E. Asarin and A. Bouajjani, Perturbed Turing machines and hybrid systems, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science, p.269, 2001.
DOI : 10.1109/LICS.2001.932503

R. [. Abad, F. Barrio, M. Blesa, and . Rodríguez, Algorithm 924, ACM Transactions on Mathematical Software, vol.39, issue.1, pp.1-528
DOI : 10.1145/2382585.2382590

]. O. Abe70 and . Aberth, Computable analysis and diierential equations, Intuitionism and Proof Theory, Studies in Logic and the Foundations of Mathematics, pp.47-52, 1970.

]. O. Abe71 and . Aberth, The failure in computable analysis of a classical existence theorem for diierential equations, Proc. Amer, pp.151-156, 1971.

]. O. Abe80 and . Aberth, Computable Analysis, 1980.

R. Alur and D. L. Dill, Automata for modeling real-time systems, Automata, Languages and Programming, 17th International Colloquium Proceedings, pp.322-335, 1990.
DOI : 10.1007/BFb0032042

E. Asarin and O. Maler, Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy, Journal of Computer and System Sciences, vol.57, issue.3, pp.389-398, 1998.
DOI : 10.1006/jcss.1998.1601

E. Asarin and O. Maler, Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy, Journal of Computer and System Sciences, vol.57, issue.3, pp.389-398, 1998.
DOI : 10.1006/jcss.1998.1601

E. Asarin, O. Maler, and A. Pnueli, Reachability analysis of dynamical systems having piecewise-constant derivatives, Theoretical Computer Science, vol.138, issue.1, pp.35-65, 1995.
DOI : 10.1016/0304-3975(94)00228-B

[. Arons, A. Pnueli, and L. Zuck, Veriication by probabilistic abstraction, POPL'2003, 2003.

L. Arnold, Random dynamical systems, Dynamical Systems, pp.1-43, 1995.
DOI : 10.1088/0951-7715/1/1/005

E. Asarin and G. Schneider, Widening the Boundary between Decidable and Undecidable Hybrid Systems*, CONCUR 2002 -Concurrency Theory, 13th International Conference Proceedings, volume 2421 of Lecture Notes in Computer Science, pp.193-208, 2002.
DOI : 10.1007/3-540-45694-5_14

E. Asarin, G. Schneider, and S. Yovine, On the decidability of the reachability problem for planar diierential inclusions, Hybrid Systems: Computation and Control, 4th International Workshop Proceedings, volume 2034 of Lecture Notes in Computer Science, pp.89-104, 2001.

E. Asarin, G. Schneider, and S. Yovine, Algorithmic analysis of polygonal hybrid systems, part I: Reachability, Theoretical Computer Science, vol.379, issue.1-2, pp.231-265, 2007.
DOI : 10.1016/j.tcs.2007.03.055

URL : https://hal.archives-ouvertes.fr/hal-00157340

]. K. Atk89 and . Atkinson, An Introduction to Numerical Analysis, 1989.

M. Amir and . Ben-amram, Mortality of iterated piecewise aane functions over the integers: Decidability and complexity, STACS, pp.514-525, 2013.

M. Béal, J. Berstel, S. Eilers, and D. Perrin, Symbolic dynamics, 2010.

H. Bazille, O. Bournez, W. Gomaa, and A. Pouly, On the complexity of bounded time reachability for piecewise aane systems, Reachability Problems -8th International Workshop, RP 2014 Proceedings, pp.20-31, 2014.

D. Vincent, O. Blondel, P. Bournez, J. Koiran, and . Tsitsiklis, The stability of saturated linear dynamical systems is undecidable, Journal of Computer and System Science, vol.62, issue.3, pp.442-462, 2001.

O. Bournez and M. L. Campagnolo, New Computational Paradigms. Changing Conceptions of What is Computable, chapter A Survey on Continuous Time Computations, pp.383-423, 2008.

. Paulc, S. Bell, and . Chen, Reachability problems for hierarchical piecewise constant derivative systems, Reachability Problems, pp.46-58, 2013.

