shinkansen-lines of Japan, whose working principle is also used in IPA-

system in Italy. The prefabricated slab used firstly on the high speed railway line between 

Osaka and Okayama on the Sanyo Shinkansen, Japan, consists of a layer of cement asphalt on 

the structural surface such as a viaduct or other rugged bed, cylindrical stoppers to prevent 

lateral and longitudinal movement, and a reinforced concrete slab on above the cement mortar 

layer. In total, one slab weighs about five tons.   

Another kind of famous slab track system is referred to as ―floating slab track‖ 

consisting of a pre-cast reinforced concrete slab on the resilient bearings made of rubber 

material or steel springs, in order to form a large isolated mass and therefore low natural 

frequency mass spring system. It thus can provide large reduction of force transmissibility and 
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vibration isolation efficiency for metro systems. Examples include the short pre-cast slab with 

double sleepers applied in Toronto, the Eisenmann track applied in Munich and Frankfurt as 

well as New York subway, etc. 

1.1.2.3 Elastic fastening systems  

There are dramatically lots of elastic rail fastening systems in modern slab track 

structures after innovative fastening systems with resilient baseplate and rail pad have been 

introduced to ballasted track. Germany, England, Australia, Japan and China are all highly 

advanced countries in the fastening systems industry. Generally speaking, fastening systems 

are designed and selected due to a lot of reasons, for instance the demand of anti-vibration 

grade, requests for integrity and maintenance, restricts of accessing in the railway line, 

compatibility with existing lines in a renewed project, terrain limitation, and so on.  

Elastic fastening systems contains three different types in general, the unbounded 

elastomer pad under rail and/or a flat baseplate as discussed in section 1.1.1.3, bounded 

assembly with flat top and bottom plates as well as other non-baseplate elastic fastening 

systems. Fig. 1:1 (a) shows a typical unbounded compressed type rail fastening system 

designed and produced by company Tiflex of UK. It was enlightened by the fastening systems 

used in ballasted track and was developed initially for the first group of non-ballasted track 

construction, which took place in Netherlands and Spain. The objective was to provide 

approaching resilience in non-ballasted track construction as ballasted track structure and to 

reduce the ground borne vibration with two layers of flat rubber pads, i.e. rail pad and 

baseplate pad. A great deal of analogical rail fastenings from different countries can be recited, 

see Fig. 1:1 (b-e). Though introduce different clamping, fixing, insulate components 

according to different engineering requirements and sometime few more layers of resilient 

pad are introduced in order to apply more elasticity, they keep the basic resilience principle 

with vertically deformed elastic rubber pad and as a result they are called compressed-type 

fastening systems.  

Pandrol VANGUARD is neither a bonded nor an unbounded compressive fastening 

system, but a typical shear type fastening systems which cushions vertical force from passing 

trains by rubber component in shear deformation mode, see Fig. 2:2. Pandrol VANGUARD, 
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with a nominal static stiffness value as low as 5kN/mm, has a remarkable vibration isolation 

performance without significant dynamic gauge widening under traffic. The significant 

reduction of vibration and secondary noise makes it ideal for applications in the most 

sensitive areas to the environmental concerns. Since been demonstrated to be practical and 

effective all over the world such as London, South korea, China, Singapore since 2002. Shear 

type rail fastening systems represented by Pandrol VANGUARD have been recognized as a 

highly innovative solution for rail fixings particularly in challenging circumstances, achieving 

significant rail noise suppression, and in the same time, with less construction cost in 

comparison with in-situ resilient concrete slab and floating slab track systems.  

                                

(a) Fastening system with resilient pads from Tiflex of UK (rail pad and baseplate pad) 

                           

              (b) Vossloh W14 from Germany     (c)   Pandrol VIPA from UK 

              

              (d) Getzner from Australia      (e)   Tie captive system from Amsted RPS of America      

Fig. 1:1 Un-bonded compressed type rail fastening systems  
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Fig. 1:2 VANGUARD from Pandrol of UK  

The very high elasticity of PANDROL VANGUARD is due mainly to the low shear 

modulus of rubber material compared of compressive modulus and the dual stiffness 

capability designed for sake of safety also takes the advantage of compressive property of 

rubber material. In fact, shear type rail fastening system with high resilience and sometimes 

with a double stiffness definition can be traced back to early 60th in the 19 century when 

Cologne Egg was newly designed and manufactured by Clouth Gummiwerke AG company 

[10]. Cologne Egg is the first fastening system making full use of the advantages of shear 

elasticity of rubber material. The novel design was rapidly approved to be of excellent quality 

in high vibration attenuating occasions. In 1983, the Washington Metropolitan Area Transit 

Authority‘s (WMATA) Metrorail systems had been seeking an alternative of floating slab 

track structure for mitigating underground noise and vibration and conducted an in-service 

testing program of Cologne Egg fastening systems [11]. Testing results indicated that with the 

egg-shaped rail fastener WMATA can not only find an alternative method for mitigating 

underground vibrations but also save 3.5 million dollars in the new construction by replacing 

the floating slabs with the egg-shaped fasteners. Subsequently, the fastening system called 

ATP egg was procured from Advanced Track Products, Inc. (ATP) of Stanton, New Jersey. 

The shape of ATP egg was portion of the design that was adopted from original Cologne egg. 

Delokor egg also originates from Cologne egg [12] which is produced by a world leader 

company (Delokor Rail) dedicating to supplying technical advices and track related products 

in Australia and overseas of more than 20 years. Delokor egg can also ensure optimum 

vibration and structure-borne noise reduction in six degrees of movement and achieve a high 

degree of noise attenuation. An optimized innovation of Delokor egg is that it provides a dual 

stiffness at the bottom rubber elliptical ring as shown in Fig. 1:3. Specifically, Delokor egg 
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consists of a top plate, a bottom frame plate and a rubber component; all of the three parts are 

vulcanized directly. From Fig. 1:3 (c), the rubber ring with inclined angle mainly deformed in  

    

   (a) Top view                     (b) Exploded view                     (c) Side view 

                      Fig. 1:3 Delokor egg rail fastening system 

shear as loaded vertically. Yet, when vertical displacement is beyond a limit the bottom 

surface of rubber component reaches the under-surface of iron frame and the overload 

component begins to deform in compression. This dual stiffness design similar as PANDROL 

VANGUARD makes use of shear characteristics of rubber material and compressive 

properties as well. 

In addition to the two different kinds of rail fastening systems, i.e. un-bonded 

compressed and shear type, there is another which is referred to as the bonded compressed 

type rail fastener. At the early time, bonded compressed type fasteners were designed in order 

to eliminate the need for steel springs for preventing fatigue failure of anchor bolts. Delkor 

ALT 1 shown in Fig. 1:4 is a good example of the bounded compressed fastening systems. 

[13] In fact, it‘s also originated and transformed from the product Alternative 1 designed by 

company Clouth in the year 1978.  

Though being a compressed type of rail fastening system [12], Delokor ALT 1 has 

generally the same design concept with egg-shape fastener, consisting of a top and a baseplate 

and a rubber component inside of them. The underside of this rubber component is specially 

profiled and designed to allow movement of the top plate holding the rail. The outer frame of 

the ALT 1 is totally encompassed the rubber component and the top plate, making the unit 

totally fail-safe. This ALT 1 rail fastener also ensures the necessary resilience in all six 

degrees of movement, subsequently reduces the dynamic stress on the anchoring elements and 

the base structure. From Fig. 1:4 (c) we can see that, the main body of the rubber component 
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is designed with studded surface and it would help to provide much better compressive 

elasticity and lower vertical stiffness.  

   

     (a) Top view                      (b) Exploded view                          (c) Side view 

Fig. 1:4 Delokor ALT 1 rail fastening system 

1.1.2.4 Brief conclusion 

Generally speaking, using slab track, i.e. ballastless track, especially in tunnels and 

bridges in urban railway transit systems, has been finding increasing support mainly due to 

the much less expensive maintenance cost and more reliable stability. However, certain 

precautions should be taken such as the superstructure discussed above in the cases traditional 

ballast bed is substituted by a rigid concrete slab; at the mean while the old fiber sleepers are 

also taken the place by concrete sleepers. Otherwise, vibration force transmissibility will be 

increased considerably. Specifically, slab track systems are normally designed to offer 

equivalent vibration attenuation capability by interposition of resilient layers with the rigid 

track structures. Either sleepers or blocks embedded in concrete, prefabricated slabs or 

floating slab track, they are all in fact mass-spring systems.  

The concept of inserting a resilient layer is put forward at first for the innovative 

fastening systems when concrete sleeper was newly introduced into ballasted track structure 

as discussed in section 1.1.1.1 and 1.1.1.2. However, in comparison, slab track systems, 

which employs the principle of resiliently mounted blocks and sleepers such as LVT-system, 

gives much better anti-vibration efficiency by virtue of increased mass. Extending further the 

principle of increasing the resiliently supported mass, thereby reducing system nature 

frequency and therefore enhancing vibration isolation effectiveness, slab tracks including a 

large precast concrete slab such as floating slab track came into wide service all over the 

world. However, due to the expensive cost of prefabricated slab track, highly elastic rail 
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fastening systems become the alternate at large anti-vibration requirement cases. The highly 

elastic fastening systems are very competitive compared to other measure due not only to its 

high anti-vibration effectiveness, but also to the relatively reasonable price and other 

advantages such as easy replaceability, flexible adjustment, etc.  

1.2 Basic concept of vibration isolation  

Generally speaking, vibration isolation is concerned with reducing the force 

magnitude transmitted through a peace of resilient component from the force input terminal to 

the supporting foundation as shown the single degree system, see Fig.1:5.  

 

Fig. 1:5 Single degree vibration isolation sketch map 

As is shown in Fig.1:5, the spring stiffness   and the linear damping coefficient   

represent equivalent parameters of the resilient layer,   represents the mass of the component 

supported above the resilient pad and subjected to input stimulate loadings,   is the 

displacement response of the mounted mass,            represents the input cyclic force with 

the             and angle frequency  . By the single degree freedom system shown in 

Fig.1:5, the equation of motion is  

                   ,                                                       (1:1)  

where the dot denotes to time derivative. The differential equations of the motion in terms of 

the damping factor and the un-damped natural frequency of the system are 

                        ,                                                 (1:2)  
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where        ,   is the damping factor of rubber material and    √  ⁄  is the 

undamped natural frequency of the one degree system. The force transfer function of the 

vibration isolation system is therefore derived as 

        √       √             ,                                                (1:3)  

where        called frequency ratio and    √           . The dimensionless 

amplitude ratio        ⁄  is referred to as force transmissibility and this force 

transmissibility in Equation 1.3 is normally used to evaluate the vibration isolation efficiency 

of a rubber elastomer.  Fig. 1:6 shows the dependence of the force transmissibility    on 

excitation frequency ratio   for various values of the damping factor  . It is clearly can be 

seen from Fig. 1:6 that only if the frequency ratio is greater than √  can transmitted force    

be smaller than the input force amplitude   . For the frequency ratio less than √ , the 

transmitted force    is amplified from   . And in the isolation frequency range, the smaller 

the value of the damping ratio, the smaller the value of force transmissibility and the better 

the isolation is.  

 

Fig. 1:6 Force transmissibility 

Rail fastening systems are typical vibration isolation systems with the rubber 

component inside which can be described by the elastic and viscous elements; the section of 

the railway mass is considered as the mounted mass, and the sleeper or concrete slab is 
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supposed to be the boundary. Obviously, lower stiffness of the rail fastening system gives rise 

to lower nature frequency and smaller force transmissibility. The performance of vibration 

isolation systems is often evaluated by the transmissibility, which measures the reduction of 

transmitted force. In order to achieve high isolation efficiency, force transmitted to the 

foundation needs to be less than the excitation force as much as possible which entails an 

excitation frequency greater than √  times the natural frequency of the system. As a result, 

efficient vibration isolation can be obtained from a system with lower natural frequency.     

1.3 Research situation of rail fastening systems 

1.3.1 Current situation of product development  

The introduction of CWR track as well as the use of concrete sleepers and non-ballast 

track gave rise to the need for fastenings with greater elasticity [1]. As a result, hundreds of 

elastic rail fastening systems, with their own advantages and drawbacks, were designed and 

introduced into newly constructed as well as re-constructed railway lines in the world wide. 

The leading fastening system companies include Vossloh of Germany, Pandrol of UK, Delkor 

located in Australia, Amsted RPS of USA, and so on. However, though wrong usage of the 

rail fastening system either for high speed railway or for light ways or others may give rise to 

expensive consequences and create serious problems such as slowing down or shutting down 

the production process, excessive and irregular wear of the rail, damage of the mechanical 

components, damage of the supporting base, shortening the service life of track components, 

and so on, there is still no yet a general accepted design and selection criterion dedicated to 

rail fastening systems to the authors‘ knowledge which is similar as the performance 

evaluation testing standard. Since the dominant design method for rail fastening systems still 

remains primarily empirical and imitative from developing countries such as China where the 

railway networks are dramatically constructed, the general and superficial common consensus, 

such as keeping the track geometry accurate should be the primary position for high speed 

railway lines while anti-vibration should be the chief task for urban railway lines especially in 

the sensitive region like schools, libraries, business buildings and closely resident places, is 

far from enough. Current research aims at enhancing understanding of the mechanical 

behaviour of fastening systems mainly applied to urban railway networks, concentrates 

mainly on their resilient property under guidance of basic theories of viscoelastic mechanics, 
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rubber engineering behaviours and vibration isolation mechanism. It‘s believed to be 

beneficial for cost reduction due to elasticity overdesign and as the theoretical guidance for 

the performance and service life optimization of two rail fastening systems.  

1.3.2 Theoretical study situation 

1.3.2.1 Numerical analysis of rubber material and elastomers  

The wide use of rubber components (elastomers) in engineering applications should be 

back to good digest of rubber material properties first. A lot of information of mechanical 

behaviour of rubber material can be gained from the literature such as [14-23].   

The accuracy of a rubber material model, i.e. a viscoelastic model, depends firstly on 

the ground state elastic strain-stress relations, i.e. hyperelasticity, and then on the evolution 

constitutive law of the internal variable. [24] Hyperelastic model provides a general capability 

for modelling rubber-like materials that exhibit highly anisotropic and nonlinear elastic 

behaviour, which are valid for large elastic strains. For purely elastic finite-strain calculations 

hyperelastic models are almost the only choice to give realistic predictions of actual material 

behaviour at large elastic strain (generally larger than 5% in applications). All hyperelastic 

models are based on the assumption of isotropic behaviour so that strain energy potential can 

be formulated to define the strain energy stored in the material per unit of reference volume as 

a function of the strain at that point. There are a great number of strain energy potentials to 

model approximately incompressible isotropic elastomers. Examples are Mooney Rivlin (first 

order polynomial model), higher order reduced polynomial model, neo Hookean, Yeoh, 

Arruda Boyce, Van der Waals, Ogden models, etc. The reduced polynomial and Mooney 

Rivlin models are viewed as particular cases of the polynomial model; the Yeoh and neo 

Hookean potentials, in turn, are viewed as special cases of the reduced polynomial model. 

Therefore, these models are collectively referred to as polynomial models. In general, the 

strain energy potential forms are written as separable functions of a deviatoric component and 

a volumetric component, while the deviatoric part of the strain energy function and the 

volumetric property can also be omitted and assessed by a Poisson‘s ratio. 

Since hyperelastic models are based on the definition of strain energy potential, [25] as 

for an isotropic and incompressible material the function can be expressed either in term of 
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the strain invariants which are functions of the stretch ratios or directly in terms of the stretch 

ratios themselves. The stretch ratio is defined as the deformed gauge length divided by the 

initial gauge length by using the nominal engineering strain. Specific hyperelastic models 

defined by using corresponding strain energy functions will be further discussed in Chapter 4.   

Besides hyperelasticity, viscous component of viscoelasticity is also crucial to 

accurately modelling of rubber materials [26]. In linear viscoelastic theory, it is important to 

take time as a physical parameter and the detailed comparison between pure elastic solids and 

viscoelastic solids were presented in [27]. Rubber material shows the phenomena of creep and 

stress relaxation indicating its dependence on time.  Measurements also provide further 

evidence of this time dependence and also imply a memory effect of rubber material which 

manifests that stress response at time   depends on the preceding strain history or that the 

strain at time   depends on the preceding stress history. As a result, constitutive assumption 

for the stress at time   in terms of the strain history up to time   can be denoted by a function 

which is generally referred to as response function. Similarly, there can also be the dual 

constitutive assumption for the strain in terms of stress history. In another word, for every 

statement of stress in terms of strain history, there is a dual statement of strain in terms of 

history. A central issue in the modelling of viscoelastic material is the determination of the 

mathematical form of the response function. In the meanwhile, the essence of the linear 

viscoelasticity consists of two parts: scaling and superposition. In other terms, the assumption 

of linearity of response states that if a strain history is scaled by a constant  , then the 

corresponding stress is also scaled by   and if two strain histories are superposed, the 

corresponding stresses are also superposed. A very useful corollary of the linearity of 

viscoelasticity is that there is no interaction between the stress responses to separate strain 

histories. It however should be noted that this linearity of viscoelasticity on the basis of 

scaling and superposition does not refer to the shape of any strain-stress curve. It refers to a 

method of constructing the stress response to a composite strain history by scaling and 

superposing the stress responses to the component strain histories.  

Generally there are two standard approaches that have been used to develop 

constitutive equations of linear viscoelasticity of rubber materials: mechanical analogy and 

the Boltzmann superposition principle [28]. By using mechanical analogy, linear viscoelastic 

behaviour is normally conceived as a linear combination of a spring and a dashpot and 
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correspondingly we can obtain an elastic modulus with units      and a viscosity value with 

units       . The mechanical analogues method results in a linear differential equation 

with constant coefficients relating stress and its rates of different orders. Some of the 

coefficients are only related to the elastic modulus while some others indicating the viscosity 

are usually determined from the physical experiments. Three basic models that are typically 

used to model the linear viscoelasticity of rubber material are the Maxwell model, the Kelvin-

Voigt model and the standard linear solid model. However, they only differ from each other 

in the arrangement of the springs and dashpots. The Maxwell model is represented by a 

viscous damper connected in series with a purely elastic spring. Since the spring and the 

dashpot are subjected to the same stress, this model is also known as iso-stress model. Though 

the Maxwell model can accurately predict the stress decaying exponentially with time, a 

serious limitation of this model is its inability to correctly represent the creep response of 

rubber-like material increasing without an up bound.  The Kelvin-Voigt model has a 

Newtonian damper in paralleled with a Hookean elastic spring.  Since the two elements are 

kept in the same strain, this model is also known as iso-strain model. The total stress is 

derived from the sum of the stress in both of the two branches. Kelvin-Voigt model is 

extremely accurate in modelling creep in many materials however there is a fatal limitation in 

its ability to describe the stress relaxation in numerous strained viscoelastic materials. The 

standard linear solid model which is also referred to as the three-element model is a 

combination of the Maxwell model and a Hookean spring in parallel. Besides the mechanical 

analogy measures, a more general approach widely used to model the linear viscoelastic 

material is the Boltzmann superposition model. The relaxation modulus function of this 

Boltzmann superposition model consists of an instantaneous relaxation modulus and a gradual 

relaxation modulus function. It, in fact, can be reduced to the Maxwell mode, if and only if 

the stress relaxation modulus satisfies specific conditions [29]. Other special cases of 

Boltzmann model include a generalization of the single spring-dashpot paradigm to one pure 

elastic spring with multiple spring-dashpot system in parallel which is referred to as 

generalized Maxwell model or generalized standard linear model or Wiechert model [28-30].  

However, linear viscoelastic models are apparently not accurate on every occasion. 

For example, nonlinear viscoelastic behaviour is often exhibited when the elastomer 

deformation is large or sometimes the material changes its properties under deformations. 
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Nonlinear viscoelastic theory has been attracting the attention of a large number of 

researchers over the past century [31-38]. Normally two types of constitutive models can be 

read from the literatures, one of which is based on the phenomenological mechanical 

behaviour. In other words, the form of the constitutive model is not based on the explanation 

of how the properties arise from microscopic structures [32, 39-41]. The other type of 

nonlinear viscoelastic model entails formulations based on the molecular mechanisms. Doi 

and Edwads presented a reputation model for concentrated solutions and polymer melts based 

on an assumption that an entangled polymer molecule, the chain, slides through a ―tube‖. The 

polymer chain is free to diffuse along the tube axis but cannot move perpendicularly to the 

tube as other molecules restrict such movement [31]. In [42], the presented Curtiss-Bird 

model is similar to the Doi-Edwards model but is based on a systematic kinetic development 

and does not use the phenomenological constraints of a chin in a tube. It was approved that 

Curtiss-Bird model is more accurate than Doi-Edwards model in predicting the nonlinear 

behaviour. Furthermore, a thorough review of the molecular types of models, relations 

between the nonlinear viscoelastic models and molecular structures are given in [43]. 

Besides the hyperelastic model, linear and nonlinear viscoelastic models, there is also 

a great deal of research literatures describing the response and developing constitutive models 

for rubber materials under dynamic loadings. This is due to the significant use of rubber 

material in engineering practice such as tires, engine mounts, dampen in structures and 

bridges are all subjected to dynamic load. [21] Industrially-used elastomers make rubber 

material modelling much more complicated since the filler particles like carbon black change 

the microstructure of the material in many aspects, some of which are positive such as higher 

stiffness, damping and crack resistance, better adhesion while others are negative such as the 

pronounced viscoelastic nonlinearity under cyclic loadings. [44] The most conventional 

approach in characterizing the dynamic material properties of rubber material is to define the 

dynamic modulus and damping factor of the rubber in frequency domain in terms of a storage 

modulus and a loss modulus. Dynamic properties of rubber material differ from the quasi-

static properties in terms of a hysteresis loop, the larger stiffness value as well as the 

frequency and dynamic amplitude dependent dynamic stiffness and damping factor in terms 

of the varied storage modulus and the loss modulus. This content will be further discussed in 

Chapter 2.  
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Dynamic material analysis test (DMA) is the most common means to measure the 

frequency dependent properties of rubber material specimens. [5R] Frequency dependency of 

rubber material means the changing storage and loss modulus along with stimulating dynamic 

frequency [45-46]. In an attempt to fit the frequency dependent DMA (dynamic material 

analysis) result, the generalized Maxwell models or Prony series discussed above were often 

used [47]. Haupt and Lion [48] presented a model with much fewer material constants in 

comparison with Prony series of high orders to describe the frequency dependency by DMA 

test by introducing a fractional derivative calculus to describe frequency dependent relaxation 

function. There are a great number of other constitutive models addressing the steady-state 

rate-dependent behaviour of rubber material subjected to cyclic loadings. The advantages of 

Bergstrom-Boyce model or briefly referred to as BB model [49, 50] compared to the 

traditional viscoelastic models such as Prony series is its capability of indicating the 

frequency dependent hysteresis loss. However, it was found that BB model doesn‘t 

demonstrate the hysteresis property increasing with enlarged strain rate at relatively higher 

range. A more recent viscoelastic constitutive model by Tomita et al. [51] addresses the 

dependence of the hysteresis losses on the strain rate during cyclic loading. In contrast to the 

micro-mechanistic approach, rate-dependent constitutive models have also been derived on 

the basis of continuum thermodynamics [52-56], by using which the Helmholz free energy is 

split into equilibrium and non-equilibrium components, which give the equilibrium stress and 

viscosity-controlled overstress, respectively. It is worthwhile to note that BB model will be 

further discussed since it is used in the FEA part of current research in Chapter 4-7; this is 

becasue BB model is embedded in Abaqus and also because the main working frequency 

range of rail fastening system is relatively low which is within the BB model‘s applicability. 

The evolution law proposed in BB model is a more general representation of the viscoelastic 

model of Reese and Govindjee [57]. By ignoring the volumetric viscosity term in the finite 

viscoelasticity model and extending the materially linear evolution of Reese and Govindjee, 

BB model was obtained. It was already demonstrated that the algorithmic implementation of 

the model can be done similarly to the algorithm proposed by Simo and Miehe [58] and by 

Simo [59]. Integration of the evolution law is carried out by an exponential mapping 

algorithm [60, 61] and such approach has been used to finite viscoelasticity by Rsses and 

Govindjee [57].   
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The case of the frequency dependence with stiffening modulus and the increasing 

hysteresis losses with frequency was modelled in many ways as discussed above. In the case 

of the amplitude dependence, a reversible softening with increasing strain amplitude can be 

found in great deal numbers of literatures such as [62, 63]. The reversible breakdown and re-

aggregation of filler clusters in the elastomer matrix play a decisive role for the amplitude 

dependence which is known more famous as Payne effect [64]. Payne effect was firstly 

systematically investigated by Payne in the early 1960s when the Payne-effect was only 

addressed originally as the amplitude dependence of the storage and loss modulus at a 

constant frequency [65]. Later on, Payne effect was investigated and reclassified in a broader 

framework by Wrana et al., Heinrich et al., Robertson et al., P. Hofer et al., etc. Based on 

dynamic mechanical measurements, there are some widely used models presented by Kraus 

[65] which is based on microstructural destruction and reorganization rates of the filler 

network, by Ulmer which is derived from Kraus model for a better flexibility and adaptability 

to experimental data, by Huber et al., by Rabkin and Bruger and by Lion et al., and so on. 

Different concepts to model the Payne-effect can be also found in [29, 34, 39, 66-67]. 

Another well-known stress-softening phenomenon is known as Mullins effect. It‘s different 

from the Payne effect because this softening phenomenon is irreversible at room temperature 

and occurs in both filled and unfilled rubber materials [68-70]. [65] Further insight into 

experimental results and modelling approaches of Mullins effect can be referred to the 

references by Mullins, Miehe, Lion, Qi and Boyce, Govindjee and Simo, Ihlemann and so on.  

1.3.2.2 Numerical modelling of elastomers  

Modelling of rubber components can be done from different ways, one common 

approach is to use continuum mechanics and formulate constitutive laws of rubber material. 

Nevertheless, such an approach often deals with static, large strains and finite element models 

[71]. If any, dynamic models of rubber material are still mostly based on linear viscoelastic 

theory [72] and thus the nonlinear behaviour of filled rubber components in engineering 

practice cannot be captured. EICKHOFF and BERG [73-75] outline that the models of rubber 

components should be more global, concentrating more on force-displacement relations rather 

than on stress-strain relations compared to rubber material constitutive models. In fact, we 

should well generalize that material as well as component properties should be related in that 

a rubber component exhibits the same basic characteristics concerning stiffness and loss angle 
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as the material does in terms of shear modulus magnitude and loss factor [76]. Only 

exceptions to this rule are e.g. when the geometry of the component introduces additional 

nonlinearities, such as a progressive stiffness or when the evaluated frequency range is 

extended, resulting in component internal forces which influence its dynamic properties.  

Stiffness and damping property of rubber component depend not only on additives in 

the material but also on geometry, pre-compression, frequency and amplitude of the motion; 

the complicated geometries of engineering component and pre-compression may introduce 

nonlinearity. As a result, modelling of rubber component normally cannot take all the 

experimental phenomena into consideration. The simplest model of a rubber isolator 

accounting for both elastic and viscous effects is the Kelvin-Voigt model derived from rubber 

material constitutive model where a linear elastic frequency independent stiffness is coupled 

in parallel with a viscous dashpot and damping force is proportional to a first order time 

derivative of the displacement. However, it overestimates rubber high frequency losses due to 

the viscous dashpot. Replacing the dashpot with a Maxwell element and forming a three-

parameter Maxwell model or the standard linear solid can provide better high frequency 

description of stiffness but still in a poor loss factor description. Furthermore, the standard 

linear solid can be expanded to Wiechert model, obtaining improved broad band frequency 

description [77-81], which nevertheless inevitably increases the number of parameters to 

clearly describe elastomer dynamic behaviour and brings about computational cumber. The 

efficient alternative in reducing the required number of model parameters while still obtaining 

a good description of viscoelastic materials‘ or components‘ frequency dependence is 

incorporating constitutive relations including fractional calculus [82], referring to the 

thorough review given by Rossikhin and Shimizu [83-84]. Koeller [85] discusses spring-ports, 

which replace ordinary dashpots in viscoelastic models. Replacing the Kelvin-Voigt‘s dash-

pot by a spring-pot results in a fractional Kelvin-Voigt [86, 87]. The fractional standard linear 

solid is used in references [82, 86, 88-90] and by Kari [91] applying the model to fit rubber 

dynamic material property of a wider frequency range subsequently calculating isolator 

behaviour. Time-domain solutions of the fractional derivatives models are investigated by 

references [92-99].  

Since rubber component also displays strong preload and amplitude dependent 

properties, vibration isolators are inherently nonlinear [100-101]. They respectively rate to the 
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finite deformation induced nonlinearity and the Payne effect of rubber material. The latter not 

only influences on dynamic stiffness but also on damping. An estimable progress in nonlinear 

dynamic vibration isolator modelling is noticeable in a lot of references [102-110]. In 

particular, force response of cyclic input displacement is modelled as a combination of a 

nonlinear elastic and a liner viscous damping force [102, 105-106, 110], a linear elastic and a 

nonlinear viscous damping force [109], or a nonlinear elastic and a nonlinear viscous damping 

force [103-104, 107-108], where the dynamic amplitude dependent force, i.e. nonlinear 

amplitude dependency, is expressed by a Coulomb friction model in [109]. All of these started 

to provide a deep insight into various nonlinear isolator phenomena, constructively applicable 

in any vibration isolation optimization process. Reference [111] elaborate on another model 

that includes friction components in series with an elastic spring which is later used as the 

three-parameter Maxwell model [112]. Another way of considering the friction dependent 

damping force is by replacing the viscous component in a standard linear solid by a friction 

component [113]. The same author of reference [111] also present results for the rate 

independent friction component when implemented in a finite element analysis [114]. Kaliske 

[115] describes a friction model based on numerous Coulumb dampers in series with elastic 

springs. It is expanded by Bruni et al. [115], Austrell et al. [104] and Brackbill et al. [116] to 

include frequency dependence, giving good representation of measured properties. Dynamic 

amplitude dependence is modelled by Mallik et al. [117] through separating a nonlinear 

elastic force and a nonlinear damping force, needing a total of eight parameters. Another 

model also taking into account the amplitude and frequency dependence is presented by 

Barber [118] which however needs extensive measurements to properly adjust the numerous 

model parameters. References [76, 10-11, 100], and [14, 75, 119] by Berg give a very widely 

used rate independent frictional component showing a smooth behaviour using only two 

parameters and very good description of the measured amplitude dependent characteristics.  

Though nearly all rubber elastomer models are simplified description since it is 

extremely difficult to implement a model considering all applications with wide range of 

working conditions in the mean while considering about computational effort, it is still 

important to enhance understanding of the mechanical properties and how the component 

properties are influenced by certain working conditions by modelling rubber component 

combined with experiment process. The simplified models can be used in complete system 
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investigations and as a means of finding simpler model parameters for predicting mechanical 

properties of isolation systems. As rail fastening systems is ultimately used as vibration 

isolation system for dynamic improvement, there is a great need to understand and properly 

predict their behaviour by means of experiments combined with mechanical modelling, see 

Chapter 3 for further information. 

