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Abstract

This thesis is about the nonlocal properties of permutation symmetric states and the po-

tential usefulness of such properties in quantum information processing. The nonlocality

of almost all symmetric states, except Dicke states, is shown by constructing an n-party

Hardy paradox. With the help of the Majorana representation, suitable measurement

settings can be chosen for these symmetric states which satisfy the paradox. An extended

CH inequality can be derived from the probabilistic conditions of the paradox. This

inequality is shown to be violated by all symmetric states. The nonlocality properties

and entanglement properties of symmetric states are also discussed and compared,

notably with respect to persistency and monogamy. It is shown that the degeneracy of

some symmetric states is linked to the persistency, which provides a way to use device

independent tests to separate nonlocality classes. It is also shown that the inequalities

used to show the nonlocality of all symmetric states are not strictly monogamous. A new

inequality for Dicke states is shown to be monogamous when the number of parties goes

to infinity. But all these inequalities can not detect genuine nonlocality. Applications of

nonlocality to communication complexity and Bayesian game theory are also discussed.
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Re¬sume¬

Le sujet de cette the¡ se est sur les proprie¬te¬s non-locales des e¬tats syme¬triques invariant

sous les permutations des syste¡ mes et les usages potentiels de ces e¬tats dans le domaine

de traitement d’information quantique. La non-localite¬ de presque tous les e¬tats syme¬-

triques, hors les e¬tats de Dicke, est e¬tablie par une version e¬tendue du paradoxe de

Hardy. Grace a¡ la repre¬sentation de Majorana pour les e¬tats syme¬triques, des parame¡ tres

de mesure avec lesquels toutes les conditions du paradoxe sont satisfaites peuvent e√tre

trouve¬s. Une version e¬tendue de l’ine¬galite¬de CH peut e√tre de¬rive¬e a¡ partir des conditions

probabilistes de ce paradoxe. Cette ine¬galite¬ est viole¬e par tous les e¬tats syme¬triques.

Les proprie¬te¬s de la non-localite¬ et les proprie¬te¬s de l’intrication sont aussi discute¬es

et compare¬es, notamment par rapport a¡ la persistance et la monogamie. Des re¬sultats

indiquent que la de¬ge¬ne¬rescence de certains e¬tats syme¬triques est lie¬e a¡ la persistance,

qui donne une facÀon d’inventer des tests qui sont inde¬pendants des dispositifs vise¬ pour

se¬parer les diffe¬rentes classes de non-localite¬. Il est aussi montre¬ que l’ine¬galite¬ utilise¬e

pour de¬montrer la non-localite¬ des tous les e¬tats syme¬triques n’est pas monogame dans

le sens strict. Ne¬anmoins, une nouvelle ine¬galite¬ pour les e¬tats de Dicke est propose¬e,

qui est monogame quand le nombre de participants tends vers l’infinite¬. Malheureuse-

ment, toutes ces ine¬galite¬s sont incapables de de¬tecter la non-localite¬ authentique. Des

applications de la non-localite¬ a¡ la complexite¬ de communication et aux jeux baye¬siens

sont discute¬es.
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Chapitre0
Sommaire de la the¡ se

0.1 Résumé des chapitres

L’objectif de cette the¡ se, indique¬ par son titre, est d’examiner les caracte¬ristiques non-

locales des e¬tats syme¬triques afin de mesurer l’utilite¬ de ces e¬tats dans le traitement de

l’information quantique. Le sujet est aborde¬ d’une manie¡ re pe¬dagogique, avec un pre¬-

requis minimum d’informatique quantique et de fondement de la me¬canique quantique.

Le chapitre 2 donne tous les information ne¬cessaires pour comprendre la me¬canique

quantique de base et la notion de non-localite¬. La section 2.1 est un rappel de l’alge¡ bre

line¬aire essentielle pour la compre¬hension des structures line¬aires utilise¬es dans la me¬-

canique quantique : l’espace de Hilbert, l’ope¬rateur hermitique, etc. Les postulats de la

me¬canique quantique sont introduits dans la section 2.2. Les diffe¬rentes notions mathe¬-

matiques de la section pre¬ce¬dente acquie¡ rent alors des sens physiques. Les postulats

pre¬sente¬s ici sont des variations des postulats courants de la communaute¬ informatique

quantique, avec notamment l’inclusion de POVM dans le postulat de mesure. La section

prochaine donne un rappel de la the¬orie d’intrication. Sont introduits la notion de mesure

d’intrication et le re¬gime de l’ope¬ration locale et la communication classique. Les axiomes

dont les diffe¬rentes mesures d’intrication satisfont souvent sont aussi e¬nonce¬s. Un rappel

du de¬veloppement historique de non-localite¬, dont l’origine date de l’enfance de la

me¬canique quantique, est donne¬ par la section 2.4. Apre¡ s cette introduction historique,

les trois facÀons courantes pour montrer la non-localite¬ sont explique¬es : les fonctions de

corre¬lation, l’ine¬galite¬ de MABK avec les corre¬lations parfaites et le paradoxe de Hardy

avec l’ine¬galite¬ de CH. Cette section se termine avec une discussion de quelques re¬sultats

re¬cents qui tentent de re¬unir les diffe¬rentes facÀons de montrer la non-localite¬ : soit par

la ge¬ome¬trie convexe, soit par la the¬orie des cate¬gories ou par les hyper-graphes. La

dernie¡ re section de ce chapitre donne une introduction a¡ la technique nume¬rique utilise¬e

pour obtenir les re¬sultats nume¬riques dans les chapitres prochains : la programmation

semi-de¬finie.

1



Chapitre 0. Sommaire de la the¡ se

L’aspect ge¬ome¬trique des e¬tats syme¬triques est aborde¬ dans le chapitre 3, sous la

forme de la repre¬sentation de Majorana. La section 3.1 montre le lien intime entre les

nombres complexes et la ge¬ome¬trie. Les nombres complexes, en outre de la repre¬senta-

tion ge¬ome¬trique normale sur la plaine complexe, admettent une autre repre¬sentation

plus compacte sur la surface de la sphe¡ re de Riemann. Les automorphismes de cette

sphe¡ re, connus sous le nom de transformations de Mo�bius, ont une interpre¬tation directe

dans la the¬orie d’intrication des e¬tats syme¬triques comme les visualisations ge¬ome¬-

trique des classes SLOCC d’intrication. La section 3.2 pre¬sente l’outil principal pour

l’e¬tude de la non-localite¬ et l’intrication des e¬tats syme¬triques : la repre¬sentation de

Majorana. La repre¬sentation ge¬ome¬trique d’un e¬tat syme¬trique est pre¬sente¬e avec la

proce¬dure constructive de de¬composer un e¬tat syme¬trique en ses points de Majorana et

de construire un e¬tat syme¬trique a¡ partir d’un ensemble de points de Majorana. Quelques

proprie¬te¬s inte¬ressantes sont aussi de¬rive¬es a¡ partir de ces proce¬dures de de¬composi-

tion/ reconstruction. Ces proprie¬te¬s seront utilise¬es dans les chapitres ulte¬rieurs pour

de¬montrer la non-localite¬ des e¬tats syme¬triques. La section 3.3 est un rappel de l’aspect

physique de la repre¬sentation de Majorana et ses significations historiques, notamment

le lien entre la ge¬ome¬trie complexe et le spin physique. Le lien entre le spin et la rela-

tivite¬ restreinte n’est pas de¬montre¬ explicitement, ne¬anmoins quelque re¬fe¬rences sont

donne¬es [ PR84, PR86] . La dernie¡ re section de ce chapitre est une revue de re¬sultats

principaux d’une the¡ se pre¬ce¬dente sur l’intrication d’e¬tats syme¬triques [ Aul11a] . Le lien

entre les transformations de Mo�bius et les classes SLOCC d’intrication est donne¬ d’une

facÀon explicite. Les e¬tats syme¬triques dont les points de Majorana forment les solides de

Platon ont une signification particulie¡ re gra√ce a¡ la dualite¬ entre le solide de Platon forme¬

par les points de Majorana et le solide de Platon forme¬ par les points plus proches en

terme de la mesure ge¬ome¬trique d’intrication.

Le chapitre 4 contient principalement les re¬sultats techniques. La premie¡ re section

est un rappel du paradoxe de Hardy en deux parties, avec la proce¬dure pour retrouver

les bases de mesure qui satisfont les conditions du paradoxe. La prochaine section donne

l’extension du paradoxe de deux parties en n parties, ainsi que l’ine¬galite¬ e¬tendue, qui

est appele¬e P n dans cette the¡ se. La section 4.3 donne la preuve du the¬ore¡ me principal

qui montre que tous les e¬tats syme¬triques sauf les e¬tats de Dicke satisfont le paradoxe

pour n parties et par conse¬quent violent P n. Une partie de cette preuve montre comment

choisir les bases de mesure qui satisfont le paradoxe e¬tendu. La dernie¡ re section donne

la preuve de l’existence des bases de mesure qui permettent les e¬tats de Dicke de violer

P n, me√me si ils ne satisfont pas le paradoxe de Hardy e¬tendu.

Le chapitre 5 porte sur un aspect spe¬cial des e¬tats syme¬triques, qui se manifeste

sous la repre¬sentation de Majorana : la de¬ge¬ne¬rescence. La de¬ge¬ne¬rescence de¬note le

phe¬nome¡ ne que plusieurs points de Majorana d’un e¬tat coı�ncident. Il vient des racines

de¬ge¬ne¬re¬es d’un polyno√me. En utilisant la de¬ge¬ne¬rescence, il est possible de montrer

2



0.1. Résumé des chapitres

que l’intrication et la non-localite¬ persistent dans les sous-syste¡ mes. Cette persistance

est mis en e¬vidence par l’addition de plusieurs conditions au paradoxe de Hardy et

a¡ l’ine¬galite¬ P n pour donner une nouvelle ine¬galite¬ Qn
d. Ces conditions peuvent e√tre

satisfaites parfaitement seulement par un e¬tat correctement de¬ge¬ne¬re¬. Ainsi, ayant le

correct degre¬ de de¬ge¬ne¬rescence garantie la violation de Qn
d . L’utilisation de la program-

mation semi-de¬finie permet de classifier les e¬tats syme¬triques en classes non-locales

sous re¬gimes d’ope¬rations locales ou permutations des syste¡ mes (LUP). Les e¬tats ainsi

classifie¬s appartiennent aussi aux diffe¬rentes classes SLOCC, gra√ce au lien entre les

ope¬rations SLOCC et les transformations de Mo�bius.

Le chapitre 6 donne davantage d’analyse nume¬rique des proprie¬te¬s d’intrication et de

la non-localite¬ des e¬tats syme¬triques. La premie¡ re section analyse la violation de P n par

les e¬tats de GHZ et les e¬tats W quand le nombre de parties augmente. La violation est

toujours borne¬e par la mesure ge¬ome¬trique d’intrication a¡ cause de la structure de P n.

Malheureusement, a¡ cause de cette limite, Pn et Qn
d ne sont pas monogames. La notion

de monogamie, de¬finie dans les contextes d’intrication et de non-localite¬, est aborde¬e

en section 6.2. Bien que P n n’est pas monogame a¡ proprement parler, il existe quand

me√me de la monogamie dans un sens e¬largi. La dernie¡ re section pre¬sente une nouvelle

ine¬galite¬ pour les e¬tats de Dicke, inspire¬e par les re¬sultats de Heaney, Cabello, Santos et

Vedral. Cette ine¬galite¬ est strictement monogame lorsque le nombre de participants tend

vers l’infini. Ne¬anmoins, ni cette nouvelle ine¬galite¬ ni P n (ou bien Qn
d) ne peut de¬tecter

la non-localite¬ authentique.

Le chapitre 7 est de¬die¬ aux deux applications de re¬sultats obtenus dans les chapitres

pre¬ce¬dents : la complexite¬ de communication et la the¬orie des jeux baye¬siens. Il est

connu depuis plus de dix ans que la non-localite¬ a des applications en la complexite¬

de communication. Dans le cas le plus extre√me, avec une boite de PR (qui repre¬sente

des corre¬lations plus fortes que permis par la me¬canique quantique), la complexite¬ de

communication pour les fonctions boole¬ennes est rendue triviale. Cette section sur la

complexite¬ de communication commence par un rappel du mode¡ le pour deux parties,

et comment re¬duire la complexite¬ par des donne¬es ale¬atoires, prive¬es ou partage¬es.

Ensuite un avantage quantique est donne¬ pour certains fonctions qui n’ont pas d’avan-

tage classique avec des donne¬es ale¬atoires classiques. Cependant, plus de travaill est

ne¬cessaire pour de¬velopper un mode¡ le multi-partie avec relations au lieu de fonctions,

parce que les conditions du paradoxe de Hardy e¬tendu forment une relation. L’autre

application aborde¬e dans ce chapitre est les jeux baye¬siens, qui repre¬sentent les jeux

avec des informations incomple¡ tes. Des proce¬dures de transformations d’une ine¬galite¬

de Bell en un jeux baye¬sien existent de¬ja¡ . Le paradoxe de Hardy a e¬te¬ de¬ja¡ traduit en

un jeux baye¬sien avec une matrice de gains explicite. Un re¬sultat re¬cent de Brunner et

Linden [ BL12] donne un lien plus profond entre les jeux baye¬siens et la non-localite¬.

Le dernier chapitre re¬sume les nouveaux re¬sultats dans cette the¡ se, signale quelque
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nouveaux de¬veloppements dans les sujets similaires. Il envisage aussi des nouvelles

directions de recherche dans le futur et pose des questions ouvertes.
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0.2. La non-localité des états symétriques

0.2 La non-localité des états symétriques

La non-localite¬est une caracte¬ristique fondamentale de la me¬canique quantique qui est en

train d’e√tre reconnue comme une ressource cle¬dans la the¬orie du traitement de l’informa-

tion quantique, ayant des applications dans la se¬curite¬ dispositif-inde¬pendant [ BHK05,

Col06, PAM+ 10, MPA11] , la complexite¬ de communication [ BCMdW10] et le calcul

quantique par mesure [ RB01, AB09a] . Une autre caracte¬ristique lie¬e mais diffe¬rente est

la notion de l’intrication. Dans un cadre multi-partie, l’intrication se manifeste d’une

facÀon complique¬e : il existe diffe¬rentes classes d’intrication , chacune joue un ro√le po-

tentiellement diffe¬rent comme une ressource. Actuellement tre¡ s peu est connu si, et

comment, les richesses de l’intrication multi-partie sont re¬fle¬chis dans les caracte¬ristiques

non-locales.

Les caracte¬ristiques non-locales des e¬tats syme¬trique de qubits seront explore¬es. Ces

e¬tats forment un ensemble utile pour diverses ta√ches de traitement d’information quan-

tique gra√ce a¡ sesoccurrences naturelles comme dese¬tats fondamentaux danscertainsmo-

de¡ les de Bose-Hubbard. Ils sont aussi parmi les e¬tats plus accessibles expe¬rimentalement.

Jusqu’a¡ pre¬sent, relativement peu est connu sur la non-localite¬ de ces e¬tats, avec des

re¬sultats concernant majoritairement les e¬tats de W ou GHZ [ Mer95, Cab02, HCSV11] .

Une compre¬hension approfondie de la non-localite¬de cese¬tatsnouspermet non seule-

ment de mieux re¬aliser leur potentiels comme des ressources d’informatique quantique,

mais aussi de mieux comprendre la relation subtile entre la non-localite¬ et l’intrication

d’e¬tats multi-parties. Re¬cemment, l’intrication d’e¬tats syme¬triques est e¬tudie¬ a¡ l’aide d’un

outil mathe¬matique : la repre¬sentation de Majorana [ Maj32, BKM+ 09, Aul11b, RM11,

Mar11, AMM10] . Ici le me√me outil sera utilise¬ pour e¬tudier la non-localite¬ de ces e¬tats,

qui permet ainsi une comparaison facile.

CommencÀons par n parties, indexe¬e par i , chacune choisit une position de mesure

Mi et obtient un re¬sultat r i . Il n’existe que deux positions possibles, avec deux re¬sultats

possibles par position. Une loi de probabilite¬ est locale ou admet un mode¡ le a¡ variables

cachées locales (LHV, local hidden variable model) si la loi de probabilite¬ a¡ plusieurs

variables peut e√tre e¬crit comme le produit de probabilite¬s individuelles, e¬tant donne¬e la

valeur d’une variable cache¬e� :

P( r1, . . . , rnjM1, . . . , Mn) =

Z

�(�)
Y

i

P(r i jMi ,�)d�, (1)

ou¡ P(r i jMi ,�) est la probabilite¬ pour la partie i d’obtenir le re¬sultat r i a¡ la position

Mi quand la valeur de la variable cache¬e est �. �(�) est la loi de probabilite¬ de �.

P(r1, . . . , rnjM1, . . . , Mn) est la loi de probabilite¬ pour toutes les parties n quand ils

mesurent aux position M1, . . . , Mn et obtiennent les re¬sultats r1, . . . , rn. Les souscrits

seront ignore¬squand leur sensest clair. Il est e¬vident que tous lese¬tats-produitsadmettent

5



Chapitre 0. Sommaire de la the¡ se

un LHV par des mesures locales. Ne¬anmoins, la non-localite¬ ne suit pas directement de

l’intrication [ HHHH09] .

Le paradoxe de Hardy a e¬te¬ propose¬ comme un test «quasiment sans probabilite¬» de

la non-localite¬ de presque tous les e¬tats intrique¬s de deux parties [ Har93, Har94] . Les

sections suivantes servent a¡ montrer que tous les e¬tats syme¬trique de n parties peuvent

satisfaire les conditions du paradoxe de Hardy e¬tendu et l’ine¬galite¬ associe¬e. Bien qu’il

existe des re¬sultats pre¬ce¬dents en ge¬ne¬ralisant le paradoxe de Hardy a¡ n parties [ GR10] ,

une proce¬dure constructive est donne¬e ici pour calculer les parame¡ tres de mesure.

Le paradoxe original de Hardy est constitue¬ de quatre conditions probabilistes qui

sont impose¬es sur les re¬sultats d’une expe¬rience avec deux parties [ Har93, Har94] . Ces

conditions sont compatibles individuellement avec la de¬finition de LHV donne¬e par

(33). Mais une contradiction logique est obtenue si les quatre conditions sont impose¬es

simultane¬ment. Il est montre¬ par Hardy que pour tous les e¬tats intrique¬s de deux parties,

il existe des positions de mesures qui satisfont toutes les conditions, de¬montrent ainsi

l’incompatibilite¬ du mode¡ le LHV et la me¬canique quantique. La seule exception est les

e¬tats maximalement intrique¬s. Heureusement, la non-localite¬ des e¬tats maximalement

intrique¬s est connue auparavant [ Bel64, Han98] .

L’extension du paradoxe de Hardy a¡ plusieurs parties peut e√tre construit comme suit :

d’abord supposons qu’il y a n parties qui participent a¡ l’expe¬rience. Chaque partie peut

choisir librement sa position de mesure parmi les deux choix donne¬s, qui sont note¬s par

0 et 1. La partie obtient un re¬sultat apre¡ s la mesure, qui est aussi parmi les deux re¬sultats

possibles, 0 ou 1. La premie¡ re condition qu’on s’impose est que quand tout le monde

choisit la position 0, alors il est possible qu’ils aient tous obtenus le re¬sultat 0 :

P(00 . . . 00j00 . . . 00) > 0. (2)

Les n conditions suivantes sont les me√mes que la condition ci-dessus pour n � 1

parties, maisquand la partie n choisit la position 1 au lieu de 0, les n partiesne obtiennent

jamais toutes le re¬sultat 0.

P(00 . . . 00j�(00 . . . 01)) = 0, (3)

ou¡ le symbole � signifie la permutation d’une chaı√ne de bits avec un seul 1 et n � 1

ze¬ros. Le mode¡ le de LHV (33) et la condition (2) implique qu’il existe au moins une

valeur de la variable cache¬e� tel que 8 i , P(0i j0i�) > 0. Alors, pour cette valeur de�, on

peut de¬duire qu’a¡ partir de (3), 8 i , P(0i j1i�) = 0. Comme il n’existe que deux re¬sultats

possible par position de mesure, (3) implique que pour cette valeur de �, si tout le

monde choisissait la position 1, ils obtiendraient tous le re¬sultat 1 avec certitude.

La dernie¡ re condition impose¬e est une contradiction a¡ la conclusion ci-dessus. Si tout
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le monde mesurait la position 1, alors ils ne obtiendraient jamais tous le re¬sultat 1 :

P(11 . . . 1j11 . . . 11) = 0. (4)

Clairement (2), (3) et (4) sont incompatibles avec LHV. Dans le cas ou¡ n = 2, on retrouve

le paradoxe de Hardy original [ Har93, Har94] .

Ne¬anmoins, une proce¬dure constructive sera explique¬e qui permet de calculer les

positions 0 et 1 pour presque tous les e¬tats syme¬triques telles que les conditions (2)

a¡ (4) sont toutes satisfaites.

Un e¬tat syme¬trique de qubits invariant sous la permutation peut e√tre de¬compose¬

comme j i =
P n

k= 0 ck jS(n, k)i , ou¡ les jS(n, k)i =
�n

k

�� 1
2

P
per m j0 . . . 0| { z }

n�k

1 . . . 1| { z }
k

i sont les

e¬tats de Dicke.

Dans la repre¬sentation de Majorana, l’e¬tat j i est e¬crit comme une somme de

permutations des produits tensoriels de n qubits f j�1i . . . j�ni g, qui sont appele¬s les

points de Majorana (MPs) de l’e¬tat j i :

j i = K
X

per m

j�1 . . .�ni . (5)

K est une constante de normalisation qui de¬pend de distances entre les MPs. Dans cette

repre¬sentation, les ope¬rations unitaires locales de la forme U�n tournent tous les points

de Majorana simultane¬ment, et sont donc e¬quivalentes a¡ une rotation de la sphe¡ re de

Bloch.

L’invariance sous les permutations persiste aussi dans les sous-espaces. Soit j i un

e¬tat syme¬trique de n qubits, alors pour un qubit arbitraire j�i (non-normalise¬), l’e¬tat de

n� 1 qubits h�j i est aussi invariant sous les permutations :

h�j i =
nX

i = 1

Ci

X

per m

j�1 . . .�n| { z }
f 1,...,ngni

i , (6)

ou¡ Ci = h�j�i i et f 1, . . . , ngn i signifie que le MP j�i i est jete¬.

L’e¬quation suivante est vraie si et seulement si j�i i est un MP de j i , en plus le point

j�?
i i est son point diame¬tralement oppose¬ sur la sphe¡ re de Bloch :

(h�?
i j)�n j i = 0. (7)

Les conditions (2) a¡ (4) peuvent e√tre satisfaites par presque tous les e¬tats syme¬triques

pour les positions de mesure obtenues par la proce¬dure suivante. D’abord, (7) peut e√tre

interpre¬te¬ comme l’amplitude de probabilite¬ qui donne la condition (4), si les mesures

sont projectives et la position 1 pour toutes les parties consistent en f j�i i , j�?
i i g.

Pour les conditions (3), si une d’entre elles est satisfaite alors par l’invariance de
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l’e¬tat toutes les autres sont satisfaites automatiquement. La projection de l’e¬tat j i sur

l’un de ses MPs j�i i donne un nouveau e¬tat syme¬trique de n� 1 qubits :

j 0i = h�i j i =
nX

j= 1

Cj

X

perm

j�1 . . .�n| { z }
f 1,...,ngnj

i , (8)

avec Cj = h�i j�j i .

L’e¬tat j 0i se de¬compose en n� 1 points de Majorana, probablement diffe¬rents de

MPs de j i . En fait, le the¬ore¡ me ci-dessous montre qu’il existe toujours au moins un MP

de j 0i qui est diffe¬rent de tous les MPs de j i .

Théore¡ me 1. Soit S := f j�1i , j�2i , . . . , j�ni g l’ensembledeMPsde l’état j i . Soit S i
:=

f j�1i , j�2i , . . . , j�n�1i gl’ensemble de MPs de l’état j i i = h�i j i . Alors S i
� S ssi j i

est un état de Dicke ou un état équivalent par rotations de la sphe¡re de Bloch.

Démonstration. D’abord nous allons de¬montrer un lemme important pour le reste de

cette de¬monstration. Le but de ce lemme est de montrer que les conditions d’orthogona-

lite¬ telles que (7) et (72) sont satisfaites seulement si le produit tensoriel ( la partie bra)

est compose¬ d’un point Majorana de l’e¬tat syme¬trique dans la partie ket, et le degre¬ du

produit tensoriel est borne¬ par le degre¬ de de¬ge¬ne¬rescence de ce MP.

Lemme 2. Soit j i un état symétriqueden qubitsavecMPs(distincts) f j�1i , j�2i , . . . , j�l i g

ayant degrés de dégénérescence f d1, d2, . . . , dl g, alors

(h�j)�c j i = 0 (9)

si et seulement si j�i = j�?
i i , h�?

i j�i i = 0 pour un certain i , et c� n� di + 1 (ou de facÀon

équivalente, di � n� c+ 1).

Démonstration. La direction si se suit directement de l’expansion de j i en utilisant

(5),(71) et la condition sur les MPs dans la de¬finition de la repre¬sentation de Majorana.

Nous allons nous concentrer sur la direction seulement si

D’abord notons que (h�j)�c j i = 0 avec c� n, alors (h�j)�n j i = 0. L’explication ci

dessus implique (h�j)�n j i = 0 n’est possible que si j�i est un point diame¬tralement

oppose¬ a¡ un MP de j i . Donc j�i = j�?
i i , h�?

i j�i i = 0 pour un certain i .

Maintenant nous aimerons montrer que (h�?
i j)�c j i = 0 implique c � n� di + 1.

Mais nous allons montrer un e¬nonce¬ e¬quivalent : c < n� di + 1 (ou de facÀon e¬quivalente

c� n� di ) implique (h�?
i j)�c j i 6= 0.
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Si c = n� di , alors

(h�?
i j)�n�di j i (10)

= (n� di )!(h�
?
i j)�n�di j�1�2 . . .�l| { z }

f 1...l gni

i (j�i i )
�di 6= 0. (11)

Pour aller de (10) a¡ (11), nous avons utilise¬ le fait que quand c = n� di , si nous

de¬veloppons j i avec (5),(71) tous les autres termes disparaissent. Ce terme n’est pas

ze¬ro car par hypothe¡ se tous les autres MPs sont diffe¬rents de j�i i .

Pour le cas c < n� di , si (h�?
i j)�c j i = 0, alors il implique (h�?

i j)�n�di j i = 0, qui

est en contradiction avec l’argument ci-dessus. Donc quand c� n� di , (h�?
i j)�c j i 6=

0.

L’e¬nonce¬ de ce the¬ore¡ me fait re¬fe¬rence a¡ l’e¬tat j i i = h�i j i . Ni l’e¬nonce¬ ni cette

de¬monstration ne de¬pendent du choix de j�i i . En fait nous allons prouver que pour

n’importe quel j�i i , pour satisfaire l’e¬nonce¬ du the¬ore¡ me tous les autres MPs de j i

sont soient orthogonal a¡ lui soit coı�ncident avec lui, ce qui donne un e¬tat de Dicke

(potentiellement tourne¬). Pour la simplicite¬, nous allons fixer j�i i a¡ j�1i , donc j i i est

fixe¬ a¡ j 1i .

L’e¬tat j i se de¬compose en MPs j�di
i i comme dans (71). De la me√me facÀon, j 1i =

h�1j i se de¬compose en

j 1i = K
X

per m

j�m1
1 �

m2
2 . . .�mk

k i , (12)

8 i 6= j , j�i i 6= j�j i ,
kX

i= 1

mi = n� 1. (13)

En plus de j 1i , i l y a un autre e¬tat syme¬trique de (n� 1) qubits qui nous inte¬resse :

l’e¬tat qui se compose de tous les MPs de j i sauf j�i i .

j =i i := K
X

per m

j�1 . . .�n| { z }
f 1...ngni

i . (14)

Par le lemme 2, nous allons de¬montrer deux corollaires concernant les e¬tats j 1i ,

j =i i et les degre¬s de de¬ge¬ne¬rescence de leur MPs :

Corol laire 3. (h�j)�c j 1i = 0 si et seulement si j�i = j�?
i i , h�?

i j�i i = 0 pour un certain i

et c� n� mi (ou de facÀon équivalente, mi � n� c).

Démonstration. La de¬monstration suit directement de 2 en notant que j 1i est un e¬tat

syme¬trique de n� 1 qubits.
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Corol laire 4. (h�j)�c j =i i = 0 si et seulement si j�i = j�?
j i , h�?

j j�j i = 0 pour un certain

j , avec 1). Si j 6= i , alors c � n� d j (ou de facÀon équivalente, d j � n� c) ; 2). Si j = i ,

alors d j > 1 et c� n� d j + 1 (ou de facÀon équivalente, d j � n� c+ 1).

Démonstration. Pour le cas j 6= i , la de¬monstration suit du lemme 2, comme le lemme

pre¬ce¬dent. Quand j = i , la de¬ge¬ne¬rescence de j�j i dans la de¬composition de j =i i est de

d j � 1, alors par lemme 2 il est ze¬ro pour di > 1 et par conse¬quent d j � 1 � n� c $

d j � n� c+ 1.

Nous allons de¬montrer les 3 lemme principaux du the¬ore¡ me. Pour la clarte¬, nous

gardons les notations j�i i est un MP de j i avec degre¬ de de¬ge¬ne¬rescence di , et j�i i

est un MP de j 1i avec degre¬ de de¬ge¬ne¬rescence mi . Nous allons aussi utiliser K pour

de¬noter une constante globale de normalisation.

Lemme 5. 8 i , j�i i = j�i i , avec mi � di � 1.

Démonstration. D’abord, si di = 1, alors l’e¬nonce¬ est toujours vrai, donc nous nous

concentrons sur le cas di > 1.

D’apre¡ s le corollaire 3, (h�?
i j)�n�di + 1 j 1i = 0 si et seulement si j�i i = j�i i et

mi � n� (n� di + 1) = di � 1. Donc il suffit de de¬montrer que (h�?
i j)�n�di + 1 j 1i = 0.

j 1i se de¬compose en

j 1i = K
X

l

h�1j�l i j =l i . (15)

Avec cette de¬composition, nous obtenons

(h�?
i j)�n�di + 1 j 1i (16)

= K(h�?
i j)�n�di + 1

X

l

h�1j�l i j =l i (17)

= K
X

l

h�1j�l i (h�
?
i j)�n�di + 1 j =l i (18)

= 0, (19)

ou¡ nous avons utilise¬ les deux cas du corollaire 4 pour aller de (18) a¡ (19).

Lemme 6. 8 i , si j�i i = j�i i et mi � di , alors h�1j�i i = 0.

Démonstration. D’apre¡ s le corollaire 3, si j�i i = j�i i et mi � di , alors (h�?
i j)�n�di j 1i =

0.
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En utilisant la me√me de¬composition de j 1i que dans la de¬monstration du lemme

pre¬ce¬dent, nous avons :

(h�?
i j)�n�di j 1i (20)

= K
X

j

h�1j�j i (h�
?
i j)�n�di j =j i . (21)

Depuis le corollaire 4, nous pouvons de¬duire que le seul terme qui ne disparait pas

est quand j = i , alors nous avons :

(h�?
i j)�n�di j 1i (22)

= Kh�1j�i i (h�?
i j)�n�di j =i i

| { z }
�

(23)

= 0. (24)

Comme ni K ni �dans (23) sont 0, nous pouvons conclure que h�1j�i i = 0.

Lemme 7. 8 i , si j�i i = j�i i alors mi � di .

Démonstration. Si mi > di , alors d’apre¡ s lemme 6 h�1j�i i = 0. Nous pouvons noter j�?
i i

comme j�1i .

De¬veloppons partiellement j i dans la base f j�1i , j�?
1 i g donne

j i = K(j�1i j 1i + j�?
1 i j › 1i ) (25)

Pour (h�?
i j)�n�di j i :

(h�?
i j)�n�di j i (26)

= (h�?
i j)�n�di K(j�1i j 1i + j�?

1 i j› 1i ) (27)

= K(h�?
i j)�n�di�1 j 1i (28)

= 0, (29)

ou¡ nous avons note¬ j�?
i i = j�1i pour aller de (27) a¡ (28). Nous avons aussi utilise¬ le

corollaire 3 et notre hypothe¡ se mi > di pour aller de (28) a¡ (29).