O. Bournez, F. Cucker, P. Jacobé-de-naurois, and J. Marion, Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Time, Journal of Logic and Computation, vol.15, issue.1, pp.41-58, 2005.
DOI : 10.1093/logcom/exh036

URL : https://hal.archives-ouvertes.fr/inria-00102942

M. [. Bournez, D. S. Campagnolo, E. Graça, and . Hainry, Polynomial differential equations compute all real computable functions on computable compact intervals, Journal of Complexity, vol.23, issue.3, pp.317-335, 2007.
DOI : 10.1016/j.jco.2006.12.005

URL : https://hal.archives-ouvertes.fr/inria-00102947

A. Bostan, F. Chyzak, F. Ollivier, and B. Salvy, Éric Schost, and Alexandre Sedoglavic. Fast computation of power series solutions of systems of diierential equations, SODA'07, pp.1012-1021, 2007.

E. J. Beggs, J. Costa, D. Poças, and J. V. Tucker, AN ANALOGUE-DIGITAL CHURCH-TURING THESIS, BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation, pp.373-390, 1998.
DOI : 10.1142/S0129054114400012

[. Bournez, N. Dershowitz, and E. Falkovich, Towards an Axiomatization of Simple Analog Algorithms, Theory and Applications of Models of Computation -9th Annual Conference, pp.525-536, 2012.
DOI : 10.1007/978-3-642-29952-0_49

URL : https://hal.archives-ouvertes.fr/hal-00760736

Y. [. Blass and . Gurevich, Abstract state machines capture parallel algorithms, ACM Transactions on Computational Logic, vol.4, issue.4, pp.578-651, 2003.
DOI : 10.1145/937555.937561

[. Bournez, D. S. Graça, and E. Hainry, Robust Computations with Dynamical Systems, Mathematical Foundations of Computer Science, MFCS'2010, pp.198-208
DOI : 10.1007/978-3-642-15155-2_19

URL : https://hal.archives-ouvertes.fr/inria-00522029

[. Bournez, D. S. Graça, and E. Hainry, Computation with perturbed dynamical systems, Journal of Computer and System Sciences, vol.79, issue.5, pp.714-724, 2013.
DOI : 10.1016/j.jcss.2013.01.025

URL : https://hal.archives-ouvertes.fr/hal-00643634

. O. Bgp, D. S. Bournez, A. Graça, and . Pouly, Turing machines can be eeciently simulated by the general purpose analog computer

[. Bournez, D. S. Graça, and A. Pouly, On the complexity of solving initial value problems, Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC '12, 2012.
DOI : 10.1145/2442829.2442849

URL : https://hal.archives-ouvertes.fr/hal-00760742

O. Bournez, D. S. Graça, A. Pouly, and N. Zhong, Computability and Computational Complexity of the Evolution of Nonlinear Dynamical Systems, The Nature of Computation. Logic, Algorithms, Applications -9th Conference on Computability in Europe. Proceedings, pp.12-21, 2013.
DOI : 10.1007/978-3-642-39053-1_2

D. [. Buescu, N. Graça, and . Zhong, Computability and Dynamical Systems, Dynamics, Games and Science I, vol.1, pp.169-181, 2011.
DOI : 10.1007/978-3-642-11456-4_11

O. Bournez and E. Hainry, An Analog Characterization of Elementarily Computable Functions over the Real Numbers, International Colloquium on Automata, Languages and Programming, pp.269-280, 2004.
DOI : 10.1007/978-3-540-27836-8_25

URL : https://hal.archives-ouvertes.fr/inria-00100054

O. Bournez and E. Hainry, Elementarily computable functions over the real numbers and <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi mathvariant="double-struck">R</mml:mi></mml:math>-sub-recursive functions, Theoretical Computer Science, vol.348, issue.2-3, pp.130-147, 2005.
DOI : 10.1016/j.tcs.2005.09.010

O. Bournez and E. Hainry, Real Recursive Functions and Real Extensions of Recursive Functions, Machines, Computations , and Universality, pp.116-127, 2004.
DOI : 10.1007/978-3-540-31834-7_9

URL : https://hal.archives-ouvertes.fr/inria-00100053

O. Bournez and E. Hainry, Recursive analysis characterized as a class of real recursive functions, pp.409-433, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00000515