1.3.2.3 Numerical analysis of track components  

Generally speaking, track structure consists of rails, sleepers, rail pads or/and fastening 

systems, ballast bed with sub-ballast structures and subgrade or a concrete slab instead. 

Nearly all the other track components have been intensively studied by great deal of research 

papers except rail fastening systems, though it plays an increasingly important role in the 

newly constructed track structures with concrete sleepers or direct concrete slab bed. If any, 

nearly all the literatures include a rail fastening system briefly as a linear pure elastic spring or 

that in parallel with a dashpot which conflict with its real complicated mechanical behaviour, 

such as the nonlinear elasticity at large deformation, close frequency dependency, nonlinear 

amplitude dependency, etc. In addition to the great deal of researches on the integrated track 

structure, further insight into the mechanical behaviour of each track component has also been 

went further and finite element methods were often used [120]. In [121] Frohling proposed a 

mathematical model to predict the track deterioration originated from dynamic wheel rail 

loading and track stiffness irregularity. Gonzalez-Niciez et al. presented and compared a 

single-crosstie and a multiple-crosstie model in order to look into the cracking causes, where 

the important elasticity of rail fastening system however was ignored [122]. There are in fact 

a lot of references studying on the mechanical properties of concrete sleepers while rail 

fastening systems are not mentioned at all or largely simplified. Finite element analysing was 

carried out by Rezatie et al. in [123] to capture the longitudinal crack mechanisms in concrete 

crossties and dynamic responses of concrete crossties were also studied by Kaewunruen, et al. 

in [124]. Two finite element models were used to simulate the behaviour of concrete crosstie 

subjected to vertical wheel load by Yu et al. in [125] and [126], one of which ignores the 

interaction between concrete and strand while the other takes it into account. Dahlverg et al. 

[127] investigated the effects of different support conditions on the rail track system by 

proposing a finite element model, in which rail fastening systems were taken only as a pure 

elastic spring. The limitation of ignoring the rail mechanical behaviour of rail fastening 
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systems, which in fact may lead to inaccurate knowledge of the whole track structure 

performance, was realized by Zhe Chen et al. In [120, 122], behaviour of the pre-stressed 

concrete sleepers and their dependence on special parameters are studied, where rail fastening 

systems are considered as one of the influence parameters being studied, such as support 

conditions, wheel load position and so on. However, the rail fastening system included in this 

study is a rather easy type with only a layer of rubber pad which cannot represent the general 

properties of the modern fastening systems, especially those used in metro systems with high 

elasticity. Though very few studies on behaviour of the integrated fastening systems were 

found up to today, researches on the fastening clip component such as [120, 122, 124] and on 

rail pad [121, 123] start to provide detailed insight into the important properties of rail 

fastening systems. 

1.4 Scope of the present research  

The outline of current research is as follows. Chapter 2 presents the quasi-static and 

dynamic experiments of two different types of rail fastening specimens, one of which is a 

shear-type fastening system while the other is a compressed-type fastening system. This 

serves two purposes. Firstly, quasi-static and dynamic mechanical behaviour, such as 

nonlinear elasticity at large deformation, hysteresis loss during dynamic loading and pre-load 

dependent, frequency as well as amplitude dependent properties, can be observed and 

compared to those of other common vibration isolation systems discussed in Chapter 1; 

secondly, the measured results will be used in Chapter 3 for fitting the numerical model 

parameters.  

Three different models introduced in other vibration isolation systems were used and 

compared in Chapter 3 according to the observed mechanical behaviour through experiment 

data. Since it is extremely difficult to implement a model considering all applications with 

wide range of working conditions in the mean while considering all complex mechanical 

properties, the three models were used respectively emphasizing on different characteristics. 

The models presented herein benefits in enhancing understanding and predicting the 

mechanical properties and how they are influenced by certain working conditions, also 

providing theoretical basis for product design, optimization and production.  
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In addition to the models, which are used to describe and predict the general 

mechanical properties, finite element analysis is also important to be employed in analysing 

the detailed performance of the rubber components in the two fastening specimens. A family 

of fundamental rubber material experiments is therefore depicted in Chapter 4. Uniaxial 

tension, uniaxial compression and planar tension measurements are carried out to describe the 

hyperelasticity of the present rubber; a set of dynamic experiments (DMA) are presented in 

order to decide the viscoelasticity of the rubber. Different hyperelastic and viscoelastic 

models are compared according to the measured data and, at last, the most suitable model is 

selected. Model parameters are determined by using the measured results.  

In Chapter 5, displacement-force relationships of the two rail fastening specimens are 

studied and compared with each other. Firstly, by using the selected material models and 

parameters the two fastening systems are modelled in Abaqus. And then each quasi-static 

experiment and the dynamic measurement under different loading conditions are simulated. 

Simulated results will be compared with the measured results to ensure the fitted models and 

simulation process. At last, all the nonlinear features observed in the working curves, such as 

geometric nonlinearity, material nonlinearity, boundary nonlinearity as well as nonlinear 

dynamic properties, will be analysed and explained in this virtual environment. The different 

nonlinear properties of the shear type and compressed type rail fastening systems are also 

proposed and explained.  

In Chapter 6, parameter sensitivity analysing of the present shear type and the 

compressed type rail fastening systems are introduced, which are followed by an optimized 

process from different ways. Nonlinear properties discussed above are taken good use or 

avoided during the optimization. Optimization objectives are put forward such as isolation 

efficiency, displacement response, vertical and lateral stiffness match, free surface 

rationalization and material cost. An important term ―shear-compression ratio‖ is firstly 

proposed in present research in order to meet the expecting vibration isolation capability and 

the vertical-lateral-stiffness ratio with the lowest optimization cost.  
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Chapter 2 Experiment of rail fastening systems 

In this Chapter, a shear type and a compressed type rail fastening systems are used to 

carry out a family of quasi-static and dynamic experiment. The quasi-static experiment aims 

at observing the nonlinear features especially at large deformation. Dynamic experiments are 

used to exhibit the frequency-and-amplitude dependent properties of rail fastening system. 

Experiment results will be compared with the mechanical behaviour of other type vibration 

isolation systems. Testing data will also be used to fit the mechanical model parameters in 

Chapter 3.  

2.1 Introduction 

The introduction of continuous welded rail (CWR) track, especially in the case of slab 

track gives rise to more and more urgent need for fastenings with great flexibility. As heavy 

freight axle loads increases and high-speed railway development, in addition to the increased 

service demands, the improved performance high elastic rail fastening system is becoming 

increasingly necessary. Flexible feature is one of the most important parameter of rail 

fastening systems, which should be tested in laboratory before and after designing process 

[128-129]. The presented measurements in this chapter aims not only at experimentally 

determining the quasi-static nonlinear elasticity of the two given rail fastening specimens, but 

also at observing their amplitude-dependent and frequency-dependent dynamic properties. 

The two specimens were produced only for research under the reference to the products from 

company Clouth Gummiwerke of Germany originated as early as 1979. They are selected to 

be fully studied because of their muchly universal and worldwide use until today; and they are 

also compared with each other for their different deformation state. One specimen is a 

compressed type elastic fastening with a piece of rectangle rubber pad vulcanized to a top and 

a bottom base frame, while the other is a highly resilient rail fastener providing elasticity 

mainly by shear deformation with an elliptical rubber ring vulcanized to a top and a bottom 

base plate. It should be noted that the preload dependent nonlinearities shown in the 

experiment results may be due to either the intrinsic rubber material properties or to their 

geometrical designing. 
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2.2 Test apparatus and specimens 

2.2.1 Test apparatus  

The static and the dynamic experiments were carried out with a SDS-200 electro-

hydraulic servo testing machine. Testing schemes are shown in Fig. 2:1. The core brain of this 

testing instrument is the FlexTestSE integrated control system designed by company MTS, 

consisting of a digital controller and computer analysing system. It incorporates data 

acquisition, signal processing, displaying, printing parts. The testing process can be controlled 

by displacement or force. It can apply a disturbance frequency range of 0.001Hz to 200 Hz; 

actuator is capable of applying the force up to ±200kN (+/ tension, -/ compression) and the 

stroke of piston can be ±75 mm; force and displacement measurement accuracy are 

respectively ±1% of the reading load and ±1% of the reading displacement; examples of the 

wave shapes are sinusoidal wave, square wave, triangular wave, drab wave and different 

inputting waves. The testing instrument complies with EN ISO 9513:2002 and EN 13146 

series; it is therefore qualified to be used to test the quasi-static and dynamic mechanical 

behaviour of the two given rail fastening specimens.  

 

Fig. 2:1 Test schemes 

2.2.2 Specimens  

There are dramatically different types of rail fastening systems in modern railway 

structures. Generally speaking, they are designed to be various due to many reasons, such as 

the demand of vibration isolation efficiency, requests for integrity and maintenance, restricts 
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of accessing in the railway line, compatibility with the existing lines in a renewing project, 

terrain limitation, etc. The two fastening systems are selected and studied because of their 

muchly universal and worldwide use and different deformation state, one of which is a 

compressed type fastener while the other is shear type fastening system. 

2.2.2.1 The compressed type fastening systems 

Specimen I is a bonded compressed rail fastening system (Fig.2:2(a)) with a resilient 

rubber boot vulcanized directly to the top and thee bottom iron frames. As can be seen from 

Fig. 2:2(b-d), the blue grid represents the rubber component and the black diagonal lines 

indicate the steel plates. Detailed dimensions of its rubber component, a cubic rubber boot, 

and the key parameters are listed in Table 2:1. The main part of the rubber component is a  

                

                       (a) Specimen I                                       (b) Longitudinal profile        

 

                      (c) Cross-section profile            (d) Detailed dimension of the rubber component 

Fig. 2:2 The compressed type fastening system (Specimen I) 
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21mm-height cubic rubber pad with five 10mm-width and 11mm-height slots at the bottom 

surface in order to apply better elasticity. In addition, there is a strip-shape ―sensitive area‖ on 

both sides of the rubber component specified in Fig. 2:2(d), which are designed to integrate 

all the three parts. Since this area has a very small dimension which may lead to large 

deformations and may also result in local high stress, it is considered as sensitive. It should be 

noted that both specimens are produced with the same material prescription and the shore‘s 

hardness of the rubber is given by manufacturer as 65 degree. Producer also delivers the 

nominal vertical stiffness (static) of specimen I, 40kN/mm, and the ratio of the dynamic 

versus static stiffness equals 1.1. 

2.2.2.2 The shear type fastening system 

Specimen II is an egg-shape shear type fastening system consisting of a top, a bottom 

frame plate and a rubber elliptical ring as shown in Fig. 2:3(a). Geometric properties of its 

rubber component are also specified in Table 2:1 and in Fig. 2:3(b). Though the used rubber 

material is the same as specimen I, it has a much lower nominal vertical stiffness, 10kN/mm, 

in compared with the compressed type fastener. Ratio of its dynamic and static stiffness is 

also 1.1.  

Specimens Specimen I Specimen II 

Type Compressed type Shear type 

Shape of the rubber 

component 
Cubic Elliptical ring 

Material prescription 1701A 1701A 

Shore’s hardness 65 degree 65 degree 

Nominal static stiffness 40kN/mm 10kN/mm 

Ratio of dynamic and static 

stiffness 
1.1 1.1 

Size 

Height Height: 50mm 

21mm Outside long axis: 205mm 

Width Outside short axis: 124mm 

180mm Inside long axis: 186mm 

Length Inside short axis: 105mm 

320mm Tangent inclined angle: 110º 

Table 2:1 Rubber component dimensions of the two specimens 
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     (a) specimen II                 (b) Longitudinal profile (a quarter of the model) 

Fig.2:3 The shear type fastening system (Specimen II) 

2.3 Test operating conditions 

2.3.1 Quasi-static loading 

The total vertical wheel-rail load is made up of two components in general: static force 

and dynamic force. The former equals half the static axle load; the dynamic forces arise from 

sprung mass ranging at 0 to 20 Hz, un-sprung mass at 20 to 125 Hz, and corrugations, welds 

as well as wheel flats from 0 to approximately 2000 Hz. It thus can be seen that rail fastening 

systems, unlike most other rubber elastomer applications, work under a pre-compression state 

superimposed with dynamic forces. Besides, though the clamping force and track mass are 

comparatively much smaller than the axle load, they contribute to the static force as well.  

It‘s rather easy to calculate a statically loaded system by using the beam theory. As 

can be seen from the 2D beam in Fig. 2:4, the track is considered as a beam which is 

supported by spring systems representing sleepers and fasteners, where   is the displacement 

between two adjacent nodes,   is the wheel base and   represents half of the axle load. The 

fastening systems are considered directly as pure springs because the loading condition herein 

is static. We correspondingly use a 3D track system consisting of a slab bed, fastening 

systems and a section of rail tracks modelled in FEA software to calculate the maximum static 

loading amplitude due to the axel load, see Fig. 2:5 (a). Taking specimen I for example: as the 

wheel load values 23 tones and the displacement between two nodes and the wheel base value 

respectively 625mm and 2200mm, the maximum static load subjected to the track can be 



 

31 

 

obtained. From Fig. 2:5 (b) we can see that, the maximum vertical static force locates at the 

nodal position. Moreover, it was found that the longer the rail track is used the larger value of 

the maximum static force we obtain. This instability, however, becomes stable as the section 

of the rail track is longer than 12m. As a result, the length of the rail track is taken as 15m. It 

should be noted that normally the lighter axial load of a railway car is mainly for urban 

railway transit while the larger axial load is for high-speed railway or normal passenger train, 

and urban railway track systems demand smaller stiffness value of rail fastening systems. 

Since the nominal stiffness of the present two rail fastening systems are respectively 

10kN/mm and 40kN/mm, different axle load should be adopted to calculate the nodal force: 

160kN for the shear type specimen while 230kN for the compressed specimen. As a 

consequence, the maximum vertical static force is obtained to be 40.94kN for specimen I and 

22.4kN for specimen II as depicted in Table 2:2.  

 

Fig.2:4 Sketch map of track structure under static loading 

         

  (a) FEA 3D model                                      (b) Calculation results  

Fig. 2:5 Determination of the maximum static force on the track nodes 
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Specimen 
Nominal stiffness 

(kN/mm) 

Axle load 

 (kN) 
5m 7m 9m 12m 15m 

I 40 230 -39.519 -40.738 -40.910 -40.940 -40.941 

II 10 160 -17.462 -21.167 -22.366 -22.401 -22.408 

Table 2:2 The maximum vertical static force obtained with different rail length 

It is common practice to take the dynamic effects of wheel-rail contact by a speed 

coefficient or dynamic amplification factor (DAF) when a statically loaded track system is 

under study. The effect of running speed on dynamic force is in fact highly complex because 

of the uncertain interaction between vehicle wheels and track. Several formulas have been 

proposed aiming at assessing the dynamic effect however they are only rough approximation 

because the geometric quality of the track, the mechanical characteristics of the track and the 

trucks are not sufficiently taken into account. Among the theoretical calculations, one formula 

developed by Eisenmann is accepted and well used by European railway companies. The 

Eisenmann scheme is dependent on the train speed  , track quality factor  , and a 

multiplication factor of standard deviation  , which depends on the confidence interval. It 

reads as 

                   ⁄  

                    ⁄                  ⁄            ⁄ .                  (2:1) 

Since railway track is closely related to safely operation and to the reliability of the 

traffic, unfavorable conditions are often considered when       and    , although the 

probability of such condition is only 0.3% (see Table 2:3).  

Probability t Application Track condition   

68.3% 1 Contact stress, subgrade Very good 0.1 
95.4% 2 Lateral load, ballast bed Good 0.2 
99.7% 3 Rail stresses, fastenings, supports Bad 0.3 

Table 2:3 The chosen factor depending on confidence interval and track condition factor 

Fig. 2:6 gives the graphical presentation of the Eisenmann scheme showing the 

variable values of DAF ranging from 1.1 to 2.8 as train speed is lower than 200 km/h. To give 

an idea, supposing train speed is 70km/h, a DAF value equalled to 2 can be read from Fig.2:6 

as       and    . At this situation, the total vertical loading value is obtained as 
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                 ; in addition, in order to take the clamping force into account, the 

final maximum loading value of quasi-static experiment for specimen I is taken as 100kN. In 

the same way, 70kN should have been determined as the maximum loading value for 

specimen II. However, since there is an obvious nonlinearity as specimen II is loaded up to 

about 70kN, it‘s extended to 120kN until the nonlinear property exhibits completely.   

 

Fig. 2:6 DAF values as a function of the train speed at different track qualities and 
probabilities 

To underline, though the loading limit value in experiments for determining static 

stiffness of rail fastening assemblies is no larger than 80kN according to European standards, 

100kN for specimen I and 120kN for specimen II are used in present research for enhancing 

the understanding of the large deformed properties of rubber component in the two rail 

fastening systems [128-130].  

Specimens were kept in room temperature at around 23 degree for two days prior to 

starting the test. Specimen I was loaded at a speed of 50kN/min until 100kN; the same 

loading speed is conducted to specimen II. As the maximum loading value is reached, 

unloading process is followed until zero. Fig. 2:7 depicts the testing site and instruments. The 

loading-unloading process was repeated two times in order to exclude the Mullins effect 

before the real test, and the vertical displacement of the shaking table and the loading value on 

the rail head are recorded with the force transducers at the third cycle. Specimens were 

subsequently removed from the testing machine. Letting them sit for half an hour on the 

testing site can help to recover the deformation. The whole testing process needs to be 

repeated for three times and the measured data will be compared. If any two of them differ 
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from each other by 10%, the fourth time test needs to be complemented. The quasi-static 

testing results for both of the specimens will be shown and discussed in the following part. 

Nonlinear properties shown in the measured working curves will also be studied. 

                                                     

     (a) The compressed type fastening system          (b) The shear type fastening system            

Fig. 2:7 Testing site and instruments 

2.3.2 Dynamic loading 

Railway systems have increasingly received complaints from people living alongside lines 

and above underground lines. The disturbance is generally caused by either the direct 

emission of noise or by vibration from the railway, and sometimes noise in buildings is 

produced by the walls vibrating which is referred to as re-radiated noise. As Table 2:4 depicts, 

vibrations and structure-born noise mainly occur at low to middle frequency range (<100Hz) 

due to vehicle kinematic modes, truck precession wave, short waves and long waves of 

wheel-rail interaction, i.e. railway track irregularities. At higher frequency, from 100Hz to 

2000Hz, vibrations attenuate rapidly; however short waves, wheel corrugations, rail 

roughness, track condition, curving, rail wear, hunting and so on, radiate the energy directly 

as noise, i.e. air-born noise. Roughly speaking, vibrations and structure-born noise occur 

normally in the frequency range of 0 to100 Hz and noise between 30 – 2000 Hz. However, 

though the disturbance frequency range is so large, truck precession wave frequency is 

believed to be the main disturbance for rail fastening systems. The main frequency range, 2Hz 

to 10 Hz, can be obtained either from a simple formula     , where   is the travel speed and   is the wheel-base bogie, or a filed test (Fig. 2:8). Supposing the train speed is 20km/h to 

80km/h and the wheel base is 2.2m, frequency range can be determined as 2Hz to 10 Hz. The 

higher the train speed, the larger the frequency range we get. Fig. 2:8 shows a wild test to 
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measure the vertical force and displacement of the rail. From testing results in frequency 

range we can also know that the main frequency range for a node is below 10Hz. 

Disturbance Vibration source Frequency range 

Vibration 

(a) Vehicle kinematic modes; 
(b) Truck precession wave; 

(c) Wheel-rail interaction (long wave); 

0.75Hz- 5Hz 
2Hz-10Hz 
0Hz-50Hz 

Re-radiated noise 

(d) Wheel-rail interaction (short wave); 
(e) Wheel corrugations, rail roughness, track condition,  

curving, rail wear, hunting, etc. 
30Hz-100Hz 

Air-born noise (d) (e) 100Hz-2000Hz 

Table 2:4 Disturbances of track structure  

                                                  

                       (a) The field test site         (b) Testing for the main frequency at node                    

 

                                                        (c) Testing results                                  

Fig. 2:8 Field test to determine the main frequency for rail fastening system 

As a result, dynamic force ranging from 2Hz to 10Hz is applied to the compressed 

type fastening system (specimen I) with the preload, 20kN. The dynamic displacement 

amplitudes are from 0.4mm to 1.0mm for specimen I. All the input data for dynamic 

experiments are listed in Table 2:5. In order to study and compare the preload dependent, 

frequency dependent as well as dynamic amplitude dependent properties of rail fastening 

systems, preload for applying a pre-compression, frequency range and dynamic amplitude 

values all all expanded to a wider range for specimen II because its lower nominal stiffness 

allows larger vertical displacement.  
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Conditions 
The compression type system 

 (Specimen I) 

The shear type system 

(Specimen II) 

Nominal stiffness (kN/mm) 40 10 
Preload (kN) 20 15, 20, 25, 30 

Frequency (Hz) 2 - 10 2 - 18 
Amplitude (mm) [0.4: 0.1: 1.0] [0.4: 0.1: 1.5] 

Table 2:5 Dynamic experiment conditions  

2.4 Testing results and analysing 

2.4.1 Quasi-static test 

Fig. 2:9 shows the measured displacement-force relations of the compressed type (a) 

and the shear type (b) rail fastening systems. Vertical axis is the force input read by the 

transducer while the horizontal axis is the displacement response of the shaking table. 

Obviously unloading process follows a different way from the loading procedure for both 

specimens, giving rise to a hysteresis loop although the loading speed is very slow. At the end 

of unloading procedure, zero force does not give a full deformation recovery which means 

that displacement response lags behind the input force. This is due to the intrinsic viscosity of 

rubber material. In addition, the quasi-static stiffness of the two specimens is found to be 

severely dependent on the curve shape and the deformation range selection. For specimen I, 

secant stiffness calculated from zero to the maximum displacement is 37kN/mm which is very 

close to the nominal stiffness, 40kN/mm; however this value increases to be nearly 50kN/mm 

if the softening segment at the very beginning of the loading line is excluded. For specimen II, 

in another hand, the stiffness starting from zero point to 6mm is approaching the nominal 

stiffness 10kN/mm; but it will be strongly enlarged if the following nonlinear segment is 

included in. 

There are different nonlinearities shown in these two working curves in Fig. 2:9 due to 

either the material properties or their geometries. Someone looks remarkable while someone 

even can be neglected. Detailed analysis on these nonlinear properties will be fully discussed 

in Chapter 5. 
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     (a) Compressed type (Specimen I)                  (b) Shear type (Specimen II)        

Fig. 2:9 Quasi-static working curves 

2.4.2 Dynamic test 

If an input cyclic displacement is varying as a sinusoidal function in time, i.e.                 ,   is frequency,   is the dynamic amplitude and    is the pre-compression, 

see Fig. 2:10. The force response of a linear viscoelastic system is also sinusoidal in time, but 

it will lag the displacement by a phase angle   as                   , where    is the 

preload needs to obtain the pre-comression,   is the force response amplitude. The phase 

angle is related to the time lag    between the sinusoids by                . If we 

remove the intermediate component time  , input displacement and output force compose a 

hysteresis loop.  

 

Fig. 2:10 Time-displacement and time-force relationship 
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According to international standards [130], a maximum loading value      needs to 

be determined before the test and the minimum loading value      is supposed to be about 

5     in order to test the dynamic stiffness of a rail fastening assembly. Taking the working 

conditions of 20kN preload, 4Hz frequency for example in the present experiment,      is 

selected to be about 35kN. In order to study the amplitude influence on the dynamic 

mechanical behaviour of the fastening systems, measurement is controlled by displacement, 

as a result both      and      are not exactly same as the testing standards. The cyclic 

displacement disturbance of       is applied for 1000 cycles, and during the last 100 

cycles testing data are recorded. The measured displacement-force curve of both compressed 

type and the shear type specimens are shown in Fig. 2:11. The dynamic stiffness can be 

obtained from the hysteresis loops as disturbance frequency is 4Hz, preload value is 20kN and 

the displacement amplitude is 0.4mm for specimen I and 1.5mm for specimen II. For the 

compressed type fastening system, the tested dynamic stiffness is 42.706kN/mm and the ratio 

of dynamic versus static stiffness is thus 1.067 which is approaching to the value given by 

manufacturer; for specimen II, these two values are respectively 10.692kN/mm and 1.069 

which also agrees with the nominal value 1.1.  

Obvious different shape of the hysteresis loops can also be seen in Fig. 2:11, where 

specimen I shows a crescent-shaped loop while specimen II exhibits an elliptical loop. 

Generally speaking, this is believed to be due to the preload (or pre-compression) dependent 

property of a rubber component. This nonlinear property will be further studied in Chapter 5.  

 

                         (a) The compressed type                                  (b) The shear type            

Fig. 2:11 Dynamic testing results 
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With the hysteresis loop of single working condition as shown in Fig.2:11, it‘s hard to 

distinguish nonlinear viscoelastic properties. However, studying on the time-displacement and 

time-force response relations can help to tell the nonlinearities. Taking the loading case of 

preload 20kN, frequency 2Hz and amplitude 0.6mm of specimen I for example, whose input 

displacement can be simulated as a sinusoidal function 

          (         )                                       (2:2a) 

and a comparison of time-displacement relationships for the measurement and calculation as 

Eq. 1:2a is shown in Fig. 2:12 (a). However, this single frequency harmonic displacement 

excitation results not only in a force response of the fundamental frequency [76], but also in 

other physical overtones. Specifically, what is shown in Fig. 2:12 (b) in red line is the 

simulated force response with only the fundamental frequency 2Hz, and the simulation 

function can be described as 

         (        )                              .             (2:2b) 

Visible difference can be seen between measurement and the fitting result in Fig. 2:12 

(b). The green line, however, meets the test result much better with a second overtone (  ) 

reads: 

         (         )      (         )                (          )                     

                               (2:2c) 

This frequency split indicates that the rubber used in current research is not a typically 

linear viscoelastic material, whose response is not simply same as the input function. [131-

132] Tariq et al. and Onogi quantify the degree of viscoelastic nonlinearity by evaluating such 

overtones.  
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     (a) Time-displacement                              (b) Time-force response   

Fig. 2:12 Measured and simulated time-displacement and time-force curves 

2.4.2.1 Dynamic amplitude dependence 

The rubber material used for producing rail fastening system is normally filled rubber 

in order to reinforce its tensile and shear strength. As discussed above, the filled rubber has 

two well-known amplitude effects, the Mullin‘s effect and the Payne effect. When the 

material specimens or a rubber component is subjected to a cyclic forced deformation, the 

first few oscillations result in reducing peak value of the force response [133-135]. The 

Mullin‘s effect is eliminated in the present quasi-static and dynamic experiments by loading 

the specimens a few cycles, so that the molecular networks can rearrange prior to the real 

measurement. Payne effect is in general explained as a decreased modulus with increasing 

dynamic amplitude. Filled rubber exhibits more pronounced Payne effect compared to nature 

rubber. Payne effect is believed to be the consequence of the molecule interaction breaking as 

motion increases at the relatively small deformation range; but the breakings can almost fully 

recover back within each cycle [136]. An intact filler structure displays a larger modulus 

magnitude for small motions; as the amplitude increases the filler structure breaks resulting in 

a decreased modulus. This breaking of the microscopic structures is always described as a 

frictional behaviour which leads to an increased energy loss. As the amplitude increases 

further, the frictional behaviour is released resulting in a decreased energy dissipation 

mechanism and a lower loss factor value, and the gradually reduced modulus magnitude is 

applied by the remaining polymer chains and rubber-filler hydrodynamic effect. A thorough 

discussion is given in [137] on the examples of a strong amplitude dependence of the shear 

modulus and loss factor of the rubber material with various filler concentrations. It‘s also well 
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documented by Mattias Sjoberg and Dean et al. [138], Jurado et al. [139], Sommer and Meyer 

[140], Wang [141], and Medalia [136]. Similar amplitude dependent behaviour of rubber 

components as the Payne effect of rubber material are presented in [76, 10-11, 100, 142]. 

Rubber component in the rail fastening systems are nearly the most important resilient 

element and obvious displacement amplitude dependence also shows in the dynamic testing 

results of the two specimens.  

 

       (a) Frequency f=4Hz                                         (b) Frequency f=6Hz  

 

              (c) Frequency f=8Hz                                 (d) Frequency f=18Hz  

Fig. 2:13 Dynamic amplitude dependent hysteresis loops 

Taking specimen II for example, Fig. 2:13 demonstrates the displacement-force 

relations at different frequency and amplitude, i.e. the frequency and amplitude dependent 

hysteresis loops [143]. The preloading value is 20kN. We can see from Fig. 2:13 that for all 

the instanced frequency case the secant dynamic stiffness increases as the stimulating 

amplitude decreases and the secant stiffness is defined by an oblique from the beginning to 

the end of the loops. In addition, we can also see that the enclosed area of the loops increases 
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with the enlarged amplitude. For example in Fig. 2:13 (a) the hysteresis loop of 0.4mm is 

approaching to an inclined straight line; on the contrary, the area increases with the enlarged 

displacement amplitude. However it should be noted that the increasement of the loop area is 

mainly influenced by the enlarged disturbance amplitude. Although, according to viscoelastic 

theory, the damping property of the fastening specimens is also varied with the varied 

amplitude, it cannot be clearly distinguished from the Fig. 2:13. In order to make it clear, the 

calculated dynamic stiffness of three cases     ,      and      for instance are shown in 

Fig. 2:14 (a), the increased area of the hysteresis loops indicating the energy loss per cycle is 

drawn with amplitude in Fig. 2:14 (b) and the damping measure calculated by the measured 

energy loss according to  

                                                                                                         (2:3) 

is depicted in Fig. 2:14 (c). Compared to Fig. 2:13, Fig. 2:14 (a) and (b) show the same 

influence by disturbance amplitude on the dynamic mechanical properties, where the 

increased amplitude results in the decreased secant stiffness and the hysteresis loss increases 

with amplitude at all frequencies. However, Fig.2:18 (c) illustrates that the amplitude 

dependent loss angle obtained by Eq.1:3 increases first following the amplitude and then 

decreases. A peak value can be observed in all three presented cases in coincidence with the 

occasion of rubber material. As discussed above, the decreased dynamic stiffness is due to the 

filler structure breakings and the increasing loss angle at small amplitude is because of the 

accompanying frictional effect, while the decrement of the loss angle as the amplitude 

increases further is due to the released friction effects at larger motions. Specimen I shows the 

similar amplitude dependent properties as specimen II, the experiment results of specimen I is 

omitted herein for brief.  
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        (a) Amplitude dependent secant stiffness       (b) Amplitude dependent energy loss 

 

(c) Amplitude dependent loss angle 

Fig. 2:14 Dynamic amplitude dependent stiffness and damping properties 

2.4.2.2 Frequency dependence 

Rubber material additionally exhibits strong frequency dependent properties 

displaying glassy region, transition process and rubber region. Theoretically, material 

modulus magnitude increases with frequency throughout all the three steps, and the 

increasement is moderate in the glassy and rubber region but is severe in the transition region. 

