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Introduction

This present work is devoted entirely to modeling multi-domain large deformation
problems using a monolithic Eulerian approach in a massively parallel environment.

Generally, these type of problems are rather treated using Lagrangian or Arbitrary
Lagrangian Eulerian (ALE) formulations (check chapter 1). Lagrangian approaches are
spread widely and have almost perfect management for large deformation problems. But
when it comes to multi-domain parallel deformation problems, they often show some short-
coming points. These imperfections are usually caused by the contact search algorithms
affecting the scalability of the whole parallel simulation (see discussion in chapter 1).

(a) (b)

Figure 1: Partition of a domain formed by 10 deformable bodies using a Lagrangian approach.

If one considers the contact problem between 10 deformable bodies treated on 16
cores (illustrated in Figure 1), the computation domain associated to each core is no longer
a physical domain. It is rather a numerical domain containing parts of each deformable
body. This means that every time contact search algorithm needs to identify a node in

1
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contact, communication between different cores is absolutely required. In other words,
the communication cost is directly dependent of both the number of cores and interacting
bodies.

In Cemef, we dispose of a library based on an Eulerian formulation fully functional
in a parallel environment. In this context, our approach relies on a single meshed do-
main where different bodies are immersed and identified via the Level Set method. The
different bodies are no longer individual domains but rather heterogeneity in the global
computational one. We should note that one single mechanical set of equations is solved
all over the domain. From the parallel point of view, it is expected to show great scala-
bility even when using hundred cores since it depends of one unique mesh. In addition.
this approach represents the advantage of not requiring any contact search algorithm. It
is managed automatically via the Level Set method (see chapter 2).

Now that all has been said, we propose using this Eulerian monolithic approach to
try and prevent the previously mentioned problems which leads us to the motivations of
this work.

1 Industrial Motivation and Aim of this study

Transvalor, house of Forge2 and Forge3, owns in partnership with Armines a C++
Library developed in Cemef called CIMLib developed by [Digonnet and Coupez, 2003],
[Digonnet et al., 2007], [Mesri et al., 2009]. This library is based on an Eulerian description
and is fully parallelized.

CIMLib is mostly used for computational fluid dynamics and it was never been used
for large deformation problems (treated normally using Lagrangian formulations). To
prevent difficulties confronted in Lagrangian approaches such as the ones mentioned earlier
( multi-domain large deformation problems, the complicated search contact algorithms,
etc.), an Eulerian approach can offer some insight and eventually solutions for these
problems.

Transvalor, interested in the capacity of this monolithic Eulerian approach considers
utilizing this library for application similar to the ones carried-out in Forge. To do so, a
proposition for the present thesis was conceived.

Though this monolithic Eulerian approach acquires impressing potential , it was
never applied to these kind of problems before. Thus, it requires further developments
and manipulations to be fully operational. So, the aim of this work can be summarized
by the following headlines:

� Study the feasibility of multi-domain deformation problem using an Eulerian ap-
proach in a massively parallel environment.

� Identifying along this study several points such as where the approach excels and
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when it falls short.
� Proposing improvements and new developments to enable applications to large

deformation problems
In other words, the fundamental objective is to i) formulate a general idea if this

monolithic approach is fit for large deformation problems, ii) to offer further needed
developments and iii) to conclude if it shows promise to be industrialized on the long
haul.

2 The layout of this thesis

This thesis is divided into five main chapters.

� In chapter 1 a litterature survey for modeling large deformation problems is presented
(Lagrangian, Eulerian and Arbitrary Lagrangian Eulerian formulations). It focuses
mainly on previous works using Lagrangian formulations evoking both advantages
and difficulties (contact search algorithms, mesh distorsions,..). The latter justify
our choice leading to utilizing an Eulerian approach.

� In chapter 2, the CIMLib library [Digonnet and Coupez, 2003] developed in a C++
parallel Eulerian framework is presented. First the Eulerian formulation, basis of
this library, is detailed. Then, the different needed tools are introduced : from the
level set method and the front convection, to the mixture laws and the anisotropic
adapted mesh.
Last but not least, several tips and improvements are proposed such as introducing
new mixture laws, new boudary conditions to treat air trapping and new definitions
to handle some numerical instabilities. In addition, direct applications are offered
to help readers understand how this existent approach can be adapted to modelling
large deformation problems.

� In chapter 3 the parallel enviroment in CIMLib is detailed such as the adopted parallel
strategy, the solvers parallelization and the mesh partitionning. A full study dealing
with the performance and scalabillity of different parts of the codes is presented.
The overall performance was found satisfactory.

� In chapter 4, advanced applications are displayed using all the previous developpment
combined. Applications are divided into two halfs. The first models large deforma-
tions of complicated industrial pieces along with a comparison with Forge simula-
tions. The second half is mainly dedicated to multi-domain deformation problem in
a massively parallel enviroment. The approach performance is tested for upto 250
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deformable bodies using couple hundreds of cores. We take advantage as well to
point out some difficulties to be improved.

� In chapter 5 the reasearch is pushed further by investigating the feasability of several
concepts usefull to large deformation problems.
A first attempt to introduce friction notion using an Eulerian description is detailled.
Direct applications and comparison with Forge simulation are presented. A new
directional solver is developed as a first pursue to simulate contact resolution in an
Eulerian formulation.
The different results and limitations of the model developments are discussed. This
offers areas of further development along with ways to improve the proposed models
for new research topics (not necessarly directly related to this present study)

� Finally, general conclusions, perspectives and recommendations for futur works are
provided.
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1.1 Introduction

Modeling large deformation problems, such as forging and rolling processes, is one
of the complicated problems in solid mechanics.

Their complexity requires a great care to details, specially the consideration of all
interacting aspects in order to insure the precision of the simulation. We cite important
aspects such as the material and geometrical non-linearities, the good manipulation of
the contact and friction problems. For all these reasons, the use of numerous numerical
techniques is a must.

This subject has been widely discussed in the literature. A survey shows that the
Lagrangian description is the most used dealing with such problems. The Arbitrary La-
grangian Eulerian (ALE) description comes in second. Finally, the Eulerian approach is
rarely used for this type of problems (in solid mechanics). It is due to the lack of works
presenting complete models dedicated to large solid deformation problems. Actually, the
Eulerian approach is usually used in fluid mechanics.

In the present chapter, we will present

• A quick description of the Lagrangian framework focusing on the contact algorithm.

• A brief overview of the Eulerian formulation. Note that this part will not be dis-
cussed in detail since chapter 2 will be entirely dedicated for it.

• A small review of the Arbitrary Lagrangian Eulerian description.

• A discussion summarizing the relevant points and justifying our choice selecting the
Eulerian approach.

1.2 Lagrangian Description

The Lagrangian description of a deformable moving body consists on identifying the
deformation of a material point (on an instant t) from its initial position (on instant t0).

If a deformable body is occupying the domain Ω0 in its reference configuration and
Ωt in its current one (See Figure 1.1), a point deforming with the body is called:

• M0 at t = 0 and occupies the position X = (X1, X2,X3)

• Mt at t and moves to the position x = (x1, x2,x3)
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Figure 1.1: Mesh deformation when using a Lagrangian approach.

The new position x is defined as a function of X and t:

φ : Ω0 × T → Ωt

(X, t) → φ(X, t) = x
(1.1)

where φ is continuous and bijective. Its inverse Φ = φ−1 is continuous and bijective
as well.

The function Φ exists and is bijective means that two distinct points initially remains
distinct through the entire problem. Using Φ the position x can be computed as follows:

Φ : Ωt × T → Ω0

(x, t) → Φ(x, t) = X
(1.2)

In the Lagrangian description, all physical quantities (position, velocity, density,
strain, stress, etc.) are expressed as functions of X and t:

The displacement or position vector is written as

OMt = x = φ(X, t) where φ(X,0)=X (1.3)

The velocity of Mt takes the following form:

v(X, t) = ∂x

∂t
= ∂φ(X, t)

∂t
(1.4)

The same goes for the acceleration of Mt:

γ(X, t) = ∂V

∂t
= ∂2φ(X, t)

∂t2
(1.5)

To finish this section, one should at least present the constitutive equations to be
solved in Lagrangian description:
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ρ
∂v

∂t
+ divσ = 0 dynamic equilibrium equation

div(v) = 0 continuity equation
behaviour law + boundary conditions

(1.6)

Remarks and notations:

X, called the material variable, is used in Lagrangian description.
x, called the spatial variable, is used in Eulerian description.
All quantities, for instance F , can be expressed as functions ofX and t in
Lagrangian description or as function of x and t in Eulerian description:
F = F (X, t) value of F experienced by the initial particle of position
X at instance t (Lagrangian description).
F = F (x(X, t), t) value of F experienced by the particular of position
x instantaneously (Eulerian description).

dF

dt
=
⌈
∂F

∂t

⌉
X

= ∂F

∂t
+ ∂F

∂x

∂x

∂t
= ∂F

∂t
+ (v.∇)F

This derivative will simply help transforming equations from Lagrangian
description to the Eulerian description once needed in sec. 1.3.

1.2.1 Spatial discretization

To describe the deformation of a body, it is necessary to characterize the variations
of lengths and angles. Since an analytical solution is quite impossible to find, a weak
formulation is required. The transition to the weak formulation resort in introducing
Sobolev spaces. Then the weak formulation is obtained by multiplying the equilibrium
equation (1.6) by the test function and integrating the product over the entire area in the
current configuration Ωt:

Find (v, p) ∈ V × P

´

Ωt
ρ
∂v

∂t
w +
´

Ωt
s(v) : ε(w) dV −

´
Ωt
pdiv w dV +

´
Γ τ.wdS = 0´

Ωt
qdiv vdV = 0

∀(w, q) ∈ V0 × P

(1.7)

where s represents the deviatoric part of Cauchy stress tensor, τ the friction contri-
bution and:



Chapter 1. State of the art 12

V = {v ∈ (H1(Ω))3/(v − vr).n = 0 over the contact surface}
V0 = {v ∈ (H1(Ω))3/v.n = 0 over the contact surface}

P = {p ∈ L2(Ω)}

1.2.2 Temporal discretization

When solving the system of equations (1.7), the choice of the time integration scheme
varies mostly between an explicit scheme or an implicit scheme. By adopting an explicit
scheme, the numerical system is the following at the increment i:

Miai + F i
int = F i

ext (1.8)

where M, the mass matrix, is diagonal, Fint is the internal vector forces and Fext is
the external vector forces. Using the former scheme, the stiffness matrix is updated at the
end of the incremental procedure. Furthermore the stiffness matrix obtained by adopting
such scheme is diagonal, therefore the resolution of the numerical system is often given
by the inversion of M. Moreover, no convergence loop is needed because the resolution is
directly. This method is well suited for fast dynamics ( shocks, crash, explosion...) where
the physical phenomenon is very violent and induces strong non linearities over a short
time. However, this scheme needs many small increments for good accuracy and it is time
consuming. Whereas, implicit schemes have interest in slow dynamics (such as vibration
in structure problems...). The stiffness matrix is no longer diagonal.This scheme allows
the use of bigger time steps. However in non-linear problems, Newton-Raphson (N-R)
algorithm is often needed to insure equilibrium. This leads to one important drawback
which is reconstructing the stiffness matrix at each N-R iteration.

To overcome the restriction on the time step when using an explicit scheme, some
works as in [Bourel, 2006] propose to couple the multi-domain decomposition technique
with a multi-scale time step. When adopting the latter technique, the time steps used are
different on each sub-domain. Since the equilibrium equations are locally verified at each
sub-domain at different times, the challenge is to develop a method capable of managing
the exchange among sub-domains, even if they are never at equilibrium in the same time.
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Figure 1.2: Illustration of the multi-scale time step adopted in explicit dynamic [Bourel, 2006].

1.2.3 Contact

In large deformation problems, contact algorithms have great impact on both solu-
tion quality and computational cost. In fact for such type of problems, the interacting
geometries deform drastically leading to significant changes in the contact surface. The
authors [Barboza, 2004] and [Yastrebov, 2011] recommend to update the contact surface
at each time step. In [Mocellin, 1999], the contact surface is updated at each Newton-
Raphson iteration. Thus, the contact problem should be treated carefully. In other words,
a poor treatment of the contact (e.g. non-smooth contact surface discretization) yields
to an undesired numerical solution. In addition, as the number of nodes increases; the
detection of nodes in contact affects the computational cost of the simulation specially
when the contact surface should be updated frequently.

In what follows, we concentrate on frequently used numerical techniques dealing
with contact problems. Theoretical aspects related to the existence and the uniqueness
of the contact problem can be found in [Benson, 1992, Martins and Oden, 1987] and
[Sofonea and Matei, 2012]. A large number of reviews on contact algorithms related to
solid mechanics are presented in [Aliabadi and Brebbia, 1993, Laursen, 2002, Hughes,
2012]. Additional publications devoted to investigate contact algorithms applied to metal
forming can be found in [Chenot et al., 2002], [Fourment et al., 1999] and [Hachani and
Fourment, 2013].

As mentioned earlier, when using a Lagrangian formulation the boundaries of a body
are represented by a set of boundary cells and nodes. In other words, the contact is highly
dependent of the moving mesh which brings us to the main objective of this section.

In every contact problem, we can distinguish two major parts. The first one is
devoted to contact detection in which a spatial search retrieving nodes in/or may possibly
go in contact is established. Note that in most large deformation problems, the contact
surface cannot be predicted and has to be detected at each time step. The second part
is related to the resolution of contact problem in which several schemes can be used . It
aims to eliminate the penetration between different bodies by applying repulsive forces.
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In a large number of reviews, contact takes place between a rigid body and a de-
formable one. Note that in a Lagrangian framework, one should take into consideration
self contact e.g. different parts of the same body are in contact, which is the case in a
large deformation problems. Publications in this direction can be found in [Oliveira et al.,
2008]. In addition, multiple contact problems can occur in many applications containing
multi-body geometries. Work investigating the multiple contact problem can be found in
[Chenot et al., 2002] , [Barboza, 2004] and [Habraken and Cescotto, 1998].

1.2.3.1 Contact search algorithms

Numerical treatment of contact problems confront many difficulties. The algorithms
needed can consume a great part of the computational time and require in general a
significant computer resources. These difficulties are related to three different topics: the
geometry discretization, the contact detection and the spatial search.

The literature provides three different type of geometry discretization. The simplest
method is called node to node discretization [Francavilla and Zienkiewicz, 1975]. It is
recommended in case of small deformation problems. In fact, this technique consists
on forming contact pair nodes. These pairs are formed by nodes belonging to a surface
matched with nodes on the opponent surface. Once contact nodes are defined, it does not
change during the time step. The construction of contact pairs and the assumption taken
in consideration does not allow large deformation of the mesh. The second technique is
called node to segment discretization. It demands more effort put into the implementation.
Contact elements are formed by first searching for the closest nodes in two surfaces (the
slave and the master). Then, the slave node forms with the segment containing the
corresponding node of the master surface a contact element. The final technique is the
segment to segment discretization. It requires even more effort in implementation since
detection algorithms based on surface topologies are needed.

In large deformation problems, the node to segment discretization is frequently used
since it is well adapted for a good representation of sliding problems. In other words, it
is easier to represent sliding between a node and a segment then between two nodes or
two segments [Fourment et al., 2003].

Next, we will address the contact algorithms. As mentioned earlier, contact can
occur at non-predectible surfaces. If an update is needed at each time step, which is
always the case in our problem, then it is necessary to insure the efficiency of these
algorithms. Generally, in every contact algorithm, two phases are distinguished : the
global algorithm representing the spatial search and the local one representing the contact
detection [Wriggers, 2002].

Among the spatial search algorithms, we cite the all-to-all algorithm, the bucket
sort algorithm and the spherical sorting algorithm.
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1.2.3.1.1 All-to-All algorithm is one of the first contact searching algorithm. It is
easy to implement. However for problems with great numbers of nodes, this algorithm
presents an essential drawback. The number of operations required to identify the contact
pairs is proportional to the square of the number of boundary elements or nodes [Bourago
and Kukudzhanov, 2005]. To reduce the computational time needed to identify the contact
surface, several optimizations can be found in the literature. The main idea of these
optimizations is to introduce a parameter dmax - called maximal distance -. It is used to
determine which nodes are relevant for identifying the contact surface e.g. all nodes lying
at a distance greater than dmax are not considered among the nodes involved in contact
analysis. The choice of dmax is discussed in [Yastrebov, 2011]. A poor choice of dmax leads
to a wrong contact surface definition as shown in Figure 1.3 ( left part). According to
[Yastrebov, 2011] work, the dmax should be computed as:

dmax = max
{
i=Nm,j=N i

n−1,k=N i
n

max
i=1,j=1,k=j+1

∣∣∣rij − rik∣∣∣ ; 2maxNc
i=1 |∆ri|

}
(1.9)

where Nm is the number of the master segments, N i
n is the number of master nodes

forming the i− th master segment, Nc is the total number of slave and master nodes and
ri is the coordinate of the i − th node and ∆ri its displacement (Figure 1.3). In case of
re-meshing, it is recommended to compute dmax after each re-meshing step.

Figure 1.3: Improvement of the spatial search in the contact analysis [Yastrebov, 2011].

Even with the optimization proposed above, the number of nodes for the contact
analysis remains significant. An additional improvement was brought by [Yastrebov,
2011]. The main idea is to determine a bounding box on each master and slave boundary
surface. Then the nodes taken into consideration in the contact detection are reduced
to the intersection of the two bounding boxes (see Figure 1.4). More details about the
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construction of these bounding boxes can be found in [Yastrebov, 2011].

Figure 1.4: Improvement of the spatial search suggested by [Yastrebov, 2011].

1.2.3.1.2 Bucket sort algorithm is an alternative technique used for spatial search.
It was proposed and applied for modeling self-contact surfaces in [Benson and Hallquist,
1990] and [Belytschko and Neal, 1991]. Several works relying on this algorithm can be
found such as the works of [Heinstein et al., 2000] and [Paik et al., 2006]. Each of the
previous cited works adapted and presented new variant of the algorithm responding to
their own needs. In what follows, only the technique described in [Yastrebov, 2011] will
be presented briefly.

Similar to the all-to-all algorithm, the preliminary phase is to define an appropriate
dmax. The author recommends to choose the biggest segment of the master surface. Then
the bounding boxes are defined. Finally an internal bucket grid should be created, where
the size w of each bucket should be chosen properly. For instance, w should be greater
than

√
2dmax when using linear elements. If the bucket size is smaller, contact spatial

search can be mistreated. In this case, one should consider treating the contact detection
on several bucket layers.

1.2.3.1.3 Spherical sorting algorithm was used in [Papadopoulos and Taylor,
1993]. This algorithm is used as well in Forge® for the contact spatial search. To identify
areas where contact may occur, several spheres are created. The latter are defined for
every boundary element. Its center is the barycenter of the element and its radius is the
biggest distance connecting the barycenter with the nodes of the elements.

Once all the sphere are determined, the set of neighbor spheres is transformed into
a new bigger sphere covering the whole set. This step can be repeated several times



1.2. Lagrangian Description 17

depending on the complexity of the geometry. The initial spheres are called the first-
level-spheres, the bigger spheres englobing them are called the second-level-spheres and
so on. Forge® considers only three spheres levels ( see Figure 1.5).

Figure 1.5: Contact spatial search analysis in Forge®.

Once this hierarchy is established, the search algorithm consists on finding for every
node (belonging to the slave surface) the closest third-level-sphere. The selected sphere
englobes smaller ones. So another search is need to determine the closest level-two-sphere.
The latter is formed by the surface elements of the master. This means that the set of the
closest surface elements is known. The last step consists on defining the closest element
belonging to this set.

1.2.3.2 Contact detection

After having found the areas where contact may occur, the local search is performed.
Moreover, in contact detection algorithms, one should distinguish a contact between rigid
and deformable body from contact between two deformable bodies. Several algorithms
can be used to accomplish this detection such as the pinball algorithm [Belytschko and
Neal, 1991] and the gap function [Bathe and Brezzi, 2001], [El-Abbasi and Bathe, 2001].
Other algorithms are inspired from computer graphics as the aircraft’s shadow projection
method. According to [Yastrebov, 2011], the latter will eliminate some drawbacks of the
gap function.

Herein we present briefly a description of the gap function used in Forge®. Recall
that a master-slave formulation is put in place to describe the contact dynamics.
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1.2.3.2.1 Contact between rigid and deformable bodies. Let us denote by Ωr

the rigid body and by Ωd the deformable body. Γr and Γd represent respectively the set
of the boundary nodes of the rigid and deformable body. We begin by introducing the
contact zone as an intersection between the boundary of two distinct bodies:

Γc = Γr ∩ Γd (1.10)

Moreover, the contact should fulfill the no-penetration condition and the equilibrium
condition on the interface. Those conditions are expressed by equations (1.11) and (1.12).

Ωr ∩ Ωd = 0 (1.11)

σn1 + σn2 = 0 with σk = σknk ∀k ∈ {1, 2} (1.12)

The two previous conditions when combined provide Signorini law which determine
the type of contact between the different domains. For the theoretical aspects, the readers
can refer to [Wriggers, 2002]. The simplest way to express the no-penetration condition
is by introducing the gap function :

g(x2, t) = min
x1∈Γ1

||x2 − x1||sign(n1.(x1 − x2)) 6 0 ∀x2 ∈ Γ2 (1.13)

where n1 is the unit outward normal at the surface Γ1(see Figure 1.6).

(a)

Figure 1.6: Illustration of the gap function.
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1.2.3.2.2 Contact between deformable bodies. In many applications, specially in
a multi-domain cases, multiple contact between deformable bodies occur. A broad range
of algorithms allowing to fulfill the task can be found in the literature [Flickinger et al.,
2013], [Hahn and Wriggers, 2003] and [Iwai et al., 1999]. Similar to the contact between
rigid and deformable body, a contact graph is created. A review of different algorithms
and implementations are found in [Erleben, 2004]. Note that in multi-domain algorithms,
nodes do not always represent a physical entity. For instance, it can be a virtual entity
used to trigger the contact. These nodes will form fictitious elements used for contact
analysis. The latter concept is applied in Forge®.

Herein a brief description is presented. For more details, the readers can refer to
[Barboza, 2004]. The following algorithm can be considered as a generalization of the
contact analysis between a rigid and a deformable body. The global search relies on the
spherical sorting algorithm presented above.

As for the local detection algorithm, let Ωk and Ωk′ denote two different deformable
bodies, where Γk and Γk′ represent respectively their boundaries. For each node xk of the
slave surface, the contact element is constructed as follows:

π : ∂Ωk
h −→ ∂Ωk′

h

xk 7−→ xk′ = π(xk)

where π is the orthogonal projection. The projection determines the location of
xk′ on the master surface e.g. xk′ belonging to which element. The position of xk′ is
computed using the element’s barycenter and nodes {A1, A2, A3} (see Figure 1.7). The
distance between the two bodies is given by :

gn(xk) = |xkxk′| (1.14)

n(xk) =

 −
1

gn(xk)
−−−→xk′xk if gn(xk) 6= 0

nFk′ if gn(xk) = 0
(1.15)
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Figure 1.7: Construction of contact fictitious elements

Before proceeding into the parallel strategies, we would like to mention that the
literature proposes alternatives methods to make solving large contact problems a possi-
bility. We cite for instance the domain decomposition method presented in [Sassi et al.,
2008] [Roux and Garaud, 2009]. Many variants can be found also as in [Farhat and
Mandel, 1998, Farhat et al., 1998]. In general the computational domain is divided into
non-overlapping sub-domains. A part of the solution is evaluated on a sub-domain then
a gluing phase is needed to enforce field continuity [Roux et al., 2005]. These decompo-
sition algorithms make solving large problem a possibility without resorting to parallel
algorithm.

1.2.3.3 Parallel strategies in contact detection

Nowadays, most problems are oriented towards industrial applications which some-
times require complex geometries. The latter will involve a large number of contact nodes.

Even with all simplifications introduced to replace a full scale contact detection,
the execution time of such algorithms remains important. To optimize such algorithms,
developers used parallelism as a mean to decrease the required computed time.

In what follows, the parallel strategy used in Forge® is presented briefly. The focus
will be on the generation of fictitious elements in multi-domain cases. For sake of clarity,
two deformable bodies Ω1 and Ω2 are taken into account next. To begin with, we should
mention that the parallelism of contact search algorithm relies on a S.P.M.D strategy (
see chapter 3 for more details ). Every body is partitioned into np sub-domains :
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Ω1 =
np⋃
p=1

Ω1
p , Γ1

pl = Ω1
p ∩ Ω1

l (1.16)

Ω2 =
np⋃
p=1

Ω2
p , Γ2

pl = Ω2
p ∩ Ω2

l (1.17)

where np is the number of cores, Γ1
pl and Γ2

pl are respectively the interfaces between
sub-domains of Ω1 and Ω2 . After partitioning Ω1 and Ω2, the sub-domains are seen as the
sub-meshes formed by each core :

Ω = Ω1 ∪ Ω2 =
np⋃
p=1

Ωp , Ωp = Ω1
p ∪ Ω2

p (1.18)

Γpl = Γ1
pl ∪ Γ2

pl =
(
Ω1
p ∪ Ω2

p

)
∩
(
Ω1
l ∪ Ω2

l

)
(1.19)

After redefining the computational domain Ω as in equation (1.18), the simulation is
launched on each core. The contact surface Γc is duplicated on each core eliminating any
needed communications. Using this strategy, the contact analysis is carried out between
each sub-domain Ω1

p and the global surface ∂Ω2.

Figure 1.8: SPMD strategie for parallel computing used in Forge®.

As for the parallelization of the fictitious element algorithm generation, the mesh of
both the domains and the sub-domains are identified via the following numbering:

M(Ω) = {1, ..., nbnoe} where Ω = Ω1 ∪ Ω2 (1.20)
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M(Ωp) = {1, ..., nbnoe(p)} where Ωp = Ω1
p ∪ Ω2

p (1.21)

in which nbnoe is the total number of nodes and nbnoe(p) the number of nodes
assigned to a core p.

Recalling paragraph 1.2.3.2.2, the contact analysis requires to compute the distance
between a node j ∈M (Ωp) and a surface A = {A1, A2, A3} ∈ Ω ( using a node to segment
technique ). The set of node (j, A1, A2, A3) form a contact element which does not belong
necessary to Ωp. As a solution, [Barboza, 2004] proposes to add each node Ai={1,2,3} to
the core containing the node j. In fact, the interface Γpl should be updated frequently
by adding all nodes in contact (belonging to Ωl) to the core p (e.g. to the set on nodes
associated to the core p). This technique is not optimal in term of memory consumption.
This strategy is tested in a triaxial compression simulation. Table 1.1 shows the efficiency
of this strategy adopted by Forge® . We can notice that when using 4 cores, the efficiency
decrease to 0.65.

cores Cpu time (in s) Efficiency

1 2 153 1.0

2 1 037 1.03

4 822 0.65

Table 1.1: Efficiency of the contact analysis algorithm in Forge®

1.2.3.4 Contact resolution

Numerous methods can be found in the literature dedicated to the contact resolution
problem. A survey on this subject confirms that the most used methods are the Lagrange
multipliers, the penalty method and the augmented Lagrangian method.

Though other methods can be used as well, such as the invariant point algorithm
[Chabrand et al., 1998, Duvaut and Lions, 1972], the below descriptions will be only
restricted to the previously cited methods.