O. Bournez, Some bounds on the computational power of piecewise constant derivative systems (extended abstract), ICALP, pp.143-153, 1997.
DOI : 10.1007/3-540-63165-8_172

O. Bournez, Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy, Theoretical Computer Science, vol.210, issue.1, pp.21-71, 1999.
DOI : 10.1016/S0304-3975(98)00096-6

M. Béal and D. Perrin, Symbolic dynamics and nite automata, Handbook of formal languages, pp.463-505, 1997.

]. M. Bra95 and . Branicky, Universal computation and other capabilities of hybrid and continuous dynamical systems, Theoret. Comput. Sci, vol.138, issue.1, pp.67-100, 1995.

V. Brattka, Computability and complexity in analysis, Tutorial donné à Computability in Europe (CIE'2005), 2005.
DOI : 10.1016/j.jco.2006.10.001

[. Braverman, On the Complexity of Real Functions, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05), pp.23-25, 2005.
DOI : 10.1109/SFCS.2005.58

M. [. Barrio, A. Rodríguez, F. Abad, and . Blesa, Breaking the limits: The Taylor series method, Applied Mathematics and Computation, vol.217, issue.20, pp.7940-7954, 2011.
DOI : 10.1016/j.amc.2011.02.080

]. M. Bro99, . Broucke-françois, U. Bergeron, and . Sattler, Geometric approach to bisimulation and veriication of hybrid systems Constructible diierentially nite algebraic series in several variables, Stuck. Introduction to Dynamical Systems, pp.6159-65, 1995.

R. [. Börger and . Stärk, Abstract State Machines, 2003.
DOI : 10.1007/978-3-642-18216-7

M. [. Blum, S. Shub, and . Smale, On a theory of computation and complexity over the real numbers: $NP$- completeness, recursive functions and universal machines, Bulletin of the American Mathematical Society, vol.21, issue.1, pp.1-46, 1989.
DOI : 10.1090/S0273-0979-1989-15750-9

]. V. Bus31 and . Bush, The diierential analyzer. A new machine for solving diierential equations, J. Franklin Inst, vol.212, pp.447-488, 1931.

]. J. But87 and . Butcher, The Numerical Analysis of Ordinary Diierential Equations: Runge- Kutta and General Linear Methods Solving ordinary diierential equations using Taylor series, ACM Trans. Math. Softw, vol.8, issue.2, pp.114-144, 1982.

D. [. Collins and . Graça, EEective computability of solutions of diierential inclusions ? the ten thousand monkeys approach, Journal of Universal Computer Science, vol.15, issue.6, pp.1162-1185, 2009.

C. [. Campagnolo, J. F. Moore, and . Costa, Iteration, Inequalities, and Differentiability in Analog Computers, Journal of Complexity, vol.16, issue.4, pp.642-660, 2000.
DOI : 10.1006/jcom.2000.0559

L. Manuel, C. Campagnolo, J. Moore, and . Costa, An analog characterization of the Grzegorczyk hierarchy, Cop98] B. Jack Copeland. Even Turing machines can compute uncomputable functions, pp.977-1000, 2002.

]. B. Cop02 and . Copeland, Accelerating Turing machines. Minds and Machines, pp.281-301, 2002.

R. M. Corless, A new view of the computational complexity of IVP for ODE, Numerical Algorithms, vol.31, issue.1/4, pp.115-124, 2002.
DOI : 10.1023/A:1021108323034

B. [. Calude and . Pavlov, Coins, quantum measurements, and Turing's barrier, Quantum Information Processing, vol.1, issue.1/2, pp.107-127, 2002.
DOI : 10.1023/A:1019623616675

G. [. Carothers, J. S. Parker, P. G. Sochacki, and . Warne, Some properties of solutions to polynomial systems of diierential equations, Electron. J. Dii. Eqns, issue.40, 2005.

]. E. Dav01 and . Davies, Building innnite machines, The British Journal for the Philosophy of Science, vol.52, pp.671-682, 2001.

]. D. Deu85 and . Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. Lond, pp.97-117, 1985.

Y. [. Dershowitz and . Gurevich, A natural axiomatization of computability and proof of Church's Thesis. The Bulletin of Symbolic Logic, pp.299-350, 2008.