In another hand, the loss factor increases with frequency in the rubber region, and decreases in 

glass region after reaching a pick value in the transition step. It is in fact impossible to 

measure the dynamic characteristic of a rubber material at such wide frequency range; it is 

possible, however, to obtain the properties by using the knowledge of temperature-frequency 

shifts as discussed in Chapter 3 
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The dynamic stiffness, hysteresis loss and the loss angle of the two fastening 

specimens were tested and outlined under the influence of stimulating frequency. Taking 

specimen II for example, Fig. 2:15 shows this frequency dependence at several amplitude 

cases. It is clearly can be seen that the stiffness, the hysteresis loss as well as the loss angle all 

increases with frequency. However, since the interested frequencies locate in a relatively low 

and narrow range (below 20Hz) the influence on the frequency on the dynamic stiffness and 

hysteresis loop therefore is very limited. Theoretically, obviously nonlinear frequency 

dependence can be observed only when the stimulating frequency is as high as 2000Hz (or by 

controlling with temperature). Specimen I also shows the similar frequency dependent 

properties which is omitted herein for brief.  

 

   (a) Frequency dependent secant stiffness       (b) Frequency dependent energy loss 

 

(c) Frequency dependent loss angle 

Fig. 2:15 Frequency dependent stiffness and damping properties 



 

45 

 

2.4.2.3 Preload influence 

Rail fastening systems exhibit nonlinear properties for small to intermediate 

amplitudes due to material behaviour where small cyclic deformation results in increased 

stiffness compared to that of larger cyclic deformation. This nonlinearity referred to as the 

Payne effect for material, was already discussed in section 2.4.2.1. In addition to this, rail 

fastening systems also show another nonlinear property at relatively large strain. As a rubber 

component, this nonlinearity can be due to either the intrinsic rubber material or the 

component geometry. A sketch of how dynamic displacement-force relations are influenced 

by the preload (pre-compression) is depicted in Fig. 2:16. Normally, if the dynamic hysteresis 

loop locates in the small deformation region the shape of the enclosed displacement-force 

curve doesn‘t change; however if the dynamic hysteresis loop locates in the relatively large 

deformation domain the shape of the dynamic hysteresis loop is varied due to the nonlinear 

features of the quasi-static loading curve. Since the nonlinearity of rubber components may 

due to the intrinsic material properties or to the geometries and structures, the preload 

dependence on the dynamic properties may also arise in the small deformation part. As shown 

in Fig. 2.16(a) for specimen I, the shape of the dynamic hysteresis loop is changed by the 

nonlinear feature of the quasi-static loading curve although in the very small deformation 

range. In another hand as shown in Fig. 2.16(b), although there are four different preloading 

values, 15kN, 20kN, 25kN and 30kN, and the dynamic curves locate in different parts, they 

are nearly not influenced.  

 

          (a) The compressed type fastening system        (b) The shear type fastening system         

Fig. 2:16 Nonlinear displacement-force curve under the influence of preload 
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In fact, if we put the preload influenced dynamic stiffness of specimen II as shown in 

Fig. 2.17, it‘s not hard to find Z-axis (dynamic stiffness) changing with X-axis (preload) 

following the quasi-static loading curve. In addition, Z-axis (dynamic stiffness) also varies 

with Y-axis (dynamic amplitude) severely where the increasing dynamic stiffness increases 

with the dynamic stiffness. Apparently, dynamic amplitudes have stronger influences on 

stiffness in YZ axis than that of preload in X-Z axis.  

                   

Fig. 2:17 Preload-and-amplitude dependent properties 

2.5 Summary 

In this chapter, quasi-static and dynamic experiments of two different kinds of rail 

fastening systems were conducted. Specimen I is a compressed type fastener and specimen II 

is shear type. The quasi-static measurement doesn‘t aim at determining their static stiffness, 

but mainly at discovering their nonlinear elastic properties. The nonlinearity shown in the two 

working curves will be further studied and explained in Chapter 5. Through dynamic 

experiments, both compressed and shear type specimens exhibit motion amplitude dependent 

and frequency dependent properties. Preload dependency was also observed by 

superimposing oscillations to the quasi-static loading curves. Generally speaking, rubber 

components show the same basic characteristics concerning stiffness and loss angle as the 

rubber material does in terms of modulus magnitude and loss factor. As for both the two rail 

fastening systems, decreased secant dynamic stiffness and increased energy loss during a 
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oscillating cycle, as well as a peak value of the loss angle were observed, which coincides 

with the Payne effect of rubber material very well. Frequency dependency was linearized 

because the loading frequency range is only below 20Hz and it is so far away from the 

nonlinear frequency dependent area. Preload influence is supposed to be due to either the 

finite strain characteristic of rubber material or the geometries and boundary conditions of the 

specimens. All these nonlinearities will be further explained and simulated by using FEA in 

Chapter 5. 
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Chapter 3 Modelling of the rail fastening systems  

In this Chapter, three different models will be introduced to depict the mechanical 

properties observed in the experimental results. Since it is extremely difficult to implement a 

model considering all applications with wide range of working conditions in the mean while 

considering all complex mechanical properties, the three models emphasize on different 

characteristics. The mechanical modelling in this Chapter benefits in further understanding 

and predicting the mechanical properties of rail fastening systems, also can provide 

theoretical basis for product design, optimization even production process.  

3.1 Introduction 

Is was found in Chapter 2 that the force response to the harmonic displacement 

excitation, superimposed on a long term static displacement of the rail fastening systems 

consists of stiffness and damping properties, which respectively concern the elastic force and 

damping force. The dynamic properties, i.e. dynamic stiffness characteristics and the 

hysteresis energy loss are strongly dependent on static preload, dynamic amplitude as well as 

frequency [144, 145]. 

Nearly all rubber isolator models are simplified description since it is extremely 

difficult to implement a model considering all applications with wide range of working 

conditions in the mean while considering computational effort. However it is still important to 

model the rubber isolation systems in order to enhance understanding of the mechanical 

properties and how the component properties are influenced by specified working conditions. 

As rail fastening systems is ultimately a vibration isolation system for dynamic improvement, 

there is a great need to understand and properly predict their behaviour by means of combined 

experiments and mechanical modelling.  

The study on the rubber components should be back to good digest of rubber material 

properties. A lot of information of mechanical behaviour of rubber material can be gained 

from the literature such as [15-23]. Among the different methods in modelling rubber 

components in the engineering practice, one common approach is to use continuum 

mechanics and formulate constitutive laws originated rubber material [71-72]. EICKHOFF 



 

49 

 

and BERG [73-75] outline that rubber component models should be more global, and should 

concentrate on the force-displacement relations rather than stress-strain relations. However, 

generalizes that material as well as component properties should be related in that a rubber 

component exhibits the same basic characteristics concerning stiffness and loss angle as the 

material does in terms of shear modulus magnitude and loss factor [76]. Only exceptions to 

this rule are e.g. when the geometry of the component introduces additional nonlinearities, 

such as a progressive stiffness or when the evaluated frequency range is extended, resulting in 

component internal forces which influence its dynamic properties.  

It is well accepted that dynamic properties of rubber isolator, i.e. stiffness and 

damping, depend not only on the material prescription but also on geometry, pre-

compression, frequency and amplitude of the motion. However, rubber component modelling 

normally doesn‘t take all these experimental phenomena into consideration in one single 

formula. The simplest model of a rubber isolator accounting for both elastic and viscous 

effects is the Kelvin-Voigt model where a linear elastic frequency independent stiffness is 

coupled in parallel with a viscous dashpot and damping force is proportional to a first order 

time derivative of the displacement [30], however, it overestimates hysteresis loss at high 

frequencies and impulsive load due to the viscous dashpot. Replacing the dashpot with a 

Maxwell element, forming the three-parameter Maxwell model or the standard linear solid, 

normally results in better high frequency description of stiffness but still poor at predicting the 

damping properties. The standard linear solid can be expanded through incorporating the 

generalized Maxwell model, known as Wiechert model or generalized Maxwell model. It can 

obtain improved broad band frequency description [77-81], nevertheless inevitably increases 

the number of parameters to clearly describe elastomer dynamic behaviour and brings about 

computational cumber. At this situation, an efficient alternative in reducing the required 

number of model parameters while still obtaining a good description of viscoelastic materials‘ 

or components‘ frequency dependence is incorporating a fractional calculus [82]. Thorough 

review of using the fractional derivatives in dynamic modelling of viscoelasticity is given by 

Rossikhin and Shimizu [83-84]. Koeller [85] discussed the spring-ports taking the places of 

the ordinary dashpots in viscoelastic models. Replacing the Kelvin-Voigt‘s dash-pot by a 

spring-pot results in a fractional Kelvin-Voigt [86-87]. Replacing the dashpot of the standard 

linear solid model results in a fractional standard linear solid [82, 86, 88-90]. [91] Kari 
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applied the fractional model to fit rubber material and component measurement data of a 

wider frequency range. Time-domain solutions of the fractional derivatives models are 

investigated by references [92-99]. 

Since generally displaying a strong preload and amplitude dependent properties, 

vibration isolators are inherently nonlinear [101]. This nonlinearity means either taking into 

account nonlinear behaviour due to the statically deformation or the dynamic amplitude 

dependence, i.e. Payne effect for rubber material. The dynamic amplitude dependence does 

not only influences dynamic stiffness but also damping properties. These nonlinearities 

clearly reveal that prevailing linear models for rubber component are inadequate. An 

estimable progress in rubber component nonlinear models is noticeable in a lot of references 

[102-110]. In particular, force response of cyclic input displacement is modelled as a 

combination of a nonlinear elastic and a liner viscous damping force [102, 105-106, 110], a 

linear elastic and a nonlinear viscous damping force [135], a nonlinear elastic and a nonlinear 

viscous damping force [103-104, 107-108] with the nonlinear amplitude dependence 

expressed by a Coulomb friction model [109]. All of these studies start to provide a deep 

insight into various nonlinear phenomena, which is constructive and applicable in 

optimization process of vibration isolation systems. One way of considering the rate 

independent damping force (i.e. friction dependent damping force) is by replacing the viscous 

component in a standard linear solid by a friction component [113]. References [111, 115] 

elaborate on another model that includes friction components in series, which is later used to 

combine with a three-parameter Maxwell model [114]. It is expanded by Bruni et al. [115], 

Austrell et al. [104] and Brackbill et al. [116] to include frequency dependence, giving a good 

representation of measured properties. Dynamic amplitude dependence is modelled by Mallik 

et al. [117] through separating a nonlinear elastic force and a nonlinear damping force with 

eight parameters in total. Another model also taking into account the amplitude and frequency 

dependence is presented by Barber [118] which however needs even more measurements to 

properly adjust the numerous model parameters. References [76, 10-11, 100] and [14, 75, 

119] by Berg presented a widely used rate independent frictional component showing a 

smooth behaviour with only two parameters and this model give a very good description of 

the measured amplitude dependent characteristics.  
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Three different models will be introduced in this Chapter. They are in accordance with 

the observed experiment result in Chapter 2. Since it is extremely difficult to implement a 

model considering all applications with wide range working conditions, the three models 

emphasize on different characteristics.  

3.2 Presented model I 

Although several attempts to describe the vibration behaviour of rubber component 

have been successful, most proposed models relate only to particular applications with 

specific working conditions. In general, the restoring force of rubber components subjected to 

harmonic excitation consists of two parts: the damping force and the elastic force. That is, the 

total restoring force            can be obtained from the direct summation of the two parts as:  

                ,                                                        (3:1) 

where    is the damping force with energy loss, and    is the elastic force without energy 

loss. The first model is based on the superposition theory illustrated in Fig. 3:1. A horizontal 

ellipse is used to indicate the damping characteristics of rubber component. The elastic force 

is supposed to be a polynomial function of displacement which will account for the nonlinear 

stiffness properties, especially for the compressed type fastening system. Thus the force-

displacement hysteresis loop is accordingly decomposed into two parts, i.e. Fig. 3:1 (a) and 

(b), where   is the stimulating displacement amplitude and    is the initial displacement 

given by the preload.  

It can be seen from Fig. 3:1 that both the damping force-displacement loop and the 

elastic force-displacement curve are in a nonlinear shape. The former is due to the intrinsic 

viscous property of rubber material (hysteresis), while the later can be due either to geometric 

property or to the hyperelasticity of rubber material. In Fig. 3:1 (a) it should be noted that 

there is an initial displacement   , that is the equilibrium position of the x-coordinate is non-

zero. The area of this closed ellipse is equal to that of the hysteresis loop in Fig. 3:1 (c), both 

of which represent the energy lost during a loading cycle. To describe the frequency and 

amplitude dependent stiffness characteristics (Fig. 3:1(b)), parameters of the dynamic 
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stiffness are evaluated to be varied with different working conditions; however the damping 

property is assumed to be frequency independent in this model.  

 

Fig. 3:1 Decomposition diagram of the hysteresis loop of rubber component in rail fastening: 
(a) decomposed damping force (b) decomposed elastic force and (c) hysteresis loop  

3.2.1 Modelling 

3.2.1.1 Damping force 

Supposing we have an input disturbance displacement 

                                                                          (3:2) 

and the force response 

                .                                                        (3:3) 

Hysteresis, in general, refers to a lag between cause and effect presented by the loss angle   

in Equation 3:3. The loss angle   is often used to describe the damping properties of rubber 

material. Besides, other damping parameters are such as the damping ratio,           ⁄ , 
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where    and     respectively define the relation between displacement input and force 

response in the same and the different phase, or the damping measure (or damping capacity) 

defined as      √        ⁄                .  

As depicted in Fig. 3:1 (a), damping force corresponding to the input displacement is 

horizontal ellipse-like shape. To interpret the displacement-force relation, the dimension of 

this enclosed curve is explained. Intercept of X axis is the displacement amplitude   while 

intercept of the force axis denoted as   is assumed to be        . As a result, the area of 

the hysteresis loop              is only varied by the dynamic amplitude   because the 

damping property which can be described by the loss stiffness     is supposed not influenced 

by  . As a consequence, the energy loss during a loading cycle is obtained as              .  
Therefore the expression of the ellipse is  

                       ,                                                         (3:4) 

where   is displacement (mm);    is initial displacement (mm);   is dynamic amplitude;   is 

an undetermined coefficient indicating the interpret of the vertical axis in Fig. 3:1 (a);    is the 

amplitude dependent damping force. The undetermined coefficient   can be obtained from the 

measured elliptical area   as: 

               .                                                           (3:5) 

Substituting Eq. (3:5) into Eq. (3:4), the nonlinear damping force    is given by: 

                √                   √                                (3:6) 

3.2.1.2 Nonlinear elastic restoring force 

The nonlinear elastic force-displacement curve is assumed to be a polynomial function 

according to the observed test curve, and the terms will be determined according to accuracy 



 

54 

 

requirements. The nonlinear elastic force     is therefore a functions of  ,   and  . It can be 

described by 

          ∑                                                      ,   (3:7) 

where the polynomial coefficients of each order are defined as the dynamic stiffness              . 
3.2.1.3 Total restoring force 

The total restoring fore of the rail fastening system exposed to harmonic excitations 

thus can be written as the sum of the damping force and nonlinear elastic force based on the 

superposition principle given by: 

                     ∑                              √           .             (3:8) 

3.2.2 Determination of model parameters 

3.2.2.1 Evaluation of dynamic stiffness 

The model parameters were evaluated by using the measured data of specimen I (the 

compressed type rail fastening system for instance) by the least squares method. Coefficients 

representing the dynamic stiffness and the damping properties were obtained from all 

excitation cases by using MATLAB. Calculation results with polynomial terms     and     are respectively compared to the measured result in paper [145]. It was found that the 

fifth-order dynamic stiffness has much lower value than the first and third order dynamic 

stiffness. And the required accuracy can be met by the first and the third order dynamic 

stiffness.  

3.2.2.2 Frequency and amplitude dependence 

From the simulation result we know that the first order dynamic stiffness    decreases 

slightly with increasing frequency, whereas the third order stiffness    increases with the 
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frequency.    also decreases with increasing displacement amplitude, whereas    increases 

with displacement amplitude at first and then decreases after reaching a peak value.  

If the first order dynamic stiffness is written as a function of displacement amplitude 

in the form of  

                              ,                                 (3:9) 

the parameters of    are closely associated with frequency which can be written as  

                                ,                                         (3:10) 

where     is simulated as 

                                                                                                        (3:11) 

Substituting Eq. (3:10) into Eq. (3:9), the first order dynamic stiffness is obtained as  

                                      .                                (3:12) 

Similarly, the third order dynamic stiffness is given by 

                                      ,                               (3:13) 

where 

                                                                                                   (3:14) 

In terms of Eq. (3:8), the restoring force of the rubber component in the compressed 

type fastening system exposed to harmonic excitations therefore becomes 

                                               √                  (3:15) 
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where                 ,             . 
3.2.2.3 Results and discussion 

The hysteresis loop of the specimen I at sinusoidal displacement excitation of 

frequency 6 Hz and displacement amplitude 0.5mm is taken for example and shown in Fig. 

3:2. The simulated results are depicted by stars and the measured values are shown in dots. 

The good agreement between simulated and measurement demonstrates that the proposed 

nonlinear model is capable of simulating the hysteresis loop for the given working conditions 

of the fastening specimen. In addition, Fig. 3:3 shows the relations between dynamic stiffness, 

excitation frequency and displacement amplitude in the form of three-dimensional surfaces 

comparing Eq. (3:12) and Eq. (3:13). As can be seen in figures, both    and    depend less 

on frequency than amplitude. Increased amplitude greatly decreases first order stiffness in Fig. 

3:3(a), whereas increasing the frequency slightly reduces the dynamic stiffness. Variation of 

frequency from 2Hz to 10Hz results in a slight increasement of the third order dynamic 

stiffness (Fig. 3:3 (b)); however, increasing amplitude enlarges the third order dynamic 

stiffness at the small deformation range and it is followed by a rapid decrease process as 

amplitude increases further.  

 

Fig. 3:2 Measured and calculated hysteresis loop of the compressed type fastening system 

when f=6 Hz and A=0.5mm 
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Fig. 3:3 Amplitude and frequency dependent dynamic stiffness (a) the first order dynamic 
stiffness (b) the third order dynamic stiffness 

The model of the compressed type fastening system subjected to harmonic excitations 

proposed above decomposes the total restoring force into elastic force and damping force. The 

elastic force term accurately indicates the geometry induced nonlinearity or/and material 

hyperelasticity; it also characterizes the frequency and amplitude dependent stiffness property 

through    and   . However, the evaluated         and         are limited within the 

measured cases. Though the model can meet the measured result rather well, it cannot be used 

to predict the working conditions beyond the testing cases; in addition, the current model 

cannot describe the frequency and dynamic amplitude dependent damping coefficients and the 

damping force is also frequency independent. In order to take the frequency and dynamic 
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amplitude dependent damping properties into consideration, a second model was presented on 

the basis of the superposition principle. 

3.3 Presented model II 

In the model I proposed in section 3.2, the damping property, expressed by loss angle  , or damping ratio           ⁄ , or the imaginary stiffness     or the damping capacity 

defined as      √        ⁄   was considered as frequency-independent. As a result, the 

damping force and the area of the dynamic loops are only related to dynamic amplitude. In 

fact, the damping property is closely related to the disturbance frequency and the frequency 

dependent damping factor of rubber materials also increases the damping force and the area of 

the hysteresis loops as shown in Fig. 3:4. Higher frequency gives rise to an increased damping 

factor, and correspondingly leads to a more and more full-rounded ellipse from the slender 

ones. However, supposing it also can be decomposed into the elastic force and the damping 

force part in the Fig. 3:4, the nonlinear curve in Fig. 3:1 (b) should now be replaced by a 

straight line for describing the linear elasticity.  

Therefore, on the basis of superposition principle, the total restoring force of the rail 

fastening systems for the second model still consists the two parts    and   , i.e.                 . Elastic stiffness      derived from the elastic force    is dependent on the pre-

compression    due to a preload as well as the dynamic amplitude  ; and the damping force 

is dependent on the frequency. As a result,    and    together give a amplitude and frequency 

dependent dynamic stiffness                as well as a frequency dependent damping 

capacity     . 
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Fig. 3:4 Displacement versus responding force for a linearly viscoelastic rubber material with 
different damping factors  

3.3.1 Modelling 

3.3.1.1 Damping force 

The fractional operator has performed indeed a simplified description of the frequency 

dependent viscoelastic behaviour of rubber elastomers. Among the abundant literature on this 

subject, we can refer to the precursory works [146-150] and some meaningful applications 

conducted on polymers [151-153]. A more complete review can be found in [154] by Metzler 

and Nonnenmacher.  

Fractional calculus was found appropriate with a more correct description for material 

damping over an increased frequency. The most common definition of the fractional 

derivative is by using of the Reimann-Liouville integral [154] 

c                    ∫                   ,                                   (3:16) 

where          ,    ,   {       };   is the arbitrary order of the derivative; 

the   denotes the gamma-function and      ∫              . Normally the lower 

integration limit c is zero.  
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Modelling of viscoelastic behaviour normally results in      , which enables Eq. 

(3:16) to be rewritten in a simpler form 

                 ∫               ,           .                          (3:17) 

Furthermore, Eq. (3:17) can be transformed as a discrete expression according to Grunwald 

theory, which presented the determination of fractional derivation as 

                ⁄         ∑                             ⁄         ∑                         , 

     .                                                                     (3:18) 

The new viscous component in current model is known as spring-pot and the constitutive 

equation of the damping force is given by 

           ,                                                                (3:19) 

where        is the fractional time derivative of      of   order as defined above and   is 

the fractional damping parameter.  

Fourier transforming Eq. (3:19) while using the property of transforming fractional 

time derivatives by means of the principle root as discussed by [155-156] results in  

                ,                                                (3:20) 

where       is evaluated to be 

             ⁄      .                                               (3:21) 

Selecting     for the principal root gives 

            ⁄            ⁄         ⁄  .                           (3:22) 

It is clearly can be seen from Eq. (3:22) that 
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 the sine equals 0 and the cosine equals 1 as    . The imaginary term in Eq. (3:22) 

disappears leaving a pure elastic component. This thus equals the ordinary spring; 

 the sine equals 1 and the cosine equals 0 as    . Only an imaginary term is present 

in Eq. (3:22) making Eq. (3:19) dependent solely on the first derivative of motion,     . This 

equals the ordinary dashpot;  

 both the sine and the cosine of Eq. (3:22) are present as      . This means that       includes a real and an imaginary part, both being frequency dependent. This property of 

exhibiting elastic and viscous behaviour is the reason for the component‘s name, spring-pot.  

As can be seen from Fig. 3:5 there are only two parameters to be simulated,           and  , for the frequency dependent spring-pot combined with a frequency-

independent elastic force model.  

KEla

b

 

Fig. 3:5 Mechanical analogy of the spring-pot combined with an elastic spring  

The complex dynamic stiffness of this model therefore can be written as 

   ̂             ̂               ,                               (3:23) 

where the symbol on top of      means transforming it from time domain to frequency 

domain by Fourier transformation,      and      are respectively the frequency-independent 

long-term elastic stiffness and the relaxation stiffness which is closely related to disturbance 

frequency. Different from the first model, the constant      results in a frequency-

independent elastic force     while        gives rise to a frequency-dependent damping 

force   . Furthermore, current model is not only able to describe the frequency-dependent 

dynamic stiffness property due to the relaxation stiffness term but also can indicate the 

frequency-dependent damping parameters.  
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3.3.1.2 Nonlinear elastic force 

The nonlinear elastic force-displacement curve is also assumed to be a polynomial 

functions in this model according to the observed test curve of specimen I as 

                 ,                                                (3:24) 

where           are the static stiffness of different order. It should be noted that an equal elastic 

stiffness      is relative to the pre-compression    and the amplitude   by 

                                                                        (3:25) 

Given a preload    and the corresponding pre-compression   , the secant elastic 

stiffness      at    can be decided. It should be taken special attention to that      is not 

influenced by frequency and the frequency dependence on dynamic stiffness      is only 

originated from the      component in Eq. (3:23), and the damping force part is not a closed 

curve horizontally as shown in Fig. 3:1 (a) but one with specific inclination.  

3.3.1.3 Nonlinear restoring force 

The total restoring fore of a rail fastening system exposed to harmonic excitations is 

therefore the sum of the nonlinear elastic force and the frequency-dependent damping force 

based on the superposition principle given by: 

                                                   .      (3:26) 

3.3.2 Determination of model parameters 

3.3.2.1 Evaluation of elastic restoring force  

The model parameters as shown in Fig. 3:5 need to be fit and the frequency-

independent elastic stiffness      will be firstly identified. The elastic force    is evaluated by 

using the measured quasi-static experiment result of specimen I. As can be seen in Fig. 3:6 the 

loading curve presented with black solid line has lower secant stiffness than that of all the 

other three dynamic loops. In addition, from the three dynamic curves we can also find that 
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dynamic stiffness increases with the frequency. That is,                                                        . The quasi-static loading curve is 

defined by the parameters listed in Table 3:1 and the comparison between the measured and 

the calculated loading curves is shown in Fig. 3:6 with black solid line and red dot 

respectively. Good agreement can be observed from the figure. By introducing the evaluated 

parameters in Table 3:1 into Eq. (3:24), the equivalent elastic stiffness within the given 

displacement range                         can now be decided by using Eq. (3:25). 

The equivalent elastic stiffness      is decided under a given special pre-deformation    and 

amplitude  . On the basis, the frequency dependent relaxation stiffness      with the two 

model parameters   and   can be decided.  

 

Fig. 3:6 Quasi-static measured curve superimposed with frequency dependent hysteresis loops 
of the compressed type fastening system 
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Stiffness of each order  

(N/mm) 
         

Evaluated parameters 2443.5 10156.7 -12300.4 

Table 3:1 The evaluated parameters of Eq. 3:24 

 

Spring-pot (N/mm)                         

Evaluation 34952.1 870.71 0.35 

                                                                                    where           and         

Table 3:2 The evaluated parameters of spring-pot according to Eq. 3:19 

3.3.2.2 Evaluation of dynamic stiffness and frequency dependence 

The evaluated parameters   and   in damping force part can now be optimized to fit 

the measurement of dynamic stiffness and damping. Error between the measured dynamic 

stiffness,  ̂    , and simulated complex stiffness,  ̂    , can be written as  

   ∑   ̂      ̂        ̂       ̂      ,                           (3:27) 

where   denotes the complex conjugate. When the error is minimized a best fit of the 

simulated complex dynamic stiffness to the measurement is obtained. The process of the 

minimization is performed by using Matlab.  

The simulated frequency influenced dynamic stiffness is compared to the measured 

results in Fig. 3:7. Good agreement can be observed between the black square and the red 

solid circle, and both of them show an ascending trend influenced by the increasing frequency. 

To confirm the evaluated parameters listed in both Table 3:1 and Table 3:2, the measured and 

calculated damping defined are also compared in Fig. 3:7. From the figure, calculated 

damping can be found well meeting the measured damping capacity. However, the damping 

influenced by stimulating frequency appears to be a constant value, because present frequency 

range is still relatively rather narrow to show obvious frequency dependent damping features.  
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Fig. 3:7 Comparison between the measured and calculated dynamic stiffness and damping for 
the testing condition of          and         

3.3.2.3 Evaluation of the hysteresis loop 

By now, both elastic force and the damping force have been identified and the total 

restoring force can be written with the fitted parameters as 

                                                                                                                (3:28) 

Taking the loading case          ,         and          for example, 

the calculated and measured hysteresis loops are compared in Fig. 3:8. The red dot indicating 

the simulating results and the black solid line are in good agreement which means the validity 

of the presented model. All the other working conditions show good fitting results compared 

with measurement as well and they are not depicted again for brief.  
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Fig. 3:8 Compared hysteresis loop of measurement and calculation as         ,         and          

3.3.2.4 Results and discussion 

The advantage of current model developed in this section is taking the frequency 

dependency into consideration of the dynamic properties of rail fastening systems. Different 

from the one presented in section 3.2 where the loss factor is kept in constant, frequency 

dependent damping feature parameters is included in the present model. The fractional 

derivative viscous component, which is used herein, was proved to be appropriate to correctly 

describe the frequency dependent dynamic properties. And the only two model parameters   

and   makes the relevant experiment easier. From Fig. 3:8 the good agreement between the 

measurement and the calculation indicates the accuracy of the model and the evaluated model 

parameters. Also the correct frequency dependency on the dynamic stiffness can be observed 

from Fig. 3:7 where increasing frequency gives rise to an increment of dynamic stiffness 

value.  

However, there are still a few defects in current model:  

 it is clearly can be seen from Fig. 3:7 that the damping almost keeps unchanged as 

frequency increases and the interested frequencies locate, in fact, at a low and narrow scope. 

It indicates that the fractional derivative model is not necessary whose advantage is 

instantiated in high frequency range in fact. On the country, it brings a drawback due to the 
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introducing the fractional calculus -- difficulties in solving equations of motion in the time 

domain. 

 the predicted damping are still independent of the dynamic amplitude that doesn‘t 

satisfy the measured results. In fact, the testing results shows stronger influence of the 

dynamic amplitude than the stimulating frequency  

3.4 Presented model III 

The proposed model in this section is represented by superposition of a purely elastic 

spring, a viscous component as well as a frictional component. Different from the 

decomposing principle of the other two models, the three components of present model 

decomposes the total restoring force into three parts and represents respectively the 

displacement-force relations of the frequency-and-amplitude independent elasticity, frequency 

dependent viscosity and amplitude dependent friction. With clear physical meanings, the 

parameters of each force component are not influenced by others; the amplitude dependence 

is independent on the frequency dependent properties and vice versa.  

3.4.1 Modelling 

3.4.1.1 Amplitude dependent damping force 

Most models of rubber isolations used to predict stiffness and damping properties are 

independent of the applied displacement amplitude. According to the definition of Boltzmann 

superposition principle, these models are linear models [157]. However, the rubber material 

used for the fastening specimens in current research is filled rubber, and the fillers such as 

carbon black may introduce additional bonds. These bonds exhibit a frictional behaviour as 

discussed in reference [10]. In fact, it is also the frictional effect that brings the overtones on 

the basis of the fundamental frequency of the harmonic excitation. Influences of the frictional 

effect in the time-force scale might be seen very small, but they strongly influence the 

measured hysteresis loops of different dynamic amplitude. 