1.2.3.4.1 Lagrange Multiplier Method This method consists on introducing new
terms representing contact forces [Kikuchi and Oden, 1988] [Wriggers and Rieger, 1999].
These terms are called Lagrange multipliers. Thus the set of equations (1.7) is replaced
by (1.22) introducing λ.h the Lagrange multiplier.


´

Ω s(v) : ε(w)dV −
´

Ω pdiv wdV −
´

Γc
λh(w)dS = 0´

Ω qdiv vdV = 0
−
´

Γc
λ∗h(v)dS ≤ 0

(1.22)
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where (1.22.c) represents the non-penetration criterion (to be respected) and h(v) =
(v − vr).n −

g

∆t . This technique presents both drawbacks and advantages. Though it
increases the number of unknowns (i.e. the computational time), it respects exactly the
contact condition (or what we called non-penetration condition). In addition, it has no
need for further parameter manipulation -normally confronted in penalty method- (see
section below)

1.2.3.4.2 Penalty Technique This is one of the firsts techniques treating contact
problems. It relies on the fact that numerical solutions are the approximation of the actual
solution. So the contact interface is identified with a certain tolerance εprec. Respecting
the contact criterion depends of this precision εprec as well.

This method consists on introducing penalty coefficient ρ to approximate the contact
law. The set of equations (1.7) is now transformed into:



´
Ω s(v) : ε(w)dV −

´
Ω pdiv wdV − ρ

∑
xk∈Γc

[h (v (xk))]+ S (xk) (n (xk) .v) = 0
´

Ω qdiv vdV = 0 (1.23)

where ρ is the penalty coefficient, S(xk) is the surface associated to the node k
and verifies S(xk) =

ˆ
∂Γ
NkdS. Thus, σn the normal contact stress is approximated by

σn(xk) = −ρh(vh(xk)).

Note that the precision εprec ≈ O

(
1
ρ

)
. So, to respect exactly the non-penetration

conditions εprec → 0 and ρ→ +∞ must be verified.
Though the penalty method does not increase the unknowns number, it cannot re-

spect exactly the non-penetration conditions unless ρ → +∞ . This generates further
complications regarding the badly conditioned matrices (affecting the algorithm conver-
gence).

1.2.3.4.3 Augmented Lagrangian Method As presented previously for resolution
methods, a choice between two alternatives has to be made. Using the “Lagrangian mul-
tiplier method” insures the respect of the contact criterion but increases the unknowns.
Using the “penalty method” offers exactly the opposite. Which brings us to a new com-
promise: The “augmented Lagrangian method”.

As proposed in [Fortin and Glowinski, 1985], a hybrid method called augmented
Lagrangian is introduced. The concept is to solve the problem using the Lagrange multi-
plier and adding a penalty contribution as well. This method combines the advantages of
the latter ones. The Lagrange multiplier contribution helps verifying the non-penetration
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condition and the penalty contribution eases the algorithm convergence. For more details,
the readers are invited to check [Kuss, 2008] [Chamoret, 2002].

1.3 Eulerian Description

Although the physical fields are the same, the Eulerian and Lagrangian descriptions
are quite different. Rather than following each material point, the evolution of fields
properties are recorded at every point in space as time varies. In other words, two reference
frames are used to evaluate the physical fields. This approach is very common in fluid
mechanics. Equation (1.1) represents the transformation function φ in the Lagrangian
description. As mentioned earlier, an inverse transformation function Φ = φ−1 can be
defined. The initial position of a material point Mt can now be defined as follows:

X = Φ(x, t) (1.24)

where x is the spatial variable describing the current point position.
By using (1.24), the deformation is no longer expressed in terms of the Lagrangian

variable (X, t). Instead it is expressed in terms of the Eulerien spatial variables (x, t). Let
us take the velocity for instance:

v(x, t) = dx

dt
= ∂φ(X, t)

∂t
= ∂φ(Φ(x, t))

∂t
(1.25)

For this reason, when applying a derivative in the Eulerian description two terms
show up according to the remark on page 11:

dF

dt
= ∂F

∂t
+ (v.∇)F (1.26)


ρ

(
∂v

∂t
+ v.∇v

)
= ∇.σ + ρb = ρg

∇.v = 0
σ = behavior law

(1.27)

In fact, by adopting an Eulerian description the mesh is considered fixed in space.
The fixed mesh does not represent a physical characteristic. Therefore in a multi-domain
problem, tools representing each sub-domain are required; which brings us to the next
point: Interface modeling.
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1.3.1 Interface modeling

A literature survey shows the existence of several methods for dealing with the
interface modeling in Eulerian formulation. Mainly, these methods can be divided into
two categories: the interface tracking based on a Lagrangian approach and the interface
capturing based on an Eulerian approach.

For interface tracking, two methods stand out the most: the volume tracking and the
front tracking. the first was introduced by [Harlow and Welch, 1965]. It consists on adding
particles to represent the volume. The efficiency of this method depends highly on the
particles number and their distribution. As a result, it can be expensive in term of memory
and computing time. The front tacking method was presented as an improvement of the
latter in [Daly and Pracht, 1968]. Instead of distributing particles all over the volume,
they are only distributed over the interface. This change plays a key-role in decreasing the
memory cost. For these methods, the main drawbacks are the need to reposition particles
at each time step and the lack of information regarding the topology changes.

As for interface capturing, two methods exist as well : The volume of Fluid [Hirt
and Nichols, 1981] and the Level set method [Osher and Sethian, 1988]. Both methods
rely on a scalar parameter to describe the domains interface. The volume of fluid method
uses a fraction function C determining if a mesh element is fully or partially filled. If the
interface is beyond an element -i.e. element fully filled-, the fraction function is equal to
one. If the interface does not reach the element, C takes a zero value. Otherwise, C is
equal to the filling of the element volume ratio. Whereas, the level set method uses a
signed distance function to describe the interface of a domain. The interface is captured
for a time t as the zero of the level set function φ ( i.e., Γ(t) = {x|φ(x, t) = 0} . Then, φ
is chosen to be positive inside the domain and negative outside. The interface motion in
both methods is given by convecting the corresponding scalar parameter with the velocity
~v. We describe the level set method in detail in the next chapter of this manuscript.

1.3.2 Contact formulation

After reviewing the literature, rare are the works dedicated to contact problems in
Eulerian framework. To our knowledge, the only existing work is presented in [Bruchon
et al., 2009]. Herein, we present a brief description.

Considering a computational domain Ω formed by a deformable body Ωd , a rigid
tool Ωs and the air Ωa. The deformable body and the tool are represented by two distinct
level set φd and φs. However the air is deduced by complementarity. We should point out
that in a Eulerian framework, the contact is not defined explicitly. Therefore, the authors
define the contact zone as follows:
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Γc = {x ∈ Ω; |φd(x, t)|+ |φs(x, t)| = 0} (1.28)

Thus, the no-penetration condition is expressed by:

φd(x, t) + φs(x, t) 6 0 ∀(x, t) ∈ Γc × R+ (1.29)

If v and vs denote respectively the velocity of the deformable body and the tool, the
authors propose linearizing the previous inequality in the following manner:

g(φd, φs) = φd
∆t + φs

∆t + (v − vs) .ns 6 0 ∀(x, t) ∈ Γc × R+ (1.30)

where g is the gap function defined using the level set functions and the normal
vector ns. Proceeding by analogy with a Lagrangian formulation, the authors wrote the
contact term in the weak formulation using a penalty method.

ˆ
Γc

r [g(φd, φs)]+w.nsdΓ (1.31)

where r is the penalty parameter.
However, this surface integral is not computable within an Eulerian framework. In

fact, the contact surface is not defined explicitly (see equation (1.28) ). Thus, surface
integral (1.31) has to be converted into a volume integral.

At first, the authors of [Bruchon et al., 2009] introduce the function ξ : R→ R such
as :

ξ(y) =


1
2(1 + cos(πy)) if |y| < 1

0 if |y| > 1
(1.32)

Using the function defined in equation (1.32), the authors approximate the Dirac
mass by the right term in equation (1.33) when ε tends towards zero:

δΓc ≈
1
ε
ξ

(
|φd|+ |φs|

ε

)
|∇ |φd|+∇ |φs|| (1.33)

Since the contact term is written in the vicinity of the zero isovalue of the level set
function, the previous equation is simplified using the property of distance function.

δΓc ≈
2
ε
ξ

(
|φd|+ |φs|

ε

)
(1.34)

Finally, the contact term added to the Eulerian weak formulation is given by:
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ˆ
Ω

2r
ε

[g(φd, φs)]+ ξ
(
|φd|+ |φs|

ε

)
w.nsdΩ (1.35)

1.4 Arbitrary Lagrangian Eulerian Description

This section presents the theoretical aspects of Arbitrary Lagrangian Eulerian for-
mulation (ALE) and the different resolution techniques used in solid mechanics. This ap-
proach was designed to address problems confronted by adopting a Lagrangian approach
while maintaining its advantages. When the ALE approach was introduced, each sub-
domain was either purely Lagrangian or purely Eulerian. Then the approach was extended
to the first arbitrary relative movements between the mesh and material. Nowadays, ALE
formulations are widely used treating fluid structure interactions problems [Richter and
Wick, 2010, Kucharik et al., 2010]. Nevertheless, some works use such approach in solids
mechanics [Wang and Gadala, 1997]. A review of material forming processes using the
ALE formulation can be found in [Chenot and Bellet, 1995].

From the mathematical point of view, an area located in the space can be identified
using three different frames : a material, a spatial and a reference one. For each frame, a
system of coordinates is associated. Position vectors are respectively denoted X, x and χ.
The reference frame can be chosen properly to facilitate solving the numerical problem.
In a Lagrangian approach, the reference frame coincides with the material one. While
in an Eulerian approach, it coincides with the spatial frame. For the ALE approach the
reference frame is chosen arbitrary and the material moves with a velocity different from
the mesh velocity. The separation of these two velocities requires a new bijective function
ψ joining the material frame with the referential one :

χ = ψ(X, t) (1.36)

The vector position χ can be expressed using the functions φ and φ∗ crossing from
the Lagrangian to the Eulerian frame then to the ALE frame (Figure 1.9) :

χ = φ∗ ◦ φ(X, t) (1.37)
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Figure 1.9: Mesh deformation when using an Arbitrary Lagrangian Eulerian approach.

To transform equations from the Lagrangian to the ALE description the following
relation is used for every characteristic F (χ) = F (χ(x, t)) = F (χ(x(X, t), t)) :

dF

dt
=
⌈
∂F

∂t

⌉
X

= ∂F

∂t
+ ∂F

∂χ

∂χ

∂t
= ∂F

∂t
+ ∂F

∂x

∂x

∂χ

∂χ

∂t
= ∂F

∂t
+ (c.∇)F (1.38)

in which c = v − v̄ is the convective velocity. v is the velocity of the material and v̄
is the velocity of the grid. It represents the relative velocity between the material frame
and the grid (the spatial frame).

Remark:

• In a Lagrangian approach, since the material is represented by the mesh, the mesh
velocity will be equal to the material velocity : v = v̄ =⇒ c = 0.

• In an Eulerian approach, since the mesh is fixed, the mesh velocity is given by v̄ = 0.
Equation (1.38) will be expressed as follows:

∂ν

∂t
= ∂ν

∂t

∣∣∣∣∣
X

− v∇X .ν (1.39)

Finally, the conservation laws are transformed using equation (1.38). This formu-
lation is also called quasi-Eulerian formulation, since these equations are convected with
the relative velocity c.
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∂ρ

∂t

∣∣∣∣∣
χ

+ c.∇ρ+ ρ∇.v = 0 (1.40)

ρ

 ∂v
∂t

∣∣∣∣∣
χ

+ (c.∇) v
 = ∇.σ + ρb (1.41)

ρ

 ∂e
∂t

∣∣∣∣∣
χ

+ c.∇e

 = σ : D + ρr +∇.q (1.42)

where ρ is the density, v is the velocity, σ is the Cauchy stress tensor, D is the strain
rate tensor, b is the body force, e is the internal energy.

1.4.1 Coupled Resolution

Solving the previous equations using a finite element discretization requires the
introduction of a variational formulation. The principle of the latter formulation is similar
to the one explained in section (sec. 1.2.1).

ˆ
ρ
∂vi
∂t

∣∣∣∣∣
χ

widΩ +
ˆ
ρcj

∂vi
∂xj

widΩ +
ˆ
∂wi
∂xj

σijdΩ

=
ˆ
ρbiwidΩ +

ˆ
σijnjwidΓ

(1.43)

In a coupled resolution, a convective term appears in equation (1.43). This requires
stabilization techniques. The literature proposes several techniques such as SUPG - SCPG
are the most used. To solve this type of problem, two methods are mentioned in the
literature. The first is to consider that the mesh movement is known a priori [Liu et al.,
1986]. This technique makes the mesh velocity independent from the material velocity
which remains the only unknown of the problem. However, in most cases the definition
of the mesh motion is not obvious. Therefore another method to solve this problem is
needed where the mesh motion is unknown. Under the latter assumption, the introduction
of new equations describing the mesh motion is required [Schreurs et al., 1986]. For a
more elaborate bibliography on this matters the readers are invited to check [Boman,
2010, Philippe, 2009].

1.4.2 Split operator

In solids mechanics, the decoupled approach is more used. The following explained
method is extracted from the work of [Benson, 1997, Benson, 1998a]. This method elim-
inates the convective term of the previous formulation (1.43). It consists on solving the
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equations in two consecutive steps. The system of equations (1.44) to (1.46) presented
previously is written in the following conservative form:

∂ρ

∂t
+∇.(ρv) = 0 (1.44)

∂ρv

∂t
+∇.(ρv ⊗ v) = ∇.σ + ρb (1.45)

∂ρe

∂t
+∇.(ρe.v) = σ : D + ρb.v (1.46)

where ρ is the density, v is the velocity, σ is the Cauchy stress tensor, D is the strain
rate tensor, b is the body force and e is the internal energy.

Denoting φ = (ρ, ρv, ρe), F = (ρv, ρv ⊗ v, e.v) the flux function and S = (0,∇.σ +
ρb, σ : D) the source term, equations (1.44-1.46) are rewritten as :

∂φ

∂t
+∇.F = S (1.47)

The splitting Operator divides equation (1.47) into two equations:

∂φ

∂t
= S (1.48)

∂φ

∂t
+∇.F = 0 (1.49)

This method consists in solving the equations in two alternating steps. The first
solves the equation using purely a Lagrangian approach where all the above definitions
remains valid. The second step, called Eulerian, transfers all necessary fields from the
deformed Lagrangian mesh to the fixed Eulerian mesh. Figure 1.10 depicts this two step
with the mesh evolution.

Figure 1.10: Decoupled resolution using an ALE approach .

The decoupled method offers several advantages over the coupled method. First,
this method is faster and more robust. In addition, the time step is independent of
the convective velocity. Finally, the decoupled approach is very easy to implement in a
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Lagrangian code. It only requires the addition of a module for determining the speed of
the mesh and a transport module. It is at this point that each increment is completed.
Several algorithms are available to complete the task. The most intuitive transfer method
is to perform an interpolation between the two meshes. This type of techniques is also used
after a complete re-meshing for which the number of nodes and the number of elements
changes [Philippe, 2009]. An alternative transport technique is represented by solving
(1.49).

As mentioned earlier, the ALE approach helps overcoming the problem of mesh dis-
tortion encountered in a Lagrangian approach. The mesh motion is given by re-positioning
algorithms. According to the nodes nature, these algorithms can be very different. For
instance, a node on the mesh surface is generally constrained to remain thereon, while
an internal node can be moved with more freedom. These algorithms are divided into
two categories: i) mono-material algorithms known as Simple ALE [Benson, 1989] and
ii) multi-material [Benson, 1998b]. Multi-material algorithms require sophisticated tech-
niques to determine the boundaries between the involved bodies and then manage the
interactions between them [Benson, 1997, Benson and Okazawa, 2004].

Though this section does not cover all aspects in an ALE approach, we should
mention that it exhibits the same drawbacks as the Lagrangian approach regarding the
efficiency of contact detection algorithms in a parallel environment.

1.5 Discussion and Conclusion

For large deformation problems, the most widespread and most developed methods
rely on Lagrangian formulations [Benson, 1997]. Though the mesh suffers a distortion,
a re-meshing algorithm is enough to fix this problem and insure the solution accuracy.
Some works choose to use an Arbitrary Lagrangian Eulerian to prevent the mesh distor-
tion. With the increasing number of industrial applications including multiple interacting
components and complex geometries, a parallel environment is a must. Lagrangian ap-
proaches present drawbacks mainly for multi-domain problems in a parallel framework.
In particular, the contact remains the topical issue where the spatial search algorithm
affects highly the scalability of the whole computation. In Forge®, this defect is presented
in Table 1.1. Almost half the efficiency is lost when using four cores. In addition, the
authors of [Paik et al., 2006] present a study on this particular topic using the bucket sort
algorithm. Figure 1.11 confirms that the loss of efficiency is mainly due to the contact
calculation.



Chapter 1. State of the art 32

Figure 1.11: Time gain for different algorithm .

A worth mentioning work dealing with the parallel contact detection is presented in
[Li et al., 2001]. The authors introduce a mesh-free method presenting several improve-
ment such as a simple implementation and a better scalability.

Facing all these needs, the Eulerian approach seems to be a good candidate. This
formulation uses a single fixed mesh even in presence of different interacting bodies. It
presents the advantage of automatically detection contact. All these advantages does not
mean that the formulation will not present limitations. For instance, it opens doors on
how to treat friction and contact in such problems. Due to the small number of works
treating the large deformation problem in solid mechanics, it shows a lack of development
and unclear insight on what will or will not work. This is where our work comes in handy.
It studies the feasibility of the Eulerian approach to model solid mechanics applications.
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Résumé en Français

Dans ce chapitre, une enquête citant différentes approches disponibles dans la littéra-
ture dédiée pour la modélisation des problèmes de grandes déformations multi-domaines
a été présentée.

Pour des problèmes de grandes déformations, les approches les plus utilisées et les
plus développées se reposent sur des formulations Lagrangiennes où le maillage peut subir
des distorsions. Quoique ces distorsions puissent être résolues en utilisant des algorithmes
de remaillage, plusieurs travaux se servent des approches Lagrangiennes Arbitrairement
Eulériennes comme une alternative.

Avec la demande croissante de modéliser des applications industrielles incluant de
multiples géométries (complexes) interagissant au cours du procédé, le travail dans un
environnement parallèle est prouvé nécessaire. Les approches lagrangiennes confrontent
principalement des difficultés pour les problèmes multi-domaines dans un cadre parallèle.
Plus particulièrement, le problème de contact reste le sujet d’actualité où l’algorithme de
recherche spatiale affecte fortement l’efficacité du calcul entier.

Face à ces besoins, l’approche Eulérienne semble être un bon candidat. Cette for-
mulation utilise un maillage unique même en présence de différents corps interagissant
durant la simulation. La détection de contact est gérée automatiquement et une très
bonne scalabilité est attendue. Vis-à-vis à ces avantages, l’utilisation de cette approche
mène à de nouvelles questions préalablement non traitées telles que la modélisation du
frottement et du contact.

En raison du petit nombre de travaux dédiés à la modélisation des problèmes de
grandes déformations de la mécanique solide, les idées sont peu claires sur la direction
dont nous devons mener les développements.

Ceci est où notre travail arrive à point nommé. Il étudie la faisabilité de l’approche
Eulérienne en proposant les atouts et les développements additionnels nécessaires pour
modéliser des problèmes de grandes déformations multi-domaines.
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2.1 Introduction

This chapter is devoted to the numerical approach used in this work to model large
deformations problems. This approach is based on an Eulerian description of the mono-
lithic system governing a multi-domain deformation problem. The used approach proved
to be a powerful tool modeling CFD and FSI [Feghali et al., 2010] problems. Despite its
potential, this approach was rarely if never applied to large deformation problems such
as metal forming processes (treated later on in this study).

Unlike Lagrangian formulations, in a Eulerian one the mesh itself does not represent
the material neither its evolution. This fact leads us to introduce first interface capturing
techniques such as distance function. The evolution of a certain domain is followed by
solving the convective problem corresponding to the level set function.

Next, the interface capture method is coupled with an heterogeneous anisotropic
mesh adaptation technique presented in [Coupez, 2011]. The main goal is to obtain a high
precision solution while maintaining the lowest possible number of nodes. It is insured
since the mesh is only adapted where the important physical phenomenons appear, while it
remains coarse elsewhere. Thus, a large scale simulations can be handled at an affordable
cost (i.e. computing time).

To simplify the different steps leading to the monolithic system describing a multi-
domain large deformation problem, we depict them using a simple flat simulation problem
(containing two tools and one deformable sub-domains to generalize later on). One single
mesh is used and the different sub-domains are represented as heterogeneities in the
global domain. Since our aim is to solve one set of equations and since the different sub-
domains can easily have different physical characteristics, mixture laws come in handy at
this stage to introduce global characteristics defined all over the computational domain
using the local ones corresponding to each sub-domain. New additions to this monolithic
approach are proposed to help adapt it to large deformation problems. For instance, a
novel quadratic law is introduced that can be helpful to represent an additional phase (
detecting the presence of a lubricant for example ). Air trapping is studied as well. Two
options are offered to treat this topic depending on the problem need. In addition, some
ameliorations are brought to the existent Eulerian approach to insure better results. For
every improvement, academic applications are presented to understand both capacities
and limitations of this approach.

The chapter is ended with a quick discussion covering the confronted difficulties,
what has to be done to prevent them and what remains unsolved to have a more-or-less
complete approach treating every aspect of large deformation problems.
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2.2 Interface Capturing

Aiming to present a “fully” Eulerian approach, the interface capturing should rely
on an Eulerian description. Volume of fluids method (VOF) was the most often used. It is
based on a mass conservation and consists on convecting the characteristic function over
the whole mesh. However, it faces several difficulties such as reconstructing the interface,
at each step, specially in 3 d geometries. Later on, Osher introduced the level set method
in [Osher and Sethian, 1988]. In addition to its fluency taking into account every slight
topology changes; this method has proven not only its effectiveness to describe precisely
the interface but also a quick and smooth transition from 2d to 3d without any further
development and complications. This method and other variant ones will be presented
next.

2.2.1 Distance function

Consider Ω ⊂ Rn the fixed Eulerian computational domain, in which all different
bodies are immersed. A standard level set method consists on defining a signed distance
function φ verifying (2.1).

|φ(~x, t)| = d(~x) = min
~x0∈Γ(~x)

(|~x− ~x0|) ∀ ~x = (x1, . . . , xn) ∈ Ω (2.1)

where Γ(~x) = {~x ∈ Ω; /φ(~x, t) = 0} is the interface of the studied domain. In this work,
φ is chosen to be positive inside the domain and negative otherwise.

If i different bodies (Ωi)i are immersed in Ω, for each body Ωi(t) a signed distance
function φi(t) is associated and Ω is chosen to cover all bodies:

∪ Ωi(t) ⊆ Ω (2.2)

Both the immersed body and its distance function can depend of the time variable
t, since they are supposed to evolve during simulations later on. Note that we do not
assign a level set to the air domain. Instead it is deduced by complementarity as follows:

Ωa = Ω− ∪Ωi (2.3)

To illustrate this concept, we take the example of one sphere, denote Ωs, immersed in
the computing domain Ω. Figure 2.1 depicts the immersed sphere along with a horizontal
slice. The isovalues of this slice −0.4 < iso < 0.285 are projected on the bottom of Ω. The
latter is a mean to clarify how the distance function associated to the sphere is defined.
The projected isovalues confirm that they are negative outside the sphere and positive
inside. Thus, the isovalue zero corresponds to the interface of this sphere.
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Figure 2.1: A sphere immersed in a cubic computational domain Ω. The signed distance func-
tion isovalues of the central slice are projected onto the bottom of the domain.

Now that the distance function is defined, the integral on the sub-domain itself can
be defined as well. Let f be an integrable function on Ω. The integral of f on ΩS can be
expressed as the integral of the function f.H on Ω:

ˆ
ΩS

fdΩS =
ˆ

Ω
fH(φs)dΩ (2.4)

where H is the Heaviside function :

H(φ) =

 1 if φ > 0
0 if φ < 0

(2.5)

2.2.2 Level Set Method

Assuming that the signed distance function is advected by a given velocity field ~v,
the distance function convection is equivalent to solving the following system on Ω:

 φt + ~v.∇φ = 0
φ(t = 0, ~x) = φ0(~x)

(2.6)

In fact, the equation (2.6) describes the evolution of the level set function in time. To
conserve its stability during the convection, the following feature should be always verified:
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|∇φ| = 1 (2.7)

Despite all extensive research and improvements made in stabilization technique; the
equation (2.7) was not insured by simply solving (2.6). Since maintaining this gradient
property is a must to guarantee the stability of the numerical system, it is then necessary to
restore it by solving a Hamilton-Jacobi equation (called also the reinitialization equation):

 φτ + s(φ)(|∇φ| − 1) = 0
φ(τ = 0, ~x) = φ(t, ~x)

(2.8)

where τ is a virtual time and s(φ) is the sign function defined as follows:

s(φ) =


1 if φ > 0
0 if φ = 0
−1 if φ < 0

(2.9)

The system (2.8) does not affect the position of the zero-value of the level set func-
tion; it simply repositions the other isovalues to verify the equation (2.7). The previous
reinitialization algorithm was introduced in [Sussman et al., 1994]. The frequency of
reinitialization after solving the system (2.6) was found a delicate matter, it can affect
considerably the computing time. Authors like [Osher and Sethian, 1988, Sussman et al.,
1994] urge to reinitialize φ after each time step, others find it sufficient to reinitialize it
every other step.

2.2.2.1 Local Distance function

The level set advection though required, it is not necessary on the whole domain. In
computations, the important information are located in the vicinity of the zero isovalue
i.e. on the body interface. Therefore, it could be handy to use a function that crops
all isovalues in the interface surroundings. Several functions exist in the literature. For
example, [Ville et al., 2011] used a sinusoidal function. In this work, a hyperbolic tangent
function φ̂ is chosen to narrow the distance function φ:

φ̂ = ε.tanh
φ

ε
(2.10)

where ε represents the thickness of the interface and depends on the mesh size.
Figure 2.2 shows that both functions φ and φ̂ match completely in the vicinity of zero.
Thus, the use of the hyperbolic filter φ̂ instead of the distance function φ in the interface
proximity does not affect at all the results precision. On the contrary, it can be beneficial
decreasing the computing domain and time.
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Signed distance 
function 
Hyperbolic tangent 
function 

Figure 2.2: Comparison between a signed distance function (blue) and a hyperbolic tangent
function (red)

2.2.2.2 Convected level set method

To summarize, a classical level set approach depends on solving both (2.6) and (2.8)
systems. Recall that the system (2.8) is not linear. [Peng et al., 1999] introduced in his
work a linearization based on evaluating the gradient at the previous virtual time:

|∇φ| = |∇φ|
2

|∇φ|
≈
∇φ.∇φ−

|∇φ−|
(2.11)

Substituting the gradient norm in the first equation of the system (2.8) by the
formula (2.11) , the reinitialized convection equation is transformed into:

∂φ

∂τ
+ s(φ−) ∇φ

−

|∇φ−|
∇φ = s(φ−) (2.12)

Notice that equation (2.12) is the convection equation of φ with a velocity field

~u = s(φ−) ∇φ
−

|∇φ−|
. The convective reinitialization was introduced by Coupez in [Coupez,

2006]. In addition, he showed that equation (2.12) along with equation (2.6) leads to a
convected level set method. In fact, the virtual time step can be decomposed as follows:

∂φ

∂t
= ∂φ

∂τ
× ∂τ

∂t
(2.13)

∂τ

∂t
will be approximated by h

∆t and noted λ, where h is the mesh size and ∆t is
the time step [Ville et al., 2011]. Using equation (2.13), equation (2.12) is rewritten to
obtain:

∂φ

∂t
+ λs (φ) (|∇φ| − 1) = 0 (2.14)
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Adding equations (2.14) to (2.6), the resulting equation is called the convective level
set equation:

∂φ

∂t
+ (v + λu)|∇φ| = λs (φ) (2.15)

Finally, the signed distance function is substituted by the local distance one defined
in (2.10), but for the sake of clarity we maintain the same notation φ:

∂φ

∂t
+ (v + λu).∇φ = λs(φ)g(φ)

φ(t = 0, ~x) = φ0(~x)
(2.16)

where g(φ) = 1−
(
φ

ε

)2

.