Clairement, la conclusion que (h�?
i j)�n�di j i = 0 est en contradiction avec le

lemme 2, donc mi � di .

En combinant les lemme 5, 6 et 7, nous obtenons le corollaire principal qui va

conclure la de¬monstration.

11



Chapitre 0. Sommaire de la the¡ se

Corol laire 8. 8 i , j�i i = j�i i avec degré de dégénérescence tel que soit 1). mi = di ,

h�1j�i i = 0 ou 2). mi = di � 1, h�1j�i i 6= 0.

Pour conclure cette de¬monstration, notons que comme
P

k mk = n� 1, et n =
P

di ,

nous avons

X

k

mk = n� 1 = (
X

k

dk) � 1 (30)

= (di � 1)
| { z }

group 1

+
X

j6= i

d j

| { z }
group 2

, (31)

ou¡ nous avons se¬pare¬ les di en deux groupes, groupe un, avec le �1 associe¬ a¡ un di

particulier, et groupe deux, avec les d j qui reste. Qu’implique la condition S i
� S dans

l’e¬nonce¬ du the¬ore¡ me - i.e., ou¡ tous les MPs j�i i coı�ncident avec j�i i ? Il est clair depuis

le corollaire 8 et (30) que ce n’est possible que si le groupe un et donne¬ par d1, et le

groupe deux est donne¬ par un MP qui est l’antipode de j�1i . Du coup il n’y a que deux

MPs de j i , j�1i et j�2i = j�?
1 i . Cet e¬tat est exactement un e¬tat de Dicke (possiblement

tourne¬). Le raisonnement reste valide si on substitue un autre j�i i pour j�1i au de¬but.

Soit j�i i un MP de l’e¬tat j 0i , de¬fini dans (8), qui est diffe¬rent de tous les MPs de

j i . Alors a¡ partir de (7) on obtient

(h�?
i j)�n�1 j 0i = h�i �

?
i . . .�?

i| { z }
n�1

j i = 0. (32)

Par les choix de f j�i i , j�?
i i g comme la position 0 pour toutes les parties, l’ampli-

tude (32) implique la satisfaction de (3) par la syme¬trie. h�?
i . . .�?

i| { z }
n

j i 6= 0 parce que

j�i i n’est pas un MP de j i . Par conse¬quent, (2) est satisfait automatiquement. Le

the¬ore¡ me ci-dessus montre que cette proce¬dure s’applique a¡ tous les e¬tats syme¬triques

sauf les e¬tats de Dicke.

Pourtant, le paradoxe ne peut pas e√tre teste¬ directement a¡ cause de ses conditions

exactes, qui ne sont jamais satisfaites quand le bruit et l’inexactitude de l’environnement

sont pris en compte. Pour rendre le paradoxe re¬sistant au bruit, une ine¬galite¬ est ne¬ces-

saire. La borne¬e obtenue sous LHV est viole¬e par (2) quand la proce¬dure ci-dessus est

utilise¬e.
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Théore¡ me 9. Le polyno√me de Bell de n syste¡mes

P n := P(0 . . . 0j00 . . . 00)

�
X

�

P(00 . . . 00j�(00 . . . 01))

� P(1 . . . 1j11 . . . 11)

est borné sous LHV par P n � 0.

Démonstration. Supposons que

P(r1, . . . , rnjM1, . . . , Mn) =

Z

�(�)
Y

i

P(r i jMi ,�)d�, (33)

la probabilite¬ jointe est un produit de probabilite¬ de chaque partie ( nous allons omettre

� car nous inte¬grons toujours sur d�). Le polyno√me de Bell P n devient :

P1(0)P2(0) . . . Pn(0)

�P1(1)P2(1) . . . Pn(1)

�(1� P1(1))P2(0) . . . Pn(0)

...

�P1(0) . . . Pn�1(0)(1� Pn(1)), (34)

en notant

Pi (0) = Pi (0j0),

Pi (1) = Pi (1j1).

Une expansion donne :

P1(0)P2(0) . . . Pn(0) � P1(1)P2(1) . . . Pn(1) (35)

+ P1(1)P2(0) . . . Pn(0) � P2(0)P3(0) . . . Pn(0) (36)

+ P1(0)P2(1) . . . Pn(0) � P1(0)P3(0) . . . Pn(0) (37)

...

+ P1(0)P2(0) . . . Pn(1) � P1(0)P2(0) . . . Pn�1(0) (38)

Notons que les rangs (36) a¡ (38) sont tous� 0, car pour tous 0 � Pi � 1,

nY

i= 1

Pi �

n�1Y

i= 1

Pi . (39)
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En factorisant le second terme de (35) et le premier terme de (36), nous avons :

P1(1)(P2(0) . . . Pn(0) � P2(1) . . . Pn(1)). (40)

Si P2(0) . . . Pn(0) � P2(1) . . . Pn(1), alors (40) � 0 (par (39) dans le premier terme de

(35)et le second terme de (36), mais aussi les rangs (37) a¡ (38)), donc la de¬monstration

est termine¬e. Sinon

P1(1)(P2(0) . . . Pn(0) � P2(1) . . . Pn(1))

�(P2(0) . . . Pn(0) � P2(1) . . . Pn(1)), (41)

ce qui implique que (34) est plus petit de ou e¬gal a¡

P1(0)P2(0) . . . Pn(0) � P2(1)P3(1) . . . Pn(1) (42)

+ P1(0)P2(1) . . . Pn(0) � P1(0)P3(0) . . . Pn(0) (43)

...

+ P1(0)P2(0) . . . Pn(1) � P1(0)P2(0) . . . Pn�1(0). (44)

Re¬pe¬tons cette proce¬dure n fois, en supposant
Q

k Pk(0) >
Q

k Pk(1) chaque fois (si-

non la de¬monstration est termine¬e). Apre¡ s ces n e¬tapes, il est de¬montre¬ que (34) �

P1(0)P2(0) . . . Pn(0) � P1(0)P2(0) . . . Pn�1(0), ou¡ le cote¬ droit est � 0 d’apre¡ s (39) (Voir

aussi [ GR10] pour une de¬monstration alternative).

Me√me si la proce¬dure ci-dessus pour calculer les bases de mesure ne marche pas pour

les e¬tats de Dicke, l’ine¬galite¬ est toujours viole¬e par les e¬tats de Dicke dans un sce¬nario a¡

deux positions / deux re¬sultats :

Théore¡ me 10. Il existe un angle 0 < � < � tel que tous les états de Dicke jS(n, k)i

( f k, ng 2 N, 1 < k < n) violent l’inégalité du Théore¡me 9 si la base 0 est définie par

f j+ i , j�i g et la base 1 est définie par f cos�
2

j0i � sin �

2
j1i , sin �

2
j0i + cos�

2
j1i g.
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Démonstration. D’abord nous re¬e¬crivons l’ine¬galite¬ en fonction de n, k et �.

P(0 . . . 0j0 . . . 0)

= jh+ , . . . , + jS(n, k)i j2

= ((
1

p
2

)n
�

n

k

�� 1
2
�

n

k

�

)2, (45)

P(0 . . . 0j1 . . . 0)

= j(cos
�

2
h0j � sin

�

2
h1j) � h+ , . . . , + jS(n, k)i j2

= ((
1

p
2

)n�1
�

n

k

�� 1
2

(cos
�

2

�
n� 1

k

�

� sin
�

2

�
n� 1

k � 1

�

))2, (46)

P(1 . . . 1j1 . . . 1)

= jn�(sin
�

2
h0j + cos

�

2
h1j) jS(n, k)i j2

= (

�
n

k

�� 1
2
�

n

k

�

(cos
�

2
)k(sin

�

2
)n�k)2. (47)

Pour simplifier notre calcul, nous divisons (45) - (47) par
�n

k

�
. La proprie¬te¬ de

positivite¬ ne sera pas change¬e par cette remise en e¬chelle.

P0(0 . . . 0j0 . . . 0)

= (
1

2
)n, (48)

P0(0 . . . 0j1 . . . 0)

= (
1

2
)n�1

�
n

k

��2

(cos
�

2

�
n� 1

k

�

� sin
�

2

�
n� 1

k� 1

�

)2, (49)

P0(1 . . . 1j1 . . . 1)

= (cos
�

2
)2k(sin

�

2
)2n�2k. (50)

A cause de la syme¬trie de jS(n, k)i , les n probabilite¬s P0(0 . . . 0j1 . . . 0) a¡ P0(0 . . . 0j0 . . . 1)

sont toutes e¬gales. Apre¡ s des simplifications, le polyno√me de Bell devient :

P0(n, k,�) = (
1

2
)n

� n(
1

2
)n�1(

n� k

n
cos

�

2
�

k

n
sin

�

2
)2

� (cos
�

2
)2k(sin

�

2
)2n�2k. (51)

Notons d’abord quelques proprie¬te¬s de (49) et (50). Pour (49), il peut atteindre

0 pour tout n, k quand tan �

2
= n�k

k
. (50) est 0 quand � = 0 et � = �, il atteint son
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maximum quand (cos�
2

)2k = (sin �

2
)2n�2k. Si nous fixons� et n, sa de¬rive¬e par rapport a¡

k est

2(cos
�

2
)2k(sin

�

2
)2n�2k(logcos

�

2
� logsin

�

2
), (52)

ce qui signifie que pour un � et n fixe¬, quand �< �

2
, (50) est strictement de¬croissant par

rapport a¡ k ; quand � > �

2
, (50) il est strictement croissant par rapport a¡ k ; et quand

�= �

2
, (50) est inde¬pendant de k.

Nous allons conside¬rer l’e¬quation n� (49) = ( 1
2
)n+ 1 :

n(
1

2
)n�1(

n� k

n
cos

�

2
�

k

n
sin
�

2
)2 = (

1

2
)n+ 1, (53)

=) (
n� k

n
cos

�

2
�

k

n
sin

�

2
)2 =

1

4n
. (54)

En prenant la racine carre¬e de chaque co√te¬, regroupant les termes avec sin �

2
a¡

un co√te¬, substituant sin �

2
avec

∆
1� cos2 �

2
et prenant le carre¬ de chaque co√te¬, (54)

devient une e¬quation quadratique ayant cos�
2

comme l’inconnu. Elle peut avoir 0, 1 ou

2 racines selon la valeur de � dans l’intervalle [ 0,�] . Si elle n’a pas de racine, alors

n� (49) < ( 1
2
)n+ 1 pour tout � (car (49) peut toujours atteindre 0). Notons aussi que

(50) est ze¬ro quand �= 0 et �= �, donc si (54) n’a pas de racine alors (51) > 0 quand

� = 0 et � = �. De me√me facÀon, si (54) a une racine, nous pouvons de¬montrer que

(51) > 0 quand � = 0 ou � = �, selon la valeur de la racine : quand la racine est plus

petite que �

2
, nous prenons�= �, sinon nous prenons�= 0.

Nous allons conside¬rer le cas ou¡ (54) a deux racines. Nous obtenons les formes

ferme¬es des racine dans l’intervalle [ 0,�] en re¬solvant l’e¬quation quadratique, nous

allons noter les racines�+ et �� :

cos
�+

2
=

k
p

n� n
p

n +
p

8k4 � k2n� 8k3n + 4k2n2

2(2k2 � 2kn + n2)
(55)

cos
��

2
=

k
p

n� n
p

n�
p

8k4 � k2n� 8k3n + 4k2n2

2(2k2 � 2kn + n2)
(56)

Nous allons de¬montrer que pour un n fixe¬, (cos �+

2
)2k(sin �+

2
)2n�2k < ( 1

2
)n+ 1 et

(cos��
2

)2k(sin ��
2

)2n�2k < ( 1
2
)n+ 1 pour tout k. A cause de la monotonicite¬ de (50), il suffit

de de¬montrer que l’ine¬galite¬ est vraie pour k = n
2
. Pour le moment nous allons prendre n

comme un nombre pair. Nous ne conside¬rons que la racine positive. Le raisonnement est

syme¬trique et s’applique a¡ la racine ne¬gative avec quelque changements.
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0.2. La non-localité des états symétriques

Quand n est pair et k = n
2
, (cos�+

2
)2k(sin �+

2
)2n�2k se simplifie a¡ :

(
1

32
)k (

�
p

k +
p

k(4k � 1)

k
)2k

| { z }
�

(2 +

p
(4k� 1)

k
)k

| { z }
��

. (57)

Pour trouver une borne supe¬rieure de (57), nous re¬e¬crivons (�) et (��) :

(�) = ((
�

p
k +

p
k(4k� 1)

k
)2)k = (4�

2
p

4k� 1

k
)k (58)

= (4�
4
∆

k� 1
4

k
)k = (4(1�

∆
k � 1

4

k
))k, (59)

(��) = (2 +
2
∆

k� 1
4

k
)k = (2(1 +

∆
k � 1

4

k
))k. (60)

En substituant (59) et (60) dans (57), nous obtenons

(
1

32
� 4� 2� (1�

k� 1
4

k2 ))k = (
1

2
)2k(1�

k� 1
4

k2 )k. (61)

Notons que limn! 1 (1� 1
x
) x = e�1, et il atteint cette limite par le bas. Donc nous

avons

(1�
k� 1

4

k2
)k < (1�

1

k
)k � e�1 <

1

2
(62)

Depuis (61) et (62), nous obtenons la borne de¬sire¬e

(cos
�+

2
)2k(sin

�+

2
)2n�2k

< (
1

2
)2k(1�

1

k
)k < (

1

2
)2k+ 1 (63)

Pour de¬montrer que le the¬ore¡ me reste valide pour n impair, supposons n = 2k + 1

pour un certain k, alors (51) devient

(
1

2
)2k+ 1 � (2k + 1)(

1

2
)2k(

k + 1

2k + 1
cos

�

2
�

k

2k + 1
sin

�

2
)2 (64)

�(cos
�

2
)2k(sin

�

2
)2k+ 2 (65)

=
1

2
((

1

2
)2k (66)

�(2k + 1)(
1

2
)2k�1(

k + 1

2k + 1
cos

�

2
�

k

2k + 1
sin

�

2
)2 (67)

�2(sin
�

2
)2(cos

�

2
)2k(sin

�

2
)2k) (68)
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Il est e¬vident que k+ 1
2k+ 1

� 1
2

et k
2k+ 1

� 1
2
, donc (67) peut e√tre borne¬ par

(67) � 2k(
1

2
)2k�1(

1

2
cos

�

2
�

1

2
sin

�

2
)2. (69)

Supposons que cos�+

2
� 1p

2
(l’autre cas sera discute¬ ci-dessous), ce qui signifie que

2(sin �

2
)2 � 1, nous pouvons borner (68) par :

(68) � (cos
�

2
)2k(sin

�

2
)2k. (70)

En substituant (69) et (70) dans (67) et (68), nous avons

(
1

2
)2k+ 1

� (2k + 1)(
1

2
)2k(

k + 1

2k + 1
cos

�

2
�

k

2k + 1
sin

�

2
)2

� (cos
�

2
)2k(sin

�

2
)2k+ 2

�
1

2
((

1

2
)2k

� 2k(
1

2
)2k�1(

1

2
cos

�

2
�

1

2
sin
�

2
)2

� (cos
�

2
)2k(sin

�

2
)2k),

qui est effectivement deux fois l’expression pour n = 2k. Si cos�+

2
� 1p

2
, nous pouvons

prendre n = 2k � 1, et avoir un argument similaire. Pour la racine ne¬gative, le me√me

raisonnement s’ensuit.

En conclusion, pour n pair, si n� (49) = ( 1
2
)n+ 1, alors (50) < ( 1

2
)n+ 1, ce qui signifie

que (51) > 0. Pour n impair, selon la valeur de cos�+

2
ou cos ��

2
, nous pouvons toujours

borner (51) en conside¬rant le n pair le plus proche. Donc (51) peut e√tre positif pour

certaines valeurs de�.
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0.3 La non-localité et les classes d’intr ication

Dans la repre¬sentation de Majorana, il est possible que les MPs f j�1i , . . . , j�ni g d’un

e¬tat syme¬trique ne soient pas tous distincts. Dans une nouvelle notation qui inte¡ gre la

de¬ge¬ne¬rescence, di indique le degre¬ de de¬ge¬ne¬rescence du MP j�i i . Alors (5) devient

j i = K
X

per m

j�d1
1 �

d2
2 . . .�dl

l i , (71)

8 i 6= j , j�i i 6= j�j i ,
lX

i = 1

di = n.

En plus, (7) devient

(h�?
i j)�k j i = 0. (72)

avec (n� di ) < k � n. Les ope¬rations locales et communications classiques ne changent

pas la de¬ge¬ne¬rescence, me√me de la manie¡ re stochastique (SLOCC) [ BKM+ 09] (voir

aussi [ RM11, Aul11b] ). Par conse¬quent, diffe¬rents degre¬s de de¬ge¬ne¬rescence corres-

pondent a¡ diffe¬rentes classes d’intrication.

Quand la de¬ge¬ne¬rescence est prise en compte, le paradoxe peut e√tre e¬tendu en

conside¬rant un sous-ensemble de parties. La version probabiliste de (72) montre que la

corre¬lation persiste dans le sous-ensemble

P(11 . . . 1| { z }
k

j 11 . . . 1| { z }
k

) = 0, (73)

pour (n� di ) < k � n.

L’ine¬galite¬ du the¬ore¡ me 9 est aussi e¬tendue a¡

Qn
d := P n � P(11 . . . 1| { z }

n�1

j 11 . . .1| { z }
n�1

) � ...� P(11 . . . 1| { z }
n�d+ 1

j 11 . . . 1| { z }
n�d+ 1

)

� 0. (74)

La borne supe¬rieure de LHV n’est pas change¬e parce que les termes soustraits sont

non-positifs.

Les ine¬galite¬s P n et Qn
d peuvent e√tre utilise¬es pour la classification de SLOCC. Pour

un exemple, nous allons conside¬rer trois e¬tats : l’e¬tat te¬trae¡ dre jTi =
∆

1
3

jS(4, 0)i +
∆

2
3

jS(4, 3)i , l’e¬tat de GHZ a¡ 4 qubits jGHZ4i = 1p
2
(j0000i + j1111i ) et e¬tat j000+ i =

K
P

per m j000+ i = 2p
5

j0000i + 1p
5

jS(4, 1)i . Chaque e¬tat appartiens a¡ une classe SLOCC

diffe¬rente (cf. chapitre 3, section 3.1.2). Ils sont groupe¬s en deux groupes : un groupe

contient jTi et j000+ i , avec deux degre¬s de de¬ge¬ne¬rescence diffe¬rents; l’autre groupe
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contient jTi et jGHZ4i , avec le me√me degre¬ de de¬ge¬ne¬rescence. Les deux groupes sont

illustre¬s dans Fig. 1 et 2, respectivement. Une classification inde¬pendante des dispositifs

est re¬alise¬e a¡ partir de bornes calcule¬es avec SDP.

L’e¬quivalence des e¬tats syme¬triques sous LUP est donne¬e simplement par la dis-

tribution de ses points de Majorana, parce qu’une ope¬ration unitaire locale qui me¡ ne

un e¬tat syme¬trique a¡ un e¬tat syme¬trique est en effet une rotation de la sphe¡ re de

Bloch [ BKM+ 09, MKG+ 10] (en plus, la permutation ne change bien su√r pas un e¬tat

syme¬trique). Alors, chaque e¬tat qu’on utilise ici est in-e¬quivalent sous LU ou LUP. Le

fait que la violation trouve¬e est sur toutes les mesures possibles garantit que les bornes

soient valides pour tout e¬tat e¬quivalent sous LU et LUP.

Pour le premier groupe illustre¬ dans Fig. 1, les bornes se trouvent en Table 1.

(a) (b)

FIGURE 1: L’e¬tat te¬trae¡ dre (a) et l’e¬tat j000+ i (b) dans la repre¬sentation de Majorana.

E¬tat P4 Q4
3

jTi 0.1745 -0.0609
j000+ i 0.0142 0.0141

TABLE 1: Les bornes de violations maximales de P4 et Q4
3 pour jTi et j000+ i . Une

violation de Q4
3 implique que l’e¬tat n’est pas dans la classe LUP de jTi .

La Table. 2 montre les bornes de P4 et Q4
3 pour le deuxie¡ me groupe, illustre¬par Fig. 2.

Les bornes sont calcule¬es en utilisant la programmation semi-de¬finie de la section 2.5.

A partir de ces tables, il est facile d’envisager un test inde¬pendant des dispositifs qui

permet de discriminer les classes LUP dans chaque groupe.

Pour le premier groupe, le test est plus faible a¡ cause des contraintes sur les bases de

mesures. Malgre¬ notre ve¬rification nume¬rique et l’hypothe¡ se raisonnable de restreindre

les bases de mesures, il n’y a pas de garantie qu’un e¬tat ne soit pas dans la classe j000+ i
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(a) (b)

FIGURE 2: L’e¬tat te¬trae¡ dre (a) et l’e¬tat GHZ a¡ 4 qubits jGHZ4i (b) dans la repre¬sentation
de Majorana.

E¬tat P4 Q4
3

jTi 0.1745 -0.0609
jGHZ4i 0.1241 0.0563

TABLE 2: Les bornes de violations maximales de P4 et Q4
3 pour jTi et jGHZ4i . Une

violation de P4 > 0.1241 implique que l’e¬tat n’est pas dans la classe LUP de jGHZ4i , et
une violation de Q4

3 implique l’e¬tat n’est pas dans la classe LUP de jTi .

s’il viole P4 de plus de 0.0142. Ne¬anmoins, on peut conclure que si un e¬tat viole Q4
3,

alors il n’est pas dans la classe jTi , mais doit e√tre dans la classe j000+ i .

Dans le second groupe, si le test P4 donne une violation � 0.1241, alors l’e¬tat ne

doit pas e√tre dans la classe de jGHZ4i , mais dans la classe de jTi . De me√me, si le test

Q4
3 donne une violation, l’e¬tat est dans la classe de jGHZ4i . Dans ce cas, me√me s’il n’y a

pas de de¬ge¬ne¬rescence, une se¬paration de classe est possible par le test Q4
3.

Les e¬tats choisis sont dans diffe¬rentes classes SLOCC. Aller au-dela¡ de 4 qubits est

difficile a¡ cause de l’augmentation exponentielle de parame¡ tres a¡ optimiser. Ne¬anmoins

un simple test d’optimisation de bases pour les e¬tats W et GHZ indique qu’il est possible

de les se¬parer en utilisant la technique ci-dessus. Ceci fait avancer la discussion de

comment interpre¬ter la classification d’intrication par les caracte¡ res non-locaux. D’un

co√te¬ la de¬ge¬ne¬rescence des MPs garantit la persistance de corre¬lations [ WM12] , ce qui

est vrai pour tout e¬tat. Certains e¬tats «repre¬sentatifs» comme j000+ i et jWi peuvent e√tre

se¬pare¬s d’e¬tats moins de¬ge¬ne¬re¬s en utilisant cette proprie¬te¬. Il est similaire a¡ la force de

non-localite¬ a¡ cause de perte de syste¡ mes [ BSV12] [ BV12] . D’un autre co√te¬, l’exemple

ci-dessus montre qu’il est possible d’utiliser Qn
d pour se¬parer certains e¬tats avec le me√me

degre¬ de de¬ge¬ne¬rescence. Ces e¬tats se trouvent naturellement dans l’espace des phases
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de certains condensats [ MS07] . L’ide¬e ci-dessus peut servir comme un te¬moin de phases.
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0.4 Une inégalité monogame pour les états de Dicke

Une nouvelle ine¬galite¬ est introduite dans le but de montrer la monogame stricte des

e¬tats de Dicke dans la limite de n tendent vers l’infinite¬. Cette ine¬galite¬ est base¬e sur un

re¬sultat re¬cent de Heaney, Cabello, Santos et Vedral [ HCSV11] , ou¡ ils montrent que pour

les e¬tats W il est possible de construire une ine¬galite¬ «maximale» dont la violation atteint

le maximum alge¬brique quand n ! 1 , et ainsi reproduire la corre¬lation parfaite dese¬tats

de stabilisateurs et l’ine¬galite¬ de Mermin (cf. chapitre 2, section 2.4.4). Cette ine¬galite¬

de Heaney, Cabello, Santos et Vedral (de¬sormais de¬nomme¬e l’ine¬galite¬ de HCSV) est

construite pour les e¬tats W mais il est possible de l’e¬tendre a¡ tous les e¬tats de Dicke.

En suivant et e¬tendant les raisonnements dans [ HCSV11] pour les e¬tats W, si toutes

les n parties mesurent �z sur un e¬tat de Dicke jS(n, k)i , n� k d’entre elles vont obtenir

le re¬sultat 0 et les autres k parties vont obtenir le re¬sultat 1 avec certitude (il faut noter

qu’il n’est pas possible de savoir qui a obtenu quel re¬sultat). Imaginons que n� k � 1

parties ont obtenu 0 et k� 1 ont obtenu 1. Les deux autre parties ont de¬cider de mesurer

dans la base�x , et elles obtiennent toujours le me√me re¬sultat. Le mode¡ le de LHV stipule

que le re¬sultat d’une partie est inde¬pendant de la base de mesure des autres, et par

conse¬quent si n’importe quel ensemble de deux parties a de¬cide¬ de mesurer �x , ils vont

toujours obtenir le me√me re¬sultat. Si les re¬sultat sont donne¬s par LHV, le raisonnement

ci-dessus stipule que tout le monde va obtenir le me√me re¬sultat s’ils ont mesure¬�x . Mais

un simple calcul montre que ce n’est pas le cas pour tous les e¬tats de Dicke.

L’ine¬galite¬ de Bell associe¬e est

L =
X

P(�(0 . . . 0| { z }
n�k

1 . . . 1| { z }
k

)j0 . . . 0)

�
X

P(�(0 . . . 0| { z }
n�k�1

1 . . . 1| { z }
k�1

01)j�(0 . . . 0| { z }
n�2

11))

�P(0 . . . 0j1 . . . 1) � P(1 . . . 1j1 . . . 1) � 0, (75)

ou¡ les permutations dans la deuxie¡ me et troisie¡ me lignes sont sur les parties qui fixent

les bases de mesure et le re¬sultat, comme dans l’ine¬galite¬ P n. Pour montrer qu’elle est

compatible avec LHV, il suffit de noter qu’elle est compatible avec toutes les strate¬gies

de¬terministes, comme les autres strate¬gies sont des me¬langes probabilistes de strate¬gies

de¬terministes) [ WW01] . Il n’est pas difficile de voir que mettre n’importe quel terme

P(�(0 . . . 0| { z }
n�k

1 . . . 1| { z }
k

)j0 . . . 0) a¡ 1 n’est pas compatible avec garder tous les termes ne¬gatifs a¡

ze¬ros. En plus, il n’est pas possible d’avoir plus d’un terme positif a¡ 1, donc l’expression

est toujours ne¬gative et une violation est incompatible avec LHV. Pour un e¬tat de Dicke,

jS(n, k)i , L est viole¬e par 1�
(n

k)
2n�1 . Comme les e¬tats W dans [ HCSV11] , l’ine¬galite¬ atteint

son maximum quand n tend vers l’infini.
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Le graphe ci-dessous en Fig. 3 visualise la violation de L par jS(n, n
2
)i et jWni . Les

e¬tats W atteignent 1 plus rapidement, a¡ cause de ses faibles intrications.

!

!

!

!
!

!
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

"

"

"

" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "

20 40 60 80 100
n

0.2

0.4

0.6

0.8

1.0

L

FIGURE 3: Comparaison de la violation de L (75) par jS(n, n
2
)i (n ) et jWni ( l ) en

fonction de n (le nombre de parties).

En plus de la monogamie, une autre proprie¬te¬ utile pour la cryptographie est la

non-localite¬ authentique. Une corre¬lation est authentique si elle ne peut pas e√tre atteinte

par un sous-ensemble de parties. Les ine¬galite¬s de type Svetlichny [ Sve87] ont pour

but de de¬tecter la non-localite¬ authentique : seules les corre¬lations authentiques de n

parties peuvent violer ces ine¬galite¬s. Malheureusement toutes les ine¬galite¬s pre¬sente¬es

ne peuvent pas de¬tecter la non-localite¬ authentique. Le the¬ore¡ me ci-dessous montre cÀa

explicitement pour L .

Théore¡ me 11. L’inégalité L ne peut pas détecter la non-localité authentique.

Démonstration. Pour montrer que L ne peut pas de¬tecter la non-localite¬ authentique,

nous allons grouper les deux premie¡ res parties et montrer que L = 1 dans un mode¡ le

LHV partiellement non-local (ou¡ les deux premie¡ res parties sont traite¬es comme une

seule partie). En langage mathe¬matique, un mode¡ le LHV signifie

P(a1 . . . anjA1 . . . An) =

Z

�(�)
Y

1�i�n

Pi (ai jAi ,�) d�, (76)

ou¡ les indices en bas de¬notent les parties.

Pourtant, dans un mode¡ le LHV partiellement non-local nous permettons un ensemble

de parties de se groupe et se comporte comme une seule partie. En particulier, cela
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signifie que

P(a1 . . . anjA1 . . .An) =
Z

�(�)P12(a1a2jA1A2,�)
Y

3�i�n

Pi (ai jAi ,�) d�. (77)

Nous donnons un mode¡ le explicite qui donne les valeurs 0 ou 1 a¡ tous les termes de

L . Il implique qu’un seul terme dans la somme
P

P(�(0 . . . 0| { z }
n�k

1 . . . 1| { z }
k

)j0 . . . 0) est 1, tous

les autre termes sont 0. Supposons, sans perte de ge¬ne¬ralite¬, que

P(0 . . . 0| { z }
n�k

1 . . . 1| { z }
k

j0 . . . 0) = 1. (78)

Ceci implique

P12(00j00) = 1 (79)

P3(0j0) = 1, . . . , Pn�k(0j0) = 1 (80)

Pn�k+ 1(1j0) = 1, . . . , Pn(1j0) = 1, (81)

d’ou¡ on de¬duit

P12(01j00) = P12(10j00) = P12(11j00) = 0 (82)

P3(1j0) = 0, . . . , Pn�k(1j0) = 0 (83)

Pn�k+ 1(0j0) = 0, . . . , Pn(0j0) = 0. (84)

Pour les termes
P

P(�(0 . . . 0| { z }
n�k�1

1 . . . 1| { z }
k�1

01)j�(0 . . . 0| { z }
n�2

11)), nous allons les fixer a¡ 0, en

utilisant (82) a¡ (84) avec quelques conditions supple¬mentaires sur les probabilite¬s, sans

donner des inconsistances.

Pour voir comment fixer tous les termes a¡ 0, nous allons diviser les termes dans la

somme en trois cas (a, b sont des bits, ā, b̄ sont leur ne¬gations logiques) :

1. P(ab�(0 . . . 01 . . . 01)j00�(0 . . . 011)).

Dans ce cas, si a et b ne sont pas tout les deux 0, alors d’apre¡ s (82), la probabilite¬

est 0. Sinon, nous fixons Pi (0j1) = 0, ou¡ i 6= 1, 2.

2. P(ab�(0 . . . 01 . . . b̄)j01�(0 . . . 001)), P(ab�(0 . . . 01 . . . ā)j10�(0 . . . 001)).

Dans ce cas, si a = b = 1, alors il existe Pi (0j1) ou¡ i 6= 1,2. Donc nous avons

Pi (0j1) = 0 et P12(11j01) = 1, P12(11j10) = 1, sans avoir d’inconsistance avec le

cas pre¬ce¬dent. Les deux dernie¡ res affectations impliquent aussi que si a et b ne

sont pas tout les deux 1, alors P12(abj01) = P12(abj10) = 0.
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3. P(a ā�(0 . . . 01 . . . 01)j11�(0 . . . 0)).

Dans ce cas, la probabilite¬ est toujours 0. La conclusion vient du principe des

tiroirs : il y a n� k� 1 re¬sultats 0 quand les parties 3 a¡ n mesurent dans la position

0, donc au moins une partie de n� k+ 1 a¡ n va obtenir le re¬sultat 0 dans la position

0. D’apre¡ s (84)la probabilite¬ est 0.

Dans le dernier cas, comme la probabilite¬ est toujours 0 inde¬pendant des affectations

de deux premie¡ res parties, nous pouvons fixer P12(00j11) = 0 et P12(11j11) = 0 sans

avoir d’inconsistance. Ces affectations garantissent les deux dernie¡ res probabilite¬s dans

L : P(0 . . . 0j1 . . . 1) et P(1 . . . 1j1 . . . 1) sont 0.