Friction effect can be modelled using a stick-slip component of Coulomb type as 

shown in Fig.3:9 (a). Normally the fractional component is coupled in parallel with an elastic 

component with frequency-and-amplitude-independent stiffness,     . As the model is 
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subjected to an input deformation the responding force is developed and participated by the 

elastic spring with stiffness      and the frictional component with the frictional stiffness     , 
see Fig. 3:9 (b). The total stiffness is equalled to            . When the force distributed 

in the      bunch exceeds a certain maximum value       the frictional component begins to 

slide. Sliding between the frictional pads repeals the force generation in the frictional 

component and results in a smaller stiffness. The stiffness value at this moment is only from 

the purely elastic spring, i.e.       . Though being rather coarse, this stick-slip frictional 

model has the essential behaviour of hysteresis loops of amplitude dependence. 

KFri Ffmax

KEla                        

Displacement

Force

KEla+KFri

KEla

 

                 (a) Stick-slip friction model                (b) Hysteresis loops for various amplitudes       

Fig.3:9 Mechanical analogy of stick-slip friction model and the calculated hysteresis loops  

Alternative is a smoother frictional component whose mechanical analogy is shown in 

Fig. 3:10 (a). It is combined with a frequency independent elastic spring. At this time, the 

frictional force   , i.e. the amplitude dependent damping force, in the present model depends 

not only on the displacement   but also on a reference state point         , see Fig. 3:10 (b). 

There are two model parameters       and            introduced to the smooth frictional 

model;       is the maximum friction force;           , as it looks like, is the displacement 

needed to reach half of the maximum friction force. This displacement describes how fast the 

maximum friction force is reached. In other words, a smaller value of            gives a steep 

force increase and high frictional stiffness,     .  
Specifically, the friction force    in the model depending on how displacement is 

related to the reference displacement    is defined as  

               for                                                      (3:29a) 
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                                            for                              (3:29b) 

                                            for                               (3:29c) 

where           ⁄  is an quantity ranging from -1 to 1. 
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(a) Mechanical analogy of smooth friction model      (b) Hysteresis loop of various amplitudes 
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(c) Typical displacement-force curve with large amplitude displacement 

Fig.3:10 Mechanical analogy of smooth friction model and the calculated hysteresis loops  

Specifically, in order to clearly illustrate the behaviour of present frictional model, the 

response to the harmonic displacement excitation with no pre-deformation is explained, i.e.     . In Fig. 3:10 (b), if he first branch has the reference state (                the Eq. 

(3:29b) for increasing   becomes 

                     ,                                                           (3:29d) 

from where we can see that            for      and that                    for     . As the    becomes larger, the friction force    will approach to the maximum force      . As the displacement is decreases and enters the second branch the reference state turns 

to be (                               and it should be introduced in Eq. (3:29c). 

Similarly, the third branch takes over from the reference state (          which in turn should 
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be introduced in Eq. (3:29b) again. It also can be seen from Fig. 3:10 that steady state is 

finally reached after several cycles with steady force-displacement loop.  

From Eq. (3:29) the response force amplitude     at steady state and the energy loss 

per cycle,   , can be obtained by  

                     √                    ,                                  (3:30a) 

and 

                                                                                (3:30b) 

respectively, where            ⁄ .     and    both are functions of the displacement 

amplitude    and the two parameters    and      .  

As a result, amplitude dependent frictional stiffness      and damping      become 

                              √                    ,                    (3:31a) 

and 

                                                                .                (3:31b) 

The frictional stiffness      approaches        ⁄  as    goes to zero; it becomes zero as    

tends to infinity. Damping      goes to zero as    approaches to zero; on the other hand, it is 

also found to reach the value 4 as    goes to infinity, at which time the hysteresis loop 

approaches a rectangle with intercepts of    and    . It should be taken special attention that 

the tangent stiffness of the friction force versus displacement curve equals             ⁄  

at each start of every branch, see Fig. 3:10 (c); as displacement keeps increasing, stiffness 

approaches the linear pure elastic stiffness     . Experimental results of specimen II is used 

herein for instance whose elastic stiffness is almost linear compared to specimen I. The 

restoring force model presented, of course, is also able to be applied to specimen I; however 

the simulation results are omitted for brief.  
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3.4.1.2 Frequency dependent damping force 

Instead of the spring-pot component used for describing the frequency dependent 

damping force in section 3.3, an easier Maxwell model is adopted as the viscous component 

for current model. The fractional derivative model might be found more appropriate with 

accurate description for material damping properties in much larger frequency range, however 

as mentioned above the damping barely vary with frequency for the presented two fastening 

specimens. At this situation, the drawback of the fractional calculus, the fractional derivative 

component can be modified by replacing the spring-pot with the Maxwell model, see Fig. 

3:11.  
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                    (a) Mechanical analogy                      (b) Viscous force versus displacement             

Fig.3:11 Mechanical analogy of linear viscous damper and the calculated hysteresis loop     

Increasing stiffness and hysteresis loops with increasing frequency can also be 

described at low frequency range by introducing such a viscous component. As is shown in 

the figure, the viscous force is represented by a linear damper with a damping coefficient  , 

in series with a linear spring with stiffness   .     is the force amplitude related to 

displacement amplitude  . For a harmonic excitation this model gives an elliptic 

displacement-force relation at steady state. When the excitation frequency goes to zero to the 

loop as descried in Fig. 3:11 (b) will approach a horizontal line. Thus the viscous force 

contribution approaches zero. It can be shown that the force amplitude     in Fig. 3:11 (b) 

and the energy loss per cycle,   , respectively equal 

              √           ,                                                       (3:32a) 

and 
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                          .                                                       (3:32b) 

The loss energy has a maximum of          at the characteristic frequency      ⁄ . Therefore, the stiffness and damping can be given by 

                  √          ,                                                   (3:33a) 

and 

                    √          .                                                  (3:33b) 

The stiffness    becomes zero for     and approaches    as the excitation 

frequency increases. The damping    goes to its maximum value,  , as    , while for large 

disturbance frequencies the damping    tends to zero.  

3.4.1.3  The total restoring force 

As for the current model presented in current section, the shear type fatening system is 

taken for example. A pure elastic spring is used to produce the frequency and amplitude 

independent elastic force. Due to the visually linear elasticity of the shear type specimen, only 

a pure elastic stiffness     is used for describing the elastic restoring force. 

The total restoring force therefore takes into account both frequency and amplitude 

influences through a Maxwell model and the smooth friction model coupled in parallel with 

the elastic spring. When exposed to an input harmonic disturbance, amplitude dependent 

damping force can be described by Eq. (3:29), the frequency dependent part can be described 

by Eq. (3:32) and the pure elastic force with the elastic stiffness      is used to give the 

uncoupled elastic force contributions as 

                                          .                                   (3:34) 
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3.4.2 Determination of model parameters 

3.4.2.1 Evaluation of the elastic force and frictional damping force 

Recognizing amplitude dependence is independent of the frequency and vice versa 

enables the corresponding parameters to be evaluated separately. The frequency independent 

friction parameters       and    and the pure elastic stiffness     , can be determined by the 

measured data at low frequency and large dynamic amplitude. The low frequency guarantees 

almost all viscous effects are eliminated; the large dynamic amplitude assures that all friction 

is developed in the loop. By using the measured results of 1.5mm and 0.5Hz, following values 

were obtained and presented in Table 3:3 for the shear type fastening system (Specimen II).  

Parameters Elastic stiffness 
The maximum  

friction force 

Friction 

displacement 

Viscous 

damping 
Viscous stiffness 

Notations                    
Units                           

Evaluation 8.1 7.0 1.1 0.017 1.0 

Table 3:3 Evaluated parameters with the testing results of A=1.5mm and f=0.5Hz  

The resulting parameters in Table 3:3 are used to simulate the hysteresis loop of 

1.5mm and 0.5Hz and comparison between measured and simulated results are shown in Fig. 

3:12, from where we can see that they agree with each other rather well. Furthermore, Fig. 

3:13 shows the dynamic stiffness and damping for the specimen at five different dynamic 

amplitude under the same low frequency, 0.5Hz. Apparently, the model accurately describes 

the amplitude dependent properties even if only one amplitude measurement, i.e. 1.5mm, was 

used to extract the parameters, where the dynamic stiffness decreases with amplitude while 

damping increases with amplitude. 
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Fig. 3:12 Comparison between measured and simulated hysteresis loop of the working 
condition A=1.5mm and f=0.5Hz 

 

Fig. 3:13 Amplitude dependence of stiffness and damping for the shear type fastening system 

3.4.2.2 Evaluation of frequency dependent damping force 

The parameters of the liner viscous component,   and   , which determines the 

frequency dependent damping force, can now be optimized to fit the measured stiffness    

and damping    at a constant dynamic amplitude but different stimulating frequency testing 

cases. The evaluated   and    are also presented in Table 3:3.  
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3.4.2.3 Results and discussion 

Including the viscous component with the two optimized two parameters into the total 

responding force, Fig. 3:14 shows the compared calculation and measurement of dynamic 

stiffness and damping for different disturbance frequencies. The integrated model accurately 

describes the frequency dependent properties: both dynamic stiffness and damping increase 

with frequency at the range of [2Hz, 18Hz]. 

 

Fig. 3:14 Frequency dependent stiffness and damping of the shear type fastening system 

By using the evaluated model, simulated and measured displacement-force loops of 

other testing cases, such as      ,         and         are shown and compared 

in Fig. 3:15 (a) and (b). Good agreement between simulation and measurement can be 

observed, which indicates the accuracy of the evaluated parameters. The secant stiffness of 

the hysteresis loop for         in Fig. 3:15 (a) is found relatively larger than that for         in Fig. 3:15(b). and the energy loss per-cycle for occasion         is larger 

than that of        . In addition, the condition as displacement amplitude         and the frequency       is again used to be compared with the measurement case 

as frequency equals     , see Fig. 3:15 (c). We cannot distinguish the frequency dependent 

properties between Fig. 3:15 (a) and (c) from the figures, but a gradual influencing trend on 

the dynamic stiffness and damping features were already shown Fig. 3:14 with the frequency  
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(a) f=2Hz A=0.4mm 

 

(b) f=2Hz A=1.4mm 

 

(c) f=15Hz A=0.4mm 

Fig. 3:15 Compared measured and calculated hysteresis loops by using the integrated model 
at different working conditions  
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as x-axis. The hysteresis energy loss shown in Fig. 3:15 (a) and (c) also do not show too much 

difference. Similar comparison results for all other amplitudes are omitted for brief. 

Special attention should be taken to that the hysteresis loop as        in Fig. 3:15 

(c) was supposed to be more like ellipse compared with       in Fig. 3:15 (a) indicating 

the viscous effects coming into play. However, the relatively higher frequency (15Hz) nearly 

has the same sharp corners obtained for the loops as low frequency (2Hz). It confirms that rail 

fastening system works at a low-frequency stage where frequency dependency is in fact not as 

distinct as is supposed to be, especially comparing with amplitude dependent properties. 

3.5 Summary 

In Chapter 3, the nonlinear, dynamic response of rail fastening systems exposed to 

sinusoidal displacement stimulating is analysed by three different models. The total restoring 

force related to the harmonic disturbances consists of an elastic force and a damping force 

emphasized by the first model. The preload, frequency as well as amplitude dependent 

stiffness properties are described by using a first order and a third order stiffness. However, 

the first model is only valid within the maximum testing frequency and dynamic amplitude 

which doesn‘t have a wide generalizability; in addition, the influence of the frequency on the 

damping force part is also omitted.  

In order to take into account the frequency dependent properties on the damping force, 

a fractional derivative model is introduced. Fractional derivative viscoelastic model is able to 

describe material damping and stiffness accurately even in an extended frequency range. 

Furthermore, the only two model parameters   and   needed to be fit simplifies the 

experiment process. However, such defects in the second model still exist as, (1) due to the 

very low and narrow frequency range for the two fastening systems in current research, 

frequency dependency especially on the damping properties is rather limited. As a 

consequence, a simpler viscous model can be used to replace the fractional derivative model; 

and (2) on the basis of linear viscoelasticity, the predicted damping force is still independent 

of the dynamic amplitude.  
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Eventually, the third model is represented by combining a purely elastic spring, a 

viscous component and a frictional component. Different from the decomposing principle as 

the first two models, these three components decomposes the total restoring force into the 

frequency-and-amplitude independent elastic force part, the frequency dependent viscous 

damping force part and the amplitude dependent frictional damping force part. With clear 

physical meanings, the parameters of each component are also not influenced by others. This 

model was found to be successful to represent the measured results of the two fastening 

systems.  

Though the models proposed in present chapter are believed to enlighten the 

understanding of mechanical behaviour of rail fastenings as a vibration isolation system, the 

following finite element analysing process will promote the understanding to the details such 

as geometric properties and will also help in design and structural optimization process.  
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Chapter 4 Fundamental rubber material tests and 

simulation 

In this Chapter, a family of fundamental rubber material experiments is performed in 

order to accurately model the rubber material made up of the two fastening specimens during 

the finite element analysing procedure in Chapter 5. Uniaxial tension, uniaxial compression 

and planar tension measurements are carried out to describe the hyperelasticity of the present 

rubber; a set of frequency scanning test if presented in order to decide the viscous property of 

the rubber. Different hyperelastic and viscoelastic models are used to fit the testing results in 

Abaqus and they are compared with each other. Eventually, the most suitable model is 

selected.  

4.1 Introduction 

The analysis of mechanical behaviour of elastomers requires knowledge of the 

viscoelastic properties of rubber material at large strain. Experiments used for analysing the 

material properties of elastomers are often misunderstood. The tests for determining the 

rubber material properties are different from those commonly performed on elastomer in 

laboratories. These fundamental tests are normally used to define and satisfy mathematically 

material models existing in the commercial software such as Abaqus.  

Normally six different types of experiments are used for defining a hyperelastic 

material, namely uniaxial tension, uniaxial compression, equal-biaxial, planar tension (or pure 

shear), simple shear, and volumetric tests. In general, a combination of uniaxial tension and 

simple shear is required at the very least and the volumetric data must be included for 

elastomers undergoing large compressed deformations. For rail fastening systems, free 

surface of rubber component is specifically designed for large deformation; in addition, the 

deformation of the rubber component in rail fastening systems is in the form of combined 

compression, tension as well as shear normally. Therefore, a combination of uniaxial tension 

test, uniaxial compression test and planar tension test at a very low deforming rate is 

performed in this chapter to define the hyperelasticity of rubber material. Hyperelasticity is 

only concerned with the current state, and is independent of its deformation history undergone 
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[158]. Hence the uniaxial tension test, uniaxial compression and planar tension tests only 

define the nonlinear elasticity which is fully reversible, and cannot include the nonreversible 

viscous properties of rubber material.  

Rubber material also exhibits time-dependent behaviour and the mechanical behaviour 

depends on both motions and time. When given a loading-unloading process, it eventually 

returns to the original and un-deformed state, i.e. elasticity. When subjected to a constant 

stress, it creeps; when given a prescribed and constant strain, the stress decreases with time 

named relaxation; and hysteresis refers to the different stress-strain trace of unloading process 

as it is subjected to the cyclic loading. Collectively, these features are called viscoelasticity.  

In Abaqus time-dependent constitutive relations is always represented in terms of 

Prony series [159]. A stress relaxation test is enough to provide sufficient data to define the 

Prony series parameters [160]. Though Prony series can predict the frequency dependent 

loading curves accurately, it does a poor job in capturing a hysteresis loop due to its linear 

attribute. Another embedded viscoelastic model in Abaqus named Bergstrom-Boyce 

hysteresis model (BB model for simplicity) will be used eventually. The whole set of 

fundamental rubber material experiments includes uniaxial tension test, uniaxial compression 

test, planar tension test and frequency sweep test.  

4.2 Test details and results 

4.2.1 Specimens preparation and test apparatus 

The rubber material used in the two fastening systems has a shore hardness of 65 

degree. Test specimens used to run the fundamental material tests use the same compound.  

4.2.1.1 Uniaxial Tension Test  

The specimen preparation and test procedure of uniaxial tension test follows BS ISO 

37 [161]. However non-dumbbells specimens are used because the aim of current test is not to 

determine the tensile strength. Hence five thin rectangular strips were cut from a 2mm ± 

0.2mm-thick vulcanized rubber sheet for uniaxial tension test in order to give a small 

uncertainty. The overall length and width of rubber strips are 150mm ± 0.2 mm and 10mm ± 
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0.2mm respectively while the test length of 50mm± 0.2 mm was marked with two cross lines, 

see Fig. 4:1 (a). Much longer overall length is used to ensure that enough end tabs come into 

contact with the machine grips and to guarantee the middle part the specimens in a pure state 

of extension. Specimens are conditioned at a room temperature forty-eight hours before the 

test. The thickness and height at the centre and at each end of the test length were measured 

with a vernier caliper. Mean value of the five measurements is used in calculating the area of 

the cross-section. If any of the five measurements differs from the mean value by more than 

2%, another specimen needs to be complimented. The test apparatus, a Zwich/Roell Z020 

universial testing machine shown in Fig. 4:1 (b), complies with the requirements of ISO 5890. 

It has an accuracy of force measurement complying with class 2, an accuracy of extensometer 

complying with class D. It‘s also capable of operating at large range of traverse rate. 

Specimens were conditioned in the testing room forty-eight hours before the test carried out. 

                            

      (a) Specimens                       (b) Apparatus                    (c) Testing procedure 

Fig. 4:1 Uniaxial tension test 

4.2.1.2 Uniaxial Compression Test  

Unlike other materials such as metal, rubber material behave rather differently in 

compression than in tension or shear. When rubber elastomers are under study, it‘s desirable 

to fit experimental data of rubber material in multiple states of strain so that the material 

model can be used effectively in predicting complex strain states that occurs in real working 

condition of rubber component. [162]  

Generally, equal biaxial tension test is desirable for analysis of compressed type of 

rubber component [163]. However, the advantage of performing the uniaxial compression test 

instead is that the testing equipment is much easier than the equal biaxial tension as shown in 
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Fig. 4.2. In fact, the uniaxial compression test is equivalent to the equal-biaxial extension test 

as long as a ‗‗pure‘‘ compression strain state can be achieved in the centre part. The strain and 

stress of these two deformation mode can be converted directly to each other as follows: 

                                                                        (4:1a) 

              ,                                                            (4:1b) 

where    and    are nominal compression stress and nominal compressioin strain, and    and    are nominal extension stress and nominal extension strain respectively. It should be noted 

that as we say experimental data represent ‗‗pure‘‘ strain state, it means that experiment 

should be performed in a state of only one strain state existing without other disturbance. As a 

result, uniaxial compression experiment needs to be free of shear or tensile strains. To achieve 

this as much as possible, the specimen needs to be compressed between two rigid platens 

without friction effects on the surfaces of platens and the specimens.  

Specimen preparation and test procedure of uniaxial compression test follows BS ISO 

7743 [164]. In order to obtain a pure compression strain sate, two polytetrafluoroethylene 

(PTFE) blocks of regular shape are used instead of flat metal plates for two reasons. Very 

small density of PTFE ensures near-zero pre-compression on the rubber specimens before 

expected deformation is applied; of more importance, both surfaces of the PTFE blocks are 

highly polished before applying lubricant to eliminate friction effect as good as possible. Test 

pieces are rubber cylinders of diameter 29mm ± 0.5mm and height 12mm ± 0.5mm shown in 

Fig. 4:3 (a). Five pieces of specimens were tested as well. It‘s essential to make the testing 

specimens with flat and paralleled surfaces, therefore the height of the five specimens are 

measured accurately with difference less than 0.2%. Specimens are also conditioned at a room 

temperature forty-eight hours before the test carried out. The test apparatus complies with the 

relevant requirements of ISO 4648. The testing set with two PTFE blocks are shown in Fig. 

4:3 (b) and (c). 
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Fig. 4:2 Equal-biaxial tension test 

                    

         (a) Specimens                     (b) Apparatus               (c) Testing procedure   

Fig. 4:3 Uniaxial compression test 

4.2.1.3 Planar Tension Test  

Planar tension test of rubber material has not been specified in any of the international 

standards but only in some referenced literatures [165-177]. As the references put it, if the 

deformation of the testing component includes shear mode a planar tension experiment is 

expected [166], which is also known as the pure shear test or constrained tension test. The 

term ‗‗constrained tension‘‘ means that the specimen of planar tension test is normally a thin 

rectangular sheet as well and it is gripped or bonded along its long edges to prevent lateral 

contraction, in direction 2 as shown in Fig. 4:4 (a) when it is loaded along the short edge 

direction, direction 1. The sheet is freely contract in its thickness dimension, direction 3. In 

order to achieve sufficient constraint and homogeneity, the length of the specimen needs to be 

much larger than its width; that is, very good lateral constants and all thinning occur in the 

direction 3, see Fig. 4:4 (b). It might appear at first glance to be nothing more than a very 
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wide uniaxial tensile test, however a state of ―pure planar shear‖ exists in the sheet specimen 

shown in Fig. 4:4 (b) due to the nearly incompressible property of rubber material [165].  

The test is very sensitive to the width to length ratio. Neglecting the edge effects 

results in a perfectly lateral constraint so that all specimen thinning occurs in the thickness 

direction and puts the central part of the specimen into a pure shear condition [177]. In Fig. 

4:4 (b), as axial deformation is applied it maintains parallel plans that experiences lateral 

relative displacement. The difference between a pure shear test and a simple shear test can be 

seen from Fig. 4:4 (c) that there is no rigid body rotation for the former. 

 

(a) Constrained tension test specimen dimensions 

 

(b) Pure shear existing in the constrained tension test specimen 

 

                                                           (c) Simple shear  

Fig. 4:4 Planar tension test equals to pure shear test by uniaxial constrained tension [166] 

Fig. 4:5 (a) shows that 120mm ± 0.5mm length specimens are prepared with grip 

separations about 12mm ± 0.2 mm, which are marked by silver ink along the grip edges and 

the grips are 140mm length; the grips are about 10mm out of the end each side over the entire 

120mm specimen width. To make sure the specimens are securely held in the grips four pairs 

of additional clamping bolts are fastened along the length of the grips. Same as the first two 

tests, five specimens were used to achieve a low uncertainty. The thickness, which is 

supposed to be 2mm ± 0.2mm, was measured and compared to obtain a mean value. 
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Specimens were laid out at a room temperature forty-eight hours before the test. Test 

instrument is a modified universal mechanical testing machine so as to install the two extra 

steel apparatus holding clamping bolts, shown in Fig. 4:5 (a). 

                         

                      (a) Specimens                               (b) Apparatus             (c) Testing procedure   

   Fig. 4:5 Planar tension test 

4.2.1.4 Dynamic Mechanical Analysing (DMA) 

Every material has the tendency to flow which is measured as viscosity, i.e. [178] 

―everything flows if you wait long enough‖. Material viscosity property can be observed in 

many different forms [22] such as: if the stress is held constant, the strain increases with time 

(creep); if the strain is held constant, the stress decreases with time (relaxation); the effective 

stiffness depends on the loading rate; if cyclic loading is applied, hysteresis loop occurs, 

leading to a dissipation of mechanical energy; rebound of an object is less than 100 percent, 

etc. 

The dynamic mechanical analysing (DMA) under frequency sweep mode is used in 

current research to captures the ―flow‖ characteristics. DMA can be simply described as 

applying an oscillating force (of forced deformation) with different frequencies to a sample 

and analysing the relations between the input fore and the response. We can obtain the 

damping and stiffness information directly from the DMA test and the properties are often 

explained as the ability to lose energy and the ability to recover from deformation. The 

normal forced oscillation test is normally conducted at a fixed temperature, fixed dynamic 

amplitude and constant frequency, however, through the DMA test we can obtain material 

modulus as a function of frequency by sweeping frequency from 0.01Hz to 100 Hz for 

example all at once. Compared with the traditional approach, we don't have to restart the 
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experiment every time when a new frequency is set up. We can also use DMA to rapidly map 

the modulus as a function of frequency. As we say the modulus is a function of frequency, it 

actually indicates that the modulus measured in DMA test is the dynamic modulus, which is 

also known as the complex modulus consisting of an elastic modulus and an imaginary 

modulus.  

As the viscosity behaviour is not sensitive to the deformation mode, only uniaxial 

tensile test is performed for DMA test. Tensile specimens are cut from the same 2mm ± 

0.2mm-thick rubber sheet as uniaxial tension test. The width and the testing length of the 

specimens are approximately 5mm ± 0.2mm and 20mm ± 0.5mm. Since one sweep procedure 

at a constant dynamic amplitude value would take hours and certain amount of dry ice for 

controlling the testing temperature in order to expand the frequency range through time-

temperature equivalence principle, only two DMA specimens are prepared and their 

geometries are carefully measured and recorded before the test. The effect of the temperature 

will also be discussed further in the coming sections.  

4.2.2 Testing procedure and results 

4.2.2.1 Uniaxial Tension  

In order to achieve a pure extension state, the testing length of the tensile specimen is 

much longer than its width or thickness. Since the experiment is not intended to fail the 

specimen, there is no need to use a dumbbell shaped specimen which is commonly used in a 

strength test. Five specimens are tested to meet the consistency. All the five samples were 

stretched by a universal testing machine Zwich/Roell Z020 at a room temperature of about 23 

degree. After inserting each testing piece into the machine, the end tabs need to be gripped 

symmetrically so that the tension is distributed uniformly over the cross-section.  

All the specimens are initially preconditioned to the maximum strain of 200% at a rate 

of 50mm/min for three times in order to exclude the Mullins effect. Testing data of the fourth 

cycle are recorded. Input displacement and the force response are related as shown in Fig. 4:6. 

A non-contacting video extensometer is used to capturing the deformation of the specimen. 

Since the clamps create an indeterminate state in the region near the clamps and therefore the 

deformation must be measured away from the clamp where a pure tension state is occurring. 
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Fig. 4:6 Uniaxial tension test results 

4.2.2.2 Uniaxial Compression 

In the uniaxial compression test, even very small friction between the cylinder 

specimen and the rigid blocks may cause substantial shear strain. That may lead to non-

uniform and inaccurate testing results. Sometimes this shear strain might even exceed the 

compression strain. As a consequence, methylsilicone oil was applied to both surface of the 

specimen and the two polytetrafluoroethylene blocks in order to exclude the friction that may 

happen. Loading speed of the uniaxial compression test is 5mm/min and the specimens are 

forced until an engineering strain of 50% is reached. Similarly, the precondition process is 

repeated for three times and the testing data are recorded starting from the fourth loading 

process. Testing results are shown in Fig. 4:7. Furthermore, the video extensometer can be 

seen from Fig. 4:3 (c), and the little silver dots evenly spread on the specimen surfaces are 

used to be traced by the video. During data analysing procedure, the small dots at the centre 

of the specimens will be selected and analysed in order to obtain the compressive strain.  
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Fig. 4:7 Uniaxial compression test results 

4.2.2.3 Planar Tension  

The planar tension test doesn‘t have to be included normally. However, the 

deformation mode of the rubber component in rail fastening systems is relatively complex 

with combined extension, compression and shear, so planar tension test is carried out. The 

most significant aspect of the planar tension specimen is that it is at least ten times shorter in 

the direction of stretching than the width to create a perfectly constrained state in the lateral 

direction so that specimen thinning occurs in the thickness direction. As the same, only the 

centre region of the dots marked on the surfaces are traced for capturing the deformation. 

Specimens are loaded at a speed of 15mm/min to the maximum strain value of 100%. The 

measured displacement-force curve is shown in Fig.4:8. However, the unusual decreasing 

tendency marked in red is due to the rubber specimen slipping from the grips. Indeed, wide 

grips with sharp edges can fix the test specimens very tight and they can also extend the 

planar tension strain range [167]. However, they are easy to give unexpected specimen 

failures during the loading process. As a result, rubber specimens were bonded directly to the 

grips and the clamping bolts are used only for tightening in the present experiment, which 

leads to its slipping from grips beyond a certain loading value.  
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     Fig. 4:8 Planar tension test results 

 

Fig. 4:9 Strain-stress relationships of uniaxial tension test, uniaxial compression test, planar 
tension test as well as the equal-biaxial tension transformed by using Eq. 4:1 

In Fig. 4:9, the final strain-stress relations are obtained, and the equal-biaxial tension 

test data is also converted by using Equation 4:1 and depicted in the figure. The differences in 

the strain-stress behaviour are due to the different lateral stress presented in specimens. 

Firstly, in the uniaxial tensile test the long edge of specimens are unconfined and the 

specimen can contract laterally when axial stress is applied. This allows high axial strains to 

be produced. Secondly, by contrast, in the planar tension test, specimens are sufficiently wide 

and very well constrained along the long edge, and the material at the centre of the specimen 

is unable to contract laterally. As a consequence, the axial stress required to produce a 

particular axial strain is considerably larger than that needed in a tensile test. Larger lateral 

stresses are found in the equivalent equal-biaxial extension test shown in green hexagon in 
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Fig. 4:9, in which specimens are supposed to be drawn simultaneously in both axial and 

lateral directions. As a result, the axial stress required to draw the material to a particular axial 

strain in the equal-biaxial tension test is considerably larger than that required in either the 

tensile and planar tests. 

4.2.2.4 Time-temperature Equivalence 

As mentioned above, the major difference between frequency sweep test and 

traditional dynamic test is that the former can collect frequency-dependent data at a fixed 

temperature and dynamic amplitude while scanning across the frequency range of interest. 

However, it should be noted that [179] when a frequency range is being scanned, the testing 

machine occasionally find conditions where the system begins to resonate. These frequencies 

are either the natural frequency of the sample-instrument system or one of its harmonics. 

Under such experiment conditions the desired information of the sample-instrument system 

may be obscured. But we can solve the problem by redesigning the sample dimensions or 

geometries to increase or decrease the resonance frequency of the system. However changing 

specimen dimensions still have a limit and, often, data outside of the available range are 

required. At this situation, the time-temperature superposition proposed by Ferry [180] as a 

method of reduced variables based on time-temperature equivalence theory [178] can be used 

to meet the requirement. 

Rubber materials become softer and more fluid as it is heated and they go through 

transition from glassy state to fluid state, which increases the available space for molecular 

motions. Over long enough time periods, or small enough frequencies, at a constant 

temperature, similar changes occur. This relationship is referred to as time-temperature 

equivalence that can also be often stated as ―low temperature is equivalent to short times or 

high frequency‖.  

A lot of materials exhibit this special mechanical behaviour, and they are normally 

classified as the thermo-rheologically simple material (TRS). As shown in Fig. 4:10, if a 

characteristic curve of the material modulus at temperature    translates along the logarithmic 

time axis, the modulus curve at temperature    or    can be obtained correspondingly, and we 

now have 
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                                                                     (4:2a) 

        (        ),                                                (4:2b) 

where   is modulus,       is the reference temperature of the main curve,   is a time 

parameter,   is a frequency parameter and       is the shift factor at each temperature used 

to measure the transverse distance for developing a main curve. Normally shift factor       

in terms of temperature can be described by different types of shift functions, such as the 

well-known Williams-Landel-Ferry shift (WLF by Williams et, al., 1955) given by 

         (      )           ,                                         (4:2c) 

where   is the temperature in degrees Kelvin, and   and   are material constants. Another 

well-known shift function named ―BKZ-shift‖ is devoted by Bernstein, Kearsley, and Zapa, 

1963. 