2.2.2.3 Weak form

Until now, we presented a convective level set method. The remaining part is dis-
cretizing the corresponding system. In this section, the finite element discretization is
presented briefly.

In order to approximate the level set function as a linear finite element, a space
approximation must be determined :

Wh =
{
wh ∈ C0(Ωh), wh|K ∈ P 1(K),∀K ∈ Th(Ω)

}
(2.17)

Multiplying the first equation of the system (2.16) by wh ∈ Wh, the temporal-spatial
discretization of the weak formulation is given by :

ˆ
Ω

φh
∆twh +

ˆ
Ω

φ−h
∆twh = θ

[ˆ
Ω
λsg(φh)wh −

ˆ
Ω

(v + λu).∇φhwh
]

+ (1− θ)
[ˆ

Ω
λsg(φ−h )wh −

ˆ
Ω

(v + λu).∇φ−hwh
]

(2.18)

where φ− = φ(x, t−1) and θ is a parameter used to choose the type of the temporal
scheme. In this work, we use a semi-implicit scheme (i.e θ = 1

2).
As we are dealing with a convection problem, a stabilization method is needed.

Streamline Upwind Petrov-Galerkin method (SUPG) is one of the most popular used
methods. Therefore, the spaceWh is replaced byWh, where the shape function is modified
as mentioned in (2.19)

Wh =
{
w̄h, w̄h|K = wh + τSUPGv.∇wh,∀K ∈ Th(Ω)

}
(2.19)
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In other words, replacing Wh by Wh means giving the shape functions an additional
artificial weight in the flow direction (see Figure 2.3).

For the determination of the parameter stabilization τSUPG the reader can refer to
[Brooks and Hughes, 1982].

Figure 2.3: Different weight of the shape functions using a Galerkin approximation and a
Streamline Upwind Petrov-Galerkin .

To maintain the highest precision possible in this eulerian approach, the anisotropic
mesh adaptation is required. Next, we will present the technique implemented in CIMLib
to generate and adapt the mesh.

2.3 Mesh Generation

A large effort has been devoted to develop mesh generation algorithms. A survey
of the literature offers several algorithms capable of generating an unstructured trian-
gle/tetrahedral mesh. The three major algorithms are: Quadtree/Octree described in
[Tchon et al., 2003, Shephard, 1988, Shephard and Georges, 1991], Frontal Method pre-
sented in [Bonet and Peraire, 1991, Lo, 1985] and finally the Delaunay Triangulation
detailed in [Frey and George, 1999]. The quality of the mesh is crucial for all computa-
tions. To ensure an optimal mesh quality, these three algorithms require an optimization
step after the generation step.

However, this work lies on a topological mesh. It was first introduced in [Coupez
et al., 1991] and proved in [Coupez, 2000]. Unlike the previous algorithms, the topological
mesh optimizes the mesh automatically while its generation. It uses the below definition
to construct the mesh and the minimal volume theorem to optimize its quality.

Definition 2.3.0.1. Let (N , T ) denotes respectively the nodes and the set of simplex
whose vertices belong to N . Considering F the set of faces of the simplex, T is a mesh
topology of Ω if and only if:

(i) Each face of F shares at most two elements.
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Figure 2.4: Mesh generation by local optimization using “MTC”

(ii) (N , ∂T ) is a mesh of ∂Ω.

Theorem 2.3.0.1. Let T be a mesh topology on a finite node set N in Ω. Then (N , T )
is a mesh of Ω if and only if the simplices of T are non-degenerated and

∑
T∈T
|T | = |Ω| (2.20)

The demonstration can be found in [Coupez, 2000, Gruau and Coupez, 2005] .

2.4 Anisotropic mesh adaptation

Working in an Eulerian framework, an anisotropic mesh adaptation is an efficient
means to ensure an accurate prediction of the numerical solution. In fact, an uniform
global mesh increases the number of degrees of freedom and may not lead to an improve-
ment of the obtained solution. Starting from a coarse initial mesh, this technique consists
on refining it locally in the regions where physical informations requires more nodes. Cou-
pled with the Level set method, the anisotropic mesh adaptation is capable of handling
complex geometries. The purpose of this section is to describe briefly the edge based
error estimator and the metric construction algorithm implemented in CIMLib. Further
details of the metric calculation and the error estimator used to control the generation of
the anisotropic mesh are available in [Coupez, 2011, Coupez and Hachem, 2013].
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2.4.1 Edge based error estimator

In large deformations problems, the arise of a new arbitrary surface is common. As
mentioned earlier, an isotropic mesh leads to a loss in the accuracy of the desired solution,
due to the arbitrary evolution of the interfaces of the different sub-domains. Therefore, an
anisotropic mesh adaptation is required. As a matter of fact, discretization errors occur
during simulations. The goal of the error estimator is to convert the numerical error
into an additional information used to refine locally the mesh where needed. In [Coupez,
2011], the author proposed an edge based error estimator.

Let us begin with recalling some useful notations and definitions.
Consider that v ∈ C2(Ω) = V and Vh the P1 finite element approximation such that :
Vh = {vh ∈ C0(Ω), vh|k ∈ P 1(K), K ∈ K}, where K represents the set of element of the
mesh. Furthermore let us denote by X = {Xi ∈ Rd, i = 1, · · · ,N} the set of nodes, and
by Ui the projection of the solution U at the node Xi given by the Lagrange interpolation.
Finally let Xij = Xj − Xi and Uij = Uj − Ui be respectively the length between the
nodes i and j and the variation between the solution evaluated on these nodes.

Since a P1 approximation is used, the solution is continuous and can be written as:

Uj = Ui +∇uhXij (2.21)

so,

∇uhXij = Uij (2.22)

Notice that the gradient of uh is a piecewise constant vector i.e. constant vector
on each element. Though, the gradient field is discontinuous from element to element, it
is continuous along the element edges since it depends only on the variation of the field
value at the extremities (see equation (2.22) ). Most error estimators are based on the
Hessian approximation, nevertheless the author of [Coupez, 2011] proposes an error based
on the gradient.

Using identities ( 2.21 - 2.22) and the mean value theorem, the following inequality
is determined :

∥∥∥∇uh.Xij −∇u(X i).Xij
∥∥∥ ≤ max

Y ∈[Xi,Xj ]

∣∣∣H(u)(Y )Xij.Xij
∣∣∣ (2.23)

where H(u) is the Hessian solution. Equation (2.23) is the main reason behind the
choice of the following gradient based error estimator:

eij =| GijX ij | (2.24)
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where Gij = Gi − Gj is the difference between the gradient defined respectively on the
nodes i and j.
Since the gradient is only determined on the elements, an additional step is needed to
recover its values on the nodes. It is accomplished by solving the following equation:

Gi = argmin
G

 ∑
j∈Γ(i)

∣∣∣(G−∇uh) .X ij
∣∣∣2
 (2.25)

where Γ(i) = {j ∈ N , ∃K ∈ K, X ij ∈ K}.

2.4.2 Metric construction

To pilot such a technique, a metric is needed. A metric is a symmetric defined
positive tensor. It can be transformed into a diagonal one using:

M = R


λ1 0 · · · 0
0 . . . ...
... . . . 0
0 · · · 0 λd

R
T (2.26)

where R is a rotation tensor containing the eigenvectors of M and (λi)i=1,··· ,d repre-
sent the eigenvalues of the metric. The eigenvalues (λi)i=1,··· ,d are strongly related to the
shape and the size of the obtained mesh. It will be inversely proportional to the square
of the mesh size. The orientation of the mesh elements will be determined by both R and
RT . During computations, a generated mesh formed by equilateral triangles is the most
suitable. That is why the metric notion will introduce a distance between the set of the
nodes with the aim of maintaining the norm close to one :

∥∥∥X ij
∥∥∥
M

=
(
MX ij, X ij

)
= 1 (2.27)

in which X ij is the vector formed by the nodes i and j.
Following the work of [Coupez, 2011] , the proposed metric is constructed on each

node of the mesh verifying (2.27). In fact, the author demonstrates that a unit metric
can be built via an affine transformation Aij. The latter transformation will only adjust
each edge length to be equal to 1. Therefore, the metric can be written as M = tAijAij

(defined on the node i).
When summing (2.27) on Γ(i) = {j ∈ N , ∃K ∈ K, X ij ∈ K}, we obtain the

following identity:
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M :
 ∑
j∈Γ(i)

X ij ⊗X ij

 = |Γ(i)| (2.28)

The tensor in (2.28) on the node i is called the length distribution tensor defined (see
Figure 2.5) :

Xi = 1
| Γ(i) |

 ∑
j∈Γ(i)

X ij ⊗X ij

 (2.29)

ijXiX jX

Figure 2.5: The length distribution tensor for the node i is determined from the collected edges

Since Xi is symmetric defined positive, when at least d non aligned edge vectors exist the
metric is defined as :

M = 1
d

(
Xi
)−1

(2.30)

In order to introduce the error variations calculated in (2.24) to the metric defined
in (2.30), a new edge length is defined based on a stretch factor sij. The introduction of
the latter factor leads to a new definition of the error given by ẽij = s2

ijeij. More precisely,
the stretch factor leads to generate a mesh under the constraint of a fixed number of
edges. In fact, by scaling the edges by sij, the number of edges is multiplied by s−pij . Thus
for a given number of edges A, the proposed stretching factor is computed as follows:

sij =
(
λ

eij

) 1
p

(2.31)

in which
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λ =



∑
i

∑
j∈Γ(i)

e
p

p+2
ij


A



p+2
p

Finally the optimized metric is given by:

Mi = 1
d

 ∑
j∈Γ(i)

s2
ijX

ij ⊗X ij

−1

(2.32)

A full review of the metric construction, lemma, propositions and proofs can be
found in [Coupez, 2011]. Figure 2.6 shows the mesh obtained when using the technique
described above for two different geometries. In Figure 2.6 (a-b) we choose a cube, it
will be used latter on to study the case of a flat bunch simulation. To prove that this
technique can handle more complex geometries, Figure 2.6 (c) shows the adapted mesh of
the upper tool of a connecting rod. We point out that in these cases the mesh is adapted
on the level set φ.
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(a) (b)

(c)

Figure 2.6: The anisotropic mesh obtained when using the edge based error estimator metric:
(a-b) for a cube, (c) for the upper tool of the connecting rod. .

2.4.3 Extension to multi-component field

Many simulations require to adapt the mesh over a multi-field. Even though, the
most important aspect is to capture the evolution of the new arbitrary surface generated
by the level set motion; it come in handy to adapt the mesh over the mixture law and/or
the velocity field. Though metric intersection methods are commonly used to define one
metric when several ones are present [Loseille, 2008]; the author of [Coupez and Hachem,
2013] chose to extend the above theory to suit a multi-component field adaptation. This
approach was validated with a driven cavity problem. the mesh was adapted not only
using the velocity norm, but also using all velocity vector components.

Mainly this approach requires a global vector containing all fields to be adapted.
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Denote u = {u1, · · · , um} the vector containing those fields. Using the error estimator
described in (sec. 2.4.1), the computed error is now a vector given by:

eij =
{
e1
ij, e

2
ij, . . . , e

m
ij

}
(2.33)

Each component of the error vector is obtained by applying the already described
theory on each component of u. To provide a scalar value to the error estimator; [Coupez
and Hachem, 2013] proposes to evaluate the vector eij by its L2 or L∞ norm.

2.5 Mechanical problem

This section is devoted to elaborate an appropriate mathematical model capable of
describing the large deformation problem. The desired model is written based on an Eu-
lerian formulation of the fundamental mechanics equations. First, the system is adapted
to suit this problem needs. The monolithic system is established from the weak formu-
lation written in a velocity/pressure variables. Finally, the Finite Element formulation is
explained using a Variational Multi-Scale method for stabilization.

2.5.1 Governing equations

In the framework of large deformation problem, let us consider a simple forging
process illustration for a better understanding of the mechanical problem (see Figure 2.7).
Since an Eulerian formulation is adopted, the computational domain Ω ⊂ Rd (d = 2 or 3)
is chosen in a way to cover all the present sub-domains, even the air. The deformable
body, denoted by Ωd, is deformed when the upper die moves uniformly in the −z direction.
Usually, the lower die remains fixed but nothing prevent it to move in the z direction.
In this work, the temperature is assumed to be constant during the simulation. As
a result, the system of equations is governed by the mass conservation equation and
the momentum equation, omitting the heat transfer equation. The mass conservation
equation is expressed by:
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Ω𝑠 

Ω𝑠 

Ω𝑑 

𝑣𝑠 = 𝑣𝑢𝑝𝑝𝑒𝑟 

𝑣𝑠 = 𝑣𝑙𝑜𝑤𝑒𝑟 

𝑥 

𝑦 

𝑧 

Ω 

Ω𝑎 

Figure 2.7: Illustration of a 2d flat bunch simulation involving two rigid bodies (tools) and a
deformable body.

∂ρ

∂t
+∇. (ρv) = 0 (2.34)

where ρ is the material density and v represents the velocity. Since the computa-
tional domain is assumed to be incompressible, the equation (2.34) is reduced to:

∇.v = 0 (2.35)

The momentum equation is given by:

ρ

(
∂v

∂t
+ v.∇v

)
−∇.σ = ρg (2.36)

in which g is the gravity and σ = s− pId is the Cauchy stress tensor, where p is the
pressure and Id is the identity matrix. The deviatoric component s is defined in terms of
each sub-domain Ωi. In Ωd, s follows a Norton-hoff law:

s = 2Kd

(√
3 ˙̄ε
)m−1

ε(v) (2.37)

in which Kd is the consistency of the deformable body and m (0 < m 6 1) is the
strain rate sensitivity coefficient. The strain rate tensor ε(v) = 1

2(∇v + t∇v), while

˙̄ε =
√

2
3ε(v) : ε(v). In Ωa which denotes the air, s obeys to a Newtonian fluid law:

s = 2ηaε(v) (2.38)

where ηa represents the air viscosity. In the rigid bodies the following equation
should be verified:
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ε(v) = 0 (2.39)

In fact, equation (2.39) is not considered within the system. Nonetheless, a different
procedure is taken into account to verify this equation. In fact, to be consistent with
what was presented above, the stress deviatoric part of the rigid bodies is written as

s = 2Ksε(v) (2.40)

in which Ks, the tools consistency, should respect Ks � Kd. In addition to the
previous restriction, the signed distance function φr is computed at each time step. Thus
the upper die is placed into it right place. Under the latter conditions, equation (2.40) is
equivalent to equation (2.39).

2.5.2 Weak formulation

In the previous section, the equations governing the physical problem were presented.
Now the aim is to combine all these sub-systems in order to obtain the monolithic system
defined all over the domain. To begin with, the computational domain Ω is defined to
cover all heterogeneous environment including the air ( see sec. 2.2.1 ). To obtain the
monolithic system, using the weak formulation is mandatory.

Thus, we must first define Sobolev spaces in which the solution is approximated:

V =
{
v, v ∈

(
H1(Ω)

)d
|v = g onΓ

}
(2.41)

Q =
{
p, p ∈ L2(Ω),

ˆ
Ω
pdΩ = 0

}
(2.42)

W =
{
w, w ∈

(
H1(Ω)

)d
|w = 0 onΓ

}
(2.43)

In the spaces defined above, the scalar product is given by:

(v, w)Ω =
ˆ

Ω
v : w (2.44)

A variational formulation lies mostly on the Green formula. The problem amounts
to find (v, p) ∈ V ×Q/ ∀w ∈ W , ∀Ωi ⊂ Ω :


(
ρ
∂v

∂t
, w

)
Ωi

+ (ρv.∇v, w) + (s : ε(w))Ωi
− (p,∇.w)Ωi

= (ρg, w)Ωi

(∇.v, q)Ωi
= 0

(2.45)
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2.5.3 Monolithic system

At this stage, the monolithic system is defined all over the computational domain
Ω by adding the previous weak formulations corresponding to each sub-domain Ωi.

Find (v, p) ∈ V ×Q/ ∀w ∈ W :

ρsH(φr) + ρdH(φd) + ρaH(φa)︸ ︷︷ ︸
ρ


(
∂v

∂t
+ v.∇.v, w

)
+

2

KsH(φr) +Kd

(√
3ε̇
)m−1

H(φd) + ηaH(φa)︸ ︷︷ ︸
η

 ε(v) : ε(w)


Ω

−(p,∇.w)Ω = (ρg, w)Ω

(2.46)

where the introduction of the Heaviside function allows to preserve the physical
characteristic of each heterogeneity. In fact the terms ρ and η in equation (2.46) denotes
the mixture law, it will be detailed and discussed in (sec. 2.6) and (sec. 2.7.1.2).

2.5.4 Finite Element Formulation

Since solving system (2.46) by finding an analytical solution is quite impossible, it
is necessary to approximate its solution by a space and time discretization.

2.5.4.1 Spatial discretization

A finite element discretization of the monolithic system above begins by approx-
imating the functional infinite spaces (2.41 -2.43) by finite size sub-spaces. Let Vh ⊂
V ,Qh ⊂ Q,Wh ⊂ W a family of sub-spaces defined as follows:

Vh =
{
vh| vh ∈

(
C0(Ω)

)d
, vh|k ∈

(
P 1(K)

)d
,∀K ∈ Th

}
(2.47)

Qh =
{
ph| ph ∈

(
C0(Ω)

)d
, ph|k ∈ P 1(K),∀K ∈ Th

}
(2.48)

Wh =
{
wh, wh ∈

(
C0(Ω)

)d
|wh = 0 onΓh

}
(2.49)

In the theory of finite elements, the approximation of the solution v (for instance)
on an element is determined using only its nodes values (called degrees of freedom). Then,
the solution is approximated by
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∀K ∈ Th vh|k =
D∑
i=1

viN
i ph|k =

D∑
i=1

piN
i (2.50)

in which i represents the node and N i the shape function on this node. The numeri-
cal system is given by inserting equations (2.50) in the system (2.46). However the solution
obtained by just solving this system is not accurate and represents many oscillations due
to the convective terms.

2.5.4.2 Variational Multi-scale Stabilization

The accurate simulation of such problem remains a major challenge. Indeed, the
convective term in (2.46) disrupts highly the solution. A variational multi-scale approach
is chosen to stabilize the solution. This stabilization technique was originally proposed by
[Hughes et al., 1998] . The following description of this technique is for a finite element
formulation using a tetrahedral mesh. Several development and publications of VMS
methods adapt this technique to other type of formulation such as the finite volume for
example [Dahmen et al., 2011]. Inspired by the work of [Codina et al., 2007], [Hachem
et al., 2010] developed a rigorous derivation of the VMS method in 2009. Here, a brief
description of the VMS method implemented in CIMLib is presented.

The anatomy of the method relies on a two-scale decomposition of the velocity/pressure
fields. Thus the following sub-spaces are introduced:

Ṽk =
{
vh| vh|k ∈

(
P 1(K)

)d
∩
(
H1

0 (K)
)d
,∀K ∈ Th

}
(2.51)

Q̃ =
{
ph| ph|k ∈ P 1(K) ∩H1

0 (K),∀K ∈ Th
}

(2.52)

The solution is decomposed into a coarse scale and a fine scale:

vh + ṽ and ph + p̃ (2.53)

Due to the orthogonality of spaces, the system of equations is split into two parts
called coarse/fine scale. After Integrating by parts and considering Dirichlet boundary
conditions, the coarse scale is written as :

ρ

(
∂ (vh + ṽ)

∂t
, w

)
Ω

+ ρ ((vh + ṽ) .∇ (vh + ṽ) , w)Ω + (2ηε (vh) : ε (w))Ω

− ((ph + p̃) ,∇.w)Ω = (ρg, w)Ω (2.54)
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(∇. (vh + ṽ) , q) = 0 (2.55)

while the fine scale is given by:

ρ

(
∂ (vh + ṽ)

∂t
, w̃

)
Ω

+ ρ ((vh + ṽ) .∇ (vh + ṽ) , w̃)Ω + (2ηε (ṽ) : ε (w̃))Ω

− (p̃,∇.(wh + w̃))Ω = (ρg, (wh + w̃))Ω (2.56)

(∇. (vh + ṽ) , q̃) = 0 (2.57)

Solving the previous system of equations (2.54) and (2.56) is similar to the one used
by a Mini Element formulation [Basset, 2006]. It normally begins by solving the fine scale
on the sub-grid without being tracked in time. The VMS method in CIMLib adopts many
assumptions to simplify the problem.

The non-linear term in equation (2.56) is approximated using only the coarse scale
part:

(vh + ṽ) .∇ (vh + ṽ) ≈ vh.∇vh + vh.∇ṽ (2.58)

Tough the resolution of the fine scale equation using both variables (v, p) provides
a better stabilization, [Hachem, 2009] follows the work of [Franca and Oliveira, 2003] and
approximates the pressure in equation (2.56) by:

p̃ = −τc∇.v (2.59)

For the definition of τc, he adopts the one proposed by [Codina and Principe, 2007]

τc =
ν2 +

(
c2|v|k
c1h

)2
1/2

(2.60)

where c1 and c2 are two constants, independent of h. h is the characteristic length of an
element and ν represents the kinematic viscosity. Now equation (2.59) can be integrated
directly into the coarse scale equation (2.54). Thus, the fine scale equation is reduced to
the following:

ρ (vh.∇ṽ, w̃)Ω + (2ηε (ṽ) : ε (w̃))Ω = (Rm, w̃)Ω ∀w̃ ∈ W̃
(∇.ṽ, q̃) = (Rc, q̃)Ω ∀q̃ ∈ Q̃

(2.61)

where Rc designs the term −∇.vh and Rm gathers all terms considered in the second



Chapter 2. Monolithic approach tools 62

member of the equation :

Rm =
(
ρg − ρ∂vh

∂t
− ρ (vh + ṽ) .∇vh −∇ph, ṽ

)
(2.62)

Many methods were developed capable of solving the latter system. A full review
can be found in [Hachem, 2009]. In CIMLib, the used approach consists on employing
the bubble functions as the shape functions on each element. Moreover since the problem
is a convection problem, the shape functions are modified to an upwind shape functions.
Thus, the solution of (2.61) is given by :

ṽ = 1
ρ (vi−1.∇b, b∗) + (2ηε (b) : ε (b))(Rm, b) (2.63)

where b represents the bubble shape functions.
As for the coarse scale equation, the non linear term is approximated by keeping

the terms of the first order at the ith iteration as:

(v.∇v, w) =
(
vi.∇vi−1, w

)
+
(
vi−1.∇vi, w

)
−
(
vi−1.∇vi−1, w

)
(2.64)

where ui−1 is the previous know Newton-Raphson’s iteration. After extracting ṽ the solu-
tion of the fine scale problem, equation (2.54) is integrated by parts and ṽ is substituted
by it value, the coarse scale is expressed by equations (2.65 - 2.66).

ρ

(
∂vh
∂t

, wh

)
Ω

+ ρ (vh.∇vh, wh)Ω + (2ηε (vh) : ε (wh))Ω − (ph,∇.wh)Ω + (∇.vh, qh)− (ρg, wh)︸ ︷︷ ︸
A

+
∑
K∈Th

(
τkρ

∂vh
∂t
− ρvh.∇vh +∇ph − ρg, ρvi−1

h ∇.wh
)

Ω︸ ︷︷ ︸
B

+
∑
K∈Th

(
τkρ

∂vh
∂t
− ρvh.∇vh +∇ph − ρg,∇.qh

)
Ω︸ ︷︷ ︸

C

+
∑
K∈Th

(τc∇vh,∇.wh)Ω︸ ︷︷ ︸
=0

D

(2.65)

(∇.vh, qh)−
∑
K∈Th

(τkRm,∇.qh)Ω = 0 (2.66)

Comparing with a standard Galerkin formulation, the terms denoted A in equation
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(2.65) refers to a standard Galerkin formulation, the terms denoted B represents the
upwind stabilization terms and the terms denoted C refers to the pressure stabilization
terms. Where the last term denoted by D is induced by the enrichment of the pressure
spaces. The appearance of this new term will not interfere with the existence and unicity
of the solution i.e. equation (2.65) satisfies the inf-sup condition for the velocity and
pressure interpolations.

2.5.4.3 Stabilization parameter

Following the same analogy of [Hachem, 2009], this section presents the different
evaluation of the stabilization parameter τk. A comparison will be presented between a
condensed Mini Element formulation and the VMS stabilization technique. To eliminate
all ambiguities matrix notations shown are similar to those in a Mini Element formulation.
Using a the latter formulation, the local matrix formulation of the problem presented
above is given by:


Avv Atvb Atvp

Avb Abb Atbp

Avp Abp 0



vh

ṽh

ph

 =


Bv

Bb

Bp

 (2.67)

when using a regular bubble function, (i.e. the bubble function is centered in the element)
the terms in velocity/bubble will be vanished. Solving (2.67) consists into expressing ṽh
in function of vh and ph. Then by injecting it in the third and first line, the final matrix
system is obtained. Therefore the inversion of the matrix Abb is quite necessary when
adopting such formulation. The genuinely of the VMS method is it capacity to tune
automatically the stabilization parameter. In fact, the matrix formulation of the problem
presented above is given by:

 Avv Atvp
Avp App

  vh

ph

 =
 Bv

Bp

 (2.68)

where the additional terms appearing in equations (2.65 - 2.66) are explicitly present in the
matrix according to their correspondence. Reasoning by analogy, the App contribution in
the VMS formulation is equivalent to the AbpA−1

bb A
t
bp contribution after the condensation

of the system (2.67). In what follows, the choice of τk is discussed. This choice has been
the subject of several studies. Many works evaluate τk by computing the local Reynolds
number. In addition, it depends highly of the problem type: convection or diffusion
[Medic and Mohammadi, 1999]. In CIMLib, the adopted parameter is computed from
Fourier analysis proposed by [Codina, 2002]. It combines both regimes and evaluated as
follows:
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τk =
(c1ν

h2

)2
+
(
c2
| v |k
h

)2
− 1

2

(2.69)

where c1 and c2 are two algorithmic constants chosen equal to 4 and 2 respectively for
linear elements. Notice that the previous stabilization parameter is set to be a static
formulation. For a time dependent problem, [Tezduyar and Osawa, 2000a] proposed the
following stabilization term

τk =
( 2

∆t

)2
+
(
c1ν

h2

)2
+
(
c2
| v |k
h

)2
− 1

2

(2.70)

For anisotropic meshes with highly stretched elements, the definition of the mesh
size within each element is still an open problem [Harari and Hughes, 1992]. Different
definitions are proposed in [Principe and Codina, 2010] and [Tezduyar and Osawa, 2000a]
for instance. In CIMLib, the mesh size element is computed in terms of the velocity v,
its norm and the derivative of the shape function N as follows:

h =
ne∑
i

∣∣∣∣∣ v‖v‖ ∂N∂xi
∣∣∣∣∣ (2.71)

where ne denotes the number of nodes per element.