Donc nous pouvons fixer les probabilite¬s d’une facÀon consistante tel que tous les

terme ne¬gatifs de L sont 0 et la somme de tous les termes positifs sont 1, c-a¡ -d L = 1. Ca

signifie que L ne peut pas de¬tecter la non-localite¬ authentique.

Un argument similaire peut e√tre avance¬ pour P n ou Qn
d.

En conclusion il semble qu’on doive faire un choix e¬quilibre¬ entre l’utilite¬ d’une

ine¬galite¬ et la circonstance. Il est montre¬ que les ine¬galite¬s P n et Qn
d sont utiles pour

se¬parer les classes. En effet tous les e¬tats intrique¬s violent P n [ YCZ+ 12] . Mais leur

violations ne sont jamais assez fortes pour garantir la monogame. Ces ine¬galite¬s sont

aussi incapables de de¬tecter la non-localite¬ authentique (me√me pas L , avec ses nombreux

termes positifs) . D’un autre co√te¬, les ine¬galite¬s en espe¬rances mathe¬matiques (qui ont

force¬ment de nombreux termes positifs) peuvent avoir une violation maximale pour

n’importe quel n. Mais ils ne peuvent pas de¬tecter la non-localite¬ de tous les e¬tats - il

existe des e¬tats qui ne violent pas n’importe quelle ine¬galite¬ en espe¬rances mais qui

violent P n [ ZBLW02] . D’une facÀon similaire a¡ la situation en the¬orie d’intrication, il

semble qu’il n’est pas possible de capturer toutes les caracte¬ristiques de non-localite¬ par

une seule ine¬galite¬.
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Chapter1
Introduction

This thesis, as its name suggests, investigates the nonlocal features of permutation

symmetric states, in order to gauge the potential usefulness of these states in quantum

information processing. The approach taken is a very pedagogical one, assuming little

prior knowledge of quantum information or foundations of quantum mechanics.

Chapter 2 gives all the background information necessary to understand basic quan-

tum mechanics and nonlocality. Section 2.1 is a review of essential linear algebra to

understand the linear structures used in quantum mechanics: Hilbert space, Hermitian

operators, etc. Section 2.2 introduces the postulates of quantum mechanics, showing

how different concepts introduced in the previous section acquire physical meaning.

The postulates chosen are variations of the ones commonly used in quantum informa-

tion, especially the measurement postulate, which includes POVMs. The next section,

Section 2.3, briefly reviews the concepts and results in entanglement theory, beginning

from the definition of entanglement. The central notion of entanglement measures,

local operations and classical communication, is also introduced together with common

axioms for entanglement measures to satisfy. Moving from entanglement, Section 2.4

reviews the history and developments of nonlocality, a concept dating back to the early

days of quantum mechanics. After giving brief historical information, three common

ways to show nonlocality are shown: nonlocality from correlation functions, perfect

correlations with MABK inequality and the Hardy paradox with the CH inequality. This

section ends by discussing recent attempts to unify different approaches to nonlocality,

either by using convex geometry, or category theory, or hyper graphs. The last section of

this chapter introduces the main numerical technique used to obtain numerical results

in later chapters: semidefinite programming.

Chapter 3 introduces the geometrical aspects of symmetric states, in the form of the

Majorana representation. Section 3.1 shows that complex numbers and geometry are

intimately connected. Complex numbers, in addition to the usual geometrical representa-

tion on the complex plane, has another, compact representation by the Riemann sphere.
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The automorphisms of the Riemann sphere, called Mo�bius transformations, have a direct

interpretation in entanglement of symmetry states as the geometrical manifestation of

SLOCC operations. Section 3.2 explains the main tool used by the study of both the

entanglement and the nonlocality of symmetric states: the Majorana representation. The

geometric representation of a symmetric state given by the Majorana representation is

shown, together with constructive procedures to decompose a symmetric state into its

Majorana points and reconstruct a symmetric state from a set of Majorana points. Several

useful properties derived from the decomposition/ reconstruction are also shown in this

section, which will be used later to prove the nonlocality of symmetric states. Section 3.3

reviews the physical aspects of the Majorana representation and its historical significance.

The connection between complex geometry and physical spin is shown. What is not

shown explicitly but nevertheless mentioned is the connection between spinors and

special relativity [ PR84, PR86] . The last section of this chapter reviews the main results

of an earlier thesis on the entanglement properties of symmetric states [ Aul11a] . The

connection between the Mo�bius transformation and SLOCC classification is made explicit.

It also is shown that the symmetric states whose Majorana points form the Platonic solids

are special because their closest product states form the dual Platonic solid.

Chapter 4 mainly contains mathematical proofs of several main theorems used in

the thesis. The first section reviews the original result by Hardy, including how to find

suitable measurement settings to satisfy the bipartite Hardy paradox. Then the next

section extends the bipartite Hardy paradox to n party, together with a generalized CH

inequality, which will be called P n. Section 4.3 proves the main theorem showing almost

all symmetric states satisfy the n-party Hardy paradox, and as a result also violate P n.

As part of the proof, it is also shown how to choose the measurement settings to satisfy

the paradox. The last section proves the existence of measurement settings which allow

Dicke states to also violate P n, although they do not satisfy the n-party paradox.

Chapter 5 focuses on a special feature of symmetric states, made evident by the

Majorana representation: degeneracy. Degeneracy denotes the fact that not all Majorana

points of a symmetric states are distinct. It comes from the degeneracy of polynomial

roots. Using degeneracy, it is possible to show that entanglement and nonlocality may

persist to subsystems. To show the persistency of nonlocality, new conditions are added

to the n-party Hardy paradox and a new inequality Qn
d is defined. The conditions,

old plus new, can only be perfectly satisfied by a state with enough degeneracy. Thus

having enough degeneracy also guarantees the violation of Qn
d . The relationship between

degeneracy and entanglement is known. Semidefinite programming techniques allow

the device independent classification of states into different nonlocal classes using local

unitaries and permutation of systems (LUP) classification scheme. The classified states

also sit in different SLOCC classes, using the link between SLOCC operations and the

Mo�bius transformation.
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Chapter 6 performs additional analysis (mainly numerical) of the nonlocality and

entanglement properties of symmetric states. The first section performs numerical

analysis on the strength of violation of P n by GHZ and W states, as the number of parties

grow. Because of the structure of P n, the violation is always bounded by the geometric

measure of entanglement of the state. Unfortunately, because of this bound, P n and

Qn
d are not monogamous, which is a useful property in cryptography. Monogamy is

defined both in the context of entanglement and in the context of nonlocality. Section 6.2

introduces these two concepts of monogamy, and shows that even though P n is not

monogamous in the strict sense, there is still some monogamy in the broad sense. The

last section of the chapter shows a new inequality for Dicke states, based on recent

results of Heaney, Cabello, Santos and Vedral, which is monogamous in the strict sense

when the number of parties goes to infinity. But neither this new inequality nor P n (or

Qn
d) can detect genuine nonlocality.

Chapter 7 isdedicated to two potential applicationsof the resultsobtained in previous

chapters: communication complexity and Bayesian game theory. The fact that nonlocality

is beneficial to communication complexity has been known for more than ten years. In

the most extreme case, the usage of a PR box, which represents stronger than quantum

correlations, renders the communication complexity of all Boolean functions trivial. This

section first reviews the model of bipartite communication complexity, showing how

classical randomness, both private and shared, can sometimes reduce the communication

complexity of computing certain functions. Then a quantum advantage is shown to

exist for some functions for which classical randomness does not help. However, the

probabilities in the n-party Hardy paradox do not form a function, instead they form

a relation. To the best of my knowledge, the theory of multiparty communication

complexity of relations is not as well-developed as multiparty communication complexity

of functions or the bipartite communication complexity of relations. So further research

into this area is needed. The other application of nonlocality is to Bayesian games,

which represent games with incomplete information. Models already exist to translate

an inequality into a Bayesian game. The Hardy paradox has already been translated

into a Bayesian game, with an explicit payoff matrix. A recent result by Brunner and

Linden [ BL12] has pointed out the broad link between nonlocality and Bayesian game

theory.

The last chapter summarizes the new results in this thesis, points out a few new

developments in related areas and envisages a few future directions of research and

open questions.
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Chapter2
Background

This chapter introduces most of the mathematical language of quantum mechanics and

nonlocality used by the rest of the thesis. The type of mathematics in thischapter is rather

general, leaving more specialized concepts such as complex geometry and the Majorana

representation to be treated in later chapters. Because nonlocality is considered as part

of the foundation of quantum mechanics, the approach taken in this chapter is very

pedagogical: starting from the basics of linear algebra and build up the mathematical

foundations of quantum mechanics.

2.1 Essential Algebra

According to one of the postulates of quantum mechanics, the “stage” for the quantum

mechanical show is a complex Hilbert space: a complex vector space which is complete in

the norm induced by the inner product. In what followseach word in thisdefinition will be

properly defined, leading to a mathematically rigorous yet self-contained understanding

of the concept of a complex Hilbert space.

The first important word in the definition is complex. It is in fact an abbreviation for

two related concepts: the set of complex numbers and the field of complex numbers.

A field is a set F with two binary operations, denoted + and �, which must satisfy these

axioms:

• Closure under + and �. 8 a, b 2 F, a + b 2 F and a� b 2 F. This is just another

way of saying + and � are binary operations.

• Associativity of + and �. 8 a, b, c 2 F, a + ( b + c) = (a + b) + c and a� ( b� c) =

(a� b) � c.

• Commutativity of + and �. 8 a, b 2 F, a + b = b + a and a� b = b� a.
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• Distributivity of � over + . 8 a, b, c 2 F, a� ( b+ c) = a� b+ a� c and (a+ b)� c =

a� c+ b� c.

• Existenceof identity elementsfor + and�. 90 2 F such that 8 a 2 F, 0+ a = a+ 0 = a.

91 2 F such that 8 a 2 F, 1� a = a� 1 = a. Also, 0 6= 1.

• Existence of inverses for + and �. 8a 2 F, 9 � a 2 F such that a + (�a) = 0.

8 a 6= 0 2 F, 9a�1 2 F such that a� a�1 = 1.

The set of real numbers, together with addition and multiplication, satisfies all the

axioms, thus forming a field R. The set of complex numbers is a superset of the set of

real numbers, having the form a + b� i , where a, b 2 R, i 2 = �1g. The field of complex

numbers is given by the set of complex numbers with addition and multiplication. When

there is no need to distinguish the two, the symbol C is used to denote both the set and

the field of complex numbers.

The second and perhaps the most important concept in the definition, is the notion

of a vector space. A vector space is a mathematical structure built on top a field. The

elements of the field are called scalars in the context of vector spaces. A vector space V

is an nonempty set of “things", called vectors, together with the field of scalars F and

two operations: + : V�V ! V and �: F�V 2 V, which also satisfy the following axioms:

• Associativity of + . 8u, v, w 2 V, u + (v + w) = (u + v) + w.

• Commutativity of + . 8u, v 2 V, u + v = v + u.

• Existence of the zero vector. 90 2 V such that 8u 2 V, 0 + u = u.

• Existence of inverses for + . 8u 2 V, 9� u 2 V such that u + (�u) = 0.

• Distributivity of �. 8 a 2 F, u, v 2 V, a �(u + v) = a�u + a�v. 8 a, b 2 F, u 2 V,

(a + b) �u = a�u + b�u.

• Compatibility of �with scalar operation �. 8 a, b 2 F, u 2 V, (a� b) �u = a�( b�u).

• Existence of the identity element of �. 91 2 F such that 1 is the identity element of

� and 8u 2 V, 1�u = u.

A complex vector space is a vector space whose scalar field is C. From now on,

unless mentioned explicitly, all vector spaces (including Hilbert spaces) are complex.

The scalars offer richer structures in a vector space by defining additional operations

on it. The next concept in the definition we need to know, the inner product h�, �i :

V� V ! C, is the most common additional operation. To qualify as an inner product,

h�, �i must satisfy the following properties:

• Positive definite. 8u 2 V, hv, vi � 0, with hv, vi = 0 iff v = 0.
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• Conjugate symmetric. 8u, v 2 V, hu, vi = hv,ui .

• Linearity in the first argument. 8u, v, w 2 V, a, b 2 C, hau + bv,wi = ahu,wi +

bhv, wi .

The last two properties imply that the inner product is sesquilinear for complex

vector spaces: 8u, v, w 2 V, a, b 2 C, hw, au + bvi = ahw, ui + bhw,vi . Two vectors are

said to be orthogonal if their inner product is 0.

In an Euclidean space, the inner product of two vectors is related to their “length”

and the angle between them. More precisely, it is the product of each of their lengths

times the cosine of the angle between them. However, there is something missing in

this intuition: the “length” of a vector is not defined so far. To make things worse, there

is more than one way to define what “length” is in a vector space! As the definitions

above show, concepts tend to be defined axiomatically in algebra, and the concept of

“length” is no exception. Except it is not called “length”, it is called norm, the abstract

generalization of “length”. The norm, k �k: V ! R, is defined axiomatically as any

function satisfying the following:

• Only the zero vector has norm zero. kvk = 0 iff v = 0.

• Compatibility with thenorm of thescalar field. 8 a 2 C, v 2 V, kavk = jaj kvk, where

j �j is the modulus.

• Triangle inequality. 8v, w 2 V, kv + wk � kvk + kwk.

For any inner product space, there is always a norm “induced” by the inner product:

8v 2 V, kvk =
p

hv, vi .

The geometrical intuition given above for the inner product function can be also

applied to this norm: since the angle of a vector with itself is 0,the cosine is 1. The the

square root of the product of its “length” with itself (or in the complex case, with its

conjugate) gives the absolute value (or the modulus) of the “length” of the vector.

The last significant word in the definition is the notion of completeness. However, to

define completeness in a vector space rigorously, the knowledge of a Cauchy sequence

is needed. A Cauchy sequence in a vector space V is comprised of a sequence of vectors

f xng, such that 8�> 0, 9�2 N which makes kxm� xnk < �for all m, n > �. For a vector

space to be complete, then every Cauchy sequence in it needs to converge to a vector

in it. Luckily, all (normed) finite dimensional vector spaces are complete, the proof of

which can be found in most functional analysis textbooks.

Although by now a Hilbert space can be rigorously defined, it is still too abstract.

The basic elements of a vector space, the vectors, have not been properly introduced.

Vectors are supposed to be abstract entities satisfying the axioms, but this does not mean
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they cannot be visualized or written down. To write down a vector, a basis is needed.

Before defining what a basis is, it is more useful to define linear independence. A set

of vectors vi is called linearly independent if for ai 2 C, the only way that the expression

a1v1 + a2v2 + . . . + anvn = 0 holds is when all ai = 0. If a set of vectors is not linearly

independent, they are l inearly dependent. Linearly independent vectors can serve as

“starting points” to reach other vectors by scalar multiplication and vector addition. The

vector space spanned by a set of linearly independent vectors is the vector space where

the vectors are all possible combinations of scalar multiplications and vector additions.

If a set of vectors are linearly independent and spans a space V , then this set is called

a basis of V. The number of elements in this set is called the dimension of the vector

space. If in addition to being linearly independent, they are also mutually orthogonal (i.e.

having inner product zero), then the basis is called an orthogonal basis. If each vector

has norm 1, then the basis is called an orthonormal basis. Not all vector spaces can

have orthonormal bases, but with its inner product and induced norm, an orthonormal

basis can be always defined in a Hilbert space.

Given two or more vector spaces, one natural task is to construct a larger vector

space whose vectors are constructed from the vectors of the original spaces in the least

restrictive manner possible. This leads to the tensor product of two (or more) vector

spaces.

To construct the tensor product of two vector spacesU of dimension m V of dimension

n, take any vector u 2 U and v 2 V, then the vector (u, v) of dimension m�n is a member

of a larger vector space U� V, which is called the tensor product of U and V. To see why

the dimension of the tensor product space is m� n instead of m + n, take any basis of

U, f u1, . . . , umg, and a basis of V, f v1, . . . , vng, then any combination (ui , vj ) is basis of

U� V.

Although taking the tensor product of two vector spaces produces a much bigger

space, the new space is nevertheless a vector space, so basic properties concerning vector

addition and scalar multiplication should still apply in a tensor product space, albeit in a

modified form. Instead of requiring the vector addition to be linear, it should be bil inear

in a tensor product space, i.e. linear in both the u and v part of (u, v). And the scalar

multiplication should be compatible with with both parts as well. The additional axioms

for the vectors (u, v) of U� V are:

• Bilinearity in both U and V. 8u, u1, u2 2 U and 8 v, v1, v2 2 V, (u1 + u2, v) =

(u1, v) + (u2, v), (u, v1 + v2) = (u, v1) + (u, v2).

• Compatibility with scalar multiplication in both U and V. 8z 2 C, (c�u, v) =

c�(u, v) = (u, c�v).

Note that the definition of the tensor product given here is meant to be intuitive

instead of mathematically rigorous. For a mathematically rigorous treatment of the
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tensor product, either in terms of the free product or in terms of universal pairs in

category theory, see [ Sze04, Rom08]

Knowing what a Hilbert space is only reveals half of the picture. Vectors are static

objects in a vector space, and they are meant to be moved around, transformed into other

vectors (possibly in a different vector space) or in general, be manipulated. The way this

manipulation is done should respect the vector space structure, to guarantee that the

manipulated vectors still remain vectors. The most natural transformations which fulfill

this requirement are l inear transformations. A linear transformation from a vector

space V to W is defined as any function � : V ! W such that �(au + bv) = a�(u) + b�(v),

8 a, b 2 C and u, v 2 V. In the case that V = W, the linear transformation is called a

l inear operator.

There is also a special case when ~W is the scalar field of V, considered as a vector

space whose scalar field is itself. In this case the function � takes any vector in V to

a scalar in its scalar field. Such a function � is called a linear functional over V. The

linear functionals also form a vector space themselves, it is called the dual space of V,

denoted by V�.

Being a normed vector space, linear transformations on a Hilbert space have some

extra properties. The most useful linear transformations in quantum mechanics are

bounded linear transformations, defined as any linear transformation � such that

9a > 0, 8v 2 V, k�(v)k � akvk. Bounded linear functionals of a Hilbert space are

very special because the following well-known theorem, whose proof can be found

in [ Sze04] [ Rom08] and [ DM05] , states that the dual space is essentially the same as

(called isomorphic to) the original space:

Theorem 1. (Riesz representation theorem) Let � be a bounded linear functional on a

Hilbert space H , there exists a unique vector x02 H such that �(x) = hx, x0i , 8x 2 H . Also,

k�k = kx0k.

Everything above is general enough to cover both finite and infinite dimensional

Hilbert spaces. However, infinite dimensional Hilbert spaces are not needed in this

thesis. From now on only finite dimensional Hilbert spaces will be considered. All linear

operators are bounded in a finite dimensional Hilbert space,

In a finite dimensional Hilbert space H , every linear operator � has an adjoint ��

defined as h�(x), yi = hx,��(y)i , 8x, y 2 H . If �= ��, then it is called self-adjoint. If an

operator commutes with its adjoint, ���= ���, then it is called a normal operator. If

there exists an operator ��1 such that ��1(�(x)) = x, 8x 2 H , then ��1 is called the

inverse of �.

When a linear operator acts on a vector, it is usually transformed into a different

vector. But it is possible that the operator merely scales the vector by a factor � 2 C:

�(v) = �v. When this happens, the number � is called an eigenvalue of the operator �,
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and the vector u is called the eigenvector of � associated with the eigenvalue�. The

eigenvalues of self-adjoint operators are special because they are always real numbers:

Theorem 2. Let � be a self-adjoint linear operator on a Hilbert space H , with � one of its

eigenvalues, then �2 R

Proof. Suppose the eigenvector associated with � is v, then �(v) = �v. Which implies

hv,�(v)i = hv,�vi = �kvk2. Because � is self-adjoint, h�(v), vi = h�v, vi = hv,�vi =

�kvk2. If kvk 6= 0, �= �, which means�2 R.

The inner product structure of a Hilbert space has special significance in physics, so it

is important to consider linear operators that preserve this structure. Effectively, a linear

operator � preserves the inner product (called an isometry) if h�(x),�(y)i = hx, yi ,

8x, y 2 H . If the isometry is bijective, then it can be shown that ��1 = ��. Such

operators are called unitary operators.
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2.2 Postulates of Quantum Mechanics

Having set the stage for the postulates of quantum mechanics, it is time to actually

introduce them. The postulates are a set of statements “pairing” physical objects and

processes with abstract notions of Hilbert spaces, giving an explicit recipe for doing

physical calculations in Hilbert spaces. Different textbooks give different numbers of

postulates, either 4 [ NC00] [ Sha94] or 5 [ DM05] or 6 [ CTDL97] . Some textbooks do

not list the postulates explicitly at all, mixing the mathematical background with physical

concepts from the beginning [ Sze04] [ SN10] [ Wei12] . Even though the number of

postulates differ from textbook to textbook, all the postulates, either explicitly listed or

implicitly blended into the background, cover three aspects of a physical theory: what a

physical system is, how to probe a physical system to extract information, and what is

the dynamics governing the evolution of a physical system. The postulates listed here

will mainly follow the standard textbook of quantum information [ NC00] , while only

working with pure states.

Postulate 1. The state space. A physical system S is represented by a (complex) Hilbert

space H . A state of the system  at a given instant is given by a vector in this Hilbert

space. Such a state vector is called a ket, denoted by j i . A composite physical system is

represented by the tensor product of itscomponents. Ketsof thecompositesystem correspond

to linear combinations of tensor products of its components.

There are a few subtleties in this postulate. First of all, states of the physical system

and vectors in the corresponding Hilbert space are not mapped one-to-one. A vector,

together with all its scalar multiples, corresponds to the same state. To reduce such

arbitrariness, all state vectors are supposed to be normalized: k j i k = 1. The second

subtlety arises from this normalization requirement. Only requiring the norm of a ket to

be 1 does not completely remove the arbitrariness, because any complex number with

norm 1 multiplied with a normalized ket will still give a normalized ket. Because of this,

a complex number with norm 1 is usually called a phase, and two kets different only by

a global phase are undistinguishable.

By Theorem 1, to every ket j i there is a corresponding linear functional, called a

bra, denoted by h j. The normalization requirement can be restated as jh j i j2 = 1.

Normalized ketswhich are also orthogonal are ideal tools to translate abstract notions

in a Hilbert space into concrete terms by forming an orthonormal basis. In quantum

information, a qubit is a 2 dimensional Hilbert space with basis kets j0i and j1i , where

h0j1i = 0. Any vector in the qubit space can be written as j i = �j0i + � j1i , with

j�j2 + j�j2 = 1, to keep j i normalized. The qubit is said to be in superposit ion of

the state j0i and j1i , because the coefficients � and � contain information about the

qubit, which can only be accessed by the measurement procedure described in the next

postulate. Historically, in physics, the qubit describes the state space of a spin-1
2

particle,

36



2.2. Postulates of Quantum Mechanics

and is sometimes called a 2-spinor. The connection between the qubit, complex geometry

and the spin will be explored in Chatpter 3.

Postulate 2. Measurements. Measurements of a physical system aredescribed by a set of

measurement operators Mi , acting on the state space of the system. Each measurement

operator represents a possible outcome of themeasurement, indexed by i . For a state j i ,

the probability p(i ) that the outcome i occurs is given by p(i ) = h j M†
i Mi j i . After the

outcome i has been observed, the state j i is transformed into Mi j i
∆

h jM†
i Mi j i

.

The measurement postulate hasprofound implications in both physicsand philosophy.

It acts as the bridge between the macroscopic observed world and the tiny quantum

mechanical systems. The probabilistic interpretation of measurement results gives most

of the non-classical features of quantum mechanics, such as nonlocality and contextuality.

Recently, there are theories which take a probabilistic interpretation of the observed

world as an axiom, combining it with other physically motivated axioms, to construct

a whole family of physical theories (called generalized probabil istic theories), some

even go beyond the normal quantum theory defined by these postulates [ Har01, Spe07,

Bar07, PPK+ 09] .

Returning to the measurement postulate, there are a few hidden assumptions. First

of all, since measurement outcomes are only observed probabilistically, the probabil-

ity of observing one outcome, from the complete set of possible outcomes, when a

measurement is performed must be 1. This implies

X

i

p(i ) =
X

i

h j M†
i Mi j i = 1, (2.1)

X

i

M †
i Mi = I , (2.2)

The second assumption comes from the fact that states are rays in the state space,

meaning j i and c�j i represent the same physical state. This may pose a problem for

(2.1), because if the state is not normalized, the probability may be bigger than 1. This

is one of the reasons why only normalized states are used.

The measurement postulate looks different from the usual way it is written in physics

textbooks because it uses positive operator-valued measure (POVM). A POVM is given

by a set of POVM elements f Ei g, defined by Ei = M†
i Mi . The only requirements for a

POVM measurement is a set of positive operators, the POVM elements, with the property

that
P

i Ei = I .

The traditional formalism to model quantum measurements are called projective

measurements, which can be seen as a special case of POVM measurements. A projec-

tive measurement is described by a Hermitian operator on the state space, called an

observable. In addition to being Hermitian, an observable M is a sum of projectors Pm:
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M =
P

m pmPm, where pm > 0,
P

m pm = 1. For an observable M, the Hermiticity means

that M†M = M2, and projectors Pm satisfy P2
m = Pm. So the measurement postulate can

be simplified when the measurement is projective: the POVM elements of a projective

measurement are the projectors, the projector Pm projects the state j i onto its the

eigenspace with probability pm, yielding an eigenvalue as the outcome of the mea-

surement, with the state after measurement being the eigenvector associated with the

eigenvalue. According to Theorem 2, the eigenvalues of Hermitian operators are always

real. The POVM elements of a projective measurement are Pm themselves. There is one

property of projective measurements not possessed by a general POVM measurement:

the eigenvectors of Hermitian operators are orthogonal, projective measurements model

the “either-or” situation: if there are 2 possible outcomes (represented by 2 mutually

orthogonal eigenvectors of some Hermitian operator), each having a non-zero probability

to occur, then if one if them is not observed by a measurement, the other one must have

been observed. This is a very important property for the Hardy paradox, to be introduced

later in this chapter and generalized in Chapter 4.

Because after a projective measurement, the state is transformed into an eigenvector

of the projector, it is sometimes more convenient to directly use the eigenvector of

a projector to model a projective measurement. For example, for a state j i and an

observable M = j�i h�j � j�? i h�? j, the probability of obtaining the result + 1 is given

by

p+ 1 = h j�i h�j i = jh�j i j2. (2.3)

In projective measurements, it is also useful to know the expectation value of an

observable instead of the probability of obtaining each of its outcomes. The expectation

value of an observable M for the state j i is given by

E(M) = hMi = h j M j i . (2.4)

Postulate 3. The evolution of a closed system. The evolution of a closed quantum system

is described by a unitary transformation U. The state�( t ) at time t evolves to �( t 0) =

U�( t )U† at time t 0, with U depending on t and t 0 only.

This postulate, although extensively used by the quantum information community, is

only half of the picture: it only deals with discrete time steps. In continuous time, the

Schro»dinger equation

i~h
d j i

dt
= H j i (2.5)

governs the evolution of the system. The object H is called the Hamiltonian of the

system, which completely determines the dynamics of the system. The Hamiltonian is a
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2.2. Postulates of Quantum Mechanics

Hermitian operator, whose eigenvectors are called the energy eigenstates of the system,

with the associated eigenvalues called the energy. The Hamiltonian and the unitary

operator in the discrete time case are related through an exponentiation function:

U( t , t 0) = e�
iH( t 0� t )

~h . (2.6)
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2.3 Scratching the Surface of Quantum Entanglement

The linearity of quantum states has many important consequences. The most important

of which is entanglement. The term, coined by Schro�dinger, was originally used to

describe the kind of quantum states used in the EPR thought experiment (cf. the next

section). In the modern language, entanglement characterizes the ability to factorize the

Hilbert space of a multiparty state into tensor products of smaller Hilbert spaces [ GT09,

HHHH09] . For bipartite pure states, being entangled means that a state j i 2 H can not

be decomposed as

j i = j�i 1 � j�i 2 , (2.7)

where j i 1 2 H 1, j i 2 2 H 2 and H = H1 � H 2. When a state can be written as (2.7), it

is called a product or separable state.

For mixed states the definition is similar but slightly more subtle. Because mixed

states allow convex combinations of terms like (2.7), the direct analogy of (2.7) leads to

the definition of a mixed product state:

� = �1 � �2, (2.8)

while the convex combinations of (2.8) give the definition of a mixed separable state:

� =
X

i

pi�
i
1 ��

i
2, (2.9)

with
P

i pi = 1.

The simple forms of the definitions above can be misleading. For bipartite pure

states, a simple procedure called the Schmidt decomposition can be used to determine

whether a state is entangled or not [ Per93, NC00] . Any bipartite pure state j i can be

decomposed as:

j i =
X

i

si j�1i j�2i , (2.10)

where j�1i and j�2i are orthonormal bases of the first and second subsystem. The state

j i is a product state iff there is only one si , i.e. it can always be written as the tensor

product of two vectors. Simple as it is, this procedure only works for pure states and

does not generalize to more than two parties.

For bipartite mixed states, determining whether a state is entangled or not is a very

hard problem. Although the number of pi in (2.9) can be bounded by the Carathe¬odory

theorem [ Car11, HHH97, VP98] , they bear no obvious relationship to the eigenvalues of

�i . Several criteria have been proposed to test the separability of bipartite mixed states.
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These include the PPT (positive partial transpose) criterion [ Per96] , the not completely

positive map criterion [ HHH96] and the realignment criterion [ CW03, Rud05] (for more

details, see [ GT09, HHHH09] ).

For multipartite states, both pure or mixed, entanglement gets more complicated

because of the larger Hilbert space and the possibility of having partial entanglement,

where not all n parties are entangled.

Despite these difficulties in detecting entanglement, entangled states are a corner-

stone of quantum information. All truly quantum protocols or algorithms use entangled

states, and different entangled states have different properties, thus suitable for different

tasks. For quantum information processing purposes, entanglement can be measured

and manipulated, yielding quantitative results relating specific states and information

processing tasks such as communication or teleportation. The study of how to quantify

entanglement yields different entanglement measures (for a review see [ PV07] ).

Before talking about entanglement measures, it is instructive to consider a related

question first: how to model a general information processing task? Although according

to Postulate 3, all quantum states must undergo unitary evolution, the “states” consid-

ered maybe those of a composite system. This composite system may consist of two

parts: the actual system on which the information processing task is performed, and

the environment, which may be entangled with the actual system. When considered

this way, the evolution of the actual system, when studied alone, may no longer be

unitary (although the system+ the environment always go through unitary evolution).

The evolution of the system of interest, after discarding the environment, is called a

quantum operation. Mathematically, quantum operations are modeled by completely

positive (CP) maps of two kinds, depending on the desired outcome of the quantum

operation:

• If after the quantum operation, the state of the system is changed determinist i-

cally into another state, the quantum operation is characterized by a completely

posit ive trace-preserving (CPTP) map. The CPTP map is also called a quantum

channel.

• If after the quantum operation, the state of the system is changed probabi l ist i-

cally into another state, the quantum operation is characterized by a completely

posit ive trace-nonincreasing map.

In both cases, the quantum operation is modeled by Kraus operators Ki , satisfying

the conditions below:

• For CPTP maps,
P

i K†
i Ki = I .

• For CP trace-nonincreasing maps,
P

i K†
i Ki � I .
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In both cases, for a state�, the quantum operation denoted by Kraus operators Ki

takes it to

� ! �0=
X

i

Ki�K†
i

Tr (Ki�K†
i )

. (2.11)

The model local operations and classical communication (LOCC) was proposed

to measure the usefulness of entangled states. In this model, take the bipartite case as an

example, Alice and Bob each possesses half of an entangled state. Then they are free

to perform any quantum operation on their own state. In LOCC, the only restriction

on the quantum operation is that it must be deterministic (i.e. a quantum channel).

Then they are allowed to send each other classical messages, and depending on received

messages, perform more quantum operations (which must also be deterministic), and

so on. Mathematically, each round of communication-operation can be modeled by

(assuming Alice sends a message to Bob first)

IA� Ka1
B ((KA� I B)�(K†

A� I B))IA� K†a1
B , (2.12)

where Ka1
B is the Kraus operator of the quantum operation of Bob upon receiving the

message a1 from Alice.

From (2.12) it can be seen that the mathematical structure of a multi-round LOCC

operation is quite complicated. Luckily, it is necessary to consider Kraus operators which

can be decomposed into a product form, with each component acting only on Alice and

Bob.