 

Fig. 4:10 Thermo-rheologically simple behaviour of rubber-like materials 

After shifting the frequency sweep curves at each temperature following the fitted 

shifting factor by using testing data, the resultant master curve can cover a range much wider 

than that of the original data.  

4.2.2.5 Frequency sweep test  

In the frequency sweep test of present chapter, the frequency range is from 0.01Hz to 

100Hz and temperature is from -30   to 50   with a step of 10 . Specimens were under 

oscillation under pre-deformation of 0.4% and dynamic amplitude of 0.1%. The tested 

frequency-dependent storage modulus and loss modulus at each temperature are shown in Fig. 

4:11. According to the time-temperature superposition discussed above, all curves shift in a  
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(a) Frequency-dependent storage modulus 

 

(b) Frequency-dependent loss modulus  

Fig. 4:11 Frequency sweep testing results at different temperature  
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(a) Storage modulus and  

 

(b) Loss modulus 

Fig. 4:12 Main curve at the referent temperature of     
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logarithm coordinate except that under the reference temperature, 20 . Main curve of the 

storage modulus as shown in Fig. 12(a) and the corresponding shift factor of each temperature 

are indicated in Fig. 4:13. With the same shift factor, loss factor is also shifted to obtain a 

main curve at reference temperature 20   in Fig. 12 (b). The modulus and damping 

properties under a full influence of frequency are now obtained, and they are going to be used 

to identify the viscosity of rubber material presented in this study. 

 

Fig. 4:13 Relationship between shift factor and the corresponding temperature 

4.3 Hyperelastic models and simulation 

4.3.1 Hyperelastic constitutive models 

Hyperelastic models are capable of modelling the rubber-like materials that exhibit 

nonlinear elastic behaviour. They can give realistic predictions of actual material behaviour at 

large strains (generally larger than 5%). The hyperplastic constitutive models of rubber 

material are widely used in finite-strain calculations [181]. All hyperelastic models are based 

on the assumption of isotropic behaviour so that strain energy potential,   , can be 

formulated to define strain energy stored in the material per unit of reference volume as a 

function of the strain. There are a large number of strain energy potentials to model 

approximately incompressible isotropic elastomers. Some of them are embedded in Abaqus, 

e.g. Mooney Rivlin (first order polynomial model), higher order or reduced polynomial 

models, neo Hookean, Yeoh, Arruda Boyce, Van der Waals, Ogden models, etc. The reduced 
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polynomial and Mooney Rivlin models are viewed as particular cases of the polynomial 

model; the Yeoh and neo Hookean potentials, in turn, are viewed as special cases of the 

reduced polynomial model. Therefore, they are collectively referred to as polynomial models. 

In general, the strain energy potential forms are written as separable functions of a deviatoric 

component and a volumetric component, and the so-called hyperelastic models herein only 

describe the deviatoric part of the strain energy function and the volumetric property is 

assessed by a Poisson‘s ratio. 

As mentioned above, hyperelastic models are based on the definition of strain energy 

function,   . For an isotropic and incompressible material    can be expressed either in 

terms of the strain invariants    which are functions of the stretch ratios or directly in terms of 

the stretch ratios themselves   , i.e.  

               or              ,                                  (4:3) 

              , 

                       , 

            .                                                       (4:4) 

where the stretch ratio    is defined as the deformed gauge length   divided by the initial 

gauge length   , namely,       ⁄            ⁄     , where   is the nominal 

engineering strain. In addition, for an incompressible (or nearly incompressible) material               , i.e.             . 

The principal Cauchy stresses are given by  

           ,                                                                (4:5) 

where only the deviatoric part of stress is shown. For impressible materials, eliminate    from 

Equations 4:4 and              so that   becomes a function of    and    only,           . 



 

96 

 

Introducing Equation 4:5, it derives from Equation 4:4 that  

                            .                                       (4:6) 

In uniaxial tension (and uniaxial compression) test,       and we have 

                  .                                              (4:7) 

Correspondingly, we can define a strain energy function depending only on the one remaining 

independent stretch   in the loading direction. In this case         and the Cauchy stress 

associated with   is  

        .                                                                (4:8) 

For the equivalent equal-biaxial extension where      and                

where   is in the loading direction, Equation 4:6 reduces to  

            .                                                         (4:9) 

In the case of planar tension,                  and    occurs in the thinning 

direction and      in the loading direction, so we have the similar Cauchy stress.  

The Ogden model is the type of strain energy potential with principle stretch ratio with 

the independent variable, which can be represented as follows 

  ∑                             .                                      (4:10) 

where    and    are the material parameters. The initial shear modulus    is given by    ∑       .  

As mentioned above, strain energy potential can also be defined in terms of three 

strain invariants    that are in their turn functions of principal stretches. The Mooney-Rivlin 

model (the first order polynomial model) is represented by the equation 
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                     ,                                          (4:11) 

where     and     are material parameters. Extending Equation 4:11 to the second order 

terms we have 

                                                           ,   

(4:12) 

where    ,    ,    ,     and     are material parameters. The second order polynomial model 

introduces the dependence of strain energy potential on three more material parameters and is 

often useful to describe stress response at large stretch. Higher order polynomial model can be 

obtained by adding more terms to Equation 4:11 but usually they do not produce appreciable 

improvement. Material parameters are often determined by using the measured data, which 

are related to the initial shear modulus    by  ∑          . 

The form of the reduced polynomial strain energy potential is  

  ∑               ,                                                     (4:13) 

where   is the order,     are material parameters. The initial shear modulus    is given by        . Thereupon, Neo-Hookean form (the first order reduced polynomial model) and 

Yeoh form (the third order reduced polynomial model) can be respectively represented as  

           ,                                                 (4:14) 

and 

                                 .                        (4:15) 

In addition to all the above phenomenological models, micro-mechanically based 

hyperelastic models are also discussed by a lot of references. Arruda-Boyce is one of the 

micro-mechanical models that reads  
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                  (     )           (      )           (      )              (       ) ,                                                        (4:16) 

where   and    are the material parameters. The initial shear modulus    is related by                                                . 
In addition, the form of the Van der Waals strain energy potential is  

   { (     )                     },                             (4:17a) 

where 

              and    √          .                                    (4:17b) 

Here,   is the initial shear modulus, i.e.      ;    is the locking stretch;   is the global 

interaction parameter;   is an invariant mixture parameter.  

4.3.2 Simulation results and discussion 

In order to fit the hyperelastic constitutive models the uniaxial tension, uniaxial 

compression as well as planar tension tests are all performed at a very low speed. Strain rate is 

about 0.6% per second. Abaqus allows users to input one of, two of, or three of the uniaxial 

tension, equal-biaxial extension and planar tension tests to evaluate the parameters, and the 

root mean square errors (RMS) between measured and calculated data by using each model 

can be obtained. RMS values of all the fitted models are summarized in Table 4:1. A 

comparison of the fitting result by inputting only uniaxial tension test data (Test 1), both 

uniaxial tension and the equivalent equal-biaxial extension data (Test 1 and 2), and all the 

three test data (Test 1, 2 and 3), are also shown in Fig. 4:14. It‘s clear can be seen that the 

parameter estimated results by using only uniaxial tension test data gives a more accurate 

fitting result for uniaxial tension testing result (see Fig. 4:14 (a)), but it does a poor job for the 

other two tests. Models with the parameters from such fitting procedure are not suitable for 

complex deformation mode. Taking the Ogden model of the third order for example: when 
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only the uniaxial test data are used to define the material, it gives a very good result with a 

RMS value of only 0.008 for uniaxial tension test Fig. 4:14 (a), however when the parameters 

are used to predict the equal-biaxial extension and planar tension measured data it gives a 

unacceptable solution with a RMS error of up to 1.891E6 and 3.644E4 respectively as shown 

in Fig. 4:14 (b) and Fig. 4:14 (c). And the mean RMS value considering all the three tests is 

up to 6.425E5 as shown in Fig. 4:14 (d). Oppositely, we can also see from Table 4:1 and Fig. 

4:14 that, when data from multiple experimental tests are used nearly all the hyperelastic 

models are more accurate in fitting the experimental results and it keep the mean RMS error 

below 0.295. 

Test data used for 

simulation 

RMS of each test and the 

mean value of all 

MOONEY 

RIVLIN 

POLY 

N2 

NEO 

HOOKE 
YEOH 

ARRUDA 

BOYCE 

VAN 

DER 

WAALS 

OGDEN 

N1 

OGDEN 

N3 

Test 1 

Test 1 0.055 0.005 0.170 0.075 0.170 0.049 0.042 0.008 

Test 2 0.963 29.747 0.491 0.552 0.491 0.555 3.603 1.89E6 
Test 3 0.276 8.425 0.334 0.442 0.334 0.436 1.172 3.64E4 

General 0.431 12.73 0.332 0.356 0.332 0.347 1.605 6.45E5 

Test 1 & 2 

Test 1 0.084 0.038 0.257 0.113 0.257 0.036 0.070 0.048 
Test 2 0.111 0.028 0.406 0.468 0.406 0.018 0.097 0.138 
Test 3 0.176 0.693 0.239 0.359 0.239 0.234 0.202 0.246 

General 4 0.124 0.253 0.301 0.313 0.301 0.096 0.123 0.144 

Test 1 & 2 & 3 

Test 1 0.095 0.075 0.322 0.157 0.322 0.050 0.073 0.051 
Test 2 0.147 0.108 0.352 0.420 0.352 0.082 0.110 0.124 
Test 3 0.147 0.124 0.184 0.308 0.184 0.196 0.196 0.218 

General 4 0.130 0.102 0.286 0.295 0.286 0.109 0.126 0.131 
                                                                                                                Test 1: Uniaxial tension test; Test 2: Equal-biaxial extension test; Test 3: Planar tension test 

Table 4:1 The RMS values for all the fitted models 

Among the models listed in Table 4:1 the second order polynomial model, the Van der 

Waals model and the first order Ogden model give the most accurate result by using the 

multiple test data, who gives a mean RMS value of 0.102, 0.109 and 0.126 respectively. The 

initial shear modulus corresponding to each model was calculated, and the evaluated 

parameters are reported in Table 4:2. Fitting results compared to the measurement are shown 

in Fig. 4:15. Though the three models have the similar fitting results with close RMS error, 

the Van der Waals model not only can meet the tested curve well but also can predict the 

upward tendency at the end of each curve. Therefore, Van der Waals model is selected to be 

used for describing the hyperelasticity of the present material eventually. 
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             (a) Uniaxial tension test                           (b) Equal-biaxial tension test     

 

                         (c) Planar tension test                  (d) The RMS value considering all three tests  

Fig. 4:14 Fitting results of the quasi-static testing data  

 

 

Model Parameters 
Equal initial 

shear modulus (Mpa) 

Poly_N2 
C10 C01 C11 C20 C02   G0 

0.472 0.354 0.229 -0.113 -0.119 0.495 1.646 

Van der Waals 
mu lambda A Beta   G0 

2.255 3.158 1.353 0.413 0.495 2.255 

Ogden_N1 
mu lambda   G0 

1.797 0.283 0.495 1.797 

Table 4:2 Evaluated hyperelastic model parameters  
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(a) Uniaxial tension  

 

(b) Equivalent equal-biaxial tension  

 

(c) Planar tension data 

Fig. 4:15 The measured strain-stress curves compared with the fitting results by using three 
selected models  
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(a) Uniaxial tension test 

 

(b) Uniaxial compression test 

 

(c) Planar tension test 

Fig. 4:16 Simulation procedure and results  

The evaluated Van der Waals model is now applied to simulate the material 

fundamental test. As can be seen from Fig. 4:16, all the rubber component were modelled 

using C3D8R element, and the two PTFE blocks in uniaxial compression test as well as the 

four grips in planar tension test were modelled by R3D4 due to their relatively high rigidity. 

Input signals and loading speed are applied according to the real testing procedure. Both the 

original state and the deformed condition of the specimens are shown in the figure; the 

predicting results compared with the experimental data are also plotted. In all the three 

displacement-force curves, simulation results give a reasonable description and the good 

agreement confirms the accuracy of the model and the parameters.  
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It should be noted that a frictional coefficient of 1e-10 was applied to the surfaces 

between PTFE blocks and the rubber specimen during uniaxial compression test simulation. 

Good agreement between measurement and prediction indicates that the frictional effect is 

almost eliminated in the real testing procedure. In order to clearly reveal this friction 

behaviour, different frictional coefficients were used to reproduce the compression procedure. 

The deformation mode for the coefficient va1e 1-10 and 5e-1 are respectively shown in Fig. 

4:17 (a) and (b); the compared displacement-force curves of several conditions are plotted in 

Fig. 4:17 (c). A large frictional coefficient gives rise to an obvious bulge (Fig. 4:17 (b)); it 

also leads to uneven compression with high shear strain value. Sometime the accompanying 

shear strain is even larger than the compressive strain. Inflated rubber component brings a 

nonlinear effect on the displacement-force relationship as shown in Fig. 17 (c) especially 

when the coefficient is larger than 0.1. We should pay special attention to that even with a 

very small frictional coefficient (1e-10), the nonlinear features still shows especially 

compared with other deformation mode. That‘s to say the nonlinearity is not only from the 

frictional behaviour but also from other factors. This nonlinearity will be analysed in the next 

chapter.  

 

Fig. 4:17 Predicting results influenced by the frictional coefficient (a) Coefficient equals 1e-
10 (b) Coefficient equals 0.5 (c) Simulation results 

4.4 Viscoelastic model simulation and analysing 

4.4.1 Prony series 

On the basis of linear viscoelastic theory, Prony series is often used to describe a stress 

relaxation testing data of rubber material. The initial stress is due to the elastic response of the 

material deformation while the stress relaxes over time due to the flow effects of the material. 

Normally, the Prony series for a shear relaxation test can be written as 
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           ∑                                                            (4:18a) 

where    is the long term modulus once the material is totally relaxed,    are the relaxation 

times. The higher the values of    are, the longer it takes for the stress to relax. Experimental 

data are used to fit the model parameters   ,    and   . An alternative form of Equation 4:18a is 

        ∑                   ,                                        (4:18b) 

where 

             ∑       .                                              (4:19) 

This form of Prony series is convenient when the elastic shear modulus    is obtained 

from the data independent from the relaxation data. The normalized shear stress relaxation 

modulus is often represented in terms 

       ∑                   ,                                      (4:20) 

where            ⁄  and        ⁄  and   ,   ,    are material parameters.  

The DMA test results are a set of frequency influenced storage modulus       and 

loss modulus       . Prony series therefore can be determined from the following implicit 

equations 

           ∑           ∑                    ,                                   (4:21a) 

         ∑                  .                                                    (4:21b) 

In this case we are interested in the reverse relationship, that is, as storage modulus       and 

loss modulus        are obtained from the experiment how we can determine the material 

parameters. Supposing     the storage modulus or the loss modulus can now be calculated 

by using Equation 4:21. In order to make the residual between the calculated dynamic data 

and the experimental data below a limit, the values of (        ) are optimized through 

iterative analysis. Eventually, the evaluated parameters are depicted in Table 4.3 and the good 
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agreement between the fitting curve and the measured curve as shown in Fig. 4:18 confirm 

the accuracy of the parameters. In order to make it clear, only a section of the frequency 

testing data is displayed in the figure.  

        
1 9.49e-2 0.0118 

2 1.02e-1 0.2912 

3 9.01e-2 12.2656 

Table 4:3 Evaluated Prony series (        ) 

 

Fig. 4:18 Compared frequency dependent storage modulus by using Prony series and the 
measurement in both (a) log axis and (b) linear axis 

4.4.2 Bergstrom-Boyce model 

Though Prony series is good at representing the frequency dependent modulus, it does 

a poor job in fitting a hysteresis loop. As a result, another viscoelastic model named 

Bergstrom-Boyce model is included in current research. The Rheological representation of 

BB model is shown in Fig. 4:19. It is used to describe strain-rate dependence of elastomers by 

decomposing the mechanical response into that of an equilibrium network (A) corresponding 

to the state that is approached in long-time stress relaxation tests and that of a time-dependent 

network (B) that captures the rate-dependent deviation from the equilibrium state. The total 
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stress is assumed to be the sum of the stresses in these two networks. BB model is established 

completely by:  

 a hyperelastic material model (Van der Waals for present research ) to characterize the 

elastic response of network A;  

 a stress scaling factor, S, that defines the ratio of the stress carried by network B to the 

stress carried by network A under instantaneous loading; i.e., identical elastic stretching in 

both networks; 

 a positive exponent, m, generally greater than 1, characterizing the effective stress 

dependence of the effective creep strain rate in network B; 

 an exponent, C, restricted to lie in [-1, 0], characterizing the creep strain dependence 

of the effective creep strain rate in network B; 

 a nonnegative constant, A, in the expression for the effective creep strain rate – this 

constant also maintains dimensional consistency in the equation; 

 a constant, E, in the expression for the effective creep strain rate. The effective creep 

strain rate in network B is given by the expression 

                 .                                           (4:22) 

where    is the effective creep strain rate in network B,      is the nominal creep strain in 

network B, and    is the effective stress in network B, and S, A, C, m are material 

parameters.   

 

Fig. 4:19 Rheological representation of Bergstrom-Boyce model [182] 

Since the evaluated Prony series is proved to be able to fit the frequency dependent 

properties, a set of virtual fundamental experiment at a higher loading speed is carried out in 
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Abaqus in order to include in the flow effect of rubber material. Subsequently, BB model 

embedded in Abaqus is used to fit the virtually measured loading curves. The BB model 

parameters are listed in Table 4:4 and the family of virtual experiment curves are shown in 

Fig. 4:20, where the simulation results (read solid circle) have a good agreement with the 

virtual experiment data (black solid squares).  

BB model parameters S A m C 

Evaluations 1.6 0.7312 3.5 -1 

Table 4:4 Evaluated BB model parameters 

 

        (a) Uniaxial tension                         (b) Uniaxial compression             

  

                                                                (c) Planar tension           

Fig. 4:20 Simulation results by using BB model in comparison with the virtual measured data 

4.5 Summary 

In the present chapter, a set of fundamental material tests including the uniaxial 

tension, uniaxial compression, planar tension and the DMA tests were performed. The first 
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three were used to describe the nonlinear elasticity of rubber material at large strain, i.e. 

hyperelasticity. This property is rate in-dependent, as a result the experiments are carried out 

at a very slow loading speed. Most of the typical hyperelastic models existing in Abaqus were 

fitted by using the measured data. They are compared with each other and Van der Waals 

model is finally selected due to its best fitting results. As for the viscoelastic property, DMA 

test results can be fitted by both Prony series and Bergstrom-Boyce model existing in Abaqus. 

Though a three order Prony series can meet the frequency dependent stiffness quite well, it is 

widely accepted that the Prony series is poor at predicting the hysteresis loop when a rubber 

component is subjected to a cyclic loading. The Bergstrom-Boyce model is therefore selected 

for depicting the hysteresis property of rubber material.  
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Chapter 5 Finite element modelling and experiment-

simulation comparison  

In this Chapter, the evaluated hyperelastic and hysteresis models obtained in Chapter 4 

will be used to simulate the quasi-static and dynamic experiments of the two rail fastening 

specimens by using Abaqus. Simulation results will be compared with the experiment data. 

After that, all the observed nonlinear features including the boundary nonlinearity, geometric 

nonlinearity as well as material nonlinearity will be studied. During the analysis, a set of 

quasi-static experiments is complemented in order to confirm the boundary nonlinearity.  

5.1 Introduction 

Normally, to determine the quasi-static vertical stiffness of a rail fastening system, 

specimen should be loaded by a vertical force of 80±1kN with a loading speed 50±5kN/min 

as shown in Fig. 5:1 according to authoritative references [183]. Repeat the loading-unloading 

cycles five times to exclude the Mullins effect of rubber material and during the sixth cycle 

the testing results are recorded. Finally, the vertical secant stiffness is determined as the slope 

factor of the load interval between 5kN and 80kN and the corresponding displacement.  

 

Fig. 5:1 General view of vertical stiffness measurement [183] 

During the quasi-static experiment in current research, clips were not assembled onto 

to specimens, but the applied vertical force was extended to include the clamping force, 

approximately 10kN for each clip. According to the test result, if secant vertical stiffness of 

the compressed type fastening (specimen I) is determined by using loading force between 

5kN and 100kN and their corresponding vertical displacement interval, the calculated 
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stiffness is approaching to 50kN/mm which is much larger than then then stated stiffness 

given by manufacturer. Similarly, when the loading interval between 5kN and 100kN is used 

for determining vertical stiffness of specimen II the calculated vertical stiffness is two times 

larger than the stated stiffness value. It indicates that the suggestive load interval for 

calculating vertical stiffness of rail fastening systems is not adaptive for all situations and 

products. The nonlinear properties shown in quasi-static working curves due to several 

reasons, may give rise to a wrong evaluation of their resilient characteristics. Hence, 

nonlinearities of rail fastening systems should be well analysed so as to accurately define the 

vertical stiffness value in a reasonable loading/deformation range.  

It also should be noted that in order to accurately define a vertical stiffness, a 

reasonable maximum loading value is very important value. The bearing force on the rail 

nodes can give a suggestive value. Even for the same railway line, the same axel load of the 

rail car, the maximum bearing force on the railway nodes may be different. As depicted in Fig. 

5:2, lower vertical stiffness of a rail fastening system takes more rail nodes participating into 

the rail deformation; while larger stiffness of a rail fastening system makes less rail nodes 

share the axel load. Accordingly, it is very important to evaluate the bearing force according 

to the given axel load before determining an appropriate loading interval for calculating the 

stiffness value. 

 

(a) Smaller fastening stiffness  

 

(b) Larger fastening stiffness  

Fig. 5:2 Different mode of rail nodes participating in deformation  

In fact, the loading interval for determining static stiffness of rail fastening systems 

has already been drawn attention by manufacturers. As the Table 5:1 listed, different 

fastening systems have different evaluation range. Generally speaking, the larger the stated 

stiffness is the wider the loading range is used; while only for Pandrol VIPA-SP, 5kN-80kN is 
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used in accordance with the standards. It can be seen that accurately giving a loading interval 

is very important for defining the vertical stiffness, especially for the products are designed 

with nonlinear properties or inevitable with a few nonlinear features. Adequate study on the 

nonlinearity of quasi-static displacement-force relations is also directly related to product 

designing and optimizing. Some of the nonlinear properties should be avoided during 

optimization while some others can be taken full advantages.  

Type of rail fastening systems 

(Manufacture) 

Stated vertical stiffness 

(kN/mm) 

Load interval 

(kN) 

SFC (Pandrol) 40 1-51 

DFF MC (VOSSLOH) 30 18-51.2 

VIPA-SP (Pandrol) 20 5-80 

VANGUARD (Pandrol) 5 5-30 

Table 5:1 Stated stiffness and the corresponding loading intervals  

5.2 Boundary nonlinearity 

As is known, assumptions for the linear viscoelasticity and linear elasticity involve 

such measures as small strain, small displacements/rotation, small changes in temperature, 

and so on [184]. Linear approximations are often used because it takes smaller computational 

cost and the solutions can be superposed on each other. However, in the common practice 

linear analysis is not always adequate; nonlinear analysis for largely deformed component, for 

example, is often necessary.  

Though all engineering projects are inherently nonlinear to a certain extent, doing a 

nonlinear analysis or a simple linearization depends on the analysing objective and the 

acceptable amounts of difference between them [185]. Such a cost-benefit analysis is usually 

necessary before embarking on a nonlinear problem. In current research, in order to well 

understand on the mechanical behaviour of the two present fastening specimens, to make 

them optimized on the basis of full understanding, nonlinear analysis shown in the two 

measured working curves are going to be studied. Generally speaking, nonlinear properties of 

rubber components include boundary nonlinearities, geometric nonlinearities, and material 

nonlinearities. The boundary nonlinearity is also specified as contact nonlinearity sometimes.  
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5.2.1 Supplementary test 

5.2.1.1 The compressed type specimen  

The obvious nonlinearity at the very beginning of the loading curve for the 

compressed type fastening system (specimen I) marked with a circle in Fig. 5:3 (a) is believed 

to be due to nonlinear contact, which is also putted as boundary nonlinearity in a few 

references. When the softening segment of the loading line is excluded, the secant stiffness of 

specimen I is 135% larger than its stated vertical stiffness. Therefore, it‘s meaningful to carry 

out research on this boundary nonlinearity. 

We can see from Fig. 2:2 that the rubber component of specimen I is directly 

vulcanized to a top plate inside and a bottom plate outside on the two sides; its bottom surface 

is a free surface which is supposed to be in the same level as the bottom surface of the iron 

framework. However, all rubber component show shrink phenomenon to some extent after 

chemical processing [186]. The amount of shrinkage depends on different factors, such as the 

material compound and the mixing method. Supposing that the free under-surface of the 

rubber boot shrinks inward approximately 0.7mm, it would give rise to a discrepancy between 

the bottom surface of the rubber component and that of the iron bottom plate. This 

discrepancy gives rise to the contact nonlinearity as shown in Fig. 5:3(a). 

The assumption was verified by a set of supplementary test shown in Fig. 5:4 (b), 

compared with the original experiments in Fig. 5:4 (a). A piece of steel plate is laid on the 

shaking table and below the fastening specimen. The dimension of the steel plate is smaller 

than the free under-surface of the rubber boot. Thus, discrepancy on the surrounded edge of 

rubber boot does not influence on the displacement-force relations. It is found the nonlinearity 

is no longer in existence in the supplementary testing result, referring to Fig. 5:3 (b). Since the 

steel plate changes the system stiffness significantly and detailed numerical relationship 

makes no sense in compared with the working curve in Fig. 5:3 (a), they are not specified.   
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                (a) Quasi-static test                              (b) Supplementary test        

Fig. 5:3 Testing result of the compressed type fastening system 

                          

              (a) Quasi-static test                       (b) Supplementary test  

Fig. 5:4 Test scheme of the compressed type fastening system 

5.2.1.2 The shear type specimen 

Another distinct nonlinear feature can be observed in the working curve of the shear 

type fastening system (specimen II), which is also believed to be boundary nonlinearity, see 

Fig. 5:5 (a). It appears when the displacement of the shaking table is larger than about 6mm. 

As the displacement is smaller than 6mm, quasi-static load is input from 0kN to 60kN; after 

that, however, another 60kN leads to only 1mm. That is, the boundary nonlinearity gives rise 

to an increased vertical stiffness by 600%.  

The substructure of specimen II is shown in Fig. 5:5(b), where the rubber elliptical 

ring (the black component) is bonded with top plate inside and bottom plate outside. An 

elevation difference is in existence between the undersurface of rubber component and with 

the bottom plate, which is more conscious in the longitudinal profile diagram (Fig. 2:3). As 

displacement increases, the bottom surface of the rubber component bulges downwards. 

Gradually, this free surface starts to reach the shaking table. As the displacement increase 

furthermore, area of the free surface decreases while the contacting area between rubber 
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component and the shaking table keeps increasing. The contact and the following 

compression process of the rubber elliptical ring results in a very steep increasement of 

vertical stiffness.  

In order to verify this assumption, supplementary test was also carried out for 

specimen II. A thin file of oil was applied onto the subsurface of the rubber ring. Contact was 

observed by the oil stains on the shaking table as can be seen in Fig. 5:5 (c).  

For specimen II elastic shear is the main deformation mode before the displacement 

reaches 6mm. However, when the boundary condition of the rubber component is varied, i.e. 

contact occurs, the main deformation is changed to be compression in the bottom local part. 

According to the detailed geometries of specimen II, compression arises on local part of the 

rubber component with a very small dimension where the height is only 2mm. This is also 

believed to be the main reason for the sharp increasement of vertical stiffness. 

 

           (a) Boundary nonlinearity of the shear type fastening system 

              

                 (b) Substructure of specimen II                   (c) Supplementary test           

Fig. 5:5 Test scheme and results of the shear type fastening system 
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5.2.2 FE simulation and analysis 

This section will show the possibility to use FE approach in product designing or 

product optimization [187]. In the rail fastening system industry, market requires the 

manufacturers to efficiently reduce the time spend and the high cost due to bunches of 

experiments and structural optimization process. FE analysis, however, can provide an 

important virtual producing and testing platform [188].  

5.2.2.1 FE modelling  

Simulation of the quasi-static experiment is a dynamic analysing process in fact. 

Generally, a static analysis is sufficient if the interest is to investigate the long-term response, 

and the inertia effects can be neglected. However, though loading speed of the quasi-static 

experiment is quite slow, response still has time-dependent features due to the viscous 

property of rubber material.  

During the geometric modelling, each fastening specimen consists of five principal 

parts in general (Fig. 5:6): a section of railway track, a rubber component tied to the top and 

the bottom steel plates, and a bottom rigid part simulating the shaking table. The bolts and the 

withholding components are omitted. A few detailed geometries are simplified; but some 

other part deserved to be the sensitive area are not reduced although they have very small 

geometries.  

                        

  (a) The compressed type specimen (specimen I)      (b) The shear type specimen (specimen II)   

Fig. 5:6 Assembly modelling of the rail fastening specimens in Abaqus 



 

116 

 

The rail is fixed in all directions on the top, fastening system is under imposed 

deformation upwards by the shaking table. The analysis is force controlled; 100kN and 120kN 

are the maximum load value for the compressed type and the shear type fastening system 

respectively. In addition, all the possible contacts between different parts were considered: 

rubber and the two iron frameworks are tied together between the vulcanized surfaces; the 

interaction property between rail and the top plate and that between the bottom rigid 

component and the bottom plate is defined as ―hard‖ contact in the normal direction without 

penetration. In the tangential direction, a frictional coefficient of 0.5 is given; since rubber 

components of the two specimens also contact with the shaking table, similar contact property 

except a frictional coefficient of 0.3 is specified. The contact process, i.e. the boundary 

nonlinearity proved by supplementary tests, is going to be reproduced in the virtual 

environment visually. 

 

      (a) The original boundary condition              

 

 (b) The changed boundary condition  

Fig. 5:7 Simulation of the compressed type specimen (a quarter of the model) 
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(a) The original boundary condition 

 

 (b) The changed boundary condition 

Fig. 5:8 Simulation of the nonlinear contact of the shear type specimen (a half of the model) 

In Fig. 5:7 (a) and Fig. 5:8 (a), the original altitude discrepancy can be seen; whereas, 

in Fig. 5:7 (b) and Fig. 5:8 (b), nonlinear contact between the rubber component and the 

shaking table is simulated. At this time, the boundary condition of rubber component is 

changed, giving rise to the nonlinear feature discussed above. 