2.6 Mixture laws

After defining all sub-domains geometrically with a distance function, the physi-
cal characteristics of each sub-domain are determined by mixture laws. In this section,
different types of mixture laws are described briefly. The impact of using each of these
mixture laws is discussed in the next section. In fact, to represent density and viscosity
discontinuities over the interface a Heaviside function is needed. It is equal to 1 if the
mesh element is fully filled and equal to 0 if it is not. If the material interface passes
through an element (i.e. mesh element partially filled), the Heaviside function H(φ) is
computed as follows:

H(φ)|k = 1
2

(
1 + φ+

k

|φ|k

)
then H ∈ [0, 1] (2.72)

where φ+
k is the sum of all signed distance functions evaluated at each node of the

element k and |φ|k is the sum of the absolute value of φ.
By choosing to calculate the Heaviside function in this manner, the mixture law will

be similar to the Volume of Fluid Method (VOF) where the fraction of the volume will
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be H. Then, the mixture law is given by:

η =
n∑
i=1

H(φ)|kηi (2.73)

2.6.1 Linear mixture law

In computations, to achieve numerical robustness, a smoothed Heaviside is often
used:

Hε(φ) =


1 if φ > ε

1
2

(
1 + φ

ε

)
if | φ |6 ε

0 if φ < −ε

(2.74)

where generally ε is taken as the interface thickness interface ( see sec. 2.2.2.1 ).
The regularized Heaviside will ensure a lighter transition between the different values of
η corresponding to the different heterogeneity. Notice that, in Figure 2.8, the difference
in the transition is very clear to the naked eye.

On the left, the P0-mixture law (2.73) is computed relatively per element. Thus
depends highly on the refinement of the mesh. On the right, the mixture law is computed
on each node. It does not relay on the mesh refinement as the P0-mixture law does. It is
called the Linear mixture law and is given by:

η(Hε) =
n∑
i=1

ηi ×Hε(φi) (2.75)

(a) (b)

Figure 2.8: Different Types of mixture laws: (a) P0-mixture law and (b) P1-mixture law
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2.6.2 Novel mixture law: Quadratic law

In this work, a new mixture law is implemented in CIMLib. This section will just
describe the method, while the utility of this law will be discussed in chapter 5. It will
be used to manage the sliding between two different heterogeneities. The main idea is
to introduce a third viscosity between the two other heterogeneities. The newly added
viscosity represents the viscosity of the lubricant. The advantage of this method is that
lubricant is added implicitly. Thus no need to deal with it displacement. It is given by
the mixture law.

To obtain the desired mixture law, one must choose a function admitting a minimum.
Therefore, the general form of a quadratic function is considered (see equation (2.76)).
This minimum will represent the viscosity of the lubricant.

Φ : [0, 1] → R
Hε → η(Hε) = a×H2

ε + b× .Hε + c
(2.76)

where

a =
[
−2(ηL − η0) +

√
(ηL − η0)(ηL − η1) + (η1 − η0)

]
b =

[
2(ηL − η0)−

√
(ηL − η0)(ηL − η1)

]
c = η0

(2.77)

In equation (2.77), η0 and η1 represents respectively the consistence of the deformable
body and the tool, while ηL represents the lubricant viscosity. Figure 2.9 depicts the
difference between a linear and a quadratic mixture law.
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Figure 2.9: Comparison between a linear mixture law (blue) and a quadratic mixture law (red)
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Parameters Values
ρr 5000

ρd 5000

ρa 1

ηr 107

ηd 106

ηa 0.1

Table 2.1: Parameters used in the flat bunch simulation

2.7 New additions and Numerical Applications

2.7.1 Test cases and proposed ameliorations

2.7.1.1 Optimal parameter choices

This simulation consists on compressing a workpiece between two flat dies, as de-
scribed in (Figure 2.7). The upper die presses the workpiece with a constant velocity
vimp=0,25 m/s, while the lower die stays fixed. As mentioned earlier, the material obeys
the Norton-Hoff behavior law with a strain rate sensitivity coefficient fixed equal to 1.
Table 1 shows the different parameters used in this simulation.

The initial height of the workpiece is 0.5m .
After several tests, some deficiencies were noticed such as mass loss. In order to

solve this deficiency, a short parametric analysis is presented next. Several parameters
are proved to have a great impact on the mass loss appearance: the time step, the mixture
law choice, and the boundary condition imposition.

Several improvements are introduced and presented next highlighting their positive
effect on minimizing the mass loss:

1. Since the use of a really small time step is out of question do to the time of the
simulation, we introduced a variable time step in CIMLib.

The heterogeneous time step is introduced using a formula in terms of the workpiece
initial height h0, the workpiece height hi at the current increment i and the initial time
step Δt0:

∆ti = hi
h0

∆t0

Figure 2.10 shows better mass conservation around 14% using the variable time step.
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Figure 2.10: The effect of using a variable time step on the mass conservation..

Figure 2.11: The effect of using P1mixture law instead of a P0 mixture law on the mass con-
servation.

Figure 2.12: The effect of imposing the velocity on the inner of the dies
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2. we changed the mixture law from P0 to P1 interpolation. Figure 2.11 shows the
result of this change. An improvement of 8% is noted.

3. Last but not least, we treated the imposition of the dies boundary condition
differently. Since a P1 mixture law is used, a critical transition zone is present when
the contact is established. That is why, an inner part of the die is defined taking into
account the transition zone. For every die defined on L× l, its inner part is defined at an
appropriate distance of the interface e.g. (L− ε)× (l− ε) where ε is the same parameter
used for smoothing the Heaviside function in the mixture law. Now, the velocity is no
longer imposed on the whole die, it is only imposed on its inner part.

All these improvements combined, minimize remarkably the mass loss. From now
on and unless mentioned otherwise, they will be used in all applications presented in this
work.

2.7.1.2 Weight of mixture laws

The issue remaining is the shape of the forged piece. As Figure 2.13 shows, using
equation (2.75) to compute the mixture law affects the form obtained. In fact using such
law allows higher consistency to outweighs the smaller one. It leads to preserving the
initial trace of the deformable body on the tools. In addition, it prevents the deformable
body from entering perfectly in contact with the tools during the simulation as shown in
Figure 2.13. Therefore, we need to consider new mixture laws by changing the weight of
the coefficients ηi (associated to the sub-domain i).
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Figure 2.13: Flat bunch simulation using a linear coefficient for mixture law.

Three weights are presented : i) the inverse coefficients 1
ηi
, ii) the geometric mean

n
√
ηi where n is the number of phase and iii) the logarithmic coefficients log10ηi. The

new mixture laws are written as in ( 2.78 - 2.80 ). These new mixture laws modify the
consistency only in the vicinity of the interface of the different sub-domains by narrowing
the gap between their consistencies.
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(a) (b)

(c) (d)

Figure 2.14: Representation of the mixture law for a flat bunch simulation using different
coefficient weights: (a) linear - (b) inverse - (c) geometric - (d) logarithmic .

Figure 2.14 shows a comparison between the four mixture law presented above. As
mentioned previously when using linear coefficients, the body with the higher consistency
outweighs the body with the smaller one. But when using 1

ηi
, the smaller consistency

outweighs the higher consistency. The geometric mean and the logarithmic mixture laws
are the best reducing the gap between the different consistencies. Still, the logarithmic
weight is the only one capable of centering the transition between two different values on
the interface.
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1
η(Hε)

=
n∑
i=1

1
ηi
×Hε(φi) (2.78)

n

√
η(Hε) =

n∑
i=1

n
√
ηi ×Hε(φi) (2.79)

log10η(Hε) =
n∑
i=1

log10ηi ×Hε(φi) (2.80)

Next, we decide to launch the flat bunch simulation using only three different mixture
laws defined in (2.75), (2.78) and (2.80). The geometric mean coefficient is not used since
it is very similar to the logarithmic coefficient.

Figure 2.15 shows clearly that the inverse coefficient mixture law is poorly adapted
to our case. When the deformable body does not perfectly touch the tool ( dashed lines )
i.e. the gap is filled with air. Knowing that the air has the smallest viscosity the inverse
mixture law will give it advantage on the other sub-domains. Numerically, this means
that these gaps will be preserved during the whole simulation and will affect the form of
the final piece ( which is not the case in reality ).

Figure 2.16 confirms that the logarithmic weighs of the mixture law is the one with
the best results. It offers a smooth transition without any remarkable imperfections. The
transition between different consistencies are perfectly centered on the interface between
the sub-domains. In addition, Figure 2.17 depicts the top view of the deformable body
obtained in a 3d flat bunch simulation. A comparison between the classical linear mixture
law and the logarithmic one displayed on the zero isovalue confirms that the contact
problem confronted using the linear mixture law (Figure 2.13) faded away when using the
logarithmic one : At the end of the simulation the deformable body is perfectly flat.

For all these reasons, the logarithmic weighs mixture law will be used in all our
simulations.
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Figure 2.15: Flat bunch simulation using a inverse coefficient for mixture law.

Figure 2.16: Flat bunch simulation using a logarithmic coefficient for mixture law.
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(a) (b)

Figure 2.17: Top view of the zero iso-value of a flat bunch simulation in 3d showing the mixture
law when using: a- linear coefficient, b- logarithmic coefficient.

2.7.1.3 Transport stabilization

In more than one occasion, stabilization problems were confronted in the convection
solver levellerT. They were more noticeable in cases displaying highly anisotropic meshes.
These numerical oscillations are mainly represented by positive level set values, indicating
new material appearance in unexpected places. Figure 2.18 shows one example exhibiting
instabilities in the computational domain. The physical characteristics are not mentioned
since the problem is purely numerical.

Figure 2.18: Instability of the levellerT solver.
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After lengthy analysis, we found the origin of this instability. It is nothing other than
the mesh size defined in the solver. As shown in Figure 2.19, in CIMLib, the size of every
stretched element is determined as the smaller edge of the circumscribed rectangular. We
propose another definition for the mesh size noted h previously. It can be defined as the
element altitude (Figure 2.19). Knowing that it is not the most optimal definition, it
remains logical since it is determined in the material flow direction.

Figure 2.19: Two different ways to compute the mesh size .

To clarify the impact of the new definition, we use a 2D-unity domain containing 6
stretched elements illustrated in Figure 2.20. The different mesh elements were computed
and presented in both Figure 2.20 and Table 2.2. Notice that the new value Altitudemin
is always smaller or equal to the older Edgemin value. It is particularly smaller when the
element is stretched (for the elements numbered 2 and 5 for instance).

(a) (b)

Figure 2.20: Comparison between two methods to compute the mesh size in CIMLib: (a) using
the Edgemin definition and (b) using the Altitudemin definition.
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Simplex Id Edge min Altitude min
0 0.2 0.2

1 0.7 0.619443

2 0.8 0.193241

3 0.05 0.05

4 0.7 0.54328

5 0.8 0.229473

Table 2.2: Comparison between the different definitions to compute the simplex size.

The new smaller mesh size Altitudemin stabilize the solver by respecting better the
relationship binding h and the virtual time step τ (defined earlier in the reinitialized
convected level set equation in sec. 2.2.2.2). After this adjustment, the same 3D case
(Table 2.1) presenting instabilities in Figure 2.18, is launched again to check if the problem
persists. A logarithmic weight is used for the mixture law coefficients.

Figure 2.21 illustrates the evolution of the zero iso-value of the deformable body at
different time steps.

Notice that, the mesh is anisotropically adapted/refined on the interface of the body
and is coarse elsewhere. The body is deformed uniformly everywhere; we should mention
though that at t = 2.975 s, the deformable body shows an impression and a sort of out of
plane displacement. This caused by the small tools along with the boundary conditions
imposed : ~v.~n = 0. The deformable body has no way to move but in this manner. As
approved in Figure 2.21 and even though the anisotropic mesh presents highly stretched
elements, no numerical oscillations were detected.
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Figure 2.21: A 3d flat bunch simulation after the ameliorations (logarithmic weigh, new mesh
size definition ...).

Note that this new mesh size definition will be applied in all following simulations
to prevent any instabilities.

2.7.2 Air trapping

During a multi-domain problem, the lubricant or the air can be trapped between
different interacting bodies. This section addresses the trapping issue between a rigid
body and a deformable one. Figure 2.22 illustrates a problem in which the upper tool
presents a porosity. Notice that the air ( blue domain ) fills the porosity between the
upper tool ( red domain ) and the deformable body ( orange domain ) as presented in
Figure 2.23 .

To treat this topic in a Lagrangian approach, an additional function must be intro-
duced to the code, allowing to locate pockets of air or lubricant. The purpose of such
a function is to take into account the impact exerted by the volume variation of the lu-
bricant or the trapped air. In fact, the volume variation introduces a pressure variation
exerted to the deformable body preventing it to fill the porous tools.

However in our Eulerian approach, their is no need to implement a function defining
the air presence. The computational domain is defined to cover all heterogeneity including
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Figure 2.22: Domain considered using a porous upper tool to show the Eulerian approach ca-
pacity to detect trapped air .

the air or the lubricant if existent.

Figure 2.23: Initial mesh and mixture law for the problem in Figure 2.22.

Similar to the previously presented case, the kinematic of the tools is imposed on
their inner defined as follows :

Γinnert (x) =
{
~x ∈ Ω, φs(~x, t) >

ε

2

}
(2.81)

Figure 2.24 shows the evolution of the isovalue zero of φd when considering the
boundary conditions (2.81). This imposition generates a great pressure in the trapped air.
Combined with the incompressible assumption, they prevent the deformable body from
taking the tool shape. In addition, the air pockets are clearly detected in Figure 2.24(c-d).
When simulating industrial cases with complex geometries, these problems (trapped air
and pockets) are faced frequently.

Following this discussion, two paths can be proposed depending on what is more
interesting for the study. The first focuses on the pockets formation due to the trapped
air. The second, discussed in the next section, consists on creating vents to ensure the
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filling of the tools.

(a)

(b)

(c)

(d)

Figure 2.24: The effect given by the imposition of the kinematic on the inner of the upper tool.

2.7.3 Porous boundary conditions

To overcome the trapping effect, a new boundary condition called porous boundary
condition, is defined. The kinematic of the tools is imposed accordingly to the new
boundary condition allowing the escape of the air.

To define the porous boundary condition, we define the following set of nodes de-
noted Γφt :

Γφt (x) = {~x ∈ Ω, φd(~x, t) > −0.9× ε} (2.82)

Γφt represents a fictitious domain slightly bigger than the actual deformable body. The
next step is to define the porous boundary condition as the intersection of Γφt and the
classical boundary condition:

Γp = Γinnert ∩ Γφt (2.83)
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Using equation (2.83) is equivalent to impose the kinematic only on the vicinity of
the contact zone and letting the air escape otherwise.

To test the efficiency of the proposed porous boundary condition, the same case
treated earlier is used. This time the kinematic are imposed on Γp instead of Γinner.

(a)

(b)

(c)

(d)

Figure 2.25: The evolution of the porous boundary condition in time.
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Figure 2.25 shows that the set Γp evolves in time. The evolution is expected since
the contact zone changes as well. This porous boundary condition shows a great capacity
to adapt with the changing geometry of the deformable body.

To complete this discussion, the evolution of the deformable body is followed in
Figure 2.26. The new boundary condition has proven to be a good fit to our problem.
The air escapes allowing the body to deform properly filling the tool porosity.

(a)

(b)

(c)

(d)

Figure 2.26: The evolution of the zero iso-value of the deformable body when using the porous
boundary condition.

2.8 Conclusion

The present chapter is divided into two main parts. The first details the used Eu-
lerian monolithic approach. The different tools are presented beginning by the convected
level set method insuring the tracking of the interface. The mesh generator is described as
well resulting in a single anisotropic mesh all over the global domain guaranteeing better
precision. Since one mesh is applied per computational domain, the different interacting
bodies are represented as heterogeneities via mixture laws. This part is ended by the
mechanical problem coupling the Navier-Stokes equations with the level set convection
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equations.
The second part is mostly dedicated to our contribution and improvements to this

existent approach. A new quadratic mixture law is introduced. It plays a key role in
large deformation problems exhibiting additional phases like the presence of a lubricant
for instance. Several technical ameliorations are proposed also such as i) the choice of
the mixture laws weight, ii) the choice of interpolation (P0 vs. P1), iii) the choice of an
adaptive time step and iv) a new choice of the mesh size. These enhancements are proven
to be of a great importance when it comes to stabilization and volume conservation. A
last addition deals with the way to treat the existent air in our domain. The method by
default traps the air inside. We offer the option to let it clear out using a new manner to
impose boundary conditions. It is equivalent to creating vents in the tools for instance.
The air trapping condition remains available if one wants to follow bubbles formation in
the domain.

To conclude, the existent approach needed several additions to be adapted to large
deformation problems involving multiple interacting bodies. Moreover, a great care is
needed to choose the optimal parameters since it shows a high sensitivity. Combined with
the new improvements, it shows a great capacity to respond to our needs. From now
and unless specified otherwise, all ameliorations proposed in this chapter will be used for
every application to ensure the optimal results.

Note that several development remains necessary. Even though the contact detection
is managed automatically, the contact resolution is not taken into account. Sticking
friction and sliding friction should be studied likewise. The latter developments will be
treated in details in chapter 5.

Since one of the objectives is to work in a highly scalable parallel environment,
an exhaustive study is presented in the next chapter. It is entirely dedicated for the
parallelism of the CIMLib library where the performance of this approach is inspect
closely.
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Résumé en Français

Le présent chapitre est divisé en deux parties principales. La première détaille
l’approche Eulerienne monolithique utilisée. Les différents outils sont présentés com-
mençant par la méthode de convection de Level Set (assurant le suivi de l’interface). La
génération d’un seul maillage anisotrope défini sur le domaine de calcul garantissant une
meilleure précision est décrite aussi. Puisqu’un maillage est appliqué sur tout le domaine,
les différentes pièces interagissant sont représentées comme des hétérogénéités par les lois
de mélange. Cette partie prend fin avec la description du problème global couplant les
équations de Navier-Stokes avec les équations de convection de la Level Set. La deux-
ième partie est principalement dédiée à nos contributions et améliorations proposées sur
cette approche existante. Une nouvelle loi de mélange quadratique est introduite. Elle
joue un rôle clé dans les problèmes de grandes déformations présentant des phases sup-
plémentaires, comme la présence d’un lubrifiant par exemple. Plusieurs améliorations
techniques sont proposées également telles que i) le choix du poids des lois de mélange,
ii) le choix de l’interpolation (P0 vs P1), iii) le choix d’un pas de temps adaptatif et
iv) un nouveau choix de la taille de maille. Ces améliorations sont prouvées être d’une
grande importance en ce qui concerne la stabilisation et la conservation du volume. Un
dernier ajout traite la modélisation de l’air dans notre domaine de calcul. La méthode
par défaut emprisonne l’air à l’intérieur. Nous offrons la possibilité de le laisser évacuer
le domaine à l’aide de nouvelles conditions aux limites. C’est équivalent à la création
des évents dans les outils par exemple. La condition de piégeage de l’air reste disponible
si l’on veut suivre la formation de bulles au cours du temps. Pour conclure, l’approche
existante avait besoin de plusieurs ajouts pour être adaptées aux problèmes de grandes
déformations. En outre, un grand soin est nécessaire pour choisir les paramètres opti-
maux. Combinée avec les nouvelles améliorations, l’approche montre une grande capacité
à répondre à nos besoins. Notez que plusieurs développements restent nécessaires. Bien
que la détection de contact soit gérée automatiquement, la résolution de contact n’est pas
prise en compte. La modélisation du frottement glissant et collant doivent être étudiés de
même. Ces derniers développements seront traités en détails dans le chapitre 5. Puisque
l’un des objectifs est de travailler dans un environnement massivement parallèle une étude
exhaustive est présentée dans le chapitre suivant. Il est entièrement dédié au parallélisme
de la bibliothèque CimLib où la performance de cette approche est inspectée de près.
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3.1 Introduction

The last few years has experienced a significant progress in computer technology.
This progress has influenced mostly the processor power. Modern processors are formed
by multi-cores. Hence, the execution of multiple instructions is available.

Simultaneously, the complexity of mathematical models has increased as well. These
models can describe complex physical problem such as weather forecast, aerospace appli-
cations, crash test vehicles, material forming and much more applications. The resulting
high computational demands inspired scientific programmers to introduce parallel com-
puting concept.

The use of parallelism in scientific computing reduces considerably computational
time when comparing it to the sequential time. Thus, handling larger scale physical
problems are now affordable. For instance, the number of freedom can be increased to
obtain a more accurate solution without a drastic increase of the computing time.

To be beneficial, parallelizing algorithms has to be treated with a great care. In
fact, the efficiency of parallelism depends highly on the computer architecture and other
software aspects such as the load balancing.

This chapter provides a quick overview of the parallelism in general and focuses on
CIMLib’s parallel environment in particular. We begin by explaining some important con-
cepts and terminologies to simplify the topic for non-initiative readers. For more details,
the readers are invited to consult [Magoulès and Roux, 2013], [Eijkhout et al., 2014] and
[Rauber and Rünger, 2010]. Next, a brief guide on how to judge a parallel performance is
presented highlighting hardware and software limitations. Then, the parallelism in CIM-
Lib is described restricting to solvers and dynamic load balancing (consuming the bigger
part of the computing time). Finally, the efficiency of the parallel library is inspected via
numerical applications followed by a conclusive discussion.

3.2 Concepts and Terminology

A first step into understanding parallel programming begins by introducing some
concepts and terminologies. Even though, parallel algorithms play a key role to obtain a
high performance computing application, it should be adapted to our computer/cluster
architecture. Since many different possibilities of algorithms decomposition exist for the
same application, choices should be made carefully. For computer architectures, several
classifications exists. Herein, we present in sec. 3.2.1 the most popular taxonomy defined
in [Flynn, 1972]. Flynn’s classification scheme is based on the notion of a stream of
information and instructions. Memory is another important factor affecting performance.
Not only the memory size but also the speed in which the information is accessible impact
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greatly the [Eijkhout et al., 2014]

3.2.1 Flynn’s Classical Taxonomy

1. Single-Instruction, Single-Data (SISD) : It uses one processing element to load a
single instruction and access the corresponding data. Then this processing element
executes the instruction and stores back its result into the data storage.

2. Multiple-Instruction, Single-Data (MISD) : It uses multiprocessing element to
execute multiple instructions accessing the same data storage. Each processing
element has a private memory but shares one common access to the global memory.
More precisely, each processing element loads a different instruction from its private
memory and executes it using the data received from the global memory storage.

(a) (b)

(c) (d)

Figure 3.1: The Flynn classification of computer architectures: (a) SISD, (b) MISD, (c) SIMD
and (d)MIMD.
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3. Single-Instruction, Multiple-Data (SIMD) : It uses multiprocessing element in
order to execute one single instruction using multiple data storage. In fact, each
processing element obtains the same instruction to execute, but loads a different and
separate data. This type of architecture is compatible with a shared or distributed
memory.

4. Multiple-Instruction, Multiple-Data (MIMD) : It uses multiprocessing element
capable of executing multiple instruction for separate data memory units. Each pro-
cessing element loads a different instruction, executes it to a different data memory
and stores the result back into the corresponding storage.

To clarify the previous notations, one must mention the following points:

• A typical example of the SISD is the conventional sequential computer.

• Using the MISD represents a big challenge due to its nature executing different
instructions on a single data memory. Thus it can be very restrictive and tricky.

• The SIMD and MIMD are the most used approaches. For instance, the SIMD is
widely spread in multimedia/games applications especially to generate 3d prospects.
While the MIMD is mostly used in multiprocessors systems or clusters. Between
the SIMD and MIMD, it should be mentioned that the parallel algorithm for the
former is considerably easier to implement.

3.2.2 Memory classification and access

As for the memory, the conventional classification consists in dividing it into two
major types: a shared memory (Figure 3.2a) and a distributed memory (Figure 3.2b).

- For a shared memory system (called also global memory system), the memory is
considered as a pool in which all the problem data are stored. All processors access the
data via this global memory. In term of parallel computing, a shared memory machine is
associated with threads based on a Compiler directives (OpenMP, TBB)

- Distributed memory machines contain a number of processing elements called
nodes and interconnection network. A node is formed by a processor and a local memory.
Each processing element has its own local memory. The latter is private and can be
accessed by one and only one processing element. The interconnections between processing
elements -not sharing memory- are ensured via a network. In term of parallel computing, a
distributed memory machine is associated with a process using a message passing interface
to communicate between nodes ( MPI or Parallel Virtual Machine). Note that a third
category can be found as well: a hybrid memory combining shared and distributed memory
in one configuration (see Figure 3.2c).
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Another important factor affecting a simulation computing time is the time needed
to access the memory. In a shared memory machine, the access time to the data storage
depends highly on CPU characteristics in a NUMA systems ( No Uniform Memory Ac-
cess). Further details dealing with the memory management can be found in [Hager and
Wellein, 2010]. Nowadays all processors has a cache memory. A cache is a small memory
formed at most by three levels : L1, L2 and L3 (Figure 3.3). The L2 cache is the most
important one. Actually, when requesting data, the processor will check L1, followed by
L2 and L3. If the requested data is found in one of these levels, a cache hit is obtained,
if not ( i.e. the data is found in the memory ) a cache miss is obtained. The more a
cache hits faster the simulation will go. Thus the choices made can affect significantly the
computing time.

P P P P 

Memory 

P 

(a)

P P P P 

Network 

P 

M M M M M 

(b)

Network 

P P 

Memory 

P P 

P P 

Memory 

P P 

P P 

Memory 

P P 

P P 

Memory 

P P 

P P 

Memory 

P P 

(c)

Figure 3.2: The memory classification of parallel computers: (a) shared memory, (b) distributed
memory and (c) hybrid memory.
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Figure 3.3: Illustration of a node containing bi-processors with three level of cache memory.

3.3 Performance of a Parallel Code

3.3.1 Hardware performance

Processors are the most important components in a computer. They affect signifi-
cantly the hardware performance. Since 2005, manufacturers like Intel and AMD deliver
processors containing two or more cores (multicore processors). The processor perfor-
mance is measured using several parameters. According to [www.top500.org, ], the most
important ones are :

• #Proc: Number of processors (Cores)

• Rpeak: Theoretical peak performance provided by the manufacturer or the seller.
This performance indicates the number of instructions treated by all cores per second
( FLOPS ) .

• Rmax: The maximum value of Rpeak which cannot be exceeded by the cores. The
real performance of the cores is given by Rmax. It is measured by the LINPACK
Benchmark. The LINPACK Benchmark was introduced by Jack Dongarra. It con-
sists to solve a dense system of Linear equations. A detailed description is available
in [Dongarray et al., 2001]. A parallel implementation of the Linpack benchmark
can be found in [Petitet et al., 2008] .