U. Dal and L. , A short introduction to implicit computational complexity, Lectures on Logic and Computation, pp.89-109, 2012.

J. Durand-lose, Abstract geometrical computation 7: geometrical accumulations and computably enumerable real numbers, Natural Computing, vol.120, issue.1, pp.609-622, 2012.
DOI : 10.1007/s11047-012-9335-8

URL : https://hal.archives-ouvertes.fr/hal-00691466

J. [. Hernàndez-encinas and . Masqué, A short proof of the generalized Fa?? di bruno's formula, Applied Mathematics Letters, vol.16, issue.6, pp.975-979, 2003.
DOI : 10.1016/S0893-9659(03)90026-7

G. Etesi, I. Németifei88, and ]. D. Feitelson, Non-Turing computations via Malament- Hogarth space-times Optical computing: a survey for computer scientists, International Journal of Theoretical Physics, vol.41, issue.2, pp.341-370, 1988.
DOI : 10.1023/A:1014019225365

]. R. Fey82 and . Feynman, Simulating physics with computers, Internat. J. Theoret. Phys, vol.21, issue.67, pp.467-488, 1982.

J. [. Graça, M. L. Buescu, and . Campagnolo, Boundedness of the Domain of Definition is Undecidable for Polynomial ODEs, 4th International Conference on Computability and Complexity in Analysis, pp.49-57, 2007.
DOI : 10.1016/j.entcs.2008.03.007

J. [. Graça, M. L. Buescu, and . Campagnolo, Computational bounds on polynomial diierential equations, Appl. Math. Comput, vol.215, issue.4, pp.1375-1385, 2009.

S. Daniel, J. Graça, and . Costa, Analog computers and recursive functions over the reals, Journal of Complexity, vol.19, issue.5, pp.644-664, 2003.

M. [. Graça, J. Campagnolo, and . Buescu, Robust simulations of Turing machines with analytic maps and ows, CiE 2005: New Computational Paradigms, pp.169-179, 2005.

M. [. Graça, J. Campagnolo, and . Buescu, Computability with polynomial differential equations, Advances in Applied Mathematics, vol.40, issue.3, pp.330-349, 2008.
DOI : 10.1016/j.aam.2007.02.003

M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness, 1979.

E. Grädel and K. Meer, Descriptive complexity theory over the real numbers, Proceedings of the twenty-seventh annual ACM symposium on Theory of computing , STOC '95, pp.315-324, 1995.
DOI : 10.1145/225058.225151

M. Gori and K. Meer, A Step towards a Complexity Theory for Analog Systems, MLQ, vol.48, issue.S1, pp.45-58, 2002.
DOI : 10.1002/1521-3870(200210)48:1+<45::AID-MALQ45>3.0.CO;2-7

]. D. Gra04 and . Graça, Some recent developments on Shannon's General Purpose Analog Computer, Math. Log. Quart, vol.50, issue.4-5, pp.473-485, 2004.

N. [. Graça and . Zhong, Computing domains of attraction for planar dynamics

D. Graça and N. Zhong, Computability in planar dynamical systems, Natural Computing, vol.50, issue.4, pp.1295-1312, 2011.
DOI : 10.1007/s11047-010-9230-0

N. [. Graça, J. Zhong, and . Buescu, Computability, noncomputability and undecidability of maximal intervals of IVPs, Transactions of the American Mathematical Society, vol.361, issue.06, pp.2913-2927, 2009.
DOI : 10.1090/S0002-9947-09-04929-0

]. M. Hir01 and . Hirvensalo, Quantum Computing, 2001.

P. [. Henzinger, A. Kopke, P. Puri, and . Varaiya, What's Decidable about Hybrid Automata?, Journal of Computer and System Sciences, vol.57, issue.1, pp.94-124, 1998.
DOI : 10.1006/jcss.1998.1581

T. Hérault and R. Lassaigne, Frédéric Magniette, and Sylvain Peyronnet Approximate probabilistic model checking, Veriication, Model Checking, and Abstract Interpretation, 5th International Conference Proceedings, volume 2937 of Lecture Notes in Computer Science, pp.73-84, 2004.