5.2.2.2 Finite mesh element and material definition  

After the geometric modelling, assemblies were partitioned to be meshed. For the 

rubber component, hexahedral-shaped elements are used, see Fig. 5:9. Special attention 

should be paid to the local areas circled with red lines from the finite element analysing point 

of view. Since the dimensions of these parts are rather small, discretization for them needs to 
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be very accurate to avoid computationally unmanageable. For the deformation of the rubber 

components might be larger than 40%, they are discretized by using 8-node linear brick, 

reduced integration and hourglass controlled elements (C3D8R). This type of element is 

confirmed to be convergent and accurate to discretize rubber component. In another hand, the 

top and the bottom iron frameworks are discretized into elements of 8-node linear brick and 

incompatible modes (C3D8I) because steel component have much less deformation amount 

compared to rubber. The section of railway track and the shaking table are defined as rigid 

body. Due to their geometric characteristics and the contact analysis, discrete rigid (rather 

than analytical rigid) are selected. We cannot apply mesh control to a rigid surface, as a result 

the default element type, 4-node and 3-dimension bilinear rigid quadrilateral element (R3D4), 

are used to discretize the rail and the shaking table.  

 

       (a) The compressed type specimen                            (b) The shear type specimen           

Fig. 5:9 Rubber components of the fastening specimens 

Rubber material shows very complex mechanical behaviour which can be resumed in 

the following points: 

 it shows a mechanical behaviour which is strongly dependent on time or deformation 

rate; 

 it has different hardening behaviour in tension, compression and shear deformation 

modes; 

 the volume of the rubber component is incompressible, etc. 

In order to define the rubber material, uniaxial tension in Abaqus, uniaxial 

compression, planar tension and DMA tests were already carried out and fitted in Chapter 4. 

Van der Waals model combined with the BB model is used to define the rubber material of 
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the two fastening specimens. Top plate and bottom plate are defined with steel material with 

Young‘s modulus 2.1e5Mpa and Poisson‘s ratio 0.3.  

5.2.2.3 Results and discussion 

For the compressed type fastening system, one-quarter of the system is used for 

calculation as shown in Fig. 5:7; for the shear type specimen half of the model is used, see Fig. 

5:8. Displacement is given by the shaking table upward and the responding force is recorded 

from the reference point of the section of rail. Simulation results are shown in Fig. 5:10 (a) for 

specimen I and Fig. 5:10 (b) for specimen II. Comparison results show good agreement 

between the measurement and the simulation results indicating that the calculation process is 

accurate and the simulation results are acceptable. 

 

                  (a) The compressed type specimen                (b) The shear type specimen           

Fig. 5:10 Comparison of the measured and calculated working curves 

By changing the geometries of specimen I in the virtual environment of Abaqus and 

by diminishing the loading conditions for specimen II, calculated results under the same 

loading speed whereas excluding the boundary nonlinear features are depicted with blue 

dotted lines in Fig. 5:11. We can see that the calculated loading curve keeps nearly the same 

secant stiffness with the originally measured loading curve. It also should be noted that the 

loading curve of specimen I in comparison with the secant line expressed by dashed lines in 

both black and blue show nonlinear features in Fig. 5:11 (a); whereas, as for specimen II in 

Fig. 5:11 (b) the loading curve of both prediction and measurement can almost be regarded as 

linear. This nonlinear feature and the difference between the two specimens are going to be 

further studied in the coming sections.  
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    (a) The compressed type specimen               (b) The shear type specimen           

Fig. 5:11 Calculated results when boundary nonlinearities are excluded  

5.3 Geometric nonlinearity 

In Fig. 5:12, the quasi-static loading-unloading curve excluded the boundary 

nonlinearity of specimen I which is depicted in details. As mentioned above, the loading 

curve obviously has a nonlinear feature and we can use the average displacement between the 

loading curve and the secant line to describe the nonlinearity. Though, at this time, the 

nonlinear feature is not as distinguished as the boundary nonlinearity, the secant stiffness 

 

Fig. 5:12 Detailed prediction of the quasi-static working curve of specimen I after eliminating 
the boundary nonlinearity  
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value, 46.47kN/mm, is apparently different from the tangent stiffness, 32.34kN/mm at the 

beginning of the curve and 63.94kN/mm at the end. We can see that this nonlinearity does 

have an influence on the stiffness value by 30% to 40% and it is believed to be a geometric 

nonlinearity as rubber component is under compressed deformation mode.  

5.3.1 Definition of geometric nonlinearity 

Generally speaking, geometric nonlinear features can be induced by the boundary 

constraint conditions and the largely varied shape after deformation. Sometimes, the 

constraint condition induced nonlinearity is also ranked into the boundary nonlinearity 

together with the contact nonlinearity discussed in section 5.2. Since serious boundary 

constraint may result in irregular and large deformation of rubber component, it is classified 

into geometric nonlinearity in current research. 

 

     (a) Large frictional coefficient                                

 

                                                     (b) Small frictional coefficient                                   

Fig. 5:13 Influences of boundary constraint on the shear and compression strain  

Taking the rubber cylinder used in the uniaxial compression test for instance, from Fig. 

5:13 (a) where the frictional coefficient is 0.5, we can find the free surfaces bulging severely 

and the maximum shear strain (L13=0.85) is almost as large as the compression strain 

(LE33=0.9). Compared to Fig. 5:13(b), where the frictional coefficient equals 1e-10, the  



 

122 

 

  

Fig. 5:14 Stress distribution for bonded or fractional rubber block during compression [21] 

maximum shear strain (L13=1.8e-4) is so smaller than the compression strain (L33=0.69) that 

can be omitted. At this situation, the deformation of the rubber cylinder can be considered as 

simple compression. Referring to the calculation results shown in Fig.4:17, the bigger the 

frictional coefficient is given the larger the stiffness we get and the more significant 

nonlinearity would be observed at the large deformed region.  

This nonlinearity can be explained by the effect of boundary constraint conditions as 

follows. The deformation of a rubber block bonded (or with great friction coefficient) 

between rigid plates is considered to take place in two stages as shown in Fig.5.14: a simple 

compression requiring a uniform compressive stress    and a distributed shear deformation 

that restores points in the planes of the frictional surfaces to their original positions 

corresponding to the shear stress   . If the simple compression is  , it requires a uniform 

compressive stress      , where   is the real compressive modulus; the shear stress    

acting at the bonded surfaces at a radio distance   from the cylinder axis is given by           increasing linearly with  . This shear stress    is associated with a normal pressure   by              . Upon integrating,   is obtained as                   . Furthermore, by 

integrating the normal stresses        acting over the bonded surface, the total compressive 

force   is obtained as follows: 

                                                          (5:1) 
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Equation 5:1 shows that the constraint effect at the bonded faces is to increase the effective 

compression modulus (or apparent compression modulus) from   to             by a 

amplification factor        .  

In fact, the amplification factor can be defined by a shape factor defined as       , 

where    and    are respectively the loading area and the bulge area of the cylinder 

component. Integrating it to Equation 5:1 we can obtain 

                                                                 (5:2a) 

and 

                                                                (5:2b) 

where the shape factor of the cylinder specimen      ⁄ . For a rubber block with circular 

cross-section, the relationship between the apparent compressive modulus   and the real 

modulus   as depicted in Equation 5:2b is given by Gent and Lindley [189]. Besides this 

definition of the shape factor, Williams and Gamonpilas [190] and Timoshenko and Goodier 

[191] also presented similar expressions to correlate the apparent and real compression 

modulus of rubber component.  

However, from the calculated strain-stress curves at each deformation mode as shown 

in chapter 4 we can see that, the uniaxial compression curve still shows obvious nonlinear 

features even though the frictional coefficient is as small as 1e-10. It means that the geometric 

nonlinearity is not only due to the boundary constraint effect, but also on the large 

deformation of rubber component.  

Normally, when a component has large deformation that is large than 1/20 of its 

largest dimension, the largely varied shape may give rise to a geometric nonlinearity. Taking 

the uniaxial compression test for example again, the severely varied cylinder shape when the 

final diameter       , loading area            and the bulging area            compared with the initial diameter       , loading area           and 

the freely bulging area            is believed to give rise to a geometric nonlinearity. If 
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we describe the changing shape by shape factor  , it increases to be       from      . 

When the shape factor furthermore increases, a significant contribution to the observed 

nonlinearity comes from the volume modulus because    is now so large that becoming 

comparable to the bulk modulus of rubber material,  . For such largely deformed rubber 

component, contribution of the bulk compression   largely increases the apparent 

compression modulus in term of the nonlinear displacement-force relationship. However, it‘s 

hard to exclude material nonlinearity from the geometric nonlinearity in fact, because high 

compressive strain which is included in the nonlinear strain range is often in existence in the 

material accompanied with large deformation of rubber component. The material nonlinearity 

will be discussed in section 5.4. 

5.3.2 Geometric nonlinearity of the compressed type specimen 

Generally speaking, geometric nonlinear features can be induced by boundary 

constraint conditions such as friction effect and the largely varied shape of rubber components. 

Since strict boundary constraint may result in irregular and uneven deformation of rubber 

components, it is classified into geometric nonlinearity in the present research. In according 

with the quasi-static displacement-force curve of the compressed type fastening system as 

shown in Fig.5:12, frictional coefficient between rubber component and the shaking table is 

specified as 0.3 during simulation process which means that this boundary constraint may 

bring about certain nonlinearity. Specifically, when the maximum vertical displacement is 

reached in Fig. 5:12 the maximum compressed strain and the shear strain on the under-surface 

of rubber material are nearly the same (about 50%) according to the simulation result. The 

accompanied shear deformation due to the friction effect may influence the resilient property 

of the compressed type fastening system; the boundary constraint condition leads to an 

increasement of the apparent/effective compression modulus with an amplification factor 

defined by shape factor. This nonlinear feature indicated in Fig. 5:12 therefore can be 

explained as a geometric nonlinearity. In addition, the more frictional effect is taken into 

account, the larger stiffness and the stronger nonlinearity can be observed. Fig. 5:15 shows 

the increased secant stiffness of the compressed type fastening system with the enlarged 

frictional coefficient, while Fig. 5:16 describes the more obvious nonlinearity along with the 

increased frictional coefficient measured by the average displacement between the secant line 

and the loading curve, see Fig. 5:12.  
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In addition, the varied shape of the rubber component of the compressed type 

fastening system corresponding to the maximum loading value is shown in Fig. 5:17. The 

under-surface of the rubber component is still away from self-contact and the shape factor is 

not largely altered. As a consequence, we can say that the geometric nonlinearity observed 

from the loading curve in Fig. 5:12 is mainly due to its boundary constraint conditions.  

 

Fig. 5:15 Secant stiffness influenced by frictional coefficient 

 

Fig. 5:16 Nonlinear feature of the loading curve influenced by frictional coefficient 
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Fig. 5:17 Potential self-contact of the rubber component of the compressed type specimen 

5.4 Material nonlinearity 

Material nonlinearity is also known as the nonlinear elasticity or hyperelasticity of 

rubber component as it is under large deformation. The chemical structure of a polymeric 

chain may be of two types in general: isotactic and atactic [192]. Nature rubber has an 

isotactic structure so that the side groups lie on the same side of the polymeric chain. The 

presence of crystallites in nature rubber acts as large junctions or cross links and it has a 

strain-stiffening effect on the mechanical behaviour of the material. When a piece of natural 

rubber component is under large deformation, the side groups of chains crystallize because 

they are able to converge and, therefore, the material stiffens. On the other hand the structure 

of many synthetic rubber materials is atactic, i.e. the side groups are irregularly placed on 

each side of the chains. Though an atactic chain never crystallize since the side groups, which 

have different sizes and chemical properties do not match in space due to the irregularity of 

their position relative to the chin backbone, severe rise in the strain-stress curves still clearly 

can be observed in experiments. However, at this situation the stiffening arises from the effect 

of finite chain extensibility. As large extension of the chains is approached the material 

stiffens because most of the monomer composing the chain becomes aligned along the 

direction of stretch, and we have to start stretching the bonds, and changing bound angles, 

both of which require larger energies used for changing the configurations of the chains.  

Hence, mechanical properties of elastomeric materials are usually represented in terms 

of a strain energy density function as discussed in Chapter 3. In molecular theory, 
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macroscopic models are obtained from microscopic considerations. Starting from the elastic 

free energy of a single chain, it‘s possible to obtain the total elastic free energy of the network 

composing the mesoscopic structure of the elastomer by a suitable averaging procedure of all 

the elastic free energies of the individual chains. At first, experimental measurements of 

strain-stress relationship for rubber materials gave Mooney and Rivlin [193-195] enough 

evidences, and the linear theory of elasticity, which is used since the 17th century, was an 

inadequate approach to access the mechanical properties of such material. Soon afterward, 

nonlinear elastic theory was developed one after another [196-198]. Several well-known 

hyperelastic constitutive models were reviewed briefly in Chapter 3, eventually Van der 

Waals model is verified to fit the fundamental experiment results best. In Fig. 5:18, measured 

and calculated uniaxial tension, uniaxial compression, planar tension tests are shown. The 

nonlinear feature which can be observed in the uniaxial compression curve was a geometric 

nonlinearity as discussed in section 5.3. However, according to the relevant references, it‘s 

hard to exclude the material nonlinearity especially when the compressive strain is larger than 

40%. For uniaxial tension test, hardening phenomenon is still not obvious until the tensile 

strain approaches 100%; for planar tension test, stiffening effect occurs as the strain reaches 

75%. 

 

Fig. 5:18 Comparison of the measured and calculated fundamental material experiments by 
using Van Der Waals models 

As the maximum displacement is achieved in the quasi-static experiment of the 

compressed type fastening system, different deformation modes in the local part of the rubber 
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component are shown in Fig. 5:19. In Fig. 5:19 (a) we can see that the maximum true 

compressive strain of about 37% equivalent to nominal strain of about 49% arises in a corner 

of the bottom surface, while the maximum true tensile strain is about 46% (approximately 

equals 61% nominal strain). Although a nominal tensile strain of 61% is far away from the 

material nonlinear range, compressive strain as high as 49% may give rise to the nonlinear 

feature of the loading curve of the compressed type fastening system. In the meanwhile, from 

Fig. 5:19 (b) and (c) we can see that true shear strain in XZ and YZ planes on local part of the 

rubber component subsurface both approach approximate 110%, and the corresponding 

nominal shear strain is already up to 147%, which will also give rise to a stiffening behaviour 

of the rubber component. From this point of view, the nonlinear feature shown in Fig. 5:11 (a) 

and Fig. 5:12 can also be due to material nonlinearity.  

 

(a) Compressive/tensile strain in Z direction (LE33) 

 

(b) Shear strain in X-Z plane (LE13) 
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(c) Shear strain in Y-Z plane (LE23) 

Fig. 5:19 Maximum strain at the local part of compressed type specimen 

 

(a) Compressive/tensile strain in Z direction (LE33) 

 

(b) Shear strain in X-Z plane (LE13) 
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(c) Shear strain in X-Z plane (LE23) 

Fig. 5:20 Maximum strain at the local part of shear type specimen 

In contrast, from Fig. 5:20 we can see when the maximum displacement is applied to 

the shear type fastening system, 14% true compressive strain, 17% true tensile strain and 66% 

true shear strain, corresponding to the nominal strain of 19%, 23% and 88% respectively, both 

cannot give rise to an obvious nonlinear feature. The shear type fastening system has a better 

linear elasticity compared to the compressed type.  

5.5 Viscoelastic property  

5.5.1 Rate-dependent loading-unloading curves 

Viscoelastic properties of rubber-like material can be listed briefly as creep/stress 

relaxation, rate-dependent effective stiffness, phase-lag and hysteresis loop leading to the 

dissipation of mechanical energy as cyclic loading is applied. As a result of Chapter 4, the 

evaluated Van de Waal model and Bergstrom-Boyce model and the fitted parameters were 

verified to be able to accurately fit the quasi-static experimental results of both specimens. 

The displacement-force relations excluded the boundary nonlinearities were produced in Fig. 

5:11, and the geometric nonlinearity combined with material nonlinear properties of specimen 

I were proved to influence the shape of displacement-force curve as shown in Fig. 5:12, 

where the loading rate is 0.025 mm/s. In this section, a family of virtual experiments is carried 

out in order to capture the rate-dependent properties of the two fastening systems [159]. The 

force responses versus displacement at different loading rate are compared in Fig. 5:21 (a); 

only the loading curves are refined in Fig. 5:21 (b). From the figure we can see that the 



 

131 

 

observed force response is very sensitive to the loading speed [199]. For example, at the end 

of the loading curves, the observed force response when loading speed is 22.5 mm/s is nearly 

1.5 times larger than that for the case when the loading speed is 0.0000225 mm/sec.  

 

     (a) Loading-unloading curves                 (b) Loading subset of (a)             

         Fig. 5:21 Quasi-static displacement-force relationships at different loading rate 

Specifically, the loading rate dependency depicted in Fig. 5:21 reflects firstly on the 

varied secant stiffness which is plotted in Fig. 5:22 (a). It can be clearly seen that decreased 

loading rate gives rise to reduced secant stiffness; especially when the loading rate is 

relatively small, the stiffness is very sensitive to loading rate. It also tells that as a rail 

fastening product is measured in order to determine the nominal stiffness value, the loading 

rate should be slow enough to capture an approximate long-term stiffness. In addition, rate 

dependency also shows in term of energy loss during the loading-unloading cycle, see Fig. 

5:22 (b). The energy dissipation during one loading-unloading cycle equals the area enclosed 

by the loading and unloading curves as well as Y=0 in Fig. 5:21 (a). Similarly, decreased 

loading rate leads to reduced energy dissipation especially when the loading rate is relatively 

slow, at which time the unloading curve nearly follows the same trace as the loading curve.  
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                             (a) Secant stiffness                                      (b) Energy loss                      

Fig. 5:22 Loading rate dependent secant stiffness and energy dissipation 

5.5.2 Transient effect 

The loading rate influenced secant stiffness and energy loss during one loading-

unloading cycle was discussed through a family of virtual tests under the Abaqus platform. In 

addition to this rate-dependent property, viscoelasticity of rubber material also gives rise to a 

transient effect. In Fig. 5:23 the nonlinear transient stiffness is highlighted with two read 

circles. These two nonlinearities are followed by the gently changed loading and unloading 

curves. It is clearly can be seen that this nonlinear transient stiffness is also strongly 

influenced by the loading rate if we look back to the comparison of the rate-dependent 

loading curve as shown in Fig. 5:21. When displacement loading rate is as slow as 2.25e-5 

mm/sec the nonlinear feature due to the transient effect is even not in existence, whereas as 

the rate is up to 22.5 mm/sec the nonlinear instantaneous stiffness is very noticeable.  

 

Fig. 5:23 Transient stiffness induced nonlinear feature of the compressed type specimen 
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According to the viscoelastic properties of rubber material, the nonlinear transient 

stiffness may partially due to stress relaxation. As a result, a holding step of 2000s is added 

between the loading and unloading process. Taking the compressed type fastening system for 

example, the calculated result is compared to that without a holding step as shown in Fig. 5:24 

(a), where they are distinguished by green and blue dotted lines respectively, and the holding 

process is expressed in Fig. 5:24 (b). As the holding time approaches to 2000 second the force 

relaxation almost approaches to a constant state. As a result, the displacement-force 

relationship of the original experiment result and the simulated curve with a holding time as 

shown in Fig. 5:24 (a), though they follows different way approaching to the relatively stable  

 

(a) With and without the holding step     (b) Time-force relationship during the holding step  

Fig. 5:24 Excluding the stress relaxation effect by adding a holding stage of specimen I

 

Fig. 5:25 Similar process to exclude the stress relaxation effect performed on specimen II  
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stiffness value, a noticeable nonlinear feature still exist. Similar analysing process is also 

performed to the shear type fastening system (specimen II), and the similar results are 

obtained. A zoomed-in figure of this feature for specimen II is shown in Fig. 5:25, where the 

calculating results with different holding time are compared to confirm the conclusion that 

nonlinear transient stiffness still exists after the stress relaxation of the loading process is 

almost completed. 

The transient effect induced nonlinearity is ultimately due to the rubber material 

viscosity [200]. Fig. 5:26 presents a schematic representation of typical viscoelastic response 

of a elastomer. When viscoelastic solid is loaded at an infinitely slow speed, the stress-strain 

curve follows the path O-E‘. This behaviour is known as the equilibrium response; on the 

other hand, if the component is loaded infinitely fast, the response follows the path O-I‘, and 

such a response is known as the instantaneous response of transient effect [201]. It should be 

noted that both equilibrium and instantaneous responses are elastic and they bind the viscosity 

domain. The area of viscous domain is directly related to the extent of material viscosity. 

Total stress of a rubber solid corresponding to a certain amount of deformation can be 

decomposed into equilibrium and viscosity induced overstress parts (instantaneous part) [202-

204]. In this decomposition the instantaneous component introduces an intermediate 

configuration, which is resulted when the stress is unloaded at an infinitely fast rate to an 

equilibrium state. The larger the strain-rate is, the large the instantaneous response is and, 

correspondingly, the more noticeable the intermediate configuration is.  

 

Fig. 5:26 Typical responses of a viscoelastic solid 
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5.5.3 Hysteresis loop 

Except the rate-dependent quasi-static stiffness, the transient effect discussed above, 

hysteresis loops of the two fastening specimens obtained from the dynamic experiment are 

also due to the intrinsic viscoelastic property of rubber material. As mentioned above, a phase 

lag between the input disturbance and its response gives rise to the enclosed loop. The area of 

the loop equals to the hysteresis loss during one cycle. By using the same model and 

parameters, simulation results are compared to the measurement as shown in Fig.5:27 (a) for 

the compressed type fastening system and in Fig. 5:27 (b) for the shear type fastening system. 

Good agreement between the measurement and the calculation can be observed. Since the 

frequency dependent and amplitude dependent dynamic stiffness and hysteresis properties 

were discussed in Chapter 3, only one random testing case is depicted herein. However, it 

should be emphasized that the obvious difference between the crescent-like hysteresis loop of 

specimen I and the elliptic hysteresis loop of specimen II also arises from the pre-compression 

dependency. Since the dynamic displacement-force relationship is superimposed onto a 

nonlinear segment of the quasi-static loading curve, it makes the equilibrium curve of the 

hysteresis loop for specimen I change to be nonlinear.  

  

                 (a) The compressed type specimen                    (b) The shear type specimen           

Fig. 5:27 Calculated hysteresis loops compared with the measurement 

5.6 Summary 

Nonlinear features due to different reasons, which can be observed from the measured 

working curves of the two used specimen were studied in this chapter. The most noticeable 



 

136 

 

nonlinearity is the boundary nonlinearity due to nonlinear contact. This nonlinear feature of 

each specimen was firstly approved through a set of supplementary experiments. In addition, 

the quasi-static tests of the two specimens were simulated using Abaqus. Simulating result 

shows good agreement with measurement indicating the accuracy of the models and the 

simulation process. Since it is impossible to capture the moment when contacting occurs in a 

experiment, simulation can reproduce the loading-unloading phase and make it possible to 

have the contacting moment visible. Besides the boundary nonlinearity, the loading curve of 

specimen I also exhibits geometric nonlinear properties. Rubber cylinder specimen of uniaxial 

compression test was used to explain the boundary constraint induced and the largely 

changing shape caused geometric nonlinearities. In comparison with specimen I, specimen II 

doesn't show visible geometric nonlinear features. Moreover, from the calculated results we 

can see that specimen II also does not have a material nonlinearity for its largest strain value 

of different deformation modes is far away from the nonlinear range. On the opposite, both 

compressive and shear deformations of the rubber component in the compressed type 

fastening system is included in the nonlinear material strain range. The material nonlinearity 

therefore contributes to the nonlinear loading curve of the compressed type specimen. At last, 

nonlinear property induced by material viscosity was discussed. The quasi-static stiffness and 

the energy loss during are severely dependent on the loading speed. The nonlinear transient 

stiffness at the beginning of both loading and unloading phases was studied; in the same while 

disturbance from stress relaxation was eliminated by adding a holding step of 2000s. 

Furthermore, the shapes of the hysteresis loops of both fastening specimens were discussed. 

The shapes were different because of the pre-load dependency. Simulation results were 

compared to the measured loops, and good agreement between them was obtained.  

Nonlinearity analysis on the quasi-static working curves of the two specimens is 

believed to be helpful in enhancing understanding of their mechanical behaviour and 

optimizing the geometric properties in details. It will eventually help to guide the product 

designing and structural optimization, and improve their performance.  
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Chapter 6 Parameter sensitivity analysing and 

structural optimization  

In this Chapter, parameter sensitivity analysis of the present shear type and the 

compressed type rail fastening systems are introduced, which are followed by an optimized 

process from different objectives. Nonlinear properties discussed above are taken good use or 

avoided during the optimization. Optimization objectives such as isolation efficiency 

improvement, displacement response control, vertical and lateral stiffness match, free surface 

rationalization and material cost are put forward. An important term ―shear-compression ratio‖ 

is firstly proposed in present research in order to meet the expecting vibration isolation 

capability and the vertical-lateral-stiffness ratio with the lowest optimization cost.  

6.1 Introduction 

Over the last chapters, quasi-static and dynamic experiments of the two different kinds 

of fastening systems were performed in Chapter 2. Their pre-load influenced and frequency 

dependent as well as dynamic amplitude dependent properties were modelled in Chapter 3. In 

order to accurately define the rubber material used in the two fastening specimens, a family of 

fundamental material tests was carried out in Chapter 4. Hyperelastic properties and 

viscoelastic characteristics of rubber material are given by Van der Waals model and BB 

model respectively. The models and the evaluated parameters are used in Chapter 5 to 

simulate the quasi-static and dynamic experiments of the two specimens in Abaqus. Nonlinear 

properties shown in the working curves of each fastening system are studied and explained. 

So far, we already enhanced understanding of the general mechanical properties of the two 

present rail fastening systems. In Chapter 6 parameter sensitivity analysis will be conducted 

for both compressed and the shear type fastening systems. Most of the parameters will be 

found closely related to the vertical and lateral elastic characteristics. After that, a few 

geometric optimization objectives will be presented, such as force transmissibility (also 

known as the force response), dynamic amplification factor (displacement response), damping, 

fatigue and strength of material, etc. And the corresponding solutions will also be provided on 

the basis of parameter sensitivity analysing results.  
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The rubber component of the shear fastening system is an elliptical ring, the detailed 

geometries of which are shown in Fig. 6:1 (a). The sectional dimension of the rubber 

component is zoomed in on the top right corner, where the most important dimensions are the 

inclined angle       , the width           and the height       . When the 

wheel-rail force is transmitted from the above onto the top plate vertically, the rubber 

elliptical ring undertakes most of the load paralleled to the bonding surface between rubber 

and the plate components resulting in shear deformation. While a few part of this load is 

undertaken perpendicular to the bonding surface giving rise to a small quantity of 

compressive deformation. This shear-compression ratio will be proved very important in 

determining the vertical and shear stiffness property in the following pages.  

 

(a) The shear type fastening system  

 

(b) The compressed type fastening system  

Fig. 6:1 Geometric parameters of both fastening specimens 
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The rubber component of the compressed type fastening system is shown in Fig. 6:1 (b) 

and the important dimensions are also indicated on the top right corner. Since this compressed 

type specimen has relatively complex geometric properties, code numbers from L1 to L7 are 

used to represent each geometric parameter. As shown in the figure, the rubber component 

includes a main compression part and a connecting part relating the rubber component and the 

top and the bottom plates. The main compression part indicates the rectangle rubber pad on 

the bottom; the height is the sum of L6 and L7, where L7 is the depth of the grooves. The 

dimensions of the connecting component includes: width (L4) and height (L3) of the side 

strake, height (L1) and intersection angle (arc tan (2/L5)) of the non-shear connecting part, as 

well as the side strake width (L2) on the top. All the original values of these parameters are 

given in the figure. As the top plate is subjected to the wheel-rail force vertically, the L6-and-

L7 part deforms in compression, the L3-and-L4 part, as well as L2 part deform in shear, and 

the L1-and-L5 part deforms in extension. Since the deformation of the rubber component is 

mainly compression, this specimen is of the compressed type fastening system.  

6.2 The shear type fastening specimen  

6.2.1 Parameter sensitivity analysis  

6.2.1.1 Inclined angle 

In Abaqus, inclined angle ( ) of the rubber component in the shear type fastening 

system is changed. The inclined angle influenced quasi-static hysteresis loops and the loading 

curves are shown in APPENDIX A1 and the calculated vertical stiffness is depicted in Fig. 

6:2, where the larger inclined angel gives rise to significantly enhanced vertical stiffness. The 

reason can be indicated through a simple stiffness formula             ⁄  and    ⁄             ⁄             ⁄ , where    is an effective material modulus in the vertical 

direction,       is the load bearing area, and   ,    represent the initial compressive modulus 

and shear modulus of the rubber material.  
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Fig. 6:2 Inclined angle dependent vertical stiffness 

Corresponding to the formula, APPENDIX A2 gives the explanations by displaying 

the inclined angle influenced properties relevant to the vertical stiffness: APPENDIX A2 (a) 

shows that in order to keep the other parameters constant the loading area (or load bearing 

area)       increases with inclined angle; APPENDIX A2 (b) denotes that the effective 

modulus in the vertical direction    increases with the increasing inclined angle. This can be 

explained by the expression of the apparent vertical modulus    ⁄             ⁄             ⁄ . Supposing    and    are kept constant, increasing the inclined angle will 

enhance    nonlinearly. In fact, this is ultimately due to the changing compression and shear 

ratio as discussed as follows. APPENDIX A2 (c) indicates that the compression and shear 

ratio increases linearly with the inclined angle. While the nonlinear relationship between    

and   is given by    ⁄             ⁄             ⁄ , the compression and shear 

ratio is defined as a linear expression                 ⁄ .  

After obtaining the vertical stiffness value, natural frequency of the fastening system 

with different inclined angle are calculated in Abaqus. The first fourth oscillating modes and 

the frequencies are shown in APPENDIX A3. Since the first vibration mode is mainly in the 

vertical direction, we only make use of the first order natural frequency as shown in Table 6:1.  

Alternatively, if we already have the quasi-static stiffness the natural frequency can 

also be calculated according to 

        √   ⁄ ,                                                   (6:1) 
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Inclined angle 
(degree) 

Natural frequency of the 1st order 
obtained by using Abaqus  (Hz) 

Vertical stiffness    (N/mm) 

Natural frequency from the 
quasi-static vertical stiffness (N/mm) 

Difference 

(%) 

125 70.41 28705.85 68.36 2.9 

120 57.41 18652.08 55.10 4.0 

115 47.64 12689.14 45.45 4.6 

110 39.06 8809.26 37.87 3.0 

105 34.13 6632.60 32.86 3.7 

100 30.10 5110.68 28.84 4.2 

95 27.30 4302.66 26.47 3.1 

Table 6:1 The compared natural frequency from simulation and calculation by using Eq. 6:1  

where   is the weight of the railway track. The calculated natural frequency is compared in 

Table 6:1 in the fourth column. It can be seen that the differences between the simulated 

natural frequency and that derived from Equation 6:1 for each inclined angle are all below 5%.  