• Nmax: Problem size for achieving Rmax

• N1/2: Problem size for achieving half of Rmax

Figure 3.4 shows the top 5 of the super Calculators in June 2013 [www.top500.org, ] . At
Cemef, the Cluster contains 1 480 cores distributed in 150 nodes. The nodes are divided
as : 48× 4 cores, 40× 8 cores and 62× 16 cores.



Chapter 3. Parallel Computing 96

PERFORMANCE DEVELOPMENT PROJECTED
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Figure 3.4: Top five super computers june 2013. [www.top500.org, ]

3.3.2 Software performance

Despite all progress on recent multiprocessors and their performance, parallel algo-
rithms remain essential to obtain an efficient parallel code. The performance is judged
mainly by analyzing three conventional parameters: the execution time, the speed up and
the efficiency. The execution time of any code is a primary concept in measuring the
parallel implementation efficiency. Consider a size N problem running on p cores, the
execution time adopts the following notation:

Tp = t(N, p) (3.1)

The main criterion to evaluate a parallel algorithm is “Speed up”. It refers to how
much a parallel algorithm is faster than a sequential one; it is defined by the following
formula:

Sp = T1

Tp
(3.2)

where p is the number of used cores, T1 is the execution time of the sequential
algorithm and Tp is the execution time of the parallel algorithm using p cores.

Theoretically, the linear or ideal Speed up is obtained if Sp = p, i.e. when executing
an algorithm using p cores, the parallel computing time should be equal to the sequential
time divided by p. Speed up could be classified into three categories: sub-linear, linear,
super-linear (see Figure 3.5). Even though we aim for a linear speed up, the commonly
reached is a sub-linear one. Nevertheless sometimes if the problem is small enough to be
contained fully in the cache memory, a super linear speed up is obtained. In this case,
the simulation runs the fastest.

The efficiency of a parallel algorithm is given by the ratio:

E = Sp
p

(3.3)

Equation (3.3) will precise the scalability of the parallel algorithm: if the speed up
is linear (Sp = p), the efficiency is equal to 1 i.e. algorithm is as efficient running on 10



3.3. Performance of a Parallel Code 97

Sp 

# of cores 

sub-linear speed up
linear speed up
super-linear speed up

Figure 3.5: Different types of speed up when running a parallel simulation : the common speed
up (blue); the linear speed up (red); the super-linear speed up (green)

cores as on 1000 and does not require any further improvements. We should note that
Tp, the execution time of the parallel algorithm, plays a key-role impacting the algorithm
efficiency.

3.3.3 Limits and Costs of Parallel Programming

Summarizing what has been discussed previously, the ideal speed up and efficiency
verify:

Sp = p and E = 1 (3.4)

In practice, it can not be easily reached. Many reasons affect the scalability of the
code (such as the serial fraction, inter-cores communication and the load balancing) and
will be presented next.

3.3.3.1 Serial fraction

In practice, several parts of the code cannot be parallelized and remain sequential.
These algorithms are called the serial fraction of the code. [Amdahl, 1967] and [Gustafson,
1988] laws provide a theoretical approximation of speed up in codes containing a serial
fraction.

Consider a problem of size N . The execution time needed to solve the problem
using one core is noted by t(N, 1). The algorithm contains both sequential and parallel
parts. Thus, the execution time is divided into two parts as well: t(N, 1) = tseq + tpar
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where tseq and tpar represent respectively the execution time of the sequential and parallel
algorithms.

The serial fraction is defined as follows:

fseq = tseq
tseq + tpar

= tseq
t(N, 1) (3.5)

3.3.3.1.1 Amdahl’s law
This law evaluates the computational time of a fixed size problem according to the

number of cores p and the serial fraction fseq [Amdahl, 1967]:

t(N, p) = tseq + tpar
p

(3.6)

Using (3.6) , Amdahl’s law offers an approximation of the maximum speed-up that
can be reached by the code:

Sp(max) = t(N, 1)
t(N, p) = tseq + tpar

tseq + tpar
p

≤ tseq + tpar
tseq

= 1
fseq

(3.7)

Equation (3.7) confirms that the presence of a serial fraction affects the scalability
of a parallelized code. The speed-up is limited by a threshold inversely proportional to
fseq . If one aims to improve the code scalability (i.e. speed up closer to p), the serial
fraction must be decreased as much as possible (i.e. replacing sequential algorithms by
parallel ones) .

3.3.3.1.2 Gustafson law
The Gustafson law consists on evaluating the speed up for a particular problems where

the problem size varies linearly with the number of cores p (N is replaced by pN for
p ≥ 1) [Gustafson, 1988]. The Amdahl law is replaced by the Gustafson law in which the
the parallel execution time is taken as the reference :

t(pN, p) = tseq + tpar (3.8)

If tpar is the execution time on p processors (size problem equals pN), the sequential
processing time (size problem equals N) is :

t(N, 1) = tseq + ptpar (3.9)

Then the corresponding Speed up is :
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Sp = tseq + ptpar
tseq + tpar

= tseq
tseq + tpar

+ p
tpar

tseq + tpar
= fseq + p(1− fseq) (3.10)

Gustafson’s law offers a linear speed, a better estimation of the one proposed by
Amdahl. The main difference is that the total execution time is now dependent of p.

With these kind of problems, the smartest step is to simulate the largest cases
possible. In other word, if the data size increases the sequential part decreases relatively.
According to equation (3.10) , the speed up increases with the number of cores and tends
towards it (if fseq is small enough then Sp → p).

3.3.3.2 Communications between cores

Inter-cores communication limitations are confronted when using a distributed mem-
ory machines: the communication between cores is required and the data exchange is done
via an interconnection network. These operation lead to a loss of efficiency mainly related
to:

1. Task synchronization: It is compulsory to synchronize the task management when
the simulation runs using multiprocessors. If a processor needs information residing
in the memory of another processor, it is necessary that the latter is available for
communication. If the processor requesting information must wait, we are miss-
using these resources leading to loss of efficiency and computing time. Thus, it
is necessary to have a good coordination between processors to insure the best
synchronized communication possible.

2. Transfer time: Another important reason affecting the algorithm scalability is the
time needed to transmit information from one node to another. The cost is assessed
as follows:

tcomm = tlatency + tpack + N

vtransfert
+ (d− 1)ttransit (3.11)

where :

• tlatency represents the time needed to establish a connection. It is equivalent to the
time needed for sending a zero length message.

• tpack: represents the time needed to load the information into a buffer.

• vtransfert: represents the speed of data transfer in the interconnection network.

• ttansit: represents the time needed to transfer a message via a network if using
distributed memory machines. The time of transfer, using a network of d inter-
nodes connections, is assessed equal to (d − 1)ttransit . For instance, in a shared
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memory machine, using a UMA, d is equal to 1 i.e. one direct connection. Thus, no
transit time what so ever is needed.

Notice that the speed of data transfer depends highly on the hardware (used interconnec-
tion) as well as on the message transfer protocol. In order to minimize the communication
time between nodes, it is recommended to send one long message rather than several short
ones.

3.3.3.3 Load balancing

In scientific computing, load balancing algorithms are used to distribute the amount
of work ( i.e. the workload ) as equally as possible on the number of cores in a paral-
lel environment. These algorithms can be roughly divided into two different categories :
static and dynamic ones. The static algorithms distribute the load evenly between cores
at the beginning of the simulation. Such algorithms can affect the scalability since the
current state of the simulation is not taken into account. Thus, a dynamic load balancing
algorithm is recommended to fix this limitation. For instance, a finite element problem
using a remeshing or mesh adaptation technique will present eventually a load imbalance.
Their use increases locally the number of nodes on a particular core leading to an im-
balance in distributing the workloads. An other example of imbalance workload occurs
in contact search algorithms in Lagrangian approaches ( see chapter 1 for more details
). An introduction and discussion related to this topic can be found in [Hendrickson and
Devine, 2000]. An overview on load balancing algorithms in parallel environment can be
found in [Jimack, 1999].

For dynamic algorithms, a literature survey splits the existent methods into two
major families. The first consists on partitioning the domain into sub-domains recursively
using a geometric or topological criteria [Williams, 1991b] and [Van Driessche and Roose,
1995]. These methods are known as the direct methods. The others, called iterative,
uses a diffusion algorithm. They start from an initial partition and exchange nodes
between neighbor cores in order to improve the balance of the workload. The dynamic
load balancing used in CIMLib, implemented by [Digonnet, 2001], will be described in
sec. 3.4.2

3.4 Parallel computing in CIMLib

Though CIMLib is a fully parallelized library, we only highlight two important parts:
the mechanical solver and the Dynamic load balancing. The first represents a large part
of the simulation time. Whereas the second is considered as a crucial component to
insure the work equilibrium since we use a mesh adaptation technique. Therefore their
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parallelization has a great importance.

3.4.1 S.P.M.D parallelization of the Navier-Stokes Solver

Let M = (N , T ) be the mesh discretizing Ω where N and T are respectively the
set of nodes and simplexes forming the mesh. Note P the set of cores used for running
the simulation. IfMi is a partition ofM then it can be expressed as follows:

M =
card(P)⋃
i=1
Mi (3.12)

Every sub-meshMi = (Ni, Ti) is associated to a particular core pi; where Ti is the
set of simplexes assigned to a core pi and Ni is the set of nodes forming those simplexes.
Note that a simplex can only belong to one and only one sub-domain. Nevertheless the
set of nodes Ni can be shared between several cores. The shared nodes form an interface
between the different cores :

Γij = {Mi ∩Mj/pi 6= pj} (3.13)

As illustrated in (Figure 3.6), the interface nodes are not replicated. It means that if two
cores share the same nodes, they are stocked on one core and ghost nodes are created and
stocked on the other one.

(a) Global numbering of nodes and
elements

(b) Local numbering of nodes and el-
ements for a mesh partitioned into
two sub-domain

Figure 3.6: Example of partitioning a global mesh in two sub-meshes

Once the partition is created, each core pi reads the data related to the associated
sub-mesh. Note that for now, no communications between cores is needed. Parallelizing
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the solver is summarized by two steps: The assembly of the stiffness matrix and the
iterative resolution of the problem:

Ax = b (3.14)

where A is the global stiffness matrix, x and b are two global vectors (i.e. defined
on the whole domain Ω).

To determine the global matrix A, each core pi must first assemble its own local ma-
trix Ai. We should mention that the dimension of each Ai varies between cores depending
on the number of nodes in the sub-meshMi. The local rigidity matrix is assembled on
each core. Then, the global stiffness matrix A is written as follows:

A =
card(P)∑
i=1

Âi (3.15)

where Âi is the extension of the local matrix Ai. This extension is determined by
resizing the matrix Ai to fit the global dimension of A. It is accomplished by adding zeros
for nodes belonging to only one core respecting the relations between the local and global
positions of the variable nodes via a binding matrix ( see Figure 3.6 and Figure 3.7).

(a) Matrix associated to the
red sub-domain

(b) Matrix associated to
the blue sub-domain

(c) Global Matrix

Figure 3.7: Local matrix assembly of the two sub-domains: red and blue (a-b) and their projec-
tion into the global matrix (c)

Now that the stiffness matrix A is determined, equation (3.14) can be solved. CIM-
Lib uses the Portable Extension Toolkit for Scientific Computation ( PETSc ) [Balay
et al., 1997], [Balay et al., 2014a] and [Balay et al., 2014b] for an iterative resolution
method. Such methods are based on a matrix-vector product:
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y = Ar (3.16)

y and r are two global vectors defined on the whole Ω.
Let us define a local vector r̄p representing the restriction of r on the core p. So the

product matrix-vector is written as follows:

y = Ar =
∑
p∈P

Âp

 r =
∑
p∈P

(̂Apr̄p) =
∑
p∈P

(̂Ar)p (3.17)

With locally yp = (Ar)p = Aprp.
Nevertheless, the product yp does not represent the restriction of

(
Ār
)
p
onto the

core p. It represents the contribution of the latter product to the p− th core . Thus, the
global vector y is given by:

y =
∑
p

ŷp (3.18)

where ŷp represents the local vector resized as we mentioned before. So to use an
iterative method we should define the restriction ȳp as :

ȳp = yp +
∑
q∈Γpq

yqp (3.19)

3.4.2 Dynamic load balancing

In CIMLib, the dynamic load balancing is treated as a renumbering of the mesh
(nodes and simplexes ) under constraints [Digonnet, 2001]. In fact, the nodes/simplexes
are numbered using a numbering couple (n1, n2) :

• n1 ∈ N is the number of the nodes/simplexes.

• n2 ∈ N is the number of the domain p.

The above technique does not change the definition of the mesh, it simply introduce a
new numbering of its nodes and simplexes. It is obvious that the numbering is not unique.
Therefore a cost function is needed to compare the different numbering sets. The cost
function assessing the computational time spent on a core p can be decomposed into:

φ = max
p∈P

tp +max
p∈P

cp (3.20)

where tp is the computational time required by the core p and cp the sum off all the
communication related to the core p including the synchronization time. The previous
cost function uses the maximum criterion. It generates difficulties when searching for the
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optimal numbering. Therefore the author introduces locally an order relation leading to
optimize the cost function ( i.e. minimizing the cost function globally ).

In a parallel framework, the procedure above is based on an iterative algorithm
coupling two processors at a time. As mentioned earlier, optimizing a partition can be
achieved by optimizing the corresponding numbering. To manage this task, the author
introduces three numbering operators Rpp, Rpq and Ip. The operator Rpp = (rnpp, rspp)
acts locally (on a processor p) renumbering both the nodes and simplexes. The operator
Rpq = (rnpq, rspq) acts between processors p and q renumbering the nodes and simplexes.
The operator Ip is an identity operator leaving the numbering of a processor p intact.
Repartitioning can be conceived as a succession of the renumbering operators Rpp, Rpq, Ip.

This renumbering strategy can be repeated as long as the re-meshing evolves in
order to maintain both an optimal partitioning and cost function.

3.5 Applications

This section is dedicated to examine the performance of the monolithic Eulerian
approach implemented in CIMLib. Through all this study, a 3d generic flat bunch sim-
ulation is used to inspect closely the parallel scalability. In fact, neither the type of the
chosen application nor the complexity of the geometry should affect the obtained speed
up. It should only increase the computational time of the simulation. This is true since
the approach uses one mechanical solver all over the domain and each deformable body is
tracked via the level set technique. In other words, the parallel scalability (i.e. speed up)
is not affected regardless of the number of deformable bodies and their geometry (even if
complex).

3.5.1 Case presentation

To begin with, we define the domain Ω = 40.5mm × 33.5mm × 51mm where the
deformable body of dimensions 27mm × 20mm × 15mm is completely immersed in Ω
(see Figure 3.8).
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Figure 3.8: Physical domain used to study the parallel performance of the monolithical approach.

The work domain Ω is meshed using one of the following meshes:

• a coarse isotropic mesh containing 65 017 nodes and 377 522 elements where the
mesh size is equal to 1.25mm;

• a refined isotropic mesh containing 491 055 nodes, 2 879 257 elements and a mesh
size of 0.625mm;

• an anisotropic mesh of approximately the same size of the coarse isotropic one.

The forging process is stopped when the forged piece reaches a deformation of 10% of its
initial height. Thus, it is equivalent to 32 increments on the coarse mesh using a time step
of 5.10−3s and 64 increments on the refined mesh using a time step of 25.10−4s. Table 3.1
summarizes the simulations parameters.
The simulations are launched locally on the nodes. A computing node is formed by a CPU
bi-processors “AMD Opteron™ Processor 6134”. The used processor contains 8 cores with
a speed of 2.3Ghz. Each core is characterized by a L1 memory of size 128 kb; L2 memory
of size 512 kb with a speed of 2.3Ghz and a L3 memory of size 12288 kb.
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mesh isotropic coarse isotropic refined anisotropic

number of nodes 65 017 491 055 72 767

number of elements 377 552 2 879 257 425 863

number of increments 32 64 32

mesh size 1.25 0.625 -

time step 5.10−3 25.10−4 -

Table 3.1: The simulations parameters used for speed up tests

The scalability of the parallel code is tested versus several variables. Once the results
are established, the refined mesh is used to highlight its effects if any on the scalability.
The anisotropic mesh is used, at the end, to inspect the adaptation scalability used in
CIMLib.

3.5.2 Navier-Stokes vs Stokes

We begin by a quick comparison between two different solvers in CIMLib : i) Navier-
Stokes and ii) Stokes using the isotropic coarse mesh. The comparison is done using 2n

where n ∈ {0, 1, · · · , 5} cores. Table 3.2 shows the time needed to assemble and solve
both Navier-Stokes and Stokes solvers.

number of Navier-Stokes Stokes
cores Assembly Resolution Assembly Resolution

1 352.9625 455.8391 177.2075 438.8229

2 184.3498 235.1301 93.0619 241.1997

4 94.4416 152.1518 48.5017 126.6885

8 47.9751 86.8955 25.0818 72.7976

16 24.5011 50.7569 13.0989 47.4226

32 12.8818 30.1226 7.3847 30.2918

Table 3.2: Time (in s) spent to assemble, solve the mechanical problem with two different solvers
( Navier-Stokes vs Stokes ) using the 1.2.6 version of MPI

In terms of resolution both solvers consume approximately the same amount of time
even though they use completely different types of resolution : i) Generalized minimal
residual algorithm ( GMRES) for Navier-Stokes and ii) Conjugate Gradient for the Stokes
solver. As for the assembly time, Stokes solver takes approximately half the time needed
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by Navier-Stokes solver. This behavior is expected since less terms are in play. For sake
of convenience, Stokes solver will be used through all the study presented in this chapter.

3.5.3 Coarse mesh: MPI Version and Bind to Core Option

Using the 1.2.6 version of MPI and the coarse mesh, the simulations were launched
on 2n cores where n ∈ {0, 1, . . . , 5}. As mentioned in sec. 3.4.1, solvers are the ones
consuming most of the computational time. For example, the Stokes solver represents
62.41% of the computational time when the simulation runs using one core. As for the
convection solver, levellerT, it represents 15.5%. Thus, the time consumed by both solvers
takes up to ≈ 78% of the computational time.

Note that the assembly time required by the LevellerT is very comparable to the
mechanical solver assembly. Even though the local stiffness matrix to be assembled ( size
4×4 ) is smaller then Stokes ( size 16×16). Thus, we recommend optimizing the levellerT
assembly to improve the global computational time.

For sake of clarity, we separate the assembly time from the resolution time. Table 3.3
and Table 3.4 summarize respectively the time used by the solvers ( Stokes solver and
the convection solver -LevellerT-) and by other relevant algorithms of the simulation
(generating output files, computing generalized strain, etc.). These numbers confirm that
the same comment (for the sequential computing) is valid for parallel computing as well.
Stokes and LevellerT solvers consume roughly 75% of the computational time whether in
sequential or parallel simulations.

number of Stokes LevellerT Total Comput-
cores Assembly Resolution Assembly Resolution ational Time

1 177.2075 438.8229 143.9945 9.0872 987.0089

2 93.0619 241.1997 77.2412 5.8230 544.9218

4 48.5017 126.6885 39.5058 2.4788 305.4120

8 25.0818 72.7976 19.7558 1.3304 221.6395

16 13.0989 47.4226 10.0588 0.7003 218.0213

32 7.3847 30.2918 5.6219 0.3675 126.0812

Table 3.3: Time (in s) spent to assemble, solve the mechanical and transport solver and to
accomplish the simulation using the 1.2.6 version of MPI

To begin, the evolution of speed up and efficiency with the increasing number of
cores are presented in Figure 3.9.

Figures 3.9a and 3.9b show that, for the assembly part, a good scalability of 0.8 is
obtained when using 32 cores. For the resolution part, a good scalability is obtained for
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number of Written Generalized Total without Output Remaining
cores Output Files strain rate & initial partition Time

1 82.3429 37.8287 900.5514 131.4393

2 56.2207 19.8565 482.8176 65.4918

4 46.6388 10.3177 251.2557 34.0809

8 71.9221 4.9659 137.9408 18.9752

16 124.9519 2.6144 82.4550 11.1744

32 61.0540 1.7141 52.7528 9.0869

Table 3.4: Time (in s) spent to accomplish other relevant part of the code during simulation
using the 1.2.6 version of MPI

a small problem such as the convection problem. However, we notice a loss of scalability
for the Stokes resolution. Figures 3.9c and 3.9d show the performance of the remaining
part of the simulation. The speed up of the function implemented in CIMLib to compute
the generalized strain rate is acceptable. But, when it comes to the rest, a big loss of
scalability is shown. The sources of this loss should be investigated in order to improve
the overall scalability of the simulations.

(a) (b)

(c) (d)

Figure 3.9: Speed up (a-c) and efficiency (b-d) for the mechanical and transport solvers and
different important part of the code obtained on the coarse mesh using the 1.2.6 version of MPI.
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Recent processors allow each core to communicate with its neighbors trying to opti-
mize the attached process. Analyzing the results, we suspect that these communications
can lead to an important loss of efficiency. Thus, we decided to migrate towards the 1.4.3
version of MPI. This newer version of MPI offers an option called "bind to core". This
option is used to attach a process to a core throughout the whole simulation and hopefully
guarantees a better performance.

number of Stokes LevellerT Total Comput-
cores Assembly Resolution Assembly Resolution ational Time

1 177.5655 439.8508 142.0285 9.0568 984.0464

2 94.7523 270.4347 75.7627 6.5459 568.8039

4 50.7460 179.8544 39.9512 3.4741 351.5527

8 25.4583 90.4282 19.8727 1.6952 232.6729

16 12.9823 46.1396 10.0351 0.6594 220.7195

32 6.9151 24.7715 5.3670 0.3563 119.2165

Table 3.5: Time (in s) spent to assemble, solve the mechanical and transport solver and to
accomplish the simulation using the 1.4.3 version of MPI with the bind to core option

number of Written Generalized Total without Output Remaining
cores Output Files strain rate & initial partition Time

1 82.9321 37.1710 896.9749 128.4733

2 49.9486 19.6609 512.8915 65.3959

4 35.0572 9.7928 308.7822 34.7565

8 63.6903 5.2728 156.9266 19.4722

16 125.9468 2.6567 84.1534 14.3370

32 59.3700 1.3556 47.8224 10.4125

Table 3.6: Time (in s) spent to accomplish other relevant part of the code during simulation
using the 1.4.3 version of MPI with the bind to core option

The same tests are relaunched but this time using the "bind to core" option. Again,
the time consumed by the different parts of the code are presented in Table 3.5 and
Table 3.6. The "bind to core" option does not change noticeably the final computational
time. When examining the speed-up and efficiency presented in Figure 3.10, we notice
that the efficiency of the Stokes resolution is improved from 0.43 to 0.58 (for 32 cores).
Nevertheless, the loss of efficiency is mainly visible for less than 16 cores. We find that
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the latter is reasonable when eliminating the communication between cores (i.e. "bind to
core" option) and when utilizing less than the full cores of a computing node.

To summarize, we can say that the ’bind to core’ option has proven to be essential
to insure a good scalability. The overall efficiency is satisfactory, it decreases linearly
when using more than 4 cores. However we can notice a loss of efficiency when using less
than 4 cores. This behavior is clear in Figure 3.9. This local loss can be attribute to the
architecture of the multi-core processor. The next section is the key to prove this point.
When iterating between different computing nodes (i.e using Round Robin option), we
gain respectively 34 s and 15 s when using 2 and 4 cores (check Table 3.8). So we consider
this loss (for p ≤ 4) as a direct outcome of the hardware limitation. Accordingly, these
algorithms especially the resolution algorithm are scalable.

(a) (b)

(c) (d)

Figure 3.10: Speed up (a-c) and efficiency (b-d) for the mechanical and transport solvers and
different important part of the code obtained on the coarse mesh using the 1.4.3 version of MPI
with the bind to core option.

If leaving aside the scalability of the output generating algorithm, we prove that the
scalability of our code, is mostly limited by the scalability of the Stokes system.

The scalability loss of the output files generation is investigated next. The aim is to
determine how the hardware can be manipulated to obtain the best results our machines
can offer.
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3.5.4 Coarse mesh: Hardware limitation and Round Robin Op-
tion

When analyzing the efficiency of our code in the previous sections, it was noticeable
that the scalability of files generation algorithms was not satisfactory (Figure 3.9c). This
result was expected since it is directly related to the used hardware. To understand
better, we should explain that the used hard disc is formed by 3 platters and 3 heads
which enable it to write in parallel. The speed up was obtained until reaching a specific
number of cores (equal to 4 cores in Figure 3.9c) which means until all cores of a node
are used. Afterward, the hard disc fails to manage properly writing in parallel.

This point is confirmed in Table 3.7: Though the size of the results files are equally
divided on the number of used cores (i.e. each core writes the same amount of data), the
hardware is limited and fails once more than 4 cores are used.

So the reasons behind the loss of scalability for output files generation is i) simula-
tions are launched locally on nodes while results files are written in a parallel way (using
vtk file format ".pvtu") and ii) the hard disc head’s cannot manage data when different
cores are in the process of writing output files.

number of Size of Output files
cores pvtu (Kb) vtu (Mb)

1 1.5 442

2 1.5 219

4 1.6 108

8 1.7 53

16 2.1 27

32 2.7 14

Table 3.7: Size of the Output files in parallel computing

To try and extract the best of what this hardware can offer, the use of "Round
Robin" option is recommended. This option can be handy to promote the scalability of
the written output files.

The "Round Robin" option works in the following manner: it iterates on the available
nodes attempting to distribute all processes equally on each node. This means that as
soon as the code is launched on more than two cores, it uses two different nodes and
accordingly two Hard Discs. Next, the same simulations are repeated using a "Round
Robin" option.

The results presented in Table 3.8 and Table 3.9 confirms that nothing is affected
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but the output algorithms. In addition, Table 3.9 and Figure 3.11 show that both time
and speed-up of the output algorithms are improved. By redistributing processes equally
on each nodes, the "Round Robin" option increased the limit number of cores from 4 to
8 cores (i.e. for which the hard disc stop writing properly afterward). Still, after 8 cores
the time used to write output files increases and the speed up drops again.

number of Stokes LevellerT Total Comput-
cores Assembly Resolution Assembly Resolution ational Time

1 178.1416 440.9533 146.1969 9.0786 904.0554

2 93.0375 236.6903 78.0407 5.842 480.9263

4 49.3545 143.6863 39.6819 2.9108 269.7911

8 25.355 90.8500 20.0234 1.6955 156.3066

16 13.3082 46.3393 10.1175 0.6729 81.5517

32 6.9328 24.6166 5.3414 0.3682 47.9026

Table 3.8: Time (in s) spent to assemble, solve the mechanical and transport solver and to
accomplish the simulation using the 1.4.3 version of MPI with the opemmpi round robin option

number of Written Generalized Total without Output Remaining
cores Output Files strain rate & initial partition Time

1 82.7806 37.6434 904.0554 129.6850

2 43.2563 20.4194 480.9263 67.3158

4 27.9493 9.9888 269.7911 34.1576

8 19.3887 4.9998 156.3066 18.3827

16 28.6615 2.6957 81.5517 11.1138

32 61.0352 1.3785 47.9026 10.6436

Table 3.9: Time (in s) spent to accomplish other relevant part of the code during simulation
using the 1.4.3 version of MPI with the openmpi round robin option
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(a) (b)

Figure 3.11: Speed up (a) and efficiency (b) for different part of the code obtained on the coarse
mesh using the openmpi round robin option.