Because LOCC models a general quantum information processing task, an interesting

problem arises when pairing specific quantum states to specific tasks. For some tasks such

as teleportation, it is known that some states can perform this task. Is it possible that

other states can be transformed, through LOCC, to these known states, thus being able

to perform the task as well? This is the motivation for studying LOCC equivalence of

entangled states. LOCC equivalence means that a state� can be turned into another state

� and back deterministically, by applying a series of local quantum operations which

also depend on the classical message received from other parties. It turns out that the

requirement two states can be turned into each other via LOCC is very strong, making

LOCC equivalence the same as local unitary equivalence for pure states [ BPR+ 00] :

two n party pure states (of qubits) j i and j�i are LOCC equivalent iff there exist

Aa1
1 , . . . , Aan

n 2 SU(2) such that

j�i = Aa1
1 � . . .� Aan

n j i . (2.13)

The LOCC equivalence requires deterministic interconversion. For pure states, this

requirement can be relaxed to probabilistic interconversion, corresponding to CP trace-
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nonincreasing quantum operations, which allows a more coarse-grained classification of

states [ BPR+ 00, DVC00] . The only difference in this stochastic LOCC (SLOCC) scheme

is instead of local unitary equivalence, all invertible local operations are allowed:

j�i = Aa1
1 � . . .� Aan

n j i , (2.14)

where Aa1
1 , . . . ,Aan

n 2 SL(2, C). The Aai
i are called invert ible local operations ( ILOs).

Invertibility guarantees the states can be converted to each other via local operations

and classical communication.

One of the first applications of SLOCC classification was to show that all 3-qubit pure

states belong to two SLOCC classes: one class having the GHZ state as its representative,

the other having the W state as its representative [ DVC00] . Unfortunately, simple

argument counting by the authors of [ DVC00] reveal that starting from 4 qubits, the

number of SLOCC classes will be infinite. Fortunately, for symmetric states, the situation

is better understood and SLOCC classification has a direct geometric meaning (see

Chapter 3).

With LOCC, entanglement no longer just represents vague quantum correlations, it

is now a resource, being able to assist communication and computational tasks. It is

possible to quantify entanglement with the help of LOCC and a few axioms, giving rise

to various entanglement measures E(�) : H ! R+ , assigning a positive real number

to represent the amount of entanglement of a state�.

Although different entanglement measures obey different axioms, the most common

axioms are:

1. Separable states have zero entanglement: E(�) = 0 $ � 2 HSep.

2. Local unitaries do not change entanglement: � = U1 � . . .� Un�U†
1 � . . .� U†

n !

E(�) = E(�).

3. LOCC can not increase entanglement: if �
LOCC
7�!

P
i pi�i , E(�) �

P
i pi E(�i ).

4. E(�) is convex: E(� =
P

i pi�i ) �
P

i pi E(�i ).

5. E(�) is additive: E(��n) = nE(�).

6. E(�) is strongly additive: E(�� �) = E(�) + E(�).

The most interesting entanglement measure for symmetric states is the geometr ic

measure, defined as

EG(j i ) = � log2 (jh�j i j2), (2.15)

where j�i is the closest product state, with j�i 2 HSep and j�i maximizes jh�j i j2.
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It iseasy to see that the geometric measure satisfies the first 4 axioms above, although

in general it is not additive [ WH02] . For symmetric states the geometric measure

is interesting because it can be computed efficiently, tanks to a property that it is

sufficient to only consider symmetric j�i , meaning j�i = j�i � . . .� j�i , where j�i is

a qubit [ HKW+ 09] . The entanglement of symmetric states in terms of the geometric

measure has been well studied [ HKW+ 09, AMM10, KWK+ 10, AMM11, Aul11b, Mar11,

RM11] , with a recent thesis which can serve as a review of the topic [ Aul11a] .
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2.4 The Facets of Nonlocality

Nonlocality is arguably the most striking manifestation of the quantum mechanical world.

The first question about the locality of quantum mechanics was asked in 1935, then

the first breakthrough came almost 30 years later in 1964. Since then, the study of

nonlocality flourished both theoretically and experimentally. The theoretical studies of

nonlocality involves many subtle concepts leading to many different approaches to the

problem. This section will give an overview of the three most common approaches to

nonlocality and their reconciliation through a common framework, after motivating the

problem from a historical perspective.

2.4.1 A Little Bit of History

Radical changes are characteristics of revolutions, and the quantum revolution certainly

brought more radical changes than one is willing to immediately accept, even to great

minds like Albert Einstein. Using superpositions of states, making probabilistic predic-

tions and assigning a Hermitian matrix rather than a simple real number to any physical

quantity, thus making some simultaneous measurements inaccurate have implications

not only on the “behind the scenes” mathematical machinery governing the (microscopic)

world, but also on the results of macroscopic experiments.

Not long after the mathematical foundations of quantum mechanics have been laid,

Einstein, Podolsky and Rosen (EPR) noticed a counterintuitive feature coming from the

tensor product structure of composite systems [ EPR35] . Because the tensor product is

the most general product (the mathematical word is free product) between the Hilbert

spaces of each subsystem, it not only contains information about each subsystem, but also

information pertaining to both subsystems. EPR considered a two-particle system, whose

wave function encodes the distance between them and their total momentum. These two

kinds of information can be precisely known simultaneously because their observables

commute. The fact that their value can be precisely known, i.e. predicted with certainty

(EPR called such quantities elements of real ity), also means that their values should

represent some real underlying physical quantity. However, if a measurement is made

on the position of one particle, the position of the second particle can be deduced

immediately without it being disturbed, no matter how far away their are. The same

inference can be made if the momentum of one particle is measured. This seemingly

blatant violation of special relativity made EPR suggest that quantum mechanics is not

complete. Einstein later called this phenomenon spooky action at a distance.

The EPR paper drew little attention from working physicists at the time, most of

whom are adherents of the “shut up and calculate” doctrine. According to Google Scholar,

of the 11400 citations the paper have today, only about 100 occurred between 1935

and 1970. However, the paper did have one famous critic: Niels Bohr. In a paper
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whose title is exactly the same as the EPR paper [ Boh35] , Bohr introduced the notion of

complementarity: some observables are not meant to be measured together. In the EPR

scenario, if the position measurement is made on one particle, there is no way to decide

which measurement on the second particle would give precise results unless the choice

of the first measurement is known. If a wrong choice is made on the second particle,

then the first measurement introduces a disturbance, making the second measurement

no longer precise. But without communication, neither party knows a wrong choice has

been made, thus making the disturbance undetectable.

Einstein did not buy this complementarity argument. To him, space-like separated

particles behave independently. Then the debate seemed to fade away. Almost 30

years had passed when another disgruntled quantum mechanic started questioning its

foundations. John Bell revisited the EPR paradox and showed that the EPR scenario is

incompatible with quantum mechanical predictions [ Bel64] . Instead of reasoning about

the position and momentum of two particles, Bell, following Bohm and Aharonov, used

two spin half particles and restricted the measurements to components of their spin. To

model the spooky action, Bell introduced �, the local hidden varible (LHV).

It does not matter what � is. It can be a discrete set of values, or a set of functions,

or a continuous set of values or functions. It is meant to complete quantum mechanics to

explain the correlations which arise from measurements of space-like separated parties.

Bell extended the EPR “elements of reality” measurements to general measurements,

allowing each party to use � as a common source of randomness. The local in local

hidden variable addresses Einstein’s concern that space-like separated parties should

behave independently. If the parties are space-like separated, their measurements can

still depend on �. Denote the probability of obtaining the result a when the observable

A is measured by P(ajA), and similarly define P( bjB), a local hidden variable theory will

predict that the joint probability P(abjAB) should be the product of P(ajA) and P( bjB),

taking � into account, and averaged over the distribution of �:

P(abjAB) =

Z

P(ajA,�)P( bjB,�)�(�) d�, (2.16)

where �(�) is a probability density function of �, assuming � is continuous, with the

property that
R
�(�) d�= 1 (if � is discrete, it is sufficient to replace the integral with a

sum, and �(�) becomes a probability mass function).

The definition above can be easily generalized to n parties, measuring observables

M1 to Mn, obtaining results m1 to mn:

P(m1, . . . , mnjM1, . . . , Mn) =

Z

P(m1jM1,�) . . . P(mnjMn,�)�(�) d�. (2.17)

There are two assumptions on (2.16) and (2.17):
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1. If the parties are space-like separated, the measurement outcomes of one of the

observables does not depend on the measurement settings of the other one.

2. The physical quantities represented by these observables have well-defined values,

revealed by measuring the corresponding observable.

The first assumption is called the locali ty assumption, because the parties being

measured can be space-like separated, making all actions, including measurements, local.

The second assumption is called the realism assumption, because as Einstein put it “I

l ike to think the moon is there even if I am not looking at it”. Together they are called

local real ism. A physical theory assuming the validity of local realism is called a local

hidden variable theory (or LHV theory for short).

Bell showed that while for some states the joint probability can be obtained by making

local measurements and assuming a hidden variable exists between the measurement

outcomes, there are states which when certain observables are measured, give results

that are incompatible with (2.16) and (2.17). This incompatibility means quantum

mechanics is not locally realistic, at least one assumption in local realism should be

abandoned.

The first experiment to test local realism was performed 8 years after the publication

of [ Bel64] , and quantum mechanics is vindicated [ FC72] . However, even before the

first experiment has been performed, the possibility of experimental loopholes, allowing

local realistic explanations of quantum mechanical results, was raised [ Pea70] . There

are two kinds of loopholes in an experimental test of local realism: the locality loophole

arises when the “separate parties” in the experiment are not far enough (i.e. space-like

separated); the detection loophole ariseswhen the efficiency of the measurement device

is below certain threshold to rule out any LHV theory. The most famous tests of LHV vs.

quantum mechanics are performed 9 years after the first test [ AGR81, AGR82, ADR82] .

The authors are well aware of the potential loopholes in these tests, and tried to address

one of them, the locality loophole, in [ ADR82] by varying measurement setting quick

enough so that no signal about the setting of one party can reach the other party.

However, as a result of technological limitations, the detector efficiency is not high

enough to close the detection loophole. The locality loophole is not completely closed

either because the settings change in a fast but predictable way. Subsequent tests have

either closed the locality loophole by using random settings [ WJS+ 98] , or closed the

detection loophole by using ions instead of photons [ RKM+ 01] . But no experiment to

date has closed both loopholes.

2.4.2 Bell ’s Inequality

The popularity of Bell’s work is partly due to the way he proposed to test local realism.

In the EPR paper, the whole scenario is a thought experiment. Because position and

47



Chapter 2. Background

momentum are both continuous variables, the EPR thought experiment is difficult to

carry out. Bohm reformulated the EPR experiment by using two entangled spin-1
2

particles and the quantities measured are x, y, z components of the spin, made by a

Stern-Gerlach apparatus [ Boh51] . Later, Bohm and Aharonov proposed an EPR test by

measuring polarization of photons [ BA57] . Although these proposed experiments use

discrete variables, there is no clear criterion with which a definitive statement separating

quantum mechanical predictions and LHV theories can be made solely from interpreting

the experimental data. The pioneering work of Bell, who used the same physical setup

made of two entangled spin-1
2

particles as Bohm, proposed using an inequality as the

criterion to separate quantum mechanical predictions and any LHV theory.

Why an inequality? The main reason is that an inequality allows a theory inde-

pendent formulation of the LHV condition (2.16) and (2.17) using probabilities or

expectation values, which would produce a bound, called the local realistic bound, as

the limit of any local realistic theory, without using any quantum mechanical assumption.

Then using the postulates of quantum mechanics, these probabilities or expectation

values can be associated with various quantum measurementsperformed on some chosen

states, which allow the direct comparison of quantum mechanical predictions with the

local realistic bound. If the bound is violated, then these states/ measurements serve as

witnesses of the nonlocality of quantum mechanics. The inequality allows direct experi-

mental test because it tolerates errors (whether in state preparation or measurements).

As long as the error is not very big the local realistic bound can still be violated.

Different types of inequalities exist for different states/ measurements, using different

types of statistical data (probabilities or expectation values). Different inequalities offer

different resistance to errors and show different strengths of violation. In what follows

three types of approaches to nonlocality are explained in detail. All three approaches

use different types of inequalities. In fact, the last two approaches also allow nonlocality

proofs with inequalities. But these proofs without inequalities are not resistance to any

experimental error, thus the only way of testing nonlocality is still via the inequalities.

Because Bell first used inequalities to test LHV theory, these different types of inequalities

are all called Bell inequalit ies.

2.4.3 Nonlocality from Correlations

This is the most famous approach to nonlocality in quantum mechanics. The idea itself

comes from the reformulation of the EPR argument by Bohm [ Boh51] [ BA57] . The

original inequality by Bell can be formulated as follows.

Let a, b, c 2 f + 1,�1g, then it is easy to verify the following holds:

ab� ac = �(1� bc). (2.18)
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Also note that in (2.18), if b = c, then both sides are 0, otherwise both sides equal to �2.

Now imagine a, b, c are results of tosses of three coins, controlled by some hidden

mechanism which may bias the tosses. This means that the probability that a, b, c get + 1

(heads) or �1 (tails) are not necessarily 1
2
. Nevertheless, let habi denote the expectation

value of the pair of coins (as random variables) which produce results a, b, and similarly

define haci , hbci , then it can be shown that

jhabi � haci j � 1� hbci . (2.19)

The expression (2.19) is the original Bell inequality. To show (2.19) can be violated

by quantum states with quantum measurements, consider the state

j i =
j01i + j10i

p
2

, (2.20)

which may represent a pair of entangled photons. Now, let a, b, c be the measurement

outcomes of these 3 observables:

a ! m̂a =
��z� �x

p
2

, b ! m̂b = �z, c ! m̂c = �x , (2.21)

where the�x,y,z are Pauli matrices:

�x =

 
0 1

1 0

!

, �y =

 
0 � i

i 0

!

, �z =

 
1 0

0 �1

!

. (2.22)

It can be easily verified that m̂a, m̂b and m̂c are all Hermitian, having eigenvalues

+ 1 and �1 with orthogonal eigenvectors. They represent projective measurements.

So indeed a, b, c can be model as the outcomes when these observables are measured.

According to Postulate 2 of quantum mechanics, the expectation value for projective

measurements are given by

hm̂am̂bi = h j m̂am̂b j i , hm̂am̂ci = h j m̂am̂c j i , hm̂bm̂ci = h j m̂bm̂c j i , (2.23)

where m̂am̂b means that the measurement m̂a is performed on the first photon and the

measurement m̂b is performed on the second photon, etc.

Simple calculation shows that

hm̂am̂bi =
1

p
2

, hm̂am̂ci = �
1

p
2

, hm̂bm̂ci = 0. (2.24)

So the LHS of (2.19) is
p

2, while the RHS is 1, a clear violation.

In the reasoning above, the observable m̂c is shared by both parties. In reality this is

very difficult to achieve. In fact, a whole body of research has since been carried out on
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how reference frames can be shared by distant parties [ BRS07] . Not long after [ Bel64]

was published, Clauser Horne Shimony and Holt gave an improved version of (2.19),

allowing both parties to choose from two independent measurement settings [ CHSH69] .

Their version, dubbed the CHSH inequali ty, is the most famous Bell inequality in

quantum information.

The CHSH inequality can be derive from an argument similar to the one given above.

Instead of having a, b, c, now suppose there are four numbers a, b, c, d 2 f + 1,�1g.

Instead of (2.18), now consider the expression

ac+ bc+ bd � ad. (2.25)

It can be easily shown that (2.25)= �2. Using m̂a to m̂d to model the measurements,

the CHSH inequality is

jhm̂am̂ci + hm̂bm̂ci + hm̂bm̂d i � hm̂am̂d i j � 2. (2.26)

To show (2.26) can be violated by a quantum state with appropriate measurement,

again consider the state j i given above. The measurement are now given by

a ! m̂a =
��z � �x

p
2

, b ! m̂b =
�z� �x

p
2

, c ! m̂c = �x , d ! m̂d = �z. (2.27)

Again using Postulate 2, the LHS of (2.26) is j � 2
p

2j = 2
p

2, which is bigger than 2.

It turns out the the value 2
p

2 is the best value that can be achieved by quantum

mechanics in this CHSH scenario, and this value is called the Tsirelson bound after

the author who proved its optimality [ Cir80] . Although the Tsirelson bound represents

what quantum mechanics can do, it is clearly not the maximum possible value for the

LHS of the CHSH inequality. If hm̂am̂ci = hm̂bm̂ci = hm̂bm̂d i = 1 and hm̂am̂d i = �1,

then the LHS of (2.26) would be 4. Although this much higher bound can not be

achieved by quantum mechanics, there are probability distributions which can achieve

this value, without violating special relativity and signaling faster than light [ PR94] . The

distribution is given by assigning probability 1
2

whenever the AND of the measurement

settings, represented by bits, equals to the XOR of the outcomes, again represented by
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bits. All other probabilities are zero. Explicitly, the nonzero probabilities are:

P(00j00) = P(11j00) =
1

2
, (2.28)

P(00j01) = P(11j01) =
1

2
, (2.29)

P(00j10) = P(11j10) =
1

2
, (2.30)

P(01j11) = P(10j11) =
1

2
. (2.31)

Such probability distributions are called PR boxes. Since quantum mechanics does

not signal faster than light, why is there a gap between the two values? Why such PR

boxes do not exist in nature? Is there any physical principle imposed by quantum me-

chanics that restricts its nonlocality? Such questions lead to results such as information

causality [ PPK+ 09] , and the realization that any stronger than quantum correlation will

make communication complexity trivial [ BBL+ 06] (also see 7.1).

The reason quantum mechanicsviolates (2.26) stems from the correlations exhibited

by the measurements, and the inequality itself consists of sums of correlation terms. For

this reason inequalities of the CHSH type are sometimes referred to as inequalities of

correlat ion functions. The interest in the CHSH inequality exploded after the second

experiment by Aspect et al., where the CHSH inequality is shown to be experimentally

violated [ AGR82] . Soon it was shown that all entangled bipartite pure states violate

the CHSH inequality (a result known as Gisin’s theorem) [ Gis91] , and all entangled

multipartite pure statesviolate different versions of it [ PR92] . Then, the CHSH inequality

was generalized to more than two parties [ WW01] and more than two measurement

settings [ Per99] . Although for pure states these results show that nonlocality is very

common in quantum mechanics, it is known from early on that mixed states present a

greater challenge: there are entangled mixed states which have an LHV model [ Wer89] .

There are also pure states which do not violate any multiparty extension of CHSH

inequality, when choosing from two settings and two outcomes per setting (called having

two dichotomic observables per party) [ ZBLW02] . However, all pure states, including

these states which do not violate any inequality of correlation functions, do violate the

inequality P n presented in later chapters [ YCZ+ 12] .

2.4.4 Probabil i ty-free Nonlocal ity & Mermin Inequali ty

The second kind of nonlocality concerns a special class of states called stabil izer

states [ Got96, Got97] . These states have the special property that certain combinations

of local Pauli operators do not change the state ( i.e. the state is stabi l ized by these
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operators). For example, it can be easily verified that the GHZ state,

jGHZi =
1

p
2

(j000i + j111i ), (2.32)

is stabilized by

g1 = �x � �x ��x , (2.33)

g2 = �z� �z� I , (2.34)

g3 = I � �z � �z, (2.35)

meaning hGHZj gi jGHZi = 1, for i = 1, 2,3. The gi are not all the operators that

stabilize jGHZi , they are called the generators of the stabil izer subgroup. Other

elements of the group are obtained by multiplying the generators. For jGHZi , there are

8 elements in the stabilizer group. In addition to the three generators and the identity

I = I � I � I , the other four elements are:

g1 �g2 = ��y � �y � �x , (2.36)

g1 �g3 = ��x � �y � �y , (2.37)

g2 �g3 = �z � I ��z, (2.38)

g1 �g2 �g3 = ��y � �x � �y . (2.39)

More generally, a n qubit state j i is stabilized by a set of 2n stabilizers si if for all

si , si j i = j i . The stabilizers of interest in quantum information are tensor products

of Pauli operators, and the state j i can be uniquely fixed by its stabilizers si (up to

global phase) if the stabilizers commute and the state is not the zero vector (�I is not a

stabilizer) [ NC00] .

The stabilizer formalism is an elegant and powerful tool, with applications in error

correction [ Got97] , measurement based quantum computing [ RB01, RBB03, BKMP07,

DKP07] , entanglement theory [ HEB04, HDE+ 06] , secret sharing [ MS08] and as will be

explained below, nonlocality [ Mer90, GTHB05, CGR08] .

In the definition of local realism, there is the realism assumption that all physical

quantities should have well-defined values, revealed by measurement of the correspond-

ing observables. Greenberger, Horne and Zeilinger found a counterexample using the

state named after them [ GHZ89] . Suppose there are three players, each can measure

three physical quantities, called X, Y, Z, which when measured give values + 1 or �1,
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and the measurements satisfy the four equations below:

X1 �X2 �X3 = 1, (2.40)

X1 �Y2�Y3 = �1, (2.41)

Y1 �X2�Y3 = �1, (2.42)

Y1 �Y2 �X3 = �1, (2.43)

where subscripts denote players.

It is not hard to see that the four equations can not be satisfied all at once: take the

product of last three equations yields

Y2
1 �X1 �Y

2
2 �X2�Y

2
3 �X3 = �1. (2.44)

Since X1�X2�X3 = 1, this implies Y2
1 �Y

2
2 �Y

2
3 = �1, which is impossible because none of

them is complex.

From here, it is clear that jGHZi , with some of its stabilizers, can satisfy all four

equations if instead of assuming X, Y, Z are numbers equal to + 1 or �1, observables

which are a Pauli matrices, are used. Because the stabilizers all commute, their measure-

ments can be made simultaneously, thus making the measurement outcomes elements of

reality.

To see how to turn this nonlocal ity without probabil ity into an inequality, a similar

trick used in the CHSH inequality can be employed: instead of talking about products

of numbers taking discrete values, consider the average of these products over the

distribution of the hidden variable, for which a local realistic bound can be calculated.

Using hX1 �X2 �X3i to denote the expectation value of the product X1 �X2�X3 over the

hidden distribution (and similarly for the other products), the following inequality can

be established

hX1�X2 �X3i � hX1 �Y2 �Y3i � hY1�Y2 �X3i � hY1 �X2 �Y3i (2.45)

� X1 �X2 �X3 � X1�Y2 �Y3 � Y1�X2 �Y3 � Y1 �Y2 �X3 (2.46)

� 3, (2.47)

where the number 3 is calculated assuming X, Y, Z 2 f�1g.

The GHZ state can violate this bound when Postulate 2 is used to compute the
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expectation values:

8

>>><

>>>:

hX1 �X2 �X3i ! hGHZj�x � �x � �x jGHZi = 1,

hX1 �Y2 �Y3i ! hGHZj�x � �y � �y jGHZi = �1,

hY1 �Y2 �X3i ! hGHZj�y � �y � �x jGHZi = �1,

hY1 �X2 �Y3i ! hGHZj�y � �x � �y jGHZi = �1,

(2.48)

) hX1 �X2 �X3i � hX1 �Y2 �Y3i � hY1 �Y2 �X3i � hY1 �X2 �Y3i = 4. (2.49)

Both the reasoning and the inequality above can be directly generalized to n party

GHZ states

jGHZni =
1

p
2

(j0 . . . 0| { z }
n

i + j1 . . . 1| { z }
n

i ), (2.50)

whose generators of of the stabilizer subgroup are analogues to the generators of

jGHZi , with g1 = �x � �x � . . . � �x , the rest being tensor products of two �z and

the identity on all other parties. The generalized n party inequality, called the Mermin

inequali ty [ Mer90] , whose LHS is given by:

hX1�. . .�Xni �
X

�

hY1 �Y2 �X3�. . .�Xni +
X

�

hY1�Y2 �Y3 �Y4 �X5 �. . .�Xni . . . , (2.51)

where each term except the first one contains an even number of Y and are permutations

of other terms with the same number of Y, with the sign changes depending on the

number of Y is a multiple of 2 or a multiple of 4. The local realistic bound for n even is

2
n
2 , while for odd n it is 2

n�1
2 . The violation of the Mermin inequality grows exponentially

with n, because the number of terms in (2.51) is 2n�1, with all of them contributing + 1

to the sum.

Although (2.51) seems to be tailor-made for the GHZ state, giving an exponential

violation, it is still not the optimal, because there are “only” 2n�1 terms in the sum,

if the number of terms goes to 2n there should be an even bigger violation. It turns

out that it is possible to increase the number of terms to 2n, if instead of 2 settings, 3

settings are used, with the first party measures observables that are the ones used for the

CHSH inequality
��x��yp

2
[ Ard92, BK93] . Because the measured observables are longer

stabilizers of the GHZ state, each term in the sum equals to 1p
2

instead of 1, which means

this inequality would give a violation of (2n � 1p
2
) > 2n�1

2
= 2n�1. This type of inequality,

is called the MABK (Mermin-Ardehali-Belinski i-Klyshko) inequali ty.

The most direct generalization of probability-free nonlocality is to graph states

(which are equivalent to stabilizer states up to local unitaries), with 3 settings (the 3

Pauli matrices in the stabilzers) and two outcomes per setting (�1) [ GTHB05, GC08] .

The Mermin inequality, which only uses 2 settings, has been generalized to all graph
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states [ TGB06] , but only some graph states show an exponential violation [ CGR08] .

Experiments have been performed to test these inequalities [ GYX+ 10] [ CVDM+ 09] . But

because of the perfect correlation exhibited by the measurement in these inequalities,

detector efficiency in these experiments must be higher than n
2n�2

to rule out any LHV

theory [ CRV08] .

2.4.5 Almost Probabil ity-free Nonlocality & Hardy Paradox

Nonlocality from correlations and probability-free nonlocality represent two extremes:

expectation value containing correlations must be built from statistics of many experi-

mental runs, while probability-free only use perfect correlations. The third type, which

can be seen as a mixture of the other two approaches, was proposed by Hardy in early

90s as a logical paradox first, then put into an inequality [ Har93, Har94] . This inequality

is the first inequality using probabilities instead of expectation values. It is first derived

by the first half of CHSH [ CH74] , and experimentally tested by the first and third (the

most famous) experiments of Aspect et al [ AGR81, ADR82] .

To see what the Hardy paradox is and why it is a logical paradox at all, consider two

people, Alice and Bob, each can choose from two types of sealed boxes given to them

individually from a referee, Charlie. One type of box contains food, upon opening, it

will reveal either a baguette or a bowl of noodles. The other type contains drinks, upon

opening, either a cup of coffee or a cup of tea can be found. Charlie made the following

promises to Alice and Bob with regards to the type of boxes they choose to open and the

contents they will find inside:

1. If they both choose the food, then it is possible that they both get baguettes.

2. If Alice chooses the food box and gets a baguette, then if Bob chooses the drink

box he will never get a cup of tea.

3. If Bob chooses the food box and gets a baguette, then if Alice chooses the drink

box she will never get a cup of tea.

4. If they both choose drinks, they will never both get coffee.

After the rules and promises are made clear, Alice and Bob proceed to open the food

boxes and found two baguettes inside. Now what can they deduce from this discovery?

Promise number 1 allows both of them to have baguettes, so it is not broken. From

promise 2 Alice can deduce that since she has a baguette, had Bob chose to open the

drink box he would have found a cup of coffee for sure. Bob makes a similar inference

from promise 3: had Alice chose to open the drink box, she would have found a cup of

coffee for sure. Together they conclude if they had opened the drink boxes, both of them

would had a cup of coffee, which promise 4 says is impossible.
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Why does the paradox occur? Partly because in this example, the boxes are supposed

to contain real things, things that exist even if the boxes are sealed. And because the

boxes must contain one of two things, it is possible to infer with certainty what is not in

the box, given the thing in the box. The promises can be translated into probabilities by

using upper case letters to represent types of boxes (F= food, D= drink) and lower case

letters as contents of boxes ( b= baguette, n= noodles, c= coffee, t= tea):

P( b, bjF, F) > 0 (2.52)

P( b, t jF, D) = 0 (2.53)

P( t , bjD, F) = 0 (2.54)

P(c, cjD, D) = 0. (2.55)

Hardy showed [ Har93] that almost all bipartite entangled states can satisfy all four

probabilities together, given the right choice of measurements. The only states for which

there are no measurements to satisfy all four probabilities are the maximally entangled

states. But these states maximally violate the CHSH inequality.

The four probabilities are exactly the ones found in the inequality proposed by

Clauser and Horne in [ CH74] (known as the CH inequali ty):

P( b, bjF, F) � P( b, t jF, D) � P( t , bjD, F) � P(c, cjD, D) � 0. (2.56)

The violation in quantum mechanics is immediate since almost all quantum states,

with appropriate measurements, can satisfy all four probabilities (2.52) to (2.55), thus

making the LHS of (2.56) positive.

It isalso clear that the algebraic maximum of (2.56) is1, achieved when P(b, bjF, F) =

1 and all others 0. Can a quantum state achieve this? If not, can any nonsignaling distri-

bution achieve this? Mermin gave negative answers to both questions in [ Mer95] , where

he showed that achieving this algebraic maximum leads to faster than light signaling,

so no nonsignaling theory, not quantum mechanics, not even PR boxes, can achieve the

maximum.

In later chapters, both the Hardy paradox and the CH inequality will be extended to

n parties. The geometrical meaning of the Hardy paradox, both in this two party case

and the later n party extension, will be explored as well.
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2.4.6 Unification of Different Approaches to Nonlocality

Unlike entanglement, which stems from the intrinsic properties of quantum states,

nonlocality is a phenomenological property. In principle, the definition (2.17) does

not refer to any explicit physical theory. As long as a theory provides a means to

assign probabilities to phenomenological events, together with basic rules of probability,

nonlocality can be defined. In fact, this is the approach taken by Popescu and Rohrlich

in the invention of PR boxes: take nonlocality as an axiom, then use the resulting

probability distributions to see if a physical theory can arise from these distributions. In

the PR box case, even though the distribution does not allow faster than light signaling,

quantum mechanics can never achieve this distribution. On the other hand, as shown

earlier in this section, quantum mechanics provides many ways to nonlocality, with each

approach suitable for some state/ measurement combinations. Thus a unified approach

to nonlocality is useful both as a tool to study nonlocality in quantum mechanics, and

as part of an investigation of general, possibly post-quantum, physical theories which

can be constructed from a few axioms and share some characteristics with quantum

theory [ Har01, MAG06, Spe07, Bar07] .

The most natural way to a unified approach to nonlocality is to consider probability

distributions as vectors in a real Euclidean space. The idea itself dates back to the

80s [ Pit89, Pit94] , but went through a recent revival when convex geometry was used

to facilitate the study of such vector spaces [ BLM+ 05] .

The most basic object in convex geometry is the convex set K, which is a subset of

Rn with the property that the closed line segment defined by an arbitrary pair of distinct

points lies completely within the set [ Zie95, Gru�03] . Equivalently, a set K� Rn is convex

iff 8 a, b 2 K, if 0 � �� 1, then �a + (1� �) b 2 K. From this definition it is easy to

see that the empty set ; and Rn itself are convex. The intersection of convex sets is

also convex. Furthermore, for any ai 2 K and �i 2 R+ , i = 1, . . . , n, if
P

i �i = 1, then

A=
P

i �i ai 2 K. The element A is called the convex combination of ai . Because convex

geometry will be used to model vectors of probabilities, it is simpler to only consider

closed convex sets.

The intuition for a convex set is a geometric figure which does not have any dent.

The vertices of a convex set, which do not lie within any open segment in the convex

set,are called its extreme points. More rigorously, a point x is an extreme point of a

convex set K if 8 a, b 2 K and 0 < �< 1, x = �a + (1� �) b implies x = a = b. For any

subset S of Rn, it is useful to consider the smallest convex set which contains S, called

the convex hull of S. The convex hull K of S is defined as the intersection of all convex

subsets of Rn which contain S. The convex hull of a finite number of points in Rn is

called a polytope.