After calculating the quasi-static vertical stiffness and natural frequency by using 

Abaqus, a family of dynamic experiments were simulated. The model with the inclined angle      is used because it has a lowest vertical stiffness and natural frequency. The input 

cyclic loading is given by                        where   ,  ,   are respectively the 

pre-load, the dynamic amplitude and the stimulating frequency; the displacement response 

can be simulated as                       , where    is the pre-compression 

corresponding to the pre-load,   is the displacement amplitude and   is the phase lag, and the 

output force can be indicated by                           , where    is the output 

force amplitude. According to the simulation results, force transmissibility    eventually can 

be defined as the ratio of the output force amplitude    to the input force amplitude  . The 

simulated    under different disturbance frequency are plotted in Fig. 6:3 with the black solid 

circles. On the other hand, force transmissibility can also be calculated by using the basic 

concept of a single-degree vibration system and the force transmissibility is expressed as 

   √                      .                                                  (6:2) 

where   is referred to as damping ratio and normally defined as     √   ⁄  in a linear 

viscoelastic system. It correlates with the damping factor in Equation (1:3) following     . 

Supposing the damping ratio       , we can find the simulated force transmissibility and 

the calculated values by using Equation (6:2) in good agreement. It confirms that rail 
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fastening systems can be explained by a single degree mass-spring system as shown in Fig. 

1:5.  

 

Fig. 6:3 The compared vibration transmissibility between the simulated and the calculated 
results 

As a result, force transmissibility of all the other modified fastening systems including 

the original model can be calculated directly by using Equation 6:2. They are plotted in Fig. 

6:4 (a). It should be noted that the input vibration force is isolated only when the ratio of the 

disturbance frequency   and the natural frequency    satisfies    ⁄  √ . Above that, the 

force transmissibility    is less than 1.0, which indicates the isolated vibration force. If the 

force transmissibility    is larger than 1.0, the input force will be amplified. Precisely, (1) a 

smaller inclined angle gives rise to a wider vibration isolation range. As for the varied model 

with     inclined angle under the disturbance of 40Hz, the force transmissibility is smaller 

than 1.0; however, for the model with inclined angle     , the vibration isolation range 

begins at 90 Hz; (2) changing the inclined angle can vary the system resonance frequency, it 

can also decrease the transmitted force amount for a given disturbance frequency and improve 

the vibration isolation for a given disturbance force; (3) as the disturbance frequency is rather 

high, inclined angle has fewer influences on the force transmissibility. In addition to the force 

transmissibility   , another evaluation indicator of vibration isolation efficiency referred to 

as vibration reduction in dB reads: 

               .                                                 (6:3) 
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Since     is more often used in rail fastening product report and other formal occasions, the 

data points in Fig. 6:4 (a) are transformed to be vibration reduction in dB and listed in 

APPENDIX A4. The smaller force transmissibility and the corresponding larger value of the 

vibration reduction in dB mean the higher vibration isolation efficiency. Similar conclusions 

can be drawn from APPENDIX A4 that the smaller inclined angle has the wider vibration 

isolation range and give a larger vibration reduction value in dB. 

 

      (a) Force transmissibility                     (b) The dynamic amplification factor       

Fig. 6:4 Inclined angle influenced force and displacement response 

Besides the force response, i.e. force transmissibility, displacement response is another 

key factor for the performance of vibration isolation systems. Dynamic displacement response 

of an isolation system                        under the input cyclic disturbance 

force                        is often evaluated by an amplification factor  , defined as 

the ratio of responding amplitude   to    , where   is the static stiffness. Thus      can be 

considered as the static displacement response   , and the amplification factor is written as 

      √                .                                               (6:4) 

The amplification factor   of different modified models throughout the frequency range of 

[5Hz, 150Hz] can be calculated by using Equation 6:4 and shown in Fig. 6:4 (b). It can be 

seen that Fig. 6:4 (a) and (b) look similar, which is because the damping ratio of the present 

rubber material is as small as 0.01, resulting in the similar transmissibility and amplification 

factor, i.e.      √        ⁄ . 
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In fact, damping property of a rubber material is not only closely related to the 

relations between the force transmissibility and the dynamic amplification factor, also 

strongly influences on the amplitude of the force response and displacement response at 

resonance. From Fig. 6:5 we can see that it is the damping ratio that takes charge of reducing 

the force transmissibility as well as the dynamic amplification factor at resonance. The most 

obvious difference between the damping influenced force transmissibility and the 

amplification factor is in the high frequency range, where the higher damping value decreases  , whereas increases    instead. This property will be further discussed in section 6.2.2.  

 

                     (a) Force transmissibility                              (b) Amplification factor                

Fig. 6:5 Damping ratio dependent resonance response  

As discussed above, decreasing inclined angle of the rubber component in the shear 

type fastening system can decrease the vertical stiffness and correspondingly reduce the 

system natural frequency. It can help to expand vibration isolation range, improve isolation 

efficiency at a given disturbance frequency; it also can help the system to avoid resonance 

happening and decrease the amplification factor for a given disturbance especially at high 

frequency range. In fact, there is another advantage of reducing the inclined angle: it will not 

bring about accompanying material cost. As Fig. 6:6 shown, when the inclined angle is 

decreased from      to     the vibration isolation for disturbance of 100Hz is increased by 

approximately 50% while the volume of the rubber component is increased by only 2%. That 

is to say modifying the inclined angle is an efficient measure for system optimization aiming 

at improving vibration isolation in the same while considering about material cost. 
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Fig. 6:6 The vibration isolation efficiency versus the volume of the rubber component 

Mechanical fatigue is demonstrated in rubber-like materials by a progressive 

weakening of physical properties as a result of slow crack growth during application of 

dynamic loads. Correspondingly, a mechanical fatigue limit value comes into use. According 

to early references, mechanical fatigue failure does not occur on any realistic time scale as 

long as stress state is below the limit. Until the early 1930s, standard engineering practice for 

fatigue endurance design was to ensure that no applied stress exceeded the elastic limit of a 

material. This approach has proved to be inadequate and the overriding importance of local 

stress concentrations around structural flaws was thus realized. Hence, fracture mechanics 

approach was evolved. Small-scale crack growth is the slow incremental tearing of rubber, 

ultimately resulting in fatigue failure. One of the basic premises of fracture mechanics is the 

presence of natural defects or flaws in any object. Raw rubber material and reinforcing fillers 

such as carbon black exhibit various degrees of inhomogeneity on a microscopic scale. And 

all these in-homogeneities have one thing in common: they form highly localized stress 

concentrations that initiate fatigue failure.  

The focus in fracture mechanics of rubber material is actually on fatigue crack 

propagation scale and speed. Traditionally, fatigue characteristics ( and fatigue life) of rubber 

materials were depicted by a ―Wohler‖ curve, also known as an S-N curve, where S denotes 

the applied dynamic stress for a stress-controlled test or, alternatively, strain for a strain-

controlled test, and N is the number of cycle of input signals (or time) to failure limit. The 

most important feature of S-N curve is that upon reducing the dynamic stress or strain of input 

cycle toward a certain low value, fatigue life approaches infinity; on the opposite beyond the 
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limit value, the larger the input stress/strain amplitude is the earlier fatigue damage occurs. 

Most engineering elastomers don‘t dissipate the hysteretic heat generated during cyclic 

loading in short time. Failure is therefore compounded by the thermal effects especially under 

large deformation. As a result, local large strain/stress should be another key factor during rail 

fastening system optimization process.  

Fig.6:7 shows the local maximum and minimum principle strain and the maximum 

shear strain of the rubber component during the deformation process. Clearly, the maximum 

and the minimum principle strain as well as the maximum shear strain increases with inclined 

angle. From the figure, the maximum tensile and compressive strain is about 70% and the 

maximum shear strain of 115% can be read. Such a large strain may result in thermal 

accumulation, and accelerate crack propagation speed eventually shorten fatigue life. In 

conclusion, in order to extend fatigue life of the shear type rail fastening system local 

dimensions should be optimized.  

              

            Fig. 6:7 The maximum local strain under the influence of inclined angle 

Common technological methods of assessing the strength of rubber are standard tests 

such as tensile strength or tear measurements. In practice, rubber articles rarely fail due to 

crack growth in single loadings; instead, such failures are usually given by repeated loading. 

Though crack growth behaviour relevant to material failure occurs differently (normally more 

severity) from that relevant to fatigue applications. There are considerable evidences that 

fracture of rubber material is also initiated from imperfections inadvertently present or 

introduced in the body of the material or on its surface and the approach adopted for studying 

strength of rubber material is also fracture mechanics. From these imperfections, cracks may 
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grow under an applied stress, often slowly at first, until one or more of them reaches sufficient 

size for gross factor determining its strength. In other words, the crack growths of rubber 

material constitute the main factor determining its strength property and the maximum local 

stress is believed to be a direct cause of material damage. The local maximum stress should 

also be optimized as for rail fastening systems.  

Fig. 6:8 depicts the inclined angle dependent local maximum stress during the whole 

deformation process. The minimum principle stress (black hexagon), the maximum principle 

stress (red star) and the maximum shear strain (blue rhombus) consistently increase with the 

inclined angles. When the inclined angle of the rubber component is modified to be     , the 

maximum tensile stress 4Mpa and the maximum shear stress of about 2.2Mpa are far away 

from the given strength from manufacturer, 12Mpa. Since rubber material has a much larger 

compressive strength, the maximum compressive stress is acceptable.  

 

     Fig. 6:8 The maximum local stress under the influence of inclined angle 

In addition to the vertical properties as discussed above, a set of quasi-static virtual 

experiments in the lateral direction was also performed by using Abaqus. In Fig. 6:9, the 

displacement contour is shown as the rubber component is forced to deform laterally. We can 

clearly find that as the rubber component is loaded towards right both the top and the bottom 

free surfaces marked with the black circle bulge outside; on the opposite, all the free surfaces 

marked with a read circle shrink inward. 
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Fig. 6:9 Displacement contour under lateral load (half of the rubber component) 

Similarly, we can read the lateral stiffness value from all the simulated quasi-static 

loading curves, and compare them to the vertical stiffness for each model with different 

inclined angles. From Fig. 6:10 we can see that, different from the consistently increasing 

vertical stiffness along with the inclined angle, there is a minimum lateral stiffness value in 

exist when the inclined angle is modified to be approximately     .  

 

Fig. 6:10 Compared vertical and lateral stiffness 

In order to give this variation tendency of the lateral stiffness an explanation, 

APPENDIX A5 depicts the inclined angle influenced properties relevant to the lateral 

stiffness. Similarly as the vertical stiffness, the lateral stiffness can be expressed as              

and                            . Exactly the same as APPENDIX A2 (a), the loading area 

increases with the inclined angle; however, totally different from the vertical effective 

modulus    as shown in APPENDIX A2 (b), the effective modulus in the lateral direction    
decreases with inclined angle as shown in APPENDIX A5 (b). The increased       and the 
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decreased    let it making sense to have a lateral stiffness decreases firstly and increases next. 

Finally we have the vertical and lateral stiffness ratio depicted in APPENDIX A5 (c). With 

inclined angle increasing, the stiffness ratio is below 1.0 at first and gradually the vertical 

stiffness exceeds the lateral stiffness making the ratio larger than 1.0. We should pay special 

attention to the fact that it is the compression and shear ratio leads to the reduced    as 

inclined angle decreases, at which time shear deformation gradually dominate in the vertical 

direction; at the same time (as inclined angle decreases), it is also this compression and shear 

ratio giving rise to an increased    when the compressive deformation is increasingly 

dominant in lateral direction. We can see that the inclined angle is a very important geometric 

parameter for the rubber elliptical ring of the shear type fastening system. It determines the 

compression and shear ratio in the vertical and the lateral directions, consequently controls the 

vertical and lateral stiffness matching problem. For more information, see section 6.2.2.  

6.2.1.2 Width 

From Fig. 6:1 (a), the width of the rubber component,  , is another key geometric 

parameter. The width influenced quasi-static loops, the loading curves and the calculated 

vertical stiffness are shown in APPENDIX B1. Apparently, vertical secant stiffness decrease 

with increasing width and the reason can also be concluded from the formula             ⁄  

and    ⁄             ⁄             ⁄ : 

 since the inclined angle   and the loading area       are kept unchanged, the increased 

width   leads to the decreased   ; 

 obvious nonlinear variation tendency can be observed from the APPENDIX B1 (c), 

which conflicts with the influence of   on   . In order to explain this nonlinearity, the local 

maximum shear strain of the rubber component and the local maximum shear stress 

throughout the loading process are shown in APPENDIX B2. The maximum shear strain 

increases linearly with the decreased width while the maximum shear stress increases 

nonlinearly in APPENDIX B2 (a), resulting in the shear modulus   , as the apparent shear 

modulus, nonlinearly influenced by the width as shown in APPENDIX B2 (b). Decreasement 

of the width results in the increased shape factor  . The shape factor has a strong influence 

not only on the compressive modulus    but also on the shear modulus    especially when the 

combined compressive strain is relatively large. And this effect increases with the increasing 



 

150 

 

shape factor and the increasing compressive strain. In conclusion, both    and    are 

influenced by the varied shape factor, and the increasing compressive deformation. As a result, 

they give rise to the nonlinear feature of    as well as   .  

After obtaining the width influenced vertical stiffness, we can easily calculate the 

corresponding system natural frequency, the force response and the displacement response. In 

terms of the stiffness value, the width influenced properties are similar as those influenced by 

the inclined angle. For the sake of brevity, they are not shown again herein. However, the 

differences between them, such as the material costs, the mechanical and the strength 

properties and the vertical and lateral stiffness ratio will be briefly compared as followed. 

Modifying the width of the rubber component aiming at improving the vibration 

isolation efficiency is different from changing the inclined angle. Decreasing the inclined 

angle will not bring about the extra material cost as shown in Fig. 6:6. However, in order to 

improve the vibration isolation efficiency for the disturbance of 100Hz by 25% for example, 

the volume of the rubber component need to be correspondingly increased by 5% 

approximately through changing the width, see APPENDIX B3. As a consequence, from the 

material cost point of view, inclined angle modifying is a more reasonable measure compared 

with changing the width aiming at improving the vibration isolation efficiency.  

For another, in order to avoid thermal accumulation in rubber component and 

acceleration of fatigue failure, local maximum deformation should be taken special attention 

during the parameter optimization. In APPENDIX B4, the maximum principle strain can be 

found reaching 85% and the minimum principle strain is about 45% as the component width 

is decreased to be 23.56mm. Furthermore, the tensile stress is as high as 11.77Mpa 

corresponding to maximum tensile strain 85%. Such a large local strain value is not only very 

easy to accelerate the crack development the corresponding large stress also nearly 

approaches the breaking strength (12Mpa) of present rubber material. The width of the rubber 

component, as a result, should have a prescribed minimum value to avoid the very large local 

strain and stress in exist.  

The width influenced vertical stiffness was already discussed above, and the lateral 

stiffness values obtained from the lateral quasi-static virtual tests are compared in 
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APPENDIX B5 (a) and the vertical and lateral stiffness ratio is depicted in APPENDIX B5 

(b). It can be seen that the lateral stiffness decreases with the increased width similar as the 

vertical stiffness does. And the vertical and lateral stiffness ratio almost remains unchanged at 

about 0.5. In brief, modifying the component width is different from changing the inclined 

angle also in term of the vertical and lateral stiffness ratio.  

6.2.1.3 Height 

Compared to inclined angle and the component width, height influenced hysteresis 

loops, loading curves and the vertical stiffness are similarly shown in APPENDIX C1. Clearly 

can be seen from the figures, the increasing component height gives rise to the enhanced 

vertical stiffness. With the same vertical stiffness formula             ⁄  and    ⁄             ⁄             ⁄ , the expression of the loading area for the elliptical ring 

can be written as             (   )            ⁄ , where   is the inner major axis of 

ellipse,   the minor axis. As a result, when the inclined angle   and the width   are kept 

constant, vertical stiffness    increases linearly with the component height  .  

As mentioned above, extra material cost will accompany with the improved vibration 

isolation capability by modifying the component width, whereas changing the inclined angle 

has no effect on the component volume. Herein, decreasing the component height may reduce 

the amount of the rubber material in the mean while improving the vibration isolation 

efficiency, see APPENDIX C2.  

Large local strain values are also inspected as the height is amended. For the 

maximum component height 64mm, the minimum principle strain is increased from 34% to 

45% while the maximum principle strain enlarges from 64% to 84%. APPENDIX C3 shows 

the corresponding maximum shear stress and the minimum principle stress. Both of them 

increase with the modified height, but they are far away from the strength limit.  

At last, the vertical and lateral stiffness relation dependent on the modified component 

height is similar as that influenced by component width. In APPENDIX C4 (a), the lateral 

stiffness increases with the component height linearly as the vertical stiffness does; in 

APPENDIX C4 (b), the vertical and lateral stiffness ratio also keeps almost unchanged at the 

initial value 0.5. It can be seen that the decreased component width and the increased 
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component height don't have much influence on this compression and shear ratio in both 

vertical and transverse directions.  

6.2.2 Structural optimization 

6.2.2.1 Vibration isolation requirement 

(A) Problem: The original version of the shear type fastening system is subjected to a 

sinusoidal vibration force                   at 100Hz, i.e.         , where    is a 

static preload and   is the dynamic amplitude. Supposing                 and the 

input disturbance force is only in the vertical direction, the object is to optimize the original 

geometries of the rubber component that provides 20% more isolation reduction in dB. Note: 

vibration efficiency of the initial model is 15dB at 100Hz and the damping ratio was 

determined as       . 

To begin the optimization, Equation 6:3 is used to find the proper force 

transmissibility          that satisfies the improvement of the vibration reduction from 

15dB to 18dB for 100Hz. And then according to Equation 6:2 and Equation 6:1, the proper 

frequency ratio and the system natural frequency can be obtained as        and                   . Finally the objective vertical static stiffness of the rail fastening system 

is found to be              by using Equation 6:1. Compared with the initial vertical 

stiffness          , the objective value is decreased by 26.7% to accommodate the 

requirement. 

(a) Supplementary requirement 1: While keeping the vibration reduction of 18 dB for 

the 100Hz disturbance force, keep the vertical and lateral stiffness ratio unchanged. 

According to section 6.2.1.1, inclined angle of the rubber component of in the shear 

type fastening system should not be modified when the vertical and lateral stiffness ratio is 

required to be remained. The supplementary requirement demands that the lateral stiffness 

keeps pace with the vertical stiffness. As analysed in sections 6.2.1.2 and 6.2.1.3, alternative 

approach as flowed can be adopted: 

 increasing the width of the rubber component by about 14% ; 
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 decreasing the height of the rubber component by about 18%. 

Any of them can be used if there is no other additional requirements are presented. 

However, from the material cost point of view the second measure is more reasonable.  

(b) Supplementary requirement 2: While keeping the vibration reduction of 18 dB for 

the 100Hz disturbance force in the vertical direction, let the lateral stiffness increased by only 

2%.  

As mentioned above, vertical stiffness should be decreased by 26.7% from           to meet the vibtation isolation optimization requirement. The second supplementary 

requirement actually demands to accommodate the vertical and lateral stiffness ratio in term 

of increasing the lateral stiffness by 2%. From the analysis in section 6.2.1.1, the inclined 

angle of the rubber elliptical ring should be decreased to      in order to obtain a vertical 

stiffness of             . Accordingly, the lateral stiffness is becoming 1.8% higher, 

which can be read from Fig. 6:12 and the corresponding lateral stiffness becomes              . It can meet the second supplementary requirement. 

Though modification requirements presented above is filled, there are still a few 

deficiencies as for the current shear type fastening system such as:  

 as discussed above, the force transmissibility was decreased in order to improve the 

vibration isolation efficiency from 15dB to 18dB for the given disturbance of 100Hz. In the 

same while, amplification factor is also reduced from 0.181 to 0.126 at the given 100Hz. 

However, the decreased amplification factor   at a given vibration frequency does not mean a 

smaller displacement response amplitude especially near the resonance frequencies; on the 

contrary, the reduced vertical stiffness enlarges the quasi-static displacement and may also 

correspondingly increase the dynamic displacement amplitude. In addition, as for a rail 

fastening system, the real working condition is much more complex than a single cyclic 

frequency (100Hz). Severe vibrations near the resonance frequency or overlap one of the 

overtones may happen. At this condition, a decreased vertical stiffness giving rise to the 

reduced force transmissibility and dynamic amplification factor need to be balanced to the 
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decreased quasi-static stiffness in order to make the responding displacement amplitude under 

control.  

Specifically, the pre-compression of the original model with the vertical stiffness and the 

modified model with             under a static pre-load of 22.4kN are respectively           and          . The pre-compression is superimposed by the responding 

dynamic displacement amplitude   as they are subjected to a sinusoidal vibration force                  . Considering about the worst case when the disturbance frequency 

approaches to the resonance frequency, the dynamic displacement amplitude of the original 

and modified fastening system can be obtained as                    ⁄           and                    ⁄          , respectively when the damping 

ratio equals 0.01. From the calculating result we can see that, though decreasing the vertical 

stiffness from 8800N/mm to 6449N/mm can efficiently improve the vibration reduction from 

15dB to 18dB for disturbance force of 100Hz and also reduce the dynamic amplification 

factor at 100Hz from 0.181 to 0.126, it strongly enlarged the pre-compression    and the 

dynamic displacement amplitude   especially when the disturbance frequency approaches to 

the system natural frequency. It can be imagined that such high responding displacement 

amplitude may bring about considerably large compressive strain of        and shear 

strain of           , which may very possibly speed up the thermal mechanical fatigue 

and even fatigue damage. More information can be referred to section 6.2.2.2. 

 one of the consequence of the second supplementary requirement is the varied vertical 

and lateral stiffness ratio,     ⁄      . Supposing the vertical displacement    is three times 

larger than the lateral displacement   , i.e.     ⁄   , the ratio between the lateral force and 

the vertical direction thus can be obtained for both initial and the modified system 

respectively as     ⁄           ⁄         and     ⁄           ⁄        . This 

lateral and vertical reactive force ratio is always supposed to be an important indicator of the 

vehicle traveling safety when the vertical wheel-rail force and the lateral wheel-rail force are 

integrated, and it is normally referred to as derailment coefficient   ⁄ .   ⁄      is a 

standard safety upper limit. Apparently, the modified model with the vertical and lateral 

stiffness ratio gives rise to a derailment coefficient larger than 0.8. In brief, a reasonable 

vertical and lateral stiffness ratio     ⁄  is rather important during the product designing and 

structural optimization process. For more information, see section 6.2.2.4.  
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6.2.2.2 Damping properties 

(B) Problem: Keep the maximum dynamic displacement amplitude below 4mm 

throughout 0-100Hz frequency range while maintaining 18dB isolation reduction of 100Hz 

disturbance force. 

The maximum dynamic displacement amplitude arises when resonance happens, i.e.             , at which time the amplification factor is acceptable to be reduced as      ⁄ . A new damping ratio       is adopted instead of the initial value       . 

Correspondingly, a dramatically decreased amplification factor is now obtained as      . 

Fig. 6:11 shows the force transmissibility calculated by using the increased damping ratios. 

Selecting the appropriate curve with the damping ratio      , it can be used to find the 

frequency ratio required to provide the force transmissibility equalled to 0.126 at the 

frequency 100Hz in order to meet the requirement of 18dB vibration reduction. In the figure, 

the curve for       intersects with the          line at          ⁄ , where         and thus                     . The vertical stiffness of current rail fastening 

system is determined as               . With current vertical stiffness, the maximum 

dynamic displacement is found to accommodate the damping property optimization 

requirement as     ⁄                 ⁄               .  

 

Fig. 6:11 Force transmissibility obtained by using different damping factor 
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We should pay some attention to that in Fig. 6:11 the increased amount of damping 

gives rise to the reduced force transmissibility in the isolation range. In other words, in order 

to achieve the same isolation efficiency of 100Hz disturbance, a lower damping factor        demands a higher value of vertical stiffness              while a larger 

damping factor       corresponds with a smaller vertical stiffness               . 

From this point of view, balancing   and    is another key factor during the optimization 

process, see section 6.2.2.3.  

6.2.2.3 The total responding displacement amplitude 

(C) Problem：Keep the total responding displacement below 10mm as the system is 

subjected to a combined static and dynamic loading                   where           and      , in the meanwhile satisfying the requirements in 6.2.2.1 (                                        ) and 6.2.2.2 (dynamic displacement amplitude at 

resonance        ).  

As discussed above, in order to obtain the minimum dynamic displacement amplitude      a maximum value of       should be determined rather than a maximum stiffness    or 

a maximum damping ratio  . By using Equation 6:2 the force transmissibility calculated with 

different damping ratios are shown in Fig. 6:12. Repeating the same procedure as presented in 

Fig. 6:11, proper frequency ratio required to provide the force transmissibility of 0.126 for the 

100Hz disturbing vibration can be read from the figure. Intersects of all the curves with the 

TR=0.126 line are emphasized in the shaded area in Fig. 6:12 (a) and zoomed in in Fig. 6:12 

(b). The resulted frequency ratio  , the natural frequencies    and the vertical stiffness    with 

different damping ratio   are listed in Table 6:2. It is clear to see that  ,    and    all increase 

with the increasing damping ratio  , except      . There is a peak value of this       as the 

damping ratio values 0.2 and the maximum product is about 1455.5. Finally, the minimum 

dynamic displacement amplitude are obtained with a damping ratio of 0.2                                       . We can see now the damping ratio       in section 

6.2.2.2 is obviously not the most reasonable solution.  
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  (a)  Macroscopic diagram                                    (b)    Detailed diagram 

Fig. 6:12 Force transmissibility under the influence of damping factor 

Damping ratio   0.10 0.125 0.15 0.175 0.20 0.225 0.25 0.275 0.3 

Frequency ratio   3.2 3.4 3.5 3.7 4.0 4.2 4.5 4.8 5.2 

Natural frequency    (Hz) 31.25 29.41 28.57 26.70 25.13 23.58 22.07 20.83 19.23 

Vertical stiffness   (N/mm) 5628.8 4986.0 4705.2 4107.5 3638.7 3204.6 2807.5 2501.7 2131.4       1125.8 1246.5 1411.6 1437.6 1455.5 1442.1 1403.8 1375.9 1278.8 

Table 6:2 Balancing of the damping ratio and the vertical stiffness 

The vertical stiffness                can be read from Table 6:2 corresponding 

to the damping ratio      , and the resulting static displacement as the isolation system is 

subjected a 22.4kN preload is        . The total displacement is now decreased to meet 

the requirement                          . At this moment, the mean 

compressive strain and the shear strain are approximately 11% and 30% respectively, both of 

them are acceptable for the real application.  

6.2.2.4 Vertical and lateral stiffness matching 

As discussed above, a well matched vertical stiffness    and the lateral stiffness    is 
necessary to guarantee the train traveling safety. Assuming   is the vertical versus lateral 

displacement ratio when the fastening system is subjected to the wheel-rail force together in 

both directions, i.e.     ⁄   , accordingly a derailment coefficient   ⁄  is obtained to 

estimated whether a given vertical and lateral stiffness ratio is acceptable to meet the safety 

requirement as below: 
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                   .                                               (6:5) 

As for the original version of the shear type fastening system, the vertical stiffness   , 

the lateral stiffness    and the damping ratio   are respectively             ,               and       ; the modified fastening system as the result of 6.2.2.1, 6.2.2.2 

and 6.2.2.3 provides a vertical stiffness                and a damping ratio is      . 

Supposing                is achieved by amending the width or the height of the rubber 

component, vertical and lateral stiffness ratio will remain unchanged at about 0.5 and a 

counterpart lateral stiffness becomes               . Eventually, the result needs to 

meet             and   should be also determined before the optimization process.  

6.2.2.5 Local geometry optimization 

After obtaining the objective vertical stiffness    and a well matched lateral stiffness   , all the other work is to finalize a proper geometric optimization proposal. Besides the 

geometric sensitivity analysis and the material cost as mentioned above, slenderness ratio     
of the rubber component and the local maximum tensile, compressive as well as shear strain 

and the maximum stress are also key factors. 

As mentioned above, the vertical stiffness can be determined by  

            ⁄ ,                                                     (6:6a) 

   ⁄             ⁄             ⁄ ,                            (6:6b) 

                             ⁄                                (6:6c) 

where   is the major axis of ellipse,   the minor axis,   the inclined angle and   the height of 

the rubber component. The vertical stiffness can thus be directly expressed as  

                               .                                                (6:7) 

It keeps consistent with the simulation result. From Equation 6:7 we can see that any 

of the following measures can be adopted to modify the stiffness value in order to improve the 



 

159 

 

vibration isolation efficiency: increasing the width  , decreasing the inclined angle   or 

reducing the height  . However, these three factors are restricted to each other to some extent. 

For instance, the shear modulus would be greatly influenced by tensile and bending 

deformation as slenderness ratio     is larger than 25%, or it may result in a much smaller 

apparent shear modulus than the real value. Hence, for the purpose of using the real material 

modulus, Equation 6:7 can be transformed to satisfy  

                   (   )          ,                                          (6:8) 

where the left side of the equation is the slenderness ratio    , and both sides of the equation 

have to satisfy the inequality. In order to meet Equation 6:8 in the meanwhile decreasing the 

vertical stiffness to be 3638.7N/mm, three alternative measures could be introduced: 

 keep the major and the minor axis of the ellipse   and   fixed, while decreasing the 

material modulus   to be approximately 0.3Mpa. However, such small modulus for an 

engineering elastomer is too soft in the real practice;  

 on the opposite, keeping the material modulus   unchanged and modifying the 

elliptical sweeping trace. Assuming that   and   satisfy          , the modified major 

and the minor axis are respectively         and       ; 

 modifying the material modulus and the sweeping trace simultaneously.  

If the second measure is adopted, Equation 6:8 becomes                    (   )          . Noting that the original value of              is about 0.38. If the the vertical and lateral 

stiffness ratio is kept constant: enhancing the height   from 52mm to 78mm or diminishing 

the width   from 29.36mm to 13.8mm can meet the requirement. If the first method is adopted, 

the loading area       is also increased to be            . Furthermore, since the modified 

vertical stiffness values 3638.7 N/mm, the maximum total displacement and the mean 

compressive strain as well as the shear strain are respectively                                              ,                                and                               . On the other hand, if the second measure is adopted, the loading area       value             and the mean compressive and the shear strain are respectively          

and       . Though the resulting mean shear stress by using both methods is acceptable, 
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the first solution is better than the second from the perspective of minimizing strain and stress 

of rubber component; while from the material cost point of view, the second method is better 

than the first. 