To summarize, the output generation scalability is bound by the used hardware
limitation. "Round Robin" option proved to be a great way to boost the scalability but
still narrowed by the hard disc capacities.

3.5.5 Refined mesh

Using a refined mesh is expected to give better scalability. In fact, the workload
of a core will increase. Thus, the ratio workload/communication using a refined mesh
will increase as well leading to a better scalability. The same simulation is launched
using up-to 128 cores. The results for time consuming are summarized in Table 3.10 and
Table 3.11. The simulation time is considerably greater since more nodes are used in
the new refined mesh. The overall behavior of the solver remains the same: the solvers
consume the bigger part of the total computing time.
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number of Stokes LevellerT Total Comput-
cores Assembly Resolution Assembly Resolution ational Time

1 3162.2112 25497.1773 2492.3585 427.7585 34844.7487

2 1679.9621 13875.3077 1389.4449 275.8599 19218.6489

4 850.2076 9572.5892 679.7318 129.1397 12424.3732

8 411.8736 4127.7119 329.8567 57.4261 6291.4682

16 211.6616 2100.1478 166.1422 25.2834 4556.1730

32 106.0528 1021.6278 81.7341 10.4183 2597.8566

64 57.3246 508.7427 42.2413 6.9786 1242.0377

128 33.0700 287.6470 22.8955 5.8589 828.2126

Table 3.10: Using the refined mesh: Time ( in s) spent to assemble, solve the mechanical and
transport solver and to accomplish the simulation using the 1.2.6 version of MPI

number of Written Generalized Total without Output Remaining
cores Output Files strain rate & initial partition Time

1 1193.1272 629.5313 33616.8978 2037.3923

2 833.5299 334.6115 18324.3467 1103.7721

4 516.2075 165.2059 11812.8972 581.2289

8 982.5606 80.9494 5217.2592 290.3909

16 1712.9052 40.1335 2706.2488 203.0138

32 1160.9286 21.0772 1325.9360 106.1030

64 444.2012 10.3300 704.9010 89.6138

128 291.3921 5.5548 417.4245 67.9531

Table 3.11: Using the refined mesh: Time ( in s) spent to accomplish other relevant part of the
code during simulation using the 1.4.3 version of MPI with the bind to core option

Figure 3.12 completes this discussion. The Stokes resolution remains the least scal-
able with an efficiency of 0.8. It is interesting to mention that after 32 cores LevellerT
changes behavior and becomes less scalable. It is totally expected for small problems such
as the convection problem (i.e LevellerT). Increasing the number of cores is efficient to
a certain limit; afterward the scalability decreases due to an increasing communication
between cores.
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(a) (b)

(c) (d)

Figure 3.12: Using the refined mesh: Speed up (a-c) and efficiency (b-d) for the mechanical and
transport solvers and different important part of the code using the 1.4.3 version of MPI with
the bind to core option

To conclude, the study presented hereby proves the scalability of the code using
up to 128 cores. The global behavior is very consistent with the results obtained on
the coarse mesh. Nevertheless an undeniable improvement was detected: Increasing the
number of nodes improves enormously the obtained speed up (check the speed up using
32 cores for instance). The behavior using refined mesh was proven to be satisfactory and
consequently, only hardware limitations can be held accountable for any loss of efficiency.

3.5.6 Anisotropic mesh: Adaptation Scalability

Anisotropic mesh adaptation, described in chapter 2, is an important part of our
approach. Its scalability highly matters in our framework. Its performance will be tested
in this section in order to know if any improvements are needed.

Recall that the anisotropic mesh adaptation used is a h-adaptation. Thus at each
adaptation step, three algorithms should be executed : i) the re-meshing algorithm where
the mesh generator “MTC” generates the mesh according to the metric constructed at
each node. ii) The transport algorithm where the solution and all essential fields are
transfered from the previous mesh to the newly generated one in order to continue the
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computation. In other words, this step relies simply on interpolating the solution between
the old mesh and the new one. iii) The dynamic load balancing algorithm to ensure a good
workload distribution between different cores. Table 3.12 and Figure 3.13 show explicitly
the results ( computation time, speed up, efficiency ) for both re-meshing and transport
algorithms. The total adaptation time contains in addition the time spent executing the
dynamic load balancing algorithm. Figure 3.13b shows that the scalability is steady over
4 cores. Even the transport caught up with the remeshing part when using 32 cores. The
loss of scalability between 1 and 2 cores is due to the number of time the adaptation scheme
is used depending of the computation environment (whether parallel or sequential). In a
parallel execution the adaptation scheme is repeated two times to ensure a good quality
of the mesh.

number of cores Remeshing Time Transport Time Cumulative Time
1 252.512 31.812 1418.736

2 202.375 34.482 1364.411

4 93.631 16.783 753.328

8 45.648 7.476 419.367

16 23.178 3.081 248.605

32 11.355 1.400 185.432

Table 3.12: Times (in s) spent to accomplish the anisotropic mesh adaptation and its different
parts.

(a) (b)

Figure 3.13: Speed up (a) and efficiency (b) for the anisotropic mesh adaptation technique used
in CIMLib.

The loss of efficiency visible for the total adaptation time is due to the iterative
method used in CIMLib. The algorithm starts with a given initial partitioned mesh.
At first, the nodes shared between cores are fixed; and the re-meshing is done on nodes
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belonging to one and only one core. Then the dynamic load balancing algorithm is
executed. This process is repeated until the couple mesh/solution has converged. This
iterative scheme is illustrated in Figure 3.14. For more details, we encourage the readers
to refer to [Digonnet et al., 2007, Digonnet et al., 2013]. Finally, It is important to mention
that the time spent to adapt the mesh is equal to the time needed for Navier Stokes solver
when adapting every 10 time steps (adaptation frequency = 10 ). In other words, the
time is doubled. Despite this fact, we recommend using the adaptation technique since it
improves drastically the obtained precision (see chapter 4).

Figure 3.14: Dynamic load balancing algorithm used in CIMLib.
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3.6 Conclusion

In this chapter, we presented a general description of parallelism in modern comput-
ers. We focused essentially on the parallel environment in CIMLib. The main objective
was to test the response of the library in a massively parallel environment to determine
if any improvements are needed. In particular, important solver such as the Stokes and
the convection solver LevellerT were inspected closely. The study has shown the need
to optimize the latter solver in term of assembly. An MPI migration to newer version
was recommended to insure better performance when exceeding 16 cores. As a result,
the solvers performance was improved and found satisfactory using up to 128 cores. The
efficiency of the mesh adaptation was tested as well. A loss of efficiency was noticed in the
resulting dynamic load balancing. Though not crucial, we should note that it is mainly
attributed to the used iterative partitioning method. Output generation exhibited a loss
of efficiency also, it is for the most part associated the our hardware limitation and does
not reflect programing deficiency.

To conclude and despite the casual loss, the overall scalability is found satisfactory.
The performance of the major parts including the solvers and mesh adaptation was judged
solid.

Advanced applications combining information and recommendations from both chapter 2
and chapter 3 are the focal point of the next chapter. The results are assessed and con-
fronted with Forge® simulations.



3.6. Conclusion 119

Résumé en Français

Dans ce chapitre, nous avons présenté une description générale du parallélisme dans
les ordinateurs modernes. Nous nous sommes concentrés essentiellement sur l’environnement
parallèle au CIMLib. L’objectif principal était de tester la réponse de la bibliothèque dans
un environnement massivement parallèle pour déterminer si des améliorations sont néces-
saires. En particulier, le solveur mécanique de Stokes et le solveur de convection LevellerT
ont été inspectés de près. L’étude a montré que c’est recommandé d’optimiser le solveur
de convection en termes d’assemblage. Une migration de MPI vers une nouvelle version
a été recommandée aussi. Ainsi, meilleures performances sont assurées lorsque nous util-
isons plus que 16 cœurs au cours d’une simulation. Par conséquent, la performance des
solveurs a été améliorée et jugée satisfaisante en utilisant jusqu’à 128 cœurs. L’efficacité
de l’adaptation de maillage a été testée aussi bien. Une perte d’efficacité est remarquée
dans l’équilibrage de charge dynamique. Bien que non essentiel, il faut noter qu’il est
principalement attribuable à la méthode de partitionnement itérative utilisée. La généra-
tion de sorties présentait une perte d’efficacité aussi. C’est associé à la limitation du
matérielle utilisé et ne reflète pas de carence en programmation. Pour conclure et malgré
la perte occasionnelle, la performance globale est jugée satisfaisante. Dans ce qui suit, des
applications avancées combinant les recommandations des chapitre 2 et 3 sont le point
focal du prochain chapitre. Les résultats sont évalués et confrontés à des simulations de
Forge ®.
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4.1 Introduction

This chapter is devoted to the different applications of the Eulerian monolithic
approach described in chapter 2. Two sets of applications are presented. In the first,
industrial applications such as the forging processes of rods and crankshafts are high-
lighted. The second is dedicated to the deformation of more simple geometries (such as
spheres and Parallelepiped) but in a multi-domain context. In other words, the numerous
deformable bodies (up to 250 bodies) will be stacked in the computational domains where
there evolution will be followed during the simulation.

The aim of these cases will be testing both the capacity and the reliability of the
method for complex geometries (in the industrial applications) in multi-domain situations.

Both the advantages and the limitations will be detailed and discussed. Consequent
improvements will be proposed as well leading to a decisive conclusion if the approach is
fit to these kind of applications.

4.2 Industrial applications

Besides pistons, crankshafts and connecting rods are the main components of the
reciprocating piston engine used in cars for instance.

The connecting rod ( Figure 4.1a ) is the element joining the piston to the rotating
crankshaft ( Figure 4.1b ).

(a) (b)

Figure 4.1: Examples of a connecting rod (a) and a crankshaft (b).

Whether casted, forged or machined the production of the connecting rod and
crankshaft remains critical. Connecting rods should sustain complex loads such as the
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cycle of high compressive loads followed by high tensile ones; while cranks should be
hardened and strengthen to endure bending and twisting during full functioning.

For these reasons alone, such pieces are the topics of numerous researches including
ours. In the aim of providing the industrial partners a simulation tool responding to their
needs, different cases are explored next, using the monolithic Eulerian approach presented
in chapter 2. This attempt is first of a kind since these problems are typically treated
using fully Lagrangian approach

4.2.1 Connecting rod

In this section, the method capacity to model the deformation of a complex geome-
tries is tested. For instance, the forging of a connecting rod is illustrated next. Figure 4.2
shows the position of the initial geometry ( orange ) between the two tools for t = 0s.
Notice that, the details of the initial geometry of the deformable body and the tools are
perfectly captured due to the anisotropic mesh. The used mesh is adapted on the gradi-
ent of both deformable body and tools level set. It contains 119 000 nodes and 687 784
elements. The simulation is launched using 16 cores.

Figure 4.2: Geometry of the connecting rod immersed in the computational domain and adapted
using an anisotropic mesh ( t = 0 s ).

For a better visualization, a longitudinal section is represented in Figure 4.3. Both
the contour of the deformable body ( orange ) and the tools ( blue ) are depicted and
are perfectly smooth. The lower tools is fixed (v = 0mm/s ), whereas the upper tools
moves with a velocity equal to −10mm/s along the Z axis. The tools consistency and
the density are respectively equal to 1000MPa.s and 8 g/cm3 . The deformable body
consistency and density are respectively equal to 352MPa.s and 2.8 g/cm3. As for the
air, the viscosity is equal to 1× 10−7MPa.s and the density is equal to 1.2 g/cm3.
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Figure 4.3: The contours of the deformable body and tools presented on a longitudinal section
in the thickness at t=0 s

Figure 4.4 represents the zero iso-value of the deformable body for t = 0 s ( on the
left ) and t = 2.6 s ( on the right ). We mention that, based on the same analogy presented
in chapter 2, the air is allowed to evacuate by imposing a porous boundary conditions.
The latter is equivalent to defining vents in the tools.

Figure 4.4: From left to right: the isovalue zero of the connecting rod respectively for t = 0 s
and t = 2.6 s.

Qualitatively, our simulation gives a good results. To validate quantitatively our
approach, the same case is simulated using Forge®. The Lagrangian mesh contains
37 483 nodes 42 438 elements. A comparison between the different results is presented
in Figure 4.5 and Figure 4.6.

Figure 4.5 illustrates the pressure and velocities maps for both software for t ≈ 1.6 s.
The chosen cut corresponds to the mid-plane of the deformable body. Results are very
similar and represent the same features. The main difference, thought not significantly
important, is mostly located in the center. For instance, the velocity along the x-axis
represents a gap of 1.7mm/s. This is directly related to the meshes illustrated in Figures
4.5a and 4.5b. In the CIMLib case, lesser nodes are used in the center leading to this
difference. The same reason is behind the difference for the pressure and the velocity
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along the y-axis. Though, the Eulerian cut contains approximately half the nodes of the
Lagrangian one ( 2900 nodes vs. 6000 nodes ), the results remains similar and satisfactory.

Figure 4.6 completes the comparison. The velocity component vz is represented on a
longitudinal section in the thickness. Once again, the results are found very comparable.

Using CIMLib Using Forge®

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: Comparison of the results obtained with CIMLib and a Forge® simulation at t ≈
1.6 s. The same longitudinal section in the width is used in both softwares: (a) and (b) illustrate
the mesh, (c) and (d) illustrate the pressure, (e) and (f) illustrate the velocity component vx and
(g) and (h) illustrate the velocity component vy.
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Figure 4.6: Comparison of the the velocity component vz obtained with CIMLib (a) and Forge®
(b) at t ≈ 1.6 s. The same longitudinal section in the thickness is used in both softwares.

To conclude, the Eulerian monolithic approach gives good results when compared
with the Lagrangian approach. The slight differences shown in Figure 4.5 and Figure 4.6
are the outcome of the different used re-meshing techniques (an anisotropic adaptation
technique in the Eulerian approach versus a re-meshing technique in the Lagrangian
approach). Figure 4.5a shows that the nodes concentration in the Eulerian approach is
located on the border of the deformable body. Whereas the re-meshing in the Lagrangian
approach is based on the deformation and thus distributes the nodes appropriately in
the discretized deformable body. Therefore the maps in the right part of Figure 4.5 are
smoother then the left one.

4.2.2 Crankshaft

The aim of the next case is to test the program performance for even more complex
geometries such as the crankshaft. To push the evaluation even further, the same program
used in sec. 4.2.1 for the connecting rod is used again. Only the tools and piece geometries
are replaced. The same characteristics are used as well . The mesh remains intact. In
other words, the same number of nodes and elements is used.

At t = 0 s, the deformable piece is placed between the two tools (illustrated in
Figure 4.7). The upper tool moves with a velocity equal to vz = −80mm/s while the
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lower tool remains fixed (v = 0mm/s). Though the tools show more intricate details
than the last ones, the mesh seems to captures every aspect. In Figure 4.8, the perfectly
meshed upper tool confirms that the current mesh is versatile.

Figure 4.7: Geometry of the crankshaft immersed in the computational domain between the tools
represented by the anisotropic mesh ( t = 0 s ).

Figure 4.8: Mesh projected on the zero iso-value of the upper tool

At t ≈ 0.9 s, the isovalue of the deformable piece is illustrated in Figure 4.9. The
crankshaft seems to take well the tools form. To complete the discussion, the velocities
maps all over the deformable piece are presented in Figure 4.10. The velocities compo-
nents vx and vy are bigger on the edges depicting the direction of the material flow. On
the top, vz takes the upper tool velocity value 80mm/s which is expected. The overall
behavior seems satisfactory.
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Figure 4.9: Geometry of the crankshaft at t ≈ 0.9 s

(a) (b)

(c)

Figure 4.10: (a), (b) and (c) represent respectively the velocity components vx, vy and vz on
the whole crankshaft geometry at t ≈ 0.9 s.
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Nevertheless, further inspection shows some lack of precision. Figure 4.11 plots
the zero-isovalue of the tools and the deformable piece on a longitudinal section in the
thickness. We have noticed an increasing penetration between the upper tool and the
deformable piece. This suggests that even though the current mesh is sufficient to perfectly
represent the initial geometries; it needs more nodes to capture the complex shape of
the deformable piece during time. Notice that the mesh generator tried to salvage the
situation by migrating nodes from the edge to the contact zone, but fell short. Figure 4.12
confirms this argument. The mesh was able to capture less complicated forms (such as
the connecting rod) and thus no penetration was noticeable.

(a) (b)

Figure 4.11: (a) and (b) represent respectively the contours of the crankshaft between the tools
at t ≈ 0.9 s and t ≈ 0.96 s. A growing penetration of the upper tool in the deformable piece is
noticeable

Figure 4.12: The zero-isovalue of the connecting rod between the tools at t ≈ 1.6s . No pene-
tration between the different bodies is noted.

In addition, the upper tool is translated analytically along the z−axis while the level
set of the deformable body is convected using the velocity ( solution of Navier-Stokes ).
In other words, the movement of the upper tool does not depend of the mesh since it
is analytically determined at every time step. This can result in a clash of the bodies
for lack of precision. This is why no penetration occurs with the lower tool. The latter
remains fix while the deformable piece takes the corresponding form accordingly. This
can be another reason behind this anomaly.
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To reenforce our argument, we can compare the penetration of the deformed material
into the two contact surfaces in Figure 4.11 ( the upper tool surface and the lower tool
surface ). More penetration is visible with the upper tool. This is not surprising since the
lower tool is fixed during the whole simulation, the mesh is more stable resulting in less
(to no) penetration.

To summarize, the overall behavior is acceptable but the mesh size was proven to
have a crucial impact on the precision maintain during the simulation progress.

4.3 Multi-domain applications

In the following section, the method capacity is tested when using a great number
of deformable bodies at once. Two major applications are proposed. The first handles
10 parallelepiped deformed simultaneously using both anisotropic and uniform meshes.
The second stacks up to 256 deformable spheres in the computational domain. In both,
computations are treated in a highly parallel environment.

4.3.1 Ten Parallelepiped

A first test handling more than two deformable bodies at once is presented hereby.
In a computational domain Ω = [0; 100]× [0; 100]× [0; 51]mm3, we immerse 10 identical
parallelepiped of dimensions 5mm × 5mm × 10mm (see Figure 4.13). The deformable
pieces are placed between two flat rigid tools. The lower tool remains fixed and the upper
tool moves with a velocity equal to −10mm/s. The deformable pieces viscosity is equal
to 353MPa.s while the rigid tools consistency is equal to 1000MPa.s. Note that it is
the same case mentioned in the General Introduction page 1 .
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Figure 4.13: Initial geometry of the 10 parallelepiped immersed in the computational domain.

We chose to use a uniform mesh. Since the computational domain is relatively big
in comparison with the parallelepiped dimension, we created a new virtual box en-globing
the deformable bodies but is still smaller than the domain. Though the mesh is uniform,
we impose two different mesh sizes hint and hext. Inside the virtual box, the size mesh
hint is equal to 0.3mm whereas outside the box hext is equal to 2.5mm (see Figure 4.14).
This choice enable us to use less mesh nodes and elements. The overall mesh contains
2 282 109 nodes and 13 445 963 elements. The simulation is launched on 256 cores. We
should indicate as well that 6 different level set functions were defined and associated
manually to these 10 deformable pieces.
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Figure 4.14: The uniform mesh of the domain presented on a section: Inside the virtual box,
the mesh size is almost ten times smaller than the external one.

Figure 4.15 represents the deformed geometries at t = .0.7 s The simulation was
carried out on 256 cores with no problem what so ever. Nonetheless, the results were
found unsatisfactory. The pieces did not deform properly: their top remained intact
during the whole simulation. When examined closely, this irregularity is associated to
the mesh size hint. Even though it is small, it remains significantly large when compared
with the mixture law thickness ≈ 0.9mm . If one decreases even more the mesh size,
the problem will be prevented but it will be costly in computing time and the number of
cores needed to run the simulation.

Although the results were inadequate for this particular case, we learned interesting
information regarding the solvers performance. Considering the big number of unknowns
(> 8 000 000) to be treated in this particular case, we were expecting an unrealistic number
of iteration to insure the convergence. In fact, an average of 1 500 iterations were enough.
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Figure 4.15: The deformed geometries when using an isotropic mesh with a mixture law thick-
ness equal to 0.9 mm.

We were brought once again to use the anisotropic mesh generator. Leaving all the
other components intact, only the mesh is changed. It is an anisotropic adaptive mesh
formed by 147 500 nodes and 856 442 elements (illustrated in Figure 4.16). The simulation
is now launched on only 16 cores. Remark that both the elements/nodes and the cores
numbers were divided by 16.

Figure 4.16: The initial mesh adapted anisotropically around the deformable parallelepiped (on
the left) with a zoom (on the right).

Not only less nodes/elements and cores were needed for the exact simulation, but
also the results were much better. Figure 4.17 completes the discussion. The deformable
geometries are acceptable. In addition, the velocity components and pressure predict a
good behavior. vx and vy are bigger on the edges whereas vz is the highest on top. In
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addition, |vz| takes the value of the upper tool velocity on top (10mm/s) and the lower
tool on the bottom (0mm/s). The pressure anticipates an adequate performance: it takes
the maximal value on top where the upper tool compresses the most.

(a) (b)

(c) (d)

Figure 4.17: The deformed parallelepiped using an anisotropic adapted mesh. (a), (b), (c) and
(d) represent respectively the maps of the velocity components vx, vy, vzand the pressure.

Until now, we proved more than once that even though the overall performance of
the approach is impressing, it remains extremely dependent of the mesh. It is an approach
involving a big spectrum of parameters dependent one of the other (such as the mesh size,
the thickness of the mixture law, ......).

In conclusion, important points should be retained from this section. In multi-
domain problems and up to 2 000 000 nodes and 256 cores, no suspicious behavior in the
solver was detected. However, the use of an adapted anisotropic mesh were found crucial
to insure the precision of the simulation.
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4.3.2 256 spheres

To increase even more the number of the deformable bodies, we begin by simulating
a problematic case proposed by Transvalor. In both Forge and CIMLib, 148 spheres are
stacked to form a cubic domain partitioned on 8 cores. Before imposing any mechanical
problem, the partition is inspected closely. In Forge®, the partitioning algorithm is un-
able to converge and the tasks are not equally divided between the 8 cores. Figure 4.18
shows that the workload is almost handled by only one core which affects the scalability
of the parallel computation (see chapter 3). Whereas, CIMLib confronted no difficulties
partitioning the computational domain on 8 cores. As shown in Figure 4.20 , The work-
loads seem to be almost equally divided between the different cores. Note that the lack
of smoothness is only due to the unrefined mesh used for this test.

Figure 4.18: Forge® failed attempt to partition the domain containing 148 spheres on 8 cores.

As mentioned earlier, the dynamic load algorithm does not allow to exchange nodes
between unneighbored domains ( i.e. does not share a node ).

In order to generalize the algorithm, an exception should be added for the initial
partitioning when dealing with a sequential mesh. Thus, the exchange between two do-
mains -not sharing an interface- is allowed only for the first step in the dynamic load
algorithm. A node is chosen and is affected to an empty core then the classical algorithm
is executed.

However, when considering a mesh formed by multiple connected geometries, the
classical algorithm fails to partition properly the domain. A random node is chosen
to begin with. Once the connected geometry containing this node is handled by the
algorithm, it is unable to handle another one. This is logic since the core is no longer
empty and the domain has no neighbors. Thus, the dynamic load algorithm stops even
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though the imbalance remains.
To overcome this limitation, a simple yet effective modification is introduced. the

core is allowed to handle new nodes when it has no neighbor and even if it is not
empty. The latter modification allows to improve the imbalance shown in Figure 4.18
(see Figure 4.19 )

Note that this is the best partitioning we can offer considering the fact that no
geometrical notions are present in the algorithm.

Figure 4.19: From left to right: The partition of a domain containing 148 spheres in
Forge®taking into account the above improvment using respectively 4 and 8 cores.

Figure 4.20: From left to right: The partition of a domain containing 148 spheres in CIMLib
using respectively 4 and 8 cores.

Since CIMLib had no problems what so ever partitioning a domain containing 148
spheres on 8 cores, why not push this study further to test the limits of this approach.
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To do so, 256 identical spheres of a radius equal to 0.1m are placed in a computational
domain of dimension [0; 4]×[0; 4]×[0; 1.63]m3 to form a cube. Then, the spheres are placed
between two rigid flat tools with a consistency of 106 Pa.s. The lower tool is fixed while
the upper one moves with a velocity equal to 1m/s. The whole computational domain is
anisotropically meshed using 252 204 nodes and 1 440 718 elements. Since the deformable
spheres will interact at one stage of the simulation, we cannot associate one level set for
all the 256 spheres. Instead we should associate one level set for each deformable body.
This can be hard to accomplish due to the high number of deformable bodies. To pull-off
this step, we utilize an existent technique based on a coloration algorithm developed by
[Hitti, 2011] . This coloring algorithm enable us to associate one level set to one or more
deformable spheres with only one restriction. Two different spheres can share the same
level set if and only if they never interact during the simulation. In other words, the same
level set cannot be associated to neighbor spheres. Applying this technique, we were able
to define only 40 level set functions to all 256 spheres. The spheres consistencies are
chosen arbitrary between 105 Pa.s and 7 × 105 Pa.s. The simulation is launched on 64
cores. Figure 4.21 illustrates the whole domain partition. Again, CIMLib confronted no
difficulties dividing the workloads properly on 64 cores.

Figure 4.21: Initial partition of a domain containing 256 spheres on 64 cores.

Note that we could of used less level set functions. In-spite of this fact, we chose to
define 40 functions to test the limits of the program . We expected to confront a memory
clash but we did not. For a great number of level sets, the resulting data will be normally
overwhelming and could lead to a lack of memory space. In this case, we recommend
to compress the unused data to increase the remaining space. Once the data is needed,
it can be uncompressed. This can be a solution when significant number of deformable
pieces is needed in future works.
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Finally, the deformed domain and the different velocity components are illustrated
in Figure 4.22 at t = 0.64 s. We notice that every sphere deforms differently inside the
domain (due to their different characteristics) and interacts with neighbor spheres to fill
properly the gaps. vx and vz are represented on a longitudinal section in the thickness,
while vy is represented on a longitudinal section in the width. These maps portray a good
behavior. |vx| and |vy| are bigger on the edges and are almost symmetrical suggesting the
direction of the material flow. |vz| is bigger on the top and takes the value of the moving
upper tool.

(a) (b)

(c)

Figure 4.22: Velocity components vx and vz are respectively represented on a longitudinal section
in the thickness in (a) and (c). Velocity component vy represented on a longitudinal section in
the width in (b) (t = 0.64 s).

The Eulerian monolithic approach was proven more resilient than Forge® when un-
dertaking multi-domain problems containing significant number of deformable bodies. In
particular, the partitioning algorithm was found more efficient. In addition, the results
issued by the mechanical problem give a good description of the deformation evolution
with time.

4.4 Conclusions and Discussions

This chapter is entirely dedicated to numerical applications using the monolithic
Eulerian approach along with the proposed improvements (described in chapter 2). All
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applications were carried out in a scalable parallel environment on at least 16 cores. The
efficiency of the method was studied in more than one context using complex geometries
(such as crankshaft and connecting rod) or simple deformable geometries stacked in great
numbers (up to 256 spheres).