In addition to defining a polytope as the convex hull of its vertices, an equivalent

definition can be given by using linear inequalities. A linear equation u�x = c, where
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u 2 Rn, c 2 R defines a hyperplane in Rn, cutting the whole space in half. The inequality

u�x � c then defines a half space. A polytope in this picture is the bounded intersection

of a finite number of half spaces, described by linear inequalities. An inequality of the

form u�x � c is valid for a polytope P if it is satisfied for all u 2 P. A face of P is defined

to be the intersection of P with any linear equation u�x = c where u�x � c is valid for

P. Faces may have different dimensions, defined by the dimension of the half space of

the linear equation. For a polytope of dimension n, 1 dimensional faces are the points in

the convex hull definition, so they are still called vertices, while 2 dimensional faces are

called edges and n� 1 dimensional faces are called facets.

The probability of obtaining measurement outcomes m1, . . . , mn when observables

M1, . . . , Mn are measured, denoted by P(m1, . . . , mnjM1), can be treated as a vector of

dimension 22n, having components (m1, . . . , mn, M1, . . . , Mn). But normally these 22n

components are not all independent, because to model different physical situations,

different constraints apply.

The constraint modeling LHV theory is just (2.17). A weaker constraint, called

nonsignaling, is used to model the physical limitations imposed by special relativity:

information must travel at a finite speed, thus distant parties can not influence the

measurement choices and outcomes of each other. In terms of probabilities, this means

that

X

mi

P(m1, . . . , mi , . . . , mnjM1, . . . , Mi , . . . , Mn)

=
X

mi

P(m1, . . . , mi , . . . , mnjM1, . . . , M0
i , . . . , Mn)

= P(m1, . . . , mi�1, mi + 1, . . . , mnjM1, . . . , Mi�1, Mi + 1, . . . , Mn), (2.57)

for all choices Mi and M0
i for all parties i .

With these constraints, the probabilities P(m1, . . . , mnjM1, . . . , Mn) form polytopes.

If the probabilities satisfy the locality constraint (2.17), then the polytope is called the

local polytope, if they satisfy the nonsignaling constraint (2.57), the polytope is called

the nonsignaling polytope. Because the nonsignaling constraint is weaker, i.e. all local

probability distributions are nonsignaling, the local polytope sits inside the nonsignaling

polytope. The dimensions of these polytopes have to be decided by the particular

probability distribution under consideration. For example, the distribution which gives

rise to the CHSH inequality can be represented by a 8 dimensional polytope [ BLM+ 05] .

Why does the use of polytopes allow a unified framework to study nonlocality?

Because every facet of the local polytope correspond to a linear equation whose constant

is the local realistic bound. In other words, the half space defined by the facet which

contains the polytope itself corresponds to a Bell’s inequality. The vertices of the polytope

are extremes of its defining probability distribution.
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But quantum mechanical measurements, even with fixed number of settings/ outcomes,

still do not have a finite number of extreme points, a probability distribution arising

from quantum mechanical measurements form a convex set, but not a polytope. Also

because quantum mechanics violates Bell’s inequalities, the convex set is a strict superset

of the local polytope. But quantum mechanics can not reach the PR box violation of the

CHSH inequality, so it is a proper subset of the nonsignaling polytope.

In recent years, several new techniques to unify different approaches to nonlocality

are proposed. These techniques not only unifies different approaches to nonlocality, they

also put nonlocality and contextuality (which can be seen as a more general notion than

nonlocality) in the same framework.

The technique used by Abramsky and Brandenburger [ AB11] puts nonlocality and

contextuality into the same categorical language using sheaf theory. The conditions of

nonlocality and contextuality can be rephrased in terms of obstruction to the existence of

global sections. They also established a hierarchy of different approaches to nonlocality.

Using a concept they call strong contextuality, they showed that Mermin> Hardy> Bell.

Another recent technique, although also covered briefly by the two authors above,

uses hypergraphs to characterize nonlocality and contextuality [ CSW10, FLS12] . In

this framework it is easy to write the proofs of contextuality as conditions on a graph.

And the questions about nonlocality and contextuality can be phrased in terms of graph

properties. For example, it is shown that the Lovasz �-function, which was originally

proposed to bound the Shannon capacity of a graph, actually provides a way to compute

the maximum quantum violation of contextuality inequalities.
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Chapter 2. Background

2.5 Semidefinite Programming

Semidefinite programming was developed in the 90s as a tool to study convex opti-

mization problems [ VB96] . The method has been adapted in early 2000s as a way to

numerically find the global extrema of a real-valued polynomial [ Las01] . Also around

this time, the study of multiparty nonlocality produced increasingly complex results,

which made it hard to obtain analytical properties about various multiparty Bell in-

equalities. As a result, numerical studies about the optimality and violations of these

inequalities began to emerge [ WW01] [ PS01] . In 2006, Wehner [ Weh06] used SDP as

an analytical tool to both prove the original Tsirelson bound for the CHSH inequality and

to find new bounds for the generalized CHSH inequality with n settings and 2 outcomes

per setting. Since then, SDP has been employed as a numerical tool to study various

aspects of multiparty entanglement and features of multiparty nonlocality, for example in

[ NPA07] [ BPA+ 08] . A recent paper [ BSV12] used SDP to show that one can distinguish

two different classes of entangled states based on violations of Bell inequalities.

For our purposes, we employ a similar technique to the one used in [ BSV12] .

Since, without loss of generality, we only use projective measurements [ WW01] and

probabilities instead of expectation values, the measurement operator we use is different.

Suppose each player i can measure either one of two bases and obtain either one of

two possible outcomes. We model these four different situations by four measurement

operators:

M00
i =

1

2
(I i + �i 0�

i
x + �i 0�

i
y + �i 0�

i
z)

M01
i =

1

2
(I i � �i 0�

i
x � �i 0�

i
y � �i 0�

i
z)

M10
i =

1

2
(I i + �i 1�

i
x + �i 1�

i
y + �i 1�

i
z)

M11
i =

1

2
(I i � �i 1�

i
x � �i 1�

i
y � �i 1�

i
z), (2.58)

where M j k
i denotes the player i chooses to measure in basis j and obtains the outcome

k, and v0
i = (�i 0,�i0,�i 0), v1

i = (�i1,�i1,�i 1) are two unit vectors in R3.

Now we can write the probabilities in Pn using these single-qubit measurement
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2.5. Semidefinite Programming

operators:

P(0 . . . 0j0 . . . 0) = Tr (�M00
1 � . . .� M00

n )

P(0 . . . 0j0 . . . 1) = Tr (�M00
1 � . . .� M10

n )

...

P(0 . . . 0j1 . . . 0) = Tr (�M10
1 � . . .� M00

n )

P(1 . . . 1j1 . . . 1) = Tr (�M11
1 � . . .� M11

n ), (2.59)

where� = j i h j is the density matrix of a n-qubit permutation symmetric state j i .

Rewriting Pn this way results in a vector polynomial of 2n variables (v0
i and v1

i for each

i )

V(v0
1 , v1

1 , . . . , v0
n , v1

n ) =

Tr (�M 00
1 � . . .� M00

n )

�Tr (�M 00
1 � . . .� M10

n )

...

�Tr (�M 10
1 � . . .� M00

n )

�Tr (�M 11
1 � . . .� M11

n ). (2.60)

The goal of an SDP program is to maximize V(v0
1 , v1

1 , . . . , v0
n , v1

n ), subject to the constraint

that the Gram matrix formed by the vectors v0
i and v1

i is positive semidefinite [ HJ12] .
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Chapter3
The Majorana Representation of

Symmetric States

In 1932, a few years before the EPR paper was published, a genius Italian physicist,

Ettore Majorana, published a paper on the effect of inhomogeneous magnetic fields

on atoms [ Maj32] (see [ Maj06] for a retyped version and an English translation, also

see [ BR45] for a more in depth review). Then six years later he disappeared at sea, with

suicide the most prevalent explanation. In his short life, he made great contributions to

the study of symmetry in physics. His most famous contribution is perhaps the Majorana

fermion, a fermion who is its own antiparticle [ Maj37] , which very recently has been

observed in a nanowire [ MZF+ 12] . Although the Majorana representation, which came

out of his 1932 paper, is less well-known than the fermion named after him, it has quietly

influenced many areas of modern quantum information.

On the more theoretical physics side, the Majorana representation has been used

to study the phase space of quantum dynamics [ Leb99] and the geometric phase

[ Han98] . It also found applications in many body physics [ RVM08] and condensed

matter physics [ MS07] [ BTD07]

The first application of the elegant framework on foundations of quantum mechanics

was by Roger Penrose, whose research record uses complex geometry as a common

thread [ ZP93, Pen00] . In this work, the Majorana was used representation to construct

orthogonal stateswhich can be used to give a proof of the Kochen-Specker theorem on the

contextuality of quantum mechanics [ KS67] . Later, the Majorana representation found

its use in entanglement theory [ BKM+ 09, AMM10, AMM11, Aul11b, RM11, Aul11a,

Mar11] , where several results will be discussed in this chapter.

Until recently, the only multipartite states which also has an elegant mathematical

tool which permits a systematic study of their nonlocal properties are stabilizer states, by

using the MABK inequality (cf. Chapter. 2). Now the Majorana representation has found
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3.1. Geometry of Complex Numbers

another application in nonlocality which allows the systematic study of the nonlocality of

all symmetric states. This chapter introduces the necessary background to the Majorana

representation, starting from its geometrical aspects. At the end of the chapter, the main

results of applying the Majorana representation to study the entanglement of symmetric

states will also be discussed.

3.1 Geometry of Complex Numbers

3.1.1 The Complex Plane and the Riemann Sphere

In Chapter 2, complex numbers are defined algebraically, as a field and a vector space

over itself. In addition to its algebraic structures, complex numbers have very elegant

geometrical representations [ Sch80, Nee99, Pen04, Bea05, Sin05] .

The most common way to visualize a complex number z = a+ bi is through complex

plane (Fig. 3.1), where the horizontal axis represents the real part and the vertical axis

represents the imaginary part.

Re

Im

a

b
a+bi

Figure 3.1: The complex plane with the number a + bi .

The complex plane is easy to use but there are drawbacks. For example, to visualize

two complex numbers x, y with kx � yk � 1, the plane needs to be scaled. If another

point z close to y is added, then the scaling of the plane may make it hard to visualize

all three points, with y and z lumped together. This inconvenience comes from the

fact that the complex plane can not be visualized in a finite region. Luckily, there is a

more compact (both topologically and aesthetically speaking) way to represent complex

numbers in the form of a unit sphere, called the Riemann sphere.

To map a complex number from the plane to the sphere, stereographic project ion

is used (Figure.(3.2)1). The idea is simple: make the equatorial plane of the sphere

coincide with the complex plane, with the center of the sphere coincide with the origin of

1Source: Wikipedia
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Chapter 3. The Majorana Representation of Symmetric States

the complex plane. This way the equator of the sphere represents the complex numbers

of modulus 1. It is easy to see that the line passing through the north pole and a complex

number on the plane will intersect the sphere at one point. This point on the sphere is

the image of the point on the plane.

Figure 3.2: The stereographic projection of the complex plane to the unit sphere.

This procedure can map every point on the plane to the sphere. But not all points on

the sphere correspond to a point on the plane: the north pole itself can not be mapped.

There are several ways to remedy this. The easiest way is to use an extension of the

complex numbers, called the extended complex numbers, which has a special number,

1 , that is mapped to the north pole of the sphere. The number 1 can be thought to

be close to very big complex numbers, which surrounds the complex plane, with the

property that z + 1 = 1 , z�1 = 1 . So in an geometric sense it is not a point on the

plane. The extended complex numbers, denoted by C1 , allows division by zero to be

defined: z
0

= 1 , z
1

= 0.

Another to resolve the north pole problem is to use two complex planes, glued back

to back, with each plane providing the projection of almost every point on the sphere

except at one pole. Each point (except the poles) on the sphere will be mapped to two

complex numbers, y and z, with the conversion formula y = 1
z

and z = 1
y
. The north

pole is mapped to the origin of the lower plane, and the south pole is mapped to the

origin of the upper plane, with both origins playing the role of 1 as in C1 .

Gluing two complex planes back to back has another geometrical interpretation: the

complex project ive l ine, CP1. The complex projective line is defined as the rays of C2:

given two complex numbers, not both zero, ( y, z) 2 C2, then the rays of C2 correspond

to (ay, az), where a 2 C , a 6= 0. The two copies of the complex plane can be found

as (1, z
y
) and ( y

z
, 1), which the same conversion formula y = 1

z
provides the transition

between the two copies.

For convenience, the sphere and the plane may use different coordinate systems.
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3.1. Geometry of Complex Numbers

While for the plane the most natural coordinate system is still the Cartesian system, with

axes labeled by real and complex parts of a complex number, it is easier to work with

the spherical coordinate system for the sphere. The spherical coordinate system uses

two angles 0 � �� � and 0 � � � 2� (Figure.3.3). Simple trigonometric calculations

yield the following conversion formula:

x + i y = cot

�
�

2

�

ei�. (3.1)

Note that (3.1) corresponds to the situation where the sphere minus the north pole

is mapped to one of the glued planes. For the other plane, the formula becomes

x � i y = tan

�
�

2

�

e�i� . (3.2)

P

Figure 3.3: The Riemann sphere with spherical coorinates� and �.

3.1.2 The Mo»bius Transformation

Having a compact geometrical representation of complex numbers allows the study of

transformations of complex numbers visually. Given one complex number, i.e. a point

on the Riemann sphere, the mapping to any other complex number can be completely

characterized by the rotation of the sphere. But given a set of points on the Riemann

sphere, what are the continuous bijective transformations that change their locations?

A simple algebraic form called the Mo»bius transformation turns out to completely

characterize these bijections from the Riemann sphere to itself (called automorphisms

of the Riemann sphere).
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Chapter 3. The Majorana Representation of Symmetric States

A Mo�bius transformation f (z) is a function of one complex variable z 2 C1 given by

f (z) =
az + b

cz + d
, (3.3)

where a, b, c, d are complex numbers, and ad � bc 6= 0.

The requirement ad � bc 6= 0 guarantees means that the Mo�bius transformation is

not a constant map. Because if ad � bc = 0, then

f ( y) � f (z) =
ay + b

cy + d
�

az + b

cz + d
(3.4)

=
(ad � bc)( y � z)

(cy + d)(cz + d)
(3.5)

= 0. (3.6)

If the coefficients are written in a matrix form

M =

 
a b

c d

!

, (3.7)

then the requirement that ad � bc 6= 0 means that the determinant of M is nonzero, i.e.

the matrix is invertible.

For any matrix of the form (3.7), it is possible to multiply its coefficients by � 1p
ad�bc

to obtain a matrix with determinant 1. The matrices M with jM j = 1 are called

normalized. With normalization, the arbitrariness of the coefficients can be reduced

considerably. In fact there are two matrices with opposite sign which correspond to a

normalized Mo�bius transformation [ Nee99] .

A few other subtleties arise because the Riemann sphere contains 1 . The way 1 is

defined above, by setting 1 = z
0
, and the intuitions that 1 is close to very big complex

numbers, make it possible to define f (�) at 1 . First of all, when z ! 1 and c 6= 0, then
az+ b
cz+ d

! a
c
, so it is sensible to define

f (1 ) =
a

c
, (3.8)

when c 6= 0. Secondly, if cz + d = 0, then the value of f should be 1 . So if c 6= 0, then

f (�
d

c
) = 1 . (3.9)

This only leaves the case where c = 0. If c = 0, then

f (1 ) = 1 , (3.10)

which is also consistent with both definitions above.
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3.1. Geometry of Complex Numbers

The Mo�bius transformation is defined algebraically above. But it is intrinsically

geometric concept. Thus it is more helpful to move to a geometry-centric picture first

and visualize a Mo�bius transformation, moving its algebraic properties to a secondary

position.

It can be shown easily that a Mo�bius transformation f (z) is a composition of these

four more elementary transformations:

1. Translation by d
c
: z ! z + d

c
.

2. Complex inversion (also called reciprocal): z ! 1
z
.

3. Expansion and rotation: z ! � ad�bc
c2 z.

4. Translation by a
c
: z ! z + a

c
.

Of these four steps, the second one, complex inversion, is more complicated thus

merits a closer look.

Algebraically, the complex inversion for one complex number is very simple: for

z = r ei�, the inversion takes it to

1

z
=

1

r ei�
=

1

r
e�i�. (3.11)

On the complex plane, the inversion can be visualized in Fig. 3.4. The circle in Fig. 3.4 is

the circle representing complex numbers of modulus 1. If r < 1, meaning it lies within

the circle, then the inversion takes it to a point outside the circle. If r > 1 then it gets

inverted to a point inside the circle. The second effect of inversion reflects the phase

angle � with respect of the real axis. Complex numbers of unit modulus stay on the

circle, but with reflected phase angles.

It is more interesting to study the effect of complex inversion when the object being

inverted is not a complex number, but rather a circle. Why is this interesting? Because

under stereographic projection, a line in the complex plane traces out a circle passing

through the north pole on the Riemann sphere. Circles in the complex plane trace out

circles on the Riemann sphere as well, with straight lines being circles of infinite radius

(hence they pass through the north pole). Thus circles on the Riemann sphere give a

unified object for studying circles and straight lines in the complex plane. This unified

object can be represented algebraically as generalized circles [ Sch80] .

To derive the expression for a generalized circle, first consider what constitutes a

circle. There must be an origin o, a radius r and an equation defining the circle whose

solutions are the set of points at the distance r away from the origin. To meet these

requirements, an arbitrary complex number o may be chosen as the origin, and the
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   O
P

P'

Figure 3.4: On the complex plane, a point P inside the unit circle (blue) gets inverted to
P0 outside the unit circle (red).

radius r is any real number, with the circle z defined by the equation

jz� oj2 = r 2, (3.12)

(z� o)(z� o) = r 2, (3.13)

z z̄� z ō� z̄o� o ō� r 2 = 0. (3.14)

Now multiply the last line by some real constant:

�z z̄ +�z + �̄ z̄ +�= 0, (3.15)

with �,� real, � complex. It is easier to write the coefficients as a Hermitian matrix

C=

 
� �

�̄ �

!

. (3.16)

To differentiate various types of circles represented by (3.15), the determinant of C,

jCj = ��� j�j2 can be used:

• When �6= 0 and jCj < 0, then C represents a normal circle.

• When �6= 0 and jCj = 0, then C represents a point.

• If �= 0, then then C represents a straight line.

Two matrices C and C0 represent the same generalized circle if there is a non-zero real

number r such that C= rC0.
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From (3.15), it is easy to see the characteristics of complex inversion. If y = 1
z
, then

�
1

y

1

ȳ
+ �

1

y
+ �̄

1

ȳ
+ �= 0, (3.17)

�y ȳ + �̄y + � ȳ + �= 0. (3.18)

Together with the properties of jCj, the effects of complex inversion on generalized circles

can be summarized as follows:

• Straight lines through the origin (�= 0 and �= 0) are mapped to straight lines

through the origin (�= 0 and �= 0). Fig(3.5a)).

• Straight lines not through the origin (� 6= 0 and �= 0) are mapped to circles

through the origin (�= 0 and �6= 0) and vice versa. Fig(3.5b).

• Circles not through the origin (�6= 0 and �6= 0) are mapped to circles not through

the origin (�6= 0 and �6= 0). Fig(3.5c).

From Fig. 3.5, it is clear that circles on the Riemann sphere are again mapped to

circles on the Riemann sphere.

Given two sets of points, determining whether there is a Mo�bius transformation

connecting them can be tricky. The most obvious criterion is that the two sets should

contain the same number of points. In general, the coefficients of a Mo�bius transfor-

mation are not unique. Intuitively, in order to specify a unique Mo�bius transformation,

four complex numbers are needed. Geometrically speaking, the images of four points on

the Riemann sphere are needed. But it turns out that actually only three numbers are

necessary to specify a unique Mo�bius transformation. Geometrically speaking, there is

a unique Mo�bius transformation connecting any two sets of three distinct points. If a

Mo�bius transformation leaves some points unchanged, they are called fixed points of

the transformation. If a Mo�bius transformation has more than two fixed points, then it is

the constant map.

Although for more than three points there is in general no unique Mo�bius transfor-

mation mapping them to another set of points. But for four (distinct) points, the Mo�bius

transformation does preserve the cross ratio, defined by

[ z1, z2, z3, z4] :=
(z1 � z3)(z2 � z4)

(z1 � z2)(z3 � z4)
. (3.19)

Then a necessary and sufficient condition for the existence of a Mo�bius transforma-

tion connecting two sets of four distinct points f y1, y2, y3, y4g and f z1, z2, z3, z4g is

[ y1, y2, y3, y4] = [ z1, z2, z3, z4] . A useful result about cross ratios is that any four points

lie on the same circle (on the complex plane) iff their cross ratio is real.
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O

(a) A straight line through the origin (blue) is inverted to
itself, but with different identification of points.

   
O

(b) A straight line not through the origin (blue) is inverted to
a circle through the origin (red) and vice versa.

   
O

(c) A circle not through the origin (blue) is inverted to a circle
not through the origin (red) and vice versa.

Figure 3.5: Effects of complex inversions on generalized circles.
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The last remarkable property of the Mo�bius transformation comes from the algebraic

depiction of the rotation of the Riemann sphere. It can be shown that for a Mo�bius

transformation f (�) to be a rotation, it needs to be of the form

f (z) =
az + b

� b̄z + ā
, (3.20)

with jaj2 + jbj2 = 1. In the matrix form, rotations of the sphere correspond to matrices

of the form

U =

 
a b

� b̄ ā

!

, jaj2 + jbj2 = 1. (3.21)

Thus Mo�bius transformations which are rotations of the sphere correspond to elements

of SU(2).
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3.2 From Complex Geometry to the Majorana Representation

The Riemann sphere has a direct physical counterpart: the Bloch sphere [ Blo46, NC00,

Sin05] , which represents the state space of a spin-1
2

particle, i.e. a qubit (Figure.(3.6)).

This is not a coincidence. Just like the representation of the Riemann sphere as CP1,

the state space of a qubit can also be identified with CP1, because all states are rays

in Hilbert space (i.e. they are scalar multiples of each other). In the Bloch sphere, the

north and south poles are identified with the states j0i and j1i , respectively. An arbitrary

normalized qubit can be written as

j i = cos(
�

2
) j0i + ei� sin(

�

2
) j1i , (3.22)

with �,� the same spherical coordinates as used on the Riemann sphere. Conversely,

given a qubit j i = cos( �
2
) j0i + ei� sin( �

2
) j1i , there is a complex number z = x + i y

where (3.1) holds. The inner product between any two qubits can be easily calculated in

terms of �,�. One particular interesting geometric aspect of the inner product is that

two orthogonal qubits are antipodal points on the Bloch sphere.

Figure 3.6: The Bloch sphere.

The Majorana representation is a way of visualizing any permutation symmetric state

of n qubits as a set of n unordered points on the Bloch sphere.

In order to understand the Majorana representation, it is instructive to first look at

the similarities between single-variable polynomials with complex coefficients and the
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3.2. From Complex Geometry to the Majorana Representation

symmetric states of qubits.

A single-variable polynomial with complex coefficients (hereafter referred to simply

as a polynomial) has the form

p(X) = anXn + an�1Xn�1 + . . . + a1X + a0, (3.23)

where X 2 C and 8 i , ai 2 C.

The simplest pure permutation symmetric states of qubits (hereafter referred to

simply as symmetr ic states) are Dicke states, of the form

jS(n, k)i =
1

∆ �n
k

�

X

per m

j0 . . . 0| { z }
n�k

1 . . . 1| { z }
k

i , (3.24)

where the sum is taken over all permutations of the string with k ones and n� k zeros.

In fact, the Dicke states jS(n, k)i , where k = 0,1, . . . , n form an orthonormal basis

of the symmetric subspace of the Hilbert space of n qubit symmetric states. That is to

say, any n qubit symmetric state j i can be written as a linear combination of the Dicke

states:

j i = K(�n jS(n, n)i + �n�1 jS(n, n� 1)i + . . . + �1 jS(n, 1)i + �0 jS(n,0)i ), (3.25)

where K is some normalization constant.

Now the similarity between (3.23) and (3.25) is obvious: if f X, X2, . . . , Xng are

seen as a basis in the vector space of polynomials (which is also a Hilbert space with

an appropriate definition of the inner product), then the coefficients f a0, . . . , ang and

f�0, . . . ,�ng play the same role. This is in essence how the Majorana representation

works: if a symmetric state of n qubits is treated as a polynomial of degree n, then by

the fundamental theorem of algebra, this polynomial must have n roots, which can be

represented by n points on the Bloch sphere. The state j i is uniquely determined, up

to a global phase, by these n points. The points obtained in the Majorana representation

are called, without surprise, Majorana points (MPs). Because the surface of the Bloch

sphere corresponds to the state space of a spin-1
2

particle, the Majorana points are all

normalized qubits.

Given this definition, it is now instructive to see how the Majorana representation

works operationally. There are two directions in which the Majorana representation can

be used:

1. Given any symmetric state, use the Majorana representation to find its MPs.

2. Given a set of MPs, use the Majorana representation to reconstruct the correspond-

ing symmetric state.
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The first direction can be achieved by coherent state decomposition: let j�i equals

to j0i + �j1i , with � 2 C as an unknown (this is just writing a qubit as an element of

CP1: (1,�)) , then the overlap

(h�j)�n j i = K(�̄n
n ��n jS(n, n)i + . . . + �̄0 ��0 jS(n,0)i ), (3.26)

where�i is the complex coefficient of jS(n, i )i in the expansion of j i in the Dicke basis.

(3.26) can be seen as a polynomial of degree n with one complex variable, so it has

n roots. There is a subtle point here: because it is possible that some �i are zero, the

polynomial may not be of full degree. There are two ways to solve this problem: either

allow 1 to count as a root, or to use j�i = � j0i + j1i to get another polynomial, then

use � = 1
�

to identify the roots. The n complex roots are then translated to n qubits,

j�?
1 i , . . . , j�?

n i . The n antipodal points of these qubit on the Bloch sphere, denoted by

j�1i , . . . , j�ni , are the MPs of j i .

The second direction, reconstructing the state from its MPs, is even simpler. Given a

set of MPs f j�1i , . . . , j�ni g, the state j i can be recovered by

j i = K(
X

per m

(j�1i � j�2i � . . .� j�ni )), (3.27)

which is the sum of all possible permutations of tensor products of the MPs.

From the definition of the Majorana representation and (3.27), a few observations

can be made immediately

1. A local unitary will be a rotation of the sphere.

2. A symmetric state is a product state iff all its MPs coincide.

3. The antipodal points of the MPs define the product states orthogonal to the original

state.

The first statement comes from (3.21). The second statement is true from (3.27): if

all the j�i i are the same, then the permutation will not change the tensor product, so the

state is a product state. If more than one MPs are the same (geometrically represented

by stacking the MPs at the same location), then the MP is called degenerate. If j i has

degenerate MPs, the notation in (3.27) will be slightly altered to

j i = K
X

per m

j�d1
1 �

d2
2 . . .�dl

l i , (3.28)

8 i 6= j , j�i i 6= j�j i ,
lX

i= 1

di = n.

The third statement is true because for any j�?
i i orthogonal to an MP j�i i of the
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state j i , the state j�?
i i
�n

is orthogonal to j i

h�?
i j � . . .� h�?

i j
| { z }

n

 i = 0, (3.29)

because in (3.27), every term in the sum contains j�i i in the tensor product. The number

of j�?
i i can be reduced if j�i i is degenerate. If j�i i has degeneracy d (i.e. d MPs are the

same), then (3.29) becomes

h�?
i j � . . .� h�?

i j
| { z }

n�d+ 1

 i = 0. (3.30)

Degeneracy already plays an important role in the SLOCC classification of symmetric

states because SLOCC operations can not change the degeneracy of the MPs of the

symmetric states (see Section 3.4). In later chapters, degeneracy will be shown to be

linked with the persistency of nonlocality and entanglement into subsets of the parties.
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Chapter 3. The Majorana Representation of Symmetric States

3.3 Physical Interpretations

Mathematically, the qubit sharesa similar structure to another object: the 2-spinor [ Car13,

Dir28, PR84, PR86] , which is usually a column vector with 2 complex components:

 =

 
 1

 2

!

(3.31)

The spin is a characteristic of the angular momentum of a particle. Like linear

momentum, angular momentum should be conserved in particles. Noether’s Theo-

rem [ Noe18, KS11] states that for every conserved quantity, there is an associated

symmetry of the physical system. For example, energy/ mass conservation can be as-

sociated with time translation symmetry while linear momentum conservation can be

associated with space translation symmetry. In a similar way, the spin, which arises from

angular momentum conservation, is associated with rotational symmetry.

This is where the Riemann/ Bloch sphere picture comes in: they provide an elegant

geometric picture to study the rotational symmetry of simple quantum mechanical

systems. For a particle in 3-dimensional space, a rotation can be represented by a 3� 3

real orthogonal matr ix R having the property RTR = I . It can be easily checked that

the determinant of R equals to �1. The set of all orthogonal matrices form a group by

using matrix multiplication as group operation, in the case of rotations in 3-dimensional

space, the group is called the orthogonal group of dimension 3, or O(3), and the half of

the group with jRj = 1 (which contains the identity) is called special orthogonal group

of dimension 3, or SO(3). The orthogonal matrices are essentially real counterparts of

unitary matrices.

From (3.21), rotations of the Riemann sphere correspond to Mo�bius transformations

whose matrices are elements of SU(2). Then what is the relationship between SU(2)

and rotations? To see the connection, consider the 3-dimensional vector space V with

vectors v = (x, y, z). A 2� 2 Hermitian matrix can be associated to each vector, by using

the Pauli matrices:

A= x ��x + y ��y + z��z. (3.32)

An inner product on the matrix space can be defined by

hA, Bi =
1

2
Tr (AB). (3.33)

It can also be easily checked that

jAj = �kvk. (3.34)
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3.3. Physical Interpretations

Take any element U of SU(2), it can be checked that the mapping�U(A) = UAU† with

A representing a vector in V is an orthogonal transformation in V. From the definition

above, V can be seen as R3, thus the orthogonal transformations using elements of SU(2)

can be mapped to elements of SO(3). Also, it is easy to see that ��U(A) = �U(A), so in

fact � takes two elements of SU(2) to the same element of SO(3) (called a double cover

of SO(3)).

Having established SU(2) as the representation of rotations in 3-dimensional space,

it is easy to see how it acts on a spinor: just use matrix multiplication. It is even

more interesting to take a closer look at the Pauli matrices, since they can be seen as

the basis of R3. In a typical spin measurement experiment, called the Stern-Gerlach

experiment [ GS22] , a stream of particles are sent through a variable magnetic field,

then through interaction with the magnetic field, their trajectories are changed. The

change of trajectories is a manifestation of the spin of the particles, and the magnetic

field acts as a measurement device (since the experimenter knows the direction of the

magnetic field). For particles like electrons, there are only two possible direction which

the trajectories can take (contrasting the classical prediction with an continuous range of

directions). If the Pauli matrices are related to spin, then a measurement of one of them

should project the spin along the direction of one of its eigenvectors. It is easy to see

that the eigenvectors of the Pauli matrices, written as spinors with superscripts denoting

the corresponding eigenvalue, are

�+ 1
x =

1
p

2

 
1

1

!

, ��1
x =

1
p

2

 
1

�1

!

, (3.35)

�+ 1
x =

1
p

2

 
1

i

!

, ��1
x =

1
p

2

 
1

� i

!

, (3.36)

�+ 1
z =

 
1

0

!

, ��1
z =

 
0

1

!

. (3.37)

With this notation, the qubit j0i is just the + 1 eigenstate of �z, and the qubit j1i

is the�1 eigenstate, and the unitaries of SU(2) are rotations of the Bloch sphere. The

Pauli matrices represent measurements of the spin along x, y, z axes.

A single 2-spinor corresponds to a particle of spin-1
2
. For physical and historical rea-

sons (that have something to do with ~h), the values of spin are always integer multiples

of 1
2
. The Majorana representation, physically speaking, allows the decomposition of

any spin n
2

as a set of n spin-1
2

points on the Bloch sphere [ Maj32, BR45] . If the two

directions of an electron after going through a Stern-Gerlach experiment are labeled up

j" i and down j#i , a particle with spin-1, after being sent though a Stern-Gerlach device,
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Chapter 3. The Majorana Representation of Symmetric States

can have 3 different directions, (in the Majorana representation):

j" , " i , j#, " i , j#, #i . (3.38)

Note that the these vectors are all symmetric. In particular, j#, " i = j" , #i . For a particle

of spin n
2
, there are n + 1 directions possible.