Sometimes during the geometric parameter optimization, very large local strain and 

stress may arise. Taking the modified model t=23.36mm for example, from the simulation 

results we can see the maximum compressive strain of about 65% existing in the local part of 

the rubber component although the mean compressive strain is only 12.4%. That is, the local 

maximum strain/stress is sometimes more important than working strain/stress during design 

and optimization process. In section 6.2.2.6 free surface optimization will be illustrated in 

order to eliminate the unreasonable dimensions in detail and correspondingly diminish local 

strain and stress. 

6.2.2.6 Free surface optimization 

Rubber material is characterized as high elasticity, large deformation and 

incompressibility, as a result improper deformations may arise at some local parts of the 

rubber component. Throughout the loading process, largely deformed component or loading 

discontinuity may give rise to wrinkle, crease, folds even self-contact of the rubber 

component in rail fastening systems. Overriding importance of such improper deformations 

with local large strain and stress concentrations around structural flaws was realized to speed 

up the small-scale crack growth. They are all potential menace for the component‘s 

mechanical fatigue and damage. The free surface optimization can substantially approve the 

deforming behaviour of the rubber component. As followed are the compared deformation 

features of the original model and that with the modified free surface, see Fig. 6:13. Due to 

the worst dimension optimization result as shown in section 6.2.1.2, the model with            is taken for example. Fig. 6:13 (a) indicates the original state of model; Fig. 6:13 

(b-h) compare the vertical displacement, the maximum compressive strain, tensile strain, 

shear strain and the maximum compressive stress, tensile stress as well as the shear stress 

respectively. From Fig. 6:13 (a) and (b) we can see that both the top and the bottom free 

surfaces are optimized resulting in the decreased vertical displacement (U3): on the top U3 is 

reduced from 7.763mm to 6.98mm while on the bottom it is decreased from 2.31 to 1.838mm 

avoiding the contact between the rubber component and the shaking table. From Fig. 6:13 (c-



 

161 

 

h), we can see that the maximum compressive strain, tensile strain and the shear strain 

decrease respectively by 27%, 31.5% and 15.6%; the maximum local compressive stress, 

tensile stress and the shear stress decrease respectively by 23.5%, 55.3% and 32.6%.  

 

(a)The initial condition 

  

(b) Vertical displacement (U3) at the end of the loading process  

 

(c) The minimum principle strain (LE, Min. Principal) 
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(d) The maximum principle strain (LE, Max. Principal) 

 

(e) The maximum shear strain (LE13) 

 

(f) The minimum principle stress (S, Min. Principal) 
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(g) The maximum principle stress (S, Max. Principal) 

 

 

(h) The maximum shear stress (S, S13) 

Fig. 6:13 Comparison between the original model and that with the modified free surfaces 

6.3  The compressed type fastening system 

6.3.1 Parameter sensitivity analysis 

Similar as the parameter sensitivity analysing on the shear type fastening system in 

section 6.2.1, the geometric parameters of the compressed type fastening system is also 

studied through a family of quasi-static virtual experiment by using Abaqus. Referring to Fig. 

6:1 (b), Fig. 6:14 shows the parameter (L1, L3, L4 and L7) influenced vertical stiffness. 

Correspondingly, APPENDIX D1-D4 depict the parameter influenced displacement-force 

curves. APPENDIX D5 also describes the parameter (L2, L5 and L6) influenced vertical 

stiffness. According to the calculation results the increasing, L2, L5 and L6 decrease the 
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vertical stiffness, however the effects on the vertical stiffness is not as obviously as L1, L3, 

L4 and L7 do. Generally speaking, the vertical stiffness of the compressed type fastening 

system    can be decomposed into four parts: two shear deformed parts with corresponding 

stiffness        and          , the extensile part with    and the main compressive part with   . Concisely, the vertical stiffness can be expressed as                          . 

The increasing L1 decreases the vertical stiffness because     is reduced by L1 in term of                ⁄ . If the subscript   is changed to be  , the influence on the vertical 

stiffness by L3 and L4 can be explained by                    ⁄ , where the increased L3 

or the reduced L4 gives rise to the enlarged    and   ; similarly, if the subscript is changed to 

be  , the decreased vertical stiffness influenced by the increased L7 can be explained by                     ⁄ . It should be noted that the strong effect on the vertical stiffness  

 

                           (a) Parameter L1                                             (b) Parameter L3                  

 

                        (c) Parameter L4                                             (d) Parameter L7                  

Fig. 6:14 Parameter influenced vertical stiffness of the compressed type fastening system 
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by L7 also because the additional L7 may bring more freely bulge surfaces, and a smaller 

shape factor may decrease the apparent compressive modulus   , eventually results in the 

reduced    and   . 

Since modifying L4 and L7 are the most efficient measures to decrease the vertical 

stiffness, it is taken for instance to calculate the natural frequency and the vibration reduction 

in dB. Similar as the shear type fastening system, Equation 6:1 can be used to calculate the 

system natural frequency and the results compared to the simulated natural frequency in 

Abaqus is compared in APPENDIX E. Simulation results and the calculated results meet each 

other rather well. Solving Equation 6:2 and 6:3, APPENDIX F1 and F2 respectively display 

the calculated force transmissibility and the corresponding vibration reduction values with the 

modified L7. Since increased L7 results in the decreased vertical stiffness, it decreases the 

force transmissibility for a given disturbance frequency in the isolation range, and improves 

the vibration reduction efficiency; it also extends the vibration isolation range. When the 

damping ratio is increased from 0.01 to 0.2, the dynamic amplification factor calculated by 

Equation 6:4 are plotted in APPENDIX G. From the figure we can see that it is the damping 

factor decreasing the dynamic amplification factor, and the models have the similar maximum 

amplification factors at the resonance frequency with different system natural frequency 

controlled by L7; but the larger L7 affords the smaller amplification factor for a given 

frequency in the isolation range such as 150Hz.  

As mentioned above, L2 influences on the vertical resilient properties much less than 

the other geometric parameters. However, it effects on the lateral stiffness strongly 

as.Fig.6:15 shows. From Fig. 6:15(a) we can see that L2 doesn‘t have much effect on the 

vertical stiffness whereas it largely decreases the lateral stiffness as L2 increases. 

Correspondingly in Fig. 6:15(b) the vertical and lateral stiffness ratio dramatically increases 

with L2.  
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       (a) Comparison of vertical and lateral stiffness     (b) Vertical and lateral stiffness ratio       

Fig. 6:15 L2 influenced vertical and lateral stiffness ratio 

Besides L2, L3 also influences on the lateral stiffness more than vertical stiffness, 

resulting in the modified vertical and lateral stiffness ratio, see APPENDIX H1. Different 

from L2 and L3, the increasing L7 severely decrease the vertical stiffness whereas it has very 

little influences on the lateral stiffness; it decreases the vertical-and-lateral stiffness ratio 

efficiently as APPENDIX H2 depicted. Furthermore, we can see from APPENDIX H3 and 

H4 that L4 and L1 influence on the resilient properties in both lateral and vertical directions 

almost the same and the vertical-and-lateral stiffness ratio is nearly kept constant. At last, L5 

and L6 also have little influences on the lateral stiffness.  

From the fatigue and strength properties perspective, the parameters analysing were 

also performed. For example, APPENDIX I1 (a) shows that the decreasing L1 enlarges the 

maximum tensile strain and shear strain severely, while, in comparison, it has little influences 

on the maximum compressive strain. The corresponding maximum tensile stress should be 

taken special attention as shown in APPENDIX I1 (a). As L1 is decreased to be about 4.5, the 

maximum tensile stress almost approaches to the material strength limit. Not only in the 

vertical direction, when the model is subjected the lateral force as shown in APPENDIX I1 (b) 

the maximum shear strain is also enlarged to be nearly 100%. Such a large shear strain value 

also arises when L2 is decreased to be about 4.5 while the model is subjected the vertical 

force as shown in APPENDIX I2 (a), or when L4 is decreased to be about 9.5 while the model 

is loaded laterally as shown in APPENDIX I2 (b).  
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In other hand, we should also pay attention to the influences of L7 on the maximum 

strain values, see APPENDIX I3. Any other modified geometric parameter brings about a 

maximum compressive strain in the mean while giving rise to the maximum shear or/and 

tensile strain; however, the enlarged L7 gives rises to the reduced compressive strain while 

giving the increasing maximum shear and tensile strain values. It tells us though increasing 

L7 is the most efficient measure to reduce the vertical stiffness and ultimately improve the 

vibration isolation efficiency, there is an upper limit due to the concomitantly increasing shear 

and tensile strain. From this point of view, other methods should be adopted if lower resilient 

property is demanded.  

6.3.2 Structural optimization 

In section 6.3.1, all the important geometric parameters were studied in terms of the 

parameter influenced vertical stiffness, natural frequency, force transmissibility, dynamic 

amplification factor, vertical and lateral stiffness match, the maximum local strain and stress. 

Similar optimization problems can be presented in the same way as the shear type fastening 

system, and the similar solving method can also be obtained on the basis of the parameter 

sensitivity analysis. As a result, they are not going to be discussed again in this section. 

However, another optimization object will be proposed instead for the compressed type 

fastening system.  

As mentioned above, the present fastening system deforms mainly in compression. 

The intrinsic large compressive modulus leads to the general higher stiffness property of 

compressed type fastening systems in comparison to the shear type specimen. It was also 

mentioned above that though L7 is a key parameter for the vertical resilience, there is a lower 

limit value because increasing L7 also brings about the enlarged local strain and stress. As a 

revelation from the egg-shape fastening system, modifying the compression and shear ratio of 

the rubber component can help to efficiently reduce the vertical stiffness. 

In order to efficiently reduce vertical stiffness, the compressed type fastening 

specimen is modified to be a combined compressed-and-shear type system as shown in 

Fig.6:16 (b). Through introducing a reformatory top plate, two columns of rubber component 

are appended on above the compressive rubber pad. Compared with the cross section of the 
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original geometries as shown in Fig. 6:16 (a), we can see that when the fastening system is 

subjected to vertical wheel-rail load the newly introduced parts deform mainly in shear and 

the original compressive rubber pad still deforms in compression. According to the 

calculation results, the vertical stiffness is decreased to be 26.31kN/mm from 40kN/mm; 

besides, the lateral stiffness is also reduced to be 10.58kN/mm.  

 

(a) The original model  

 

(b) The combined compression-and-shear type  

Fig. 6:16 Comparison between the original compressed type fastening system and the 
combined compression-and-shear type model  

If the vertical resilient features or the vertical-and-lateral stiffness ratio needs to be 

further optimized, the modified top plate can be changed in term of the inclination as shown 

in Fig. 6:17. The larger the inclination is the higher the compression-and-shear ratio and the 
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vertical stiffness will be. It can be efficiently used to balance the vertical and lateral stiffness 

properties.  

If necessary, this compressed type fastening system also can be modified to apply as 

low vertical stiffness as 7.1kN/mm as Fig. 6:18 shows. The compressive pad of the rubber 

component is removed and all the responding elastic displacement is absorbed by the shear 

deformation. However, at this moment, the modified rail fastening system actually becomes a 

shear type highly resilient system. The lateral stiffness of this modified system is reduced to 

be 8.6kN/mm and the vertical-and-lateral stiffness radio is significantly changed to be less 

than 1.0.  

 

Fig. 6:17 Another combined compression-and-shear type model  

 

Fig. 6:18 The modified highly resilient fastening system 
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6.4 Summary 

In this Chapter, sensitivity analysing of the geometric parameters of the both fastening 

systems were performed. As for the shear type specimen, the inclined angle of the elliptical 

ring, the width and the height of the component largely influence the vertical resilient 

property. And the inclined angle also strongly effects on the lateral resilience and the vertical-

lateral stiffness ratio by adjusting the important compression and shear ratio in both directions. 

Subsequently, several optimization objects were proposed in terms of improving the vibration 

isolation efficiency, decreasing the displacement response, reducing the material cost, 

balancing the vertical and lateral stiffness ratio, diminishing the local maximum strain and 

stress values and damping property as well as free surface optimization. The corresponding 

solving process was also presented. As for the compressed type fastening system, similar 

parameter sensitivity analysing procedure was carried out. Influences on the vertical and the 

lateral elastic properties by each geometric parameter were explained by plotted figures. Since 

the similar optimization objects as presented for the shear type fastening system can be solved 

on the basis of the parameter sensitivity analysis in the same way, they were omitted for brief. 

However, if the compressed type fastening system is demanded lower stiffness, a combined 

compression-and-shear type fastening system is introduced by modifying the original model. 

If a well matched lateral stiffness is also taken into consideration, the proper compression and 

shear ratio can be again adjusted by changing the inclination of the top plate and the rubber 

component. Furthermore, if the compression and shear ratio is significantly decreased by 

removing the compressive part of the original model, a highly elastic fastening system can be 

obtained. It tells us that compression and shear ratio is a key factor in designing the resilient 

properties of a rail fastening system in all directions. The parameter sensitivity analysing and 

structural optimization discussed in the present chapter is believed to be helpful and 

inspirational to the product designing and optimization of rail fastening systems. The 

empirical methods can be gradually improved on the basis of theoretical foundation and the 

enhanced understanding.  
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GENERAL CONCLUSION 

As a consequence of introduction of continuous welded rail (CWR) track and concrete 

sleepers especially in case of slab track structures, rail fastening systems with great flexibility 

are increasingly demanded. However, the requirement for the improved performance of high 

elastic rail fastening systems conflicts with the current development status being dramatically 

diversified but mainly empirical. Except a few leading companies in the worldwide, nearly 

most products especially in the developing countries are imported or imitatively and 

empirically produced. Hundreds of products were newly introduced with only a few simple 

specifications and nearly no thorough theoretical analysis can be found and well documented; 

there is even no a generally accepted standard for rail fastening products‘ designing and 

selecting. At this situation, the present work aims at enhancing understanding of two typical 

kinds of rail fastening systems, providing a few reasonable product optimization objects and 

measures more than empirical methods.  

This present research combines the experiments and the numerical analysis to 

understand and predict the mechanical behaviour of rail fastening systems. Firstly, a set of 

quasi-static and dynamic experiments of two typical kinds of rail fastening systems were 

conducted, one of which is a compressed type and the other is the shear type. The quasi-static 

measurement doesn‘t aim at determining their static stiffness, but mainly at discovering their 

nonlinear elastic properties. Through the dynamic experiments, both compressed and shear 

type specimens exhibit motion amplitude dependent and frequency dependent properties. 

Preload dependence was also observed by superimposing oscillations to the quasi-static 

loading curves. It was found that the rail fastening systems show the same basic 

characteristics concerning stiffness and loss angle as the rubber material does in terms of 

modulus magnitude and loss factor. The decreased secant dynamic stiffness and increased 

energy loss during an oscillating cycle, as well as a peak value of the loss angle were 

observed from the experiment data coinciding with the nonlinear feature of rubber material 

referred to as Payne effect. Frequency dependency was linearized because the loading 

frequency range is only below 20Hz. It is so far away from the nonlinear frequency dependent 

area. Preload influence is supposed to be due to either the finite strain characteristic of rubber 

material or the geometries and boundary conditions of the specimens.  
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In order to deepen the understanding of the pre-compression influenced, frequency 

dependent and amplitude dependent properties of rail fastening systems, the experimental 

results are simulated by three different numerical models. Numerical models were commonly 

used to describe the properties of vibration isolation systems, such as the high buildings 

mounted on top of special rubber pads intending to isolate the building from ground 

vibrations, nearly all the suspension bridges constructed with vibration controlling component 

in case of violent torsional vibrations as is suffering from high wind, aircraft wings, vehicle 

suspension systems, precision machineries, and so on. Though rail fasting systems are typical 

vibration isolation components and it‘s increasingly important especially for slab track 

structures, few numerical models were proposed to analyse the mechanical performance of 

rail fastening systems so far, don't even say documented materials. The most distinguished 

difference between rail fastening systems and other vibration isolation systems is that it‘s 

consistently subjected to a pre-compressed working condition or sometimes combined with 

tension and shear; the dynamic force is superimposed onto a pre-load. Different from other 

systems being free at the normal situations whose main deformation mode is alternating 

tension and compression, the pre-compression and the superimposed strain may bring about 

severe nonlinear deformations. Since it is quite difficult to implement a model considering all 

working conditions of a system, and, if any, a model accounting for too wide range would be 

not accurate enough, these three models focus on different properties of the two fastening 

specimens respectively. Though all of them are under special hypotheses and simplification, 

they can still help to depict and predict the mechanical behaviour from a general point of view.  

Besides the numerical models which are believed to enlighten the understanding of the 

nonlinear mechanical behaviours of rail fastenings systems, FEA process is also promoted 

dedicating in the detailed features, such as geometric properties. As a result, a family of 

material fundamental measurements is carried out, followed by the DMA tests. Different 

hyperelastic and viscolastic models are fitted and compared. Finally, Van der Waals and 

Bergstrom-Boyce model are selected to define the rubber material during finite element 

analysis.  

By using the evaluated Van der Waals and Bergstrom-Boyce models, the quasi-static 

and dynamic experiments were simulated by using Abaqus. The simulation can meet the 

experiment results rather well. And then, nonlinear features due to different reasons are 
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studied. The most noticeable nonlinearity shown in the quasi-static working curves of the two 

specimens were found to be the boundary nonlinearity due to nonlinear contact. Since it is 

impossible to capture the moment when contacting occurs in a real experiment, simulation 

was used to reappear the loading-unloading phase and make it possible to have the contacting 

moment visible. Besides the boundary nonlinearity, the loading curve of compressed type 

fastening system (specimen I) also exhibits geometric nonlinear properties. Rubber cylinder 

specimen of the uniaxial compression test was used to explain the boundary constraint 

induced and the largely changing shape caused geometric nonlinearities. In comparison with 

specimen I, the shear type fastening system (specimen II) doesn't show visible geometric 

nonlinear features. Moreover, from the calculated results we can see that specimen II also 

does not show the material nonlinearity for its large strain value. On the opposite, both 

compressive and shear deformations of the rubber component in specimen I is reaching the 

nonlinear material strain range. Material nonlinearity therefore contributes to the nonlinear 

loading curve of specimen I as the measured curve shows. At last, rubber material viscosity is 

also discussed. The nonlinear transient stiffness at the beginning of both loading and 

unloading phases was studied; in the mean while disturbance from stress relaxation was 

eliminated by adding a holding step of 2000s. Furthermore, the hysteresis loops of both 

fastening specimens are compared and studied. Nonlinearity analysis of the two specimens is 

believed to be helpful in optimizing the geometric properties in details. Some of them can be 

taken full use while others should be avoided. It will eventually help to guide the product 

designing and optimization process in the real practice, and improve their performance.  

At last, geometric parameter sensitivity analysing of both the shear type and the 

compressed type fastening systems was performed. As for the shear type specimen, inclined 

angle of the elliptical ring, the width and the height of the component efficiently influence on 

its vertical resilient property. The inclined angle also strongly effects on the lateral resilience 

and the vertical-lateral stiffness ratio by adjusting the important compression and shear ratio 

in both directions. Subsequently, several optimization objects are proposed in terms of 

improving the vibration isolation efficiency, decreasing the displacement response, reducing 

the material cost, balancing the vertical and lateral stiffness ratio, diminishing the local 

maximum strain and stress values and damping property as well as free surface optimization; 

and the corresponding solving process are also presented. As for the compressed type 
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fastening system, similar parameter sensitivity analysing procedure are carried out. Influences 

on the vertical and the lateral elastic properties by each geometric parameter are explained by 

plotted figures. If the compressed fastening system is demanded much lower stiffness, a 

combined compression-and-shear type fastening system can be introduced to meet the 

demands. Largely reduced stiffness value was obtained. If a well matched lateral stiffness is 

also taken into consideration, the proper compression and shear ratio can be again adjusted by 

changing the inclination of the top plate and the rubber component correspondingly. 

Furthermore, when the compression and shear ratio is significantly decreased by removing the 

compressive part of the original model, a highly elastic fastening system can be obtained. The 

compression and shear ratio was found to be a key factor in designing the resilient properties 

of rail fastening systems in all directions. In a word, the parameter sensitivity analysing and 

structural optimization discussed at the end of current research is believed to be helpful and 

inspirational to the product designing process of rail fastening systems. The imitational and 

empirical methods can be gradually improved on the basis of theoretical foundation and the 

enhanced understanding.  

Generally speaking, the innovation points of current research can be summarized as: 

 quasi-static and dynamic experiments of the two rail fastening systems aiming at 

exhibiting the pre-load influenced nonlinear features as well as the frequency and dynamic 

amplitude dependent properties were designed and performed; 

 though rail fastening systems are classical vibration isolation systems and it‘s so 

important component for providing elastic properties of the whole track structure, numerical 

models are firstly proposed to describe pre-compression influenced, frequency and dynamic 

amplitude dependent mechanical behaviour of rail fastening systems; 

 novel design approach of rail fastening systems on the basis of nonlinear analysis were 

raised, including boundary nonlinearity, geometric nonlinearity, material nonlinearity, 

hysteresis induced nonlinearities. Some of the nonlinear features can be taken full advantage, 

while some other should be avoided during designing and producing process; 

 by using Abaqus, geometric parameter sensitivity analysing benefits understanding 

their effects on the vertical and lateral resilient properties. In addition, a few optimization 
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objects and the corresponding problem-solving process lightens the designing and 

optimization methods, among which the compression-shear ratio is a key factor.  

The presented work is believed to deepen the understanding of the static and dynamic 

mechanical behaviour of both shear and compressed type rail fastening systems and enlighten 

the designing and optimization measures. Nevertheless, there are possible extensions to 

current work: 

 Future work may focus on extending the single stimulating frequency to multi-

frequency even random excitation. However, although single-frequency excitation is the 

major measurement condition in most published researches on rubber isolation system, rail 

fastening systems in the real practice are subjected to multi-frequency and random 

disturbance.  

 Another future work can be extending the low stimulating frequency to higher 

frequency range. In the real practice, rail fastening systems are subjected to the wheel-rail 

force from zero to more than 2000Hz. Though the low frequency is the main disturbance, 

higher frequency force may also give rise to serious response. This is a quite hard task for 

both mechanical modelling and finite element analysing process because it demands a much 

more versatile mechanical model considering the nonlinear elasticity, severe amplitude 

dependence and also frequency influence of rather wide range. On the other hand for FEA, 

another amendatory constitutive model instead of Bergstrom-Boyce model needs to be 

embedded into the FEA software for the simulation.  

 In addition, temperature dependent properties are also very important for rubber 

components in the real practice. It‘s fatal to the mechanical fatigue and strength 

characteristics of rail fastening system which should also be taken full consideration during 

designing and optimization process. This can be included in the future work.  

 Influences of different rubber material prescription on the mechanical properties of 

both type rail fastening systems should also be taken into consideration.  
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APPENDIX 

APPENDIX A1: INCLINED ANGLE INFLUENCED QUASI-STATIC CURVES 

 

         (a)  Quasi-static loops                                (b)    Loading curves       

APPENDIX A2: INCLINED ANGLE INFLUENCED PROPERTIES RELEVANT TO 

THE VERTICAL STIFFNESS 

 

(a)  Loading area       versus width 
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 (b) Effective modulus in the vertical direction          (c) Compression and shear ratio  

APPENDIX A3: NATURAL FREQUENCY OF THE ORIGINAL MODEL 

SIMULATED BY ABAQUS  

                         

(a) The first vibration mode              (b) The second vibration mode           

                       

   (c) The third vibration mode               (d) The fourth vibration mode 
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APPENDIX A4: VIBRATION REDUCTION IN dB 

Inclined  

                    angle  

Stimulating  
          frequency 

125o 120o 115o 110o 105o 100o 95o 

40 Hz       1.12 
45 Hz      2.04 4.64 
50 Hz     1.48 5.09 7.38 
55 Hz     4.32 7.54 9.66 
60 Hz    2.61 6.63 9.61 11.65 
65 Hz   0.25 4.90 8.60 11.42 13.33 
70 Hz   2.63 6.84 10.32 13.02 14.87 
75 Hz   4.62 8.54 11.85 14.46 16.27 
80 Hz  1.45 6.33 10.04 13.23 15.78 17.54 
85 Hz  3.30 7.85 11.40 14.50 16.99 18.73 
90 Hz  4.91 9.21 12.64 15.66 18.11 19.82 
95 Hz 0.85 6.34 10.46 13.78 16.75 19.16 20.85 
100 Hz 2.47 7.63 11.60 14.84 17.76 20.14 21.82 
105 Hz 3.91 8.81 12.65 15.83 18.71 21.06 22.73 
110 Hz 5.19 9.89 13.64 16.76 19.60 21.94 23.59 
115 Hz 6.36 10.90 14.56 17.64 20.45 22.77 24.41 
120 Hz 7.43 11.83 15.43 18.47 21.26 23.55 25.19 
125 Hz 8.43 12.71 16.25 19.26 22.02 24.31 25.93 
130 Hz 9.35 13.54 17.03 20.01 22.75 25.02 26.64 
135 Hz 10.22 14.33 17.78 20.73 23.45 25.71 27.32 
140 Hz 11.04 15.08 18.48 21.41 24.12 26.37 27.98 
145 Hz 11.81 15.79 19.16 22.07 24.77 27.01 28.61 
150 Hz 12.54 16.47 19.81 22.70 25.39 27.62 29.21 

APPENDIX A5: INCLINED ANGLE INFLUENCED PROPERTIES RELEVANT TO 

THE LATERAL STIFFNESS 

 

(a) Loading area       versus width 
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(b) Effective modulus in lateral direction           (c) Vertical and transverse stiffness ratio 

APPENDIX B1: WIDTH INFLUENCED TESTING CURVES AND THE VERTICAL 

SITFFNESS 

       

                         (a)  Quasi-static loops                                     (b)    Loading curves     

     

(c) Secant stiffness  
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APPENDIX B2: THE SHEAR STRAIN-STRESS RELATIONSHIP ON THE 

INFLUENCE OF RUBBER COMPONENT WIDTH  

 

             (a)  Maximum strain and stress                                   (b) Shear modulus 

APPENDIX B3: VIBRATION ISOLATION EFFICIENTY AND VOLUME OF THE 

RUBBER COMPONENT WHEN CHANGING WIDTH  
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APPENDIX B4: WIDTH DEPENDENT MAXIMUM AND MINIMUM PRINCIPLE 

STRAIN 

 

APPENDIX B5: LATERAL STIFFNESS AND THE VERTICAL AND LATERAL 

STIFFNESS RATIO DEPENDENT ON THE MODIFIED WIDTH 

         

              (a) Vertical and transverse stiffness               (b) Vertical and lateral stiffness ratio 
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APPENDIX C1: HEIGHT INFLUENCED VERTICAL STIFFNESS  

     

                      (a)  Quasi-static loops                                        (b)    Loading curves 

   

          (c) Secant stiffness                                  

APPENDIX C2: VIBRATION ISOLATION EFFICIENTY AND VOLUME OF THE 

RUBBER COMPONENT WHEN CHANGING HEIGHT  
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APPENDIX C3: HEIGHT DEPENDENT MAXIMUM AND MINIMUM PRINCIPLE 

STRAIN  

 

APPENDIX C4: LATERAL STIFFNESS AND THE VERTICAL AND LATERAL 

STIFFNESS RATIO DEPENDENT ON THE MODIFIED HEIGHT 

 

             (a)  Vertical and lateral stiffness                   (b) Vertical and lateral stiffness ratio 
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APPENDIX D1: L1 INFLUENCED VERTICAL QUASI-STATIC LOOPS AND 

VERTICAL SITFFNESS  

 

APPENDIX D2: L3 INFLUENCED VERTICAL QUASI-STATIC LOOPS AND 

VERTICAL SITFFNESS 
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APPENDIX D3: L4 INFLUENCED VERTICAL QUASI-STATIC LOOPS AND 

VERTICAL SITFFNESS 

 

APPENDIX D4: L7 INFLUENCED VERTICAL QUASI-STATIC LOOPS AND 

VERTICAL SITFFNESS 
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APPENDIX D5: VERTICAL SITFFNESS PROPERTIES INFLUENCED BY L2 L5 

AND L6 

 

 

APPENDIX E: COMPARED NATURAL FREQUENCY CALCULATED BY THE 

MEASURED VERTICAL STIFFNESS AND SIMULATION  

L4 (mm) 
Vertical stiffness from the 

virtual static test curve K (kN/mm) 

Nature frequency from the 

virtual static test curve    √   ⁄  (Hz) 

Nature frequency of the 1st order 

obtained by using Abaqus  (Hz) 

9.5 50.80 79.44 76.676  
10.5 48.75 77.82 75.066 
11.5 47.37 76.71 73.919 
12.5 46.51 76.02 73.157 
13.5 45.35 75.06 72.426 
14.5 44.16 74.07 71.306 
15.5 43.39 73.42 70.646 
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APPENDIX F1: L7 INFLUENCED FORCE TRANSMISSIBILITY AS THE 

DAMPING RATIO EQUALED 0.01 

 

APPENDIX F2: L7 INFLUENCED VIBRATION ISOLATION AS THE DAMPING 

RATIO EQUALED 0.01 

                     L7 /mm 

 

Stimulating  

    Frequency /Hz 

6.2 7.2 8.2 9.2 10.2 11.2 12.2 

95       0.63 
100      0.67 2.27 
105     0.76 2.24 3.72 
110    0.77 2.24 3.62 5.01 
115   0.60 2.20 3.57 4.87 6.19 
120  0.12 1.97 3.47 4.76 6.00 7.27 
125  1.48 3.21 4.62 5.86 7.04 8.27 
130 0.70 2.69 4.33 5.68 6.86 8.01 9.20 
135 1.92 3.80 5.36 6.66 7.80 8.91 10.07 
140 3.02 4.82 6.31 7.57 8.68 9.76 10.89 
145 4.04 5.76 7.20 8.42 9.50 10.56 11.66 
150 4.98 6.63 8.03 9.22 10.28 11.31 12.40 
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APPENDIX G: L7 INFLUENCED DYNAMIC AMPLIFICATION FACTOR AS THE 

DAMPING RATIO EQUALED 0.2 

 

 

APPENDIX H1:L3 INFLUENCED LATERAL STIFFNESS IN COMPARISON TO 

THE VERTICAL STIFFNESS 
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APPENDIX H2: L7 INFLUENCED LATERAL STIFFNESS IN COMPARISON TO 

THE VERTICAL STIFFNESS 

       

APPENDIX H3:L4 INFLUENCED LATERAL STIFFNESS IN COMPARISON TO 

THE VERTICAL STIFFNESS 
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APPENDIX H4: L1 INFLUENCED LATERAL STIFFNESS IN COMPARISON TO 

THE VERTICAL STIFFNESS 

         

APPENDIX I1: L1 INDUCED MAXIMUM STRAIN AND STRESS 

     

     (a) Loaded vertically                                         (b) Loaded laterally 
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APPENDIX I2: GEOMETRIC PARAMETER (L2 AND L4) INDUCED MAXIMUM 

SHEAR STRAIN 

 

(a) Loaded vertically                                     (b) Loaded laterally 

APPENDIX I3: SPECIFICITY OF THE PARAMETER L7 
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