S. [. Hirsch, R. Smale, and . Devaney, Diierential Equations, Dynamical Systems , and an Introduction to Chaos, 2004.

[. Ilie, G. Söderlind, and R. M. Corless, Adaptivity and computational complexity in the numerical solution of ODEs, Journal of Complexity, vol.24, issue.3, pp.341-361, 2008.
DOI : 10.1016/j.jco.2007.11.004

M. [. Jorba and . Zou, A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods, Experimental Mathematics, vol.14, issue.1, pp.99-117, 2005.
DOI : 10.1080/10586458.2005.10128904

A. Kawamura, Type-2 computability and moore's recursive functions Electronic Notes in Theoretical Computer Science, Proceedings of the 6th Workshop on Computability and Complexity in Analysis (CCA 2004) Computability and Complexity in Analysis, pp.83-95, 2004.

]. A. Kaw10 and . Kawamura, Lipschitz continuous ordinary diierential equations are polynomial-space complete Complexity theory for operators in analysis, Computational Complexity, vol.19, issue.2, pp.305-332, 2010.

P. Koiran, M. Cosnard, and M. Garzon, Computability with low-dimensional dynamical systems, Theoretical Computer Science, vol.132, issue.1-2, pp.113-128, 1994.
DOI : 10.1016/0304-3975(94)90229-1

[. Koiran, M. Cosnard, and M. Garzon, Computability with low-dimensional dynamical systems, Theoretical Computer Science, vol.132, issue.1-2, pp.113-128, 1994.
DOI : 10.1016/0304-3975(94)90229-1

N. [. Kawamura, . Th, C. Müller, M. Rösnick, and . Ziegler, Parameterized uniform complexity in numerics: from smooth to analytic, from np-hard to polytime, 1211.

M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston, Automatic verification of real-time systems with discrete probability distributions, Theoretical Computer Science, vol.282, issue.1, pp.101-150, 2002.
DOI : 10.1016/S0304-3975(01)00046-9

A. Kawamura and H. Ota, Small Complexity Classes for Computable Analysis, Mathematical Foundations of Computer Science 2014, pp.432-444, 2014.
DOI : 10.1007/978-3-662-44465-8_37

P. Koiran, Computing over the reals with addition and order, Theoretical Computer Science, vol.133, issue.1, pp.35-47, 1994.
DOI : 10.1016/0304-3975(93)00063-B

A. Kawamura, H. Ota, C. Rösnick, and M. Ziegler, Computational complexity of smooth diierential equations, Logical Methods in Computer Science, vol.10, issue.1, p.2014

H. [. Krantz and . Parks, A Primer of Real Analytic Functions, Birkhäuser, 2002.

K. [. Ko and . Weihrauch, Computability and complexity in analysis, 1995.

]. D. Lac55 and . Lacombe, Extension de la notion de fonction récursive aux fonctions d'une ou plusieurs variables réelles III Advances in Numerical Analysis, chapter Numerical methods for dynamical systems, Lig91] W. Light, pp.151-153, 1955.

B. Lipshitz, D-finite power series, Journal of Algebra, vol.122, issue.2, pp.353-373, 1989.
DOI : 10.1016/0021-8693(89)90222-6

S. Larsson and V. Thomée, Partial diierential equations with numerical methods. Texts in applied mathematics, 2003.

[. Ma, Higher chain formula proved by combinatorics, Electr. J. Comb, vol.16, issue.1, 2009.

J. Mycka and J. Costa, Real recursive functions and their hierarchy, Journal of Complexity, vol.20, issue.6, pp.835-857, 2004.
DOI : 10.1016/j.jco.2004.06.001

J. [. Mycka and . Costa, The <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>P</mml:mi><mml:mo>???</mml:mo><mml:mtext><ce:italic>NP</ce:italic></mml:mtext></mml:math> conjecture in the context of real and complex analysis, Journal of Complexity, vol.22, issue.2, pp.287-303, 2006.
DOI : 10.1016/j.jco.2005.07.003

B. [. Müller and . Moiske, Solving initial value problems in polynomial time, Proc. 22 JAIIO -PANEL '93, Part 2, pp.283-293, 1993.