All these happened long before the dawn of quantum information. Quantum informa-

tion, with an axiomatic bottoms-up approach inspired by computer science, works with

abstract objects which do not need to have obvious physical counterparts. So instead of

a 2-spinor, people prefer to work with qubits. And instead of studying particles with high

spin, people study symmetric states of qubits, which using the Majorana representation

capture the essence of particles with high spin: in the modern notation, the different

directions a particle of spin n
2

can take are just the n+ 1 Dicke states jS(n, 0)i to jS(n, n)i .
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3.4 The Majorana Representation and Entanglement

This section presents several results obtained by applying the Majorana representation to

the study of multiparty entanglement. These results can be found in [ BKM+ 09, AMM11,

Aul11b, Mar11, RM11, Mar11] , where the relationship between complex geometry and

multiparty entanglement are explored in more depth.

In the previous chapter, entanglement classification was introduced as part of the

process to quantify entanglement. Although entanglement classification for general pure

and mixed states is a hard problem, it does have direct geometrical implications for

symmetric states.

The most fundamental connection between entanglement classes of symmetric states

and complex geometry is can be summarized in the following theorem [ Aul11b, RM11,

Aul11a] :

Theorem 3. Two symmetric states j i and j�i are SLOCC equivalent iff there is a Mo»bius

transformation connecting their Majorana points.

The proof is obvious from the definitions of the normalized Mo�bius transformation

(3.7 and paragraph below) and the SLOCC ILO (2.14).

From this theorem, two corollaries are also easy to prove:

Corol lary 4 ( [ BKM+ 09] ). Two symmetric states j i and j�i whose MPs have different

degeneracies are in different SLOCC classes.

This can be seen from the fact that a Mo�bius transformation can not change the

degeneracy of the MPs.

Corol lary 5 ( [ RM11] ). Two symmetric states j i and j�i are LOCC equivalent iff they

have the same MPs up to rotation of the Bloch sphere.

This can be deduced from (3.21).

To actually quantify entanglement, a suitable entanglement measure is indispensable.

As mentioned in the previous chapter, the geometric measure, thanks to its symmet-

ric state-friendly properties, has been used to extensively study the entanglement of

symmetric states.

In the definition of the geometric measure EG(j i ) (2.15), the closest product state

j�i maximizes the quantity jh�j i j2, thus can be seen as close to the state j i . For

symmetric states, a class of states whose MPs form the Platonic solids are very interesting

because of the relationship between the states themselves and their closest product

states (which, when illustrated by points on the Bloch sphere, are called closest product

points or CPPs).

The following table summarizes all the Platonic solids. The symmetric states whose

MPs are these solids are given in the captions of the figures, written in the Dicke basis.
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Chapter 3. The Majorana Representation of Symmetric States

The geometric measure of entanglement EG, defined in (2.15), of these Platonic solid

states are also included in the table.

Name Vertices Figure Dual EG

Tetrahedron 4 3.7 Tetrahedron log2 3 � 1.585
Octahedron 6 3.8 Cube log2

9
2
� 2.167

Cube 8 3.9 Octahedron log2
24
5
� 2.263

Icosahedron 12 3.10 Dodecahedron log2
243
28
� 3.117

Dodecahedron 20 3.11 Icosahedron log2
1875
187

� 3.326

Table 3.1: The Platonic solids.

Figure 3.7: The Tetrahedron. jTi =
∆

1
3

jS(4,0)i +
∆

2
3

jS(4, 3)i .

One interesting fact about Platonic solids is that the dual polyhedron of a Platonic

solid is also a Platonic solid (cf. last column of Table.3.1). In the case of symmetric

states, the CPPs of a symmetric state whose MPs are vertices of a Platonic solid coincide

with the vertices of its dual [ Aul11a] .
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3.4. The Majorana Representation and Entanglement

Figure 3.8: The Octahedron. jOi = 1p
2
(jS(6,1)i + jS(6,5)i ).

Figure 3.9: The Cube. jCi = 1
2
p

6
(
p

5 jS(8,0)i +
p

14 jS(8,4)i +
p

5 jS(8,8)i ).

Figure 3.10: The Icosahedron. j I i = 1
5
(
p

7 jS(12,1)i �
p

11 jS(12,6)i �
p

7 jS(12, 11)i ).
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Figure 3.11: The Dodecahedron. jDi = 1
25

p
3
(
p

187 jS(20,0)i +
p

627 jS(20,5)i +
p

247 jS(20,10)i �
p

627 jS(20, 15)i +
p

187 jS(20, 20)i ).
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Chapter4
Nonlocality of Symmetric States

After a lengthy introduction of background information interspersed with necessary

mathematical tools to work with nonlocality and symmetric states, this chapter does the

technical work to show that all symmetric states violate the same inequality and almost

all symmetric states satisfy the extended n-party Hardy paradox.

After first reviewing the technical aspects of the original (bipartite) Hardy paradox,

including how to construct the measurement bases for almost all bipartite entangled

states, the generalization of the Hardy paradox and the constructive procedure to find

the measurement settings for almost all symmetric states will be shown and proved. The

final section shows that even though Dicke states do not satisfy the extended Hardy

paradox, they still violate the generalized n-party CH inequality, which will be called P n.

One common theme in this chapter is the role of symmetry breaking in determining

the measurement settings, and how some symmetry persist into groups of subsystems.

The symmetry breaking aspect hasalready been identified by Hardy, while the persistency

of symmetry is a nice feature of symmetric states which also has a direct geometrical

meaning in terms of the Majorana representation. The persistence of symmetry will be

discussed more in detail in the next chapter.

4.1 Bipart ite Hardy Paradox Revisited

The bipartite Hardy paradox has been explained verbally and mathematically in Sec-

tion 2.4.5, together with the CH inequality, whose violation is guaranteed when the four

probabilities defining the paradox (2.52) to (2.55) are satisfied. The missing link, which

will be explained in this section as a warmup to the multipartite case, is how to choose

measurement settings to actually satisfy (2.52) to (2.55), for almost all entangled pure

states. This section essentially presents the result in [ Har93] while slightly updating the

notation using modern quantum information conventions.

In Section 2.3, a very useful mathematical tool was introduced to characterize the
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Chapter 4. Nonlocality of Symmetric States

entanglement of bipartite pure states: the Schmidt decomposition (2.10). Using the

Schmidt decomposition, an arbitrary bipartite pure state can be decomposed using two

sets of orthonormal bases, each belonging to one party. The Schmidt decomposition

works for bipartite pure statesof arbitrary dimension, and the two parties may even differ

in dimension [ NC00] . For the current problem, however, only qubits will be considered.

If only pure states of qubits are considered, then it is possible to use j0i and j1i as

the orthonormal basis for both parties. Using the Schmidt decomposition, an arbitrary

bipartite state j i can be decomposed as

j i = a j00i � b j11i , f a, bg 2 R, a2 + b2 = 1. (4.1)

Note that (4.1) differs slightly from the usual definition of a Schmidt decomposition,

where the Schmidt coefficients a, b are nonnegative. The negative sign in front of b is

chosen to facilitate later calculations, so b is assumed to be nonpositive. Given the state

j i in another basis, the coefficients a and b can be calculated using singular value

decomposition [ NC00] .

The most important step in bipartite Hardy paradox is the choice of measurement

settings. The nature of the paradox, where an inference is made on one outcome

while the other outcome is observed, calls for projective measurements (see Section 2.2,

Postulate 2). The paradox uses two measurement settings, which will be labeled 0 and 1,

corresponding to the box F and D in Section 2.4.5. The outcomes of each measurement

will also be labeled 0 and 1. The translation between the notation used in (2.52) to

(2.55) and the new notation is summarized in Table 4.1.

Content
Box

0 1

0 Food, baguette Drink, tea
1 Food, noodles Drink, coffee

Table 4.1: Translation between the two different notations for bipartite Hardy paradox.

In the new notation, (2.52) to (2.55) are translated to

P(0, 0j0,0) > 0 (4.2)

P(0, 0j0,1) = 0 (4.3)

P(0, 0j1,0) = 0 (4.4)

P(1, 1j1,1) = 0. (4.5)

To calculate these probabilities, two orthonormal bases are used to construct the

projectors of each observable corresponding to the settings 0 and 1. The basis used
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4.1. Bipartite Hardy Paradox Revisited

by setting 0 will be labeled f j�0i , j�1i g and the basis used by setting 1 will be labeled

f j�0i , j�1i g, with superscripts denoting the outcomes. Using these two bases, (4.2) to

(4.5) can be written as

P(0, 0j0, 0) = j(h�0j � h�0j) j i j2, (4.6)

P(0, 0j0, 1) = j(h�0j � h�0j) j i j2, (4.7)

P(0, 0j1, 0) = j(h�0j � h�0j) j i j2, (4.8)

P(1, 1j1, 1) = j(h�1j � h�1j) j i j2. (4.9)

In [ Har93] , Hardy proposed the following two bases, using a and b from (4.1):

j�0i =
1

p
jaj3 + j bj3

(
p

b3 j0i �
p

a3 j1i ), (4.10)

j�1i =
1

p
jaj3 + j bj3

(
p

a3 j0i +
p

b3 j1i ), (4.11)

j�0i =
1

p
jaj + jbj

(
p

a j0i �
p

b j1i ), (4.12)

j�1i =
1

p
jaj + jbj

(
p

b j0i +
p

a j1i ). (4.13)

Substituting (4.10) to (4.13) into (4.6) to (4.9):

P(0, 0j0,0) (4.14)

= j(h�0j � h�0j) j i j2 (4.15)

=
(
p

b3 h0j �
p

a3 h1j) � (
p

b3 h0j �
p

a3 h1j)(a j00i � b j11i )

jaj3 + jbj3
(4.16)

=
1

jaj3 + jbj3
(a�b3 � a3 �b). (4.17)

P(0, 0j0, 1) (4.18)

= j(h�0j � h�1j) j i j2 (4.19)

=
(
p

b3 h0j �
p

a3 h1j) � (
p

ah0j �
p

bh1j)(a j00i � b j11i )
p

(jaj3 + jbj3)(jaj + j bj)
(4.20)

=
1

p
(jaj3 + jbj3)(jaj + j bj)

(a
p

a�b3 � b
p

a3 �b) (4.21)

= 0. (4.22)
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P(0,0j1,0) (4.23)

= j(h�1j � h�0j) j i j2 (4.24)

=
(
p

ah0j �
p

bh1j) � (
p

b3 h0j �
p

a3 h1j)(a j00i � b j11i )
p

(jaj3 + jbj3)(jaj + j bj)
(4.25)

=
1

p
(jaj3 + jbj3)(jaj + j bj)

(a
p

a�b3 � b
p

a3 �b) (4.26)

= 0. (4.27)

P(1, 1j1, 1) (4.28)

= j(h�1j � h�1j) j i j2 (4.29)

=
(
p

bh0j +
p

ah1j) � (
p

bh0j +
p

ah1j)(a j00i � b j11i )

(jaj + j bj)
(4.30)

=
1

(jaj + j bj)
(a�b� b�a) (4.31)

= 0. (4.32)

From these calculations it can be seen that the last three probabilities are always 0.

Also, P(0, 0j0, 0) = 0 when a = �b = 1p
2
, which corresponds to the maximally entangled

states, or either a = 0 or b = 0, which corresponds to product states. So the bipartite

Hardy paradox works for all entangled pure states except the maximally entangled

states.

Hardy hinted that maximally entangled states are too symmetric (“the proof relies

on a certain lack of symmetry that is not available in the case of a maximally entangled

state.” [ Har93] ). The maximally entangled states of two qubits, also known as Bell

states, are a set of four states including three symmetric states and one antisymmetric

state:

j�+ i =
1

p
2

(j00i + j11i ), (4.33)

j�� i =
1

p
2

(j00i � j11i ), (4.34)

j�+ i =
1

p
2

(j01i + j10i ), (4.35)

j�� i =
1

p
2

(j01i � j10i ). (4.36)

In the Majorana representation, the three symmetric Bell states j�+ i , j�� i , j�+ i all
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4.1. Bipartite Hardy Paradox Revisited

have two Majorana points which are antipodal (Fig. 4.1). The antisymmetric Bell state,

also known as the singlet state, can be brought to a symmetric state by performing

local unitaries (�z � I , for example, takes it to j�+ i ) . Symmetric states with only

two antipodal MPs correspond to Dicke states in the Majorana representation. The

multipartite Hardy paradox also does not work for Dicke states, as will be shown below.

The lack of symmetry, as pointed out by Hardy, will also be given a geometrical meaning

in the multipartite paradox.

(a) j�+ i , with MPs 1p
2
(j0i +

i j1i ), 1p
2
(j0i � i j1i ).

(b) j�� i , with MPs 1p
2
(j0i +

j1i ), 1p
2
(j0i � j1i ). (c) j�+ i , with MPs j0i , j1i .

Figure 4.1: The three symmetric Bell states in the Majorana representation.
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4.2 Multipartite Hardy Paradox and the Inequality P n

The multiparty extension of the Hardy paradox is very straightforward. Following the

bipartite paradox, a verbal argument will be given first, followed by a set of probabilistic

conditions defining the paradox, then an inequality using these probabilities will be

shown to hold for LHV model and violated by these probabilistic conditions.

Using the same terminology as in Section 2.4.5, but suppose there are n people, each

given two sealed boxes from Charlie, one containing a food item and the other a drink,

while only one box can be opened. The promises from Charlie are

• If everyone opens their food boxes, then it is possible that everyone gets baguettes.

• If everyone except one person opens their food boxes and gets baguettes, then if

that person opens the drink box, he/ she will not get tea.

• If everyone opens their drink boxes, they will not all get coffee.

Now, just as in the bipartite case, if everyone opens their food boxes and indeed all

find baguettes inside, what inference can be made on the unopened drink box? By the

second promise above, everyone can assume that if he/ she is the only person opening

the drink box, then a cup of coffee will be found inside for sure. Because everyone can

make an inference this way, then should everyone chose to open the drink box instead of

the food box in the beginning, all of them should find coffee inside. But this contradicts

the last promise.

Again using Table. 4.1, these promises can be written as probabilities:

P(0 . . . 0j0 . . . 0) > 0, (4.37)

P(0 . . . 0j0 . . . 1) = 0, (4.38)

...

P(0 . . . 0j1 . . . 0) = 0, (4.39)

P(1 . . . 1j1 . . . 1) = 0. (4.40)

The lines from (4.38) to (4.39) represent n probabilities, whose settings are permutations

of a n-bit string with a single one and n� 1 zeros, which will also be written succinctly

as P(0 . . . 0j�(0 . . . 1)).

In the bipartite case, the four probabilities can be put into the CH inequality to

be tested experimentally. In the multipartite case, a multiparty version of the CH

inequality also exists, although it has been rediscovered many times [ Cer04, GR10,

WM12] . Because this inequality plays an important role later, it is given a name P n:

P n := P(0 . . . 0j0 . . . 0) �
X

�

P(0 . . . 0j�(0 . . . 1)) � P(1 . . . 1j1 . . . 1). (4.41)
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The local bound is established by the theorem below.

Theorem 6. The Bell polynomial for n systems

P n := P(0 . . . 0j0 . . . 0) �
X

�

P(0 . . . 0j�(0 . . . 1)) � P(1 . . . 1j1 . . . 1)

is bounded under LHV as P n � 0.

Proof. Assuming (2.17), joint probabilities are products of probabilities of each party (

here we dropped � because we are always integrating over d�). The Bell polynomial P n

can be rewritten as:

P1(0)P2(0) . . . Pn(0)

�P1(1)P2(1) . . . Pn(1)

�(1� P1(1))P2(0) . . . Pn(0)

...

�P1(0) . . . Pn�1(0)(1� Pn(1)), (4.42)

by noting

Pi (0) = Pi (0j0),

Pi (1) = Pi (1j1).

The subscriptsdenote different partiesand essentially show that probabilitiesof obtaining

the same result by different parties are independent. An expansion gives:

P1(0)P2(0) . . . Pn(0) � P1(1)P2(1) . . . Pn(1) (4.43)

+ P1(1)P2(0) . . . Pn(0) � P2(0)P3(0) . . . Pn(0) (4.44)

+ P1(0)P2(1) . . . Pn(0) � P1(0)P3(0) . . . Pn(0) (4.45)

...

+ P1(0)P2(0) . . . Pn(1) � P1(0)P2(0) . . . Pn�1(0) (4.46)

Note that the rows (4.44) to (4.46) are all less than or equal to 0, because for all

0 � Pi � 1,

nY

i= 1

Pi �

n�1Y

i= 1

Pi . (4.47)
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Factoring the second term in (4.43) and the first term in (4.44), we have:

P1(1)(P2(0) . . . Pn(0) � P2(1) . . . Pn(1)). (4.48)

If P2(0) . . . Pn(0) � P2(1) . . . Pn(1), then (4.48) � 0 (by using (4.47) on the first term

in (4.43) and the second term in (4.44), and on rows (4.45) to (4.46)), and there is

nothing more to prove. Otherwise

P1(1)(P2(0) . . . Pn(0) � P2(1) . . . Pn(1))

�(P2(0) . . . Pn(0) � P2(1) . . . Pn(1)), (4.49)

which means (4.42) is smaller than or equals to

P1(0)P2(0) . . . Pn(0) � P2(1)P3(1) . . . Pn(1) (4.50)

+ P1(0)P2(1) . . . Pn(0) � P1(0)P3(0) . . . Pn(0) (4.51)

...

+ P1(0)P2(0) . . . Pn(1) � P1(0)P2(0) . . . Pn�1(0). (4.52)

Repeat the same procedure n times, each time assuming
Q

k Pk(0) >
Q

k Pk(1) (oth-

erwise we can terminate the proof). What has been shown after these n steps is

(4.42) � P1(0)P2(0) . . . Pn(0) � P1(0)P2(0) . . . Pn�1(0), whose right hand side is less than

or equal to 0 by (4.47) 1.

1An alternative proof is given in [ GR10]
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4.3 Violation of P n By Almost All Symmetric States

It is time to show that almost all entangled symmetric states, with the exception of Dicke

states, can satisfy (4.37) to (4.40), thus also violating P n(4.41).

Consider any entangled permutation symmetric state (which is not a Dicke state)

j i with MPs f j�1i , . . . , j�ni g (degeneracy will be considered in the next chapter, here it

does not matter if some of the MPs are degenerate). From the definition of the Majorana

representation, it is not hard to see that (4.40) can be achieved by using the antipodal

point of any MP as the projector of setting 1 outcome 1. If j�i i is an MP, j�i i
? its

antipodal point, then by (3.29),

P(1 . . . 1j1 . . . 1) = j h�?
i j � . . .� h�?

i j
| { z }

n

 i j2 = 0. (4.53)

Using f j�i i , j�i i
? g as setting 1 also fixes the 0 outcome of setting 1 in (4.38) to

(4.39). Also, because of the permutation symmetry of j i , (4.38) to (4.39) are either all

satisfied or none of them is satisfied. The result of using j�i i as outcome 0 of setting 1 is

that projecting j i onto it, the resulting (n� 1)-qubit state is also symmetric:

j i i = h�i j i . (4.54)

To satisfy the n probabilities (4.38) to (4.39), it is sufficient to use one of the MPs

j�j i of j i i and its antipodal point j�j i
? as setting 0:

P(0 . . . 0j�(0 . . . 1)) = j�(h�?
j j � . . .� h�?

j j
| { z }

n�1

� h�i j) j i j2 = 0. (4.55)

But there is a catch: unless j�j i is different from all the MPs of j i , the first

probability (4.37) will not hold. Luckily, the theorem below shows that unless j i is a

Dicke state, there is always a way of choosing j�i i such that at least one MP of j i i is

different of all the MPs of j i . By using such a choice, all n + 2 probabilities (4.37) to

(4.40) are all satisfied, thus also violating P n.

Theorem 7. Let S := f j�1i , j�2i , . . . , j�ni g be the set of MPs of the state j i . Let

S i
:= f j�1i , j�2i , . . . , j�n�1i g be the set of MPs of thestate j i i = h�i j i . Then S i

� S 

iff j i is a Dicke state up to rotations of the Bloch Sphere.

First we prove an important lemma upon which the rest of the proof will rely. The

purpose of this lemma is to show that orthogonality conditions like (3.29) and (3.30)

are only true if the state which we take the tensor product of (the bra half) is an MP of

the permutation symmetric state (the ket half), and the order of tensor products depends

on the degeneracy of the MP.
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Chapter 4. Nonlocality of Symmetric States

Lemma 8. If j i is a permutation symmetric state of n qubits with (distinct) MPs

f j�1i , j�2i , . . . , j�l i g, each having degeneracy f d1, d2, . . . , dl g, then

(h�j)�c j i = 0 (4.56)

if and only if j�i = j�?
i i , h�?

i j�i i = 0 for some i, and c � n � di + 1 (or equivalently,

di � n� c+ 1).

Proof. The if direction follows simply from expanding j i using (3.27),(3.28) and the

condition on MPs in the definition above. We will now focus on the only if direction.

First notice that if (h�j)�c j i = 0 with c � n, then (h�j)�n j i = 0. As explained

above, (h�j)�n j i = 0 is only possible if j�i is an antipodal point of some MP of j i .

Therefore j�i = j�?
i i , h�?

i j�i i = 0 for some i .

Now we want to show that (h�?
i j)�c j i = 0 implies c � n � di + 1. Instead we

will show the equivalent statement: c < n� di + 1 (or equivalently c� n� di ) implies

(h�?
i j)�c j i 6= 0.

If c = n� di , then

(h�?
i j)�n�di j i (4.57)

= (n� di )!(h�
?
i j)�n�di j�1�2 . . .�l| { z }

f 1...lgni

i (j�i i )
�di 6= 0. (4.58)

To get from (4.57) to (4.58), we used that fact that when c = n� di , if we expand

j i using (3.27),(3.28), all other terms disappear. This term cannot be zero since by

assumption no other MPs are equal to j�i i .

When c < n � di , if (h�?
i j)�c j i = 0, then this would imply (h�?

i j)�n�di j i = 0,

which contradicts the argument just given. Thus when c� n� di , (h�?
i j)�c j i 6= 0.

The statement of Theorem 7 refers to the state j i i = h�i j i . Neither the statement

nor this proof depend on the choice of j�i i . In fact what will be shown in this proof is

that for any choice of j�i i , for the conditions in Proposition 1 to be satisfied, all other

MPs of j i are either orthogonal to it or lie on top of it, which is the definition of a

(possibly rotated) Dicke state. For convenience, we now fix this j�i i to be j�1i , so j i i

will now be fixed to be j 1i .

The state j i can be decomposed into MPs j�di
i i as in (3.28). Similarly, the state

j 1i = h�1j i can be decomposed into

j 1i = K
X

per m

j�m1
1 �

m2
2 . . .�mk

k i , (4.59)

8 i 6= j , j�i i 6= j�j i ,
kX

i = 1

mi = n� 1. (4.60)
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Apart from j 1i , there is another (n� 1)-qubit permutation symmetric state useful

to us, which is the state composed of all MPs of j i except j�i i :

j =i i := K
X

per m

j�1 . . .�n| { z }
f 1...ngni

i . (4.61)

By using Lemma 8, we can prove two corollaries about the states j 1i , j =i i and the

degeneracies of their MPs:

Corol lary 9. (h�j)�c j 1i = 0 if and only if j�i = j�?
i i , h�?

i j�i i = 0 for some i and

c� n� mi (or equivalently, mi � n� c).

Proof. Follows directly from Lemma 8 by noticing that j 1i is a permutation symmetric

state of n� 1 qubits.

Corol lary 10. (h�j)�c j =i i = 0 if and only if j�i = j�?
j i , h�?

j j�j i = 0 for some j, and

1). if j 6= i , then c � n� d j (or equivalently, d j � n� c); 2). if j = i , then d j > 1 and

c� n� d j + 1 (or equivalently, d j � n� c+ 1).

Proof. When j 6= i , the proof follows directly from Lemma 8, in the same way as the

proof of the previous corollary. When j = i , the degeneracy of j�j i in j =i i is d j �1, then

by Lemma 8 it can only be zero for di > 1 and then d j � 1 � n� c $ d j � n� c+ 1.

We now proceed to the three main lemmas of the proof. For clarity, we continue to

use the notation that j�i i is an MP of j i with degeneracy di , and j�i i is an MP of j 1i

with degeneracy mi . We also use K to denote the global normalization constant.

Lemma 11. 8 i , j�i i = j�i i , with mi � di � 1.

Proof. First of all, if di = 1, then the statement is always true, so now we will focus on

the case when di > 1.

From Corollary 9, (h�?
i j)�n�di + 1 j 1i = 0 if and only if j�i i = j�i i and mi � n� (n�

di + 1) = di � 1. So it suffices to show that (h�?
i j)�n�di + 1 j 1i = 0.

j 1i can be decomposed into

j 1i = K
X

l

h�1j�l i j =l i . (4.62)

Using this decomposition, we have

(h�?
i j)�n�di + 1 j 1i (4.63)

= K(h�?
i j)�n�di + 1

X

l

h�1j�l i j =l i (4.64)

= K
X

l

h�1j�l i (h�
?
i j)�n�di + 1 j =l i (4.65)

= 0, (4.66)
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where we used both cases in Corollary 10 to get from (4.65) to (4.66).

Lemma 12. 8 i , if j�i i = j�i i and mi � di , then h�1j�i i = 0.

Proof. By Corollary 9, if j�i i = j�i i and mi � di , then (h�?
i j)�n�di j 1i = 0.

Using the same decomposition of j 1i as in the proof of the previous lemma, we

have:

(h�?
i j)�n�di j 1i (4.67)

= K
X

j

h�1j�j i (h�
?
i j)�n�di j =j i . (4.68)

From Corollary 10, we can deduce that the only term which does not vanish in the

sum is when j = i , thus we have:

(h�?
i j)�n�di j 1i (4.69)

= Kh�1j�i i (h�?
i j)�n�di j =i i

| { z }
�

(4.70)

= 0. (4.71)

Since neither K nor �in (4.70) is 0, we can conclude that h�1j�i i = 0.

Lemma 13. 8 i , if j�i i = j�i i then mi � di .

Proof. If mi > di , then by Lemma 12 h�1j�i i = 0. We can write j�?
i i as j�1i .

Partially expanding j i in the f j�1i , j�?
1 i g basis gives

j i = K(j�1i j 1i + j�?
1 i j › 1i ) (4.72)

Now consider (h�?
i j)�n�di j i :

(h�?
i j)�n�di j i (4.73)

= (h�?
i j)�n�di K(j�1i j 1i + j�?

1 i j › 1i ) (4.74)

= K(h�?
i j)�n�di�1 j 1i (4.75)

= 0, (4.76)

where we used the fact that j�?
i i = j�1i to go from (4.74) to (4.75). We used Corollary 9

and our assumption that mi > di to go from (4.75) to (4.76).

Clearly, the conclusion that (h�?
i j)�n�di j i = 0 contradicts Lemma 8, so mi � di .

Combining Lemmas 11, 12, 13, we get the main corollary which will prove the

theorem.
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4.3. Violation of P n By Almost All Symmetric States

Corol lary 14. 8 i , j�i i = j�i i with degeneracies such that either 1). mi = di , h�1j�i i = 0

or 2). mi = di � 1, h�1j�i i 6= 0.

To finish the proof, we first observe that since
P

k mk = n� 1, and n =
P

di , we have

X

k

mk = n� 1 = (
X

k

dk) � 1 (4.77)

= (di � 1)
| { z }

group 1

+
X

j6= i

d j

| { z }
group 2

, (4.78)

where we have separated the di into two groups, group one, where the minus one is

associated a particular di , and group two, the remaining d j . Next we consider what is

implied by the condition S i
� S in Proposition 1 - i.e., where all Majorana points j�i i

coincide with j�i i . It is clear from Corollary 14 and (4.77) that this can only be done

if group one is given by d1, and group two comes from one Majorana point which is

orthogonal to j�1i . Thus there are only two Majorana points of j i , j�1i and j�2i = j�?
1 i .

This is exactly a Dicke state up to rotation of the Majorana sphere. Substitute any j�i i

for j�1i in the beginning, the reasoning above is still valid.
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4.4 Violation of P n By All Symmetric States

For Dicke states, although (4.37) to (4.40) can not be satisfied because Theorem 7 fails,

meaning the state j i i = h�i j i is also a Dicke state (this can be verified easily since

for a Dicke state, all its MPs are either j0i or j1i ). But the theorem below show that

it is nevertheless possible to violate P n by a relatively simple choice of settings. But

unlike the case for non-Dicke states, this theorem is not constructive: for non-Dicke

states, calculating the setting 0 only involves finding the roots of a polynomial, while the

theorem below only shows the existence of a setting 0 which can violate P n.

Theorem 15. Thereexistsan angle0 < �< � such that all Dickestates jS(n, k)i (f k, ng 2

N,1 < k < n) violate the inequality in Theorem 6 when using the measurement setting

f j+ i , j�i g as setting 0 and f cos�
2

j0i � sin �

2
j1i , sin �

2
j0i + cos�

2
j1i g as setting 1.

Proof. First we will write the inequality in Theorem 6 as a function of n, k and �.

P(0 . . . 0j0 . . . 0)

= jh+ , . . . , + jS(n, k)i j2

= ((
1

p
2

)n
�

n

k

�� 1
2
�

n

k

�

)2, (4.79)

P(0 . . . 0j1 . . . 0)

= j(cos
�

2
h0j � sin

�

2
h1j) � h+ , . . . , + jS(n, k)i j2

= ((
1

p
2

)n�1
�

n

k

�� 1
2

(cos
�

2

�
n� 1

k

�

� sin
�

2

�
n� 1

k � 1

�

))2, (4.80)

P(1 . . . 1j1 . . . 1)

= jn�(sin
�

2
h0j + cos

�

2
h1j) jS(n, k)i j2

= (

�
n

k

�� 1
2
�

n

k

�

(cos
�

2
)k(sin

�

2
)n�k)2. (4.81)

To simplify our calculations, we divide each probability (4.79) - (4.81) by
�n

k

�
. Doing

this rescales the Bell polynomial in Theorem 6, which will not change its positivity
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property.

P0(0 . . . 0j0 . . . 0)

= (
1

2
)n, (4.82)

P0(0 . . . 0j1 . . . 0)

= (
1

2
)n�1

�
n

k

��2

(cos
�

2

�
n� 1

k

�

� sin
�

2

�
n� 1

k� 1

�

)2, (4.83)

P0(1 . . . 1j1 . . . 1)

= (cos
�

2
)2k(sin

�

2
)2n�2k. (4.84)

Because of the permutation symmetry of jS(n, k)i , the n probabilities P0(0 . . . 0j1 . . . 0)

to P0(0 . . . 0j0 . . . 1) are all equal. After some simplification, the rescaled Bell operator

becomes:

P0(n, k,�) = (
1

2
)n

� n(
1

2
)n�1(

n� k

n
cos

�

2
�

k

n
sin

�

2
)2

� (cos
�

2
)2k(sin

�

2
)2n�2k. (4.85)

First we note some properties of (4.83) and (4.84). For (4.83), it can always reach

0 for all n, k when tan �

2
= n�k

k
. (4.84) is 0 when � = 0 and � = �, and it reaches its

maximum when (cos�
2

)2k = (sin �

2
)2n�2k. Also, if we fix � and n, its derivative with

respect to k is

2(cos
�

2
)2k(sin

�

2
)2n�2k(logcos

�

2
� logsin

�

2
), (4.86)

which means that for fixed � and n, when � < �

2
, (4.84) is monotonically increasing

with respect to k, when �> �

2
, (4.84) is monotonically decreasing with respect to k, and

when �= �

2
, (4.84) is independent of k.

Now consider the equation n� (4.83) = ( 1
2
)n+ 1:

n(
1

2
)n�1(

n� k

n
cos

�

2
�

k

n
sin

�

2
)2 = (

1

2
)n+ 1, (4.87)

=) (
n� k

n
cos

�

2
�

k

n
sin

�

2
)2 =

1

4n
. (4.88)

After taking the square root of both sides, moving the term with sin �

2
to one side,

substuting sin �

2
with

∆
1� cos2 �

2
and square both sides again, (4.88) can be seen as a

quadratic equation having cos�
2

as unknown. It may have 0, 1 or 2 roots when � takes
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any value in the interval [ 0,�] . If it has no root, then we know n� (4.83) < ( 1
2
)n+ 1

for all values of � (because (4.83) can always reach 0). Also note that (4.84) is zero

when �= 0 and �= �, so if (4.88) has no root then (4.85) > 0 when �= 0 and �= �.