The results were judged via comparison with simulations launched in Forge and
found satisfactory. The overall performance of this approach was solid. It was even
considered more resilient than Forge® in some cases; in particular when undertaking multi-
domain problems containing significant number of deformable bodies.

Although the performance is generally impressive, some points can be improved
even more. The approach itself involve a big spectrum of parameters dependent one of
the other that need to be mastered (such as the mesh size, the thickness of the mixture law,
......). In more than one occasion, we proved that the method precision remains extremely
dependent of the mesh. When dealing with evolving geometries exhibiting details more
visible with time, the mesh felt short and problems such penetration were detected. In
addition, when comparing with Forge, we noticed that our results exhibited less precision
in the center than on the edge. It is mainly because more nodes are distributed on the
edge respecting the level set gradient.

Following these observations several upgrades/enhancement can be proposed:

• An increasing number of nodes can be used as the simulation progress. It can be
determine using a relationship between the geometry surface and the mesh size.
This can easily solve the problem of penetration when using complex deformable
geometries.

• The mesh adaptation can be based not only on the level set gradient but on addi-
tional fields such as the velocity. This can improve the precision in the center (for
instance) to match the outer precision depending of the application type.

To this stage, this approach was proven effective. Furthermore, the superposition with
Forge® was reassuring: two different softwares based on different approaches provided not
only promising results but extremely comparable ones as well. The fact that a recent
approach like the Eulerian one can compete with Forge -a well known software perfected
for at least 20 years- drives us to enrich the method and search for new answers. Hence,
new ways to model friction and contact in an Eulerian context are proposed and tested
in the next chapter.
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Résumé en Français

Ce chapitre est entièrement dédié aux applications numériques utilisant l’approche
Eulérienne monolithique ainsi que les améliorations proposées dans le chapitre 2. Toutes
les applications ont été réalisées dans un environnement parallèle utilisant au moins 16
cœurs. L’efficacité de la méthode a été testée dans plusieurs contextes en utilisant des
géométries complexes (telles que le vilebrequin et la bielle) ou des géométries simples
empilées en grand nombre (jusqu’à 256 sphères par exemple). Les résultats ont été jugés
par comparaison avec des simulations lancées en Forge et trouvés satisfaisants. La perfor-
mance globale de cette approche est solide. Elle est même considérée plus pertinente que
Forge® dans certains cas; en particulier dans les cas multi-domaines avec un grand nom-
bre de corps déformables. Bien que la performance soit généralement impressionnante,
certains points peuvent être améliorés. L’approche elle-même implique un grand spectre
de paramètres dépendants l’un de l’autre, qui doivent être maîtrisés (comme la taille de
la maille, l’épaisseur de la loi de mélange, ......). A plusieurs reprises, nous avons prouvé
que la précision de la méthode reste extrêmement dépendante de la taille de maille. En
traitant l’évolution d’une géométrie présentant de plus en plus de détails au cours du
temps, le maillage ne semble pas entièrement satisfaisant et entraine des problèmes de
pénétration par exemple. De plus, suite à des comparaisons avec Forge pour ces cas-
là, nous avons remarqué que nos résultats présentent moins de précision au centre que
sur les bords. C’est principalement dû à la distribution des nœuds plutôt localisés au
bord de la pièce déformable. Suite à ces observations plusieurs améliorations peuvent
être proposées: • Un nombre croissant de nœuds peut être utilisé vis-à-vis l’avancement
de la simulation. Ça peut être déterminé en utilisant une relation entre la surface de la
géométrie et le maillage. Cela peut facilement résoudre le problème de pénétration entre
des pièces déformables complexes et les outils. • L’adaptation du maillage peut se baser
non seulement sur le gradient de la Level Set mais sur des champs supplémentaires tels
que la vitesse. Cela certainement améliorera la précision des solutions au centre de la
pièce.

Pour le moment, cette approche a été prouvée efficace. En outre, la superposition
avec Forge® est rassurante: deux logiciels différents basés sur différentes approches ne
fournissent pas seulement des résultats prometteurs, mais très comparables aussi. Le fait
que l’approche Eulérienne, une approche relativement nouvelle pour telles applications,
puisse rivaliser avec Forge nous motive à enrichir la méthode même plus. Par conséquent,
de nouvelles façons à modéliser le frottement et le contact dans un contexte Eulérien sont
proposées et testées dans le chapitre suivant.
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5.1 Introduction

Friction and contact are two important features in every large deformation problem.
As pointed several times through out our study, Eulerian approaches are rarely used in this
context. Thus, a lack of information handling this topic is detected in the literature. This
chapter offers first steps towards friction and contact modeling in an Eulerian environment.

The chapter is mainly divided into two parts. The first part is dedicated to friction
modeling. We propose different manners to numerically imitate friction depending on
the simulation. A linear mixture law emulates a perfectly sticking friction, whereas a
quadratic mixture law introduces, via a boundary layer, a lubricant to simulate sliding
friction. The latter requires additional manipulation to determine the appropriate lubri-
cant consistency for each case. An identification technique superposing both Lagrangian
and Eulerian formulations is used. For each friction coefficient in the Lagrangian ap-
proach corresponds a lubricant consistency spread along a certain thickness. Followed the
technique description, 3D test cases are launched and results are validated with Forge®

simulations.
Recalling the literature survey in chapter 1, the contact detection algorithm affect

enormously the parallel scalability of the code. In Eulerian approaches, contact detection
is managed automatically. Still, no way to model different types of contacts is available.
To our knowledge, there are very few works in the literature dealing with this topic.
The only work found is proposed by [Bruchon et al., 2009]. In the second part of this
chapter, a daring proposition is presented to model the contact problem. Searching for
inspiration in other domains, we decided to apply the same reasoning used in geology
and oceanography. A directional solver is a great candidate and may hold the answers to
our needs. The formulation of the anisotropic solver is detailed then followed by different
applications. Its capacity is assessed ending in a small discussion and conclusions.

5.2 Friction: from Lagrangian to Eulerian descrip-
tion

It is important to model friction in large deformation problems. For instance in
forging process, friction leads to heat and tools wear. Thus, it can affect the final shape
and quality of the product.

In reality, to control the effects of friction, lubrication techniques are used. Generally
in an Eulerian context, modeling surface forces ( such as friction ) consists on crossing
from surface to volume integral using Dirac function [Bruchon et al., 2009] (see chapter 1).

In this work, a simpler approach based on boundary layer is used. A new viscosity
corresponding to the lubricant is introduced. To determine this appropriate viscosity, a
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similar approach to [Foudrinier, 2007] and [Mondalek, 2012] is applied hereby. The first
worked on reactive molding processes. Whereas the work presented in [Mondalek, 2012]
treats modeling of spark plasma sintering process.

Based on a Lagrangian description of friction, this approach relies on finding a new
formula describing friction in the Eulerian context. The detailed methodology is presented
next.

5.2.1 Lagrangian Friction law

For every multi-domain problem, the physical phenomena in the contact zone is
modeled using friction laws. Friction can be described as the force acting tangentially
along surfaces in contact and resisting the motion of solid surfaces.

For instance, in a case containing a tool and a deformable body in contact. Let
us denote respectively vt and v the velocities of the tool and the deformable body. The
sliding velocity vs is computed in terms of v and vtool:

~vs = (~v − ~vtool)− [(~v − ~vtool) .~n]~n (5.1)

where ~n is the normal to the surface.
In addition, the shear stress is given by:

~τ = σ~n− (σ~n.~n)~n (5.2)

In literature, numerous behavior laws are introduced. These laws describe the rela-
tion between the sliding velocity vs and ~τ and are divided into two families.

(a) Tresca friction law (b) Norton-Hoff friction law

Figure 5.1: Graphic representation of the different friction laws.
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The first family is based on a threshold concept such as in Tresca and Coulomb
friction laws (Figure 5.1a); where below this threshold no sliding can occurs (equation
(5.3)). For Coulomb law, the threshold τc is proportional to the normal stress σn. τ < τc no slip

τ = τc slip
(5.3)

The second family includes regularized law such as Norton-Hoff law. In our study,
Norton-Hoff friction law is used due to its continuity and regularized form (Figure 5.1b).
Using the latter law, the relation between the shear stress τ and the sliding velocity vs is
expressed by:

~τ = −αfη.|vs|p−1~vs (5.4)

where η is the material consistency and αf the friction coefficient ( chosen depending
on the material ). p can be considered equal to m the strain rate sensitivity coefficient
since the lubricant is not considered as a third body.

5.2.2 Eulerian friction law

To apply the boundary layer approach, we begin by explaining its concept. We
consider the existence of a boundary layer located between the two bodies in contact
(tool/deformable body). This new layer represents the lubricant with its own viscosity
(see Figure 5.2).

Unlike other works [Mondalek, 2012], where the boundary layer is explicitly repre-
sented, this viscosity once determined helps representing implicitly the boundary layer
via quadratic mixture law presented in chapter 2.

Figure 5.2: Schematic representing the boundary layer.

To proceed in determining the layer viscosity, we must first express the shear stress
in the Eulerian context. Then by identification, the viscosity is determined from the
Lagrangian law (equation 5.4).
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In the boundary layer, the shear rate is written as :

γ̇ = |~vs|
ε

(5.5)

where ~vs is the tangential velocity defined in equation (5.1) and ε is the thickness of the
boundary layer (see Figure 5.2). Evaluating the strain rate tensor in the latter layer, it
can expressed as :

ε̇(v) =


0 vs

2ε 0
vs
2ε 0 0
0 0 0

 (5.6)

Thus the equivalent strain rate tensor is computed in the following manner :

˙̄ε(v) =
√(2

3 ε̇(v) : ε̇(v)
)

= |~vs|
ε
√

3

(5.7)

Using the definition of the shear stress given in equation (5.2) and substituting ε̇
and ˙̄ε by their new form (5.6) and (5.7) computed in the boundary layer, the shear stress
is expressed as :

τ = −2ηlub.

∣∣∣√3~vs

∣∣∣
ε
√

3

m−1 (
~vs
2ε

)
= −ηlub

εm
.|~vs|m−1~vs

(5.8)

where ηlub represents the lubricant viscosity.
Both equations (5.4) and (5.8), describe the form of the shear stress. One in a

Lagrangian formulation and the other in an Eulerian one. These formulations must be
equivalent and it is ensured via an identification technique :

ηlub = αfηε
m (5.9)

The layer viscosity ηlub depend highly on the chosen thickness and the friction co-
efficient. ηlub will be finally transferred into equation (2.76) (see chapter 2) to represent
this heterogeneity in the monolithic approach.

5.2.3 Friction validation

In large deformation problems, especially the ones involving multiple materials in
contact, friction is considered an important component. It interferes in the deformation
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evolution and affects the final shape of the piece (in this case the ring). Therefore this
section illustrates the numerical results of friction in an Eulerian formulation as presented
in the previous description. In the computational domain [0; 75]× [−75; 75]× [0; 55]mm3,
we immersed a perfectly symmetrical ring illustrated in Figure 5.3 between two rigid
tools. The inner and outer radius denoted respectively rint and rext are equal to 40mm
and 50mm. The half-height h is equal to 40mm. Since the ring is symmetrical, only
one fourth of the piece is deformed to decrease the computational time. Imposing a
symmetry is equivalent to verifying the condition σ.~n = 0. The mesh of a quarter ring
contains 39 000 nodes. Note that the lower tool is fixed while the upper tool moves with
a velocity of −5mm/s. The rigid tools consistency ηr and density ρr are respectively
equal to 1 000MPa.s and 8 000 kg/m3 . As for the deformable body, ηd and ρd are equal
to 66MPa.s and 2 800 kg/m3. The air viscosity and density are respectively fixed to
10−7MPa.s and 1.2 kg/m3.

Figure 5.3: An illustration of the initial ring geometry along with the symmetry planes .

Different scenarios demonstrating how to represent friction in this Eulerian descrip-
tion are considered. We start with a perfectly sticking friction and finish by a sliding
friction. The results are superposed with Forge® simulations. Both advantages and limi-
tations are highlighted before ending with a small discussion.

To begin with, we impose a perfectly sticking friction. In our approach this can be
accomplished by using a linear mixture law illustrating the different domains. In fact,
since the ratio ηr/ηd exceeds 100, the interface consistency is closer to the rigid body
consistency. Therefore, it can be considered as an excessive numerical friction or "sticking
friction". The latter is illustrated on a cutting plane in the thickness in Figure 5.5a.

The evolution of the ring in time is followed. Figure 5.4 illustrates the deformed
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ring at t = 3.467 s. The half-height of the deformable ring is equal to 22.7mm. The
inner and outer radius for h = 0 are approximately equal to 54.89mm and 66.34mm.
The velocities and pressure maps are presented as well for t = 3.467 s in Figure 5.5.
The overall behavior seems satisfactory. The velocity component vz is equal to −5mm/s
on the top conform with the upper tools velocity. The velocity components vx and vy

take a maximum of approximately 4.77mm/s on the lower edge, which suggests that the
deformation is symmetric as expected.

Figure 5.4: The deformed ring geometry at t = 3.467 s .
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: (a) illustrates the mixture law on a cutting plane in the thickness. (b) to (e) represent
the different velocity components and magnitude. (f) illustrates the pressure repartition. The
different maps are presented on a forth of the ring at t = 3.46 s.

To validate the results, the same simulation is launched in Forge taking a sticking
friction. Since the deformable geometry is hollow inside, we did not plot the curve on
a vertical section. Instead, we took a cutting plane in the thickness for y = 0 in both
interfaces (Paraview for CIMLib and Glview for Forge®).
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Figure 5.6: The deformed ring outline for y = 0 at t = 3.467 s .

The chosen nodes corresponds to the inner (dashed line) or outer (solid line) outline
as illustrated in Figure 5.6. All curves are plotted as functions of the vertical distance z
(0 ≤ z ≤ h). The different results are superposed in Figure 5.7.

Important information can be extracted. First, by analyzing Figures 5.7a and 5.7b
we notice that the velocities vx plotted on the outer outline in both softwares are globally
very similar. Still, decreasing the mixture law thickness from ε = 0.5mm to ε = 0.25mm
affects locally our results to fit better the Forge simulation on the top (z = h). Since
this contact region is of a great importance, the parameter ε should be mastered to find
the optimal results. We should mention that decreasing the mixture law thickness is not
that simple. Smaller the chosen value is, more difficulties will be confronted to mesh this
region. In other words, more stretched elements will be generated and smaller time steps
will be needed. The end game is to find a thickness value ε small enough to increase
the precision but big enough to prevent meshing difficulties. We should mention as well
that small thickness values ε can not represent the boundary layer when treating sliding
friction. This topic will be treated in details in the following cases.

Using the smaller mixture law thickness ε = 0.25mm, vz and vx are respectively
plotted on the outer and inner outlines. Once again the curves are similar and the average
error does not exceed 2 %. This slight difference can be attributed to the different used
meshes as well as the different interpolations used by Glview and Paraview.
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(a) (b)

(c) (d)

Figure 5.7: Comparison of the velocities obtained with sticking friction in both Forge® and
CIMLib on a cutting plane in the thickness for y = 0 at t = 3.46 s : (a) and (b) compare
the velocity vx plotted on the outer outline using two different mixture thickness ε = 0.5mm
(on the left) and ε = 0.25mm (on the right). (c) compares the velocity vz plotted on the outer
outline using a mixture thickness ε = 0.25mm. (d) superposes the velocity vx plotted on the
inner outline of the ring using ε = 0.25mm.

The second part of this study is dedicated to sliding friction. As mentioned earlier,
"sliding friction" is equivalent to using the quadratic mixture law introduced in equation
(2.76) (chapter 2). In other words an additional phase is added. It is called the boundary
layer and it represents the presence of a lubricant with ηlub (Eulerian formulation). The
consistency of this lubricant is chosen to verify equation (5.9). To be more precise, the
couple (ηlub, ε) should be chosen to give the same effects as the coefficient αf in the
Norton-Hoff friction Law (Lagrangian formulation). For instance, if we need to simulate
a case with sticking friction using αf = 0.3 in a Lagrangian approach, for a fixed mixture
law thickness ε = 0.25mm we should use ηlub = 4.95MPa.s in our monolithic Eulerian
approach. This means that the couple (ηlub, ε) = (4.95, 0.25) in CIMLib should give the
same results as when using αf = 0.3 in Forge®.

The curves are plotted in the same manners as before. The results are compared
in Figure 5.8. Mainly, the curves show good agreement in both softwares. The overall
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average error does not exceed 4%.

(a) (b)

(c) (d)

Figure 5.8: Comparison of the velocities obtained with sliding friction in both Forge® and
CIMLib. Curves are plotted at t = 3.46 s for αf = 0.3 on a cutting plane in the thickness for
y = 0 : (a) and (b) compare the velocity vx respectively plotted on the inner and outer outline
using a mixture thickness ε = 0.25mm. (c) and (d) compares the velocity vz respectively plotted
on the inner and outer outline using a mixture thickness ε = 0.25mm.

To assess even more the capacity of this Eulerian method to impose sliding friction,
we attempt to model the same case by decreasing drastically αf to 0.03. For the same
thickness ε = 0.25mm, the corresponding ηlub is now equal to 0.495MPa.s. On the
same cutting plane, the results were inspected. In Figure 5.9(a), the superposition of
curves plotted in both softwares reveals this time a relatively big gap between the results.
They seem almost parallel one to another. The velocity vx obtained in CIMLib is almost
exactly the same found for sticking friction. When examining in details the cause of
this difference, we noticed that for this particular αf , ηlub =0.495MPa.s is very small
in comparison with ηd = 66MPa.s. And since we are using a small thickness mixture
equal to 0.25mm, the exact value of ηlub was not reached in the boundary layer. Actually,
the latter is almost non-existent as illustrated in Figure 5.9(b). This can be solved by
increasing the mixture thickness to ε = 0.5mm for instance. The curves are compared
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again in Figure 5.9(c). The curves fit almost perfectly except on the edge where an odd
hill is visible in the vicinity of z = h. Figure 5.9(d) presents the reason behind this bump:
even though the boundary layer is perfectly represented, a miss-functioning is detected on
the upper corner. Since ηlub =0.99MPa.s (corresponding to the new mixture thickness
0.5mm) is very small in comparison with ηd = 66MPa.s. The resulting viscosity is much
smaller than ηd as well and is translated in bigger displacement on the top (for z = h).

(a) using a mixture thickness ε = 0.25mm. (b) using a mixture thickness ε = 0.25mm.

(c) using a mixture thickness ε = 0.5mm. (d) using a mixture thickness ε = 0.5mm.

Figure 5.9: (a) and (c) present a comparison of the velocities vx obtained with sliding friction
in both Forge® and CIMLib using respectively ε = 0.25mm and ε = 0.5mm . Curves are
plotted at t = 3.46 s for αf = 0.03 on the outer outline of a cutting plane in the thickness for
y = 0. (b) and (d) present a zoom of the quadratic mixture law using respectively ε = 0.25mm
and ε = 0.5mm .

Following the last analysis, a major limitation was noticed. The proposed method
gives altogether great results for the chosen αf values . Nevertheless, it cannot be gener-
alized for the whole range of αf (respectively (ηlub, ε)) especially for smaller values. The
mixture thickness ε was proven to be a key-parameter affecting significantly the results.
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It should be big enough to represent properly the boundary layer but remains insufficient
for very small values of αf .

To conclude, we can say that the boundary layer should be a good candidate to sim-
ulate fiction in an Eulerian framework. However, a proper rpresentation of the boundary
layer was proven to be a delicate matter as shown in Figure 5.9.

Next, we present a directional solver attempting to model bilateral sliding friction.

5.3 Directional Solver

To model the contact problem, we propose in this section developing an anisotropic
solver. A long reasoning was behind this choice. Two types of contact are usually available:
bilateral and unilateral contact. The bilateral contact can be expressed as an extension
of the formulation proposed in the previous section. We need to impose a linear mixture
law in the normal direction and a quadratic mixture law in the tangential direction. The
first insures a sticking contact in the normal direction whereas the second allows sliding
in the tangential direction. If we successfully represent a directional tool, the same results
obtained in Figure 5.9 are expected but with a slight improvement in the critical zones
( in the vicinity of the corners ). This is the main focus of this section. We should note
that an anisotropic solver can be exploited in many ways.

After breaking these facts, developing an anisotropic solver seems to be the right
candidate to our approach. We began searching in the literature for similar works or at
least for any directional notion that we can exploit to our favor. Two particular methods
stand out. The first category is used frequently in oceanography and geology modeling
[Bellec et al., 2013][Iftimie and Planas, 2006][Zhang and Fang, 2008]. They generally pro-
poses to represent the consistencies anisotropy using a diagonal tensor. In other words,
the scalar consistency is replaced by a tensor, where the different consistencies are direc-
tionally dependent. They frequently suppose that the consistency in the z−direction is a
small value tending toward zero:

η =


ηx 0 0
0 ηy 0
0 0 ηε

 (5.10)

where ηx, ηy and ηε are respectively the consistencies in x, y, and z directions with
ηε → 0.

Using this tensor, the Navier-Stokes equations are rewritten:

∂v

∂t
−
(
ηx

∂2

∂x2 + ηy
∂2

∂y2 + ε
∂2

∂z2

)
v + v.∇v = −∇p

div v = 0
(5.11)
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Several simplifications are usually used to reduce the equations into Saint-Venant
equations (known as shallow water equations as well).

The second category based on the fiber theory proposes a more general form
to portray the anisotropic viscosity by introducing an orientation tensor. Based on the
work of [Folgar and Tucker, 1984], [Redjeb, 2007] proposes a new decomposition using the
strain rate tensor ε(v). As a result a new behavior law taken into account the directional
viscosity is presented.

Note that several work were dedicated to prove the existence and unicity of the
solution in the anisotropic equations [Paicu, 2005] [Iftimie and Planas, 2006]. We highlight
in particular, the work presented in [Besson et al., 1990] proving the existence and unicity
of the anisotropic solution in the same Sobolev spaces used in our standard formulation
(described in sec. 2.5.4.1).

In this work, we rather chose the second approach to express the anisotropic con-
sistency. Inspired by their decomposition, the stain rate tensor ε(v) is multiplied by an
orientation tensor a to express the anisotropy. The orientation tensor will determine
mainly in which direction the deformation/velocity is greater.

The deviatoric stress tensor can be expressed as follows:

s = [ε(v).a+ a.ε(v)] (5.12)

in which a is the orientation tensor depending of the anisotropic consistency η.

If η =


ηx 0 0
0 ηy 0
0 0 ηz

 denotes the diagonal consistency tensor with ηx, ηy and ηz

respectively the consistencies in the x, y and z directions, the orientation tensor a can
take the following form:

a = tRηR (5.13)

where R is a rotation matrix .
Equation (5.13) guaranties that the couple (η,R) offers a general description of the

anisotropy (i.e. in all directions).
Combining equations (5.12) and (5.13), the deviatoric tensor is now

s =
[
ε(v).tRηR +t RηR.ε(v)

]
(5.14)

Since R is antisymmetric and η is diagonal then the orientation tensor a is symmetric
(ta =t (tRηR) =t RηR = a). By that, we insure that the deviatoric part of the Cauchy
tensor remains symmetric as well.

Note that if R is equal to the identity tensor I and all the directional consistencies are
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equal (i.e. ηx = ηy = ηz), we recover the classic form of the deviatoric tensor s = 2ηε(v).
To conclude, the system to be solved is summarized by:


∇.σ = 0
∇.v = 0
σ = [ε(v).a+ a.ε(v)]− pI

(5.15)

in which the inertia term are dropped for sake of simplicity.

5.3.1 Weak formulation

To retrieve the weak formulation of (5.15), the same steps as in chapter 2 are used.
The constitutive equations are multiplied by the test function couple (w, q). The only
noticeable difference is replacing s by ε(v).a + a.ε(v). This substitution leads to new
terms in the variational formulation. The integral (2ηε(v) : ε(w))Ωi

will be replaced by
the following one (ε(v).a : ε(w))Ωi

+ (a.ε(v) : ε(w))Ωi
:

 (ε(v).a : ε(w))Ωi
+ (a.ε(v) : ε(w))Ωi

− (p,∇.w)Ωi
= 0

(∇.v, q)Ωi
= 0

(5.16)

5.3.2 Spatial discretization

In this section, we recall some basics about the spatial discretization of the incom-
pressible Stokes equations by the finite element method. The emphasis will be on the new
terms introduced in system (5.15). Then we describe the implementation of our code in
CIMLib. In order to simplify the problem into a practical for computation, we will be
working locally on each simplex K.

Let (N i)i=1,...,D denote the nodal shape functions. Then the solution v and the test
function are written as follows :

vK =
D∑
i=1

viN i and wK =
D∑
j=1

wjN j

As mentioned earlier, the only modifications will concern the local matrix denoted
Alocvv (see equation (2.68) in chapter 2 ). It is the matrix form of the following term found
in the classic solver :
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ˆ

K

ε
(
N i
k

)
: ε
(
N j
l

)
dK =



1
2

ˆ
K

∂N i

∂xl

∂N j

∂xk
dK if k 6= l

1
2

ˆ

K

d∑
m

∂N i

∂xm

∂N j

∂xm
dK + 1

2

ˆ

K

∂N i

∂xl

∂N j

∂xl
dK if k = l

(5.17)

where N i
k is the kth component of the shape function on the ith node.

However computing the new Alocvv in system (5.16) proves to be more expensive than
the classical one. For instance,

εik.a =



∂N i

∂x1
ak1 · · · ∂N i

∂x1
akk · · · ∂N i

∂x1
akd

∂N i

∂x2
ak1 · · · ∂N i

∂x2
akk · · · ∂N i

∂x2
akd

... ... ... ... ...
d∑
m

∂N i

∂xm
am1 + ∂N i

∂xk
ak1 · · ·

d∑
m

∂N i

∂xm
am1 + ∂N i

∂xk
akk · · ·

d∑
m

∂N i

∂xm
am1 + ∂N i

∂xk
akd

... ... ... ... ...
∂N i

∂xd
ak1 · · · ∂N i

∂xd
akk · · · ∂N i

∂xd
akd


(5.18)

Instead, we write (εik.a+ a.εik) : εik using the gradient decomposition. The new Alocvv
is now computed using the following form:

Alocvv = 1
4

ˆ
K

[(
∇N i

k.a+ t∇N i
k.a
)

+
(
a.∇N i

k + a. t∇N i
k

)]
:
(
∇N j

l + t∇N j
l

)
dK (5.19)

Equation (5.19) gives eight contraction terms leading to eight local matrices. This
increases the computational time. To overcome this increase, we compute only four ma-
trices defined by equations (5.20) to (5.23) .

Aloc1 =
ˆ
K

∇N i
k.a : ∇N j

l dK (5.20)

Aloc2 =
ˆ
K

∇N i
k.a : t∇N j

l dK (5.21)
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Aloc3 =
ˆ
K

t∇N i
k.a : ∇N j

l dK (5.22)

Aloc4 =
ˆ
K

t∇N i
k.a : t∇N j

l dK (5.23)

The other four are deducted by computing their transpose (5.24) :

Aloc5 = tAloc1 , Aloc6 = tAloc2 , Aloc7 = tAloc3 , Aloc8 = tAloc4 (5.24)

The local matrix Alocvv is now the sum of all the individual matrices defined above:

Alocvv = 1
4
(
Aloc1 + Aloc2 + · · ·+ Aloc7 + Aloc8

)
(5.25)

Term by term decomposition:

(
∇N i

k.a
)
n,m

=


0 if n 6= k
m∑
p=1

∂N i

∂xp
apm if n = k ∀m = 1, . . . , d (5.26)

(
t∇N i

k.a
)
n,m

=



∂N i

∂x1
ak1 · · · · · · · · · ∂N i

∂x1
akd

... ... ... ... ...