[. Moore, Unpredictability and undecidability in dynamical systems, Physical Review Letters, vol.64, issue.20, pp.2354-2357, 1990.
DOI : 10.1103/PhysRevLett.64.2354

[. Moore, Generalized shifts: unpredictability and undecidability in dynamical systems, Nonlinearity, vol.4, issue.2, pp.199-230, 1991.
DOI : 10.1088/0951-7715/4/2/002

[. Moore, Recursion theory on the reals and continuous-time computation, Theoretical Computer Science, vol.162, issue.1, pp.23-44, 1996.
DOI : 10.1016/0304-3975(95)00248-0

. [. Pour, Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers), Transactions of the American Mathematical Society, vol.199, pp.1-28, 1974.
DOI : 10.1090/S0002-9947-1974-0347575-8

J. [. Pour-el and . Richards, A computable ordinary differential equation which possesses no computable solution, Annals of Mathematical Logic, vol.17, issue.1-2, pp.61-90, 1979.
DOI : 10.1016/0003-4843(79)90021-4

A. Platzer, [. Puri, and P. Varaiya, Dynamic logics of dynamical systems. CoRR, abs/1205 Decidability of hybrid systems with rectangular diierential equations, Proc. 6th Workshop on Computer-Aided Veriication, pp.95-104, 1994.

K. Ruohonen, Undecidability of event detection for ODEs, Journal of Information Processing and Cybernetics, vol.29, pp.101-113, 1993.

K. Ruohonen, Event detection for ODES and nonrecursive hierarchies, Proceedings of the Colloquium in Honor of Arto Salomaa, pp.358-371, 1994.
DOI : 10.1007/3-540-58131-6_59

]. K. Ruo96 and . Ruohonen, An eeective Cauchy-Peano existence theorem for unique solutions, Internat. J. Found. Comput. Sci, vol.7, issue.2, pp.151-160, 1996.

S. [. Siegelmann and . Fishman, Analog computation with dynamical systems, Physica D: Nonlinear Phenomena, vol.120, issue.1-2, pp.214-235, 1998.
DOI : 10.1016/S0167-2789(98)00057-8

]. C. Sha41 and . Shannon, Mathematical theory of the diierential analyser, Journal of Mathematics and Physics MIT, vol.20, pp.337-354, 1941.

]. P. Sho97 and . Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput, vol.26, pp.1484-1509, 1997.

W. D. Smith, Church???s thesis meets the N-body problem, Applied Mathematics and Computation, vol.178, issue.1, pp.154-183, 2006.
DOI : 10.1016/j.amc.2005.09.077

E. [. Siegelmann and . Sontag, On the Computational Power of Neural Nets, Journal of Computer and System Sciences, vol.50, issue.1, pp.132-150, 1995.
DOI : 10.1006/jcss.1995.1013

A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Mathematics, vol.5, issue.2, pp.285-309, 1955.
DOI : 10.2140/pjm.1955.5.285

]. A. Tur36 and . Turing, On computable numbers with an application to the entscheidungsproblem, Proc. London Mathematical Society, pp.230-265, 1936.

M. Y. Vardi, Automatic veriication of probabilistic concurrent nite-state programs, 26th Annual Symposium on Foundations of Computer Science, pp.327-338

]. K. Wei00 and . Weihrauch, Computable Analysis: an Introduction, 2000.

]. A. Wer79 and . Werschulz, Computational complexity of one-step methods for a scalar autonomous diierential equation, Computing, vol.23, issue.4, pp.345-355, 1979.

D. Woods and T. J. Naughton, An optical model of computation, Theoretical Computer Science, vol.334, issue.1-3, pp.227-258, 2005.
DOI : 10.1016/j.tcs.2004.07.001

URL : https://hal.archives-ouvertes.fr/hal-01354830

. G. Wws-+-06-]-p, D. A. Warne, J. S. Polignone-warne, G. E. Sochacki, D. C. Parker et al., Explicit a-priori error bounds and adaptive error control for approximation of nonlinear initial value diierential systems, Comput. Math. Appl, issue.12, pp.521695-1710, 2006.