Similarly, if (4.88) has one root, we can show that (4.85) > 0 when � = 0 or � = �,

depending on the location of the root: when the root is smaller than �

2
, we take�= �,

otherwise we take�= 0.

We now proceed to the case when (4.88) has two roots. By solving the quadratic

equation we can have closed forms of the two roots in [ 0,�] , which we call �+ and ��:

cos
�+

2
=

k
p

n� n
p

n +
p

8k4 � k2n� 8k3n + 4k2n2

2(2k2 � 2kn + n2)
(4.89)

cos
��

2
=

k
p

n� n
p

n�
p

8k4 � k2n� 8k3n + 4k2n2

2(2k2 � 2kn + n2)
(4.90)

What we want to show now is that for any fixed n, (cos�+

2
)2k(sin �+

2
)2n�2k < ( 1

2
)n+ 1

and (cos��
2

)2k(sin ��
2

)2n�2k < ( 1
2
)n+ 1 for all k. From the monotonicity of (4.84), it

suffices to show that if the inequalities hold for k = n
2
, then they must hold for all k. So

for now we will only consider the case when n is even. We also restrict ourselves to the

positive root. The argument below is symmetric, with appropriate sign/ monotonicity

changes it also applies to the negative root.

When n is even and k = n
2
, (cos�+

2
)2k(sin �+

2
)2n�2k simplify to:

(
1

32
)k (

�
p

k +
p

k(4k � 1)

k
)2k

| { z }
�

(2 +

p
(4k � 1)

k
)k

| { z }
��

. (4.91)

To get the upper bound on (4.91), we first rewrite (�) and (��):

(�) = ((
�

p
k +

p
k(4k � 1)

k
)2)k = (4�

2
p

4k � 1

k
)k (4.92)

= (4�
4
∆

k � 1
4

k
)k = (4(1�

∆
k � 1

4

k
))k, (4.93)

(��) = (2 +
2
∆

k � 1
4

k
)k = (2(1 +

∆
k � 1

4

k
))k. (4.94)

Substitute (4.93) and (4.94) into (4.91), we get

(
1

32
� 4� 2� (1�

k � 1
4

k2 ))k = (
1

2
)2k(1�

k � 1
4

k2 )k. (4.95)

Note that limn! 1 (1� 1
x
) x = e�1, and it approaches this limit from below. We thus
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have

(1�
k� 1

4

k2 )k < (1�
1

k
)k � e�1 <

1

2
(4.96)

From (4.95) and (4.96), we get the desired bound

(cos
�+

2
)2k(sin

�+

2
)2n�2k

< (
1

2
)2k(1�

1

k
)k < (

1

2
)2k+ 1 (4.97)

To show the theorem holds for odd n, we let n = 2k + 1 for some k, then (4.85)

becomes

(
1

2
)2k+ 1 � (2k + 1)(

1

2
)2k(

k + 1

2k + 1
cos

�

2
�

k

2k + 1
sin

�

2
)2 (4.98)

�(cos
�

2
)2k(sin

�

2
)2k+ 2 (4.99)

=
1

2
((

1

2
)2k (4.100)

�(2k + 1)(
1

2
)2k�1(

k + 1

2k + 1
cos

�

2
�

k

2k + 1
sin

�

2
)2 (4.101)

�2(sin
�

2
)2(cos

�

2
)2k(sin

�

2
)2k) (4.102)

It is easy to see that k+ 1
2k+ 1

� 1
2

and k
2k+ 1

� 1
2
, so (4.101) can be bounded by

(4.101) � 2k(
1

2
)2k�1(

1

2
cos

�

2
�

1

2
sin

�

2
)2. (4.103)

Assume cos�+

2
� 1p

2
(theother case will be discussed below), which means2(sin �

2
)2 �

1, we can bound (4.102) by:

(4.102) � (cos
�

2
)2k(sin

�

2
)2k. (4.104)
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Substitute (4.103) and (4.104) into (4.101) and (4.102), we have

(
1

2
)2k+ 1

� (2k + 1)(
1

2
)2k(

k + 1

2k + 1
cos

�

2
�

k

2k + 1
sin

�

2
)2

� (cos
�

2
)2k(sin

�

2
)2k+ 2

�
1

2
((

1

2
)2k

� 2k(
1

2
)2k�1(

1

2
cos

�

2
�

1

2
sin
�

2
)2

� (cos
�

2
)2k(sin

�

2
)2k),

which is just two times the expression for when n = 2k. If cos�+

2
� 1p

2
, we can let

n = 2k� 1, and get a similar argument. For the negative root, the the same reasoning

follows.

To sum up, for even n, if we let n� (4.83) = ( 1
2
)n+ 1, then (4.84) < ( 1

2
)n+ 1, which

means (4.85) > 0. For odd n, depending on the value of cos�+

2
or cos��

2
, we can always

bound (4.85) by considering the closest even n. So (4.85) can always be positive for

some value of �.
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Chapter5
Degeneracy and its Consequences

Multipartite states are an important resource for many areas of quantum information.

Understanding the features that give rise to their usefulness is still a question under

much investigation. Entanglement has become recognized as a key feature. However,

the question becomes involved in the multipartite settings with different classes of en-

tanglement [ HHHH09] having potentially different roles in recognizing good resources.

Intimately related to entanglement is notion of nonlocality [ EPR35, Bel64] , though it is

known they are not the same [ Wer89] .

As well as the general interest in exploring the texture of multipartite state space,

there is some practical interest in understanding the relationship between entanglement

and nonlocality. Using the entanglement or nonlocal properties of multipartite states

in the real world poses many experimental challenges. Unavoidable experimental

inaccuracies like misalignment, noise and detector inefficiencies can render the outcome

of an experiment meaningless. In quantum cryptography, for example, the presence

of noise and detector inefficiencies can mask effective effective attacks on the security

of the key distribution protocol [ QFLM07, XQL10, LWW+ 10] . In entanglement theory,

misalignment when trying to witness entanglement can lead to mistakes [ BGLP11] . The

answer from theorists is to make tangible claims without any assumptions about the

measurement device, hence the name device independent. There is a natural connection to

discussions of non-locality since Bell type arguments do not rely on any statements about

measurements, only their statistics. Device independent proofs and tests have already

been used extensively in quantum cryptography and secure communications [ ABG+ 07,

PAB+ 09, GBHA10, CK11, MPA11, PAM+ 10] , and device independent entanglement

witnesses [ BGLP11] have been proposed. Recent results have shown device independent

tests which are able to discriminate states that are inequivalent under local unitaries and

permutation of systems (LUP) [ BSV12] .

This chapter and the next chapter furthers the study of nonlocality of symmetric

states, studying deeper how the nonlocality exposed is related to entanglement classes
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and the usefulness of the states. In this chapter, the focus will be on degeneracy, with

consequences from persistency of nonlocality to device independent classification of

states. These results also show the intricate relationship between multipartite nonlocality

and multipartite entanglement.

5.1 Degeneracy and Persistency of Nonlocality

In Chapter 3, if a symmetric state j i has degenerate MPs, then (3.30) shows that even

a subset of players can make the probability P(1 . . . 1j1 . . . 1) zero. In fact, if there is an

MP of j i with degeneracy d, then in addition to (4.37) - (4.40)

P(1 . . . 1| { z }
n�1

j 1 . . . 1| { z }
n�1

) = 0, (5.1)

P(1 . . . 1| { z }
n�2

j 1 . . . 1| { z }
n�2

) = 0, (5.2)

...

P(1 . . . 1| { z }
n�d+ 1

j 1 . . . 1| { z }
n�d+ 1

) = 0. (5.3)

The probabilities (5.1) to (5.3) are computed by first tracing out 1, 2, . . . , (d � 1)

players (because of the symmetry of the state j i , it does not matter which players

to trace out), then performing a projective measurement using the MP basis and the

reduced state. It should be noted that because the Majorana representation requires that

any j�i which satisfies

(h�? j � . . .� h�? j)
| { z }

n

j i = 0, (5.4)

for a symmetric j i to be an MP of j i , and only an MP j�i with degeneracy d satisfies

(h�? j � . . .� h�? j)
| { z }

n�1

j i = 0, (5.5)

...

(h�? j � . . .� h�? j)
| { z }

n�d+ 1

j i = 0, (5.6)

if all players measure trust their measurement devices and can guarantee that they

measure in the same bases, then the only way to satisfy (4.37) - (4.40) and (5.1) - (5.3)

for a symmetric state is by using a symmetric state where at least one MP has degeneracy

d.

It is also obvious that by subtracting (5.1) - (5.3) from P n a new inequality can be
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5.1. Degeneracy and Persistency of Nonlocality

defined:

Qn
d := P n � P(1 . . . 1| { z }

n�1

j 1 . . . 1| { z }
n�1

) � . . .� P(1 . . . 1| { z }
n�d+ 1

j 1 . . . 1| { z }
n�d+ 1

) � 0. (5.7)

The new inequality, Qn
d, stil l keeps 0 as its local realistic bound because only nonneg-

ative numbers are subtracted from P n. Some persistency of nonlocality into subsets of

players can be seen from the violation of Qn
d : having a symmetric state with the right

degeneracy guarantees its violation.

In addition to the persistency of nonlocality, the connection shown in Chapter 3

between the degeneracy of MPs and the SLOCC classification of states gives another

use of degeneracy, as a way to classify symmetric states: two symmetric states with

different degeneracy of MPs necessarily belong to different SLOCC classes because

SLOCC operations (i.e. Mo�bius transformations) can not change the degeneracy of MPs.

However, in reality, the notion of degeneracy is not as strong as one might like. For

example, moving one degenerate MP by an arbitrarily small distance give a symmetric

state almost exactly like the original state. But since the degeneracy of its MPs has

now been changed, the probabilities (5.1) to (5.3) can no longer be satisfied perfectly,

although Qn
d may still be violated, with a violation almost identical to the one obtained

from the original state. Also, it is impossible to guarantee that all players measure in the

same bases in practice, due to inevitable experimental imprecision. One may append to

the list of conditions (5.1) to (5.3) some extra conditions which effectively imply the

state is symmetric with respect to the basis given by measurement setting 1. However,

whilst one may be able to define Hardy type paradoxes which can be used to identify

classes of entanglement in this way, these conditions would be difficult to fit into an

inequality, and further it is not clear that it would be possible at all that such inequalities

would also strictly separate degeneracy classes.
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5.2 Device Independent Classification of States

Although there are clear connections between the violation of Qn
d and SLOCC entangle-

ment classes through degeneracy of MPs - degeneracy d guarantees always violation

of Qn
d - the relationship is not as clear as we might like. An immediate question is that

even though the violation of Qn
d is guaranteed by the prescription using the Majorana

representation, what about the maximal violation? Can we say that degeneracy guaran-

tees that the level of violation stays high? Although we no longer have the analytic tools

for general violation, we will see that numerics indicate this is the case, at least for W

states. A deeper question though is what we can really understand from this. We would

really like to know if it is possible to use these ideas and results to separate classes of

states - so that different classes can really be differentiated by their nonlocal properties.

This would lead to new ways of searching for new applications of states, as well as ways

of probing the texture of multipartite states. To answer this, we will first go more into

the subtle questions surrounding the classification of states, and then we will see some

examples of how some separation of classes can be made.

On a practical level, it seems clear that different multipartite entangled states have

different entanglement and locality properties. Famously GHZ states are highly nonlocal,

but are highly sensitive to loss of systems - losing even one system takes them to

a separable (hence ‘local’ state), whereas W states do not have the same extreme

nonlocality [ Cab01] , but losing systems does not destroy the entanglement. In turn,

different types of states may have different uses for quantum information.

The question of how to classify states in terms of entanglement and locality is a

difficult one, particularly when we want to talk about how different classes might be

meaningful either for different quantum information tasks, or their potential roles in

many-body physics. Within entanglement theory, the most standard approach is to use

the SLOCC classification (cf. Chapter 2, Section 2.3). Intuitively this classification is

appealing since it separates states which cannot be reached from each other in the

distributed setting, even with the aid of classical communication.

In terms of how one might classify states with respect to locality, there are several

approaches. The standard setting for locality questions is one in which parties are not

allowed to communicate classically - at least not after they have been told what bases

to measure in, they may do before hand, for example to share classical randomness.

Several options arise. In [ HSG+ 11] it is proposed that a reasonable classification is to

consider equivalence under local unitaries and permutation of systems (we denote this

LUP). One may also consider states equivalent under local operations, which is in turn

equivalent to local unitaries (we donate this LU). When considering correlations alone,

without necessarily taking recourse to quantum states, in [ GWAN12] a classification

is presented called wiring and classical communication prior to inputs (WCCPI) - the
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5.2. Device Independent Classification of States

wiring is essentially the idea of using multiple copies of the resource (which could be a

quantum state or ‘box’ giving a certain probability distribution) and allowing different

ways of combining them. We do not consider the WCCPI classification further here, and

rather focus on single copy classifications.

For all the classifications mentioned above, however, several difficulties emerge,

which seem to limit their usefulness. First of all, there can be an infinite continuum of

classes (for LUP and LU this is already true for two qubits, for SLOCC it is true for four

or more [ DVC00] ). Second, and related to this, it is possible to have two states which

are arbitrarily close to each other which are in different classes. This means that two

states, which behave in almost exactly the same way for all possible experiments, can be

in different classes. It is clear then that it is not possible to separate all classes of states

in terms of their physical properties and in turn that the physical properties cannot be

sensitive to all these classifications. Nevertheless, there does seem to be some difference

between states, which can be identified through these classifications. For example, as

we saw earlier, states of certain classes guarantee resistance of correlations to loss of

systems, for both the LUP [ BSV12] and the SLOCC [ WM12] classifications (through the

degeneracy of MPs as mentioned earlier). In [ BSV12] this was used to separate two LUP

classes in a device independent way.

Here we will use our inequalities to identify different sets of LUP classes of states of

four qubits, hence also, in a device independent way. The LUP and LU classifications are

well suited to discriminate via inequality violation because the maximum violation of an

inequality is searched for over all measurement bases - which is equivalent to searching

over all local unitaries. Thus, if we can say that a particular state cannot violate an

inequality more than a certain amount (using SDP techniques for example, as we do

here), this means that no state in the same LUP class can either. If the state is symmetric

it also means no state in the same LUP state can either. The states we choose are also

in different SLOCC classes (note, however, that the fact that no LU or LUP equivalent

state can violate more than the amount we state does not necessarily mean that there

does not exist an SLOCC equivalent state which can). Since this is done via violation of

Bell-like inequalities - which makes no recourse to what measurements are made, this

classification is done in a device independent way.

For the classification, we will consider three states: the tetrahedron state jTi =
∆

1
3

jS(4, 0)i +
∆

2
3

jS(4,3)i , the 4-qubit GHZ state jGHZ4i = 1p
2
(j0000i + j1111i ), and

the state j000+ i = K
P

per m j000+ i = 2p
5

j0000i + 1p
5

jS(4,1)i , which are all SLOCC-

inequivalent (cf. Chapter 3, Section 3.1.2). We will consider them in two groups: one

group consists of jTi and j000+ i , with differing degeneracy, the other group consists of

jTi and jGHZ4i , with the same degeneracy. These are represented in Fig. 5.1 and 5.2

respectively. We will use numerical maximum violation of P4 and Q4
3 obtained from SDP

to discriminate the states in a device independent way in each group.
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The equivalence of symmetric states under LU and LUP is given simply by the

MP distribution up to rotation of the sphere. This is because any local unitary tak-

ing a symmetric state to a symmetric state can be understood as a rotation of the

sphere [ BKM+ 09, MKG+ 10] (and that permutation obviously do not change a symmet-

ric state). Thus each of the states we study here are LU and LUP inequivalent. As

mentioned, the fact that we search for violation of inequalities over all measurements

means that the bounds we present hold for all LU and LUP equivalent states.

For the first group, shown in Fig. 5.1, the results are shown in Table 5.1. Note that

although we do not restrict the measurement bases for jTi , as the degeneracy of the

state j000+ i is very high, we need to restrict the bases to get realistic SDP bounds.

(a) (b)

Figure 5.1: The tetrahedron state (a) and the state j000+ i (b) in the Majorana represen-
tation.

State P4 Q4
3

jTi 0.1745 -0.0609
j000+ i 0.0142 0.0141

Table 5.1: SDP bounds on the maximum violation of P4 and Q4
3 for jTi and j000+ i .

Because of computational difficulties, the values for j000+ i assume that all parties
measure in the same basis (a numerical optimization over the four Euler angles in the
two measurement settings indicate this is still optimal). We thus have that a violation of
Q4

3 implies the state is not in the LU class of jTi .

Table. 5.2 shows the bounds for P4 and Q4
3 for the second group, shown in Fig. 5.2,

obtained using semidefinite programming techniques described in Section 2.5, without

restricting the measurement bases of parties.

From these tables, one can easily envisage device independent tests to discriminate
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(a) (b)

Figure 5.2: The tetrahedron state (a) and the 4-qubit GHZ state (b) in the Majorana
representation.

State P4 Q4
3

jTi 0.1745 -0.0609
jGHZ4i 0.1241 0.0563

Table 5.2: SDP bounds on the maximum violation of P4 and Q4
3 for jTi and jGHZ4i .

We thus have that a violation of P4 > 0.1241 implies the state is not in the LU class of
jGHZ4i , and a violation of Q4

3 implies the state is not in the LU class of jTi .

the LUP classes in each group.

For the first group, because of the restriction on measurement bases, we have a

weaker test. Despite our best numerical checks and the seemingly reasonable assumption

on the restriction of measurement of bases, we cannot guarantee that if a state has a

violation of P4 greater than 0.0142, it is not in the LUP j000+ i class. However, we can

still conclude that if a state violates Q4
3 then it cannot be in the jTi class, but must be in

the j000+ i LUP class.

In the second group, if the P4 test gives a violation � 0.1241, then the state must

not be in the jGHZ4i LUP class, so must be in the jTi class. Similarly, if the Q4
3 gives any

violation at all, the state cannot be in the jTi LUP class and must be in the jGHZ4i class.

In this case, even though there is no degeneracy, separation can be seen using Q4
3.

The example states chosen sit in different SLOCC classes. This was done by bounding

the possible violation of inequalities using SDP techniques. Going above four qubits

seems difficult as the numerics quickly get difficult with more parties, though simple

basis checking numerics indicate that the W and GHZ states may be separated in this way.

This furthers the discussion about how entanglement classifications can be interpreted

using nonlocal features. On the one hand we have the general statement that degeneracy
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of MPs guarantees persistency of correlations [ WM12] to subsystems. This is true for all

states, not just specific examples such as those expended upon here. We see that certain

“example" statessuch as the j000+ i and jWi statesmay be separated from lessdegenerate

states using this fact. This can be compared to the robustness of nonlocality under system

loss [ BSV12] [ BV12] . On the other hand, we also saw an example with the GHZ and T

states where Qn
d can be used to discriminate different classes, not related to degeneracy

( jTi and jGHZi , both with degeneracy one). Intriguingly, we also remark that these

states naturally appear in the phase space of spinor condensates [ MS07] , pointing to a

potential interest of these ideas in many-body physics, for example to witness different

phases of matter where standard order parameters fail. Existing connections between

entanglement classes and symmetry could further be useful in this direction [ Mar11] .
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Chapter6
Analysis of Nonlocal Properties for

Symmetric States

This chapter, as a continuation of the previous chapter, also aims to explore the similari-

ties and differences between multipartite nonlocality and multipartite entanglement by

using the tools developed in earlier chapters.

The focus of this chapter will be monogamy, a useful property for quantum cryptog-

raphy.

The chapter starts by showing the trends of violations of P n for W and GHZ states

as n gets large. In terms of monogamy and other applications of nonlocal features (for

example communication complexity gains, cf. Section 7.1), the higher the value of the

violation the better. It is interesting to know how violation scales with n. Then the

monogamy of entanglement and correlations will be defined. Although the inequalities

considered so far are not monogamous, a new inequality L for Dicke states, based on a

recent result on the W state, will be presented, and shown to be monogamous in the limit

of large n. The notion of genuine nonlocality will also be discussed, although neither P n,

Qn
d nor the new inequality L can detect genuine nonlocality.

6.1 Large n Results for jWni and jGHZni

While the use of SDP allows us to study the nonlocality of symmetric states with a

few parties, the computational resources required to run the SDP program increase

exponentially with the number of parties, which makes it impractical to obtain results

for states with more than 4 parties. Luckily, for two commonly studied symmetric states,

the W states

jWni = jS(n,1)i =
1

p
n

(
X

per m

j0 . . . 0| { z }
n�1

1i ), (6.1)
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and the GHZ states

jGHZni =
1

p
2

(j0 . . . 0| { z }
n

i + j1 . . . 1| { z }
n

i ), (6.2)

it is possible to calculate analytically the violation of P n if the measurement bases are

those prescribed in Chapter 4. This allows us to give bounds on the maximum violation

possible and see trends. We will use a combination of this and numerics to approximate

the best violation.

For the W state, using the bases f j+ i , j�i g, f j0i , j1i g as settings 0 and 1 in P n, we

get the violation

vw(n) =
n� 2

2n . (6.3)

This algebraic violation, while works for all jWni , is not the optimum violation. By

optimizing over the four Euler angles in the two bases, we obtained close to optimal

numerical violations of P n (s in Fig. 6.1) and Qn
n�1 (t in Fig. 6.1) for W states. It can

be seen from the plot that the violations of P n is close to the upper bound derived from

the geometrical measure of entanglement, 1
2Eg(jWni ) .

For GHZ states, we can follow the procedure given in Chapter 4 to find the bases.

Note that the MPs of GHZ states with an even number of parties and an odd number

of parties are different. For example, j+ i is an MP of jGHZni when n is odd, but

not when n is even. Nevertheless, the MPs in both cases are all equally distributed

along the equator of the Bloch sphere, allowing us to have a single expression for the

bases as a function of n. The basis 1, which consists an MP and its antipodal point, is

f 1p
2
(j0i � e�i �

n j1i ), 1p
2
(j1i + ei �

n j0i )g, and the basis 0 is f 1p
2
(j0i � ei (2n�1)�

n(n�1) j1i ), 1p
2
(j1i +

e�i (2n�1)�
n(n�1) j0i )g. Calculating the violation as a function of n (which is just the probability

P(0 . . . 0j0 . . . 0)), we have (the n line in Fig. 6.1)

vg(n) =
1

2n (1 + cos

�
(2n� 1)�

n� 1

�

. (6.4)

This violation agrees with the best found by numerics.

From Fig. 6.1, we can see that as n increases, the violations are always well below
1

2Eg , which follows the trend we noticed in the earlier SDP examples. We also numerically

optimized the value of Qn
n�1, which is always negative for GHZ states. This is in stark

contrast to the situation for W states, where the violation of Qn
n�1 stays slightly below

the violation of P n. One interpretation of this phenomenon is that Qn
d is closely related

to the degeneracy of the state, and can be used as a ‘witness’ of degeneracy for these

states.

One obvious statement we can get from this with relation to entanglement was that
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Figure 6.1: Violations of P n by the state jGHZni (n ), with the numerical violations of
P n (s ) and Qn

n�1 (t ) of jWni as a function of n (number of parties), comparing to
1

2Eg(jWni ) ( l ) and 1
2Eg(jGHZni ) (u ) .

the higher the entanglement is, the lower any possible violation of P n and Qn
d can be.

At first this seems counterintuitive, but really it seems to stem from the simple fact

that there is only one positive term - we later introduced larger inequalities with more

positive terms based on the HCSV inequality [ HCSV11] , where the violation reaches its

algebraic limit for all Dicke states in the high n limit. We looked at how the violation of

inequalities scale with n for GHZ and W states. We see that W states fair much better

for our inequalities, in contrast to the typical Mermin like inequalities where GHZ fairs

better. We also look at the trends of the inequality violation with entanglement and see

that this can be different. For W states and the j000+ i state the violation increases with

entanglement so that it gets closer to the upper bound ( 1
2Eg ) , where as for GHZ states it

goes down for higher n.
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6.2 Monogamy of Entanglement and Monogamy of Correla-

tions

From earlier chapters, we have seen that it is possible to define similar concepts for

nonlocality and entanglement to study similar properties in each context. For example,

to study how different types can arise in entanglement, SLOCC classification is used,

while in nonlocality the LUP classification can be used. There is another property, defined

for both contexts, that highlights yet another interesting aspect of multiparty nonlocality

and multiparty entanglement, that is the concept of monogamy [ CKW00] [ Ton09] (for

a review see [ See10] ).

As its name suggests, monogamy measures the exclusiveness of entanglement or

correlations, that is, how well they can be shared. For example if two parties share a

maximally entangled state or a maximally correlated Popescu-Rohrlich (PR) box [ PR94] ,

the entangled systems or PR box cannot be entangled or correlated to anything else. In

recent years it has been recognized as a key ingredient to the usefulness of states for

example in security and device independent security scenarios [ BKP06, PAM+ 10, CK11,

AGCA12] . The idea being that if the correlations cannot be shared, that means that the

eavesdropper is uncorrelated with the honest parties, so the information they share will

not be leaked to the eavesdropper.

Monogamy of entanglement is a property of a particular quantum state. It measures

the intra-subgroup entanglement tradeoff with respect to a suitably chosen entanglement

measure. The most famous such measure is the tangle � introduced in [ CKW00] ,

which measures the entanglement across a bipartition. The CKW inequality, proposed

in [ CKW00] as a conjecture and proved recently in [ OV06] , states that for all pure

entangled states, the sum of all bipartite tangles between one party A and n parties

f B1, . . . , Bng is less than or equal to the tangle between A and all Bi considered as a

whole:

�(�AB1
) + �(�AB2

) + . . . + �(�ABn
) � �(�A(B1...Bn) ). (6.5)

Although it is known that symmetric states like the W state can saturate this inequality,

not all states which saturate this inequality are symmetric.

The monogamy of 3-qubit symmetric states have been studied recently [ SUDR12] ,

using a different measure of quantum correlations, called the quantum deficiency (re-

lated to quantum discord [ OZ01] ). It was shown that SLOCC equivalent states do

not necessarily have the same monogamy relation with respect to this measure. Here

we focus on correlations of the measurement results directly (which we call simply

monogamy of correlat ions).

Monogamy of correlations is normally defined in the context of correlations aris-
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ing from probability distributions, without explicitly referring to quantum states and

measurements. Intuitively, monogamy says that strong correlations cannot be shared.

In a strict sense, we say an n-partite distribution, P(a1, . . . , anjA1, . . . ,An), is monoga-

mous [ BLM+ 05] [ AGCA12] , if the only nonsignaling extension to n + 1 parties

P(a1, . . . , an, an+ 1jA1, . . . ,An,An+ 1) is the trivial one, i.e. such that

P(a1, . . . , an, an+ 1jA1, . . . , An,An+ 1)

= P(a1, . . . , anjA1, . . . ,An)P(an+ 1jAn+ 1). (6.6)

For all possible measurement settings Ak and A0
k for party k, the nonsignaling condi-

tion can be stated as

P(a1, . . . , ak�1, ak+ 1 . . . , anjA1, . . . , Ak�1, Ak+ 1, . . . , An)

=
X

ak

P(a1, . . . , ak, . . . , anjA1, . . . , Ak, . . . , An)

=
X

ak

P(a1, . . . , ak, . . . , anjA1, . . . , A0
k, . . . , An). (6.7)

That is, when tracing out one system, k, to get the marginal distributions, it does not

matter which measurement setting Ak is used.

This strict sense of monogamy is guaranteed if an inequality reaches its algebraic

maximum [ BKP06] . Indeed, this fact is used to show monogamy for several states via

several inequalities including GHZ states [ BKP06] [ AGCA12] [ Ton09] . However, the

inequalities P n and Qn
d here cannot show strict monogamy in this way, simply because

no quantum state can ever achieve the algebraic bound, as the bound is given by the

entanglement. In the following subsection we will develop another set of inequalities for

which this idea does work.

Even if not demanding strict monogamy of correlations, it is possible to bound how

well correlations can be shared. In [ PB09] , a bound is presented covering general

nonsignaling theories by demanding tradeoffs of correlations in a multipartite setting,

analogous to the monogamy of multipartite entanglement. To apply these results to

our inequality, we will follow the prescription given in [ PB09] . First we rewrite our
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inequality to make all terms positive:

P n = P(0 . . . 0j0 . . . 0)

� (1�
X

a1,...,an6= 0...0

P(a1, . . . , anj0 . . . 1))

...

� (1�
X

a1,...,an6= 0...0

P(a1, . . . , anj1 . . . 0))

� (1�
X

a1,...,an6= 1...1

P(a1, . . . , anj1 . . . 1)). (6.8)

By keeping all the probabilities on the left hand side and moving everything else to

the right hand side, we define the inequality

P n0
= P(0 . . . 0j0 . . . 0)

+
X

a1,...,an6= 0...0

P(a1, . . . , anj0 . . . 1)

...

+
X

a1,...,an6= 0...0

P(a1, . . . , anj1 . . . 0)

+
X

a1,...,an6= 1...1

P(a1, . . . , anj1 . . . 1)

� n + 1. (6.9)

Now we can partition the parties into two groups: group A with k parties and

group B with n� k parties. Consider a single group A which is possibly correlated with

multiple identical Bi . The multiparty monogamy relation of [ PB09] tells us that for any

nonsignalling probability distribution for n > 2

n�k+ 2X

i = 1

P n0
(A, Bi ) � (n� k + 2)(n + 1), (6.10)

where i runs over the possible combinations of measurement settings of n� k parties

that make up each Bi .

For Qn
d, we can treat the d � 1 extra probabilities as marginals of probabilities

involving n parties:

P(1 . . . 1| { z }
n�d+ 1

j 1 . . . 1| { z }
n�d+ 1

) =
X

b1,...,bd�1

P(1 . . .1| { z }
n�d+ 1

b1 . . . bd�1| { z }
d�1

j 1 . . . 1| { z }
n

), (6.11)
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which leads to the inequality for Qn0

d :

Qn0

d = P n0
+

X

a1,...,an�16= 1...1

P(a1, . . . , an�1, b1j 1 . . . 1| { z }
n

)

...

+
X

a1,...,an�d+ 16= 1...1

P(a1, . . . , an�d+ 1, b1, . . . , bd�1j 1 . . . 1| { z }
n

)

� n + d. (6.12)

Because the expression for Qn0

d does not increase the number of settings for B, we

have the monogamy inequality for Qn0

d similar to (6.10):

n�k+ 2X

i= 1

Qn0

d (A, Bi ) � (n� k + 2)(n + d). (6.13)

We then looked at what can be said about the monogamy of the correlations exposed

by our inequalities and chosen measurement settings. First, we see that P n and Qn
d are

not suited to showing strict monogamy (that is, we cannot say violation at the level

achieved by quantum states implies no correlations are shared with another party),

since, by the fact that entanglement bounds the violation, any quantum violation cannot

reach the algebraic limit. This may indicate that these inequalities are not so useful for

device independent security for example, although bounds on correlation sharing less

than these strict ones may be of interest. To this end, using techniques from [ PB09] we

bound how much correlations can be shared with the inequalities. We then define new

inequalities based on the HCSV inequality, where we see that all Dicke states are strictly

monogamous in the limit of high n, as has been seen before for W states [ HCSV11] . In

this sense the extreme nonlocality of GHZ and stabilizer states seems to be replicated by

Dicke states in the large n limit. It remains open how general this is for all symmetric

states.
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6.3 Monogamy and Genuine Nonlocality of Dicke States

We now introduce a set of inequalities which can show strict monogamy of Dicke states

in the high n limit. These are based on recent work by Heaney, Cabello, Santos and

Vedral [ HCSV11] where they show that for the W state, it is possible to construct

nonlocality tests and inequalities that are maximal in some sense, i.e. the violation of the

inequality goes to the algebraic maximum in the n ! 1 limit, thus mimicking perfect

correlations of stabilizer states and the Mermin inequality (cf. Chapter 2, Section 2.4.4).

The inequality introduced in [ HCSV11] by Heaney, Cabello, Santos and Vedral (hereafter

referred to as the HCSV inequality), has the property that the larger n is, the higher the

violation becomes. Although the original HCSV inequality only works for W states, it can

be extended as follows to cover all Dicke states.

Following and extending the reasoning in [ HCSV11] for W state, if all n parties

measure in the �z basis on a Dicke state jS(n, k)i , n� k of them will get result 0 and

the other k will get result 1 with certainty (though it is impossible to know who gets

what). Now imagine that when n� k � 1 parties get 0 and the other k � 1 parties get

1, the remaining two decide instead to measure �x . In this case they will always get

the same result. Since under LHV the results of one party should not depend on other

parties’ settings, this means that should any two chose to measure in �x , they would get

the same result. If these results are given by an LHV distribution, this would mean that

if all parties were to measure in �x in the beginning, they should all get the same result.