... ... ∂N i

∂xn
akm

... ...
... ... ... ... ...

∂N i

∂xd
ak1 · · · · · · · · · ∂N i

∂xd
akd


(5.27)

∇N i
k.a : ∇N j

l =


0 if k 6= l∑
m

[(∑
n

∂N i

∂xn
anm

)
∂N j

∂xm

]
if k = l

(5.28)

∇N i
k.a : t∇N j

l =
(∑

p

∂N i

∂xp
apl

)
∂N j

∂xk
(5.29)

t∇N i
k.a : ∇N j

l =
d∑
m

[(
∂N i

∂xl
akm

)
∂N j

∂xm

]
(5.30)

t∇N i
k.a : t∇N j

l =
d∑
n

[(
∂N i

∂xn
akl

)
∂N j

∂xn

]
(5.31)
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5.3.3 Variational Multi-scale Method

Similar to the classic Navier-Stokes Solver, the anisotropic Stokes solver is unstable
as well. A stabilization technique should be put in place. A decision had to be made
between the P1+/P1 and the VMS technique. An equivalence between these two methods
was established in [Brezzi et al., 1997]. The choice fell on the latter. It is more general
(it can be used in many cases) and offers a simpler yet efficient stabilization to our
problem. The stabilization is insured via one parameter called τc . In other words, the
condensation needed in P1+/P1 is avoided and instead automatically managed using τc.
In what follows, an extension of the VMS stabilization technique presented in chapter 2
is adapted to our system of equation(5.12). The upside of this choice is our ability to use
the same VMS technique by only replacing the stabilization parameter with the new one.

Stabilization techniques are used for numerous problems nowadays, the literature of-
fers many eligible stabilization parameters [Tezduyar and Osawa, 2000a]. We mainly were
interested in the work presented in [Principe, 2008] where a new stabilization parameter
taking into account the anisotropy is proposed.

The same reasoning is used as before. The solution spaces V and Q are respectively
decomposed into two spaces Vh and Qh (resolvable space) and Ṽk and Q̃k (sub-grid scale
space): (V,Q) = (Vh⊕Ṽk, Qh⊕Q̃k) . Thus the unknowns of the problem (v, p) are replaced
by (vh+ ṽ, ph+ p̃). The weak formulation is written using the same decomposition. Rather
than solving it directly, the author of [Principe, 2008] transforms the equation to the
reference domain, then a Fourier analysis of the sub-scale problem is used as proposed in
[Codina, 2002].

After a lengthy calculation, a 2D stabilization parameter is computed in terms of
the velocity, viscosity and the mesh size.

We adapted it to our needs by supposing that the viscosity and velocity take re-

spectively the following forms η =


η1 η12 η13

η12 η2 η23

η13 η23 η3

, v =


v1

v2

v3

.
The new stabilization term, customized for anisotropic consistency and mesh orien-

tation can be expressed as:

τc = (4Mη + c)−1/2 where c = 4
(
v2

1
h2

1
+ v2

2
h2

2
+ v2

3
h2

3

)
(5.32)

in which M is the mesh metric and h1, h2 and h3 are the mesh sizes in the different
directions. Note that since we are solving anisotropic Stokes equations, the convection
term c is dropped in the following applications.
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5.3.4 Applications

As explained previously, the main focus behind the anisotropic solver was to recreate
a bilateral sliding contact. Nevertheless, this solver can be of a great importance for other
applications in particular for anisotropic flows of viscoplastic materials. We begin by
applying the anisotropic solver on a free flow case for two reasons: First, to insure that
the solver is perfectly running and second to give a general idea on how it can be used
in other applications. Afterward, the solver is used to model bilateral sliding contact in
large deformation problems. The center of attention is to evaluate this solver e.g if it is
general enough to offer the needed information or if it requires additional manipulation.

5.3.4.1 Free flow

In the computational domain [0; 1] × [0; 1] × [0; 1]m3, an anisotropic material is
filled initially in the back corner of the domain to take the form of a quarter of a cylinder
(symmetries are applied on both sides). The radius R and height H are respectively equal
to 0.4m and 0.85m (see Figure 5.10).

Figure 5.10: Initial position of the anisotropic material.

The remaining space is supposed to be filled with air . The air and the material
densities are respectively ρair = 1 kg/m3 and ρm = 5000 kg/m3 . The air viscosity is
ηair = 10−5 Pa.s . As for the anisotropic material, its viscosity is no longer similar in all

directions. It is expressed as a tensor ηm =


106 0 0
0 104 0
0 0 104

 where the diagonal terms

represent the viscosities in the different directions. The material flows due to gravity with
no additional external forces. The evolution is followed during time. The global domain
is meshed using 29 000 nodes. The simulation is launched on 4 cores.

Since the viscosity in the x−direction is bigger than the one in the y−direction, the
material is thicker and should move slower in this direction. Figure 5.11 confirms this
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fact. The velocities maps in both directions are presented at t ≈ 1 s. It is clear that
the velocity vy is bigger than the velocity vx, the material moves forward faster in the
y−direction .

(a) (b)

Figure 5.11: Maps of the velocity components vx and vy at t ≈ 1 s

Figure 5.12 completes this discussion. To visualize even more the progress of the
anisotropic material, the zero-isovalue is presented at t ≈ 2.1 s. The evolution is indeed
more visible in the y−direction. When inspected closely, we noticed an uneven top (Figure
5.12a). This is not considered as an unusual behavior. In fact, since the material advances
more in one direction under nothing other than gravity, less material is located in the
center which means less support. This can generate a slack region in the center (the
corner vicinity).

(a) (b)

Figure 5.12: Side and upper views of the final position of the material corresponding to t ≈ 2.1 s.

Though this case is simple and maybe considered academic, it is the perfect example
to illustrate the performance of the anisotropic solver. Its behavior is overall satisfactory.
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5.3.4.2 Towards contact modeling

An intermediate step before applying the anisotropic solver to contact problem is
presented hereby. The computational domain [0; 1] × [0; 1] × [0; 1]m3 is formed by two
sub-domains, the deformable material (in red) and the lubricant (in blue) covering the top
and the bottom (Figure 5.13). Note that the lubricant in this case is no longer represented
implicitly via a quadratic mixture law. Instead it is explicitly defined as a sub-domain
of thickness 0.1m. On the domain’s upper and lower boundaries, we impose velocities of
respectively 5m/s and −5m/s. These boundary conditions emulate in the simplest way
a contact problem without actual contact between tools and the deformable body.

Note that the chosen lubricant thickness is somewhat larger than what is expected
in reality, but this case is purely academic to test the behavior of the anisotropic solver.

Figure 5.13: The computational domain formed by two phases: the deformable body and the
lubricant.

The consistencies are defined as diagonal tensors. The deformable body consistency
is isotropic. The anisotropy is expressed in the lubricant consistency. Thus, ηd1 = ηd2 =
ηd3 = ηd (Pa.s) and the consistency tensors are expressed as follows:

ηd =


ηd 0 0
0 ηd 0
0 0 ηd

 =


107 0 0
0 107 0
0 0 107

 and (5.33)

ηlub =


ηlub 0 0
0 ηlub 0
0 0 ηd

 (5.34)

In this case, we are using an Eulerian orthonormal frame. The rotation matrix R is
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the identity tensor (no rotation is needed):

R =I ~n =


0
0
1

 (5.35)

Note that we fixed ηlub3 = 107 Pa.s, and we control the anisotropy by changing ηlub1

and ηlub2 . For instance, ηlub1 and ηlub2 takes three different values: 107 Pa.s, 105 Pa.s and
103 Pa.s. For the first value, the lubricant consistency is isotropic. The resulting velocity
profile should be the same as for a sticking friction. The latter values suggest that the
anisotropic ratios are respectively 102 and 104. We should expect more sliding impacting
the velocity profiles. Figure 5.14 illustrates the velocities plotted on an outer section in
the thickness positioned on the middle of the cube side.

Figure 5.14: The impact of a variant lubricant anisotropic consistency on the velocity profile
vx.

Notice that for ηlub1 = ηlub2 = 107 Pa.s, the velocity profile is perfectly parabolic.
This is the kind of response we get when sticking contact is modeled. When decreasing
the lubricant consistency, the anisotropy ratio increases and more sliding is allowed on the
edges of the deformable body. More sliding results in bigger velocities on the edges and
the velocity profile (in the material) is more and more flat with the decreasing consistency.
The velocity curves in the deformable body confirm our analysis. Note that the velocity
picks are located in the lubricant domain which is perfectly normal. Smaller the lubricant
consistency, lesser it resists to displacement (e.g bigger the velocity) . To conclude, the
behavior of the anisotropic solver is once again proven logic and satisfactory.
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5.3.4.3 Contact

Now that the well-behavior of the anisotropic solver is approved, we attempt using
it to model a 2D-contact problem. The lubricant phase is presented implicitly using the
quadratic mixture law (contrary to the previous case). Combined together, we await an
imitation of a bilateral sliding contact. The monolithic anisotropic consistency tensor η
defined all over the domain is obtained in a delicate manner. In the normal direction, it
is recovered using a linear mixture law. Whereas in the tangential directions, a quadratic
mixture law enabling ηlub is used:

η =
 ηquad 0

0 ηlin

 (5.36)

where ηquad and ηlin are the quadratic and linear mixture laws defined all over the domain.
To fix the ideas, we should mention that the anisotropy in η is a direct outcome

from the lubricant anisotropy:
 ηlub 0

0 ηlin


Equation (5.36) expresses the tensor in the Cartesian frame. To generalize its form,

we apply a rotation matrix R.
The rotation matrix R is determined using ~n, the normal vector to the level set

function φ:

R = (n, n⊥) ~n =
 nx

ny

 = ∇φ
||∇φ||

(5.37)

In this 2D contact problem, the upper tool moves downward with a velocity of
0.3m/s. The lubricant, deformable body and tools consistencies are respectively equal to
700Pa.s, 104 Pa.s and 105 Pa.s.

The results were inspected and did not meet our expectations. The overall results
issued from this case were similar to the ones obtained using a linear mixture law e.g.
sticking contact.

The cause was immediately identified. Figure 5.15 illustrates the consistency com-
puted all over the domain using the anisotropic solver and a quadratic mixture law. A
zoom focused on the corner uncovers an irregular zone in which the consistency is unex-
pectedly large. To complete the discussion, the flow material presented using arrows is
illustrated in Figure 5.16 at t = 0.014 s. In the corner, when using the anisotropic solver
the deformable body is unable to slide properly due to the barrier created by the large
consistency. The flow should be more like the one issued when using the quadratic law.
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(a) (b)

(c) Zoom focused on the corner (d) Zoom focused on the corner

Figure 5.15: At t = 0 s, a superposition between the anisotropic consistency (on the left) and
the consistency using the quadratic mixture law (on the right).

(a) (b)

(c) Zoom focused on the corner (d) Zoom focused on the corner

Figure 5.16: At t = 0.014 s, a superposition between the material flow (illustrated by arrows)
using an anisotropic consistency (on the left) and a quadratic mixture law (on the right).
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Though the behavior of the anisotropic solver was proven satisfactory for other
applications, it remains limited when it comes to contact modeling. This limitation arises
due to the level set gradient. The computed gradient shows singularities and leads to
an ill-defined consistency tensor on the corners. It leads to rotated consistency in the x
direction forming a barrier preventing the material from sliding freely in the tangential
direction.

5.4 Conclusion

This chapter attempts to model friction and contact in an Eulerian framework. We
presented a quadratic mixture law to introduce a lubricant implicitly between the tool
and the deformable body. The lubricant consistency and thickness are deduced by an
identification technique with the friction parameter in a Norton-Hoff friction law. We
carry out a ring test case and the results were compared with Forge®. They were found
comparable but highly dependent of the boundary layer thickness. For a small thickness,
the lubricant consistency is overpowered by the tools/deformable body consistencies and
consequently the boundary layer is not properly presented. However for a large thickness,
an odd behavior is detected near the corners.

The development of the directional solver was meant to model bilateral sliding con-
tact. A VMS stabilization technique was used to insure the stability. The new solver was
validated with two different cases: i) in a free flow simulation and ii) an explicit contact
case. However when applying the directional solver to a 2d case, where the friction is
represented implicitly using a quadratic mixture law, some difficulties were confronted.
The gradient has proven to be the problem, it introduces a rotated consistency values
on the corner of the deformable body. It acts like a barrier preventing the sliding of the
deformable body. An alternative method, non dependent of the mesh ( here we mean the
interface thickness of the level set ), is the use of Navier boundary conditions. The latter
boundary condition is a combination between a Dirichlet conditions and the Newman
ones. However to apply it, we should compute explicitly the contact surface between the
tool and the deformable body.
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Résumé en Français

Ce chapitre est dédié à la modélisation du frottement et du contact dans un cadre
Eulérien. Nous avons présentés une loi de mélange quadratique pour introduire implicite-
ment un lubrifiant entre l’outil et le corps déformable. La viscosité et l’épaisseur du lu-
brifiant sont déduites par une technique d’identification avec le paramètre de frottement
dans une loi Norton-Hoff. En utilisant le cas de déformation d’un anneau, les résultats de
notre approche Eulérienne utilisant la loi quadratique ont été comparés ave Forge. Les
résultats sont satisfaisants mais fortement dépendant de l’épaisseur de la couche limite.
Pour une petite épaisseur, les consistances de l’outil et du corps déformable emportent
sur la viscosité du lubrifiant. Par conséquent, la couche limite n’est pas proprement
représentée. Pour surmonter ce problème, le maillage est la réponse-clé pour une propre
représentation. Dans le but de modéliser un problème de contact glissant bilatéral, nous
avons proposé un solveur directionnel stabilisé par la technique VMS. Le nouveau solveur
a été validé avec deux cas différents : i) dans une simulation d’un écoulement libre d’un
matériau anisotrope et ii) un cas de contact explicite. Cependant en appliquant le solveur
directionnel à cas 2D, où le frottement est représenté implicitement en utilisant une loi
de mélange quadratique, quelques difficultés ont été confrontées. Le gradient s’avérant
être l’origine, il agit comme une barrière empêchant le glissement du corps déformable.
Pour surmonter cette difficulté, nous devons revisiter la définition des normales dans notre
formulation directionnelle.
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Conclusions

1 Conclusions

This work is one of the first attempts studying the feasibility of multi-domain large
deformation problems using an unusual approach, "the monolithic Eulerian technique".
The resulting model is desired to be able of i) following complex geometries evolution
during time, ii) describing multi-domain problems, iii) modeling friction and contact and
iv) giving results more or less comparable to real applications (using Forge® as the base
of our superpositions). All the mentioned objectives has to be accomplished in a highly
parallel scalable environment.
In other words, this work is the first step toward an Eulerian Forge®:

� It has to assess if the current Eulerian approach -available in CIMLib- is fit to large
deformation modeling.

� It has to propose and test feasible development and recommend answers to unsolved
aspects for future works.

� It has to conclude if the resulting approach has industrializing potential on the long
run.

After an overview of the different approaches fit for large deformation modeling, the
literature confirmed that the Eulerian approach is rarely used for these kind of problems
(chapter 1). Therefore, adopting the Eulerian technique will require an outside of the
box thinking to find answers to our problems. However, the undeniable potential of this
method makes it a great candidate (e.g the capacity of managing automatically contact
detection). The monolithic approach -base of the CIMLib- is described in details in the
first part of chapter 2.

173
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To adapt the standard version to large deformation problems, additional develop-
ments and manipulations are needed . The second part of chapter 2 is fully dedicated to
these improvements:

� A new quadratic mixture law was implemented. It offers the option of adding a new
phase between two interacting bodies to simulate the presence of a lubricant for
instance. Note that this is a great deal when attempting large deformation modeling.
Especially when there is a need to model friction between different domains.

� A new manner to impose boundary conditions was presented. It enables the users to
let the air escape from the computational domain emulating actual vents.

� Technical ameliorations were proposed as well. We recommend an optimal choice of
parameters such as i) mixture law weight, order of interpolation and a variable time
step to improve volume conservation and ii) mesh size choice for the stabilization
of the convection solver.

chapter 3 and chapter 4 were entirely dedicated to numerical applications. The first
is devoted for the parallel environment in CIMLib and its efficiency. The overall per-
formance was found satisfactory. The second presents different applications to evaluate
the capacity of the approach in several scenarios: i) deforming complex geometries such
as crankshafts and connecting rod, ii) deforming simple geometries but stacked in great
numbers (up to 256 deformable geometries). The results were validated via Forge® sim-
ulations and found very satisfactory. In some cases (with high numbers of deformable
bodies), the performance was even more resilient than Forge®. After these comparisons,
we were reassured that this approach exhibits real potential to compete with an industrial
software. To push even further, attempts to model friction and contact problems in an
Eulerian approach were the subject matter of chapter 5. Simple yet effective, propositions
were formed:

� To model a sticking friction, a linear mixture law is the answer. The transition between
a high consistency (for the solid) and a lower consistency (for the deformable body)
results with a high resistance emulating numerically friction. The results were vali-
dated by deforming a ring between two rigid tools in both CIMLib and Forge®. The
results were a perfect match.

� To control friction, a quadratic mixture law is used enabling a fictitious boundary
layer imitating the presence of a lubricant between the different bodies. The lubri-
cant viscosity is determined in terms of the deformable body consistency and the
boundary layer thickness. This relationship was established via a superposition with
Lagrangian friction to make sure the same cases are modeled. Again, a comparison
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with simulations carried out in Forge® were established. The results showed the
same behavior but exhibited some limitations as well for certain cases. The results
were highly dependent of the boundary layer thickness. If the needed thickness is
very small, the mesh may not detect the boundary layer and the lubricant consis-
tency is not reached. In this case, the same results as in sticking friction were found.
If the thickness is increased to prevent this problem but a big gap is present between
the different consistencies, an unrealistic behavior is detected in the vicinity were
the different values meet (on the corners).

Even though the quadratic law was proven effective for some cases in controlling
friction, the overall performance cannot be generalized.

� The directional solver is introduced to model bilateral sliding contact. The consistency
is expressed as a tensor. Although our intentions were to model contact in a general
way, the solver can be used for other high-demand applications such as anisotropic
polymer flow. To test the well-functioning of the solver, it was utilized for a simple
anisotropic free flow case. Its behavior was found impressive. High hopes were ex-
pected for contact applications. When testing it in a simple 2D case a draw-back was
noticed. The directional formulation does not take into account the critical zone (on
the corners) where points may have an ill-defined normals. A rotated consistencies
resulted near the corner and limited the proper progress and sliding of the material.
To avoid this matter, this crucial zone should be properly managed. Several steps
are proposed such as a new formulation using Navier slipping conditions.

To conclude, the Eulerian approach express high potential to compete, in the long
run, with a perfectly mastered software such as Forge®. Additional developments are
needed. Still, its capacity is undeniable especially when taking into consideration that
few works deal with these large deformation problems.

Note that during this study only materials with Newtonian behavior law were con-
sidered. Thermal effects were neglected as well. Which brings us to the next point: the
recommendations and perspectives.

2 Recommendation and Perspectives

To recapitulate, future works should be directed towards :

� Studying the feasibility of multi-domain contact problem in this Eulerian approach:

• The directional solver should be revisited and explored to asses if it will be
ever able to describe properly contact problems. Defining the normal using the
level set of the deformable body leads to a rotated consistency on the corners
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preventing the sliding. Redefining the normal in a new manner could be the
solution to this limitation.

• In term of friction, we were able to represent sliding. However, representing
the consistency in the boundary layer was challenging. The adopted method
relies heavily on the lubricant consistency and thickness (ηlub, ε). An alternative
method is to introduce Navier slip/no-slip conditions. It does not depend of the
mesh (especially the thickness interface ε). However the use of such method
requires an explicit representation of the contact zone. In other words, the
zero isovalue should be reconstructed to be defined on nodes as in Lagrangian
formulations.

� Varying Norton-Hoff laws with a sensibility parameter m different then 1.

We should note that in order to pursue this point, the Norton-Hoff law may need
need regularization. It can be accomplished using a hyperbolic tangent function for
instance.

� Taking into account thermal effects by coupling diffusion-convection equations with the
current mechanical system.

In an Eulerian framework, coupling the thermal and mechanical problem can be
more beneficial than in a Lagrangian formulation. It takes into account different
interacting heterogeneities and enables us to study/follow the thermal transfers
easier.

� Optimizing different algorithm affecting the computing time and the parallel efficiency
such as the convection solver assembly and the balancing load algorithm.

• The assembly time of the LevellerT solver is very comparable to a Stokes
problem. In fact, the convection problem is relatively small when compared
to the mechanical problem (Stoke or Navier-Stokes) and should not consume
a large amount of time. We recommend thus, rewriting the solver in order to
optimize the assembly time.

• The parallel strategy of the adaptation algorithm should be improved as well.
In a parallel framework, the adaptation is executed twice. In addition, the
mesh generator acts locally on nodes and therefore needs an excessive interface
displacement (interfaces between cores). The latter strategy should be revisited
to reduce its high cost.



 

Modélisation des problèmes de grandes déformations multi-domaines par 

une approche Eulérienne monolithique massivement parallèle 

RESUME : La modélisation des problèmes multi-domaine est abordée dans un cadre 

purement Eulérien. Un maillage unique, ne représentant plus la matière, est utilisé. Les 
différentes frontières et leur évolution sont décrites via des outils numériques tels que la 
méthode Level Set. Les caractéristiques locales de chaque sous domaines sont 
déterminées par des lois de mélange.  
Ce travail est une des premières tentations appliquant une approche Eulérienne pour 
modéliser de problèmes de grandes déformations. Dans un premier temps, la capacité 
de l’approche est testée afin de déterminer les développements nécessaires.  
Le frottement entre les différents objets est géré par un lubrifiant ajouté dans une 
couche limite. Combinée avec une technique d’identification, une nouvelle loi de 
mélange quadratique est introduite pour décrire la viscosité du lubrifiant. Des 
comparaisons ont été effectuées avec Forge® et les résultats sont trouvés satisfaisants. 
Pour traiter le contact entre les différents objets, un solveur directionnel  a été 
développé. Malgré que les résultats soient intéressants, il reste le sujet de nouvelles 
améliorations. La scalabilité de l’approche dans un environnement massivement 
parallèle est testée  aussi. Plusieurs recommandations ont été proposées pour s’assurer 
d’une performance optimale. La technique du maillage unique permet d’obtenir une très 
bonne scalabilité. L'efficacité du parallélisme ne dépend que de la partition d'un seul 
maillage (contrairement aux méthodes Lagrangiennes). La méthode proposée présente 
des capacités indéniables mais reste loin d’être complète. Des pistes d’amélioration sont 
proposées en conséquence. 

Mots clés : approche Eulérienne monolithique, Level Set, adaptation de maillage anisotrope, loi 

de mélange quadratique, solveur directionnel, calcul parallèle. 

Modelling multi-domain large deformation problems using an Eulerian 

monolithic approach in a massively parallel environment 

ABSTRACT : Modeling of multi-domain problems is addressed in a Purely Eulerian 

framework. A single mesh is used all over the domain. The evolution of the different 
interacting bodies is described using numerical tools such as the Level Set method. The 
characteristics of the subdomains, considered as heterogeneities in the mesh, are 
determined using mixture laws. 
This work is one of the first attempts applying fully Eulerian Approach to Model large 
deformation problems. Therefore, the capacity of this approach is tested to determine 
necessary developments. The friction between the different objects is managed by 
adding a boundary layer implying the presence of a lubricant. Combined with an 
identification technique, a new quadratic mixture Law is introduced to determine the 
lubricant viscosity. Comparisons have been performed with Forge® and results were 
found satisfactory. To treat the contact problem between the different objects, a 
directional solver was developed. Despite the interesting results, it remains the topic of 
further improvements. The scalability of the approach in a massively parallel 
environment is tested as well. Several recommendations were proposed to ensure an 
optimal performance. The technique of a single mesh guarantees a very good scalability 
since the efficiency of parallelism depends of the partition of a single mesh (unlike the 
Lagrangian Methods). The proposed method presents undeniable capacities but 
remains far from being complete. Ideas for future Improvements are proposed 
accordingly. 

Keywords : monolithic approach, Level Set, anisotropic mesh adaptation, quadratic mixture law, 

directional solver, parallel computing. 


	Introduction
	Industrial Motivation and Aim of this study
	The layout of this thesis 
	Bibliography

	State of the art
	Introduction
	Lagrangian Description
	Spatial discretization
	Temporal discretization
	Contact
	Contact search algorithms
	Contact detection
	Parallel strategies in contact detection
	Contact resolution


	Eulerian Description
	Interface modeling
	Contact formulation

	Arbitrary Lagrangian Eulerian Description
	Coupled Resolution
	Split operator

	Discussion and Conclusion
	Résumé en Français
	Bibliography

	Monolithic approach tools
	Introduction
	Interface Capturing
	Distance function
	Level Set Method
	Local Distance function
	Convected level set method
	Weak form


	Mesh Generation
	Anisotropic mesh adaptation
	Edge based error estimator
	Metric construction
	Extension to multi-component field

	Mechanical problem
	Governing equations
	Weak formulation
	Monolithic system
	Finite Element Formulation
	Spatial discretization
	Variational Multi-scale Stabilization 
	Stabilization parameter


	Mixture laws
	Linear mixture law
	Novel mixture law: Quadratic law

	New additions and Numerical Applications
	Test cases and proposed ameliorations
	Optimal parameter choices
	Weight of mixture laws
	Transport stabilization

	Air trapping
	Porous boundary conditions

	Conclusion
	Résumé en Français
	Bibliography

	Parallel Computing
	Introduction
	Concepts and Terminology
	Flynn's Classical Taxonomy
	Memory classification and access

	Performance of a Parallel Code
	Hardware performance
	Software performance
	Limits and Costs of Parallel Programming
	Serial fraction
	Communications between cores
	Load balancing


	Parallel computing in CIMLib
	S.P.M.D parallelization of the Navier-Stokes Solver
	Dynamic load balancing

	Applications
	Case presentation
	Navier-Stokes vs Stokes
	Coarse mesh: MPI Version and Bind to Core Option
	Coarse mesh: Hardware limitation and Round Robin Option
	Refined mesh
	Anisotropic mesh: Adaptation Scalability

	Conclusion
	Résumé en Français
	Bibliography

	Applications
	Introduction
	Industrial applications
	Connecting rod
	Crankshaft

	Multi-domain applications
	Ten Parallelepiped
	256 spheres

	Conclusions and Discussions
	Résumé en Français
	Bibliography

	Friction and contact 
	Introduction 
	Friction: from Lagrangian to Eulerian description
	Lagrangian Friction law
	Eulerian friction law
	Friction validation

	Directional Solver
	Weak formulation
	Spatial discretization
	Variational Multi-scale Method 
	Applications
	Free flow
	Towards contact modeling
	Contact


	Conclusion
	Résumé en Français
	Bibliography

	Conclusions
	Conclusions
	Recommendation and Perspectives