Since everything above occurs with certainty, we should always see, under LHV, that if

all parties measure�x they get the same result. However, simple calculation shows that

this is not the case for all Dicke states.

The associated Bell inequality is

L =
X

P(�(0 . . . 0| { z }
n�k

1 . . . 1| { z }
k

)j0 . . . 0)

�
X

P(�(0 . . . 0| { z }
n�k�1

1 . . . 1| { z }
k�1

01)j�(0 . . . 0| { z }
n�2

11))

�P(0 . . . 0j1 . . . 1) � P(1 . . . 1j1 . . . 1) � 0, (6.14)

where the permutations in the second and third lines are over parties fixing the relation-

ship between measurement settings and results, as with P n. To see that this cannot be

violated under LHV it is sufficient to see that it cannot be violated for any deterministic

strategy (i.e. taking marginal probabilities to be zero or one) [ WW01] , since all LHV

distributions can be considered as probabilistic mixtures of deterministic ones. It is not

difficult to see that taking any one of the P(�(0 . . . 0| { z }
n�k

1 . . . 1| { z }
k

)j0 . . . 0) to be one cannot be

compatible with keeping all the negative terms zero. Since these are the only possible
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6.3. Monogamy and Genuine Nonlocality of Dicke States

positive terms, and at most only one can be equal to one, for all deterministic local

strategies the expression is non-positive and a violation is incompatible with LHV. For a

Dicke state jS(n, k)i , L is violated by 1�
(n

k)
2n�1 . As for the W state considered in [ HCSV11] ,

this achieves the algebraic maximum in the limit of large n, imitating perfect correlations

of GHZ and other stabilizer states. This also implies strict monogamy for the limit in n.

We plot the violation of L for jS(n, n
2
)i and jWni in Fig. 6.2. We see that the W state

reaches one more quickly, in keeping with its lower entanglement.
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Figure 6.2: A comparison of the violation of L (6.14) for the states jS(n, n
2
)i (n ) and

jWni ( l ) as a function of n (the number of parties).

One can also ask what other nonlocal properties can be inspected by inequalities P n

and Qn
d . Another property of multiparty correlations which is of interest, is whether it

can be said to be “genuine" or not - that is, whether the correlations at hand could be

achieved by grouping the n into subgroups or not. If not, we would say the correlations

are genuinely n party. The Svetlichny type inequalities [ Sve87] endeavor to identify

this property - they should only be violated by genuinely n party correlated states.

Unfortunately it is not to hard to see that all the inequalities we use in this work do not

have this property - it is possible to group parties together such that local states with

respect to the new groupings can violate the inequalities. This can be easily seen by

grouping the first n� 2 parties and construct an LHV model by only using deterministic

probabilities (probabilities equal to 0 or 1). The grouping makes it possible to set all

negative terms to 0, and (one of) the positive term to 1. A stronger statement can be

made by only grouping the first two terms - so that the weakest grouping still allows

nonlocal correlations to violate all our inequalities. This is shown explicitly for L below.
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Chapter 6. Analysis of Nonlocal Properties for Symmetric States

Theorem 16. The inequality L can not detect genuine nonlocality.

Proof. To show that L cannot detect genuine nonlocality, we will group the first two

parties and show that L = 1 under partially nonlocal LHV (where the first two parties

are considered as one). Mathematically, an LHV model means that we can write

P(a1 . . . anjA1 . . . An) =

Z

�(�)
Y

1�i�n

Pi (ai jAi ,�) d�, (6.15)

where subscripts denote the parties.

Meanwhile, a partially nonlocal LHV means that we allow a subset of parties to be

grouped together as a single (possibly nonlocal) party. In this proof, it means that

P(a1 . . . anjA1 . . . An) =
Z

�(�)P12(a1a2jA1A2,�)
Y

3�i�n

Pi (ai jAi ,�) d�. (6.16)

Below we give an explicit LHV model by setting all probabilities in L to equal to

either 0 or 1. This implies only one term in the sum
P

P(�(0 . . . 0| { z }
n�k

1 . . . 1| { z }
k

)j0 . . . 0) equals

to 1, all other terms will be 0. Let us suppose, without loss of generality,

P(0 . . . 0| { z }
n�k

1 . . . 1| { z }
k

j0 . . . 0) = 1. (6.17)

This implies

P12(00j00) = 1 (6.18)

P3(0j0) = 1, . . . , Pn�k(0j0) = 1 (6.19)

Pn�k+ 1(1j0) = 1, . . . , Pn(1j0) = 1, (6.20)

from which we can deduce

P12(01j00) = P12(10j00) = P12(11j00) = 0 (6.21)

P3(1j0) = 0, . . . , Pn�k(1j0) = 0 (6.22)

Pn�k+ 1(0j0) = 0, . . . , Pn(0j0) = 0. (6.23)

For the terms
P

P(�(0 . . . 0| { z }
n�k�1

1 . . . 1| { z }
k�1

01)j�(0 . . . 0| { z }
n�2

11)), we will try to set all of them

to 0, using (6.21) to (6.23) with some extra probability assignments, without causing

inconsistencies.

To see how we can set all terms to 0, first we divide the terms in the sum into three

different cases (a, b are both bits, ā, b̄ denote their logical flip):
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6.3. Monogamy and Genuine Nonlocality of Dicke States

1. P(ab�(0 . . . 01 . . . 01)j00�(0 . . . 011)).

In thiscase, if a and b are not both 0,then by (6.21), the probability is0. Otherwise,

we can set Pi (0j1) = 0, where i 6= 1,2.

2. P(ab�(0 . . . 01 . . . b̄)j01�(0 . . . 001)), P(ab�(0 . . . 01 . . . ā)j10�(0 . . . 001)).

In this case, if a = b = 1, then there exists Pi (0j1) where i 6= 1,2. Thus we

can have Pi (0j1) = 0 and P12(11j01) = 1, P12(11j10) = 1, without causing any

inconsistency with the previous case. The latter two assignments also imply that if

a and b are not both 1, then P12(abj01) = P12(abj10) = 0.

3. P(aā�(0 . . . 01 . . . 01)j11�(0 . . . 0)).

In this case, the probability is always 0. This can be deduced from the pigeonhole

principle: there are n� k � 1 zero outcomes when parties 3 to n all measure in

the 0 basis, so at least one party from n� k + 1 to n will get outcome 0 when

measuring in the 0 basis. By (6.23) the probability is 0.

In the last case, because the probability is always 0 regardless of the probability

assignments of the first two parties, we can set P12(00j11) = 0 and P12(11j11) = 0

without causing any inconsistency. These assignments guarantee that the last two

probabilities in L : P(0 . . . 0j1 . . . 1) and P(1 . . . 1j1 . . . 1), are 0.

Thus we can consistently assign probabilities such that all negative terms in L are 0

and the sum of all positive terms are 1, so L = 1, violating the inequality under partially

nonlocal LHV. This shows that L cannot detect genuine nonlocality.

A similar argument can be made for P n and Qn
d .

In conclusion it seems that one must make a balanced choice over which inequalities

will be useful depending on circumstances. We have seen that P n and Qn
d are interesting

in termsof separating classesof states, and indeed it isknown to be true that all entangled

pure states will show some violation P n [ YCZ+ 12] . However, their violation can never

be high enough to make the strongest statements we would like about monogamy. They

also do not say whether correlations are “genuine" or not (even L , with its many positive

terms, does not show genuine nonlocality or be maximally violated for finite n). On

the other hand inequalities based only on expectation values (which necessarily have

many positive terms) can have maximal violation for any n, but they cannot see the

nonlocality of all states - there are entangled states which do not violate any inequality

based on expectation values, which do violate P n [ ZBLW02] . In a similar situation to

the role of different entanglement measures in entanglement theory, it seems unlikely

that any single inequality will be able to capture all the nonlocal properties we might be

interested in.
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Chapter7
Applications

7.1 Application to Communication Complexity

The early interests in studying quantum computing mainly come from the computational

aspects. From the 1982 paper of Feynman [ Fey82] which pointed out the simulation of a

quantum system by a classical computer as the Achilles’ heel of classical computation, to

the 1996 paper by Grover [ Gro96] and the 1997 paper by Shor [ Sho97] demonstrating

possible big gaps between quantum and classical algorithms, the early excitement of

quantum computation comes mainly from quantum algorithms.

But nine years before Feynman and over twenty years before Grover or Shor, an

important result on quantum communication had already been proven [ Hol73] . In

this paper, Holevo proved what is now known as the Holevo bound, which shows

the number of qubits needed in transmitting a classical message from Alice to Bob is

the same as the number of classical bits. This may seem discouraging for any further

study of quantum communication, but it turns out that if one combines the ancient ( in

the quantum information world) notion of nonlocality with communication complex-

ity [ KN97, AB09b] , which uses a different way to model the cost of communication as

the one used by Holevo, there can be surprising results [ BCMdW10] .

Communication complexity hasbeen well-studied in theclassical case [ KN97, AB09b] .

The basic model is given by Yao [ Yao79] , who also made great contributions to quantum

computing by initiating the research on quantum circuit complexity and quantum com-

munication complexity in the same paper [ Yao93] . The model involves two parties, Alice

and Bob, each having an n-bit string, xA and xB, respectively. Their goal is to compute

some Boolean function f of xA and xB, f ( xA, xB) 2 f 0, 1g, using as little communication

(as measured in total number of bits communicated) as possible. For this they may use a

fixed protocol, which is divided into several rounds, and in each round they one party

sends a bit to the other party. The protocol terminates when at least one party has the

correct value of f ( xA, xB). One extreme situation arises when f is independent of xA or
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xB. In this case no communication is required for one party to compute f , so it is not

very interesting. The other extreme situation involves Alice (or Bob) sending xa (or xB)

directly to the other party. The communication complexity in this worst case scenario is

n bits. So for any Boolean function f , the communication complexity is always between

0 and n bits.

Just like in computability, allowing randomness in communication sometimes reduces

its complexity. To introduce randomness in the model above, suppose Alice and Bob

each possesses, in addition to xA and xB, a random string rA and rB. So and they are

allowed to only give the correct value of f with some positive probability. If rA and rB

are drawn from two independent random variables, the model is called private coin

model. If rA and rB are drawn from a shared random variable (i.e. rA = rB), the model

is called a public coin model.

To show the effect of having randomness in communication complexity, consider a

few well-studied functions f :

• Equality. fEQ( xA, xB) = 1 iff xA = xB. It is not hard to see that in the deterministic

case, fEQ needs n bits of communication: either Alice or Bob must send all her/ his

bits. But using private coins, the communication complexity can be reduced to

�(log2 n) [ KN97, Example 3.9] . With a public coin, the communication complexity

is constant [ KN97, Example 3.13] .

• Disjointness or Intersection. fDJ( xA, xB) = 1 if xA and xB agree on at least one

bit, i.e. xA \ xB 6= ; . In the deterministic case, the lower bound is�(n) [ KN97,

Example 1.23, Exercise 1.26] . But this time randomness does not help much, the

lower bound is still �(n) [ KN97, Example 3.22] [ Raz92, KS92] .

• Inner Product. f I P( xA, xB) equals the XOR of the bitwise AND of xA and xB:

f I P = �n
i= 1x i

A ^ x i
B. Just like fDJ, f I P needs n bits of communication in both the

deterministic and the randomized case [ BCMdW10] .

Using entanglement and nonlocality, the same function may enjoy a speedup.

The equality function already has O(1) complexity in the public coin model, so there

is no interesting speedup in the quantum case.

The disjointness function, on the other hand, has a quadratic speedup [ BCW98] to

O(
p

n) thanks to the Grover search algorithm [ Gro96] .

The most interesting result comes from the inner product function. Although using

quantum resources still can not change the lower bound, if a PR box (2.28) is used, the

communication complexity of all Boolean functions become trivial [ vD99, BCMdW10] .

As a result, if one believes communication complexity should not be trivial, then PR

boxes can not exist in nature. Later results by Brassard et al. [ BBL+ 06] showed that even

with noisy PR boxes which work with probability � 3+
p

6
6

� 90.8%, the probabilistic

communication complexity of Boolean functions is still trivial.
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The model and results above all come from bipartite situations. In classical com-

munication complexity, the generalization of the bipartite model to multipartite is not

unique [ KN97, Chapter 6] . The most obviousgeneralization to n party isby allowing f to

have n arguments x1, . . . , xn while each party i only knows x i . This model is weak in the

sense that most lower bounds in this model can be derived using results in the bipartite

model. For example, the n party equality function, defined as f n
EQ( x1, . . . , xn) = 1 iff all

the xi are equal, has complexity �(n) in this model. A more interesting model for n

party communication complexity is the number on the forehead model, where each

player i knows the input of all other players except xi . In this model the complexity of

f n
EQ is 2: the player i broadcasts a bit indicating whether all input strings except xi are

equal, then a different player j broadcasts one bit indicating whether x i is equal to any

xk where k 6= j .

In an attempt to show the advantages of multiparty nonlocality in multiparty com-

munication complexity, Brukner et al. proposed a model to turn any Bell inequality of

correlation functions into a communication complexity problem [ idZB02] . The model

only considers probabilistic communication complexity, where all players compute the

right value of f with nonzero probability. But it is also known [ ZBLW02] that there are

states which do not violate any Bell inequality of correlation functions, and these states

are symmetric hence they violate P n. This suggests that something more is needed to

show a communication complexity advantage from the violation of P n.

Because almost all symmetric statesnot only violatesP n, but also satisfy the extended

Hardy paradox (4.37) to (4.40), it is worthwhile to look at the structure of these (n + 2)

probabilities.

By treating the measurement settings as inputs and the outcomes as outputs, (4.37)

to (4.40) give (n+ 2) conditions on possible input/ output pairs. While the first condition

is straightforward: given the input 0 . . . 0, the output 0 . . . 0 sometimes occurs, the next

(n + 1) conditions only specify forbidden input/ output pairs while saying nothing about

the allowed ones. As a result of this ambiguity, the outputs in the extended Hardy

paradox generally is not a function of the inputs. Because a function must be at least

injective, i.e. mapping an input to a definitive output. Input/ output pairs in this case

form something more general than a function: a relation.

Formally, a relation R is a subset of the Cartesian product of the sets of inputs with

the set of possible outputs: R� I1 � I2 � . . .� In � O. In the Hardy paradox relation

the inputs are bits: I j 2 f 0,1g, and the output is a n-bit string O 2 f 0, 1gn. Functions

are special cases of relations when for every combination of inputs x1 2 I1, x2 2 I2 etc.,

there is a unique z 2 O. Take the Hardy paradox example, the (n + 1)-tuple (0, 0, 0, 000)

is in the Hardy relation RH because of (4.37), while (0, 0, 1, 000) is not in RH , because of

(4.38). Depending on the full distribution, (0, 0, 1, 001) may or may not be in RH .

Classically, there are some interesting results on communication complexity of rela-
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tions of two parties, where each party possesses an n-bit string xA and xB and they are

trying to find some z such that ( xA, xB, z) is in the relation. In this case, randomization

may reduce the lower bound of the communication complexity of some relations. The

Example 5.5 given in [ KN97] shows that while the disjointness function requires�(n)

in both deterministic and randomized settings, and O(
p

n) with quantum resources,

changing the function into a relation which estimates the size of the intersection (which

is the relation variant of a function that outputs the size of the intersection, which must

be at least as hard as the original disjointness function) is O(log2 n) in the private coin

model and O(1) in the public coin model.

Although a rigorous result needs to be proven showing that the Hardy paradox offers

an advantage in terms of the communication complexity of the relation RH , intuition

shows that the advantage is likely to be exponentially small. This is because the number

of (n + 1)-tuples in the relation is exponential in n, while the Hardy paradox only

excludes (n + 1) of them. This is also consistent with the fact that as n grows, it is

exponentially harder to observe the event that when all players measure in the setting 0,

they all obtain the outcome 0 (4.37).
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7.2 Application to Bayesian Games

In communication complexity, all participating parties try to cooperate to achieve the

same goal: compute the value of the function correctly. However, in the real world,

people have very legitimate reasons to try to hide information from someone else, or

try to sabotage each other instead of just cooperating. In economics, where human

behaviors are often modeled as games [ FT91, OR94, Mye97, Ras07, vNM07] , such

situations correspond to Bayesian games, or games with incomplete information,

pioneered by Harsanyi in the late 60s [ Har67, Har68a, Har68b] .

As an example, consider the following game with two players. Alice and Bob are

friends. They kind of like each other and want to become romantically involved, but

each person is not sure whether the other person thinks the same way. One day they

decide to watch a movie together, maybe try to ask the other person if he/ she feels the

same. The cinema is currently showing two movies: the action-packed Expendables 2

and the classic musical Les Mise¬rables. Alice strongly prefers to watch Les Mise¬rables,

while Bob prefers the Expendables 2. While they have different preferences, they prefer

watching the same movie (albeit only enjoyed by one) than each go to his/ her favorite

movie (they can not ask the other person if he/ she wants to be her/ his girl/ boyfriend

if they go to different movies). Having an important question to ask only makes the

movie watching experience more stressful. If Alice wants to be Bob’s girlfriend but Bob

refuses to be her boyfriend, this will ruin the movie for Alice, especially if the movie

is Les Mise¬rables. Same for Bob, especially if the movie is the Expendables 2. If they

both said no to become romantically involved, it makes the situation slightly different:

Alice feels less strongly about Les Mise¬rables being ruined, while Bob feels more strongly

about agreeing to watch this girly musical where a tone-deaf Australian is pretending

to be French. Similarly, if they both said no, Bob feels the Expendables 2 is ruined less

while Alice is disgusted by a 60 year olds who took so much steroid and botox that his

facial expression remains constant throughout the movie. Since they do not know how

the other person will answer the question, what is their average payoff in this game

(which may have happened already somewhere in the world)?

To model this game, it is necessary to introduce some game theory vocabulary. In

game theory parlance, a Bayesian game usually consists of [ Osb03, BL12]

• A set of players.

• A set of states (also called the states of nature).

• For each player, a set of possible types.

• For each player, a set of possible actions.

• For each player, a deterministic signal function assigning a type to each state.
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• For each player, a payoff function assigning a numerical value according to the

state and the actions taken by the player.

For the game defined above, which is a Bayesian version of the Battle of the Sexes

(BoS) game [ Osb03, CI08] , the players are obviously Alice and Bob, with the states

of nature being all four possibilities that if they want to become boy/ girlfriend or not

(yes/ yes, yes/ no, no/ yes, no/ no). The type of each player is his/ her private feeling

about the other person, the actions for each player are watching one of the two movies.

The signals simply map the states of nature to the type of each player. The payoffs are

given by the following matrix [ CI08] :

 
(3, 1) (0,0)

(0, 0) (1,3)

!  
(�3,�1) (0,0)

(0, 0) (�1,�3)

!

 
(�3,�1) (0, 0)

(0,0) (�1,�3)

!  
(�1,�3) (0,0)

(0, 0) (�3,�1)

! . (7.1)

The four quadratures of the matrix represent the four states of nature: NW= yes/ yes,

NE= yes/ no, SW= no/ yes, SE= no/ no. The numbers in the parentheses are payoffs to

Alice and Bob, respectively. Within each of the four smaller matrices, the four entries

define which movie Alice and Bob goes to see (M= Les Mise¬rables, E= The Expendables

2): NW= M/ M, NE= M/ E, SW= E/ M, SE= E/ E. To facilitate later studies (and make the

connection with nonlocality more apparent) , a labeling can be applied to the matrix. For

the big matrix, each quadrature (or small matrix) can be labeled using two bits: one bit

represents the state of nature of Alice, one bit for the state of nature of Bob. Using this

labeling, the four small matrices are: NW= 00, NE= 01, SW= 10, SE= 11. Similarly, the

four entries in each small matrix can be labeled using the same procedure. This way,

each event for Alice and Bob, with its pair of payoffs, is assigned a label. For example,

the event that Alice and Bob both agree to become romantically involved and watch

the Expendables 2 together is assigned the label (11j00), where the two bits after the

vertical line represent the state of nature (small matrix) and the two bits before the

vertical line denote the event. For the event (11j00), Alice receive payoff 1 and Bob

receive 3 (the entry (1, 3) in the small matrix at the upper left corner of the big matrix).

The probability that event (11j00) occurs is denoted by P(11j00).

Using the labeling above, the average payoff to Alice and Bob can be written as a

function of probabilities of all the possible events, assuming that the four states of nature
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occur with equal probability ( 1
4
) [ CI08] :

�A =
3

4
(P(00j00) � P(00j01) � P(00j10) � P(11j11))

+
1

4
(P(11j00) � P(11j01) � P(11j10) � P(00j11)), (7.2)

�B =
1

4
(P(00j00) � P(00j01) � P(00j10) � P(11j11))

+
3

4
(P(11j00) � P(11j01) � P(11j10) � P(00j11)). (7.3)

Now it is obvious that the average payoffs for Alice and Bob are just the CH inequality

(2.56) and one of its variants. To show that a quantum strategy has an advantage, there

needs to be something akin to a local hidden variable in this Bayesian game setting.

Curiously, there is still one thing missing from the discussion above: the function of the

signal. Traditionally, a signal is supposed to function like an advise, originated from an

outside advisor. It is very important that the advisor does not know the type of each

player, otherwise the advisor can allow signaling among the players [ Bra10, BL12] . Upon

receiving the signal, each player can choose independently his/ her strategy, using the

advice and the type, which is known only to the player. Enforcing these two conditions

can be seen as enforcing a local hidden variable model in physics, and such a signal is

called a classical signal [ Bra10, BL12] . It can be shown that using a classical signal the

average payoffs for Alice and Bob above are both 0, which is also a Bayesian equilibrium

(no one can unilaterally do better than this average payoff). Not surprisingly, using

a quantum signal (which comes from sharing an entangled state and making suitable

measurements just as done in a nonlocality test), the average payoffs for Alice and Bob

are both positive [ CI08] .

Although it is easy to tailor make games and payoff matrices which correspond to the

n party Hardy paradox (4.37) to (4.40) [ CI08] , a deeper connection between Bayesian

games and nonlocality exists [ BL12] . Early results on quantum strategies of classical

games usually focus on games with perfect information [ Mey99, EWL99] . But to show

quantum strategies have an advantage over classical strategies, assumptions have to

be made, and these assumptions lead to controversy [ BH01, vEP02] . As pointed out

in [ BL12] , Bayesian games can be always modeled to show a quantum advantage, which

means the payoffs need not be tailor made to a specific inequality, such as in the example

above.
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Chapter8
Summary

8.1 New Results in This Thesis

The new results in this thesis can be roughly split up into two categories:

1. The results related to the nonlocality of all symmetric states.

2. The results related to the analysis of various nonlocal properties of symmetric

states and their relationship to entanglement of symmetric states.

The first category mainly concerns Chapter 4, in which it is shown that almost all

symmetric states satisfy the n-party Hardy paradox and violate the inequality P n. A

constructive procedure is given to determine the measurement bases to show the paradox

and violation. It is also shown that although Dicke states do not satisfy the n-party Hardy

paradox, they still violate P n.

The second category mainly concerns Chapter 5 and 6. Degeneracy, as a feature

of symmetric states and the Majorana representation, has known application in the

entanglement theory of symmetric states. By exploiting degeneracy, new applications in

nonlocality is shown, where degeneracy is related to the persistency of nonlocality into

subsets. By using degeneracy as a common tool, device independent classifications of

nonlocality is performed, with states sitting in different entanglement classes as well.

Then it is shown that the geometric measure of entanglement bounds the violation of

P n, so it can not be monogamous in the strict sense (although it does exhibit some

broad monogamy). Based on a recent work, a new inequality for Dicke states which is

monogamous in the strict sense is shown. Although neither this new inequality nor the

two original ones can detect genuine nonlocality.
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Chapter 8. Summary

8.2 Recent Progress on Related Topics

Since the publication of [ WM12] , there have been several new developments on related

topics. The most interesting one is by Yu et al. [ YCZ+ 12] , which shows that all pure

entangled states can violate P n. P n can be seen as a universal inequality which can be

used to detect the nonlocality of all pure entangled states.

Another interesting development is on the persistency of nonlocality and entangle-

ment into subsets [ BV12] . In this work the notion of persistency is rigorously defined for

entanglement and nonlocality, with analysis of different types of states having different

properties. Although symmetric states do not feature prominently in this work, there

are several results concerning symmetric states, such as the W state exhibits maximum

persistency both in terms of entanglement and in terms of nonlocality, and a proposal to

test the symmetry of a state in a device independent way.

8.3 Outlooks

Future works extending the results in this thesis can be divided into two directions:

theoretical and experimental.

On the theoretical front, the two topics raised in Chatper 7 still need more research,

especially on the communication complexity of relations. Another interesting question

to ask is how to incorporate degeneracy (or persistency) into games. Will this represent

some coalition?

Another possible theoretical direction is to use symmetric states to perform some

contextuality test. As mentioned in Chapter 2, recent techniques using category theory or

hyper graphs provide unified frameworks to work with both nonlocality and contextuality.

It is interesting to see if symmetric states and the Majorana representation can be used

as a tool in contextuality tests, especially when the stabilizer formalism is known to work

both as a tool to show nonlocality and as a tool to show contextuality. Recent progress

on the computational power of linear optics [ AA11] 1 may provide a surprising answer

to this question.

Experimentally, recent results suggest that all the symmetric states used in this thesis

can be generated [ LLL+ 12] . It is interesting to see a violation of P n for some states

in an experiment. It is more interesting to see a violation of Qn
d for a state with some

degeneracy, to observe the persistency of nonlocality in a real experiment. As a first step

towards this goal, Adel Sohbi in our group is currently studying the effect of noise on

the violations of P n and Qn
d.

1Also by Terry Rudolph through private communication
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[ idZB02] Marek Żukowski and Časlav Brukner, Bell’s Theorem for General N -Qubit
States, Phys. Rev. Lett. 88 (2002), 210401.

[ KN97] Eyal Kushilevitz and Noam Nisan, Communication Complexity, Cambridge
University Press, 1997.

[ KS67] Simon Bernhard Kochen and Ernst Paul Specker, The Problem of Hidden
Variables in Quantum Mechanics, J. Math. Mech. 17 (1967), no. 1, 59–87.

[ KS92] Bala Kalyanasundaram and Georg Schintger, The Probabilistic Communica-
tion Complexity of Set Intersection, SIAM Journal on Discrete Mathematics
5 (1992), no. 4, 545–557.

[ KS11] Yvette Kosmann-Schwarzbach, The Noether Theorems: Invariance and Con-
servation Laws in the Twentieth Century, Sources and Studies in the History
of Mathematics and Physical Sciences, Springer, New York, 2011.

[ KWK+ 10] Nikolai Kiesel, Witlef Wieczorek, Ste¬phanie Krins, Thierry Bastin, Harald
Weinfurter, and Enrique Solano, Operational multipartite entanglement
classes for symmetric photonic qubit states, Phys. Rev. A 81 (2010), no. 3,
032316.

[ Las01] Jean-Bernard Lasserre, Global optimization with polynomials and the prob-
lem of moments, SIAM Journal on Optimization 11 (2001), no. 3, 796–817.

[ Leb99] Patricio Leboeuf, Phase space approach to quantum dynamics, Journal of
Physics A: Mathematical and General 24 (1999), no. 19, 4575.

[ LLL+ 12] Lucas Lamata, Carlos E. Lopez, Benjamin Lanyon, Thierry Bastin, Juan Car-
los Retamal, and Enrique Solano, Deterministic Generation of Arbitrary
Symmetric States and Entanglement Classes, arXiv preprint arXiv:1211.0404
(2012).

[ LWW+ 10] Lars Lydersen, Carlos Wiechers, Christoffer Wittmann, Dominique Elser,
Johannes Skaar, and Vadim Makarov, Hacking commercial quantum cryptog-
raphy systems by tailored bright illumination, Nat Photon 4 (2010), no. 10,
686–689.

[ MAG06] Lluis Masanes, Antonio Acı¬n, and Nicolas Gisin, General properties of
nonsignaling theories, Phys. Rev. A 73 (2006), 012112.

[ Maj32] Ettore Majorana, Atomi orientati in campo magnetico variabile, Il Nuovo
Cimento 9 (1932), no. 2, 43–50.

[ Maj37] , Teoria simmetrica dell’elettrone e del positrone, Il Nuovo Cimento
14 (1937), no. 4, 171–184.

136



Bibliography

[ Maj06] Ettore Majorana, Ettore Majorana: Scientific Papers, Springer Berlin Heidel-
berg, 2006.

[ Mar11] Damian Markham, Entanglement and symmetry in permutation-symmetric
states, Phys. Rev. A 83 (2011), no. 4, 042332.

[ Mer90] Nathaniel David Mermin, Extremequantum entanglement in a superposition
of macroscopically distinct states, Phys. Rev. Lett. 65 (1990), no. 15, 1838–
1840.

[ Mer95] , TheBest Version of Bell’sTheorem, Annals of the New York Academy
of Sciences 755 (1995), no. 1, 616–623.

[ Mey99] David A. Meyer, Quantum Strategies, Phys. Rev. Lett. 82 (1999), 1052–
1055.

[ MKG+ 10] Pierre Mathonet, Ste¬phanie Krins, Michel Godefroid, Lucas Lamata, En-
rique Solano, and Thierry Bastin, Entanglement equivalence of N-qubit
symmetric states, Phys. Rev. A 81 (2010), 052315.

[ MPA11] LluisMasanes, Stefano Pironio, and Antonio Acı¬n, Securedevice-independent
quantum key distribution with causally independent measurement devices,
Nature Communications 2 (2011), 238.

[ MS07] H. Ma�kela�and K.-A. Suominen, Inert States of Spin-S Systems, Phys. Rev.
Lett. 99 (2007), 190408.

[ MS08] Damian Markham and Barry C. Sanders, Graph states for quantum secret
sharing, Phys. Rev. A 78 (2008), 042309.

[ Mye97] Roger Bruce Myerson, Game Theory: Analysis of Conflict, Harvard Univ
Press, 1997.

[ MZF+ 12] Vincent Mourik, Kun Zuo, Sergey M. Frolov, Se¬bastien R. Plissard, Erik P.
A. M. Bakkers, and Leo P. Kouwenhoven, Signatures of Majorana Fermions
in Hybrid Superconductor-Semiconductor Nanowire Devices, Science 336
(2012), no. 6084, 1003–1007.

[ NC00] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quan-
tum Information, Cambridge University Press, Cambridge, 2000.

[ Nee99] Tristan Needham, Visual Complex Analysis, Oxford University Press, Oxford,
1999.

[ Noe18] Emmy Noether, Invariante Variationsprobleme, Nachr. D. Ko�nig. Gesellsch.
D. Wiss. Zu Go�ttingen Math.-Phys. Kl. II (1918), 235–257.

[ NPA07] Miguel Navascue¬s, Stefano Pironio, and Antonio Acı¬n, Bounding theSet of
Quantum Correlations, Phys. Rev. Lett. 98 (2007), 010401.

[ OR94] Martin J. Osborne and Ariel Rubinstein, A Course in Game Theory, The MIT
press, 1994.

137



Bibl iography

[ Osb03] Martin J. Osborne, An Introduction to Game Theory, Oxford University
Press, New York, NY, USA, 2003.

[ OV06] Tobias J. Osborne and Frank Verstraete, General Monogamy Inequality for
Bipartite Qubit Entanglement, Phys. Rev. Lett. 96 (2006), 220503.

[ OZ01] Harold Ollivier and Wojciech Hubert Zurek, Quantum Discord: A Measure
of the Quantumness of Correlations, Phys. Rev. Lett. 88 (2001), 017901.

[ PAB+ 09] Stefano Pironio, Antonio Acı¬n, NicolasBrunner, NicolasGisin, Serge Massar,
and Valerio Scarani, Device-independent quantum key distribution secure
against collective attacks, New Journal of Physics 11 (2009), no. 4, 045021.

[ PAM+ 10] Stefano Pironio, Antonio Acı¬n, Serge Massar, Antoine Boyer de la Giroday,
Dzmitry N. Matsukevich, Peter Maunz, Steven Olmschenk, David Hayes,
Le Luo, T. Andrew Manning, and Christopher R. Monroe, Random numbers
certified by Bell’s theorem, Nature 464 (2010), no. 7291, 1021–1024.
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